
Hawkes Processes in
Large-Scale Service
Systems
Improving service management at ING

J.L.F. Göbbels

Hawkes Processes in
Large-Scale Service

Systems
Improving service management at ING

by

J.L.F. Göbbels
to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday 13 September, 2023 at 15:00.

Student number: 4596498

Project duration: September 24, 2022 – September 13, 2023

Thesis committee: Prof. Dr. Ir. G. Jongbloed TU Delft, chair

Dr. A. F. F. Derumigny, TU Delft, supervisor

Dr . L. M. Da Cruz TU Delft, supervisor

F. Den Hengst, VU & ING, daily supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

i

’The object of this study is
to produce a class of theoretical models
which may be applicable to a variety of problems.’

HAWKES (1971A)

Preface

This is an incomplete version of the original thesis. In particular, details regarding incident arrivals
are removed.

This thesis examines how marked Hawkes processes contribute to providing insights into large-scale
service systems. To achieve this, we construct a mark space based on the product of clusters of IT
messages combined with distinct service levels. This thesis has been written in order to obtain the
degree of Master of Science in both Applied Mathematics and Computer Science. The research was
carried out under the supervision of Dr. Derumigny from the Applied Mathematics side and Dr. Da
Cruz from the Computer Science side.

Selecting a topic that is closely aligned with industrial applications and also meets the criteria for
Applied Mathematics and Computer Science has been a challenging endeavor. I, therefore, express
gratitude to Elvan Kula and Evert-Jan van Doorn for creating a thesis position at ING that fulfills
these requirements. Furthermore, I would like to thank the AI for Fintech Research (AFR) lab for their
continuous feedback throughout the process, as well as the I3 team for their support in addressing
business-related matters that emerged throughout the process. I especially acknowledge Arkadiusz
Trawiński for providing the opportunity to present this work at the EuroScipy Conference 2023 in Basel.

I would like to express my heartfelt gratitude to Dr. Derumigny, whose invaluable constructive feedback
greatly enriched the project. Our extensive discussions substantially enhanced my mathematical
understanding, and your prompt feedback enabled me to explore various aspects within a tight timeline.
Similarly, I extend my gratitude to Dr. Da Cruz for his flexibility, which allowed me to refine the scope
of the project when confronted with an abundance of ideas. Finally, my heartfelt thanks go to Floris
den Hengst for acting as a mentor throughout the process, contributing to various facets beyond the
realm of academic guidance. Furthermore, I would like to extend my gratitude to Prof. Dr. Jongbloed
for serving as the thesis committee chair. As my instructor for "Introduction to statistics," precisely six
years ago, your role in this academic milestone brings a sense of closure to a symbolic cycle.

Finally, I want to thank all my friends from EEMCS, whose support proved to be invaluable during the
final phase of my academic journey at TU Delft. Your friendship, shared coffee moments, and uplifting
words were priceless. Additionally, I would like to thank my parents for their unconditional support,
not just this year but throughout my entire lifetime.

J.L.F. Göbbels
Rotterdam, October 2023

ii

mvanadrichem
Doorhalen

Abstract

Through the expansion of large-scale service systems and the exponential growth of data generated

by complex IT infrastructure components, gaining a comprehensive overview of the different levels

of service within an IT system has become increasingly challenging. In particular, this brought to the

fore the question from a large commercial bank of how IT monitoring data streams generated by their

complex IT infrastructure can be associated with one another.

In more detail, the data from the monitoring stream consists (among other things) of a message and a

time stamp. Moreover, the monitoring data stream of this bank consists of two natures of information.

These natures are either automatically generated warnings in the form of events or unplanned outages,

referred to as incidents. The events and incidents are referred to as arrivals. As a first requirement to

obtain better granularity, both event and incident messages with similar semantics should be grouped

together. To this extent, the message component from each arrival is transformed into a numerical

vector, the dimension of the obtained vector is reduced, and the collection of vectors is clustered. Once

the individual arrival from the IT monitoring data stream is attached to a cluster based on their message

component, the arrival is assigned a mark. This mark consists of a combination of the assigned cluster,

the nature, and three different levels of service from the IT architecture on which the arrival occurred.

From a mathematical point of view, we can now view the monitoring data stream from different

levels of service as a marked point process. Our primary focus centers on a specific category of

marked point processes, known as marked Hawkes processes. Given the marked Hawkes process, we

assume that each arrival from the IT monitoring data stream results in an instantaneous increase in

the probability of some other arrivals in the near future. From here, we estimate the excitation matrix,

representing the instantaneous increases among all assigned marks. Once the estimated excitation

matrix is obtained, we decompose it into the different levels of service as defined within the mark. In

particular, the decomposition has been performed through means of hierarchical linear models. Finally,

the decomposition resulted in a comprehensive overview of the excitation behavior in large-scale service

systems. This overview can directly be incorporated into the field of Software Architecture in order to

uncover associations within complex IT infrastructures.

iii

Contents

Preface ii

Abstract iii

Nomenclature vi

I Preliminaries 1
1 Introduction 2

1.1 ING bank . 2

1.2 Incidents & events . 2

1.3 AIOps . 3

1.4 Hawkes processes . 3

1.5 Research questions . 3

1.6 Thesis outline . 4

2 Background & Related work 6
2.1 Incident management . 6

2.2 Hawkes processes . 8

II Problem framework 10
3 Descriptive analysis 11

3.1 Structure of the arrival data . 11

3.1.1 Feature vector . 11

3.1.2 Compression rules . 12

3.2 Feature analysis . 13

3.2.1 Temporal occurrence . 13

3.2.2 Level identifiers . 16

3.2.3 Message structure . 20

3.2.4 Incident identifier . 20

3.2.5 Differentiating between priorities . 21

3.2.6 Pareto principle . 21

4 Hierarchical service architecture 24
4.1 Top level service structure . 24

4.1.1 Structure of the service data . 25

4.1.2 Analysis of mapping . 26

4.1.3 A five-level hierarchy . 27

4.2 Bottom level message cluster . 28

4.2.1 Log parsing . 30

4.2.2 Clustering: embedding . 30

4.2.3 Clustering: HDBSCAN . 31

4.2.4 Clustering: dimensionality reduction using UMAP 32

4.2.5 Clustering: validation . 32

4.3 Real-world data . 32

4.3.1 Drain . 32

4.3.2 HDBSCAN . 33

4.3.3 Results . 34

iv

Contents v

III Hawkes process analysis 38
5 Hawkes Processes 39

5.1 Stochastic processes . 39

5.1.1 Point processes . 39

5.1.2 Counting processes . 40

5.1.3 Homogeneous Poisson processes . 41

5.1.4 Non-homogeneous Poisson processes . 41

5.1.5 Conditional intensity function . 41

5.1.6 Compensator . 43

5.2 One-dimensional Hawkes processes . 43

5.2.1 Memory kernel . 44

5.2.2 Estimation procedures . 45

5.2.3 Consistency of the MLE for one-dimensional Hawkes processes 47

5.3 Marked Hawkes processes . 51

5.3.1 Conditional intensity function . 51

5.3.2 Granger causality . 53

5.3.3 Estimation procedure . 54

5.4 Estimating Hawkes processes using the Tick library . 55

5.4.1 Two estimators . 55

6 Hierachical Hawkes processes 58
6.1 Two-level hierarchical model . 58

6.1.1 Two-level mark space . 59

6.1.2 Estimation of parameters . 60

6.2 Five-level hierarchical model . 61

6.2.1 Assumptions . 62

6.2.2 Variance partitioning . 63

6.3 Practical considerations . 63

6.3.1 Choice of estimator . 63

6.3.2 Characteristic time 𝜏 . 64

6.3.3 Resolution for configuration item - business application mapping 66

6.4 Main results: Hierarchical linear model . 70

6.4.1 Model 1: Business application . 71

6.4.2 Model 2: Configuration item . 71

6.4.3 Model 3: CI nested in BA . 72

6.4.4 Model 4: Nature nested in CI, CI nested in BA . 73

6.4.5 Model 5: Fixed nature and CI . 73

6.4.6 Model 6: Fixed nature and CI nested in BA. 74

6.5 Consequences for Software Architecture . 75

6.5.1 Business application level consequences . 75

6.5.2 Configuration item level consequences . 75

6.5.3 Arrival nature level consequences . 76

6.5.4 Message cluster level consequences . 76

7 Conclusion & Discussion 77
7.1 Discussion and future research . 78

References 80

A Source Code 85

B Additional theorems 86
B.1 Kullback-Leibler divergence . 86

C Parameter settings 87
C.1 Hyperparameter grid HDBSCAN & UMAP . 87

C.2 Periodogram . 87

C.3 Additional excitation figures . 88

Nomenclature

Abbreviations

Abbreviation Definition

MLE Maximum likelihood estimator

LSE Least squares estimator

NLP Natural language processing

Symbols

Symbol Definition Reference

Number sets
N Natural numbers

N∗ Positive natural numbers N\{0}
R Real line

R+ Non-negative real line

R∗+ Positive real numbers

ℬ(R) Borel set on real line

Arrivals
𝑖 Arrival Section 3.2

𝑡∗
𝑖

Arrival time for arrival 𝑖 Section 3.1

𝑛∗ Total number of arrivals Section 3.1

𝑛 Total number of records Section 3.1

𝑇𝑠𝑡𝑎𝑟𝑡 Starting time from which to consider arrivals Section 3.1

𝑇𝑠𝑡𝑎𝑟𝑡 Ending time until which to consider arrivals Section 3.1

𝑅𝑖 Feature vector for arrival 𝑖 Section 3.1

F Space of feature vectors Section 3.1

𝒟∗ Set of all arrivals Section 3.1

𝒟 = Comp(𝒟∗) Set of all records Section 3.1.2

�̃� ·
𝑘,𝑠

Cardinality function for index 𝑘 and nature 𝑠

Service systems
𝐶𝐼 Set of configuration items {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 } Definition 4.1.1

𝐵𝐴 Set of business applications {𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 } Definitions 4.1.2

𝐿𝐸𝑉𝐸𝐿 Set of level identifiers 𝐶𝑈 ∪ 𝐵𝐴 Section 3.1.1

𝐵𝑈 Set of business units {𝑏𝑢1 , . . . , 𝑏𝑢𝑛𝑏𝑢 } Definition 4.1.3

𝑄𝑖 Mapping vector for service level components Section 4.1.1

G Space of mapping vectors Section 4.1.1

vi

Contents vii

Symbol Definition Reference

Hawkes
𝑁(·) Counting process Definition 5.1.5

T Point process Definition 5.1.2

ℋ𝑡 History up to but not including time 𝑡 Section 5.1.5

𝜆(·|ℋ𝑡) Conditional intensity function Definition 5.1.15

𝜙(·) Memory kernel function Definition 5.2.1

𝜇(·) Background intensity function Definition 5.2.1

𝜇 Constant background intensity Definition 5.2.1

𝜏 Characteristic time Definition 5.2.5

𝛼 Excitation Definition 5.2.5

𝒰 Mark space Section 5.3.1

𝑁𝑢(·) Marked counting process Section 5.3.1

T𝑀𝑃𝑃 Marked point process Section 5.3.1

𝜆𝑢(𝑡 |ℋ𝑡) Marked conditional intensity function Definition 5.3.3

ℳ Background intensity matrix Definition 5.3.8

𝒯 Characteristic time matrix Definition 5.3.7

𝒜 Excitation matrix Definition 5.3.5

𝐿(𝜃;ℋ𝑇) Likelihood functional Theorem 5.2.9

ℒ(𝜃;ℋ𝑇) Log-likelihood functional Section 5.2.2

𝑅(𝜃;ℋ𝑇) Least squares functional Theorem 5.2.14

�̂�𝑀𝐿𝐸 Maximum likelihood estimator

�̄�𝐿𝑆𝐸 Least squares estimator

𝜃0 True parameter

Part I

Preliminaries

1

1
Introduction

The transition to modern software applications has greatly benefited society and the way we do business.

Particularly within the banking sector, the adoption of these advanced systems has ushered in a new

era, replacing archaic paper-based processes with streamlined digital workflows. The surge in data

volume and complexity resulting from this digital metamorphosis has brought to the fore an unexpected

consequence: the metamorphosis of major banks into IT companies, equipped with banking licenses.

With the expansion of large-scale service systems and the exponential growth of data generated by

complex IT infrastructure components, gaining a comprehensive overview of the systems at hand has

become increasingly challenging. Without a clear understanding of the interdependencies within the

IT system, this can lead to chaotic IT scenarios and ultimately result in substantial system downtime.

Such prolonged downtime not only affects the reliability of the organization but also directly impacts

revenue. According to estimates by the Ponemon Institute, service downtime costs an average of $9,000

per minute [16] in revenue loss to a typical large-scale company. Consequently, the prevention of service

downtime has become a top priority and a demanding task of companies’ IT departments.

1.1. ING bank
ING, a prominent multinational bank headquartered in the Netherlands, has solidified its position in

the financial industry, serving a vast network of approximately 37 million customers, corporate clients,

and financial institutions across more than 40 countries. With a workforce of over 60.000 employees,

ING operates at a global scale, catering to diverse financial needs. Notably, 18.000 employees, more than

a quarter of its workforce, are engaged in IT infrastructure management. This integral segment of the

organization is responsible for overseeing and maintaining the bank’s IT infrastructure, which includes

data centers, networks, servers, and other hardware components. The IT process teams ensure the

infrastructure is scalable, secure, and able to handle the increasing demands of the digital age. Moreover,

the IT teams play a crucial role in exploring and integrating emerging technologies to improve banking

services and remain competitive in the industry.

1.2. Incidents & events
Service downtime is captured by documenting incidents. An incident is an occurrence that disrupts or

has the potential to disrupt the normal operation of IT services. This encompasses a wide range of affairs,

from minor issues such as a single user being unable to access a specific application to major problems

such as an outage of the bank’s online banking system, which prevents customers from accessing their

accounts or making transactions [18].

On the other hand, events refer to the automatically generated information produced by computer

systems and other devices during their operation. Events are sometimes also referred to as alerts. Events

2

1.3. AIOps 3

capture the state of different components within the service system. Unlike incidents, events do not

directly indicate service disruptions. They encompass a wide range of data streams, including user

interactions with the system, system performance metrics, and other details that offer insights into the

system’s state. Event data is typically collected and stored in software logs, which serve monitoring and

analysis purposes.

Throughout this thesis, the differentiation between events and incidents is crucial. When addressing

both events and incidents at the same time, we refer to them as arrivals. To clarify the distinction between

these two possible natures of arrivals, we use the following formal definitions:

• Incidents are unplanned interruptions and outages of the service system [12]. These should be

resolved as soon as possible to restore normal service operations and ensure business operations

are minimally impacted.

• Events are automatically generated occurrences that report the state of different components within

the monitoring system, including metrics, logs, and traces. Events are characterized by dozens of

attributes and thus come with the challenge of extracting useful information [82].

1.3. AIOps
This thesis can be viewed within the broader framework of AIOps, which stands for Artificial Intelligence

for IT Operations. The term AIOps was originally introduced by IT consulting company Gartner in 2016.

According to Gartner’s definition [38]:

"AIOps combines big data and machine learning to automate IT operations processes,

including event correlation, anomaly detection and causality determination."

AIOps employs sophisticated statistical analysis and machine learning methods on IT operations data

to elevate the performance, availability, and overall quality of IT services. It empowers organizations to

automate and optimize their IT operations by analyzing vast amounts of data from diverse sources,

such as logs and metrics. AIOps offers organizations the capability to recognize patterns, anomalies,

and trends within their IT monitoring data stream.

At ING, AIOps plays a critical role in ensuring continuous service availability. This not only enhances

customer satisfaction but also serves as a crucial factor for compliance with specific standards imposed

by regulators. Non-compliance to these standards can result in penalties up to 10% of the bank’s annual

turnover, imposed by the European Central Bank [5].

1.4. Hawkes processes
For our purpose, the Hawkes process emerges as a suitable choice for modeling the IT monitoring data

stream. The Hawkes process extends the Poisson process by incorporating temporal dependencies

based on previous arrivals. Through the introduction of an intensity function with cross-excitation, this

model enables us to explore how arrivals from one process influence the intensity of other processes in

the near future.

We provide a formal mathematical definition of the Hawkes process and thoroughly explore its

implications within the realm of Software Architecture later on in Chapter 5. By delving into the results

derived from this analysis, we aim to gain a deeper understanding of the association contained within

the IT monitoring data stream. These findings shed light on the dynamics of service systems and

their operational implications, ultimately contributing to providing a comprehensive overview of the

different levels of service.

1.5. Research questions
To enhance our understanding of event and incident arrivals, we initiate the analysis by examining

the IT monitoring data stream from ING. We closely scrutinize the event and incident data, as well as

explore the relationship between the different service levels. Based on this information, we address the

following research questions:

1.6. Thesis outline 4

Software architecture

Arrival data
Chapter 3

Service systems
Chapter 4

Hawkes processes

Hawkes processes
theory

Chapter 5

Hierarchical Hawkes
processes
Chapter 6

Figure 1.1: Thesis Outline.

• Research Question 1: How can we design a hierarchical architecture that resembles the operations

of large-scale service systems?

• Research Question 2: How can IT messages with similar semantics be grouped together?

• Research Question 3: How can the marked Hawkes process be employed to capture interactions

among arrivals? And how can the interactions be estimated?

• Research Question 4: How can the estimated excitation matrix contribute to understanding the

associations within a level of service?

By addressing these questions, this thesis aims to uncover the operational dynamics of the underlying

service structure in a mathematically concise and rigorous manner. The study endeavors to employ

rigorous mathematical techniques to analyze and elucidate the complex relationships within the service

architecture, ultimately contributing to a deeper comprehension of its underlying associations.

1.6. Thesis outline
The outline of this thesis is depicted in Figure 1.1. In Chapter 2, we establish the foundation with essential

background information on incident management and Hawkes processes. This foundational chapter

provides vital information for comprehending the subsequent analyses and findings presented in later

chapters.

In Chapter 3, we conduct a descriptive analysis of ING’s monitoring data stream, spanning a two-year

period. In addition, we provide valuable insights into the volume of arrivals, reveal seasonal patterns

in the arrival frequency, and offer a breakdown of these arrivals into various components, including

service levels and priorities.

In Chapter 4, we describe the hierarchical service architecture at the heart of ING’s IT infrastructure.

First, we introduce the highest level of service, namely the business unit. Secondly, we show how

we can create the lowest level of service through the implementation of message clusters. For the

purpose of message clustering, we demonstrate how to convert the messages to numerical vectors using

the TF-IDF message embedding, reduce the dimension of the obtained message vector using UMAP,

and cluster the reduced message vectors using the HDBSCAN clustering algorithm. Additionally,

this process has been performed on real world data from ING for one business unit. Moreover, the

clustering procedure covers the first six step from Algorithm 1 for obtaining the estimated excitation

matrix �̂�. Finally, it should be noted this chapter constitutes the core of our Computer Science contribution.

Transitioning to Chapter 5, a study of the theory behind Hawkes processes takes center stage, encompass-

ing both one-dimensional and marked processes. We establish a mathematically rigorous foundation,

enabling for inference of the estimated excitation matrix. In particular, we discuss the maximum

1.6. Thesis outline 5

likelihood and least squares function for the marked Hawkes process. Additionally, we show how we

can estimate the excitation matrix using two of the estimators from the Python package Tick. Moreover,

one of these estimators, the ADM4 estimator, will result in our final choice for obtaining the estimated

excitation matrix, as can be found in step ten from Algorithm 1. Finally, it should be noted this chapter

constitutes the core of our Applied Mathematics contribution.

In Chapter 6, our focus expands to show how we can decompose the estimated excitation matrix �̂� into

a 5-level hierarchical linear model, offering a comprehensive examination of cascading effects within the

large-scale service system at ING. Furthermore, we resolve the practical consideration between two of

the levels of service, namely the configuration item and the business application, and we elaborate on

the choice of characteristic time parameter 𝜏. Once this is all established, we create mark space𝒰𝑚 . This

process covers steps seven to nine in Algorithm 1. We end the chapter highlighting the implications

these models have for the field of Software Architecture. In particular, we show how the hierarchical

linear models contribute to obtaining a comprehensive overview of the service architecture for the

large-scale service systems at ING.

Finally, Chapter 7 presents the conclusion and discussion on the obtained result and suggests potential

avenues for future research to those interested in extending the applicability of our framework. In

particular, we provide valuable guidance for AIOps engineers who aim to integrate the hierarchical

Hawkes model into their service architecture.

All the URL references used in this document have been saved in the WayBackMachine internet archive.

These can be accessed through http://web.archive.org.

Algorithm 1 Procedure for obtaining estimated excitation matrix �̂�
1: Fix business unit 𝑚 ∈ 𝐵𝑈 .

2: for all arrival nature 𝑠𝑖 ∈ 𝑆 do
3: Preprocess messages 𝑚𝑖 .

4: Run grid search for EMBEDDING+UMAP+HDBSCAN hyperparameters.

5: Obtain message cluster space 𝐶𝐿𝑈𝑚
.

6: end for
7: Fix characteristic time 𝜏.

8: Resolve configuration item - business application mapping.

9: Created mark space𝒰𝑚 (using 𝐶𝐿𝑈𝑚
).

10: Use the ADM4 estimator to obtain estimated excitation matrix �̂� ∈ R𝑈𝑚×𝑈𝑚
.

2
Background & Related work

In this chapter, we delve into the incident management paradigm. This chapter is divided into two

sections. To begin with, we give the definition of the incident management cycle and describe how event

data can be used within this process. Subsequently, our attention shifts towards associating event and

incident arrivals. Here we examine related works trying to solve the same "event incident association"

problem. As we analyze these approaches, we emphasize the need for results that allow for direct

interpretability.

This analysis leads us to introduce Hawkes processes. A Hawkes process is a type of stochastic process

that can effectively model the self- and cross-excitation behavior observed between event and incident

records. We provide a brief background on the characteristics of Hawkes processes and explain how

they capture the interdependencies between different marks. Finally, we examine two related works

applying Hawkes processes in settings that are comparable to the large-scale service systems that are of

interest to us.

Remark 2.0.1. Events are commonly referred to as alerts or monitoring data in literature. When referring

only to the textual descriptions of the events, often the name system trace logs, or simply logs is used.

