
 
 

Delft University of Technology

Ill posedness in modelling two-dimensional morphodynamic problems
Effects of bed slope and secondary flow
Chavarrías, Víctor; Schielen, Ralph; Ottevanger, Willem; Blom, Astrid

DOI
10.1017/jfm.2019.166
Publication date
2019
Document Version
Accepted author manuscript
Published in
Journal of Fluid Mechanics

Citation (APA)
Chavarrías, V., Schielen, R., Ottevanger, W., & Blom, A. (2019). Ill posedness in modelling two-dimensional
morphodynamic problems: Effects of bed slope and secondary flow. Journal of Fluid Mechanics, 868, 461-
500. https://doi.org/10.1017/jfm.2019.166

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1017/jfm.2019.166
https://doi.org/10.1017/jfm.2019.166


Ill-posedness in modelling 2D morphodynamic1

problems: Effects of bed slope and secondary flow2
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Abstract9

A two-dimensional model describing river morphodynamic processes under mixed-size sed-10

iment conditions is analysed with respect to its well-posedness. Well-posedness guarantees the11

existence of a unique solution continuously depending on the problem data. When a model12

becomes ill-posed, infinitesimal perturbations to a solution grow infinitely fast. Apart from the13

fact that this behaviour cannot represent a physical process, numerical simulations of an ill-14

posed model continue to change as the grid is refined. For this reason, ill-posed models cannot15

be used as predictive tools. One source of ill-posedness is due to the simplified description of16

the processes related to vertical mixing of sediment. The current analysis reveals the existence17

of two additional mechanisms that lead to model ill-posedness: secondary flow due to the flow18

curvature and the gravitational pull on the sediment transport direction. When parametris-19

ing secondary flow, accounting for diffusion in the transport of secondary flow intensity is a20

requirement for obtaining a well-posed model. When considering the theoretical amount of21

diffusion, the model predicts instability of perturbations that are incompatible with the shal-22

low water assumption. The gravitational pull is a necessary mechanism to yield a well-posed23

model, but not all closure relations to account for this mechanism are valid under mixed-size24

sediment conditions. Numerical simulations of idealised situations confirm the results of the25

stability analysis and highlight the consequences of ill-posedness.26

∗Corresponding author: v.chavarriasborras@tudelft.nl
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1 Introduction27

Modelling of fluvial morphodynamic processes is a powerful tool not only to predict the future28

state of a river after, for instance, an intervention or a change in the discharge regime (Blom et al.,29

2017), but also as a source of understanding of the natural processes responsible for patterns such30

as dunes, meanders, and bars (Callander , 1969; Seminara, 2006; Colombini and Stocchino, 2012).31

A framework for modelling the morphodynamic development of alluvial rivers is composed of a32

system of partial differential equations for modelling the flow, change in bed elevation, and change33

in the bed surface texture. The Saint-Venant (1871) equations account for conservation of water34

mass and momentum and enable modelling processes with a characteristic length scale significantly35

longer than the flow depth in one-dimensional cases. The Shallow Water Equations describe the36

depth-averaged flow in two-dimensional cases. Conservation of unisize bed sediment is typically37

modelled using the Exner (1920) equation and, under mixed-size sediment conditions, the active38

layer model (Hirano, 1971) accounts for mass conservation of bed sediment of each grain size.39

Although widely successful in predicting river morphodynamics, a fundamental problem arises40

when using the above framework. Under certain conditions the description of the natural phenom-41

ena is not captured by the system of equations, which manifests as an ill-posed model. Models42

describe a simplified version of reality, which allows us to understand the key elements playing43

a major role in the dynamics of the system one studies (Paola and Leeder , 2011). Major sim-44

plifications such as reducing streamwise morphodynamic processes to a diffusion equation allow45

for insight on the creation of stratigraphic records and evolution on large spatial scales (Paola46

et al., 1992; Paola, 2000; Paola and Leeder , 2011). There is a difference between greatly simplified47

models and models that do not capture the physical processes. A simplified model reproduces48

a reduced-complexity version of reality (Murray , 2007) and it is mathematically well-posed, as a49

unique solution exists that depends continuously on the data (Hadamard , 1923; Joseph and Saut ,50

1990). An ill-posed model lacks crucial physical processes that cause the model to be unsuitable51

to capture the dynamics of the system (Fowler , 1997). An ill-posed model is unrepresentative52

of a physical phenomenon, as the growth rate of infinitesimal perturbations to a solution (i.e.,53

negligible noise from a physical perspective) tends to infinity (Kabanikhin, 2008). This is different54

from chaotic systems, in which noise similarly causes the solution to diverge but not infinitely fast55

(Devaney , 1989; Banks et al., 1992).56

An example of an ill-posed model is the one describing the dynamics of granular flow. The con-57

tinuum formulation of such a problem depends on deriving a model for the granular viscosity. Jop58

et al. (2005, 2006) relate viscosity to a dimensionless shear rate. The model captures the dynamics59

of granular flows if the dimensionless shear rate is within a certain range, but otherwise the model60

is ill-posed and loses its predictive capabilities (Barker et al., 2015). A better representation of the61

physical processes guaranteeing that viscosity tends to 0 when the dimensionless shear rate tends62
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to 0 extends the domain of well-posedness (Barker and Gray , 2017).63

Under unisize sediment and one-dimensional flow conditions, the Saint-Venant-Exner model64

may be ill-posed when the Froude number is larger than 6 (Cordier et al., 2011). As most flows65

of interest are well below this limit, we can consider modelling of fluvial problems under unisize66

sediment conditions to be well-posed. This is not the case when considering mixed-size sediment.67

Using the active layer model we assume that the bed can be discretised into two layers: the active68

layer and the substrate. The sediment transport rate depends on the grain size distribution of69

the active layer. A vertical flux of sediment occurs between the active layer and the substrate if70

the elevation of the interface between the active layer and the substrate changes. The active layer71

is well-mixed, whereas the substrate can be stratified. The above simplification of the physical72

processes responsible for vertical mixing causes the active layer model to be ill-posed (Ribberink ,73

1987; Stecca et al., 2014; Chavarŕıas et al., 2018). In particular, the active layer is prone to be ill-74

posed under degradational conditions into a substrate finer than the active layer (i.e., an armoured75

bed (Parker and Sutherland , 1990)) for any value of the Froude number.76

Previous analyses of river morphodynamic models regarding their well-posedness have been77

focused on conditions of one-dimensional flow (Ribberink , 1987; Cordier et al., 2011; Stecca et al.,78

2014; Chavarŕıas et al., 2018). Our objective is to extend these analyses to conditions of two-79

dimensional flow. More specifically we include the secondary flow and the bed slope effect in the80

analysis of the well-posedness of the system of equations.81

As the flow is intrinsically three-dimensional, the depth-averaging procedure eliminates an82

important flow component: the secondary flow (Van Bendegom, 1947; Rozovskii , 1957). The83

secondary flow causes, for instance, an increase in the amplitude of meanders (Kitanidis and84

Kennedy , 1984) and plays an important role in bar development (Olesen, 1982). To understand the85

morphology of two-dimensional features, it is necessary to account for the fact that the sediment86

transport direction is affected by the gravitational pull when the bed slope in the transverse87

direction is significant (Dietrich and Smith, 1984; Seminara, 2006). This is usually done using88

a closure relation that sets the angle between the flow and the sediment transport directions as89

a function of the flow and sediment parameters (Van Bendegom, 1947; Engelund , 1974; Talmon90

et al., 1995; Seminara et al., 2002; Parker et al., 2003; Francalanci and Solari , 2007, 2008; Baar91

et al., 2018).92

In this paper we show that combining these two effects, secondary flow and sediment deflection93

by the bed slope, leads in some cases to an ill-posed system of equations. The paper is organised94

as follows. In Section 2 we present the model equations describing the primary and secondary flow,95

as well as changes in bed elevation and surface texture. In Section 3 we extend the explanation of96

ill-posedness and relate it to growth of perturbations. We subsequently conduct a stability analysis97

of the equations, which indicates the conditions under which the secondary flow model and the98

closure relation for the bed slope effect yield an ill-posed model (Section 4). In Section 5 we run99
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numerical simulations of idealised cases to test the validity of the analytical results and study the100

consequences of ill-posedness.101

2 Mathematical Model102

In this section we present the two-dimensional mathematical model of flow, accounting for sec-103

ondary flow, coupled to a morphodynamic model for mixed-size sediment. We subsequently intro-104

duce the equations describing the primary flow (Section 2.1), the secondary flow (Section 2.2), and105

morphodynamic change (Section 2.3). In Section 2.4 we linearise the system of equations to study106

the stability of perturbations.107

2.1 Primary Flow Equations108

The primary flow is described using the depth-averaged Shallow Water Equations (e.g. Vreugdenhil ,109

1994):110

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 , (1)111

112

∂qx
∂t

+
∂(q2x/h+ gh2/2)

∂x
+
∂
( qxqy

h

)
∂y

+ gh
∂η

∂x
− Fsx =

= 2
∂

∂x

(
νh
∂( qxh )

∂x

)
+

∂

∂y

(
νh

(
∂( qxh )

∂y
+
∂(

qy
h )

∂x

))
− ghSfx ,

(2)113

114

∂qy
∂t

+
∂(q2y/h+ gh2/2)

∂y
+
∂
( qxqy

h

)
∂x

+ gh
∂η

∂y
− Fsy =

2
∂

∂y

(
νh
∂(

qy
h )

∂y

)
+

∂

∂x

(
νh

(
∂(

qy
h )

∂x
+
∂( qxh )

∂y

))
− ghSfy ,

(3)115

where (x, y) [m] are Cartesian coordinates and t [s] is the time coordinate. The variables (qx, qy) =116

(uh, vh) [m2/s] are the specific water discharges in the x and y direction, respectively, where h117

[m] is the flow depth and u [m/s] and v [m/s] are the depth-averaged flow velocities. The variable118

η [m] is the bed elevation and g [m/s2] the acceleration due to gravity. The friction slopes are119

(Sfx, Sfy) [−] and the diffusion coefficient ν [m2/s] is the horizontal eddy viscosity. The depth-120

averaging procedure of the equations of motion introduces terms that originate from the difference121

between the actual velocity at a certain elevation in the water column and the depth-averaged122

velocity. We separate the contributions due to turbulent motion and secondary flow caused by123

the flow curvature. The contribution due to turbulent motion is accounted for by the diffusion124

coefficient. Elder (1959) derived an expression for the diffusion coefficient that accounts for the125

effect of turbulent motion on the depth-averaged flow assuming a logarithmic profile for the primary126

flow and negligible effect of molecular viscosity:127

νE =
1

6
κhu∗ , (4)128

DRAFT COMPILED ON 2019/02/14 AT 12:57 4



SECONDARY FLOW AND BED SLOPE EFFECT CHAVARRÍAS ET AL.

