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Starting from seminal neglected work by Rappeport (Rappeport
1968 Algorithms and computational procedures for the
application of order statistics to queuing problems. PhD thesis,
New York University), we revisit and expand on the exact
algorithms to compute the distribution of the maximum, the
minimum, the range and the sum of the J largest order statistics
of a multinomial random vector under the hypothesis of
equiprobability. Our exact results can be useful in all those
situations in which the multinomial distribution plays an
important role, from goodness-of-fit tests to the study of
Poisson processes, with applications spanning from biostatistics
to finance. We describe the algorithms, motivate their use in
statistical testing and illustrate two applications. We also
provide the codes and ready-to-use tables of critical values.
1. Introduction
The multinomial random vector arises naturally in several
statistical problems, from queuing theory to software reliability
models, from clinical trials to financial mathematics, from
goodness-of-fit tests to transportation problems [1,2]. The
multinomial experiment is a common way of representing the
multinomial random vector as the result of throwing n
independent balls into m independent urns, each with a given
probability of attraction pi, and of counting the number ni of
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balls that fall into urn i, for i = 1,…, m [3]. The probability mass function (pmf) of the resulting vector of

counts (N1,…, Nm)
T is

P(N1 ¼ n1, . . . , Nm ¼ nm; p, m, n) ¼ n!
n1! � � �nm!

Ym
i¼1

pnii ,

where p = ( p1,…, pm)
T and

Pm
k¼1 nk ¼ n.

A common statistical hypothesis of interest is whether the underlying multinomial distribution is
equiprobable, so that the probability for a ball of falling in any of the urns is always the same, i.e.
H0 : P = P0 versus H1 : P≠ P0, where P0 is the equiprobable pmf

P0(N1 ¼ n1, . . . , Nm ¼ nm; p ¼ (p, . . . , p)T, m, n) ¼ n!
n1!n2! . . .nm!

pn, (1:1)

with p = 1/m. From now on, we indicate the pmf in equation (1.1) asMult(n, p0), where p0 = (m−1,…,m−1)T.
Many procedures have been proposed to test the equiprobability hypothesis, a good review being [2].

The classical way is to use the χ2 goodness-of-fit test, first introduced by Pearson [4] and based on the
statistic

X2 ¼
Xm
i¼1

(Ni � np)2

np
:

Other approaches replace X2 with the Neyman modified X2 [5], with the log-likelihood ratio statistic

G2 ¼ 2
Xm
i¼1

Ni ln
Ni

np

� �
,

or with the Freeman–Tukey statistic [6].
In 1962, Young [7] revisited this problem and proposed two alternatives based on the rescaled range

Wm ¼ max
1�k�m

Nk

n
� min

1�l�m

Nl

n

� �
(1:2)

and the rescaled mean

Mm ¼ (mn)�1=2
Xm
i¼1

Ni � n
m

��� ���:
These new statistics revealed some power advantages under certain alternatives [7].

In testing the equiprobability hypothesis, all the statistics above rely on approximations (like the Normal,
the χ2, the Beta, theDirichlet or theGumbel), being their exact distributions not known. This requires that the
original data satisfy some often heuristic conditions: for instance, the χ2 approximation for the Pearson
statistic is typically recommended when n≥ 5m [2,6]. In several applications, especially when dealing
with small samples, these conditions are rarely satisfied and as a consequence the tests may be unreliable.

More recently, Corrado [8] has offered a solution, based on what he calls stochastic matrices, for
computing the exact probabilities of the multinomial maximum, minimum and range. Corrado’s
approach clearly solves the problem of using potentially inaccurate approximations but—as we shall
see—it represents an unsatisfactory solution, since it requires ad hoc computations for each
combination of n and m. Our aim is thus to propose a more general and flexible approach.

Our investigation originates from an old PhD thesis by Rappeport [9], in which two algorithms for
the exact computation of the distributions of the multinomial maximum and of the sum of the three
largest multinomial-order statistics were proposed. We first describe Rappeport’s results, and then we
present novel general algorithms for computing the exact distributions of the multinomial minimum,
of the range and of the sum of the J largest order statistics. This means that, for example, the
distribution of the test statistic Wn in equation (1.2) can now be obtained exactly.

The article develops as follows. Section 2 provides a quick overview of the existing distributional
approximations for the multinomial range and other order statistics, whereas §3 contains the exact
results of Corrado [8]. Section 4 is devoted to the original algorithms by Rappeport, while §§5 and 6
introduce our results for the minimum and the range, respectively. Section 7 discusses some non-
trivial accuracy issues of the commonly used approximations. In §8, we provide some additional
motivation for the use of the (sums of) the largest multinomial counts in hypothesis testing. In §9, we
shortly describe some of the many possible applications that involve these exact results. We close with



r
3
a discussion in §10. Appendix A contains tables of critical values for the multinomial maximum,

minimum, range and sums, as well as codes for all algorithms.
oyalsocietypublishing.org/journal/rsos
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2. Approximations
Starting from some results of Pearson & Hartley [10], a first approximation for the multinomial
distribution under equiprobability was introduced by Johnson & Young [11]. Young [7] used this
approximation to derive a limiting distribution for the range of the multinomial sample.

The limiting distribution of the maximum, using a Gumbel approximation, was initially introduced
by Kolchin et al. in 1978 [12], with some errors that were later corrected in Dasgupta [13]. No general
result appears to be available for the multinomial minimum or other order statistics. Some specific
cases, easily computable by hand, are described in [2].

Note that, given the increased (and still increasing) computing power one can rely upon today, the
probability distributions of functions of the multinomial counts can also be estimated via Monte Carlo
simulations. However, even if extremely accurate, from a conceptual point of view they are still
approximations and not exact results, as those we will discuss in this article.

All the approximations presented below are derived under the hypothesis of equiprobability.

2.1. Approximation of the distribution of the range
It is well known that, marginally, for i = 1,…, m one has Ni∼ Binom(n, pi), so that under the null
hypothesis E(Ni) = n pi = n p and Var(Ni) = n p (1− p) with p = 1/m. Using the multidimensional central
limit theorem, the joint distribution of the standardized multinomial vector (ω1,…, ωm)

T, with

vi ¼ Ni � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1� p)

p ¼ mNi � nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(m� 1)

p ,

converges in distribution, as n→∞, to a multivariate normal distribution with zero mean vector, unit
variances and covariance between ωi and ωj equal to (1−m)−1 for i≠ j. Note that the limiting
distribution is actually degenerate, i.e. its support is (m− 1)-dimensional due to the n-sum constraint
that applies to the Ni terms (or, equivalently, the zero-sum constraint on the ωi terms). One has a non-
degenerate limiting distribution for any choice of a set of m− 1 terms from the set (ω1,…, ωm).