2.1. Incident management
With the expansion of large-scale service systems and the exponential growth of data generated by

complex IT infrastructure components, interest in Artificial Intelligence for IT operations (AIOps)

has been on the rise [36, 50, 51, 52]. AIOps uses big data, AI techniques including natural language

processing, and advanced analysis, including statistical analysis, to analyze system performance patterns

and improve the quality of service [1]. However, in the context of large-scale service systems, monitoring

and translating this data into meaningful and actionable insights poses demanding challenges. Under

the umbrella of AIOps, incident management focuses on uncovering and analyzing system performance

patterns by mitigating the influence of incidents.

Incident management consists of managing the life cycle of an incident. This cycle runs from 1)

identifying the incident, 2) classifying the incident, 3) resolving the incident 4) closing and reviewing

the incident. Within the available literature, it is common to tackle only one or two of these tasks. For

instance, Chen et al. focused on the third task by prioritizing incidents to increase the fast resolution

of important incidents [13]. On the other hand, Zhou et al. [82] focused on the first and second tasks

by predicting incidents in the near future and classifying the incoming incidents by generating an

interpretable report. In practice, all four stages can greatly benefit from associating the incident arrival

with events [50]. First and foremost, events known to be associated with incidents pose early warnings

for the arrival of an incident. Furthermore, the associated event provide additional information on the

incident’s arrival, which helps classify and resolve the incident. Finally, the associated event helps to

find the root cause of the incident and helps close the event after all.

6

2.1. Incident management 7

However, event data comes with many challenges on its own. Two of the major challenges arising are

the high volume of arrivals, which can reach millions of events a day [49], and the large amount of

noise present (i.e. irrelevant events) [70]. Filtering out irrelevant events, therefore, is an essential data

preparation step, which reduces the large volume of data under consideration prior to performing

analysis. Tremendous effort has therefore been devoted to event management in both academia and

industry [82]. Emphasis is mainly put on clustering the log trace message and extracting useful

information out of the formed clusters [39, 45, 48, 55, 70, 80, 83].

In particular, Zhao et al. [83] proposed an event clustering tool that detects bursts of events for the IT

monitoring data stream from a large commercial bank. Their approach clusters associated events and

selects one representative event for each of the obtained clusters. Zhang et al. [81] provided a dynamic

event anomaly detection framework that overcomes the closed-world assumption, which assumes that the

log message data stream is stable over time and the set of distinct log messages is known. Zhang et al.

[80] proposed a deep learning method for clustering events and classifying which of the formed clusters

contain early warning signals for incidents. Subsequently, Lin et al [47] were the first to emphasize the

explicit need to distinguish between clustering paradigms for semi-structured event arrivals compared

to unstructured incident arrivals. Although the above-mentioned methods successfully prioritized,

or clustered, either events or incidents, they left the question of how to associate the obtained event

clusters to incident clusters open for future research.

Associating events and incidents was first performed by Yurcik et al. [79], who extended the event

correlation method of Li et al. [45] to an event-incident association framework. They did however

restrict themselves to security data only and limit their approach to rule-based methods which do not

scale to large-scale service systems.

Zhou et al. [84] proposed a framework for associating events and incidents, taking the complex and

interconnected service architecture into account. They provided prediction models at both the smaller

component-level as well as the larger microservice level. However, they assumed a supervised learning

setting where is known which event was associated with which incident. Moreover, they restrained to

only three types of incidents.

An unsupervised approach that also incorporates the service/component level distinction was devel-

oped by Chen et al. [14]. They proposed a Bayesian network-based outage prediction method, called

AirAlert. However as demonstrated by Zhao et al. [82], AirAlert does not deal with noisy events.

To overcome the noisy event complication, Zhao et al. proposed a multi-instance learning approach

called eWarn [82]. Their approach consists of feature-engineered components and was successfully

evaluated on the service system of a large commercial bank. However, eWarn, as well as AirAlert, do not

use of the exact arrival times but instead make use of fixed time windows. This requires explicit tuning

of the prediction window step size per business unit. Furthermore, both frameworks are based on the

black-box XGBoost classification algorithm. They therefore rely on an additional tool for interpretable

results, called LIME. As mentioned by Slack et al. [71], post hoc explanation techniques, like LIME, can

not be seen as reliable.

As state-of-the-art event-incident association frameworks heavily rely on non-interpretable black-box

machine learning algorithms, it is of interest to turn our attention to statistical analysis techniques, which

benefit from statistical validity, mathematical guarantees, and direct parameter interpretation. The aim

is to directly link the temporal occurrence of event arrivals to the temporal occurrence of incident arrivals.

In particular, we turn our attention to marked, or multivariate, Hawkes processes. Marked Hawkes

processes, combined with a Granger causality framework, have been adopted priorly within AIOps by

Ide et al.[37]. In their study, they performed causal diagnoses on data center warning messages. Their

Hawkes-Granger model is mathematically well-defined and allows for causal arrival diagnosis through

sparse learning to rule out unlikely options. Furthermore, they provide a high degree of interpretability.

Furthermore, Wei et al. [76] recently demonstrated that marked Hawkes processes are able to achieve

2.2. Hawkes processes 8

prediction performance similar to XGBoost, while also recovering an interpretable Granger-causal

graph structure. They mention the need to distinguish between different regularization methods

based on the dimensionality of the problem under consideration, where they found the regularization

hyperparameter 𝜆 by means of a grid search. They mention the need for domain knowledge in order to

set parameters such as the characteristic time, which governs the decay behavior. Furthermore, their

estimator exhibits favorable statistical properties such as identifiability and consistency.

Lastly, Bhatt et al. [7] employed marked Hawkes processes on COVID-19 cases by establishing a

multilevel model, distinguishing per geographical region. By sharing parameters across regions, they

established connections between multiple regions while allowing each region to possess its own baseline

intensity. The key thought of their work is to share information between groups, while still permitting

between-group variation. This aligns with a hierarchical service architecture, where we want to share

information between different hardware and software components while still permitting variation

between these components.

2.2. Hawkes processes
Marked Hawkes processes are a type of multivariate process that includes time as a central dimension of

analysis. The key task of Hawkes processes is to capture and model relationships along the timeline for

various kinds of arrivals. Hawkes processes are a type of stochastic process that carries a self-exciting

property [29, 28]. Hawkes processes are characterized through their conditional intensity function. The

conditional intensity function 𝜆(𝑡 |ℋ𝑡) is defined as the infinitesimal probability of observing an arrival

at time 𝑡, given its history up to time 𝑡,ℋ𝑡 1.

In the original paper, Hawkes established the existence of this process [28]. Hawkes and Oakes

subsequently formulated a cluster processes representation [30]. Ogata [59] proved that the maximum

likelihood estimator (MLE), under a stationarity assumption, is an asymptotically efficient estimator. An

estimation procedure for the MLE was proposed by Ozaki [61]. He emphasized that the log-likelihood

of the Hawkes model is non-linear with respect to the parameters, and therefore non-linear optimization

techniques are needed if we want to use the MLE. Furthermore, Ogata [59] showed that if a random time

change based on the integrated conditional infinitesimal function 𝜆(𝑡 |ℋ𝑡) is performed, a stationary

Poisson process with an average of one arrival per unit of time is obtained. Additionally, Ogata [58]

proposed a method for sampling stationary Hawkes processes. Chornoboy et al. [15] proved the MLE

is an asymptotically efficient estimator without the stationarity condition and established an iterative

expectation/minimization (EM) procedure to compute the maximum likelihood estimator.

All of these early works were established for univariate Hawkes processes. Although Hawkes and Oakes

[30] described multivariate Hawkes processes in their original paper, noteworthy interest arose only

after Eichler et al. [22] showed how Granger causality can be incorporated for a specific class of Hawkes

processes. Eichler et al. focused on a class of Hawkes processes with an exponential memory kernel. For

this class, the influence of subsequent arrivals on the intensity can be broken into two parts. First of all,

parameter 𝛼𝑢𝑢′ governs the instantaneous increase in probability. Secondly, a decaying function 𝜙𝑢𝑢′(·)
controls the influence of the instantaneous increase over time. In particular, Eichler et al. [22] showed

that for Hawkes processes with an exponentially decaying memory kernel 𝜙𝑢𝑢′(·), Granger causality [23]

on process 𝑢 through process 𝑢′ is fully encoded in the corresponding instantaneous jump parameter 𝛼𝑢𝑢′ .

Guo et al. [25] proved consistency for the regularized maximum likelihood estimator (MLE) for marked

Hawkes processes and provided an alternating minimization type algorithm to compute the respective

estimator. Brouste and Farinetto [10] subsequently proposed a fast and asymptotically efficient estimator

based on a one-step Le Cam correction of the MLE.

The least squares functional for marked Hawkes processes was first introduced by Reynaud-Bouret

et al. [63] and used in the context of genome data. Their estimation method is meant for piece-wise

constant memory kernels with finite support. Bacry et al. [4] alternatively used a least squares estimate

method which includes dimension reduction via sparsity-inducing regulariztion. They showed superior

1See Definition 5.1.15

2.2. Hawkes processes 9

results, however, their approach is only suitable for a linear combination of exponential memory kernels.

Finally, Cartea et al. [11] introduced a fast parametric estimation method for computing the least squares

estimator, suitable for scenarios involving a substantial number of arrivals. They demonstrated the

application of this estimation approach to a broader family of memory kernels, extending beyond only

the exponential memory kernel under consideration in this thesis.

It should be noticed that for the maximum likelihood estimator �̂�𝑀𝐿𝐸 it is shown that the estimator is

unbiased, consistent, and the rate of convergence is known. For the least squares estimator �̂�𝐿𝑆𝐸 it is

known to be consistent, however, unbiasedness has only been proven in the asymptotic sense when the

bias tends to zero as the number of observed points tends to infinity [4].

Part II

Problem framework

10

3
Descriptive analysis

In this chapter, we describe the IT monitoring data stream generated at different levels of service. The

data stream is collected by systems engineers from ING, in order to obtain an overview of the operations

of the service systems at hand. The data stream spans a two-year period.

The data stream consists of arrivals characterized by one of two arrival natures: events or incidents.

As described in Section 1.2, events are warnings from IT applications that are automatically generated

through business rules. Incidents are unplanned interruptions indicative of future system failure.

This chapter is divided into two sections. In Section 3.1, we provide a detailed description of the feature

vector of arrivals and explain the process of compressing arrivals into records. Secondly, in Section 3.2,

we provide valuable insights into the described features. In particular, we visually present the volume

of arrivals, reveal seasonal patterns in the arrival frequency, and offer a breakdown of these arrivals into

the service levels and priorities.

3.1. Structure of the arrival data
Within ING’s data monitoring data platform, arrivals 𝑖 are represented as a feature vector𝑅𝑖 together with

a time of arrival 𝑡∗
𝑖
∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑]. All arrivals together make up a dataset𝒟∗ = {(𝑡∗

𝑖
, 𝑅𝑖) : 𝑖 = 1, . . . , 𝑛∗},

where 𝑛∗ denotes the total number of arrivals between 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑.
Arrivals are considered between 1 January 2021 and 12 January 2023 where 𝑇𝑠𝑡𝑎𝑟𝑡 := 2021-01-01 and

𝑇𝑒𝑛𝑑 := 2023-12-01. Arrivals prior to 1 January 2021 are low in volume and therefore not taken into

account in our analysis. Arrivals with at least one missing value are dropped. Additionally, arrivals

with a priority of 7, which we describe in Section 3.1.1, are dropped.

Arrivals occur in high volumes, and as a result, when arrivals with an identical feature vector 𝑅𝑖 occur

within a short time frame, they are compressed into one record. We first describe the feature vector 𝑅𝑖 in

Section 3.1.1 and subsequently elaborate on the rules for compressing arrivals into a record in Section 3.1.2.

3.1.1. Feature vector
Each arrival is associated with one feature vector

𝑅𝑖 = (𝑖𝑑𝑖 , 𝑠𝑖 , 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 , 𝑙𝑒𝑣𝑒𝑙_𝑒𝑛𝑣𝑖 , 𝑚𝑖 , 𝑝𝑟𝑖𝑜𝑖 , 𝑖𝑛𝑐𝑖 , 𝑇𝑒𝑥𝑝𝑖).
The space of feature vectors is denoted as F. We now describe each of the components of the feature

vector.

• Identifier 𝑖𝑑𝑖 : Identifier for the record to which the arrival is assigned after compression. 𝑖𝑑𝑖 ∈
𝐼𝐷 := {𝑖𝑑1 , . . . , 𝑖𝑑𝑛}.

• Arrival nature 𝑠𝑖 : The arrival nature can either be an event or an incident. 𝑠𝑖 ∈ 𝑆 := {𝐸, 𝐼}, where

𝐸 represents events and 𝐼 represents incidents. As we saw in Section 1.2, the arrival nature

characterizes the semantics of the arrival.

11

3.1. Structure of the arrival data 12

• Recorded level identifier 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 : Arrivals are recorded on a specific level of service, which

can be either on a server or application level. We refer to these levels as configuration items
or business applications, respectively. Notably, a business application encompasses multiple

configuration items, indicating that business applications are one layer higher in service level

than configuration items 1. However, there is no feature indicating on which of the two levels

the arrival is registered. The recorded level identifier can therefore take values from the set

𝐿𝐸𝑉𝐸𝐿𝑆 := 𝐶𝐼 ∪ 𝐵𝐴 = {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 , 𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 } = {1, · · · , 𝑛𝑙𝑒𝑣𝑒𝑙𝑠}.
• Level environment 𝑙𝑒𝑣𝑒𝑙_𝑒𝑛𝑣𝑖 : Environment in which either the configuration item or business

application 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 operates. Environments can be production, disaster recovery, acceptance,

test, or development. Disaster recovery environments can be interpreted as backup servers.

Acceptance environments are environments coming from a test or development phase and are

about to be put onto production. Test and development environments are environments that are

still in an improvement stage. all in all, 𝑙𝑒𝑣𝑒𝑙_𝑒𝑛𝑣𝑖 ∈ 𝐸𝑁𝑉 := {𝑃𝑅𝐷, 𝐷𝑅, 𝐴𝐶𝐶, 𝑇𝑆𝑇, 𝐷𝐸𝑉}. We

only consider arrivals 𝑖 for which 𝑙𝑒𝑣𝑒𝑙_𝑒𝑛𝑣𝑖 ∈ {𝑃𝑅𝐷, 𝐷𝑅}.
• Message 𝑚𝑖 : Message providing contextual information regarding arrival 𝑖. 𝑚𝑖 ∈ 𝑀𝑆𝐺, where

messages come from formal language 𝑀𝑆𝐺 := {𝑤 ∈ Unicode
∗

: |𝑤 | ≤ 8000}. In other words,

messages consist of a string of Unicode characters with at most 8000 characters.

• Priority 𝑝𝑟𝑖𝑜𝑖 : Priority of arrival, with 𝑝𝑟𝑖𝑜𝑖 ∈ 𝑃𝑅𝐼𝑂 := {1, 2, 3, 4, 5, 7}. Arrivals of priority 1 are

seen as most urgent, whereas arrivals of priority 5 are seen as least urgent. Priority 6 does not exist.

Priority 7 is assigned if mandatory fields are not properly filled and therefore serves as a remainder

bin. Only arrivals 𝑖 with 𝑝𝑟𝑖𝑜𝑖 ∈ 𝑃𝑅𝐼𝑂\{7} are considered in the rest of this thesis. Although

priorities for both event and incident arrivals range from 1 to 5, they do have semantically different

interpretations. For incident arrivals, the priority is based on the number of customers affected.

For event arrivals, the priority is based on the source which automatically generated the arrival.

• Incident identifier 𝑖𝑛𝑐𝑖 . Identifier of a related record. If no related record is available, a NaN value

is be reported. 𝑖𝑛𝑐𝑖 ∈ 𝐼𝑁𝐶 := {NaN} ∪ 𝐼𝐷 := {NaN, 𝑖𝑑1 , . . . 𝑖𝑑𝑛}. The related incident identifier

𝑖𝑛𝑐𝑖 = 𝑖𝑑 𝑗 always relates to a record of type incident, so 𝑠 𝑗 = 𝐼.

• Expiration duration 𝑇𝑒𝑥𝑝𝑖 : Time difference feature used for determining compression of arrivals

into records. 𝑇𝑒𝑥𝑝 ∈ 𝑇𝐸𝑋𝑃 := {0 sec, 1 min, 15 min, 6 h, 24 h, 1 week}. Rules for compression

are be stated below.

3.1.2. Compression rules
In order to reduce the amount of disk space needed, arrivals are compressed into records. Instead of

recording the individual arrival times 𝑡∗ of all arrivals into one record, only the first arrival time 𝑇 𝑓 𝑖𝑟𝑠𝑡,
the last arrival time 𝑇𝑙𝑎𝑠𝑡, and the number of arrivals within [𝑇 𝑓 𝑖𝑟𝑠𝑡, 𝑇𝑙𝑎𝑠𝑡], called the 𝑇𝑎𝑙𝑙𝑦, are

saved. Compression therefore results in the dataset 𝒟 := Comp(𝒟∗) = {(𝑇 𝑓 𝑖𝑟𝑠𝑡𝑖 , 𝑇𝑙𝑎𝑠𝑡𝑖 , 𝑇𝑎𝑙𝑙𝑦𝑖 , 𝑅𝑖) :

𝑖 = 1, . . . , 𝑛} with 𝑛 ≤ 𝑛∗. The disadvantage of compression is that most of the original arrival times are

lost.

The temporal features of a record therefore become:

• First arrival time 𝑇 𝑓 𝑖𝑟𝑠𝑡𝑖 : First arrival time of all arrivals with the record. 𝑇 𝑓 𝑖𝑟𝑠𝑡𝑖 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑].
• Last arrival time 𝑇𝑙𝑎𝑠𝑡 𝑗 : Last arrival time of all arrivals with the record. 𝑇𝑙𝑎𝑠𝑡𝑖 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑].
• Tally 𝑇𝑎𝑙𝑙𝑦𝑖 : Number of arrivals within the time interval [𝑇 𝑓 𝑖𝑟𝑠𝑡𝑖 , 𝑇𝑙𝑎𝑠𝑡𝑖] for record 𝑖.

To determine how𝒟∗ is be compressed in𝒟 = Comp(𝒟∗), two rules are in place. The first rule utilizes

the expiration duration. If an arrival (𝑡∗
𝑖
, 𝑅𝑖) is observed, a new record is created with a counter of 1.

The arrival time of arrival 𝑖, 𝑡∗
𝑖
, is set as the first arrival time 𝑇 𝑓 𝑖𝑟𝑠𝑡 of the new record. If within a period

of 𝑇𝑒𝑥𝑝𝑖 seconds, an arrival 𝑗 is observed such that 𝑅𝑖 = 𝑅 𝑗 , the counter is incremented. If for a period

of 𝑇𝑒𝑥𝑝𝑖 seconds, no identical arrival occurs, the counter is stopped, and the last observed arrival time

𝑡∗
𝑘

is taken as being the last arrival time 𝑇𝑙𝑎𝑠𝑡 of the new record. The final result of the counter is then

taken as the tally value 𝑇𝑎𝑙𝑙𝑦𝑖 . An illustration of this process is sketched in Figure 3.1.

Secondly, handcrafted rules determined by ING domain experts are set. Those rules include a cutoff at

an exact point in time or a cutoff after a fixed time interval, even if new arrivals occur within the 𝑇𝑒𝑥𝑝𝑖 .

1A detailed Definition of a configuration item and a business application is provided in Definition 4.1.1 and 4.1.2.

3.2. Feature analysis 13

The exact characteristics of the second rule are not known to us.

Figure 3.1: Example of 𝑛∗ = 4 arrivals and 𝑛 = 2 records to demonstrate the characteristics of the expiration duration.

3.2. Feature analysis
Depending on whether 𝑠𝑖 = 𝐸 or 𝑠𝑖 = 𝐼, the characteristics of record 𝑖 vary. Events (for which 𝑠𝑖 = 𝐸)

arrive in a larger volume than incident arrivals. Due to this high volume, only event arrivals require

compression. An incident arrival is never compressed and therefore an incident record consists of one

incident arrival only. This implies that for all records of type incident, 𝑇 𝑓 𝑖𝑟𝑠𝑡𝑖 = 𝑇𝑙𝑎𝑠𝑡𝑖 , 𝑇𝑎𝑙𝑙𝑦𝑖 = 1 and

𝑇𝑒𝑥𝑝𝑖 = 0. Furthermore, this implies that speaking of an incident arrival is identical to speaking of an

incident record. We can therefore simply refer to the former as being an incident.

As a necessary first step in correlating events and incidents, it is of interest to compare the temporal

occurrences of event and incident arrivals. Unfortunately, due to the merging of event arrivals, we do

not observe the exact arrival times of individual events. Instead, we only keep the first arrival time,

last arrival times, and the tally. From the event record, we know that there must have been at least one

arrival at 𝑇 𝑓 𝑖𝑟𝑠𝑡𝑖 and one arrival at 𝑇𝑙𝑎𝑠𝑡𝑖 , which may be the same.

In the following, we only use the first arrival time of each record.

3.2.1. Temporal occurrence
The number of first arrival times for event and incident records within a Δ𝑡-time interval of [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑]
can be found using the following mapping:

Definition 3.2.1: Cardinality of binned records

Let 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑], let Δ𝑡 be any positive amount of time expressed in minutes and 𝑠 ∈ 𝑆. Let

𝑁𝐵𝐼𝑁
𝑡,Δ𝑡 ,𝑠

= 𝑪𝒂𝒓𝒅(𝑖 : 𝑇 𝑓 𝑖𝑟𝑠𝑡𝑖 ∈ [𝑡 , 𝑡 + Δ𝑡), 𝑠𝑖 = 𝑠) denote the cardinality of records with a given 𝑠 in

interval [𝑡 , 𝑡 + Δ𝑡).