where κ = 0.41 [−] is the Von Kármán constant and u∗ =
√
CfQ/h [m/s] is the friction velocity.129

Parameter Cf [−] is a nondimensional friction coefficient, which we assume to be constant (Ikeda130

et al., 1981; Schielen et al., 1993) and Q =
√
q2x + q2y [m2/s] is the module of the specific water131

discharge. In the numerical simulations we will assume the eddy viscosity to be a constant equal132

to the value given by νE in a reference state (e.g. Falconer , 1980; Lien et al., 1999). Appendix A133

presents the limitations of the coefficient derived by Elder (1959).134

The terms (Fsx, Fsy) [m2/s2] account for the effect of secondary flow. These terms are respon-135

sible for a transfer of momentum that shifts the maximum velocity to the outer bend (Kalkwijk136

and De Vriend , 1980), as well as for a sink of energy in the secondary circulation (Flokstra, 1977;137

Begnudelli et al., 2010). We deal with these terms in Section 2.2.138

We assume a Chézy-type friction:139

Sfx =
CfqxQ

gh3
, Sfy =

CfqyQ

gh3
. (5)140

One underlying assumption of the system of equations presented above is that the vertical length141

and velocity scales are negligible with respect to the horizontal ones. Another assumption is the142

fact that the concentration of sediment (the ratio between the solid and liquid discharge) is small143

(below 6× 10−3 (Garegnani et al., 2011, 2013)), such that we apply the clear water approximation.144

2.2 Secondary Flow Equations145

This section describes the equations that model secondary flow (i.e., formulations for Fsx and Fsy146

in equations (2) and (3)). The secondary flow velocity profile us [m/s] (i.e., the vertical profile147

of the velocity component perpendicular to the primary flow) is assumed to have a universal148

shape as a function of the relative elevation in the water column ζ = (z − η)/h [−], where z149

[m] is the vertical Cartesian coordinate perpendicular to x and y increasing in upward direction150

(Rozovskii , 1957; Engelund , 1974; De Vriend , 1977, 1981; Booij and Pennekamp, 1984). Worded151

differently, the vertical profile of the secondary flow is parametrised by a single value representing152

the intensity of the secondary flow I [m/s], such that us = f(ζ)I. The secondary flow intensity I is153

the integral of the absolute value of the secondary flow velocity profile (De Vriend , 1981). Among154

others, Rozovskii (1957), Engelund (1974), and De Vriend (1977), derive equilibrium profiles of155

the secondary flow that differ in the description of the eddy viscosity, vertical profile of the primary156

flow, and the boundary condition of the flow at the bed. Following De Vriend (1977), we assume157

a logarithmic profile for the primary flow (i.e., a parabolic distribution of the eddy viscosity) and158

vanishing velocity close to the bed at ζ = exp (−1− 1/α) where α =
√
Cf

κ < 0.5.159

The depth-averaging procedure yields the integral value (along z) of the force per unit mass160

that the secondary flow exerts on the primary flow (De Vriend , 1977; Kalkwijk and De Vriend ,161
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1980):162

Fsx =
∂Txx
∂x

+
∂Txy
∂y

, (6)163

164

Fsy =
∂Tyx
∂x

+
∂Tyy
∂y

, (7)165

where Tlm [m3/s2] is the integral shear stress per unit mass in the direction l-m. Assuming a large166

width-to-depth ratio (i.e., B/h � 1, where B [m] is the characteristic channel width) and a mild167

curvature (i.e., h/Rs � 1, where Rs [m] is the radius of curvature of the streamlines), the shear168

stress terms are:169

Txx = −2
β∗I

Q
qxqy , (8)170

171

Txy = Tyx =
β∗I

Q

(
q2x − q2y

)
, (9)172

173

Tyy = Tyy = 2
β∗I

Q
qxqy , (10)174

where β∗ = 5α− 15.6α2 + 37.5α3.175

The simplest strategy to account for secondary flow assumes that the secondary flow is fully176

developed. This is equivalent to saying that the secondary flow intensity is equal to the equilib-177

rium value Ie = Q/Rs [m/s] found in an infinitely long bend (Rozovskii , 1957; Engelund , 1974;178

De Vriend , 1977, 1981; Booij and Pennekamp, 1983). A change in channel curvature leads to the179

streamwise adaptation of secondary flow to the equilibrium value (De Vriend , 1981; Ikeda and180

Nishimura, 1986; Johannesson and Parker , 1989; Seminara and Tubino, 1989). Booij and Pen-181

nekamp (1984) and Kalkwijk and Booij (1986) not only account for the spatial adaptation but also182

the temporal adaptation of the secondary flow associated with a variable discharge or tides. Here183

we adopt the latter strategy, which has been applied, for instance, in modelling the morphody-184

namics of braided rivers (Javernick et al., 2016; Williams et al., 2016; Javernick et al., 2018). The185

spatial and temporal adaptation of secondary flow is expressed by (Jagers, 2003):186

∂I

∂t
+
qx
h

∂I

∂x
+
qy
h

∂I

∂y
− ∂

∂x

(
ν
∂I

∂x

)
− ∂

∂y

(
ν
∂I

∂y

)
= Ss , (11)187

where Ss [m/s2] is a source term which depends on the difference between the local secondary flow188

intensity and its equilibrium value:189

Ss = −I − Ie
TI

, (12)190

where TI [s] is the adaptation time scale of the secondary flow:191

TI =
LIh

Q
, (13)192

where LI = L∗Ih [m] is the adaptation length scale of the secondary flow, which depends on the193

nondimensional length scale L∗I = 1−2α
2κ2α (Kalkwijk and Booij , 1986).194
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The radius of curvature of the streamlines is defined as (e.g. Legleiter and Kyriakidis, 2006):195

1

Rs
=

dx
dt

d2y
dt2 −

dy
dt

d2x
dt2((

dx
dt

)2
+
(

dy
dt

)2)3/2
, (14)196

assuming steady flow and in terms of water discharge we obtain:197

1

Rs
=
−qxqy ∂qx∂x + q2x

∂qy
∂x − q

2
y
∂qx
∂y + qxqy

∂qy
∂y(

q2x + q2y
)3/2 . (15)198

The secondary flow model described in this section closes the primary flow model described in199

Section 2.1 given a certain bed elevation. In the following section we describe the model equations200

that describe changes in bed elevation as a function of the primary and secondary flow.201

2.3 Morphodynamic Equations202

We consider an alluvial bed composed of an arbitrary number N of non-cohesive sediment fractions203

characterised by a grain size dk [m], where the subscript k denotes the grain size fraction in204

increasing order (i.e., d1 < d2 < ... < dN ). Bed elevation change depends on the divergence of the205

sediment transport rate (Exner , 1920):206

∂η

∂t
+
∂qbx
∂x

+
∂qby
∂y

= 0 , (16)207

where qbx =
∑N
k=1 qbxk [m2/s] and qby =

∑N
k=1 qbyk [m2/s] are the total specific (i.e., per unit of208

differential length) sediment transport rates including pores in the x and y direction, respectively.209

The variables qbxk [m2/s] and qbyk [m2/s] are the specific sediment transport rates of size fraction210

k including pores. For simplicity we assume a constant porosity and density of the bed sediment.211

The sediment transport rate is assumed to be locally at capacity, which implies that we do not212

model the temporal and spatial adaptation of the sediment transport rate to capacity conditions213

(Bell and Sutherland , 1983; Phillips and Sutherland , 1989; Jain, 1992).214

Changes in the bed surface grain size distribution are accounted for using the active layer model215

(Hirano, 1971). For simplicity, we assume a constant active layer thickness La [m]. Conservation216

of sediment mass of size fraction k in the active layer reads:217

∂Mak

∂t
+ f Ik

∂η

∂t
+
∂qbxk
∂x

+
∂qbyk
∂y

= 0 k ∈ {1, N − 1} , (17)218

and in the substrate (Chavarŕıas et al., 2018):219

∂Msk

∂t
− f Ik

∂η

∂t
= 0 k ∈ {1, N − 1} , (18)220
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where Mak = FakLa [m] and Msk =
∫ η0+η−La

η0
fsk(z)dz [m] are the volume of sediment of size221

fraction k per unit of bed area in the active layer and the substrate, respectively. Parameter η0 [m]222

is a datum for bed elevation. Parameters Fak ∈ [0, 1], fsk ∈ [0, 1], and f Ik ∈ [0, 1] are the volume223

fraction content of sediment of size fraction k in the active layer, substrate, and at the interface224

between the active layer and the substrate, respectively. By definition, the sum of the volume225

fraction content over all size fractions equals 1:226

N∑
k=1

Fak = 1 ,

N∑
k=1

fsk(z) = 1 ,

N∑
k=1

f Ik = 1 . (19)227

Under degradational conditions, the volume fraction content of size fraction k at the interface228

between the active layer and the substrate is equal to that at the top part of the substrate (f Ik =229

fsk(z = η − La) for ∂η/∂t < 0). This allows for modelling of arbitrarily abrupt changes in grain230

size due to erosion of previous deposits. Under aggradational conditions the sediment transferred231

to the substrate is a weighted mixture of the sediment in the active layer and the bed load (Parker ,232

1991; Hoey and Ferguson, 1994; Toro-Escobar et al., 1996). Here we simplify the analysis and we233

assume that the contribution of the bed load to the depositional flux is negligible (i.e., f Ik = Fak234

for ∂η/∂t > 0) (Hirano, 1971).235

The magnitude of the sediment transport rate is assumed to be a function of the local bed shear236

stress. We apply the sediment transport relation by Engelund and Hansen (1967) in a fractional237

manner (Blom et al., 2016, 2017) as well as the one by Ashida and Michiue (1971) (Appendix B).238

The direction of the sediment transport (ϕsk [rad]) is affected by the secondary flow and the239

bed slope (Van Bendegom, 1947):240

tanϕsk =
sinϕτ − 1

gsk

∂η
∂y

cosϕτ − 1
gsk

∂η
∂x

k ∈ {1, N} , (20)241

where gsk [−] is a function that accounts for the influence of the bed slope on the sediment transport242

direction and ϕτ [rad] is the direction of the sediment transport accounting for the secondary flow243

only:244

tanϕτ =
qy − hαI

qx
Q I

qx − hαI
qy
Q I

. (21)245

Assuming a mild curvature, uniform flow conditions, and a logarithmic profile of the primary flow,246

the constant αI [−] is (De Vriend , 1977):247

αI =
2

κ2
(1− α) . (22)248

The effect of the bed slope on the sediment transport direction depends on the grain size (Parker249
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and Andrews, 1985). We account for this effect setting:250

gsk = Asθ
Bs

k k ∈ {1, N} , (23)251

where As [−] and Bs [−] are nondimensional parameters and θk [−] is the Shields (1936) stress252