The distribution of the range of m identically independently distributed (i.i.d.) standard normal
variables X1, X2,…, Xm is a known quantity, and it can be computed as

P max
1�i�m

Xi � min
1�j�m

Xj � r
� �

¼ m
ð1
�1

f(x)
ðxþr

x
f(u) du

� �m�1

dx,

where ϕ(x) is the probability density function of a standard normal random variable. Using this, Young
[7] shows that the distribution of the scaled multinomial range can be approximated as

P max
1�i�m

Ni

n
� min

1�j�m

Nj

n
� r

� �
� P max

1�i�m
Xi � min

1�j�m
Xj � (rþ dm)

ffiffiffiffiffiffiffi
nm

p� �
,

where δm is a continuity factor such that

dm ¼ 1
n

for m ¼ 2 and dm ¼ 1
2n

for m . 2:

The approximation works best for large values of the ratio n/m (our simulations suggest n > 5m). We
refer to [2,7] for additional details.

2.2. Approximation of the distribution of the maximum
The approximating distribution for the maximum of a multinomial sample was proposed by Kolchin
et al. [12] and improved by Dasgupta [13], to which we refer for all technical details.

Set

m ¼ n
m

and k ¼
logm� 1

2
log logm

m
,
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and let e be the unique positive root of the equation

(1þ e) log (1þ e)� e ¼ k:

Then the law of the maximum of a multinomial sample converges in distribution to a Gumbel random
variable, i.e.

P
max1�i�m Ni � m(1þ e)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=2m logm
p þ log (4p)

2
� z

 !
�!d e�e�z

,

for all real z, as n→∞. As observed in [2,8], the approximation by Kolchin and Dasgupta is the best one
available for the multinomial maximum in the literature so far.
/rsos
R.Soc.open

sci.6:190198
3. Exact results by Corrado (2011)
Corrado’s approach [8] is based on a matrix representation for the construction of the transition
probabilities for the number of balls in the different urns. The main advantage of Corrado’s method is
that it does not require equiprobability.

Let Nk be the random number of balls in urn k. The sequence Sk = Sk−1 +Nk describes the cumulative
ball count from S0 = 0 to Sm = n, where m is the total number of urns. The transition probability from Sk−1
to Sk, i.e. P(Sk = sk|Sk−1 = sk−1; p*k), for brevity P(sk | sk−1; p*k), is equal to

Pðsk jsk�1; p�kÞ ¼
n� sk

sk � sk�1

� �
ðp�kÞsk�sk�1ð1� p�kÞn�sk sk � sk � 1

0 otherwise

8<
: , (3:1)

where p�k ¼ pk=
Pm

j¼k p j (so that in particular p�1 ¼ p1).
From equation (3.1), for k = 1,…, m, we can determine upper-triangular matrices of the form

Qk ¼
P(0 j 0; p�k ) P(1 j 0; p�k ) . . . P(n j 0; p�k )

0 P(1 j 1; p�k ) . . . P(n j 1; p�k )
. . . . . . . . . . . .
0 0 . . . 1

2
664

3
775:

These matrices provide a straightforward way to calculate the desired exact probabilities of the
multinomial order statistics. The first transition from s0 = 0 to s1 travels across a starting row vector Q1

1

defined as

Q1
1 ¼ [P(0 j 0; p1) P(1 j 0; p1) . . . P(n j 0; p1)]:

Q1
1 indicates the first row of matrix Q1. The product Q1

1 �Q2 is a row vector whose elements give the
convolution distribution of S2 =N1 +N2, while Q1

1 �Q2 � � � �Qk represents the convolution distribution
of the random sum Sk. Naturally Q1

1 �Q2 � � � �Qm ¼ 1 concentrates all the mass on Sm = n, so that Qm

is equal to a column vector of ones.
In order to calculate the exact probability for the maximum amount of balls in the urns not to exceed

a given r, i.e. P(max1≤i≤m Ni≤ r), Corrado suggests the following procedure:

(i) In all the matrices Qk, k = 1,…m, set to 0 all the transition probabilities P(sk j sk�1; p�k ) for which sk−
sk−1 > r. This defines a new series of sub-matrices, Q�

1, . . . , Q
�
m, called culled.

(ii) The product of the sub-matrices Q�
1, . . . , Q

�
m gives the exact probability of P(max1≤i≤m Ni≤ r).

A simple example taken from [8] will clarify the method. Imagine to throw three balls across three urns,
so that n =m = 3. Then we can easily verify that Q1

1 ¼ [0:296 0:444 0:222 0:037], Q3 = [1 1 1 1] and

Q2 ¼

0:125 0:375 0:375 0:125
0 0:25 0:5 0:25
0 0 0:5 0:25
0 0 0:5 0:5
0 0 0 1

2
66664

3
77775:
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Now, suppose that one is interested in computing the probability that the multinomial maximum is

smaller than or equal to 2. The matrices above need to be modified as Q�1
1 ¼ [0:296 0:444 0:222 0],

Q�
3 ¼ [0 1 1 1] and

Q�
2 ¼

0:125 0:375 0:375 0
0 0:25 0:5 0:25
0 0 0:5 0:25
0 0 0:5 0:5
0 0 0 1

2
66664

3
77775:

Then P(max1�i�m Ni � 2) ¼ Q�1
1 �Q�

2 �Q�
3 ¼ 0:889.

The distribution of the minimum can be obtained similarly, if one modifies each matrix Qk, by setting
P(sk j sk�1; p�k ) equal to 0 for sk− sk−1 < r (notice the change in the inequality sign). Additional details are
available in [8].

Interestingly, the distribution of the multinomial range can also be computed using the matrix
representation. Set Qk(ak, bk) to be the culled matrix for urn k, where P(sk j sk�1; p�k ) ¼ 0 for all Nk > ak or
Nk < bk. Introducing the set of all possible allocations of n balls across m urns as

Tm
k¼1{ak � Nk � bk},

one can express the joint probability of the maximum and the minimum ball counts as

P
\m
k¼1

ak � Nk � bk

 !
¼ Q�1

1 �
Ym�1

k¼2

Qk(ak, bk)�Q�
m: (3:2)

Note that the set of allocations described above have intersecting intervals, so that to compute the exact
probabilities for the range the intersection probabilities should be subtracted:

P max
1�k�m

Nk � min
1�l�m

Nl , r
� �

¼
Xn�rþ1

h¼0

Q�1
1 �

Ym
k¼2

Qk(hþ r� 1, h)�Q�
m

�
Xn�r

h¼0

Q�1
1 �

Ym
k¼1

Qk(hþ r� 1, hþ 1)�Q�
m:

Corrado’s method works nicely and allows for the exact probability computations of the multinomial
maximum, minimum and range. However, it has a strong limitation: for every new composition, and for
every value of r, the culled matrices have to be redesigned and recalculated, something not very efficient.
4. Rappeport’s algorithms
In 1968, Rappeport [9] proposed two iterative algorithms for the distribution of the multinomial
maximum, and for the sum of the three largest multinomial order statistics. That work remained
unpublished, and Rapperport’s idea has been mostly ignored. These algorithms are based on the
representation of all the possible outcomes of the multinomial experiment in the form of a tree. The
desired probabilities are computed by moving across the branches of this tree according to certain
rules. A relevant feature of Rappeport’s approach is the possibility of deriving a general algorithm,
which does not require adjustments that depend on the specific parameters and values of interest.