Let 𝑇 be the set consisting of all 10-minute rounded times between 𝑇𝑠𝑡𝑎𝑟𝑡 = 2021-01-01 00:00 to 𝑇𝑒𝑛𝑑 =

3.2. Feature analysis 14

2023-01-13 00:00. The set of 10-minute rounding times therefore becomes

𝑇 = {2021-01-01 00:00, 2021-01-01 00:10, . . . , 2023-01-12 23:50}.
Figure 3.2 and 3.3 show a visual representation of 𝑡 → 𝑁𝐵𝐼𝑁

𝑡,10𝑚𝑖𝑛,𝐸
and 𝑡 → 𝑁𝐵𝐼𝑁

𝑡,10𝑚𝑖𝑛,𝐼
for all 𝑡 ∈ 𝑇, for

both event and incident records, respectively.

Seasonality
Although not directly visible from Figures 3.2 and 3.3, the number of event and incident arrivals shows

a seasonal behavior. The number of arrivals within a 10-minute interval 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,· can therefore be fitted

following a linear regression model in order to obtain deeper insights into the seasonality. This can be

done for both event and incident arrivals. We therefore fit

log
10

(
𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,·

)
= 𝛽0 + 𝛽1𝑡 + 𝛽2 sin(𝑊𝑡) + 𝛽3 cos(𝑊𝑡) + 𝛽4𝐼{𝑡∈weekend} , (3.1)

with 𝜷 := {𝛽0 , 𝛽1 , 𝛽2 , 𝛽3 , 𝛽4} ⊂ R5
. The period 𝑊 is chosen using a periodogram on which the peak

frequency was around 24 hours for both event and incident records. Secondly, a smaller peak at 7*24

hours is observed. Additionally, it can be observed the number of arrivals during the weekend is

lower, so, therefore, it makes sense to add a weekend indicator 𝛽4. These findings resonate with the

understanding that arrivals exhibit a daily cycle in accordance with a standard workday schedule.

The estimates for 𝜷, namely �̂� can be found in Table 3.1. The periodograms can be found in Appendix C.2.

In order to visualize the seasonal behavior, we zoomed in on the 2-month time interval from 1 September

2022 to 1 November 2022. The subset of 10-minute rounding times 𝑇𝑠𝑢𝑏 ⊂ 𝑇 therefore becomes

𝑇𝑠𝑢𝑏 = {2022-09-01 00:00, 2022-09-01 00:10, . . . , 2022-10-31 23:50},
with 𝑇𝑠𝑡𝑎𝑟𝑡,𝑠𝑢𝑏 = 2022-09-01 00:00 to 𝑇𝑒𝑛𝑑,𝑠𝑢𝑏 = 2022-11-01 00:00. The fitted function zoomed in for this

2-month time interval can be found in Figures 3.6 and 3.7. For incident records, the adjusted R-squared

equals 0.103, whereas, for the event records, the adjusted R-squared equals 0.0250. This difference can

be explained by the fact that event arrivals are tallied into records, whereas incident arrivals are not. As

we compress similar event records occurring within a specific time interval, events that happen a lot are

under-represented. This is because we only use their first arrival time. Similarly, event arrivals that are

rare are now over-represented. Therefore we have introduced a bias. This explains why the estimates �̂�2

and �̂�3 regarding seasonality have an insignificant p-value.

Table 3.1: Estimated values for Equation (3.1) for event and incident records.

Event records Incident records
Estimate Std. Error p-value Estimate Std. Error p-value

�̂�0 8.94 e-01 8.13 e-03 <2 e-16 1.06 e+00 6.83 e-03 <2 e-16
�̂�1 -1.02 e-09 2.50 e-09 0.685 2.43 e-08 2.11 e-09 <2e-16
�̂�2 -4.78 e-03 5.47 e-03 0.382 1.84 e-02 4.60 e-03 6.38 e-05
�̂�3 -7.96 e-02 5.47 e-03 <2 e-16 -1.30 e-01 4.60 e-03 < 2 e-16
�̂�4 -4.51 e-02 8.53 e-03 1.23 e-07 -5.32 e-02 7.17 e-03 1.27 e-13

Volume
To more closely capture the volume of records, we present a histogram for the number of arrivals per

time interval in Figures 3.4 and 3.5. These histograms show 𝑪𝒂𝒓𝒅(𝑡 : 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝑠

= 𝑖) for 𝑡 ∈ 𝑇 and 𝑠 ∈ 𝑆.

It can be seen the majority of event and incident bins contain a low volume of records, however, for both

the event and incident bins, outlier values can be found for bins exceeding a thousand arrivals for a

10-minute interval.

Authors note: This paragraph is removed due to confidentiality.

Remark 3.2.2. Plotly does not provide logarithmically scaled heatmaps. Custom-made code to provide

this functionality can be found in Appendix A.

3.2. Feature analysis 15

Jan 2021 Apr 2021 Jul 2021 Oct 2021 Jan 2022 Apr 2022 Jul 2022 Oct 2022 Jan 2023

1

2

5

10

2

5

100

2

5

1000

2

5

Figure 3.2: Scatter plot of the function 𝑡 → 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐸

for 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑].

Authors note: This figure is removed due to confidentiality.

Figure 3.3: Scatter plot of the function 𝑡 → 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐼

for 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑].

0 1000 2000 3000 4000 5000

1
2

5
10
2

5
100

2

5
1000

2

5
10k

2

5
100k

Figure 3.4: Histogram of

(
𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐸

)
𝑡∈[𝑇_𝑠𝑡𝑎𝑟𝑡,𝑇𝑒𝑛𝑑]

. The height of each bar equals

𝑪𝒂𝒓𝒅(𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑] : 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐸

∈ [𝑁, 𝑁 + Δ𝑁]) for 𝑁 = 0 to 𝑁 = 5500 by step Δ𝑁 = 20.

Authors note: This figure is removed due to confidentiality.

Figure 3.5: Histogram of

(
𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐼

)
𝑡∈[𝑇_𝑠𝑡𝑎𝑟𝑡,𝑇𝑒𝑛𝑑]

. The height of each bar equals

𝑪𝒂𝒓𝒅(𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑] : 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐼

∈ [𝑁, 𝑁 + Δ𝑁]) for 𝑁 = 0 to 𝑁 = 5500 by step Δ𝑁 = 5.

3.2. Feature analysis 16

1

10

100

1000

20
22

−0
9−

01
 0

0:
00

:0
0

20
22

−0
9−

08
 1

5:
00

:0
0

20
22

−0
9−

16
 0

6:
00

:0
0

20
22

−0
9−

23
 2

1:
00

:0
0

20
22

−1
0−

01
 1

2:
00

:0
0

20
22

−1
0−

09
 0

3:
00

:0
0

20
22

−1
0−

16
 1

8:
00

:0
0

20
22

−1
0−

24
 0

9:
00

:0
0

20
22

−1
1−

01
 0

0:
00

:0
0

Datetime

C
ar

di
na

lit
y

of
 in

te
rv

al
 t,

t+
∆t

Figure 3.6: Scatter plot of the function 𝑡 → 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐸

for 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡,𝑠𝑢𝑏 , 𝑇𝑒𝑛𝑑,𝑠𝑢𝑏], including seasonal fit of function 3.1.

Authors note: This figure is removed due to confidentiality.

Figure 3.7: Scatter plot of the function 𝑡 → 𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐼

for 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡,𝑠𝑢𝑏 , 𝑇𝑒𝑛𝑑,𝑠𝑢𝑏], including seasonal fit of function 3.1.

Tally and expiration duration
Finally, it is of interest to analyze the tally and expiration duration. The expiration duration for event

records can be found in Table 3.2. Notably, the table reveals that the vast majority of event records

have an expiration duration of 24 hours. It is important to reiterate that incident arrivals are not tallied,

resulting in all incident records having an expiration duration of 0 seconds and a tally of 1.

Table 3.2: Mapping of 𝑘 ∈ 𝑇𝐸𝑋𝑃 to 𝑁
𝑇𝑒𝑥𝑝

𝑘
= 𝑪𝒂𝒓𝒅(𝑖 : 𝑇𝑒𝑥𝑝𝑖 = 𝑘).

𝒌 ∈ 𝑻𝑬𝑿𝑷 𝑵𝑻𝒆𝒙𝒑
𝒌

0 seconds 338

1 minute 199

15 minutes 579

6 hours 10.720

24 hours 2.422.489

1 week 393

The distribution of the tally is visually depicted in Figure 3.10 through a histogram. The top figure

highlights the presence of a few outlier tally counts, with the largest tally surpassing 4.7 million.

Meanwhile, the bottom figure presents the same histogram but with logarithmically scaled bin sizes,

illustrating that the tally value counts decrease exponentially.

3.2.2. Level identifiers
The levels can either be a configuration item or a business application. We will elaborate on the

characteristics of configuration items and business applications in Section 4.1. For now, we can interpret

a configuration item as a server, whereas we interpret a business application as an IT application

utilizing multiple servers. It is of interest to see how the cardinality of event and incident records is

distributed amongst the 𝑛𝑙𝑒𝑣𝑒𝑙𝑠 . For this, we denote the cardinality as follows:

Definition 3.2.3: Cardinality of records per level item

Let 𝑘 ∈ 𝐿𝐸𝑉𝐸𝐿𝑆 and 𝑠 ∈ 𝑆. Let 𝑁𝐿𝐸𝑉𝐸𝐿
𝑘,𝑠

= 𝑪𝒂𝒓𝒅(𝑖 : 𝑙𝑒𝑣𝑒𝑙𝑠_𝑖𝑑𝑖 = 𝑘, 𝑠𝑖 = 𝑠). 𝑁𝐿𝐸𝑉𝐸𝐿𝑆
𝑘,𝑠

denotes the

cardinality of records with a given level 𝑘 and a given nature 𝑠.

3.2. Feature analysis 17

00:00:00
00:30:00
01:00:00
01:30:00
02:00:00
02:30:00
03:00:00
03:30:00
04:00:00
04:30:00
05:00:00
05:30:00
06:00:00
06:30:00
07:00:00
07:30:00
08:00:00
08:30:00
09:00:00
09:30:00
10:00:00
10:30:00
11:00:00
11:30:00
12:00:00
12:30:00
13:00:00
13:30:00
14:00:00
14:30:00
15:00:00
15:30:00
16:00:00
16:30:00
17:00:00
17:30:00
18:00:00
18:30:00
19:00:00
19:30:00
20:00:00
20:30:00
21:00:00
21:30:00
22:00:00
22:30:00
23:00:00
23:30:00

Jan 2021

Apr 2021

Jul 2021

Oct 2021

Jan 2022

Apr 2022

Jul 2022

Oct 2022

Jan 2023

1

10

100

1000

Log color scale

Time

da
te

Figure 3.8: Event records heatmap for

(
𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐸

)
𝑡∈[𝑇_𝑠𝑡𝑎𝑟𝑡,𝑇𝑒𝑛𝑑]

.

Authors note: This figure is removed due to confidentiality.

Figure 3.9: Incident records heatmap for

(
𝑁𝐵𝐼𝑁
𝑡,10𝑚𝑖𝑛,𝐼

)
𝑡∈[𝑇_𝑠𝑡𝑎𝑟𝑡,𝑇𝑒𝑛𝑑]

.

3.2. Feature analysis 18

0e+00 1e+06 2e+06 3e+06 4e+06
Tally

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
ou

nt

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Tally

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
ou

nt

Figure 3.10: Histogram of 𝑇𝑎𝑙𝑙𝑦𝑖 for each record 𝑖 ∈ {1, · · · , 𝑛}. The top figure shows linear bin sizes whereas the bottom shows

logarithmically scaled bin sizes.

We are now interested in finding out if for fixed nature 𝑠 ∈ 𝑆, there is a substantial difference between

𝑁𝑙𝑣𝑙,𝑠 for 𝑙𝑣𝑙 ∈ 𝐿𝐸𝑉𝐸𝐿𝑆. We can recursively define a non-increasing function of cardinalities.

Definition 3.2.4: Cardinality function per configuration item

For every 𝑘 ∈ 𝐿𝐸𝑉𝐸𝐿𝑆 := {𝐶𝐼 ∪ 𝐵𝐴} = {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 , 𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 }, for fixed 𝑠 ∈ 𝑆 = {𝐼 , 𝐸} we

define

�̃�𝐿𝐸𝑉𝐸𝐿
1,𝑠 := max{𝑁𝐿𝐸𝑉𝐸𝐿

𝑘,𝑠
: 𝑘 ∈ 𝐿𝐸𝑉𝐸𝐿𝑆},

�̃�𝐿𝐸𝑉𝐸𝐿𝑆
𝑘,𝑠

:= max({𝑁𝐿𝐸𝑉𝐸𝐿
𝑘,𝑠

: 𝑘 ∈ 𝐿𝐸𝑉𝐸𝐿𝑆}\{�̃�𝐿𝐸𝑉𝐸𝐿
1,𝑠 , . . . , �̃�𝐿𝐸𝑉𝐸𝐿

𝑘−1,𝑠
}).

�̃�𝐿𝐸𝑉𝐸𝐿
𝑘,𝑠

can be interpreted as the number of records of nature 𝑠 observed on the level with the 𝑘𝑡ℎ

most records of nature 𝑠. From Figure 3.12, it can be seen that both event and incident records

are not at all uniformly distributed over the levels. The figure shows that the cardinality 𝑁𝐿𝐸𝑉𝐸𝐿
𝑘,𝑠

for

both events and incidents can range from only 1 up to 10.000 records depending on the level 𝑘 ∈ 𝐿𝐸𝑉𝐸𝐿𝑆.

Furthermore, from the tail behavior, it can be seen that the number of levels containing at least one

incident exceeds the number of levels containing at least one event. This implies that there are levels

containing at least one incident arrival, but containing no event arrivals. This is an important observation

as it indicates that when making predictions on an item level, there will with certainty be incident

records that can not be associated with any event record, on their respective level. Later on in Section

4.1.2, we see that the other way around there does also exist levels with only event records and no

incident records. It should be noted that the levels for which 𝑁𝐿𝐸𝑉𝐸𝐿
𝑘,𝐸

= 0 are not displayed in Figure

3.11 because of the logarithmic scale.

3.2. Feature analysis 19

Authors note: This figure is removed due to confidentiality.

Figure 3.11: Log-log plot for the non-increasing function 𝑘 → �̃�𝐿𝐸𝑉𝐸𝐿
𝑘,𝐸

(in orange) and 𝑘 → �̃�𝐿𝐸𝑉𝐸𝐿
𝑘,𝐼

(in blue).

𝑘 for which 𝑁𝐿𝐸𝑉𝐸𝐿
𝑘,𝐸

= 0 are not displayed.

Authors note: This figure is removed due to confidentiality.

Figure 3.12: Log-log plot for the non-increasing function 𝑘 → �̃�𝑀𝑆𝐺
𝑘,𝐸

(in orange) and 𝑘 → �̃�𝑀𝑆𝐺
𝑘,𝐼

(in blue).

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

1

2

5

10

2

5

100

2

5

1000

2

Incidents ID index k

N
um

be
r

of
 r

ec
or

ds

Figure 3.13: Log-log plot for the non-increasing function 𝑘 → �̃� 𝐼𝐷
𝑘

.

3.2. Feature analysis 20

3.2.3. Message structure
Similarly as in Definition 3.2.3, we define the cardinality per message for each arrival nature.

Definition 3.2.5: Cardinality of records per {arrival nature, message} pair

Let 𝑘 ∈ 𝑀𝑆𝐺 and 𝑠 ∈ 𝑆. Let 𝑁𝑀𝑆𝐺
𝑘,𝑠

= 𝑪𝒂𝒓𝒅(𝑖 : 𝑚𝑖 = 𝑘, 𝑠𝑖 = 𝑠). 𝑁𝑀𝑆𝐺
𝑘,𝑠

denotes the cardinality of

records with a given message 𝑘 and a given arrival nature 𝑠.

It is of interest to see if, for a fixed 𝑠 ∈ 𝑆, there is a substantial difference between 𝑁𝑀𝑆𝐺
𝑘,𝑠

for 𝑘 ∈ 𝑀𝑆𝐺.

The function of cardinalities is defined accordingly.

Definition 3.2.6: Cardinality function per message

For every 𝑘 ∈ 𝑀𝑆𝐺 := {1, . . . , 𝑛𝑚𝑠𝑔}, for fixed 𝑠 ∈ 𝑆 = {𝐼 , 𝐸} we define

�̃�𝑀𝑆𝐺
1,𝑠 := max{𝑁𝑀𝑆𝐺

𝑘,𝑠
: 𝑘 ∈ 𝑀𝑆𝐺},

�̃�𝑀𝑆𝐺
𝑘,𝑠

:= max({𝑁𝑀𝑆𝐺
𝑘,𝑠

: 𝑘 ∈ 𝑀𝑆𝐺}\{�̃�𝑀𝑆𝐺
1,𝑠 , . . . , �̃�𝑀𝑆𝐺

𝑘−1,𝑠
}).

From Figure 3.12, it can be found that identical event messages reoccur more often than identical

incident messages. This observation can be partially attributed to the fact that event messages are

automatically generated and adhere to specific templates, which are then filled in with variables. In

contrast, incident messages may be manually generated, leading to variations in their structure, thereby

reducing the frequency of identical occurrences.

Remark 3.2.7. It should be noted that different messages might contain a semantically similar structure.

Take for instance the messages Server ABC down and Server XYZ down. We can group those semanti-

cally similar messages and extract a template and parameters out of these messages. In the example of

the prior two messages, the template is Server <*> down, together with parameters (ABC, XYZ). In

Section 4.2.1, we see how parsing the messages can be used to group semantically similar messages

together.

3.2.4. Incident identifier
As a result of root cause mitigation from ING’s system engineers, records 𝑖 of type 𝑠𝑖 = 𝐸 (i.e. events),

can be manually associated to one record 𝑗 of type 𝑠 𝑗 = 𝐼 (i.e. an incident). This manual association

occurs when system engineers have a strong indication that a particular event record 𝑖 triggered the

incident record 𝑗. The association is recorded by specifying 𝑖𝑛𝑐𝑖 := 𝑖𝑑 𝑗 , where each event record can be

linked to at most one incident. In cases where no incident record is linked, 𝑖𝑛𝑐𝑖 := NaN.

To gain an overview of the cardinality of associated event records for each incident record, we define

again a cardinality function.

Definition 3.2.8: Cardinality of records per incident identifer

Let 𝑘 ∈ 𝐼𝐷. Let 𝑁 𝐼𝐷
𝑘

= 𝑪𝒂𝒓𝒅(𝑖 : 𝑖𝑛𝑐𝑖 = 𝑘). 𝑁 𝐼𝐷
𝑘

denote the cardinality of records with a given

identifier 𝑘.

Definition 3.2.9: Cardinality function per incident id

For every 𝑘 ∈ 𝐼𝐷 := {𝑖𝑑1 , . . . , 𝑖𝑑𝑛} such that 𝑠𝑖 = 𝐼, we define

�̃� 𝐼𝐷
1

:= max{𝑁 𝐼𝐷
𝑘

: 𝑘 ∈ 𝐼𝐷},
�̃� 𝐼𝐷
𝑘

:= max({𝑁 𝐼𝐷
𝑘

: 𝑘 ∈ 𝐼𝐷}\{�̃� 𝐼𝐷
1
, . . . , �̃� 𝐼𝐷

𝑘−1
}).

Analyzing the incident records, we find that approximately 20.2% of them have at least one associated

event record. Among these incident records with associations, about 95.5% are linked to only one event

3.2. Feature analysis 21

record.

Although the majority of incident records have a low number of event associations, some exceptional

cases reveal a substantial number of event records being associated with a single incident. In the most

extreme situation, �̃� 𝐼𝐷
1

indicates that over a thousand event records are linked to a single incident

record.

On the other hand, from the perspective of events, around 69.4% of event records do not have an

associated incident record (i.e., 𝑖𝑛𝑐𝑖 = NaN). As we proceed with our analysis, the priority information

is not directly employed. Nonetheless, in the future work section, we elaborate on how leveraging the

priority data could potentially yield improved outcomes.

3.2.5. Differentiating between priorities
Both event and incident records 𝑖 contain a priority 𝑝𝑟𝑖𝑜𝑖 . A histogram for the distribution of priorities

𝑪𝒂𝒓𝒅(𝑖 : 𝑝𝑟𝑖𝑜𝑖 = 𝑝𝑟𝑖𝑜, 𝑠𝑖 = 𝑠) for 𝑝𝑟𝑖𝑜 ∈ 𝑃𝑅𝐼𝑂 and 𝑠 ∈ 𝑆 is given in figure 3.14

Authors note: This figure is removed due to confidentiality.

Figure 3.14: Histogram for the distribution of priorities 𝑪𝒂𝒓𝒅(𝑖 : 𝑝𝑟𝑖𝑜𝑖 = 𝑝𝑟𝑖𝑜, 𝑠𝑖 = 𝑠) for 𝑝𝑟𝑖𝑜 ∈ 𝑃𝑅𝐼𝑂 and 𝑠 ∈ 𝑆.

We once again generated the cardinality functions discussed in Sections 3.2.2, 3.2.3, and 3.2.4. However,

this time, we distinguished the records based on their five distinct priorities. The corresponding

outcomes for event records can be found in Figures 3.15, 3.16, and 3.17. The results for incident records

are presented in Figures 3.18 and 3.19.

3.2.6. Pareto principle
The Pareto principle, or 80-20 law, is a familiar saying that 80% of outcomes (or outputs) result from

20% of all causes (or inputs). For instance, Microsoft has discovered that 80% of the errors and crashes

in Windows and Office are caused by 20 % percent of the entire pool of bugs detected [67]. From the

log-log plots in Figures 3.11 to 3.13 and 3.15 to 3.19, we can recognize regions satisfying the Pareto

principle. These regions are characterized by a linearly decreasing segment. This linearly decreasing

segment is called the signature of a power law [66].

The Pareto principle regions satisfies a power-law relation,

𝑓 (𝑥) = 𝑎𝑥−𝑏 . (3.2)

For the counting data from Figures 3.11 to 3.13 and 3.17 to 3.19, the relation would therefore become

�̃� ·𝑘 ≈ 𝑎𝑘
−𝑏 , (3.3)

log(�̃� ·𝑘) ≈ log(𝑎) − 𝑏 · log(𝑘), (3.4)

where 𝑘 is the index, �̃� ·
𝑘

is the number of observations at index 𝑘, log(𝑎) is a normalizing constant and 𝑏
is the slope. It should be noticed that in practice such straightness is a necessary and not a sufficient

condition of following a power law distribution. Therefore it should be noted that it is not our goal

to prove any of these cardinality functions corresponds to a power law, but merely to highlight the

intriguing similarities to a power law. Actually validating power-law models should be considered a

research question on its own, see for example [31].