(Appendix B). Different values of the coefficients As and Bs have been proposed (for a recent253

review, see Baar et al. (2018)). We consider two possibilities: (1) As = 1, Bs = 0 (Schielen et al.,254

1993) and (2) As = 1.70 and Bs = 0.5 (Talmon et al., 1995). In the first and simpler case, the bed255

slope effect is independent from the bed shear stress (Engelund and Skovgaard , 1973; Engelund ,256

1975). In the second, more complex, case, the bed slope effect is assumed to be dependent on257

the fluid drag force on the grains, which is assumed to depend on the Shields stress (Koch and258

Flokstra, 1981).259

2.4 Linearised System of Equations260

The system of equations describing the flow, change of bed level, and change of the bed surface261

texture is highly non-linear. Here we linearise the system of equations to provide insight on the262

fundamental properties of the model and to study the stability of perturbations. To this end we263

consider a reference state that is a solution to the system of equations. The reference state is a264

steady uniform straight flow in the x direction over an inclined plane bed composed of an arbitrary265

number of size fractions. Mathematically: h0 = ct., qx0 = ct., qy0 = 0, I0 = 0, ∂η
∂x = ct. =

−Cfq
2
x0

gh3
0

,266

∂η
∂y = 0, Mak0 = ct. ∀k ∈ {1, N − 1}, where ct. denotes a constant different from 0 and subscript 0267

indicates the reference solution.268

We add a small perturbation to the reference solution denoted by ′ and we linearise the resulting269

system of equations. After substituting the reference solution we obtain a system of equations of270

the perturbed variables:271

∂Q′

∂t
+ Dx0

∂2Q′

∂x2
+ Dy0

∂2Q′

∂y2
+ Ax0

∂Q′

∂x
+ Ay0

∂Q′

∂y
+ B0Q

′ = 0 , (24)272

where the vector of dependent variables is:273

Q′ =
[
h′, q′x, q

′
y, I
′, η′, [M ′ak]

]ᵀ
, (25)274

where the square bracket indicates the vector character.275
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The diffusive matrix in x direction is:276

Dx0 =



0 0 0 0 0 0

2ν qx0h0
−2ν −ν 0 0 0

0 0 −ν 0 0 0

0 0 0 −ν 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

(26)277

where 0 denotes the zero matrix. The diffusive matrix in y direction is:278

Dy0 =



0 0 0 0 0 0

ν qx0h0
−ν 0 0 0 0

ν qx0h0
−ν −2ν 0 0 0

0 0 0 −ν 0 0

0 0 0 0
∂qby

∂ ∂η∂y

∣∣∣∣
0

0

0 0 0 0

[
∂qbyk

∂ ∂η∂y

∣∣∣∣
0

− f Ik0
∂qby

∂ ∂η∂y

∣∣∣∣
0

]
0


.

(27)279

The advective matrix in x direction is:280

Ax0 =



0 1 0 0 0 0

gh0 −
(
qx0
h0

)2
2 qx0h0

0 0 gh0 0

0 0 qx0
h0

−β∗qx0 0 0

0 0 − qx0
h2
0L

∗
I

qx0
h0

0 0

−qx0
h0

∂qbx
∂qx

∣∣∣
0

∂qbx
∂qx

∣∣∣
0

0 0 0
[
∂qbx
∂Mal

∣∣∣
0

]
[
−qx0
h0

∂qbk
∂qx

∣∣∣
0

+ f Ik0
qx0
h0

∂qb
∂qx

∣∣∣
0

] [
∂qbxk
∂qx

∣∣∣
0
− f Ik0

∂qbx
∂qx

∣∣∣
0

]
0 0 0

[
∂qbxk
∂Mal

∣∣∣
0
− f Ik0

∂qbx
∂Mal

∣∣∣
0

]


.

(28)281

The advective matrix in y direction is:282

Ay0 =



0 0 1 0 0 0

0 0 qx0
h0

−β∗qx0 0 0

gh0 0 0 0 gh0 0

0 0 0 0 0 0

0 0
∂qby
∂qy

∣∣∣
0

∂qby
∂I

∣∣∣
0

0 0

0 0
[
∂qbyk
∂qy

∣∣∣
0
− f Ik0

∂qby
∂qy

∣∣∣
0

] [
∂qbyk
∂I

∣∣∣
0
− f Ik0

∂qby
∂I

∣∣∣
0

]
0 0


.

(29)283
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The matrix of linear terms is:284

B0 =



0 0 0 0 0 0

−3Cfq
2
x0

h3
0

2Cfqx0
h2
0

0 0 0 0

0 0 Cfqx0
h2
0

0 0 0

0 0 0 qx0
h2
0L

∗
I

0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

(30)285

We assume that the perturbations can be represented as a Fourier series, which implies that286

they are piecewise smooth and bounded for x = ±∞. Using this assumption the solution of the287

perturbed system is expressed in the form of normal modes:288

Q′ = Re
(
Vei(kwx+kwy−ωt)

)
, (31)289

where i is the imaginary unit, kwx [rad/m] and kwy [rad/m] are the real wave numbers in x and290

y direction, respectively, ω = ωr + iωi [rad/s] is the complex angular frequency, V is the complex291

amplitude vector, and Re denotes the real part of the solution (which we will omit in the subsequent292

steps). The variable ωr is the angular frequency and ωi the attenuation coefficient. A value of ωi > 0293

implies growth of perturbations and ωi < 0 decay. Substitution of equation (31) in equation (24)294

yields:295

[M0 − ω1]V = 0 , (32)296

where:297

M0 = Dx0k
2
wxi + Dy0k

2
wyi + Ax0kwx + Ay0kwy −B0i , (33)298

and 1 denotes the unit matrix. Equation (32) is an eigenvalue problem in which the eigenvalues299

of M0 (as a function of the wave number) are the values of ω satisfying equation (32).300

The solution of the linear model provides information regarding the development of small301

amplitude oscillations only, but for an arbitrary wave number. For this reason the linear model302

is convenient for studying the well-posedness of the model, which we will assess in the following303

section.304
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3 Instability, Hyperbolicity, and Ill-Posedness305

Ill-posedness has been related to the system of governing equations losing its hyperbolic charac-306

ter. Stability analysis investigates growth and decay of perturbations of a base state. The two307

mathematical problems may seem unrelated but in fact they are strongly linked. In this section308

we clarify the terms unstable, hyperbolic, and ill-posed, and present the mathematical framework309

that we use to study the well-posedness of the system of equations.310

A system is stable if perturbations to an equilibrium state decay and the solution returns to its311

original state. This is equivalent to saying that all possible combinations of wave numbers in the x312

and y directions yield a negative growth rate (ωi, equation (31)). An example of a stable system in313

hydrodynamics is the inviscid Shallow Water Equations (iSWE) for a Froude number smaller than314

2 (Jeffreys, 1925; Balmforth and Mandre, 2004; Colombini and Stocchino, 2005). In figure 1a we315

show the maximum growth rate of perturbations to a reference solution (Case I1, tables 1 and 2)316

of the iSWE on an inclined plane (i.e., the first 3 equations of the complete system, equation (24),317

with neither secondary flow nor diffusion). The growth rate is obtained numerically by computing318

the eigenvalues of the reduced matrix M0 (the first 3 rows and columns in equation (33)) for319

wave numbers between 0 and 250 rad/m, which is equivalent to wavelengths (lwx = 2π/kwx and320

equivalently for y) down to 1 cm. Figure 1b presents the same information as figure 1a in terms321

of wavelength rather than wave number to better illustrate the behaviour for large wavelengths.322

The growth rate is negative for all wave numbers, which confirms that the iSWE for Fr < 2 yield323

a stable solution.324

u [m/s] v [m/s] h [m] Cf [−]

1 0 1 0.007

Table 1: Reference state.

Case model Fr stability mathematical character

I1 iSWE 0.32 stable well-posed
B1 iSWE+Exner 0.32 unstable well-posed
I2 iSWE 2.01 unstable ill-posed

Table 2: Cases of a stable well-posed model (I1), an unstable well-posed model (B1), and an ill-
posed model (I2). Case I2 has the same parameter values as Case I1 but for the mean flow velocity
which is equal to 6.30 m/s.

A system is unstable when perturbations to an equilibrium state grow and the solution diverges325

from the initial equilibrium state. The growth of river bars is an example of an unstable system in326

river morphodynamics. A straight alluvial channel is stable if the width-to-depth ratio is sufficiently327

small and, above a certain threshold value, the channel becomes unstable and free alternate bars328

grow (Engelund and Skovgaard , 1973; Fredsøe, 1978; Colombini et al., 1987; Schielen et al., 1993).329
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Figure 1: Growth rate of perturbations added to the reference case (tables 1 and 2) as a function
of the wave number and the wavelength: (a)-(b) iSWE, Fr < 2 (Case I1, well-posed), (c)-(d)
iSHE+Exner (Case B1, well-posed), and (e)-(f) iSWE, Fr > 2 (Case I2, ill-posed). The subplots
in the two columns show the same information but highlight the behaviour for large wave numbers
(left column) and for large wavelengths (right column). Red and green indicates growth and decay
of perturbations, respectively.