Consider six balls thrown across three equiprobable urns. The possible outcomes of this multinomial
experiment can be represented with the tree in figure 1, where each branch corresponds to a particular
partition (up to rearrangement) of the balls into the urns. For instance, the blue path on the left,
characterized by the squares with bold edges, represents the situation in which one of the urns
contains all the six balls, while the other two are empty. Conversely, the green path with the dotted
squares represents the configuration where one urn contains three balls, one urn contains two balls
and the remaining urn contains only one ball. And so on for all the other branches.

Rappeport also discusses the case of urns with different attraction probabilities, under the
assumption that they can be collected into two or three same-probability groups. In these non-
equiprobable situations, Rappeport’s approach loses its generality, and it necessarily requires case-
specific adjustments that do depend on the characteristics of the groups of urns. For this reason, and
since the main null hypothesis in multinomial statistical tests is that of equiprobability, we do not
discuss the details of the two- and three-group cases.



urns with 6 ball(s) 1 0

0

0

0

0

0

2

1 0

0

0

1 0

0

0

1

1

2

0

0

1

1

1

1

0

0

3

0

0

1

0

1

0

2

0

urns with 5 ball(s)

urns with 4 ball(s)

urns with 3 ball(s)

urns with 2 ball(s)

urns with 1 ball(s)

urns with 0 ball(s)

Figure 1. Tree representation of the possible outcomes of the multinomial experiment of throwing six balls into three equiprobable
urns.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190198
6

4.1. Distribution of the maximum
Let N〈1〉,…, N〈m〉 be the order statistics of the multinomial counts N1,…, Nm in descending order, so that
N〈1〉 is the maximum, N〈2〉 is the second largest order statistics, and so on, up to the minimum N〈m〉. Note
that, just like the counts, the ordered counts clearly need not be all different.

In the tree representation, to compute the exact probabilities P(N〈1〉≤ r; n, m) of the multinomial
maximum under equiprobability, one sums the probabilities of all the paths, whose nodes are
characterized by zeros for all the levels from r + 1 to n. For example, suppose that one wants to
compute the probability that no urn contains more than r = 3 balls, when n = 6 and m = 3. Then she
needs to sum the probabilities of the green dotted and the red dashed paths in figure 1, because in all
the other situations (grey and blue) N〈1〉≥ 4.

To perform such computations, Rappeport develops an efficient iterative procedure, in which the
probability P(N〈1〉≤ r; n, m) is explicitly obtained from P(N〈1〉≤ r− 1; n, m) and some initial value.

Let us compute the probability that the maximum number of balls in the m urns is exactly equal to r,
and let us assume that such a maximum is unique, i.e. all the others urns have at most r− 1 balls. Using
equation (1.1), and introducing the operator W2, which is the sum over all possible values n〈2〉,…, n〈m〉

such that n〈1〉 > n〈2〉, we can write

P(Nh1i ¼ r jNh1i . Nh2i; n, m) ¼ 1
r!
W2

n!
mn
Qm

i¼2 nhii!
m!Qr�1

k¼0 ((#ni ¼ k)!)

 !
:

Forcing notation, here (#ni = k) denotes the number of nis equal to k, that is to say the number of urns
containing k balls. The fraction m!=

Qr�1
k¼0 (#ni ¼ k)! arises from a simple combinatorial argument: since

the urns are equiprobable, the probability of a given composition of n1,…, nm should be multiplied by
the total number of its unique permutations.

Let us now relax the assumption of uniqueness for the maximum, to obtain

P(Nh1i ¼ r jNh1i ¼ Nhqi . Nhqþ1i; n, m)

¼ 1
(r!)qq!

Wqþ1
n!

mn
Qm

i¼qþ1 nhii!
m!Qr�1

k¼0 ((#ni ¼ k)!)

 !
:

Let q = 0 indicate the case of n〈1〉 < r. Summing over q then yields

P(Nh1i � r; n, m) ¼
X
q

1
(r!)qq!

n!m!

mn

�Wqþ1
1Qm

i¼qþ1 (nhii!)
Qr�1

k¼0 ((#ni ¼ k)!)

 !
:

(4:1)

The number of urns containing exactly r balls cannot be greater than bn=rc, which therefore defines
the upper limit of the summation. Moreover, since all the other n− rq balls should be placed in the



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190198
7
remaining m− q urns, with maximum not exceeding r− 1, one must have (m− q)(r− 1)≥ (n− rq),

therefore the lower limit for q is max (0, n− rm +m). The range of the summation in equation (4.1)
thus becomes

max (0, n� rmþm) � q � n
r

j k
: (4:2)

Noting that

Wqþ1
1Qm

i¼qþ1 (nhii!)
Qr�1

k¼0 ((#ni ¼ k)!)

(m� q)!(n� rq)!
(m� q)n�rq

 !
¼ P(Nh1i � r� 1; n� rq, m� q),

the following iterative formula for the probability of the multinomial maximum holds:

P(Nh1i � r; n, m) ¼
X
q

AqP(Nh1i � r� 1; n� rq, m� q), (4:3)

where

Aq ¼ n!m!

mn

1
(r!)qq!

(m� q)n�rq

(m� q)!(n� rq)!
:

The starting point of the iteration is represented by the probability that the maximum is smaller than or
equal to 1 (where the former clearly cannot occur for n, m > 0), i.e.

P(Nh1i � 1; n, m) ¼ P(Nh1i ¼ 1; n, m) ¼
m!

mn(m�n)! ifm � n
0 ifm , n

�
:

This quantity can be easily derived from equation (1.1), since the only possible configurations
corresponding to {N〈1〉 = 1} are those with n frequencies equal to 1 and n−m frequencies equal to 0,

and there are m
n

� �
such sequences.