3.2. Feature analysis 22

1 2 5 10 2 5 100 2 5 1000 2 5 10k

1

2

5

10

2

5

100

2

5

1000

2

5

10k

2

5

100k Level priority 1

Level priority 2

Level priority 3

Level priority 4

Level priority 5

Level index k

N
um

be
r

of
 r

ec
or

ds

Figure 3.15: Log-log plot for the function 𝑘 → �̃�𝐿𝐸𝑉𝐸𝐿
𝑘,𝐸

, differentiating per priority.

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

1

2

5

10

2

5

100

2

5

1000

2

5

10k

2

5

100k Message priority 1

Message priority 2

Message priority 3

Message priority 4

Message priority 5

Message index k

N
um

be
r

of
 r

ec
or

ds

Figure 3.16: Log-log plot for the function 𝑘 → �̃�𝑀𝑆𝐺
𝑘,𝐸

, differentiating per priority.

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2

1

2

5

10

2

5

100

2

5

1000

2
Incident ID priority 1

Incident ID priority 2

Incident ID priority 3

Incident ID priority 4

Incident ID priority 5

Incident ID index k

N
um

be
r

of
 r

ec
or

ds

Figure 3.17: Log-log plot for the function 𝑘 → �̃� 𝐼𝐷
𝑘

, differentiating per priority.

3.2. Feature analysis 23

Authors note: This figure is removed due to confidentiality.

Figure 3.18: Log-log plot for the function 𝑘 → �̃�𝐶𝐼
𝑘,𝐼

, differentiating per priority.

Authors note: This figure is removed due to confidentiality.

Figure 3.19: Log-log plot for the function 𝑘 → �̃�𝑀𝑆𝐺
𝑘,𝐼

, differentiating per priority.

1 2 5 10 2 5 100 2 5 1000 2 5 10k 2 5 100k 2 5 1M 2

1

10

100

1000

10k

100k event records
incident records
Signature fit for event records
Signature fit for incident records

Message index k

N
um

be
r

of
 r

ec
or

ds

Figure 3.20: Log-log plot for the non-increasing functions 𝑘 → �̃�𝑀𝑆𝐺
𝑘,𝐸

(in orange) and 𝑘 → �̃�𝑀𝑆𝐺
𝑘,𝐼

(in blue). Power law functions

(3.4) are fitted for event messages �̃�𝑀𝑆𝐺
𝑘,𝐸

(respectively for incident messages �̃�𝑀𝑆𝐺
𝑘,𝐼

) on the interval [20, 3000] (resp. [100, 1000]).

As an example, we fit Equation (3.4) to the cardinality function per message from Definition 3.2.6 for

the cardinality of event and incident messages. We estimated 𝑎 and 𝑏 by means of an ordinary least

squares estimate. To reduce noise in the tails, we fitted the power law function from 3.4 on indices

𝑘 ∈ [20, 3000] for �̃�𝑀𝑆𝐺
𝑘,𝐸

and 𝑘 ∈ [100, 1000] for �̃�𝑀𝑆𝐺
𝑘,𝐼

. The result can be found in Figure 3.20 and Table 3.3.

Table 3.3: Fitting a power law for log(�̃�𝑀𝑆𝐺
𝑘,𝐸
) = log(𝑎) − 𝑏 · 𝑙𝑜𝑔(𝑘) and log(�̃�𝑀𝑆𝐺

𝑘,𝐼
) = log(𝑎) − 𝑏 · 𝑙𝑜𝑔(𝑘).

Range for 𝑘 log(�̂�) 𝑏
Percentage of arrivals

attained in first 20% of messages
Event message [20, 3000] 11.8 1.00 78%

Incident message [100, 1000] 9.42 1.08 22%

Finally, it can be found in the last column of Table 3.3, that the 20% most frequent event messages appear in

78% of all event records, abiding by the Pareto principle. In contrast, incident messages do not follow the

Pareto principle, since the 20% most frequent incident messages appear in only 22% of all incident records.

In Section 1.2, we discussed how event records are generated automatically, while incident records are

created manually. Consequently, it is not surprising that the automated generation process leads to

more structured messages, causing 20% of the most frequent event messages to account for 78% of all

event records. In contrast, the manual creation of incident messages introduces writing style variability,

leading to a scenario where 20% of the most frequent incident messages account for only around 22% of

all incident messages.

4
Hierarchical service architecture

As seen in Section 3.1, arrivals are recorded on different levels of service, namely configuration items

or business applications. In this chapter, we introduce the level on top of the configuration item and

business application. This level is named the business unit. Additionally, we show how we can construct

the lowest level of service, by creating clusters based on the arrivals message. Consequently, the resulting

hierarchical service architecture comprises five levels:

(1) message cluster→ (2) arrival nature→ (3) configuration item→ (4) business application→ (5) business
unit.

This chapter is divided into three sections. In Section 4.1.1, we provide definitions for the configu-

ration item, business application, and business unit. Moreover, we analyze the mapping between

the configuration item and the business application and establish a five-level hierarchical service

architecture. Secondly, in Section 4.1.1 we describe the procedure of grouping messages together. For

this purpose, we convert the messages to a numerical vector, reduce the dimension of the obtained

vector, and cluster them together using a clustering algorithm. Finally, in Section 4.3 we apply the

established clustering procedure from the previous section on the IT monitoring data stream from ING.

Moreover, we show sensitivity to each of the clustering results with regard to individual hyperparameters.

In the first section of this chapter, we are concerned with answering Research Question 1

Research Question 1

How can we design a hierarchical architecture that resembles the operations of large-scale service

systems?

4.1. Top level service structure
First of all, it is of interest to properly define the highest three levels in the service architecture, namely

the configuration item (level 3), business application (level 4), and business unit (level 5).

Definition 4.1.1: Configuration item [34] (level 3)

A configuration item (CI) is any service component, infrastructure element, or other items that

need to be managed in order to ensure the successful delivery of services.

Configuration items vary in complexity, size, and type. They can range from an entire service, which

may consist of hardware, software, and documentation, to a single program module or a minor hardware

component. Due to this variability, the number of events and incidents recorded on a single configuration

item might vary substantially. Their definition is intentionally broad so that a wide range of industries

can model things they change or manage with the same set of tools [72]. For ease of interpretation, we

interpret a configuration item as a server. An example of a configuration item is a server saving all

24

4.1. Top level service structure 25

existing IBAN account numbers of ING customers. This server can for instance be exploited to verify the

existence of a specific account number.

Definition 4.1.2: Business application [33] (level 4)

A business application (BA) is defined as a logical entity, served by a set of software components

implementing a coherent set of business functions that support one or more businesses or IT

processes managed as a whole.

A business application is often delivered by multiple components: APIs, front-end features, and

databases. A business application can simply be interpreted as a software system. An example of a

business application is the iDeal payment system. iDeal is a Netherlands-based payment method that

allows customers to complete transactions online using their bank credentials [77].

Definition 4.1.3: Business unit [75] (level 5)

A business unit (BU) is a fully functional, independently operational setup of a particular domain

of a company. These units have their vision, growth, and direction.

ING Group consists of multiple financially separated business units. These units are characterized

by the country and banking segment in which they operate. An example of such a unit is wholesale
banking Belgium, which is responsible for services sold to large clients, such as other banks or large

financial institutions [40]. Because employees in each unit use software typical for their business unit,

software for each business unit is managed separately [35]. A business unit can be seen as an isolated

environment of operations. The business unit is often referred to as the area.

4.1.1. Structure of the service data
As stated in section 3.1, event and incident records are registered on either a configuration item or

business application level. To be able to associate records on all three service levels, a service mapping

table from ING is used. The service mapping table consists of mapping vectors

𝑄 𝑗 = (𝑏𝑢𝑗 , 𝑏𝑎_𝑛𝑎𝑚𝑒 𝑗 , 𝑏𝑎 𝑗 , 𝑐𝑖_𝑛𝑎𝑚𝑒 𝑗 , 𝑐𝑖 𝑗).

The space of service vectors is denoted as G. Let us now proceed to outline each of the components

comprising the feature vector.

• Business unit identifier 𝑏𝑢𝑗 ∈ 𝐵𝑈 := {𝑏𝑢1 , . . . , 𝑏𝑢𝑛𝑏𝑢 },
• Business application identifier 𝑏𝑎 𝑗 ∈ 𝐵𝐴 := {𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 },
• Business application name 𝑏𝑎_𝑛𝑎𝑚𝑒 𝑗 ∈ 𝐵𝐴_𝑁𝐴𝑀𝐸𝑆 := {𝑏𝑎_𝑛𝑎𝑚𝑒1 , . . . , 𝑏𝑎_𝑛𝑎𝑚𝑒𝑛𝑏𝑎_𝑛𝑎𝑚𝑒 },
• Configuration item identifier 𝑐𝑖 𝑗 ∈ 𝐶𝐼 := {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 },
• Configuration item name 𝑐𝑖_𝑛𝑎𝑚𝑒 𝑗 ∈ 𝐶𝐼_𝑁𝐴𝑀𝐸𝑆 := {𝑐𝑖_𝑛𝑎𝑚𝑒1 , . . . , 𝑐𝑖_𝑛𝑎𝑚𝑒𝑛𝑐𝑖_𝑛𝑎𝑚𝑒 }.

For both configuration items and business applications, an identifier, as well as a name exists. Due to

inconsistencies in naming conventions at ING, situations arise where multiple names are linked to one

identifier. Therefore 𝑛𝑏𝑎 ≤ 𝑛𝑏𝑎_𝑛𝑎𝑚𝑒𝑠 and 𝑛𝑐𝑖 ≤ 𝑛𝑐𝑖_𝑛𝑎𝑚𝑒𝑠 .

Furthermore, event records are associated with a name, whereas incident records are associated with an

identifier. Therefore, for all 𝑅𝑖 : 𝑠𝑖 = 𝐸, {𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 ∪ 𝐵𝐴 = ∅ and 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 ∪ 𝐶𝐼 = ∅}. Additionally, for

all 𝑅𝑖 : 𝑠𝑖 = 𝐼 we obtain {𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 ∪ 𝐵𝐴_𝑁𝐴𝑀𝐸𝑆 = ∅ and 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 ∪ 𝐶𝐼_𝑁𝐴𝑀𝐸𝑆 = ∅}.

To be able to perform inference on the measure, we transform the level name to a level identifier

for event records. In other words, for 𝑅𝑖 : 𝑠𝑖 = 𝐸, we first look up 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 ∈ 𝐵𝐴_𝑁𝐴𝑀𝐸𝑆. If we

find 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑏𝑎_𝑛𝑎𝑚𝑒 𝑗 for 𝑏𝑎_𝑛𝑎𝑚𝑒 𝑗 ∈ 𝐵𝐴_𝑁𝐴𝑀𝐸𝑆, we overwrite 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑏𝑎 𝑗 for 𝑏𝑎 𝑗 ∈ 𝐵𝐴.

If 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 ∉ 𝐵𝐴_𝑁𝐴𝑀𝐸𝑆, we try to find 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑐𝑖_𝑛𝑎𝑚𝑒 𝑗 for 𝑐𝑖_𝑛𝑎𝑚𝑒 𝑗 ∈ 𝐶𝐼_𝑁𝐴𝑀𝐸𝑆 and

subsequently overwrite 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑐𝑖 𝑗 for 𝑐𝑖 𝑗 ∈ 𝐶𝐼. Therefore the feature 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 in Section 3.1 always

refers to an identifier.

4.1. Top level service structure 26

Remark 4.1.4. In cases for event records where the level identifier 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 is not found in both

𝐵𝐴_𝑁𝐴𝑀𝐸𝑆 as well as 𝐶𝐼_𝑁𝐴𝑀𝐸𝑆, we discard the record. This is because we simply have no other

option of mapping the event record to an identifier that is consistent with the incident labeling. It

should be noted this might have introduced bias.

4.1.2. Analysis of mapping
Prior, we defined the set of configuration items 𝐶𝐼 = {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 } and business applications

𝐵𝐴 = {𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 }, which together make up the record level identifiers 𝐿𝐸𝑉𝐸𝐿𝑆 = 𝐶𝐼 ∪ 𝐵𝐴 :=

{𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 , 𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 }. For a strictly hierarchical structure, the relation between business applica-

tions and configuration items should be one-to-many, meaning a business application may be linked

to many configuration items, but a configuration item is linked to only one business application. In

practice, we see undesirable situations arise where a configuration item is linked to multiple business

applications. In Section 6.3.3, we inspect different options at hand to recover the one-to-many relation.

For now, we analyze the magnitude of this undesirable mapping.

After joining feature vectors 𝑅𝑖 on 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 with service records 𝑄 𝑗 on either 𝑐𝑖 𝑗 ∈ 𝐶𝐼 or 𝑏𝑎 𝑗 ∈ 𝐵𝐴, five

situations can arise;

1. 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑐𝑖 𝑗 for exactly one 𝑐𝑖 𝑗 ∈ 𝐶𝐼;. In this case, we resort to the mapping vector 𝑄 𝑗 and

directly assign 𝑏𝑢𝑗 and 𝑏𝑎 𝑗 to record 𝑖.

2. 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑐𝑖 𝑗 for more than one 𝑐𝑖 𝑗 ∈ 𝐶𝐼;. In this case, we obtain multiple mapping vectors

𝑄 𝑗 , · · · , 𝑄 𝑗′ . Therefore, we can assign multiple business applications 𝑏𝑢𝑗 , . . . , 𝑏𝑢𝑗′ . In Section 6.3.3,

we specify which choice to make.

3. 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑏𝑎 𝑗 for exactly one 𝑏𝑎 𝑗 ∈ 𝐵𝐴; In this case, we resort to the mapping vector 𝑄 𝑗 and

directly assign 𝑏𝑢𝑗 and 𝑐𝑖 𝑗 to record 𝑖.

4. 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 = 𝑏𝑎 𝑗 for more than one 𝑏𝑎 𝑗 ∈ 𝐵𝐴;. In this case, we obtain multiple mapping vectors

𝑄 𝑗 , . . . , 𝑄 𝑗′ . Therefore, we can assign multiple configuration items 𝑐𝑖 𝑗 , . . . , 𝑐𝑖 𝑗′ . As we are lacking

a lower level identifier, we simply assign CI unknown. Furthermore, it was found that in cases

with multiple business application matches, the respective business units, 𝑏𝑢𝑗 , . . . , 𝑏𝑢
′
𝑗
are always

identical, so 𝑏𝑢𝑗 = · · · = 𝑏𝑢′𝑗 . We can therefore directly assign 𝑏𝑢𝑗 to record 𝑖.

5. 𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖 has no matches with either 𝑐𝑖 𝑗 or 𝑏𝑎 𝑗 ; We, therefore, have no insight on the level of

arrival, nor on the related business unit, for this arrival.

Cardinality configuration item - business application mapping
In order to inspect the mapping between configuration items and business applications, we define two

cardinality functions: one for the number of configuration items associated with a business application,

and one for the number of business applications associated with a configuration item.

First we consider service vector space G with service vectors 𝑄 𝑗 .

Definition 4.1.5: Cardinality for number of business applications associated with a
configuration item

Let 𝑘 ∈ 𝐶𝐼. Let 𝑁𝐶𝐼←𝐵𝐴
𝑘

= 𝑪𝒂𝒓𝒅(𝑗 : 𝑐𝑖 𝑗 = 𝑘). 𝑁𝐶𝐼←𝐵𝐴
𝑘

denotes the cardinality of associated

business applications for a given configuration item 𝑘 in service space G.

Definition 4.1.6: Cardinality function per configuration item

For every 𝑘 ∈ 𝐶𝐼 := {𝑐𝑖1 , . . . , 𝑐𝑖𝑛𝑐𝑖 }, we define

�̃�𝐶𝐼←𝐵𝐴
1

:= max{𝑁𝐶𝐼←𝐵𝐴
𝑘

: 𝑘 ∈ 𝐶𝐼},
�̃�𝐶𝐼←𝐵𝐴
𝑘

:= max({𝑁𝐶𝐼←𝐵𝐴
𝑘

: 𝑘 ∈ 𝐶𝐼}\{�̃�𝐶𝐼←𝐵𝐴
1

, . . . , �̃�𝐶𝐼←𝐵𝐴
𝑘−1

}).

Similarly, we can define the cardinality of configuration items associated with a business application.

4.1. Top level service structure 27

Definition 4.1.7: Cardinality for number of configuration items associated with a business
application

Let 𝑘 ∈ 𝐵𝐴. Let 𝑁𝐵𝐴←𝐶𝐼
𝑘

= 𝑪𝒂𝒓𝒅(𝑗 : 𝑏𝑎 𝑗 = 𝑘). 𝑁𝐵𝐴←𝐶𝐼
𝑘

denotes the cardinality of associated

configuration items for a given business application 𝑘 in service space G.

Definition 4.1.8: Cardinality function per business application

For every 𝑘 ∈ 𝐵𝐴 := {𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 }, we define

�̃�𝐵𝐴←𝐶𝐼
1

:= max{𝑁𝐵𝐴←𝐶𝐼
𝑘

: 𝑘 ∈ 𝐵𝐴},
�̃�𝐵𝐴←𝐶𝐼
𝑘

:= max({𝑁𝐵𝐴←𝐶𝐼
𝑘

: 𝑘 ∈ 𝐵𝐴}\{�̃�𝐵𝐴←𝐶𝐼
1

, . . . , �̃�𝐵𝐴←𝐶𝐼
𝑘−1

}).

The cardinality functions from Definitions 4.1.6 and 4.1.8 can be found in Figures 4.1 and 4.2, respectively.

Interestingly, in Figure 4.1 it can be found a few segments of configuration item 𝑘 ∈ 𝐶𝐼 are linked to

exactly the same number of business applications 𝑁𝐶𝐼←𝐵𝐴
𝑘

. For instance, we see three segments for

𝑘 ∈ [4, 45], 𝑘 ∈ [63, 110], and 𝑘 ∈ [924, 2178]. In Section 6.3.3, we will observe that indices 𝑘 with the

same cardinality 𝑁𝐶𝐼←𝐵𝐴
𝑘

not only correspond to the same cardinality of business applications but also

to the exact same set of associated business applications 𝑏𝑎 ∈ 𝐵𝐴.

Furthermore, in Figure 4.2 it can be found that the number of associated configuration items for business

application index 𝑘 ∈ 𝐵𝐴 log-log linearly decays. Finally, by comparing Figure 4.1 and 4.2, it can be

found that 𝑁𝐶𝐼←𝐵𝐴
𝑘

(the number of business items associated with a configuration item) is in general

higher than 𝑁𝐵𝐴←𝐶𝐼
𝑘

(the number of configuration items associated with a business application) for

arbitrary 𝑘.

Authors note: This figure is removed due to confidentiality.

Figure 4.1: Log-log plot for the function 𝑘 → �̃�𝐶𝐼←𝐵𝐴
𝑘

, defining the number of business applications associated to configuration

item 𝑘.

Authors note: This figure is removed due to confidentiality.

Figure 4.2: Log-log plot for the function 𝑘 → �̃�𝐵𝐴←𝐶𝐼
𝑘

, defining the number of configuration items associated to business

application 𝑘.

Arrivals per level
For each of the top three levels (business unit, business application, and configuration item), we can

obtain the number of arrivals. The number of arrivals can be found in figure 4.3

Authors note: This figure is removed due to confidentiality.

Figure 4.3: Log-log plot for the number of events and incidents records per configuration item (left), business application

(middle), and business unit (right).

It can be seen that even on the highest level, namely the business units, the total number of either

incident or event arrivals can be zero. This implies that with certainty there will be business units where

we can not relate event records to incident records, simply because there either are no event or incident

records registered on this business unit.

4.1.3. A five-level hierarchy
In the course of our investigation into the hierarchical service architecture, we have examined three

levels, namely the business unit, business application, and configuration item. However, it is essential

to acknowledge that the service architecture of interest encompasses two more levels. The first of

these additional levels is relatively straightforward and pertains to the arrival nature, which can be

4.2. Bottom level message cluster 28

categorized as either an event (𝐸) or an incident (𝐼), as discussed in Section 3.1. Although this level,

represented by the feature vector 𝑅𝑖 ∈ F, constitutes the lowest observable level, it lacks the desired

granularity for our problem analysis. Associating temporal arrival components based solely on the

arrival nature may not accurately capture the intricate dependencies between different configuration

items. However, it is reasonable to anticipate that a specific cluster of arrivals, such as events indicating

a server is low on memory, can be associated with another cluster of arrivals, like incidents indicating

the same server is malfunctioning.

Consequently, to address this limitation and achieve a more meaningful analysis, the creation of an

additional service level is required, involving semantically similar message clusters. By introducing this

level, we establish a five-level hierarchical structure for the service architecture, as depicted in Figure 4.4.

The hierarchical service architecture is of utmost importance in the hierarchical Hawkes model and is

extensively used in Chapter 6. The five levels from Figure 4.4 is denoted as

• Business unit 𝑚 ∈ 𝐵𝑈 := {𝑏𝑢1 , . . . , 𝑏𝑢𝑛𝑏𝑢 },
• Business application 𝑙 ∈ 𝐵𝐴 := {𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 },
• Configuration item 𝑘 ∈ 𝐶𝐼 := {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 },
• Arrival nature 𝑗 ∈ 𝑆 := {𝐸, 𝐼},
• Message cluster ℎ ∈ 𝐶𝐿𝑈𝑚

:= {𝑐𝑙𝑢𝑚
1
, . . . , 𝑐𝑙𝑢𝑚

𝑛𝑚
𝑐𝑙𝑢

}.

Remark 4.1.9. We denote the space of clusters 𝐶𝐿𝑈𝑚
with a superscript 𝑚 for the respective business

unit 𝑚 ∈ 𝐵𝑈 . This is because we perform message clustering per business unit. As a consequence, the

number of clusters varies per business unit 𝑚 ∈ 𝐵𝑈 .

In the following section, we thoroughly evaluate the various options available for constructing the

message clusters, considering their potential impact on a hierarchical Hawkes model decomposition.