Mathematically, an unstable system has a region, a domain in the wave number space, in which the330

growth rate of perturbations is positive. In figure 1c-d we present the growth rate of perturbations331

to a reference solution consisting of uniform flow (table 1) on an alluvial bed composed of unisize332

sediment with a characteristic grain size equal to 0.001 m (Case B1, table 2). The sediment333

transport rate is computed using the relation by Engelund and Hansen (1967) (equation (42)) and334

the effect of the bed slope on the sediment transport direction is accounted for using the simplest335

formulation, gs = 1. Figure 1d confirms the classical result of linear bar theory: there exists a336

critical transverse wavelength (lwyc) below which all perturbations decay. In our particular case337

lwyc = 40.2 m. Impermeable boundary conditions at the river banks limit the possible wavelengths338

to fractions of the channel width B [m] such that lwy = 2B/m for m = 1, 2, ... (Callander , 1969). As339

the most unstable mode is the first one (i.e., m = 1, alternate bars) (Colombini et al., 1987; Schielen340

et al., 1993), the minimum channel width above which perturbations grow is Bc = lwyc/2 = 20.1 m,341
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which confirms the results of Schielen et al. (1993). Figure 1c highlights, as for case I1, the decay342

of short waves.343

A particular case of instability is that in which the domain of positive growth rate extends344

to infinitely large wave numbers (i.e., short waves). Under this condition there is no cutoff wave345

number above which we can neglect the contribution of ever shorter waves with non-zero growth346

rates. For any unstable perturbation a shorter one can be found which is even more unstable.347

This implies that the growth rate of an infinitesimal perturbation (i.e., noise) tends to infinity.348

Such a system cannot represent a physical phenomenon, as the growth rate of any physical process349

in nature is bounded. A system in which the growth rate of infinitesimal perturbations tends350

to infinity does not have a unique solution depending continuously on the initial and boundary351

conditions, which implies that the system is ill-posed (Hadamard , 1923; Joseph and Saut , 1990).352

An example of an ill-posed hydrodynamic model is the iSWE for flow with a Froude number larger353

than 2. In figure 1e-f we show the growth rate of perturbations to the reference solution of a354

case in which the Froude number is slightly larger than 2 (Case I2, table 2). The growth rate355

extends to infinitely large wave numbers, which confirms that this case is ill-posed. A model being356

ill-posed is an indication that there is a relevant physical mechanism that has been neglected in the357

model derivation (Fowler , 1997). Viscous forces regularise the iSWE (i.e., make the model well-358

posed) and rather than ill-posed, the viscous Shallow Water Equations become simply unstable359

for a Froude number larger than 2, predicting the formation of roll-waves (Balmforth and Mandre,360

2004; Balmforth and Vakil , 2012; Rodrigues and Zumbrun, 2016; Barker et al., 2017a,b).361

Chaotic models, just as ill-posed models, are sensitive to the initial and boundary conditions362

and lose their predictive capabilities in a deterministic sense (Lorenz , 1963). Yet, there are two363

essential differences. First, chaotic systems lose their predictive capabilities after a certain time364

(Devaney , 1989; Banks et al., 1992), yet there exists a finite time in which the dynamics are365

predictable. In ill-posed models infinitesimal perturbations to the initial condition cause a finite366

divergence in the solution in an arbitrarily (but fixed) short time. Second, while the dynamics367

of a chaotic model are not predictable in deterministic terms after a certain time, these continue368

to be predictable in statistical terms. For this reason, although being sensitive to the initial and369

boundary conditions, a model presenting chaotic properties can be used, for instance, to capture370

the essential dynamics and spatio-temporal features of river braiding (Murray and Paola, 1994,371

1997). On the contrary, the dynamics of an ill-posed model cannot be analysed in statistical terms.372

The numerical solution of an ill-posed problem continues to change as the grid is refined because373

a smaller grid size resolves larger wave numbers with faster growth rates (Joseph and Saut , 1990;374

Kabanikhin, 2008; Barker et al., 2015; Woodhouse et al., 2012). In other words, the numerical375

solution of an ill-posed problem does not converge when the grid cell size is reduced. This property376

emphasizes the unrealistic nature of ill-posed problems and shows that ill-posed models cannot be377

applied in practice.378
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We present an example of grid dependence specifically related to river morphodynamics under379

conditions with mixed-size sediment. We consider a case of degradation into a substrate finer380

than the active layer, as this is a situation in which the active layer model is prone to be ill-posed381

(Section 1). The reference state is the same as in Case B1, yet the sediment is a mixture of two sizes382

equal to 0.001 m and 0.010 m. The bed surface is composed of 10 % of fine sediment. The active383

layer thickness is equal to 0.05 m, which in this case is representative of small dunes covering the384

bed (e.g. Deigaard and Fredsøe, 1978; Armanini and Di Silvio, 1988; Blom, 2008). Depending on385

the substrate composition, this situation yields an ill-posed model (Chavarŕıas et al., 2018). When386

the substrate is composed of 50 % of fine sediment (Case H1, table 3), the problem is well-posed387

and it is ill-posed when the substrate is composed of 90 % of fine sediment (Case H2, table 3).388

We use the software package Delft3D (Lesser et al., 2004) to solve the system of equations.389

We stress that the problem of ill-posedness is inherent to the system of equations and independent390

from the numerical solver. We have implemented a subroutine that assesses the well-posedness of391

the system of equations at each node and time step. The domain is 100 m long and 10 m wide.392

The downstream water level is lowered at a rate of 0.01 m/h to induce degradational conditions.393

The upstream sediment load is constant and equal to the equilibrium value of the reference state394

(Blom et al., 2017). The cells are square and we consider three different sizes (table 3). The time395

step varies between simulations to maintain a constant value of the CFL number.396

Case f I1 [−] ∆x [m] mathematical character

H1a 0.5 0.50 well-posed
H1b 0.5 0.25 well-posed
H1c 0.5 0.10 well-posed
H2a 0.9 0.50 ill-posed
H2b 0.9 0.25 ill-posed
H2c 0.9 0.10 ill-posed

Table 3: Cases showing the effect of grid cell size on the numerical solution of well-posed and
ill-posed models.

Figure 2 presents the bed elevation after 10 h. The result of the well-posed case (H1, left397

column) is grid independent. The result of the ill-posed case (H2, right column) changes as the398

grid is refined and presents an oscillatory pattern characteristic of ill-posed simulations (Joseph and399

Saut , 1990; Woodhouse et al., 2012; Barker et al., 2015; Chavarŕıas et al., 2018). The bed seems to400

be flat in the ill-posed simulation with a coarser grid (figure 2b). This is because oscillations grow401

slowly on a coarse grid and require more time to be perceptible. The waviness of the bed is seen402

in the result of the check routine, as it predicts ill-posedness only at those locations where the bed403

degrades (the stoss face of the oscillations). The fact that the model is well-posed in almost the404

entire domain in the ill-posed case solved using a cell sizes equal to 0.25 m (H2b, figure 2d) and405

0.10 m (H2c, figure 2f) does not mean that the results are realistic. Non-physical oscillations have406

grown and vertically mixed the sediment such that the situation is well-posed after 10 h (Chavarŕıas407
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et al., 2018). We provide a movie of figure 2 in the online supplementary material.408
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Figure 2: Simulated bed elevation (surface) and mean grain size at the bed surface (colour) of a
well-posed case (left column, H1, table 3) and an ill-posed case (right column, H2, table 3). In
each row we present the results for varying cell size. The colour of the x− y plane shows the result
of the routine that checks whether the conditions at each node yield a well-posed (green) or an
ill-posed (red) model.

In the above idealised situations it is evident that the oscillations are non-physical and it is409

straightforward to do a converge test to clarify that the solution is grid dependent. In complex410

domains in which several processes play a role, it is more difficult to associate oscillations to411

ill-posedness. Moreover, in long term applications the growth rate of perturbations may be fast412

compared to the frequency at which model results are assessed, which may hide the consequences413
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of ill-posedness. If one studies a process that covers months or years (and consequently analyses414

the results on a monthly basis) but perturbations due to ill-posedness grow on an hourly scale, it415

may be difficult to identify that the problem is ill-posed. Using poor numerical techniques to solve416

the system of equations also contributes to hiding the consequences of ill-posedness as numerical417

diffusion dampens perturbations. These factors may explain why the problem of ill-posedness in418

mixed-sediment river morphodynamics is not widely acknowledged.419

In the river morphodynamics community, the term ellipticity has been used to refer to ill-420

posedness of the system of equations in contrast to hyperbolicity, which is associated to well-421

posedness (Ribberink , 1987; Mosselman, 2005; Stecca et al., 2014; Siviglia et al., 2017; Chavarŕıas422

et al., 2018). In general the terms are equivalent, but not always. We consider a unit vector423

n̂ in the direction (x, y), n̂ = (n̂x, n̂y). The system of equations (24) is hyperbolic if matrix424

A = Ax0n̂x + Ay0n̂y diagonalises with real eigenvalues ∀n̂ (e.g. LeVeque, 2004; Castro et al.,425

2009). Neglecting friction and diffusive processes (i.e., B0 = Dx0 = Dy0 = 0), hyperbolicity426

implies that the eigenvalues of M0 (equation (33)) are real. In this case, as the growth rate of427

perturbations (i.e., the imaginary part of the eigenvalues of M0) is equal to 0 regardless of the428

wave number, the system of equations is well-posed. As the coefficients of A are real, complex429

eigenvalues appear in conjugate pairs. This means that if A has a complex eigenvalue (i.e., the430

problem is not hyperbolic), at least one wave will have a positive growth rate. Neglecting friction431

and diffusive processes, non-hyperbolicity implies that infinitely large wave numbers have a positive432

growth rate. We conclude that, in the absence of diffusion and friction, lack of hyperbolicity implies433

ill-posedness. Note that ellipticity (i.e., the eigenvalues of A are all complex) is not required for434

the problem to be ill-posed, as it suffices that the problem is not hyperbolic. When considering435

diffusion and friction even when A has complex eigenvalues, the imaginary part of the eigenvalues436

of M0 may all be negative and the problem well-posed.437

Finally, well-posedness and hyperbolicity are similar terms when dealing with problems arising438

from conservation laws and changes with time, as hyperbolicity guarantees the existence of wave439

solutions (Lax , 1980; Courant and Hilbert , 1989; Strikwerda, 2004; Toro, 2009; Dafermos, 2010;440

Bressan, 2011; Dafermos, 2016). In communities such as materials science, it is the term hyper-441

bolicity that is associated to ill-posedness, as a smooth solution of, for instance the stress, requires442

that the system is elliptic (Knowles and Sternberg , 1975, 1976; Veprek et al., 2007).443

4 Stability Analysis444

In this section we study the applicability of the system of equations to model two-dimensional river445

morphodynamics by means of a stability analysis of perturbations. We study the effects of the446

secondary flow model (Sections 4.1) and the bed slope (Section 4.2) on model ill-posedness.447
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4.1 Ill-Posedness Due to Secondary Flow448

In this section we study how the stability of the system of equations is affected by the secondary449

flow model. To gain insight we compare three cases. In the first case we omit secondary flow.450

In the second and third cases we include the secondary flow model with and without considering451

diffusion (table 4).452

Case secondary flow ν stability mathematical character

S1 no νE stable well-posed
S2 yes νE unstable well-posed
S3 yes 0 unstable ill-posed

Table 4: Variations to the reference state (table 1) and results of the linear analysis with respect
to secondary flow.