Table 3 in appendix A contains critical values for the maximum as obtained with this algorithm, for
different combinations of n and m. As expected, these exact numbers coincide with those obtainable
using Corrado’s stochastic matrices [8] (and the same will be true for the minimum and the range).
4.2. Distribution of the sum of the J largest order statistics
The algorithm for the maximum can also be used for the calculation of the exact distribution of the sum
of the J largest order statistics. Rappeport discusses explicitly the cases J = 2, 3, and only gives some hints
about the general case 3 < J <m.

Consider the case J = 3 as in the original work by Rappeport.1 To compute P(N〈1〉 +N〈2〉 +N〈3〉≤ r;
n, m), one may partition this probability into different terms, corresponding to the different possible
ranges of N〈1〉 and N〈2〉. Indeed, one can distinguish among three disjoint cases:

(i) N〈1〉≤ r/3. In this case,

P
X3
i¼1

Nhii � r; n, m

 !
¼ P Nh1i � r

3
; n, m

� �
:

(ii) N〈1〉 > r/3 and N〈2〉≤ (r−N〈1〉)/2. Here one can fix a value of N〈1〉 = t1, thus forcing one urn to
contain exactly t1 balls. The remaining urns define a smaller sample with n* = n− t1 and m* =
m− 1. If the maximum of this new sample is smaller or equal than (r− t1)/2, the original
inequality for the sum of the three largest order statistics will automatically hold. The total
probability in this case is equal to the sum over all possible values of t1, i.e.

P
X3
i¼1

Nhii � r; n, m

 !
¼

Xr
t1¼br=3þ1c

At1P Nh1i � r� t1
2

; n� t1, m� 1
� �

,

1The original formulation of Rappeport contained a few errors, here corrected.
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with

At1 ¼
n!m!

mn

1
t1!

(m� 1)n�t1

(m� 1)!(n� t1)!
:

(iii) N〈1〉 > r/3 and N〈2〉 > (r−N〈1〉)/2. One may proceed as in the previous case, but now both values
of N〈1〉 and N〈2〉 must be fixed, so that

P
X3
i¼1

Nhii � r; n, m

 !
¼

Xr�1

t1¼br=3þ1c

Xmin (t1,r�t1)

t2¼b(r�t1)=2þ1c
At1,t2Bt1,t2

� P(Nh1i � r� t1 � t2; n� t1 � t2, m� 2),

where

At1,t2 ¼
n!m!

mn

(m� 2)n�t1�t2

(m� 2)!(n� t1 � t2)!
1

t1!t2!
,

and Bt1,t2 ¼ 0:5 if t1 = t2, and it is equal to 1 otherwise. The term Bt1,t2 accounts for the possibility of
t1 and t2 being equal.

Collecting the probabilities from points (i), (ii) and (iii) above yields the desired probability.
The more general distribution of the sum of the J <m largest order statistics can be computed similar

to the J = 3 case, by splitting the probability P
PJ

i¼1 Nhii � r; N, m
� �

into J terms, each one dealing with
some combinations of values for the first J− 1 order statistics.

The general explicit formula for the distribution of the sum of the J largest order statistics is

P
XJ
i¼1

Nhii � r; n, m

 !

¼ P Nh1i � r
J
; n, m

� �
þ

Xr
t1¼br=Jþ1c

At1P Nh1i � r� t1
J � 1

; n� t1, m� 1
� �

þ � � �

þ
X
t1

� � �
X
tJ�1

At1,...,tJ�1Bt1,...,tJ�1 � P Nh1i � r�
XJ�1

i¼1

ti; n�
XJ�1

i¼1

ti, m� J þ 1

 !
: (4:4)

If we denote with I the total number of summations for a particular range of values, then the relative
summation limits are defined as

r
J þ 1
j k

� t1 � r� I þ 1 if i ¼ 1

r�
PI�1

i¼1
ti

J�Iþ1 þ 1
	 


� ti � min tI�1, r�
PI�1

i¼1 ti
� �

if 2 � i � I

8><
>: :

The coefficients A and B are calculated according to the formulae

At1,...,tI ¼
n!m!

mn

1QI
i¼1 (nhii)!

(m� I)(n�
PI

i¼1
ti)

(m� I)!(n�PI
i¼1 ti)!

(4:5)

and

Bt1,...,tI ¼
1QtI

k¼t1 (#ti ¼ k)!
,

where, again, (#ti = k) denotes the number of tis equal to k.
In appendix A, we report Matlab code to compute the distribution of the sum of the J <m largest

order statistics. In tables 4 and 5, we provide critical values for J = 2 and J = 3. Importantly, note that
the algorithm for the sum can also be used immediately to compute the exact probabilities of the
second, the third and all the other order statistics.
5. The exact distribution of the multinomial minimum
The distribution of the smallest order statistic N〈m〉 can be easily derived, by using the probability of the
sum of the m− 1 largest order statistics, given that P(Nhmi � r; n, m) ¼ P

Pm�1
i¼1 Nhii � n� r; n, m

� �
.
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However, it is not difficult to see that this approach turns out to be very computationally inefficient
already for quite small values of n and m.

A new, efficient algorithm for the multinomial minimum can be constructed starting from that of the
multinomial maximum. One needs to slightly modify the way in which we move across the branches of
the tree. We start by assigning probability 0 to all the branches of the tree that contain urns with less than
r balls. By iterating through all the possible values of the maximum, from r to n, we then compute

P(Nhmi � r) ¼
Xn�1

t¼r

P(Nh1i � t; n, m), (5:1)

with the conditions P(N〈1〉≤ r− 1; n, m) = 1 if n =m = 0, and P(N〈1〉≤ r− 1; n, m) = 0 if n≠ 0 or m≠ 0. Then,
by computing 1− P(N〈m〉≥ r + 1), one can easily obtain the probability mass function of the multinomial
minimum.

The Matlab code is once again available in appendix A, and table 6 provides some useful critical
values.
oc.open
sci.6:190198
6. The exact distribution of the multinomial range
We now introduce a new iterative algorithm for computing the exact distribution of the multinomial
range. Unlike the solution proposed by Corrado [8], our approach does not require any modification
of the algorithm for every new urn composition.

Back to our earlier example with n = 6 balls and m = 3 urns, consider the probability that the range is
smaller than or equal to 3. Such a probability can be split into two terms corresponding to the different
ranges of variation of the maximum. That is,

P(Nh1i �Nh3i � 3) ¼ P(Nh1i �Nh3i � 3 jNh1i � 3)þ P(Nh1i �Nh3i � 3 jNh1i . 3):

The first term can be computed using equation (4.3), since P(N〈1〉−N〈3〉≤ 3 | N〈1〉≤ 3) = P(N〈1〉≤ 3).
To compute the second term, one may use a procedure similar to the one for the minimum: to iterate

through all the possible values for the maximum, while assigning zero probability to all the branches that
have urns with less balls than the current maximum, i.e. three balls in our example. For instance, we
compute P(N〈1〉≤ 4 | N〈1〉 > 3) with the additional conditions that P(N〈1〉 < 1; n, m) = 1, if n =m = 0, and
P(N〈1〉 < 1; n, m) = 0, when n≠ 0 or m≠ 0, so to avoid meaningless paths.