Figure 4.4: Five-level hierarchical service architecture

4.2. Bottom level message cluster
To perform message clustering, we first have to preprocess the messages at hand. This is a common and

required step in natural language processing (NLP) [8]. Secondly, we describe the characteristics of

parsing log messages. From here on we elaborate on message clustering. We describe message em-

bedding methods, data dimensionality reduction using UMAP, and the HDBSCAN clustering algorithm.

4.2. Bottom level message cluster 29

Throughout the analysis, we attempt to find the "best" message clustering setting.Nonetheless, a good

definition of the "best" message clustering remains hard to establish. Clearly, it must strike a delicate bal-

ance between an insufficient number of clusters and an excessive abundance of clusters. This particular

instance mirrors the well-known bias-variance trade-off, which is unavoidable in high-dimensional and

nonparametric statistics [21]. Another discussion of this trade-off related to the choice of the number of

clusters can be found in [73, pages 14-15].

In our application, this trade-off appears in the following form. Choosing too many clusters, each

encompassing only a small number of messages, will result in clusters with closely related semantic

content. However, this approach might inadvertently segregate messages with comparable meanings

into separate clusters. Given the small number of messages within each cluster, the estimator of the

associations between message clusters would be less stable, and have larger errors. Consequently,

the estimator of the parameters of interest would suffer from a high variance, as well as being very

high-dimensional and harder to interpret.

Conversely, if we opt for a too small number of clusters, we are compelled to merge dissimilar message

clusters, each possessing distinct semantics. As a result, the estimated associations become biased. To

explain this phenomenon, we introduce a small example. Imagine that there are three true clusters

𝐶1, 𝐶2, 𝐶3 of equal sizes (in terms of number of messages) with a certain association matrix (later in

this thesis denoted by 𝛼) of size 3 × 3 such that 𝛼𝑖 , 𝑗 representing the influence of a message from a

given cluster 𝑗 on another cluster 𝑖. If we wrongly choose 2 clusters and merge 𝐶1 and 𝐶2 to become

the larger cluster 𝐶12, the influence of a given message of 𝐶12 on 𝐶3 will be close to (𝛼3,1 + 𝛼3,2)/2, i.e.

the average of the influence of the two clusters 𝐶1 and 𝐶2 on 𝐶3. Therefore a message from cluster 𝐶1

will be identified in this situation as having an influence on 𝐶3 of (𝛼3,1 + 𝛼3,2)/2 (on average), which is

biased compared to the true value of 𝛼3,1 in the general case where 𝛼3,1 ≠ 𝛼3,2.

More generally, merging together clusters that are (too) different will dilute the information, and loosing

specificities: the estimates will be close to the average influence of the merged clusters. The more

different these clusters are, the bigger the bias in the estimation will be (compared to the true value of

association between the underlying true clusters).

To conclude, both a too high and a too low number of clusters will result in unsatisfactory results, but

for different reasons: not enough information to estimate too small clusters precisely (high variance) or

unreliable information when merging too dissimilar clusters (since a given message from a particular

cluster that was merged may come from a cluster that has a very different association than the average

association of the merged clusters). Such a bias-variance tradeoff will directly affect the results of our

hierarchical Hawkes model from Chapter 6, and will necessitate a careful choice of the number of clusters.

This brings us to finalize this chapter by answering Research Question 2.

Research Question 2

How can IT messages with similar semantics be grouped together?

Preprocessing
In order to group semantically similar messages together, we have to preprocess the messages at hand

[8, 46, 57]. First, we convert all string characters to lowercase and remove dates, excess spaces and stop

words. Moreover, stop words are words that do not add much meaning to a sentence, such as the, is, at,
which, and on. They can safely be ignored without sacrificing the meaning of the sentence. Secondly,

we normalize verbs to their base form. This step is called lemmatization. Lemmatization is employed

to transform words into their base or root forms, allowing for text normalization and reducing lexical

variations. This process aids in improving the accuracy of language analysis.

Finally, it is essential to highlight that "natural" language messages differ in structure compared to IT

messages obtained from the IT monitoring data stream. Specifically, these messages contain ING-specific

jargon, such as server and process names. To make them more akin to natural language messages,

4.2. Bottom level message cluster 30

system engineers at ING established a mapping with over sixty regular expression patterns. For instance,

all regular expressions known to represent server names were replaced by the string "<server>".

4.2.1. Log parsing
As events are automatically generated, their messages are constructed by means of a template. This

template is then filled in with variables. Because of this structured approach, log parsing techniques

can be employed to retrieve the original template and extract the variables. Once the template for

each message is extracted, arrivals with identical templates can be grouped together. Notably, the

preprocessing step of replacing ING-specific terminology already reduces the number of variables that

need to be extracted.

Drain3
One of the commonly used log parsing techniques is Drain. Drain follows a three-step heuristic-based

approach for log parsing. In the initial step, messages are preprocessed using user-provided regular

expressions based on domain knowledge. The subsequent step involves constructing a parse tree with

multiple heuristics, allowing log parsing based on the number of characters contained in each message.

In the final step, logs’ tokens are compared using a similarity metric to extract log templates and update

the parse tree. Drain achieves high accuracy, especially in scenarios with limited log diversity. However,

its reliance on hard-coded rules requires vigilant maintenance when adapting to structural changes in

log data.

It should be noticed that parsing does not group semantically similar messages into the same cluster if

they don’t share the same structure. For example, consider the following messages:

Server down: ABC

Server XYZ down

After parsing, the respective templates would become Server down: <*> and Server <*> down.
Without any additional steps, these semantically similar messages would not end up in the same cluster.

Hence, it is worthwhile to explore more advanced clustering methods to address this issue.

4.2.2. Clustering: embedding
In order to cluster messages, we first need to transform the message of interest into a numeric vector.

This process is known as message embedding. Moreover, there exists a large variety of embeddings. In

this thesis, we explore two of them: the traditional TF-IDF model and the neural network model known

as Doc2vec.

TF-IDF
Once the messages are preprocessed and ING-specific jargon is substituted by placeholders, the messages

are vectorized. For this purpose, the term frequency-inverse document frequency (TF-IDF) model can

be used. This word-embedding model has been a longstanding conventional option for generating

word embeddings and document embeddings. As indicated by a survey conducted in 2015, 83% of

text-based recommender systems in digital libraries use TF-IDF [6].

TF-IDF is calculated based on two key statistical metrics: the term frequency (TF) and the inverse

document frequency (IDF). The term frequency 𝑇𝐹(𝑡 , 𝑚𝑖)measures the relative frequency of the word 𝑡
within the message 𝑚𝑖 ∈ 𝑀𝑆𝐺. It can be defined as follows:

𝑇𝐹(𝑡 , 𝑚𝑖) =
𝑓𝑡 ,𝑚𝑖∑

𝑡′∈𝑚𝑖
𝑓𝑡′ ,𝑚𝑖

.

Here, 𝑓𝑡 ,𝑚𝑖
represents the frequency of word 𝑡 occurring in message 𝑚𝑖 , while the denominator∑

𝑡′∈𝑚𝑖
𝑓𝑡′ ,𝑚𝑖

represents the total number of words in message 𝑚𝑖 .

4.2. Bottom level message cluster 31

The inverse document frequency (𝐼𝐷𝐹) measures how informative a word is based on whether it’s

common or rare across the entire collection of previously gathered messages. This metric is defined as:

𝐼𝐷𝐹(𝑡 , 𝑀𝑆𝐺) = 𝑁

1 + |{𝑚𝑖 ∈ 𝑀𝑆𝐺 : 𝑡 ∈ 𝑚𝑖}|
.

Here, 𝑁 represents the total number of gathered messages, and |{𝑚𝑖 ∈ 𝑀𝑆𝐺 : 𝑡 ∈ 𝑚𝑖}| represents the

number of messages where the word 𝑡 appeared from the collection of gathered messages 𝑀𝑆𝐺. The

collection of gathered messages 𝑀𝑆𝐺 is denoted the corpus. The addition of 1 in the denominator avoids

division by zero in cases where a word did not occur in any of the gathered messages. The TF-IDF score

for word 𝑡 in message 𝑚𝑖 from the corpus 𝑀𝑆𝐺 is calculated as:

𝑇𝐹𝐼𝐷𝐹(𝑡 , 𝑚𝑖 , 𝑀𝑆𝐺) = 𝑇𝐹(𝑡 , 𝑚𝑖) · 𝐼𝐷𝐹(𝑡 , 𝑀𝑆𝐺).

This computation results in a high TF-IDF score when a term appears frequently in a specific message

but only rarely across the entire collection of words in the corpus.

Each message 𝑚𝑖 is embedded as an 𝑪𝒂𝒓𝒅(𝑀𝑆𝐺)-dimensional vector. Each word 𝑡 to ever appear in

the corpus 𝑀𝑆𝐺 but did not occur in message 𝑚𝑖 is assigned a value zero. Conversely, words 𝑡 present

in 𝑚𝑖 are assigned a value of 𝑇𝐹𝐼𝐷𝐹(𝑡 , 𝑚𝑖 , 𝑀𝑆𝐺).

We create two separate corpora, one for all words found in event messages 𝑀𝑆𝐺𝐼 := {𝑚𝑖 ∈ 𝑀𝑆𝐺 : 𝑠𝑖 = 𝐼}
and one for all words found in incident messages 𝑀𝑆𝐺𝐸 := {𝑚𝑖 ∈ 𝑀𝑆𝐺 : 𝑠𝑖 = 𝐸}. Subsequently, each

message can be transformed into a vector using the corresponding corpus linked to its arrival nature.

As a result, distinct IDF values can be assigned for each of the corpora, namely 𝐼𝐷𝐹(𝑡 , 𝑀𝑆𝐺𝐼) and

𝐼𝐷𝐹(𝑡 , 𝑀𝑆𝐺𝐸).

Doc2vec
The Doc2vec model uses a neural network framework to learn word associations from a corpus of

messages. We use a continuous bag-of-words model. The bag-of-words model predicts the current

word from the window of surrounding context words. The order of the words does not influence

prediction. This assumption is very useful for the IT monitoring messages, as it helps overcome changes

in the message template as seen in Section 4.2.1.

It should be noted that the Doc2vec model is pre-trained on regular text messages, such as Wikipedia

pages. These types of text messages contain far more words per message as compared to the IT

monitoring messages under consideration in this thesis. Moreover, the Doc2vec embedding is known to

perform poorly for very short text messages [20]. Here ’very short’ is referred to as less than 20 words,

which might often be the case for event messages in particular. Furthermore, the regular text messages

on which the Doc2vec model is trained abide by a more natural language structure. Conversely, the IT

monitoring messages on which inference is performed often look more like computer-generated code.

Therefore we could observe a distribution shift. A distribution shift arises when the distribution of the

samples of data on which the model was fitted is different from the distribution of the data the model

runs inference on [32].

4.2.3. Clustering: HDBSCAN
In order to cluster similar messages together, we use the HDBSCAN clustering algorithm. This density-

based clustering algorithm uses a set of hyperparameters to cluster semantically similar messages

together. Clustering is an essential step, as it helps to provide granularity on top of only predicting if all

events on a level of service are associated with all incidents on the same service. In order to perform the

HDBSCAN clustering algorithm, a number of hyperparameters can be set.

• min_cluster_size: The minimum size of clusters; single linkage splits that contain fewer points

than this will be considered points “falling out” of a cluster rather than a cluster splitting into two

new clusters.

• cluster_selection_epsilon: A distance threshold. Clusters below this value are merged.

• cluster_selection_method: The method used to select clusters from the condensed tree. The

standard approach for HDBSCAN is to use an Excess of Mass algorithm to find the most persistent

4.3. Real-world data 32

clusters. Alternatively, we can instead select the clusters at the leaves of the tree – this provides

the most fine-grained and homogeneous clusters.

• metric: The metric to use when calculating the distance between instances in a feature array.

The different hyperparameter settings trivially lead to different message clusters.

4.2.4. Clustering: dimensionality reduction using UMAP
Density-based clustering relies on having enough data to separate dense areas. In higher dimensional

spaces this becomes more difficult and hence requires more data. From the embeddings in Section

4.2.2, we clearly saw messages being converted into high-dimensional vectors. The Uniform Manifold

Approximation and Projection for Dimension Reduction (UMAP) technique was therefore proposed by

Asyaky et al. [2]. UMAP has several hyperparameters which can have a notable impact on the resulting

embedding. We tune the following two

• n_neighbours: Controls how UMAP balances local versus global structure in the data.

• n_components: Allows to determine the dimensionality of the reduced dimension space we

embed the data into.

The authors of UMAP mention two more major hyperparameters, namely, metric and min_dist. In the

interest of time, we did not tune these two hyperparameters and relied on their default values.

4.2.5. Clustering: validation
Finally, we need to decide how to select the optimal hyperparameter setting. As we do not have a true

cluster label (in other words, we are in an unsupervised setting), validating the clustering result can

be challenging. In general, clustering score functions are rather similar: they measure how similar an

object is to its own cluster as compared to other clusters. One of the most commonly used clustering

techniques that rely on this principle is the Silhouette score [68]. However, the Silhouette score is

not suited for density-based clustering methods such as HDBSCAN for two reasons. First of all,

density-based clustering methods find arbitrarily shaped, non-convex clusters. The Silhouette score

is not able to account for this. Secondly, the Silhouette score can not incorporate outliers into their scoring.

To overcome the lack of appropriate measures for the validation of density- based clusters, Moulavi et

al. propose a measure called the Density-Based Clustering Validation index (DBCV) [56]. It assigns

a weighted sum validity indices, computed for each cluster. Here each validity index calculates the

cluster compactness.

Although DBCV works well for several applications, for the problem of message clustering it favors

having a smaller number of clusters and leaves too many samples as noise. This is problematic because

later on in Chapter 6, we will see each cluster needs to have a substantial number of points (i.e. temporal

arrivals) in order to associate its arrival with another cluster. Therefore, we not only rely on the DBCV

score but also consider the probability of each message being assigned to a specific cluster. In particular,

we aim to minimize the percentage of data with less than 5% cluster label confidence. We call this score

the uncertainty percentage.

4.3. Real-world data
To illustrate the theory mentioned above, we applied the HDBSCAN clustering algorithm to one business

unit. For this purpose, we choose one specific business unit. We chose this specific business unit as it

contains both event and incident arrivals, records a manageable amount of arrivals, and is verified by

system engineers from ING to be a business unit that is representative of the service architecture at ING.

Before elaborating on the results from HDBSCAN, we will first show the results of Drain.

4.3.1. Drain
After log parsing using Drain, we obtained 918 templates for event messages and 642 templates for

incident messages. These results can be found in Table 4.1. The rather high number of templates for both

event and incident messages can be explained by the fact that Drain is not able to group messages with

4.3. Real-world data 33

similar semantics together. This is to be expected as Drain is a log-parsing technique and is therefore

only able to extract a template.

As we want to be able to cluster messages with similar semantics together, we now inspect the

combination of message embeddings in combination with the HDBSCAN clustering algorithm. The

main motivation will be to reduce the number of obtained groups.

4.3.2. HDBSCAN
We ran a grid search for both arrival types 𝑠 ∈ 𝑆 for both TF-IDF and Doc2vec embedding. This results

in four pairs of parameter settings. We perform hyperparameter tuning for four hyperparameters

regarding HDBSCAN (See Section 4.2.3) and two hyperparameters regarding UMAP (see Section 4.2.4).

The grid can be found in Appendix C.1.

The grid search calculates both the DBCV score and our self-defined uncertainty percentage for each

of the hyperparameter settings. We aim for a high DBCV score and a low uncertainty percentage.

Conversely, the objective regarding the number of clusters and outliers is less straightforward, as we

have already discussed in relation to the bias-variance trade-off in Section 4.2.

Embedding: TF-IDF & Doc2vec
In Figure 4.5, we compare the results for the grid search for the TF-IDF and Doc2vec embeddings. From

the top figures, it is clear that the TF-IDF embedding results in superior results in terms of DBCV score

and the uncertainty percentage as compared to a Doc2vec embedding for both events and incidents.

From the bottom figures, this results from fewer outliers and a higher number of clusters.

As stated in Section 4.2.2, there might be a distribution shift between the regular text messages on which

the Doc2vec model is trained and the IT monitoring messages on which we run inference. Therefore,

the poor performance of the Doc2vec embedding model should not come as a surprise.

HDBSCAN: metric
The top figures in Figure 4.6 reveal that for incident messages, using the Manhattan distance for

HDBSCAN clustering results in a lower DBCV score and a slightly higher uncertainty percentage.

However, this doesn’t seem to be the case for event messages.

The bottom figures show that the Manhattan distance leads to a higher number of clusters, which is

undesirable for the computation of the excitation matrix discussed later in Chapter 6.

HDBSCAN: cluster selection epsilon
From the top figures from Figure 4.7, it can be found that a higher clustering selection epsilon does

not lead to a change in the DBCV score or uncertainty score. From the bottom figures, we do obtain

that a higher clustering selection epsilon results in fewer clusters. This is in line with the description of

cluster_selection_epsilon in Section 4.2.3.

HDBSCAN: cluster selection method
Figure 4.9 shows that there is no substantial difference in performance between the Excess of Mass

(eom) and Leaf clustering algorithms. As discussed in Section 4.2.3, the Excess of Mass algorithm tends

to result in small homogeneous clusters, which would be preferred in the context of event and incident

message clustering. Therefore, it is interesting to observe that the results do not seem to differ seem to

differ.

HDBSCAN: minimum cluster size
The last hyperparameter we consider from HDBSCAN is the minimum cluster size, which, as noted

by the authors of HDBSCAN, is the most sensitive parameter to tune [53]. Figure 4.9 illustrates that a

smaller minimum cluster size leads to a higher DBCV count and lower cost, which is desired. However,

setting the minimum cluster size too small (e.g., 2 to 3) also results in nearly no outliers and a high

number of clusters, which can pose challenges when estimating the excitation matrix.

4.3. Real-world data 34

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6

Doc2vec
TF-IDF

Percentage of labels with <5% confidence Percentage of labels with <5% confidence

D
B
C
V
 s

co
re

nature=events nature=incidents

0 1000 2000 3000 4000 5000

0

100

200

300

0 1000 2000 3000 4000 5000

Doc2vec
TF-IDF

Number of outliers Number of outliers

N
um

be
r

of
 c

lu
st

er
s

nature=events nature=incidents

Figure 4.5: Grid search results for two different choices for the word embeddings (TF-IDF en Doc2vec). Top figures: DBCV score

against the percentage of labels with less than 5% confidence for the assigned cluster for events (left) and incidents (right). Bottom
figures: Number of clusters against the number of outliers for events (left) and incidents (right).

UMAP: n-neighbors and n-components
Finally, we evaluate the two hyperparameters related to UMAP, namely n_neighbors and n_components.

From Figure 4.10, we see the reduced dimension (i.e. n_components) does not influence the results.

From Figure 4.11, on the other hand, we obtain rather intriguing results. It can be observed that, for

events, 13 components appear to yield superior results in terms of the DBCV score. In contrast, for

incidents, this optimal value seems to be 14 components. Interestingly, this is the only hyperparameter

where no linear trend can be discerned, and the behavior differs between events and incidents as well.

4.3.3. Results
Authors note: This paragraph is removed due to confidentiality.

Table 4.1: Number of arrivals for different stages of processing for both event and incident arrivals.

Authors note: This table is removed due to confidentiality.

Table 4.2: Scores for chosen grid search for both event and incident arrivals.

Authors note: This table is removed due to confidentiality.

Classified outliers
Authors note: This paragraph is removed due to confidentiality.

4.3. Real-world data 35

0.02 0.04 0.06 0.08 0.1

0.65

0.7

0.75

0.8

0.85

0.9

0.02 0.04 0.06 0.08 0.1

Metric
euclidean
manhattan

Percentage of labels with <5% confidence Percentage of labels with <5% confidence

D
B
C
V
 s

co
re

nature=events nature=incidents
em

bedding=
TF-ID

F

0 100 200 300 400 500 600

200

250

300

350

0 100 200 300 400 500 600

Metric
euclidean
manhattan

Number of outliers Number of outliers

N
um

be
r

of
 c

lu
st

er
s

nature=events nature=incidents

em
bedding=

TF-ID
F

Figure 4.6: Grid search results for two different choices for the metric (TF-IDF en Doc2vec). Top figures: DBCV score against the

percentage of labels with less than 5% confidence for the assigned cluster for events (left) and incidents (right). Bottom figures:
Number of clusters against the number of outliers for events (left) and incidents (right).

0.02 0.04 0.06 0.08 0.1

0.6

0.7

0.8

0.9

0.02 0.04 0.06 0.08 0.1

Cluster epsilon
0.5
0.6
0.7

Percentage of labels with <5% confidence Percentage of labels with <5% confidence

D
B
C
V
 s

co
re

nature=incidents nature=events

0 100 200 300 400 500 600

200

250

300

350

0 100 200 300 400 500 600

Cluster epsilon
0.5
0.6
0.7

Number of outliers Number of outliers

N
um

be
r

of
 c

lu
st

er
s

nature=incidents nature=events

Figure 4.7: Grid search results for three different choices for the cluster_selection_epsilon (0.5, 0.6, 0.7). Top figures: DBCV

score against the percentage of labels with less than 5% confidence for the assigned cluster for events (left) and incidents (right).

Bottom figures: Number of clusters against the number of outliers for events (left) and incidents (right).

4.3. Real-world data 36

0.02 0.04 0.06 0.08 0.1

0.6

0.7

0.8

0.9

0.02 0.04 0.06 0.08 0.1

Selection method
eom
leaf

Percentage of labels with <5% confidence Percentage of labels with <5% confidence

D
B
C
V
 s

co
re

nature=incidents nature=events

0 100 200 300 400 500 600

200

250

300

350

0 100 200 300 400 500 600

Selection method
eom
leaf

Number of outliers Number of outliers

N
um

be
r

of
 c

lu
st

er
s

nature=incidents nature=events

Figure 4.8: Grid search results for two different choices for the cluster_selection_method (EoM and Leaf). Top figures: DBCV

score against the percentage of labels with less than 5% confidence for the assigned cluster for events (left) and incidents (right).

Bottom figures: Number of clusters against the number of outliers for events (left) and incidents (right).