The first case is equivalent to I1 (table 2), yet the eddy viscosity is equal to the value derived453

by Elder (equation (4), ν = νE = 0.0057 m2/s). In figure 3a-b we plot the maximum growth rate454

of perturbations as a function of the wave number and the wavelength, respectively. Diffusion455

appears to significantly dampen perturbations (compare figure 1a in which diffusion is neglected456

to figure 3a).457

In the second case we repeat the analysis including the equation for advection and diffusion of458

the secondary flow intensity (i.e., the first 4 rows and columns of matrix M0 in equation (33), Case459

S2, table 4). We observe that accounting for secondary flow introduces an instability mechanism460

(figure 3d). For the specific conditions of the case, a growth domain appears for wavelengths461

between 0.7 m and 39 m long and between 0.4 m and 19 m wide. The maximum growth corresponds462

to a wavelength in the x and y direction equal to 1.29 m and 0.74 m, respectively. This situation is463

well-posed, as for large wave numbers perturbations decay (figure 3c). Yet, the model is unsuitable464

for reproducing such instability, as it predicts growth of perturbations with a length scale of the465

order of the flow depth and shorter, for which the SWE model is not suited. Given the fact that we466

consider a depth-averaged formulation of the primary flow, processes that scale with the flow depth467

are not resolved by the model and consequently perturbations at that scale must decay to yield468

physically realistic results. Otherwise, scales of the order of the flow depth become relevant, which469

contradicts the assumptions of the depth-averaged formulation. To model processes that scale470

with the flow depth such as dune growth, it is necessary to account for non-depth-averaged flow471

formulations that consider, for instance, rotational flow (Colombini and Stocchino, 2011, 2012), or472

non-hydrostatic pressure (Giri and Shimizu, 2006; Shimizu et al., 2009).473

In the third case we test the secondary flow model without accounting for diffusion in the system474

of equations (ν = 0, Case S3, table 4). We observe that the instability domain extends to infinitely475

large wave numbers (figure 3e), which implies that this model is ill-posed (Section 3). We now aim476

to prove that the Shallow Water Equations in combination with the secondary flow model without477
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Figure 3: Growth rate of perturbations added to the reference case (tables 1 and 4) as a function
of the wave number and the wavelength: (a)-(b) without secondary flow (Case S1, well-posed),
(c)-(d) accounting for secondary flow with diffusion (Case S2, well-posed), and (e)-(f) accounting
for secondary flow without diffusion (Case S3, ill-posed). The subplots in the two columns show
the same information but highlight the behaviour for large wave numbers (left column) and for
large wavelengths (right column). Red and green indicates growth and decay of perturbations,
respectively.

diffusion always yields an ill-posed model. To this end we obtain the characteristic polynomial478

of matrix M0 (equation (33)). We compute the discriminant of the fourth order characteristic479

polynomial and we find that for kwx < kwy the growth rate of perturbations is positive (Appendix480

C). The model is ill-posed, as there always exists a domain of growth extending to infinitely large481

wave numbers in the transverse direction.482

We assess how the length scale of the instability related to the secondary flow model depends483

on the flow parameters. For this purpose we compute the shortest wave with positive growth484

for a varying diffusion coefficient and flow conditions (figure 4). We observe that, independently485

from the flow conditions, the theoretical value of the diffusion coefficient derived by Elder (1959)486

(equation (4)) is insufficient for dampening oscillations scaling with the flow depth. We conclude487

that if the diffusion coefficient is realistic, the treatment of the secondary flow yields an unrealistic488

model. It is necessary to use an unrealistically large value of the diffusion coefficient to obtain a489
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realistic depth-averaged model in which perturbations scaling with the flow depth decay.490
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Figure 4: Wavelength of the shortest perturbation with positive growth rate (lwm) relative to the
flow depth (h) as a function of the Froude number (Fr) and the diffusion coefficient (ν) relative
to the diffusion coefficient according to Elder (1959) (νE). Different flow conditions are studied
varying the flow depth between 0.2 m and 1.5 m from the reference case (table 1). The cyan
markers indicate the conditions of three numerical simulations with different values of the diffusion
coefficient (Section 5.1). The arrow next to the diamond marker indicates that the value lies
outside the figure. Red (green) colours indicate that the shortest wave length with positive growth
rate are smaller (larger) than the flow depth.

4.2 Ill-Posedness Due to Bed Slope Effect491

In this section we study the influence of considering the effect of the bed slope on model well-492

posedness. To gain insight we compare 5 cases in which we consider unisize and mixed-size sedi-493

ment, various sediment transport relations, and various bed slope functions (table 5). We neglect494

secondary flow and diffusion to reduce the complexity of the problem (Parker , 1976; Fredsøe, 1978;495

Colombini et al., 1987; Schielen et al., 1993).496

Our reference case is B1 (Section 3) which considers unisize sediment conditions, and the497

effect of the bed slope on the sediment transport direction is accounted for using the simplest498

formulation, gs = 1. We have shown that this case is well-posed. Neglecting the effect of the bed499

slope on the sediment transport direction (Case B2, table 5) makes the problem ill-posed (figure500

5a). This illustrates that accounting for the effect of the bed slope is required for obtaining not501

only physically realistic but also mathematically well-posed results. We prove that the Shallow502
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Water Equations in combination with the Exner (1920) equation without considering the effect of503

the bed slope always yields an ill-posed model by studying the growth rate of perturbations in the504

limit for the wave number kwy tending to infinity (Appendix D).505

Case sediment d2 [m] sed. trans. bed slope mathematical character

B1 unisize - EH gs = 1 well-posed
B2 unisize - EH No ill-posed
B3 mixed-size 0.004 AM gsk = 1 well-posed
B4 mixed-size 0.004 AM gsk = 1.7θ0.5k ill-posed
B5 mixed-size 0.012 AM gsk = 1 ill-posed

Table 5: Variations to the reference state (table 1) and results of the linear analysis with respect to
the effect of the bed slope on the sediment transport direction. EH and AM refer to the sediment
transport relations by Engelund and Hansen (1967) and Ashida and Michiue (1971), respectively.

The fact that the bed slope effect dampens perturbations under unisize conditions is expected506

from the fact that the only diffusive term in the system of equations is ∂qby/∂sy (equation (27)),507

where sy = ∂η/∂y. This term is negative and approximately equal to −qb/gs for a small streamwise508

slope. When we consider more than one grain size, diffusive terms appear in each active layer509

equation. We find that these diffusive terms may be positive, which hints at the possibility of an510

antidiffusive behaviour, which may lead to ill-posedness. To study this possibility we compute the511

growth rate of perturbations of a simplified case consisting of two sediment size fractions. In the512

limit for the wave numbers tending to infinity, the maximum growth rate is:513

ωlim
i = α1 (ry1 − dx1,1)

2
+ α2 (ry1 − dx1,1) + α3 , (34)514

where αi for i = 1, 2, 3 are parameters relating the flow and the sediment transport rate (Appendix515

E). The parameter ry1 explains how the sediment transport rate of the fine fraction is affected by516

changes in the transverse bed slope:517

ry1 =
∂qby1/∂sy
∂qby/∂sy

, (35)518

and the parameter dx1,1 relates changes in the sediment transport rate to changes in the volume519

of sediment in the active layer:520

dx1,1 =
∂qbx1/∂Ma1

∂qbx/∂Ma1
. (36)521

As α1 > 0 (Appendix E), there exist an interval (ry1 − dx1,1)
−
< (ry1 − dx1,1) < (ry1 − dx1,1)

+
in522

which ωlim
i < 0 and the model is well-posed. Outside the interval, ωlim

i > 0 and the problem is523

ill-posed.524

The physical interpretation of the limit values for obtaining a well-posed model is as follows.525

The effect of the transverse bed slope (ry1) needs to be balanced with respect to the effect of526

changes in surface texture (dx1,1) to obtain a well-posed model. For a given dx1,1, if parameter527
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Figure 5: Growth rate of perturbations added to the reference case (tables 1 and 5) as a function of
the wave number and the wavelength: (a)-(b) Case B2 (ill-posed), (c)-(d) Case B3 (well-posed),
(e)-(f) Case B4 (ill-posed), and (g)-(h) Case B5 (ill-posed). The subplots in the two columns
show the same information but highlight the behaviour for large wave numbers (left column) and
for large wavelengths (right column). Red and green indicates growth and decay of perturbations,
respectively.

ry1 is too small (i.e., the bed slope effect is not sufficiently strong) perturbations in the transverse528

direction are not dampened and the model is ill-posed. On the other hand, for a given ry1, if529

parameter dx1,1 is too small (e.g. due to relatively strong hiding or in conditions close to incipient530

motion) perturbations in the streamwise direction do not decay and the model is also ill-posed.531

The critical values r±y1 that allow for a well-posed model are shown in Appendix E.532

In Cases B3-B5 we illustrate the possibility of ill-posedness due to the bed slope closure relation533
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(table 5). In Case B3 the sediment mixture consists of two grain size fractions with characteristic534

grain sizes equal to 0.001 m and 0.004 m. The volume fraction content of the fine sediment in the535

active layer and at the interface between the active layer and the substrate is equal to 0.5. The536

sediment transport rate is computed using the relation developed by Ashida and Michiue (1971).537

The other parameters are equal to the reference case (table 1). The system is well-posed when538

the effect of the bed slope does not depend on the bed shear stress (figure 5c). The situation is539

ill-posed if the effect of the bed slope depends on the bed shear stress (Case B4, table 5, figure 5e).540

The cause of ill-posedness is not found in the closure relation for the bed slope effect only but in541

the combination of the closure relation with the flow and bed surface conditions. A case equal to542

B3 except for the fact that the coarse grain size is equal to 0.012 m is ill-posed (Case B5, table 5,543

figure 5g).544

We assess how the domain of ill-posedness due to the bed slope effect depends on the model545

parameters. For given sediment sizes, flow, and bed surface texture, parameter Bs (equation (23))546

controls the effect of the bed slope by modifying ry1 only. The parameter As (equation (23)) cancels547

in ry1 and does not play a role. For this reason we study how gs1/As [−] affects the domain of548

ill-posedness for varying sediment properties, flow, and bed surface grain size distribution (figure549

6). We consider Case B3 and we vary Bs between 0 and 0.5 to vary the bed slope effect. The550

sediment size of the coarse fraction varies between d1 and 0.020 m. The mean flow velocity varies551

between 1 m/s and 2.8 m/s. The volume fraction content of fine sediment at the bed surface varies552

between 0 and 1. We aim to isolate the problem of ill-posendess due to bed slope effect from the553

problem of ill-posedness due to a different grain size distribution at the bed surface and at the554

interface between the bed surface and the substrate (Chavarŕıas et al., 2018). For this reason, in555

this analysis the volume fraction content of fine sediment at the interface is equal to the one at the556

bed surface. Under this condition the problem can be ill-posed due to the effect of the bed slope557

only.558

As we have shown analytically, under unisize conditions (i.e., d1/d2 = 1 or Fa1 = 1 or Fa1 = 0)559

the model is well-posed (figure 6a and 6c). For sufficiently different grain sizes (d1/d2 / 0.15)560

the model is well-posed regardless of the bed slope effect but for a small range of values (0.08 /561

d1/d2 / 0.1). This small range of ill-posed values is associated with ry1 increasing for decreasing562

values of d1/d2 and acquiring a value larger than r+y1 such that the model becomes ill-posed for all563

values of the bed slope effect. A further decrease in d1/d2 increases the limit value r+y1 faster than564

ry1 such that the model becomes well-posed for all values of the bed slope effect.565

An increase in the Froude number decreases the domain of well-posedness, which is explained566

from the fact that an increase in Froude number decreases ry1 while it does not modify r−y1. We have567

assumed steady flow in deriving ωlim
i to reduce the complexity of the model such that we can find568

an analytical solution (Appendix E). This causes a physically unrealistic resonance phenomenon569

for Fr→ 1 (Colombini and Stocchino, 2005). In reality we do not expect that for Fr=1 the model is570

DRAFT COMPILED ON 2019/02/14 AT 12:57 23



SECONDARY FLOW AND BED SLOPE EFFECT CHAVARRÍAS ET AL.