The general algorithm is therefore as follows:

P(Nh1i �Nhmi � r; n, m) ¼ P(Nh1i � r; n, m)þ P(Nh1i �Nhmi � r jNh1i . r; n, m): (6:1)

The first term is easily computed using the algorithm for the maximum, so we focus our attention on the
second term. Assume, for the time being, that N〈1〉 =N〈q〉 = r + 1 >N〈q+1〉. Then, one can rewrite the second
term on the right-hand side of equation (6.1) as

P(Nh1i �Nhmi � rjNh1i ¼ Nhqi ¼ rþ 1 . Nhqþ1i; n, m) ¼
Fqþ1,1

n!m!

mn
Qm

i¼qþ1 (nhii!)
Qr

k¼t�r ((#ni ¼ m)!)

 !

((rþ 1)!)q q!
,

where Fq+1,1 is the operator that sums over all possible values of n〈q+1〉,…, n〈m〉 such that the minimum
n〈m〉≥ 1, and n〈1〉 = n〈q〉 > n〈q+1〉. Summing over q thus gives the total probability

P(Nh1i �Nhmi � rjNh1i ¼ rþ 1; n, m)

¼
X
q

n!m!

mn((rþ 1)!)qq!
� Fqþ1,1

1Qm
i¼qþ1 (nhii!)

Qr
k¼t�r ((#ni ¼ m)!)

 !
: (6:2)

In this case, N〈1〉 > r, and the term corresponding to q = 0 should be excluded, so that

max (1, n� (rþ 1)mþm) � q � n
rþ 1

	 

:
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Now, multiplying and dividing equation (6.2) by [(m− q)(n−(r+1)q)][(m− q)! (Nn(r + 1)q)!]−1 yields

P(Nh1i �Nhmi � r jNh1i ¼ rþ 1; n, m)

¼
X
q

n!m!

mn((rþ 1)!)qq!
(m� q)(n�(rþ1)q)

(m� q)!(N � (rþ 1)q)!

� Fqþ1,1
(m� q)!(n� (rþ 1)q)!

(m� q)(n�(rþ1)q)

1Qm
i¼qþ1 nhii!

Qr
k¼t�r (#ni ¼ k)!

 !
: (6:3)

Note that the term

Fqþ1,1
1Qm

i¼qþ1 nhii!
Qr

k¼t�r (#ni ¼ k)!
(m� q)!(n� (rþ 1)q)!

(m� q)(n�(rþ1)q)

 !

is an alternative way of writing

P(Nhmi � 1 jNh1i � r; n� (rþ 1)q, m� q):

The condition N〈1〉≤ r can be imposed to the algorithm by changing the threshold for the maximum. In
other words,

P(Nhmi � 1 jNh1i � r; n� (rþ 1)q, m� q) ¼ P(Nh1i � r; n, m),

with, similarly to what we have seen before, P(N〈1〉≤ 0; n, m) = 1, when n =m = 0, and P(N〈1〉≤ 0; n, m) = 0,
if n≠ 0 or m≠ 0.

Plugging this into equation (6.3) produces

P(Nh1i �Nhmi � r jNh1i ¼ rþ 1; n, m)

¼
X
q

1
((rþ 1)!)qq!

n!m!

mn ¼ (m� q)(n�(rþ1)q)

(m� q)!(n� (rþ 1)q)!
� P(Nh1i � r; n� (rþ 1)q, m� q),

with the same conditions on P(N〈1〉≤ 0; n, m).
Recalling equation (4.3) for the distribution of the maximum, we can finally calculate the second term

on the r.h.s. of equation (6.1), by summing over all the possible values of N〈1〉. Thus

P(Nh1i �Nhmi � r jNh1i . r; n, m) ¼
Xn
t¼rþ1

P(Nh1i � t jNh1i . t� 1; n, m),

where P(N〈1〉≤ t− r− 1; n, m) = 1, if n =m = 0, and P(N〈1〉≤ t− r− 1; n, m) = 0, if n≠ 0 or m≠ 0.
The condition N〈1〉 > t− 1 is introduced at every summation step in order to avoid multiple

calculations for the same branches of the outcome tree. This results in different ranges of summation
in the recursion, i.e.

max (1, n� tmþm) � q � n
t

j k
if Nh1i . r

and

max (0, n� tmþm) � q � n
t

j k
if Nh1i � r:

Summarizing, the distribution of the range can be evaluated via the iteration step

P(Nh1i �Nhmi � r; n, m) ¼ P(Nh1i � r; n, m)þ
Xn
t¼rþ1

P(Nh1i � t jNh1i . t� 1; n, m), (6:4)

with the same conditions as above for P(N〈1〉≤ t− r− 1; n, m), when N〈1〉 > r.
As for the other exact algorithms, in table 7 we provide a selection of critical values, and the related

code is in appendix A.
7. Approximations versus exact results
One may want to compare the exact probabilities computed with the new algorithms with the
approximations seen in §2. More generally, the operating characteristics of the exact versus the
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Figure 2. Comparison (cdf: cumulative distribution function) between the exact probabilities for the range and the approximation by
Young [7] for n = 30 and m = 20 (a), and for n = 100 and m = 25 (b).
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approximate tests can be explored. Here, we mainly focus our attention on the multinomial range, given
that its use has been proposed in the literature for several statistical tests [2].

In goodness-of-fit tests, under the name ‘urn tests’ [3], identically independently distributed (i.i.d.)
observations generated from a given statistical distribution and properly binned can be described as
the result of a multinomial experiment.

Using the approximations given in §2, Young showed that a goodness-of-fit test based on the
multinomial range has power advantages with respect to classical alternatives such the χ2 [7]. For a
more general comparison between tests based on the multinomial order statistics and the classical χ2

goodness-of-fit test statistic, we refer to [14] and [9], respectively.
Consider a sample of i.i.d. observations X1,…, Xn from a distribution F on the real line, with interest

in testing some null hypothesis ~H0: F ¼ F0.
The support of the distribution hypothetical F0 can be partitioned into m equiprobable non-overlapping

sub-intervals B1,…, Bm (for the optimal choice of the number of intervals, we refer to [7,15]). We then
define the variables N1,…, Nm as the absolute frequencies of the actual observations in the sample
that fall in the intervals B1,…, Bm, that is Ni ¼

Pn
j¼1 I(Xj [ Bi) for 1 � i � m.