0.02 0.04 0.06 0.08 0.1

0.65

0.7

0.75

0.8

0.85

0.9

0.02 0.04 0.06 0.08 0.1

Min cluster size
2
3
4
5
6
7
8
9
10
11

Percentage of labels with <5% confidence Percentage of labels with <5% confidence

D
B
C
V
 s

co
re

nature=events nature=incidents

0 100 200 300 400 500 600

200

250

300

350

0 100 200 300 400 500 600

Min cluster size
2
3
4
5
6
7
8
9
10
11

Number of outliers Number of outliers

N
um

be
r

of
 c

lu
st

er
s

nature=events nature=incidents

Figure 4.9: Grid search results for ten different choices for the min_cluster_size (2 to 10). Top figures: DBCV score against the

percentage of labels with less than 5% confidence for the assigned cluster for events (left) and incidents (right). Bottom figures:
Number of clusters against the number of outliers for events (left) and incidents (right).

4.3. Real-world data 37

0.02 0.04 0.06 0.08
0.65

0.7

0.75

0.8

0.85

0.9

0.02 0.04 0.06 0.08

Number of neighbors
12
13
14
15

Percentage of labels with <5% confidence Percentage of labels with <5% confidence

D
B
C
V
 s

co
re

nature=events nature=incidents

0 100 200 300 400

200

220

240

260

280

300

320

0 100 200 300 400

Number of neighbors
12
13
14
15

Number of outliers Number of outliers

N
um

be
r

of
 c

lu
st

er
s

nature=events nature=incidents

Figure 4.10: Grid search results for four different choices for the n_neighbors (11, 12, 13 and 14). Top figures: DBCV score against

the percentage of labels with less than 5% confidence for the assigned cluster for events (left) and incidents (right). Bottom figures:
Number of clusters against the number of outliers for events (left) and incidents (right).

0.02 0.04 0.06 0.08
0.65

0.7

0.75

0.8

0.85

0.9

0.02 0.04 0.06 0.08

Reduced dimension
3
4
5
6

Percentage of labels with <5% confidence Percentage of labels with <5% confidence

D
B
C
V
 s

co
re

nature=events nature=incidents

0 100 200 300 400

200

220

240

260

280

300

320

0 100 200 300 400

Reduced dimension
3
4
5
6

Number of outliers Number of outliers

N
um

be
r

of
 c

lu
st

er
s

nature=events nature=incidents

Figure 4.11: Grid search results for four different choices for the n_components (3, 4, 5, 6). Top figures: DBCV score against the

percentage of labels with less than 5% confidence for the assigned cluster for events (left) and incidents (right). Bottom figures:
Number of clusters against the number of outliers for events (left) and incidents (right).

Part III

Hawkes process analysis

38

5
Hawkes Processes

This chapter examines the theory behind Hawkes processes, which will play a central role in building

the hierarchical Hawkes model in Chapter 6. For this purpose, event and incident arrivals are modeled

as a marked point process. Subsequently, we can use the key characteristic of Hawkes process that past

arrivals influence the intensity rate of future arrivals.

This chapter is divided into four sections. In Section 5.1 we recap the fundamental concepts of stochastic

processes. In particular, we recap point and counting processes and examine the inadequacies of (homo-

geneous and non-homogeneous) Poisson processes. In Section 5.2, we introduce the one-dimensional

Hawkes process. Additionally, we introduce different memory kernels, which govern the excitation

behavior over time. Furthermore, we prove the consistency of the maximum likelihood and least squares

estimator. Moving on, in Section 5.3 we generalize the one-dimensional Hawkes process to a marked

Hawkes process. In addition, we introduce the concept of Granger-causality. Finally, in Section 5.4, we

see how we can perform inference using the Python package Tick.

5.1. Stochastic processes
First, we look at some of the tools required to work with stochastic processes. We formally define point

and counting processes. We assume the reader is familiar with measure-theoretic notation.

5.1.1. Point processes
As an essential start, we start by defining the fundamental concept of point processes. A point process

is defined on some underlying mathematical space. Point processes can be studied in general settings,

such as locally compact second-countable Hausdorff spaces [17]. In this thesis, we however restrict

ourselves to the real line R.

To define general point processes, we start with a probability space (Ω, ℱ , P). Furthermore, let ℬ(R) be

the Borel 𝜎-algebra on R.

Definition 5.1.1: Counting measure

Let (𝒳 ,𝒜) be a measurable space. Let 𝐴 ∈ 𝒜. We define the counting measure of 𝐴, denoted by

𝜈𝐴 to be the measure on (𝒳 ,𝒜) such that, for every 𝐵 ∈ 𝒜,

𝜈𝐴(𝐵) = 𝑪𝒂𝒓𝒅(𝐴 ∩ 𝐵). (5.1)

We defineM(𝒳) to be the space of counting measures on𝒳. For a counting measure 𝜈𝐴, its total number

of points is 𝑁(𝜈𝐴) := 𝑪𝒂𝒓𝒅(𝐴). Unless otherwise specified, the considered space will be 𝒳 = R. In this

sense, a counting measure 𝜈𝐴 on R is characterized by the measurable set 𝐴 ∈ ℬ(R).

39

5.1. Stochastic processes 40

Definition 5.1.2: Point processes

A point process T on𝒳 is defined as a mapping from the sample space Ω to the space of counting

measuresM(𝒳), meaning that each realization 𝜔 ∈ Ω of a point process is a counting measure

T(𝜔) ∈ M(𝒳).

Remark 5.1.3. In this expression, the point process is denoted by T, while 𝑁(T) denotes the cardinality
𝑪𝒂𝒓𝒅(𝐴 ∪ T). T is a random counting measure and 𝑁(T) is a random value in N ∪ {+∞}.

Remark 5.1.4. We will denote individual arrivals T(𝜔) as 𝑇𝑖 , where 𝑖 denotes the 𝑖𝑡ℎ arrival. We can

write Twith 𝑁(T) = 𝑛 ∈ N ∪ {+∞} as T = {𝑇1 , 𝑇2 , . . . , }

5.1.2. Counting processes
The last remark leads to a different representation, namely a counting process.

Definition 5.1.5: Counting processes [43]

A counting process is a stochastic process 𝑁(·) : R+ → N that satisfies 𝑁(0) = 0 and is an

increasing right-continuous step function with increments of size 1.

Whereas a point process is a subset T ⊂ R+ at which certain arrivals occur, a counting process represents

the total number of arrivals that have occurred at a certain time. The relation between counting processes
and point processes is given as follow:

Definition 5.1.6: Counting processes II [43]

Let 𝑡 ∈ R+ with [0, 𝑡] ∈ ℬ(R). With slight abuse of notation, we define the total number of points

in [0, 𝑡] as

𝑁(𝑡) =
∑
𝑇𝑖∈T
I[0,𝑡](𝑇𝑖). (5.2)

Remark 5.1.7. We can define for 𝑡1 , 𝑡2 ∈ R+ : 𝑡1 < 𝑡2, 𝑁(𝑡1 , 𝑡2) = 𝑁(𝑡2) − 𝑁(𝑡1). Here 𝑁(𝑡1 , 𝑡2) denotes

the number of arrivals that occur in the interval (𝑡1 , 𝑡2].

An illustration of the relation between a point process and a counting process can be found in Figure 5.1.

Figure 5.1: Illustration of point process T (top) and identical counting process 𝑁(·) (bottom) .

5.1. Stochastic processes 41

5.1.3. Homogeneous Poisson processes
As a first realization of point processes, we will describe homogeneous Poisson point processes, denoted

as Poisson processes [43, 74]. Poisson processes are one of the most widely-used counting processes.

Definition 5.1.8: Homogeneous Poisson point process

A counting process 𝑁(·) is a homogeneous Poisson process with intensity 𝜆0 > 0 if

1. ∀𝑡𝑖 , 𝑡 𝑗 ∈ R+ : 𝑡𝑖 < 𝑡 𝑗 , 𝑁(𝑡𝑖 , 𝑡 𝑗) ∼ 𝑃𝑜𝑖𝑠(𝜆0(𝑡 𝑗 − 𝑡𝑖)),
2. For any 𝑛 disjoint intervals (𝑡0 , 𝑡1], (𝑡1 , 𝑡2], . . . , (𝑡𝑛−1 , 𝑡𝑛], the random variables

𝑁(𝑡0 , 𝑡1), 𝑁(𝑡1 , 𝑡2), . . . , 𝑁(𝑡𝑛−1 , 𝑡𝑛) are independent.

Here 𝑃𝑜𝑖𝑠(·) denotes the Poisson distribution, so P[𝑁(𝑡) = 𝑘] = (𝜆0𝑡)𝑘 exp (−𝜆0𝑡)
𝑘!

. Special attention should

be paid to the 𝜆0 parameter. If 𝜆0 is replaced by a time-varying function 𝜆(𝑡), the obtained process

becomes a non-homogeneous Poisson process, which we will see in the next section.

Remark 5.1.9. The intensity 𝜆0 is sometimes referred to as the rate in related literature.

As ∀ℎ ∈ R : 𝑁(𝑡𝑖 , 𝑡 𝑗)
𝑙𝑎𝑤
= 𝑁(𝑡𝑖 + ℎ, 𝑡 𝑗 + ℎ)

𝑙𝑎𝑤
= 𝑃𝑜𝑖𝑠(𝜆(𝑡 𝑗 − 𝑡𝑖)), the interarrival times exhibit two key

characteristics: independence and stationarity. These properties imply that the interarrival times adhere

to the memoryless property.

5.1.4. Non-homogeneous Poisson processes
Homogeneous Poisson processes are characterized by a constant intensity 𝜆0, independent of time.

However, as we saw earlier in the case of incident arrivals, the intensity can be higher during business

hours and lower during weekends and non-business hours. It is therefore appropriate to model the

intensity as a function of time. We can therefore refer to an intensity function, 𝜆(𝑡).

Definition 5.1.10: Non-homogeneous Poisson point processeses

A counting process 𝑁(·) is a non-homogeneous Poisson process with intensity function 𝜆(𝑡) > 0

if

1. ∀𝑡𝑖 , 𝑡 𝑗 ∈ R+ : 𝑡𝑖 < 𝑡 𝑗 𝑁(𝑡𝑖 , 𝑡 𝑗) ∼ 𝑃𝑜𝑖𝑠(
∫ 𝑡 𝑗

𝑡𝑖
𝜆(𝑠)𝑑𝑠),

2. For any 𝑛 disjoint intervals (𝑡0 , 𝑡1], (𝑡1 , 𝑡2], . . . , (𝑡𝑛−1 , 𝑡𝑛], the random variables

𝑁(𝑡0 , 𝑡1), 𝑁(𝑡1 , 𝑡2), . . . , 𝑁(𝑡𝑛−1 , 𝑡𝑛) are independent.

As the law of 𝑁(𝑡𝑖 , 𝑡 𝑗)may be different from the law of 𝑁(𝑡𝑖 + ℎ, 𝑡 𝑗 + ℎ) for ℎ ∈ R+, the non-homogeneous

Poisson process generally is not stationary.

5.1.5. Conditional intensity function
In Section 5.1.1, we defined a probability space (Ω, ℱ , P). We can define a filtration (ℋ𝑡)𝑡≥0 withℋ𝑡 ⊆ ℱ .

This results in a filtered probability space (Ω, ℱ ,ℋ𝑡 , P), where we will denoteℋ𝑡 the history up to (so
not including) time 𝑡.

Remark 5.1.11. We will denote the last observed arrival time as 𝑇𝑛 . We denoteℋ𝑇𝑛 the history up until

(so including) the last observed arrival 𝑇𝑛 .

Definition 5.1.12: Conditional cumulative distribution function

The conditional cumulative distribution function (CDF) of the next arrival time 𝑇𝑛+1 given history

ℋ𝑇𝑛 is defined as

𝐹𝑇𝑛+1
(𝑡 |ℋ𝑇𝑛) :=

∫ 𝑡

𝑇𝑛

(
lim

Δ𝑠↘0

P(𝑇𝑛+1 ∈ [𝑠, 𝑠 + Δ𝑠]|ℋ𝑇𝑛)
Δ𝑠

)
𝑑𝑠 =

∫ 𝑡

𝑇𝑛

𝑓 (𝑠 | ℋ𝑇𝑛)𝑑𝑠. (5.3)

5.1. Stochastic processes 42

The conditional probability density function 𝑓 (𝑠 |ℋ𝑇𝑛) is therefore defined as

𝑓 (𝑠 |ℋ𝑇𝑛) = lim

Δ𝑠↘0

P(𝑇𝑛+1 ∈ [𝑠, 𝑠 + Δ𝑠]|ℋ𝑇𝑛)
Δ𝑠

. (5.4)

For the realizations of a point process, we can define the joint probability density function (PDF).

Definition 5.1.13: Joint probability density function

The joint probability density function of the first 𝑛 ∈ N arrival times (𝑇1 , . . . , 𝑇𝑛) is defined as

𝑓 (𝑇1 , . . . , 𝑇𝑛) := 𝑓 (𝑇1) · 𝑓 (𝑇2 |𝑇1) · 𝑓 (𝑇3 |𝑇2 , 𝑇1) · · · · · 𝑓 (𝑇𝑛 |𝑇𝑛−1 , . . . , 𝑇1) =
𝑛∏
𝑖=1

𝑓 (𝑇𝑖 |ℋ𝑇𝑖−1
). (5.5)

Remark 5.1.14. Often in literature, the historyℋ𝑡 is not mentioned explicitly, and 𝜆(𝑡 |ℋ𝑡) is abbreviated

to 𝜆∗(𝑡). We will not follow this convention as it might cause confusion up to which point in time we are

conditioning.

To align the probability density function with the framework of intensity functions, we will define the

conditional intensity function. The first definition specifies the mean number of arrivals in an infinitesimal

interval conditioned on the historyℋ𝑡 .

Definition 5.1.15: Conditional intensity function

Consider a counting process 𝑁(·) with associated historyℋ𝑡 . If a non-negative function 𝜆(𝑡 |ℋ𝑡)
exist such that

𝜆(𝑡 |ℋ𝑡) = lim

Δ𝑡↘0

E[𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) | ℋ𝑡]
Δ𝑡

, (5.6)

then it is called the conditional intensity function of 𝑁(·).

The function 𝜆(𝑡 |ℋ𝑡) isℋ𝑡-measurable, hence it only relies on information of 𝑁(·) in the past. We can

now relate the conditional intensity function to the probability density function and the cumulative

density function. This will be used later on when calculating the conditional intensity function.

Theorem 5.1.16: Conditional intensity function II

Consider PDF 𝑓 (𝑡 |ℋ𝑇𝑛) and CDF 𝐹(𝑡 |ℋ𝑇𝑛) for 𝑡 > 𝑇𝑛 . Let ℋ𝑇𝑛 denote the history up to and

including arrival 𝑇𝑛 . Then we have:

𝜆(𝑡 |ℋ𝑇𝑛) =
𝑓 (𝑡 |ℋ𝑇𝑛)

1 − 𝐹(𝑡 |ℋ𝑇𝑛)
. (5.7)

The representation of the conditional intensity function in Theorem 5.1.16 is originally called the hazard
function. The proof starts by considering the infinitesimal interval around 𝑡, where 𝑇𝑛+1 indicates the

next arrival after observing the last arrival 𝑇𝑘 ∈ ℋ𝑡 .

5.2. One-dimensional Hawkes processes 43

Proof.

𝜆(𝑡 |ℋ𝑡)𝑑𝑡 = E [𝑁([𝑡 , 𝑡 + 𝑑𝑡]) | ℋ𝑡]
= P (𝑇𝑛+1 ∈ [𝑡 , 𝑡 + 𝑑𝑡] | ℋ𝑡)
= P (𝑇𝑛+1 ∈ [𝑡 , 𝑡 + 𝑑𝑡] | 𝑇𝑛+1 ∉ (𝑇𝑛 , 𝑡) ,ℋ𝑇𝑛)

=
P (𝑇𝑛+1 ∈ [𝑡 , 𝑡 + 𝑑𝑡], 𝑇𝑛+1 ∉ (𝑇𝑛 , 𝑡) | ℋ𝑇𝑛)

P (𝑇𝑛+1 ∉ (𝑇𝑛 , 𝑡) | ℋ𝑇𝑛)

=
P (𝑇𝑛+1 ∈ [𝑡 , 𝑡 + 𝑑𝑡] | ℋ𝑇𝑛)
P (𝑇𝑛+1 ∉ (𝑇𝑛 , 𝑡) | ℋ𝑇𝑛)

=
𝑓 (𝑡 | ℋ𝑇𝑛) 𝑑𝑡

1 − 𝐹 (𝑡 | ℋ𝑇𝑛)
,

hence indeed 𝜆(𝑡 |ℋ𝑡) = 𝑓 (𝑡 |ℋ𝑇𝑛)
1−𝐹(𝑡 |ℋ𝑇𝑛)

. □

5.1.6. Compensator
For parameter estimation, often the integrated intensity function is needed. We, therefore, define the

integrated intensity here already. The integrated intensity is called the compensator of the counting

process.

Definition 5.1.17: Compensator [42]

The compensator function Λ(𝑡) is defined as the unique,ℋ𝑡-predictable, non-decreasing function

Λ(𝑡) such that Λ(0) = 0 and 𝑁(𝑡) = 𝑀(𝑡) +Λ(𝑡) almost surely for 𝑡 ≥ 0 where 𝑀(𝑡) is anℋ𝑡- local

martingale.

The existence of 𝜆(𝑡 |ℋ𝑡) is guaranteed by the Doob-Meyer decomposition. For a counting process 𝑁(·)
with conditional intensity function 𝜆(𝑡 |ℋ𝑡), the compensator can be represented as

Λ(𝑡) =
∫ 𝑡

0

𝜆(𝑠 |ℋ𝑠)𝑑𝑠.

5.2. One-dimensional Hawkes processes
Although deterministic non-homogeneous Poisson processes offer the flexibility to vary the intensity

function over time, they still assume independent arrivals. In other words, the probability of an arrival

occurring at time 𝑡 is independent of the historyℋ𝑡 at time 𝑡.
In many real-world applications, we know that the occurrence of an arrival affects the occurrence of an

upcoming arrival, meaning arrivals actually happen dependently of each other. To model these types of

processes, we turn our attention to self-exciting processes. The key characteristic is that each arrival excites
the process in the sense that the chance of a subsequent arrival is increased for some time period after

the initial arrival. Examples of this are

• Earthquakes; where the occurrence of an earthquake increases the probability of seeing more

earthquakes in the form of aftershocks [60].

• Stock trades; where one market trade triggers other traders to act according to market movement

by hedging their position and selling or buying [27].

To be able to model this dependent behavior, we will now turn our attention to Hawkes processes.

In a Hawkes process, the intensity of events at any given time is determined by two factors: the

background intensity, which represents the average rate of events over time, and the memory kernel, which

describes the influence of past events on the current intensity. This background intensity can be seen as

the regular intensity in the Poisson processes and can be chosen to be either a constant value, as for

homogeneous Poisson processes, or as being an intensity function over time, as for non-homogeneous

Poisson processes.

5.2. One-dimensional Hawkes processes 44

Definition 5.2.1: Hawkes processes [43]

A counting process 𝑁(·) is a Hawkes process with associate history ℋ𝑡 if for the conditional

intensity function it holds

𝜆(𝑡 |ℋ𝑡) = 𝜇(𝑡) +
∫ 𝑡

0

𝜙(𝑡 − 𝑢)d𝑁(𝑢) = 𝜇(𝑡) +
∑
𝑖:𝑇𝑖<𝑡

𝜙(𝑡 − 𝑇𝑖), (5.8)

for some 𝜇(·) : R∗+ → R+ and 𝜙 : R∗+ → R∗+. Denote again the point process T = {𝑇1 , 𝑇2 , · · · , },
where T is the point process associated to the counting process 𝑁(·).

Here, in the last equality of Equation (5.8), the stochastic Stieltjes integral is used.

Remark 5.2.2. It should be emphasized that we went from a constant intensity 𝜆0 for homogeneous

Poisson processes, to a time-dependent intensity function 𝜆(𝑡) for non-homogeneous Poisson processes,

to a history-dependent conditional intensity function 𝜆(𝑡 |ℋ𝑡) for Hawkes processes. It should be noted

that Hawkes processes are not at all memoryless and therefore a clear example of a non-Markovian

process. Hawkes processes can therefore be seen as the non-Markovian counterpart of Poisson processes.

Remark 5.2.3. If we set the memory kernel 𝜙(·) to 0, we obtain the non-homogeneous Poisson process

𝜆(𝑡 |ℋ(𝑡)) = 𝜇(𝑡). If additionally, we set 𝜇(𝑡) = 𝜇0 to a constant, we obtain a homogeneous Poisson

process 𝜆(𝑡 |ℋ(𝑡)) = 𝜇0.

5.2.1. Memory kernel
The choice of the memory kernel 𝜙(·) in a Hawkes process characterizes the effect prior arrivals have on

the conditional intensity function. In other words, the memory kernel determines how the appearance

of prior arrivalℋ𝑡 will influence the likelihood of an arrival appearing in an extension of the observation

region [𝑡 , 𝑡 + Δ𝑡).
Remark 5.2.4. The memory kernel is often referred to as the triggering, impact, or excitation function in

related literature.

It is common to choose a memory kernel that is monotonically decreasing [44, 69, 82, 84]. This way,

more recent arrivals have a higher influence on the conditional intensity function than arrivals further

back in history.

Exponential kernel
A common choice for the memory kernel is an exponential kernel.

Definition 5.2.5: Exponential memory kernel

Memory kernel 𝜙 is called an exponential memory kernel if for every 𝑡 ∈ R∗+ ,

𝜙(𝑡) = 𝛼 · exp

(
− 𝑡
𝜏

)
, (5.9)

for some fixed 𝛼 ∈ R+ , 𝜏 ∈ R∗+.

Here, the parameter 𝛼 is referred to as the excitation, which models the instantaneous increase a new

arrival 𝑇𝑛 has on 𝜆(𝑡 |ℋ𝑡). Immediately after the jump, the conditional intensity decreases according to

exp

(
− 𝑡−𝑇𝑛𝜏

)
. The parameter 𝜏 is referred to as the characteristic time and it has a unit of time in seconds.

The parameter 𝜏 governs the rate of decay, where a large value of 𝜏 implies slow decay towards the

baseline intensity.