Figure 6: Domain of ill-posedness due to the bed slope effect under mixed-size sediment conditions:
as a function of the ratio between fine and coarse sediment (a), the Froude number (b), and the
volume fraction content of fine sediment in the active layer (c). The bed slope effect is measured
by gs1/As and the range of parameters is obtained by varying Bs (equation (23)). The range of
values of d1/d2 is obtained by varying d2. The range of values of the Froude number is obtained by
varying u. The volume fraction content of fine sediment at the interface between the active layer
and the substrate is kept equal to the volume fraction content of fine sediment in the active layer.
The conditions represent unisize sediment when d1/d2 = 1, Fa1 = 0, or Fa1 = 1.

always ill-posed regardless of the bed slope effect. Apart from the limit values in which the problem571

becomes unisize, the surface volume fraction content does not significantly affect the domain of572

ill-posedness (figure 6c) as it rescales in more or less a similar way r±y1 and ry1.573

While Case B4 is ill-posed because the effect of the bed slope (ry1) is small, Case B5 is ill-posed574

because parameter dx1,1 is small. The different origin of ill-posedness does not cause a significant575

difference in the growth rate of perturbations as a function of the wave number (figure 5e-g).576

However, we will find out that the pattern resulting from the perturbations depends on the origin577
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of ill-posedness.578

5 Application579

The results of the linear stability analysis (Section 4) neglect second order terms and non-linear580

interactions. In this section we study the effects of the terms neglected in the linear analysis581

and the development of perturbations by means of numerical simulations. We use the software582

package Delft3D (Lesser et al., 2004). This exercise provides information on the consequences of ill-583

posedness in numerical simulations and clarifies the limitations of the current modelling approach.584

We study the effect of secondary flow (Section 5.1) and the bed slope effect (Section 5.2).585

5.1 Secondary Flow586

We run 5 numerical simulations with a fixed bed (i.e., only the flow is computed) to study the587

role of the secondary flow model and the diffusion coefficient on the ill-posedness of the system588

of equations. The first 3 simulations reproduce the conditions of Cases S1, S2, and S3 (table 4).589

The domain is rectangular, 100 m long and 10 m wide. We use square cells with size equal to590

0.1 m. The time step is equal to 0.01 s and we simulate 10 minutes of flow. We set a constant591

water discharge and the downstream water level remains constant with time. The initial condition592

represents normal flow for the values in table 1 (i.e., equilibrium conditions).593

The simulation not accounting for secondary flow does not present growth of perturbations as594

predicted by the linear analysis and remains stable with time (figure 7a). We observe growth of595

perturbations when we account for secondary flow with the diffusion coefficient derived by Elder596

(1959) (figure 7b). The results are physically unrealistic as the flow depth presents variations of597

up to 7 % of the normal flow depth and the length scale of perturbations is smaller than the598

flow depth. We have not introduced any perturbation in the initial or boundary conditions which599

implies that perturbations grow from numerical truncation errors. This supports the fact that the600

simulation is physically unrealistic. The case with a diffusion coefficient equal to 0 is ill-posed and601

the solution presents unreasonably large oscillations (figure 7c). These numerical results confirm602

the results of the linear stability analysis.603

In the fourth simulation we set a diffusion coefficient 100 times larger than the one derived by604

Elder (1959) (figure 7d). Under this condition the linear analysis predicts all short waves to decay605

(diamond in figure 4). These numerical results confirm the linear theory. The last simulation is606

equal to Case S2 except for the fact that we use a coarser grid (∆x = ∆y = 1 m). In this case the607

numerical grid is not sufficiently detailed for resolving the perturbations due to secondary flow and608

the simulation is stable (figure 7e). This last case highlights an important limitation of a physically609

unrealistic model. Although Case S2 is mathematically well-posed, the solution presents similarities610

with ill-posed cases in the sense that a refinement of the grid causes non-physical oscillations to611
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appear.612

Figure 7: Flow depth at the end of the simulations: (a) without accounting for secondary flow
(Case S1), (b) setting ν = νE (Case S2), (c) setting ν = 0 (Case S3), (d) setting ν = 100νE, and
(e) setting ν = νE using a coarser numerical grid (Case S2). The colour map is adjusted for each
case and centred around the initial and equilibrium value (h = 1 m).

5.2 Bed Slope Effect613

In this section we focus on the consequences of accounting for the bed slope effect on the mathemat-614

ical character of the model. To this end we run 5 more numerical simulations without accounting615

for secondary flow and updating the bed (i.e., accounting for morphodynamic change). The simu-616

lations reproduce Cases B1-B5 (table 5). We simulate 8 h using a time step ∆t = 0.1 s.617

We have proved that accounting for the effect of the bed slope makes a unisize simulation well-618

posed (Section 4.2 and figure 1c). The numerical solution of this case (B1, table 2) is stable and619

perturbations do not grow (figure 8a). Moreover, no alternate bars appear as the channel width620

is below the critical value (Section 3). Perturbations grow when the effect of the bed slope is not621

taken into account (Case B2, figure 8b), which confirms that this case is ill-posed.622

The mixed-size sediment conditions of Case B3 yield a well-posed model (figure 5e) and the623
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Figure 8: Flow depth at the end of the simulations of: (a) Case B1, (b) Case B2; and volume
fraction content of fine sediment in the active layer: (c) Case B3, (d) Case B4, (e) Case B5. The
colour map is adjusted for each case and centred around the initial and equilibrium value.

simulation is stable (figure 8c). On the other hand, the ill-posed cases B4 and B5 present growth624

of unrealistic and non-physical perturbations (figure 8d-e). While the growth of perturbations in625

Case B5 seems random, in Case B4 we observe a clear pattern. Moreover, oscillations have grown626

significantly faster in Case B5 than in Case B4. While after 8 h the changes in volume fraction627

content at the bed surface are of the order of 10−3 in Case B4, these are of order 1 in Case B5.628

The fact that oscillations grow faster in Case B5 than in Case B4 is related to the different origin629

of ill-posedness. While Case B4 is ill-posed because the effect of the bed slope is not sufficiently630

strong (i.e., ry1 < r−y1), Case B5 is ill-posed because changes in the sediment transport rate due631

to changes in the volume of fine sediment in the active layer are too small (i.e., ry1 > r+y1). The632

first case is closely linked to the lateral direction, in which sediment transport is initially zero.633

The fact that initially the lateral sediment transport rate is zero limits the rate at which lateral634

changes occur. In the second case perturbations are linked to the streamwise direction, in which635

the sediment transport rate initially is non-zero, which enhances the rate at which changes develop.636
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6 Discussion637

The origin of the instability due to secondary flow is found in the source term (Ss in equation (11)).638

As the source term depends on the flow curvature, the source term is 0 in a straight flow. A small639

perturbation in the flow causes the flow to curve. The flow curvature causes a source of secondary640

flow intensity, which further increases the flow curvature, causing a positive feedback. The flow641

curvature is largest for the smallest perturbations, which explains why the model is ill-posed if a642

dampening mechanism (i.e., diffusion) is not taken into account. This destabilizing mechanism may643

seem plausible to explain secondary flow circulation observed in straight channels (Nikuradse, 1930;644

Brundrett and Baines, 1964; Nezu and Nakagawa, 1984; Gavrilakis, 1992). However, secondary645

flow in a straight channel can only be caused by anisotropy of turbulence (Einstein and Li , 1958;646

Gessner and Jones, 1965; Bradshaw , 1987; Colombini , 1993), which is not included in the model647

for secondary flow. For this reason, the secondary flow model must predict decay of secondary flow648

intensity in case of straight flow. Diffusion of secondary flow intensity causes decay of perturbations,649

but the theoretical diffusion coefficient derived by Elder (1959) appears to be insufficient to dampen650

perturbations.651

The advection equation of the secondary flow intensity was initially derived for steady decaying652

secondary flow on a straight reach after a bend neglecting the effect of diffusion (De Vriend , 1981).653

It is assumed that the same advective behaviour is valid for a varying curvature (De Vriend , 1981;654

Olesen, 1982) and in an unsteady situation (Booij and Pennekamp, 1984). These assumptions655

have, to our knowledge, not been tested. Moreover, secondary flow affects the vertical profile656

of the primary flow. This feedback mechanism, which limits the development of secondary flow657

(Blanckaert and De Vriend , 2004; Blanckaert , 2009), is not included in the model. Blanckaert and658

de Vriend (2003), Blanckaert and Graf (2004) and Ottevanger et al. (2013) propose non-linear659

models that take into consideration this mechanism. We expect that accounting for the feedback660

mechanism yields a well-posed model.661

The feedback mechanism between the secondary and the primary flow may be seen as an662

increase of diffusivity, as it causes an enhanced momentum redistribution. For a situation in which663

the non-linear model for the secondary flow appears to be excessively expensive in computational664

terms, a diffusion coefficient depending on the secondary flow intensity would (partially) account665

for the enhanced momentum redistribution and provide a well-posed and realistic model.666