By construction of the bins, under ~H0, the random vector of counts (N1,…, Nm)
T follows the Mult(n,

p) distribution with p = p0 = (1/m,…, 1/m)T. Note that ~H0 is then transformed into the multinomial null
hypothesis H0. Hence we can assess the goodness of fit to F0 by considering the transformed hypothesis
testing problem: H0: p = p0 versus H1: p≠ p0.

To test the multinomial equiprobability hypothesis, we can use the multinomial range as test statistic,
as suggested in [7]. In what follows we compare the performances of our exact results, with those of the
approximation discussed in §2.

Figure 2 shows two comparisons between the exact and approximate cumulative distribution
functions of the multinomial range, in the multinomial experiment, for n = 30 and m = 20, and for n =
100 and m = 25. As expected, when the number of balls is small with respect to the number of urns,
the approximation is rather poor. Good results are only obtainable for n≥ 5m. This is in line with the
findings in [7].

In our experiments, given the discrete nature of the test statistic, we constructed randomized testing
procedures to ensure that the desired level of significance α (0.05) could indeed be achieved exactly in all
cases [16].

As the null distribution F0, we used a normal distribution N(μ, σ2) with μ = 1.3 and σ = 0.25, while as
the alternative distribution F1 we considered a lognormal distribution LN(μLN, σLN) with μLN = 0 and
σLN = 0.25. The two densities are shown in figure 3.

The power of the exact and of the approximate test procedures were computed via Monte Carlo
estimation: for each combination of number of bins (m), and number of observations (n), we generated
3000 i.i.d. samples.

Figure 4 shows the power advantage of the test based on the exact distribution, for all test sample
sizes, and for the alternative hypothesis we have considered here. The figure tells that, when using
m = 5 or 10 urns, the exact test outperforms the approximate one for sample sizes smaller than 25, and
it is at least as powerful as the approximate test in the other cases.
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Figure 5 compares the powers of the tests for m = 30 and m = 50, respectively. The figure shows that
the exact-distribution-based test is more powerful than the approximate one, for all values of n up until
about 50, when all powers approach one.

For both figures 4 and 5, standard errors can be computed using the simple formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)=3000

p
,

where p is the estimated power.
While this small simulation exercise clearly has no ambition of being exhaustive, on the basis of the

findings above, we can say that—as one would expect—the exact test appears to perform better
than the approximate one, over a wide range of sample sizes, and for different numbers of urns.
Moreover, the improvement in power seems to increase with the number of urns, and it can be very
large for the smaller sample sizes. However, one should keep in mind that the observed differences in
the performances of the two procedures (exact versus approximation) may also depend upon the
accuracy of the calculations of the tail probabilities under the approximation formulae, which may
produce type I error probabilities different from the desired ones.
8. Uniformly most powerful tests and sums of multinomial counts
We now discuss two constructions of testing procedures for the multinomial probabilities that motivate
the use of the largest and of the sum of the J largest multinomial counts.

We consider one sample N = (N1,…,Nm)
T = (n1,…, nm)

T = n, where
Pm

j¼1 n j ¼ n, from the
Multinomial(n, p) distribution with p = ( p1,…, pm)

T. We focus on the null hypothesis H0: p1 = p2 = · · · =
pm = 1/m, or H0 : p = p0 in the notation of §1.
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In this section, we use the notation L(p; n, m, n) for the likelihood function corresponding to a sample
of size one from the multinomial distribution (i.e. its pmf).

Similar arguments to those that follow, with the appropriate changes, can be exploited to motivate the
use of the minimum (or the sum of the J smallest) counts.
98
8.1. Uniformly most powerful test for an increase in one probability
First, note that if we restrict all the pj for j≠ i to be equal (and still

Pm
j¼1 p j ¼ 1), then for a given value of pi

one necessarily has pj = (1− pi)/(m− 1), for all j≠ i. Now, consider testing the null hypothesis H0 of
equiprobabilty against the alternative hypothesis that corresponds to an increased probability of
attraction for the ith urn, with all other probabilities being equal:

H1i: pi ¼ pþ .
1
m
, p j ¼ 1� pþ

m� 1
8j = i,

where p+∈ (1/m, 1). The most powerful (MP) level α test (α∈ (0, 1)) for the problem H0 versus H1i can be
easily obtained by direct application of the Neyman–Pearson’s lemma (e.g. [17]). The rejection region of
the MP test is defined by

L(p ¼ (
1
m
, . . . ,

1
m
); n, m, n)

L(pþ; n, m, n)
¼

n!
n1! � � � nm!

1
m

� �n

n!
n1! � � � nm!p

niþ
1� pþ
m� 1

� �n�ni

¼ m� 1
m(1� pþ)

� �n 1� pþ
pþ(m� 1)

� �ni
being less than or equal to some constant such that the probability of rejection under the null be equal to
α (note the slightly inconsistent—but convenient—notation for L( p+; n, m, n) versus L (p; n, m, n)). Since
p+ > 1/m, it follows immediately that (1− p+) < (m− 1)p+, so that the rejection region can be written
equivalently as Ni≥ kα. Given the discrete nature of the multinomial random vector, the rejection
region must be augmented by construction of a randomization procedure to allow the test to have
size α.

Since this rejection region does not depend on the choice of p+, the MP test is actually uniformly most
powerful (UMP) for the wider testing problem

H0: p1 ¼ � � � ¼ pm ¼ 1
m

versus H1i: pi .
1
m
, p j ¼ 1� pi

m� 1
8j = i:

Notice that this same rejection region emerges as the UMP test if one considers just the ith marginal count
Ni, which is distributed as a Binomial(n, pi) random variable, and the alternative testing problem
H�

0i: pi ¼ 1=m versus H�
1i: pi . 1=m.

Let us now combine the collection of such tests obtained by letting i = 1,…, m. Within the parameter
space Q ¼ {pi [ (0, 1), i ¼ 1, . . . , m:

Pm
i¼1 pi ¼ 1}, the null hypothesis H0 can be written equivalently as

H0 : p∈Θ 0 = {1/m,…, 1/m}. Trivially, Q0 ¼
Tm

i¼1Q0, so we may construct a global union-intersection
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test that rejects H0 whenever at least one of the m tests rejects (e.g. [18]). Easily, such test would then have

a rejection region of the form

[m
i¼1

{Ni � k�} ¼ {max (N1, . . . , Nm) � k�}, (8:1)

where k* is common to the m tests due to the symmetric nature of the individual tests over i = 1,…,m
under the null. To control the overall type I error probability α, the test should therefore reject if
and only if max(N1,…,Nm)≥ k*, where the constant k* should satisfy the size requirement that
P(max(N1,…,Nm)≥ k*; H0) = α, and it should therefore be obtained from the distribution of the test
statistic N〈1〉 =max(N1,…,Nm) under H0. Observe that, in practice, the m individual tests (and the
global test) are randomized, so that (8.1) holds only approximately. Nevertheless, the construction
provides quite a strong motivation for the use of the test based on the largest observed count.