Remark 5.2.6. Instead of using the characteristic time 𝜏, it is common to use decay 𝛽 = 1

𝜏 , and therefore

obtain exponential memory kernel 𝜙(𝑡) = 𝛼 · exp (−𝛽 · 𝑡). However, using characteristic time 𝜏 instead

of decay 𝛽 gives us a more intuitive feeling for how fast a function is decaying: for every 𝜏 seconds

passed, the excitation 𝛼 gets reduced by a factor of 𝑒.

5.2. One-dimensional Hawkes processes 45

Power law kernel
Although the exponential memory kernel is one of the most common kernel functions for modeling

Hawkes processes, situations arise where an exponential kernel does not provide satisfying behavior.

An example is that of modeling tweet cascading behavior [64]. As an alternative, the power law kernel

is proposed.

Definition 5.2.7: Power law memory kernel

Memory kernel 𝜙 is called a power law memory kernel if for every 𝑡 ∈ R∗+ ,

𝜙(𝑡) = 𝐾

(𝑐 + 𝑡)𝑝 , (5.10)

for some fixed 𝐾 ∈ R+ , 𝑐, 𝑝 ∈ R∗+.

Note that this memory kernel induces a statistical model with three parameters (𝐾, 𝑐 and 𝑝) instead of

two in the case of exponential kernels (𝛼, 𝜏).

Gamma distributed memory kernel
Additionally, we consider a more exotic kernel to accommodate for more general possibilities, namely a

Gamma distributed memory kernel, as developed by Lesage et al. [44],

Definition 5.2.8: Gamma memory kernel

Memory kernel 𝜙 is called a Gamma memory kernel if for every 𝑡 ∈ R∗+ ,

𝜙(𝑡) = 𝛼
𝑡𝑘1−1

exp

(
− 𝑡
𝑘2

)
𝑘
𝑘1

2
Γ (𝑘1)

, . (5.11)

for some fixed 𝛼 ∈ R∗+ , 𝑘1 , 𝑘2 ∈ R∗+.

Here Γ(·) is the Gamma function, 𝑘1 the scale parameter, and 𝑘2 the shape parameter. For 𝑘1 = 1, we

again obtain the exponential memory kernel. We explicitly mention this kernel, as for 𝑘1 > 1, we can

model a delay in the resulting self-excitation. This can be particularly useful for large-scale service

systems, where a delay between a warning and a service outage can be considered. We will not apply

the kernel in this thesis but instead, but instead consider the usage of the Gamma distribution in future

work (see Section 7.1).

Non-parametric approaches for memory kernel estimation
It should be noted that different choices for the shape of the kernels correspond to different models.

Non-parametric estimators can also be used to accommodate more general possibilities. A disadvantage

is that non-parametric estimators scale poorly for high-dimensional multivariate Hawkes processes [4],

which we will thoroughly employ in Section 5.3.

5.2.2. Estimation procedures
To estimate the parameters of the memory kernel, the two most common methods used in literature

are a maximum-likelihood estimate and a least squares estimate. In this section, we will elaborate on both

approaches.

General likelihood
Assume 𝜇(𝑡) can be parameterized by a vector of parameters 𝝁 := (𝜇1 , 𝜇2 , . . . ,). For instance as in

Section 3.2.1, Equation (3.1), we obtain 𝝁 := (𝛽0 , 𝛽1 , . . . , 𝛽4).

5.2. One-dimensional Hawkes processes 46

Theorem 5.2.9: Likelihood for Hawkes processes [62]

Let 𝑁(·) be a point process on the time interval [0;𝑇] for 𝑇 > 0. Let T = {𝑇1 , 𝑇2 , . . . , 𝑇𝑛} denote

the realization of the counting process 𝑁(·). The likelihood function 𝐿(𝜃;ℋ𝑇) for 𝑁(·) can be

written in the form

𝐿(𝜃;ℋ𝑇) =
(
𝑛∏
𝑖=1

𝜆(𝑇𝑖 |ℋ𝑇𝑖)
)
· exp

(
−

∫ 𝑇

0

𝜆(𝑠 |ℋ𝑠)𝑑𝑠
)
. (5.12)

Proof. The probability of the next arrival 𝑇𝑖+1 appearing in the infinitesimal interval (𝑡 , 𝑡 + 𝑑𝑡) given

historyℋ𝑇𝑖 is denoted as 𝑓𝑇𝑖+1
𝑑𝑡 [65]. To obtain the likelihood given T = {𝑇1 , 𝑇2 , . . . 𝑇𝑛} in time interval

[0;𝑇], we calculate 𝐿(𝜃;ℋ𝑇)

𝐿(𝜃;ℋ𝑇) = 𝑓 (𝑇1 , 𝑇2 , . . . , 𝑇𝑛) =
𝑛∏
𝑖=1

𝑓 (𝑇𝑖 | . . . , 𝑇𝑖−2 , 𝑇𝑖−1) =
𝑛∏
𝑖=1

𝑓 (𝑇𝑖 | ℋ𝑇𝑖−1
) . (5.13)

Using the hazard function from Equation (5.7), it can be obtained

𝜆(𝑡 |ℋ𝑡) =
𝑓 (𝑡 |ℋ𝑡)

1 − 𝐹(𝑡 |ℋ𝑡)
=

𝑑
𝑑𝑡
[𝐹(𝑡 |ℋ𝑡)]

1 − 𝐹(𝑡 |ℋ𝑡)
= − 𝑑

𝑑𝑡
ln [1 − 𝐹(𝑡 |ℋ𝑡)]. (5.14)

Denote the last known arrival time prior to 𝑡 as 𝑇𝑖 . Integrating from 𝑇𝑖 to 𝑡 results in∫ 𝑡

𝑇𝑖

𝜆(𝑠 |ℋ𝑠)𝑑𝑠 =
∫ 𝑡

𝑇𝑖

(
− d

d𝑠
ln [1 − 𝐹(𝑠 |ℋ𝑠)]

)
𝑑𝑠 = ln(1 − 𝐹 (𝑇𝑖 |ℋ𝑇𝑖)) − ln (1 − 𝐹(𝑡 |ℋ𝑇𝑖)) . (5.15)

Since by definition 𝑇𝑖+1 > 𝑇𝑖 , we have 𝐹 (𝑇𝑖 | ℋ𝑇𝑖) = 0. Therefore the second term cancels and we obtain∫ 𝑡

𝑇𝑖

𝜆(𝑠 |ℋ𝑠)𝑑𝑠 = − ln (1 − 𝐹(𝑡 |ℋ𝑇𝑖)) , (5.16)

and therefore the denominator in the conditional intensity function from Equation (5.7) becomes

1 − 𝐹(𝑡 |ℋ𝑇𝑖) = exp

(
−

∫ 𝑡

𝑇𝑖

𝜆(𝑠 |ℋ𝑠)𝑑𝑠
)
. (5.17)

Rewriting the hazard function from Equation (5.7) and substituting the conditional cumulative distribu-

tion function from Equation (5.17) results in

𝑓 (𝑡 |ℋ𝑇𝑖) = 𝜆(𝑡 |ℋ𝑇𝑖) · [1 − 𝐹(𝑡 |ℋ𝑇𝑖)] = 𝜆(𝑡 |ℋ𝑇𝑖) · exp

(
−

∫ 𝑡

𝑇𝑖

𝜆(𝑠 |ℋ𝑇𝑖)𝑑𝑠
)
. (5.18)

Finally, plugging the result from Equation (5.18) into the likelihood function from Equation (5.13), we

obtain indeed

𝐿(𝜃;ℋ𝑇) =
𝑛∏
𝑖=1

𝑓 (𝑇𝑖 | ℋ𝑇𝑖−1
) =

𝑛∏
𝑖=1

𝜆(𝑇𝑖 |ℋ𝑇𝑖−1
)·exp

(
−

∫ 𝑇𝑖

𝑇𝑖−1

𝜆(𝑠 |ℋ𝑠)𝑑𝑡
)
=

[
𝑛∏
𝑖=1

𝜆 (𝑇𝑖 |ℋ𝑇𝑖)
]
·exp

(
−

∫ 𝑇

0

𝜆(𝑠 |ℋ𝑠)𝑑𝑠
)

(5.19)

□

Often the logarithm of the likelihood in Equation (5.12) is considered. This results in the log-likelihood

ℒ(𝜃;ℋ𝑇) = log(𝐿(𝜃;ℋ𝑇)) =
𝑛∑
𝑖=1

log(𝜆(𝑇𝑖 |ℋ𝑇𝑖)) −
∫ 𝑇

0

𝜆(𝑠 |ℋ𝑠)𝑑𝑠. (5.20)

The logarithmic function is monotonically increasing so maximizing the likelihood is equivalent to

maximizing the log-likelihood. Additionally, maximizing the log-likelihood is equivalent to minimizing

the negative log-likelihood

5.2. One-dimensional Hawkes processes 47

−ℒ(𝜃;ℋ𝑇) = − log(𝐿(𝜃;ℋ𝑇)) =
∫ 𝑇

0

𝜆(𝑠 |ℋ𝑠)𝑑𝑠 −
𝑛∑
𝑖=1

log(𝜆(𝑇𝑖 |ℋ𝑇𝑖)). (5.21)

Exponential memory kernel likelihood
The likelihood from Equation (5.12) using the exponential memory kernel from Equation (5.9), can be

written in the form

Corollary 5.2.10: Likelihood for exponential memory kernel

The likelihood function 𝐿(𝜃) for 𝑁(·) using an exponential kernel can be written in the form

𝐿(𝜃;ℋ𝑇) =
𝑛∏
𝑖=1

𝜇(𝑇𝑖) + 𝛼
𝑖−1∑
𝑗=𝑖

exp

(
−
(𝑇𝑖 − 𝑇𝑗)

𝜏

) · exp

(
−

∫ 𝑇

0

(
𝜇(𝑠) + 𝛼𝜏

𝑘∑
𝑖=1

exp

(
−
(𝑇𝑖 − 𝑇𝑗)

𝜏

))
𝑑𝑠

)
.

(5.22)

5.2.3. Consistency of the MLE for one-dimensional Hawkes processes
We consider a family of parameterized stationary point processes {𝜆𝜃(𝑡);𝜃 ∈ Θ ⊂ R𝑑} which are

assumed to correspond uniquely to the stationary counting process {𝑁𝜃(𝑡);𝜃 ∈ Θ}. If we take for

example the family of Hawkes processes with constant baseline intensity and exponential memory

kernel, then 𝜃 = {𝜇, 𝛼, 𝜏} with Θ = R+
3 ⊂ R3

.

Remark 5.2.11. In this subsection, we will no longer consider a baseline intensity function but instead

consider a constant baseline. Subsequently, all terms, 𝜇(𝑠) will be replaced by a constant 𝜇. We choose

to do so because a non-constant baseline function violates the stationarity assumption. Stationarity on

the other hand is required for applying the usual theorems for proving consistency, as can be seen from

the first assumption from Theorem 5.2.12.

In Theorem 5.2.9 we defined the likelihood function for Hawkes processes. The maximum likelihood

estimator �̂�𝑀𝐿𝐸 = �̂�(𝑇𝑖 ; 0 ≤ 𝑇𝑖 ≤ 𝑇) is defined as the estimator 𝜃 which maximizes Equation (5.12), under

observations from the counting process 𝑁𝜃0
(·). Here 𝜃0 denotes the true parameter values generating

the observed counting process 𝑁𝜃0
(·).

It is now of interest to prove that under a set of assumptions, the maximum likelihood is consistent.

That is, to prove that the estimator �̂�𝑀𝐿𝐸 converges in probability to 𝜃0 for 𝑇 →∞. Formally, this means

lim

𝑇→∞
P(|𝜃0 − �̂�𝑀𝐿𝐸 | ≥ 𝜖) = 0, for all 𝜖 > 0.

This has first been proven by Ogata [59] for general intensity functions. Here a proof under observations

of the infinite pastℋ(∞,𝑡) is given, which is subsequently extended to observation underℋ[0,𝑡). We will

state the six assumptions from Ogata for general intensity processes and show consistency.

Consistency proof
Given the following six assumptions

5.2. One-dimensional Hawkes processes 48

Consistency of the MLE

1. The counting process 𝑁(·) is stationary, ergodic and absolutely continuous with respect to

the standard Poisson process on any finite interval.

2. Θ is a compact metric space with some metric 𝜌, and Θ ∈ R𝑑.
3. 𝜆𝜃 is predictable for all Θ. 𝜆𝜃(𝑡 , 𝜔) is continuous in 𝜃 and 𝜆𝜃(0, 𝜔) > 0 almost surely for

any 𝜃 ∈ Θ.

4. 𝜆𝜃1
(0, 𝜔) = 𝜆𝜃2

(0, 𝜔) almost surely if and only if 𝜃1 = 𝜃2.

5. For any 𝜃 ∈ Θ, there exists a neighbourhood𝑈 = 𝑈(𝜃) of 𝜃 such that for all 𝜃′ ∈ 𝑈 ,

|𝜆𝜃′(0, 𝜔)| ≤ Λ0(𝜔) and | log𝜆𝜃′(0, 𝜔)| ≤ Λ1(𝜔)

where Λ0 and Λ1 are random variables with finite second moments.

6. For any 𝜃 ∈ Θ, there exists a neighbourhood𝑈(𝜃) of 𝜃 such that for all 𝜃′ ∈ 𝑈

• sup𝜃′∈𝑈 |𝜆𝜃′(𝑡 , 𝜔) − 𝜆∗𝜃′(𝑡 , 𝜔)| → 0 in probability as 𝑡 →∞,

• sup𝜃′∈𝑈 | log𝜆∗𝜃′(𝑡 , 𝜔)| has, for some 𝛼 > 0, finite (2 + 𝛼)th moment uniform bounded

with respect to 𝑡.

We state the following theorem:

Theorem 5.2.12: Consistency of the MLE

Under the six assumptions above, we find that the maximum likelihood estimator �̂�𝑀𝐿𝐸 converges

to 𝜃0 in probability as 𝑇 →∞.

Proof. By Assumptions (3) and (5), we can directly obtain

E𝜃0

[
inf

𝜃′∈𝑈
𝜆𝜃′(0, 𝜔)

]
→ E𝜃0

[
𝜆𝜃(0, 𝜔)

]
(5.23)

and

E

[
𝜆𝜃0
(0, 𝜔) log

{
𝜆𝜃0
(0, 𝜔)

sup𝜃′∈𝑈 𝜆𝜃′(0, 𝜔)

}]
→ E

{
𝜆𝜃0
(0, 𝜔) log

𝜆𝜃0
(0, 𝜔)

𝜆𝜃(0, 𝜔)

}
(5.24)

as the neighbourhood𝑈 of 𝜃 shrinks to {𝜃}. Let𝑈0 be an open neighborhood of 𝜃0. Then by definition

of the Kullback-Leibler divergence (see Section B.1.1) and Assumption (4), there is a positive 𝜀 such that

E𝜃0
{𝐾𝐿 (𝜃0;𝜃)} ≥ 3𝜀 for any 𝜃 ∈ Θ\𝑈0.

Now for any 𝜃 ∈ Θ\𝑈0, we can choose𝑈 small enough so that

E

[
inf

𝜃′∈𝑈
𝜆𝜃′(0, 𝜔) − 𝜆𝜃0

(0, 𝜔) + 𝜆𝜗0
(0, 𝜔) log

{
𝜆𝜃0
(0, 𝜔)

sup𝜃′∈𝑈 𝜆𝜃′(0, 𝜔)

}]
(5.25)

≥ E {𝐾𝐿 (𝜃0;𝜃)} − 𝜀.

Select a finite number of 𝜃𝑠 such that 𝑈𝑠 = 𝑈𝜃𝑠 , 1 ≦ 𝑠 ≦ 𝑁 , cover Θ\𝑈0. Since inf𝜃′∈𝑈 𝜆𝜃′(𝑡 , 𝜔) and

sup𝜃′∈𝑈 𝜆𝜃′(𝑡 , 𝜔) are predictable processes, by the predictability of the stationary process there exists,

for any 𝜀 > 0, 𝑇0 = 𝑇0(𝜀) depending on the sample such that for any 𝑇 > 𝑇0 and 𝑠 = 1, 2, · · · , 𝑁 ,

1

𝑇
𝐿𝑇 (𝜃0) − sup

𝜃∈𝑈𝑠

1

𝑇
𝐿𝑇(𝜃) (5.26)

≥ 1

𝑇

∫ 𝑇

0

{
inf

𝜃∈𝑈𝑠

𝜆𝜃(𝑡 , 𝜔) − 𝜆𝑠0(𝑡 , 𝜔)
}
𝑑𝑡 + 1

𝑇

∫ 𝑇

0

log

𝜆𝜃0
(𝑡 , 𝜔)

sup𝜃∈𝑈𝑠
𝜆𝜃(𝑡 , 𝜔)

𝑑𝑁(𝑡)

≥ E {𝐾𝐿 (𝜃0;𝜃)} − 2𝜀 ≥ 𝜀.

5.2. One-dimensional Hawkes processes 49

It follows that there exists 𝑇1 = 𝑇1 (𝜀, 𝑈0) > 𝑇0 such that for all 𝑇 > 𝑇1

sup

𝜃∈𝑈0

𝐿𝑇(𝜃) ≥ sup

𝜃∈Θ\𝑈0

𝐿𝑇(𝜃) + 𝜀𝑇. (5.27)

So far, we considered the intensity function under infinite past 𝐻−∞,𝑡

𝜆(𝑡 , 𝜔) = lim

𝛿→0

1

𝛿
P [𝑁{[𝑡 , 𝑡 + 𝛿)} > 0 | 𝐻−∞,𝑡] . (5.28)

However, using Assumption 6, inequalities (5.26) and (5.27) remain valid for the intensity under 𝐻0,𝑡

with probabilities going to 1 for 𝑇 →∞

𝜆∗(𝑡 , 𝜔) = lim

𝛿→0

1

𝛿
P [𝑁{[𝑡 , 𝑡 + 𝛿)} > 0 | 𝐻0,𝑡] = E {𝜆(𝑡 , 𝜔) | 𝐻0,𝑡} . (5.29)

This implies �̂�𝑀𝐿𝐸 ∈ 𝑈0, which completes the proof. □

Remark 5.2.13. We take the integral of range (−∞, 𝑡), which becomes the sum for all integers 𝑖 such that

𝑡𝑖 < 𝑡. If instead, we take the integral on the range (−∞, 𝑡], then 𝜆𝜃(𝑡 , 𝜔) is no longer predictable.

Consistency for exponential memory kernel
A simulation study for obtaining the maximum likelihood estimates for Hawkes processes with an

exponential memory kernel has been performed by Ogata [59]. For a Hawkes process with exponential

memory kernel and constant baseline intensity, we have 𝜃 = (𝜇, 𝛼, 𝜏) such that 𝛼 < 1

𝜏 .

Indeed, the Hawkes process with exponential memory kernel is stationary, ergodic, and absolutely

continuous with respect to the standard Poisson process on any finite interval. Secondly, 𝜇, 𝛼 ∈ R+. We

fix 𝜏 to a constant value for each of the computations. Therefore choosing 𝜇, 𝛼 in compact intervals

results in a space Θ that is compact as well.

Consistency for non-stationary baseline function
Ogata [59] proofs consistency under a constant baseline intensity 𝜇. However, as demonstrated in

Section 3.2.1, stationarity for the number of arrivals over time is often violated, as the number of arrivals

is dependent upon time, such as workday hours and weekends. If we incorporate Equation (3.1) into

the baseline, we obtain a Hawkes process with baseline intensity function 𝜇(𝑡) and memory kernel 𝜙(𝑡)
such that

log
10
(𝜇(𝑡)) = 𝛽0 + 𝛽1𝑡 + 𝛽2 sin(𝑊𝑡) + 𝛽3 cos(𝑊𝑡) + 𝛽4𝐼{𝑡∈weekend}

𝜇(𝑡) = 10
𝛽0+𝛽1𝑡+𝛽2 sin(𝑊𝑡)+𝛽3 cos(𝑊𝑡)+𝛽4𝐼{𝑡∈weekend}

(5.30)

𝜙(𝑡) = 𝛼 exp

(
𝑡

𝜏

)
, (5.31)

with 𝜃 = (𝛽0 , 𝛽1 , 𝛽2 , 𝛽3 , 𝛽4 , 𝛼, 𝜏).

We sketch the proof as proposed by Hall and Chen [26] for non-stationary baseline intensity. The

proof assumes both the baseline intensity 𝜇(·;𝜃) and the memory kernel 𝜙(·;𝜃) are known up to some

finite-dimensional parameter 𝜃, which is indeed the case from Equations 5.30 and 5.31. Due to the

absence of a stationary baseline function, we can not apply the asymptotic scenario of letting the

observation time of the process tend to infinity. Instead, the proof states five conditions regarding the

baseline intensity function 𝜇(·;𝜃) and the memory kernel 𝜙(·;𝜃). These five conditions are as follows:

1. Both the normalized baseline intensity 𝜇(·;𝜃) and the excitation function 𝜙(·;𝜃) are positive and

continuous on [0, 1] for all 𝜃 ∈ Θ.

2. The parameter space Θ is compact and its interior is connected and contains a 𝑑-dimensional

nonempty open ball which, in turn, contains the true parameter.

3. For each 𝑡 ∈ [0, 1], the functions 𝜇(𝑡;𝜃) and 𝜙(𝑡;𝜃) are twice continuously differentiable in 𝜃 and

their partial derivatives, up to order 2 with respect to 𝜃, are all uniformly equicontinuous when

regarded as families of functions of 𝜃.

5.2. One-dimensional Hawkes processes 50

4. For each 𝜃, 𝜕𝜃𝜙(𝑡;𝜃), and 𝜕2

𝜃𝜙(𝑡;𝜃) are continuously differentiable in 𝑡.