We have assumed that the diffusion coefficient is constant and equal in all directions, which667

is a crude approximation, as in the streamwise direction diffusion is larger than in the transverse668

direction (Appendix A). It would be interesting to study the effect of anisotropic diffusion, however,669

we do not expect that this will significantly alter our results. This is because a larger diffusion670

coefficient in the streamwise direction will not alter the most unstable wavelength in the lateral671

direction. For this reason the shortest unstable waves remain to be of the order of the flow depth.672
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The non-linear relation between the flow and the sediment transport rate causes the growth of673

perturbations in bed elevation. Worded differently, a deep flow attracts the flow and vice versa,674

which enhances the growth of perturbations. This mechanism is counteracted by the bed slope675

effect, which causes deep parts to fill in. In this sense, it seems logical that it is necessary to676

account for bed slope effects to obtain a well-posed model. This may be confirmed by the facts677

that Parker (1976), by not considering the bed slope effect, found that all streams tend to form678

bars and, similarly, Olesen (1982) concluded that “the stream will develop an infinite number679

of submerged bars”. From our point of view the fact that all streams seem to be unstable and680

develop an infinite number of submerged bars is a consequence of the model being ill-posed. Our681

analysis shows that the bed slope effect is a crucial physical process in analysing two-dimensional682

morphodynamic processes.683

Nevertheless, the numerical simulations by Qian et al. (2016) of bar development without ac-684

counting for the bed slope effect do not show unrealistic oscillatory behaviour as is characteristic685

of ill-posedness. Yet, there is an essential difference between their model and the one we analyse686

here. We do not model the interaction between the sediment in the bed and the sediment in687

transport as we assume that the sediment transport rate adapts instantaneously to changes in the688

flow (i.e., the sediment transport rate depends on the flow variables only). Essentially, sediment689

in transport is not conserved and bed elevation and surface texture changes depend on the diver-690

gence of the sediment transport rate at capacity conditions. Qian et al. (2016) account for the691

conservation of mass of the sediment in transport and use an entrainment-deposition formulation692

for modelling bed elevation and surface texture changes (Parker et al., 2000). In this formulation693

changes depend on the difference between the rate at which sediment is entrained from the bed694

and at which it is deposited on the bed. The fact that their model does not show symptoms of695

ill-posedness, while the effect of the bed slope is not taken into consideration, raises the question696

whether the entrainment-deposition formulation in combination with mass conservation of the sed-697

iment in transport is responsible, like the bed slope effect, for a mechanism that counteracts growth698

of perturbations in bed elevation. If the model used by Qian et al. (2016) is indeed well-posed,699

the effect of the bed slope may be a crucial process only when mass conservation of the sediment700

in transport is not considered.701

Lanzoni and Tubino (1999) investigated the development of alternate bars under mixed-size702

sediment conditions using a model similar to the one we apply here. They assumed secondary703

flow to be negligible and considered a different set of closure relations for friction, the sediment704

transport rate, and the effect of the bed slope. Under the conditions they studied, they found705

that, similarly to the unisize case, growth of perturbations occurs if the width-to-depth ratio is706

above a critical value. This implies that they found that their model is well-posed, as short wave707

length perturbations decay. Given that the essence of the closure relations they considered is the708

same as the ones considered here and there is no fundamental difference, we suppose that their709
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model may become ill-posed if different conditions are studied (i.e., different flow or sediment710

parameters). This is because well-posedness is not related to the model equations only, but also711

to the conditions in which the model is applied.712

The bed slope effect (represented by the parameter ry1) needs to be balanced with respect713

to the effect of changes in the bed surface grain size distribution (represented by dx1,1) to yield714

a well-posed model. The balance depends on the flow and bed conditions. For this reason, a715

particular closure relation may yield an ill-posed model in some subdomain of a simulation and a716

well-posed model in some other subdomain. It is necessary to further study the development of717

the transverse bed slope under mixed-size sediment conditions (e.g. Baar et al., 2018) to obtain a718

universally applicable closure relation.719

Overall, there are three causes of ill-posedness of the model: (1) the secondary flow parametri-720

sation, (2) the closure relation for the bed slope effect, and (3) the representation of the vertical721

mixing processes when using the active layer model (Ribberink , 1987; Chavarŕıas et al., 2018). We722

summarise all the conditions in which the model may become ill-posed in figure 9.723

Only in idealised simulations it is straightforward to relate instability of the system of equations724

to ill-posedness. We advocate for an a priori test of whether the system of equations is well-posed725

or ill-posed, especially when dealing with mixed-size sediment cases. If at some time a location726

in the model becomes ill-posed, the model results should be carefully evaluated. The fact that727

some domain area has always been well-posed does not guarantee a unique solution, as oscillations728

caused by upstream or downstream ill-posed areas propagate through the domain. Similarly, the729

fact that the entire domain is well-posed at some time is no guarantee of a unique solution, as past730

oscillations due to ill-posedness affect the present solution.731
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Figure 9: Conditions in which the flow model (top) and the morphodynamic model (bottom) is
stable, unstable, or ill-posed. The code below the model type (e.g., S1) indicates an example case
of such a situation. See tables 2, 3, 4, and 5 for an explanation of the cases S1-3, B1-4, H1-2,
and I2. ∗ Parameter βc denotes the critical width-to-depth ratio (Engelund and Skovgaard , 1973;
Colombini et al., 1987; Schielen et al., 1993).

7 Conclusions732

We have studied a two-dimensional system of equations used to model mixed-size river morpho-733

dynamics as regards to its well-posedness. The model is based on the depth-averaged Shallow734

Water Equations in combination with the Exner (1920) and active layer (Hirano, 1971) equations735

to model bed elevation and surface texture changes, respectively. In particular we have focused on736

modelling of the secondary flow induced by flow curvature and the effect of the bed slope on the737

sediment transport direction, which causes particles to deviate from the direction of the bed shear738

stress.739

By means of a linear stability analysis of the system of equations we find that:740

• The parametrisation accounting for secondary flow yields an ill-posed model if diffusion is741

not accounted for.742

• The theoretical amount of diffusion due to depth-averaging the vertical profile of the primary743

flow (Elder , 1959) yields a well-posed model but it predicts growth of perturbations that are744

incompatible with the shallow water assumption.745
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• The effect of the bed slope on the direction of the sediment transport is a necessary mech-746

anism for the model being well-posed. Yet, a different modelling strategy accounting for747

conservation of the sediment in transport and an entrainment-deposition formulation may748

yield a well-posed model without accounting for the effect of the bed slope.749

• Not all closure relations accounting for the bed slope effect are valid under mixed-size sed-750

iment conditions. There needs to be a balance between the effect of the bed slope and the751

effect of the streamwise variation of grain size distribution on the sediment transport rate.752

Numerical simulations of idealised cases confirm the above results of the linear stability analysis.753
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A Eddy Viscosity759

In general terms, given the anisotropy of the flow field, the diffusion tensor has non-diagonal terms760

and the diagonal terms are not equal (i.e., the diffusion coefficient in the streamwise direction νs is761

different than in the transverse direction νn). The non-diagonal terms become significant close to762

corners (Fischer , 1973) but far from corners the diagonal terms dominate. Elder (1959) derived763

an eddy viscosity coefficient in the streamwise and lateral direction assuming a logarithmic profile764

for the primary flow:765

νs =

(
0.4041

κ3
+

1

6
κ

)
hu∗ , (37)766

767

νn =
1

6
κhu∗ . (38)768

Elder neglected the effect of the viscous sublayer, which causes his analytical expression to be a769

lower limit of the diffusion coefficient (Fischer , 1967).770

Several researchers (e.g. Erdogan and Chatwin, 1967; Simons and Albertson, 1963; Fischer ,771

1969; Holley , 1971; Fischer , 1973; Kyong and Il , 2016) propose values for the diffusion coefficient772

that are significantly larger than the one derived by Elder (1959). These values are used, for773

instance, by Parker (1978); Ikeda and Nishimura (1985) and Van Prooijen and Uijttewaal (2002).774

These values of the diffusion coefficient are derived from experimental measurements and implicitly775

account for the enhanced momentum redistribution due to secondary flow that we account for by776

means of the dispersive stresses.777
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In numerical simulations resolving the secondary flow, the diffusion coefficients derived by Elder778

(1959) are valid if the grid is of the order of magnitude of the flow depth (assuming that the relevant779

turbulent processes scale with the flow depth). Otherwise the numerical grid filters out significant780

two-dimensional turbulent motions that need to be accounted for in the closure model (Talstra,781

2011). In our numerical runs the grid cell size is always smaller than the flow depth.782

B Magnitude of the Sediment Transport Rate783

The module of the specific sediment transport rate of size fraction k, qbk [m2/s], has a direction784

given by the angle ϕsk [rad]:785

(qbxk, qbyk) = qbk(cosϕsk, sinϕsk) . (39)786

The magnitude of the sediment transport rate is equal to:787

qbk = Fak

√
gRd3k (1− p) q∗bk , (40)788

where p is the porosity and q∗bk [−] is a nondimensional sediment transport rate (Einstein, 1950)789

dependent on the Shields (1936) stress:790

θk =
Cf

(
Q
h

)2
gRdk

. (41)791

The parameter R = ρs/ρw − 1 [−] is the submerged sediment density, ρs = 2650 kg/m3 is the792

sediment density and ρw = 1000 kg/m3 is the water density. To compute the nondimensional793

sediment transport rate we use a fractional form (Blom et al., 2016, 2017) of the relation proposed794

by Engelund and Hansen (1967) neglecting form drag:795

q∗bk =
0.05

Cf
θ
5/2
k , (42)796

and the relation including a nondimensional critical shear stress θc [−] proposed by Ashida and797

Michiue (1971):798

q∗bk = 17 (θk − ξkθc)
(√

θk −
√
ξkθc

)
. (43)799

The parameter ξk [−] is the hiding factor that accounts for the fact that fine sediment in a mixture800

hides behind larger grains and a coarse sediment in a mixture is more exposed than in unisize801
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coarse sediment (Einstein, 1950). Ashida and Michiue (1971) proposes θc = 0.05 and the relation:802

ξk =


0.843

(
dk
Dm

)−1
for dk

Dm
≤ 0.4(

log10(19)

log10(19
dk
Dm

)

)2

for dk
Dm

> 0.4
, (44)803

where Dm is a characteristic mean grain size of the sediment mixture.804

C Proof of Ill-posedness Due to Secondary Flow without805

Diffusion806

In this section we prove that the model based on the Shallow Water Equations accounting for807

secondary flow without diffusion is ill-posed.808

The system of equations is composed of the first four rows and columns of the full system of809

equations in equation (24). Neglecting diffusive processes matrices Dx0 and Dy0 are equal to 0.810

As we are interested in the short-wave domain, friction can be neglected. The resulting matrix811

M0 of the linearised eigenvalue problem (equation (33)) is:812

M0 = Ax0kwx + Ay0kwy . (45)813

We compute the fourth order characteristic polynomial of matrix M0. The roots of the char-814

acteristic polynomial are the eigenvalues (i.e., the angular frequencies ω in equation (31)). The815

discriminant of a fourth order polynomial p(ω) = p4ω
4 + p3ω

3 + p2ω
2 + p1ω + p0 = 0 is equal to816

(Beeler et al., 1972):817

∆4 = (p21p
2
2p

2
3 − 4p31p

3
3 − 4p21p

3
2p4 + 18p31p2p3p4 − 27p41p

2
4 + 256p30p

3
4)

+p0(−4p32p
2
3 + 18p1p2p

3
3 + 16p42p4 − 80p1p

2
2p3p4 − 6p21p

2
3p4 + 144p21p2p

2
4)

+p20(−27p43 + 144p2p
2
3p4 − 128p22p

2
4 − 192p1p3p

2
4) .