8.2. Uniformly most powerful test for an equal increase in two probabilities
Let us now consider the case of an equal increase of two of the m≥ 3 attraction probabilities,
corresponding to the two urns i and j, i≠ j. The level α UMP test for the problem

H0 versus H1ij: pi ¼ p j ¼ pþ .
1
m
, ph ¼ 1� 2pþ

m� 2
8h = i, j

can also be obtained from the Neyman–Pearson’s lemma. Note that p+ < 0.5 must hold.
The likelihood function2 corresponding to the two probabilities pi and pj being the same, with all the

others being equal, is

L(pþ; n, m, n) ¼ n!
n1! � � � nm! p

niþp
nj
þ

1� 2pþ
m� 2

� �n�(niþn j)

:

And the MP test rejects if and only if the likelihood ratio

L(
1
m
; n, m, n)

L(pþ; n, m, n)
¼

n!
n1! � � �nm!

1
m

� �n

n!
n1! � � �nm!p

niþn j
þ

1� 2pþ
m� 2

� �n�(niþn j)

is less than or equal to some constant. It is easy to see that since p+ > (1− 2p+)/(m− 2), the rejection region
can be written equivalently as Ni +Nj≥ k (again with randomization adjustment). Since the test does not
depend on the value of p+ as long as it is greater than 1/m (and smaller than 0.5), the same test is UMP
level α for the testing problem H0 versus Hij: pi ¼ p j . 1=m, ph ¼ (1� 2pi)=(m� 2) 8h = i, j.

For this case, one should note that the test that we have derivedwould not be UMP if we allowed pi and
pj to take different values (both greater than 1/m, with sum less than one) under the alternative hypothesis
~Hij. Indeed, simple calculations show that, in such a case, the rejection region of the MP test for H0

versus ~Hij : pi ¼ ~pi, p j ¼ ~p j, ph ¼ (1� ~pi � ~p j)=(m� 2) 8h = i, j would look like gNi
i g

Nj

j . k, where
gi ¼ ~pi(m� 2)=(1� ~pi � ~p j) . 1, and similarly for γj. The (randomized) MP level α test would therefore
require the rejection threshold k to be obtained from the distribution, under H0, of the test statistic
gNi
i þ g

Nj

j , or equivalently of the test statistic Nilog (γi) +Njlog (γj). As a consequence, the rejection
threshold would depend on the specific values ~pi and ~p j, and the resulting test could therefore not be
UMP for thewider testing problemH0 versusH�

ij : pi . 1=m, p j . 1=m, ph ¼ (1� pi � p j)=(m� 2) 8h = i, j.
On the other hand, if we restrict ourselves to the case pi = pj, then we can again generalize this UMP

level α test to reject against the alternative hypothesis that, for some pair (i, j ) of probabilities, there has
been an equal increase from 1/m. Here, too, the m

2


 �
UMP level α tests can be combined—up to the

mentioned approximation due to the randomized nature of the tests—by rejecting H0 whenever at
least one among them does. The resulting rejection region is then[

i=j

{Ni þNj � k} ¼ {Nh1i þNh2i � k},

where the equality of the two rejection regions can be easily verified. Again, the constant k that would
ensure the overall type I error probability α should be obtained from the distribution of the sum of
the two largest observed multinomial counts N〈1〉 +N〈2〉.

The discussion in this subsection can be easily extended to the case of an equal increase in more than
two of the m probabilities.
2For ease of notation, we still call it L( p+; n, m, n).



Table 1. Power of the exact and approximate test in the case of Poisson processes with intensity function λ(t).

intensity function parameters exact test approximate test

λ(t) = 2 + 0.01 * t m = 30 and T = 20 0.184 0.037

λ(t) = 0.3 * t m = 20 and T = 200 0.427 0.371

λ(t) = 0.05 * t m = 15 and T = 20 0.133 0.059

λ(t) = 2 + sin(2πt) m = 30 and T = 200 0.213 0.084
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9. Two illustrations
9.1. Test for the homogeneity of a Poisson process
Suppose M(t) is a homogeneous Poisson process on the line. If we partition its time domain into m non-
overlapping equal-length sub-intervals B1,…, Bm, then, conditionally on the total number of events
observed n, the numbers of events Ni in the intervals Bi, i = 1,…,m, follow an equiprobable
multinomial distribution [2]. Thus, a test for the homogeneity of the Poisson process is readily
constructed from the absolute frequencies.

We simulate a non-homogeneous Poisson process (NHPP) and check whether the multinomial range
test is able to identify the non-homogeneity. We use the time-scale transformation of a homogeneous
Poisson process (HPP) with (constant) rate equal to one to generate the desired NHPP.

The inter-arrival times T of an HPP with rate one are known to be exponentially distributed with
intensity one, i.e. P(T≥ t) = exp(− t). The inter-arrival times T0 for an NHPP are such that P(T0 ≥ t) =
exp(−Λ(t)), where Λ(x) is the integrated rate function of the process, i.e. the expected number of points
in the interval (0, x], with Λ(0) = 0 (this is also called the cumulative hazard function). It is immediate
to see that if T1,…, Tn are a sample of inter-arrival times generated from the HPP with rate one, then
the transformed times T0

i =Λ−1(Ti), i = 1,…, n, are a sample from an NHPP with integrated rate
function Λ(t). Hence we can simulate an NHPP by simply sampling exponential variables with
parameter equal to one, and by taking the inverse Λ−1 of the generated inter-arrival times.

Four examples of power comparison (based on 1000 simulated samples each) between the exact and
the asymptotic test are shown in table 1, where three linear assumptions and a sine-shaped one for the
NHPP intensity function are considered, for different numbers of bins (m) and maximum overall time
length (T). Type I error probability was set equal to 0.05. One can easily appreciate the evident
advantage of the exact test over the asymptotic one.

Let us focus a bit more on the effect of choosing different numbers of disjoint intervals, when testing for
the homogeneity of a Poisson process. Assume that the true intensity function is described by the harmonic
function λ(t) = 2 + sin(5πt). Figure 6 shows the power of the two tests when the time domain (T = 200) is split
into 10 or 20 disjoint intervals. The blue and the red lines represent the case with 10 intervals, whereas
the black and the green the one with 20. We can observe once again the better power performances of the
exact test. The huge power gain between the two cases with 10 and 20 bins can be explained by
the following fact: if we split the time domain into 20 non-overlapping, equal-length intervals, each of
them covers the period of the intensity function, averaging out the effect of the harmonic function.

Therefore, the exact range-based test shows better performances with respect to the approximate one,
when dealing with Poisson processes, but the specific performance may be quite dependent on the width
(i.e. the number) of the bins.
9.2. An application to disease clustering
We now discuss a simple application of the multinomial range test to the problem of disease clusters’
detection, something frequently of interest to epidemiologists and biostatisticians [19,20].

Often, disease clustering is initially approached as a hypothesis testing problem. Themain goal is to test a
null hypothesis of no clustering, i.e. a common rate of disease across the study region, against an alternative
hypothesis of presence of clusters, or more generally of deviations from the null spatial distribution.

Numerousways to construct such tests were proposed over the years, and one of the possible approaches
is based on the multinomial distribution. In this case, the study region is divided into (roughly) equal
population subregions. Then, under the null hypothesis of a common rate of disease across the wider
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MADISONONONDAGA

CORTLAND

CHENANGO

BROOME

TOMPKINS

CAYUGA

TIOGA

(a) (b)

Figure 7. Distribution of leukaemia cases over the eight counties of the state of New York (a), and positions of the centroids of the
32 new subregions (b).
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region, and conditionally on the total number of cases observed in the region, the number of events (cases)
observed in the different subregions follows an equiprobable multinomial distribution.

We briefly illustrate this approach by using a well-known epidemiological dataset of diagnosed
leukaemia cases over eight counties in upstate New York [20]. These data originated from the
New York State Cancer Registry, and were gathered during the 5-year period 1978–1982, with a total
of 584 individuals diagnosed with leukaemia over a population of approximately 1 million people.
The original data contain spatial information about registered events split into 790 census tracts,
which, however, have different population sizes. Their spatial distribution is shown in figure 7a.

In order to perform the multinomial tests based on the range, we have to group the data
points into subregions of approximately equal population. Ideally, the population of these subregions
should be exactly the same, but that is impossible due to the original grouping in census tracts. To the best
of our knowledge, there is no existing unique algorithm to create spatial partitions such that the elements
of the partition have equal population. We propose the following (admittedly ad hoc) procedure:
(i) Define the number of the new subregions to be constructed.
(ii) Use that number to compute a desired value for the population of each subregion.



Table 2. Number of subjects (Nr) diagnosed with leukaemia in each of 32 subregions (Subr).

Subr Nr Subr Nr Subr Nr Subr Nr

1 34 9 18 17 25 25 14

2 28 10 14 18 20 26 12

3 13 11 17 19 9 27 24

4 23 12 39 20 21 28 17

5 23 13 20 21 24 29 5

6 20 14 17 22 12 30 4

7 18 15 14 23 31 31 3

8 27 16 13 24 24 32 3
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(iii) Create subregions, roughly satisfying the desired population size, around locations with high
initial population. Specifically, use the k-means algorithm to create subregions for the rest of
the observations, initializing the subregions with locations that have the highest populations.

(iv) Trade observations between subregions based on the population and the distance, until the
population constraints are satisfied.

Using this approach, we were able to create new subregions with approximately equal population (some
of the points were reassigned to a different subregion in the post-processing stage). In figure 7b, 32
subregion centroids are shown. For each subregion, the population varies from 36 036 to 39 528
(roughly 3.48% of the whole population). Under the null hypothesis, these new subregions generate
cases with (roughly) the same intensity.

In this grouping, the maximum number of individuals diagnosed with leukaemia within one
subregion is 39 versus a minimum of three cases, so that the multinomial range statistic is equal to 33.
The total number of cases registered in each subregion is presented in table 2.

Using the exact test based on the range of the sample, the null hypothesis of equiprobable multinomial
distribution is rejected at the 0.01 level, since the 99th percentile of the range’s exact distribution in the
case of 584 events and 32 bins is 25. The null hypothesis is also rejected when one uses 25 subregions
(results not shown), which supports previous research about leukaemia cases for this dataset [20].

Importantly, in this illustration there is nodifference inourconclusionsbetweenusing the test basedon the
exact or the approximate distribution of the range, since for n = 584 andm = 32 the approximate distribution is
close to the exact one. For smaller datasets, the use of the exact test would, however, be quite preferable.
10. Discussion
The use of the order statistics computed from the (clearly dependent) multinomial counts opens the
possibility of revising several approaches, which have been followed for many decades to assess
deviations from the equal probability null hypothesis. One should expect some of the new test
statistics to perform particularly well against some alternatives, for example, when one or a few cells
have very high (or very low) probabilities associated with them.

From our small simulation exercise, these test statistics appear to benefit greatly from the use of their
exact distributions, avoiding the problems due to the use of approximations. Note that more extensive
explorations can be pursued using the code that we are providing in this article.

The exact distributions could also be used to develop additional test statistics, best suited for specific
problems. For example, in the disease clustering illustration one could recognize that disease cluster
studies often originate from a perceived high risk of disease in some subregion(s). Such investigations then
run the risk of falling into what is known as the Texas sharpshooter fallacy, i.e. finding an apparently
statistically significant difference in risk, when comparing the disease rate in that subregion to the rest of
the region. The fact that one is looking at that comparison conditionally on having observed a high rate, if
not taken into account properly, can easily produce false positive errors. Note that in such setting, one is
actually comparing exactly the largest multinomial order statistic (or one of the largest ones, or their sum)
to the counts observed in the other subregions. Given the conditioning on the total number of cases
observed, this is the same as constructing the test on just the largest (or the sum of the few largest) order
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statistics fromthemultinomial vector. Such statistics could then naturally beused to test thenull hypothesis of

homogeneous distribution of the disease risk. Our algorithms therefore allow one to take into account the
selection process of the subregion under investigation, within the appropriate statistical testing framework.

Other interesting applications of the exact tests are in the field of risk management. In particular, in credit
risk modelling of the number of defaults of counterparties that share the same creditworthiness in terms of
rating, but belong to different industrial sectors [21]. In these settings, given the small number of default
events and the large number of sectors for the exposures in a granular portfolio, exact multinomial tests
may represent an advantage with respect to the more commonly used χ2 approximation. A similar
reasoning is even more relevant if one restricts her attention on low default portfolios (LPDs) [22].
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Appendix A. Codes and tables
In this appendix, we collect the Matlab code that implement all the exact algorithms discussed in this
article, as well as some tables of critical values.
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