(46)818

We find that the discriminant of the characteristic polynomial is:819

∆4 =
16gh2T 2βu

LI
k2wx

(
k2wx − k2wy

)
, (47)820

where βu = β∗q2x/h
2 and:821

T = LIg
[
LIg

(
k2wx + k2wy

)2
+ βu

(
6k2wxk

2
wy − 2k4wx

)]
+ β2

uk
4
wx . (48)822

As the coefficients of the characteristic polynomial p(ω) are all real, a positive discriminant indicates823

that either all the roots are real or all the roots are complex. A negative discriminant indicates that824

DRAFT COMPILED ON 2019/02/14 AT 12:57 34



SECONDARY FLOW AND BED SLOPE EFFECT CHAVARRÍAS ET AL.

there are two real and two complex roots. The complex roots come in pairs of complex conjugates.825

For this reason, if the discriminant is negative there exist an eigenvalue with a positive imaginary826

component. As the discriminant is negative for kwx < kwy independently from the wave number,827

there exists always a region of growth. This implies that the model is ill-posed.828

D Proof of Ill-posedness Due to Lack of Bed Slope Effect829

under Unisize Conditions830

In this section we prove that the model based on the Shallow Water Equations without accounting831

for the effect of secondary flow in combination with the Exner (1920) equation to model bed832

elevation changes is ill-posed if the effect of the bed slope on the direction of the sediment transport833

is not taken into consideration.834

The system of equations is composed of the first three and the fifth rows and columns of the835

system of equations in equation (24). Neglecting diffusive processes in the momentum equations836

and the effect of the bed slope, matrices Dx0 and Dy0 are equal to 0. The system of equations837

has 4 unknowns (h, qx, qy, and η). The unknowns are coupled meaning that a change in bed838

elevation influences the flow and vice versa. The celerity of perturbations associated with the flow839

variables (i.e., h, qx, and qy) are orders of magnitude larger than the celerity of perturbations840

in bed elevation if the Froude number is sufficiently small (Fr / 0.7 (De Vries, 1965, 1973; Lyn841

and Altinakar , 2002)). Under this condition we can decouple the system and consider steady842

flow to study the propagation of perturbations in bed elevation (i.e., quasi-steady flow assumption843

(De Vries, 1965; Cao and Carling , 2002; Colombini and Stocchino, 2005)). In this manner we844

reduce the number of unknowns to one (η), which means that there is only one eigenvalue (ω). We845

obtain ω equating to 0 the determinant of matrix:846

R =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ω


−M0 .

(49)847

The growth rate (the imaginary part of ω) is:848

ωi =
qbCfk

2
wx

k2wxw
2
2 + w2

1

(
w3 + (n− 1) k4wy

)
, (50)849

where w1, w2, and w3 are second degree polynomials on kwy:850

w1 = Cf

[(
1− 4Fr2

)
k2wx + 2k2wy

]
, (51)851
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w2 = b1 +
(
1− Fr2

)
k2wx + k2wy , (52)852

853

w3 = −3Fr2nk4wx − b1nk2wx +
[
n
(
2− Fr2

)
−
(
2 + Fr2

)]
k2wxk

2
wy + b1 (n− 3) k2wy , (53)854

where b1 is:855

b1 =
3C2

f Fr2

h2
. (54)856

Parameter n is the degree of non-linearity of the sediment transport relation (Mosselman et al.,857

2008):858

n =
Q

qb

∂qb
∂Q

, (55)859

which is larger than 1. For instance, n = 5 in the relation developed by Engelund and Hansen860

(1967) and n > 3 in the one by Meyer-Peter and Müller (1948). In general n > 3 for the sediment861

transport relation to be physically realistic (Mosselman, 2005).862

For kwy tending to infinity, parameter w3 becomes negligible with respect to (n − 1)k4wy. As863

all other terms in equation (50) are positive, for a large wave number the growth rate is positive864

which implies that the model is ill-posed.865

E Well-Posed Domain under Mixed-Size Sediment Condi-866

tions867

In this section we show that the Shallow Water Equations in combination with the active layer868

model (Hirano, 1971) used to account for mixed-size sediment morphodynamics may yield an ill-869

posed model depending on the closure relation used to account for the effect of the bed slope on870

the sediment transport direction.871

We consider a model with two sediment size fractions. The system of equations is composed of872

the first three, the fifth and the sixth rows and columns of the full system of equations in equation873

(24). We neglect diffusive processes in the momentum equations. The system of equations has874

5 unknowns (h, qx, qy, η, and Ma1). We consider that the Froude number is sufficiently small875

such that the quasi-steady approximation is valid (Appendix D) and we assume that the celerity876

associated with changes in the grain size distribution of the bed surface are of the same order of877

magnitude as the celerity of bed elevation changes (Ribberink , 1987; Sieben, 1997; Stecca et al.,878

2016). Under these conditions it is valid to decouple the system and consider steady flow to study879

the propagation of perturbations in bed elevation and bed surface grain size distribution. In this880

manner we reduce the number of unknowns to two (η and Ma1), which means that there are two881
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angular frequencies to find. We obtain ω equating to 0 the determinant of matrix:882

R =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 ω 0

0 0 0 0 ω


−M0 .

(56)883

We define a set of physically meaningful parameters useful to simplify the expression of the884

growth rate. Subscripts k and l refer to the grain size fraction while the subscript j refers to the885

direction (i.e., x and y). The parameters are a generalization of the parameters used by Stecca886

et al. (2014) and Chavarŕıas et al. (2018) to the x and y direction.887

Parameter ψj [−] represents the sediment transport intensity (e.g. De Vries, 1965; Lyn and888

Altinakar , 2002; Stecca et al., 2014) and ranges between 0 (no sediment transport) and O(10−2)889

(high sediment discharge):890

ψj =
∂qbj
∂qj

. (57)891

Parameter cjk ∈ [0, 1] [−] represents the sediment transport intensity of fraction k relative to the892

total sediment transport intensity:893

cjk =
1

ψj

∂qbjk
∂qj

. (58)894

Parameter γjk [−] represents the sediment transport intensity of fraction k relative to the fraction895

content of sediment of fraction k at the interface between the active layer and the substrate:896

γjk = cjk − f Ik , (59)897

Parameter χjk [−] represents the nondimensional rate of change of the total sediment transport898

rate with respect to the change of volume of sediment of size fraction k in the active layer:899

χjk =
1

uj

∂qbj
∂Mak

. (60)900

Parameter djk,l [−] represents the nondimensional rate of change of the sediment transport rate of901

size fraction l with respect to the volume of sediment of size fraction k in the active layer:902

djk,l =
1

ujχjk

∂qbjl
∂Mak

. (61)903

Parameter µjk,l [−] represents the rate of change of the sediment transport rate with respect to904

the volume of sediment in the active layer relative to the fraction content of sediment of fraction905
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k at the interface between the active layer and the substrate:906

µjk,l = djk,l − f Ik . (62)907

Parameter Rj < 0 [m2/s] represents the effect of the bed slope on the direction of the sediment908

transport rate:909

Rj =
∂qbj
∂sj

, (63)910

where sj = ∂η/∂j. Parameter rjk [−] represents the effect of the bed slope on the direction of the911

sediment transport rate of fraction k relative to the total effect:912

rjk =
1

Rj

∂qbjk
∂sj

. (64)913

Parameter ljk [−] represents the effect of the bed slope on the direction of the sediment transport914

rate of fraction k relative to the fraction content of sediment at the interface between the active915

layer and the substrate:916

ljk = rjk − f Ik . (65)917

The largest of the two growth rates (i.e., the largest imaginary part of the two eigenvalues ω918

of the system) is:919

ωi =
1

2

(√
2

2

√
f1 −

√
f2

)
, (66)920

where:921

f1 =
√
m2

1 +m2 −m1 , (67)922

and:923

f2 = R2
yk

4
wy . (68)924

When parameter f1 is larger than 2f2, ωi > 0 and perturbations grow. Parameter f1 becomes925

large with respect to f2 when parameter m2 becomes large with respect to m1 where:926

m1 = k2wxu
2a3 − f2 , (69)927

and:928

m2 = 4k2wxu
2f2o

2 . (70)929

Focusing on the bed slope effect, for a given value of f2 (i.e., a given value of Ry), parameter m2930

becomes large with respect to m1 when parameter o becomes large, where:931

o = a1 + 2χx1 (ry1 − dx1,1) . (71)932

DRAFT COMPILED ON 2019/02/14 AT 12:57 38



SECONDARY FLOW AND BED SLOPE EFFECT CHAVARRÍAS ET AL.

Thus, the growth rate of perturbations is prone to be positive when the absolute value of ry1−dx1,1933

increases. The parameters am for m = 1, 2, 3 are:934

a1 = ex + ey + χx1µx1,1 , (72)935

936

a2 = γx1ex + γy1ey − µx1,1ex − µx1,1ey , (73)937

938

a3 = a21 + 4χx1a2 . (74)939

The parameters ej for j = x, y are:940

ex = ψx
k2wx(

1− Fr2
)
k2wx + k2wy

, (75)941

942

ey = ψy

k2wy(
1− Fr2

)
k2wx + k2wy

. (76)943

We compute the limit of the growth rate (equation (66)) for kwx and kwy tending to infinity:944

ωlim
i = α1 (ry1 − dx1,1)

2
+ α2 (ry1 − dx1,1) + α3 , (77)945

where:946

α1 =
−u2χx1
Ry

χx1 , α2 =
−u2χx1

Ry
alim1 , α3 =

u2χx1

Ry
alim2 , (78)947

where the superscript lim indicates that these are the limit values and:948

elimx =
ψx

2− Fr2
, (79)949

950

elimy =
ψy

2− Fr2
. (80)951

As Ry < 0 and χx1 > 0, the mathematical character of the system of equations is given by the952

sign of the second degree polynomial with variable (ry1 − dx1,1). The fact that α1 > 0 (the factor953

of the squared term) indicates that the model is well-posed when r−y1 < ry1 < r+y1 where:954

r±y1 =
1

2χx1

(
−alim1 ±

√
alim

2

1 + 4χx1alim2

)
+ dx1,1 . (81)955

956
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