5. The matrix-valued function

𝑙(𝜃) =
∫

1

0

{
𝜕𝜃𝜇(𝑡;𝜃) +

∫ 𝑡

0

𝜕𝜃𝜙(𝑡 − 𝑢;𝜃)ℎ(𝑢;𝜃)d𝑢
}⊗2

𝜇(𝑡;𝜃) +
∫ 𝑡

0

𝜙(𝑡 − 𝑢;𝜃)ℎ(𝑢;𝜃)d𝑢
d𝑡

is non singular at the true parameter value, where the function ℎ(𝑡;𝜃) is determined by the

functions 𝜇 and 𝜙 and given as follows; let

𝑅(𝑡) = 𝛾1 exp−(𝛾2 − 𝛾1)𝑡 ,

such that

ℎ(𝑡;𝜃) = 𝜇(𝑡;𝜃) +
∫ 𝑡

0

𝑅(𝑡 − 𝑢;𝜃) · 𝜇(𝑢;𝜃)𝑑𝑢 (5.32)

= 𝜇(𝑡;𝜃) +
∫ 𝑡

0

𝛾1 exp (−(𝛾2 − 𝛾1)(𝑡 − 𝑢)) · 𝜇(𝑢;𝜃)𝑑𝑢 (5.33)

= 𝜇(𝑡;𝜃) + 𝛾1 exp (−(𝛾2 − 𝛾1)𝑡)
∫ 𝑡

0

exp (−(𝛾2 − 𝛾1)(−𝑢)) · 𝜇(𝑢;𝜃)𝑑𝑢 (5.34)

The proof is based upon considering a sequence of self-exciting point processes with a non-constant

baseline intensity 𝑁𝑛(·), where the sequence of point processes 𝑁𝑛
𝑡 has intensity function

𝜆𝑛𝑡 = 𝑎𝑛𝜇(𝑡) +
∫ 𝑡

0

𝜙(𝑡 − 𝑢)d𝑁(𝑢)𝑛 , 𝑡 ∈ [0, 1], (5.35)

where 𝑎𝑛 is a proportionality constant that tends to infinity with index set 𝑛. In the sequel, the baseline

intensity 𝜇(𝑡;𝜃) tends to infinity as 𝑛 →∞, and the memory kernel remains fixed.

For more details, see Chen and Hall [26]

Least squares
Although less common in literature, a least squares function can be defined as an alternative to the

likelihood function.

Theorem 5.2.14: Least squares functional for Hawkes processes

Let 𝑁(·) be a Hawkes process on the time interval [0;𝑇]. Let T = {𝑇1 , 𝑇2 , . . . , 𝑇𝑛} denote the

realizations of the counting process 𝑁(·). The least squares function 𝑅(𝜃) for 𝑁(·) can be written

in the form

𝑅(𝜃;ℋ𝑇) =
∫ 𝑇

0

𝜆(𝑠 |ℋ𝑠)2𝑑𝑠 − 2

𝑛∑
𝑖=1

𝜆(𝑇𝑖 |ℋ𝑇𝑖). (5.36)

The least squares estimator �̂�𝐿𝑆𝐸 = �̂�(𝑇𝑖 ; 0 ≥ 𝑇𝑖 ≥ 𝑇) is defined as the estimator which minimizes

Equation (5.36) under observation from the counting process 𝑁(·).
Minimizing the first term

∫ 𝑇

0

𝜆(𝑠 |ℋ𝑠)2𝑑𝑠 enforces low intensity at non-arrival times. Maximizing

the second term 2

∑𝑛
𝑘=1

𝜆(𝑇𝑛 |ℋ𝑇𝑛) enforces a high intensity at arrival times. The same analogy can

be drawn with the negative log-likelihood from Equation (5.21), where maximizing the second term∑𝑛
𝑖=1

log(𝜆(𝑇𝑖 |ℋ𝑇𝑖)) enforces high intensity at arrival times.

The weak consistency of the least squares estimator of the one-dimensional Hawkes process was proved

by [41] as a particular case of the more general marked Hawkes process framework.

5.3. Marked Hawkes processes 51

5.3. Marked Hawkes processes
In Section 5.2, we saw that after an arrival 𝑡, an instantaneous excitation arises. This excitation is

governed by memory kernel 𝜙(·). We observe only one process. Inference is therefore performed on

counting process 𝑁(·).

In contrast to the one-dimensional Hawkes process, situations arise where we observe additional

information for each arrival in the form of a mark. This results in a marked point process.

Definition 5.3.1: Marked point processes [19]

A marked process T𝑀𝑃𝑃 on 𝒳 ×𝒰 is defined as a mapping from Ω to the space of counting

processesM(𝒳×𝒰), meaning that each realization 𝜔 ∈ Ω of a marked point process is a counting

measure T𝑀𝑃𝑃(𝜔) ∈ M(𝒳 ×𝒰).

Although it is possible to assign a continuous mark space, we will restrict ourselves to a discrete mark

space. Therefore the mark space will be denoted as in a subset of the natural numbers,𝒰 ⊆ N. Again

utilizing the earthquake and stock example from the introduction of Section 5.2, we can generalize to

marked Hawkes process as follows:

• Earthquakes; An example of the label could be the province of the earthquake. Here an earthquake

in one province might strongly increase the conditional intensity in a neighboring province but do

not affect provinces far away. Furthermore the self-excitation of increased probability for another

earthquake in the same province, for instance, aftershocks, might variate per province [60].

• Stocks; An example of the label could be the individual stock. Here an increase in buy orders for

stocks in a bank such as ING might strongly increase the number of buy orders for a bank such

as ABN Amro but have no influence on the number of buy orders for a tech company like Apple.
Marks offer us the flexibility to give a different triggering effect from stocks of the same marked

type in contrast to stocks of an unrelated market type [9, 27].

Marked Hawkes processes are also self-exciting processes, but besides, also have cross-exciting between

different marks. The intensity of a new arrival does not only depend on the number of prior arrivals

but also on the label of the arrival. This allows the marked Hawkes process to capture more complex

dependencies between arrivals.

This presents us to Research Question 3.

Research Question 3

How can the marked Hawkes process be employed to capture interactions among arrivals? And

how can the interactions be estimated?

Remark 5.3.2. A marked Hawkes process is sometimes referred to as a multidimensional, multivariate,

or mutually exciting Hawkes process. In this thesis, we will consistently refer to a marked Hawkes

process.

5.3.1. Conditional intensity function
The marked point process now becomes

T𝑀𝑃𝑃 = {(𝑇1 , 𝑘1), (𝑇2 , 𝑘2), . . . , (𝑇𝑛 , 𝑘𝑛)} (5.37)

With 𝑇𝑖 the arrival time and 𝑢𝑖 the mark of the 𝑖𝑡ℎ appearance. We will assume the marks take values in

the finite set of integers 𝑢 ∈ 𝒰 := {1, . . . , 𝑈}, with𝑈 ≪ 𝑛 [37]. Each counting process 𝑁𝑢(𝑡) represents

the number of arrivals up to time 𝑡 having mark 𝑢.

𝑁𝑢(𝑡) =
∑

(𝑇𝑖 ,𝑢𝑖)∈T𝑀𝑃𝑃
𝑢𝑖=𝑢

I[0,𝑡](𝑇𝑖) (5.38)

5.3. Marked Hawkes processes 52

The conditional intensity function for the marked Hawkes process can now be defined.

Definition 5.3.3: Marked Hawkes Processes [42]

Consider a collection of𝑈 counting processes 𝑵(𝒕) = {𝑁1(𝑡), 𝑁2(𝑡), . . . , 𝑁𝑈 (𝑡)} with collective

historyℋ𝑡 . The conditional intensity function of each counting process 𝑁𝑢(𝑡) is given by

𝜆𝑢(𝑡 |ℋ𝑡) = 𝜇𝑢(𝑡) +
𝑈∑
𝑢′=1

∫ 𝑡

−∞
𝜙𝑢𝑢′(𝑡 − 𝑠)𝑑𝑁𝑢(𝑠)

= 𝜇𝑢(𝑡) +
𝑈∑
𝑢=1

∑
(𝑇𝑖 ,𝑢𝑖)∈ℋ𝑡
𝑢𝑖=𝑢

𝜙𝑢𝑢′(𝑡 − 𝑇𝑖),

for 𝜇𝑢(·) : R+
0
→ R+

0
and 𝜙𝑢𝑢′(·) : R+

0
→ R+

0
.

Exponential memory kernel
Similar as to one-dimensional Hawkes processes, we can now define marked Hawkes processes with

exponential memory kernel.

Definition 5.3.4: Marked Hawkes processes with exponential memory kernel

Assume a similar setting as Definition 5.3.3. The conditional intensity function for mark 𝑢 with

exponentially decaying memory kernel 𝜙𝑢𝑢′(𝑡 − 𝑇𝑖) = 𝛼𝑢𝑢′ · exp

(
− 𝑡−𝑇𝑖𝜏𝑢𝑢′

)
is defined as

𝜆𝑢(𝑡 |ℋ𝑡) = 𝜇𝑢(𝑡) +
𝑈∑
𝑢′=1

∑
(𝑇𝑖 ,𝑢𝑖)∈ℋ𝑡

𝑢𝑖=𝑢
′

𝛼𝑢𝑢′ · exp

(
− 𝑡−𝑇𝑖𝜏𝑢𝑢′

)
,

for non-negative constants {𝛼𝑢𝑢′ , 𝜏𝑢𝑢′ : 𝑢, 𝑢′ ∈ 𝒰 := {1, · · · , 𝑈}}.

Whereas in the one-dimensional setting, we only obtained a single self-exciting parameter 𝛼, we

now obtain 𝑈 self-exciting parameters 𝛼11 , 𝛼22 , ..., 𝛼𝑈𝑈 , as well as 𝑈(𝑈 − 1) cross-excitation term

{𝛼𝑢𝑢′ : 𝑢, 𝑢′ ∈ 𝒰 , 𝑢 ≠ 𝑢′}. Together these𝑈2
parameters form the excitation matrix𝒜.

Definition 5.3.5: Excitation matrix𝒜

Given a marked Hawkes process with an exponential memory kernel 𝜙𝑢𝑢′(𝑡) = 𝛼𝑢𝑢′ · exp

(
− 𝑡

𝜏𝑢𝑢′

)
.

All terms {𝛼𝑢𝑢′ : 𝑢, 𝑢′ ∈ 𝒰} together make up excitation matrix𝒜 ∈ R𝑈×𝑈 .

Remark 5.3.6. 𝛼𝑢𝑢′ captures the increase in the conditional intensity of arrival type 𝑢 given an arrival of

type 𝑢′. It should be noted that in general 𝛼𝑢𝑢′ ≠ 𝛼𝑢′𝑢 , because the influence of 𝑢 on 𝑢′ may not be the

influence of 𝑢′ on 𝑢.

Similarly, for the characteristic time, we can define the characteristic time matrix 𝒯 .

Definition 5.3.7: Characteristic time matrix 𝒯

Given a marked Hawkes process with an exponential memory kernel 𝜙𝑢𝑢′(𝑡) = 𝛼𝑢𝑢′ · exp

(
− 𝑡

𝜏𝑢𝑢′

)
All terms {𝜏𝑢𝑢′ : 𝑢, 𝑢′ ∈ 𝒰} together make up characteristic time matrix 𝒯 ∈ R𝑈×𝑈 .

Besides excitation matrix 𝒜 and characteristic time matrix 𝒯 , we also have 𝑈 baseline functions

{𝜇(𝑡)𝑢 : 𝑢 ∈ 𝒰}. In order to ensure stationarity as well as to simplify the estimation later on in Chapter

6, we assume a constant baseline for each of the counting processes {𝑁𝑢(𝑡) : 𝑢 ∈ 𝒰}. This results in

baseline vectorℳ.

5.3. Marked Hawkes processes 53

Definition 5.3.8: Baseline vectorℳ

Given a marked Hawkes process with a constant baseline intensity. All terms {𝜇𝑢 : 𝑢 ∈ 𝒰}
together make up baseline vector𝒰 ∈ R𝑈 .

The estimation of the constant baseline will not play a notable role in this thesis, as we will see in Section

5.3.2 that our core interest is centered around the estimated excitation matrix �̂�.

5.3.2. Granger causality
In Section 4.2, we saw how to separate event and incident arrivals into different groups, either by

clustering or by parsing the log messages. Our goal is now to be able to causally relate which groups

of messages can be associated with subsequent groups of messages. One of the common frameworks

for marked Hawkes processes is Granger causality. This framework is often applied in discrete-time

continuous-valued time series [24, 54, 78]. Granger causality is a statistical concept that refers to the

idea that one time series can be used to predict another time series. In other words, it suggests that past

values of time series can be used to predict future values of another time series.

Granger causality solely offers insight into forecasting ability and may not reveal the true causal link

between two variables. Even if event and incident records are influenced by a shared third process

with varying lags, it is possible to fail to reject the alternative hypothesis of Granger causality. Granger

causality assesses only the sequencing of occurrences for prediction purposes without delving into

the underlying causal structure. While it is suitable for forecasting performance evaluation, it does

not serve the purpose of determining the theoretical model driving the forecast. Additionally, the two

variables under consideration must exhibit stationarity. This once again emphasizes the need for a

constant baseline intensity, which ensures the marked Hawkes process is indeed stationary.

Similarly as Xu et al [78], we are interested in identifying, if possible, a subset of marks𝒱 ⊂ 𝒰 for a

type−𝑢 arrival such that 𝜆𝑢(𝑡) only depends on the historical arrivals of type𝒱 , denoted asℋ𝒱𝑡 , and

not those of the other types, denoted ℋ𝒰\𝒱𝑡 . In other words, 𝜆𝑢(𝑡 |ℋ𝒰𝑡) = 𝜆𝑢(𝑡 |ℋ𝒱𝑡). First, we will

define Local independence.

Definition 5.3.9: Local independence

For a subset 𝒱 ⊂ 𝒰 , let 𝑁𝒱 = {𝑁𝑢(𝑡) | 𝑢 ∈ 𝒱}. The filtration 𝔉𝒱𝑡 is defined as

𝜎 {𝑁𝑢(𝑠) | 𝑠 ≤ 𝑡 , 𝑢 ∈ 𝒱}, i.e., the smallest 𝜎-algebra generated by the random processes.

The counting process 𝑁𝑢 is locally independent of 𝑁𝑢′ , given 𝑁𝒰\{𝑢,𝑢′}, if the intensity function

𝜆𝑢(𝑡) is measurable with respect to 𝔉−𝑢
′

𝑡 for all 𝑡 ∈ [0, 𝑇]. Otherwise 𝑁𝑢 is locally dependent of

𝑁𝑢′ .

In particular, 𝔉𝑢𝑡 is the internal filtration of the counting process 𝑁𝑢(𝑡) while 𝔉−𝑢𝑡 is the filtration for the

subset𝒰\{𝑢}. With this definition, we can construct the so-called Granger-causality graph 𝐺 = (𝒰 , ℰ)
with mark space𝒰 as the nodes and the directed edges indicating the lack of local independence, i.e.,

𝑢′ → 𝑢 ∈ ℰ if type- 𝑢′ arrival Granger-causes type- 𝑢 arrival. We can now relate the memory kernel

𝜙𝑢𝑢′(·) to the Granger causality graph 𝐺 = (𝒰 , ℰ).

Theorem 5.3.10: Granger causality and the memory kernel

Given a Hawkes process with conditional intensity function defined in Definition 5.3.3 and

Granger causality graph 𝐺 = (𝒰 , ℰ). Let furthermore 𝑑𝑁𝑢′(𝑡 − 𝑠) > 0 for all 0 ≤ 𝑠 < 𝑡 ≤ 𝑇. Then

𝜙𝑢𝑢′(𝑡) = 0 for all 𝑡 in [0,∞) ⇐⇒ 𝑢′→ 𝑢 ∉ ℰ . (5.39)

In practice we only observe arrivals in the interval [0, 𝑇] instead of [0,∞). We hope our time window of

two years is sufficient to approximate the theoretical setting of Theorem 5.3.10.

5.3. Marked Hawkes processes 54

Granger causality for exponential memory kernels
For Hawkes processes with an exponential memory kernel, it can trivially be obtained that

𝛼𝑢𝑢′ = 0⇐⇒ 𝜙𝑢𝑢′(𝑡) = 𝛼𝑢𝑢′ · exp

(
− 𝑡

𝜏𝑢𝑢′

)
= 0 for all 𝑡 in [0,∞).

As 𝜏𝑢𝑢′ > 0, this results in the following corollary from Theorem 5.3.10:

Corollary 5.3.11: Granger causality for exponential memory kernels

Given a Hawkes process with conditional intensity function as defined in Definition 5.3.3 and

exponential memory kernel 𝜙𝑢𝑢′(𝑡) = 𝛼𝑢𝑢′ · exp

(
− 𝑡

𝜏𝑢𝑢′

)
. Then it follows

type-𝑢 arrivals are Granger-caused by type-𝑢′ arrivals if and only if 𝛼𝑢𝑢′ > 0.

For Hawkes processes with exponential memory kernel, learning the Granger causal graph 𝐺 = (𝒰 , ℰ)
is therefore equivalent to learning the excitation matrix 𝒜. Similarly, if 𝛼𝑢𝑢′ = 0, arrival instances of

𝑢-type are Granger non-causal to those of the 𝑢′ type.

5.3.3. Estimation procedure
Similarly to one-dimensional Hawkes processes from Section 5.2, we can generalize the likelihood

function from Theorem 5.2.9 and the least-squares function from 5.2.14 to marked Hawkes processes.

Likelihood function
We can now start by writing down the likelihood function in the marked framework and specify further

in the case of an exponential kernel. We will start with the general multivariate or ’marked’ likelihood.

Recall again that in the marked framework, a mark 𝑢 ∈ 𝒰 is available for each arrival. Besides 𝑇1 , . . . , 𝑇𝑛
on [0, 𝑇], we also obtain a sequence 𝑢1 , . . . , 𝑢𝑛 , where 𝑢𝑖 is the type of arrival 𝑇𝑖

Definition 5.3.12: Marked log likelihood function

Consider a collection of𝑈 counting processes 𝑵(𝒕) = {𝑁1(𝑡), 𝑁2(𝑡), . . . , 𝑁𝑈 (𝑡)} with collective

history ℋ𝑡 on [0, 𝑇] for finite positive 𝑇 and let 𝑇1 , 𝑇2 , ..., 𝑇𝑛 together with marks 𝑢 ∈ 𝒰 =

{1, . . . , 𝑈}. Then, the marked log-likelihood function ℒ(𝜃;ℋ𝑇) of such 𝑁 can be written in the

form

ℒ(𝜃;ℋ𝑇) =
1

𝑇

𝑈∑
𝑢=1

(∫ 𝑇

0

log (𝜆𝑢 (𝑠 |ℋ𝑠)) 𝑑𝑁𝑢 −
∫ 𝑇

0

𝜆𝑢(𝑠 |ℋ𝑠)𝑑𝑠
)
. (5.40)

Consistency of the MLE for marked Hawkes processes
A consistency proof for the MLE for marked Hawkes processes is given by Guo et al. [25]. That is, for

any neighborhood𝑈0 of 𝜃0

lim

𝑇→∞
P(|𝜃0 − �̂�𝑀𝐿𝐸 | ≥ 𝜖) = 0, for all 𝜖 > 0.

They assume a constant baseline intensity {𝜇𝑢 : 𝑢 ∈ 𝒰} associated with the respective intensity function

𝜆𝑢(𝑡 |ℋ𝑡). Their proof is rather similar to the proof of Theorem 5.2.12. Moreover, they extend the proof

to show consistency for the maximum likelihood estimator under ℓ1 regularization.

Least-squares function
In a similar fashion, we can define the marked least squares function

5.4. Estimating Hawkes processes using the Tick library 55

Definition 5.3.13: Marked least squares function [9]

Consider a collection of𝑈 counting processes 𝑵(𝒕) = {𝑁1(𝑡), 𝑁2(𝑡), . . . , 𝑁𝑈 (𝑡)} with collective

history ℋ𝑡 on [0, 𝑇] for finite positive 𝑇 and let 𝑇1 , 𝑇2 , ..., 𝑇𝑛 together with marks 𝑢 ∈ 𝒰 =

{1, . . . , 𝑈}. Then, the least-squares function 𝑅(𝜃;ℋ𝑇) of such 𝑁 can be written in the form

𝑅(𝜃;ℋ𝑇) =
1

𝑇

𝑈∑
𝑢=1

(∫ 𝑇

0

𝜆𝑢(𝑠 |ℋ𝑠)2𝑑𝑠 − 2

∫ 𝑇

0

𝜆𝑢(𝑠 |ℋ𝑠)𝑑𝑁𝑢(𝑠)
)
. (5.41)

Kircher [41] proved the weak consistency of the least square estimator under the marked Hawkes

process framework. The proof largely depends on matrix manipulations and is rather technical.

5.4. Estimating Hawkes processes using the Tick library
The Tick library [3] is a Python library designed for the statistical learning of time-dependent systems,

such as point processes. The primary objective of the Hawkes Tick module is to provide tools and

functions for simulating, modeling, and analyzing Hawkes processes efficiently. The library offers

estimators to infer the parameters of a Hawkes process from observed data.

Two estimators that directly estimate the parameters that optimize Equations 5.40 and 5.41 are the

tick.hawkes.HawkesExpKern and tick.hawkes.HawkesADM4 estimators. Both estimators are designed

for marked Hawkes processes with exponential kernels and constant baseline intensity. Let us recall

that, for mark 𝑢 ∈ 𝒰 := {1, . . . , 𝑈}, the conditional intensity at time 𝑡 equals

𝜆𝑢(𝑡 |ℋ𝑡) = 𝜇𝑢(𝑡) +
𝑈∑
𝑢′=1

∑
(𝑇𝑖 ,𝑢𝑖)∈ℋ𝑡

𝑢𝑖=𝑢
′

𝛼𝑢𝑢′ · exp

(
− 𝑡 − 𝑇𝑖

𝜏𝑢𝑢′

)
.

Tick exponential memory kernel parametrization
The parameterization of the exponential memory kernel from Tick library slightly deviates from our

parametrization in Definition 5.3.4, namely

𝜙𝑢𝑢′(𝑡) = 𝛼′𝑢𝑢′𝛽
′
𝑢𝑢′ exp (−𝛽′𝑢𝑢′ · 𝑡)1𝑡>0 ,

instead of

𝜙𝑢𝑢′(𝑡) = 𝛼𝑢𝑢′ · exp

(
− 𝑡

𝜏𝑢𝑢′

)
.

Once we fix 𝜏𝑢𝑢′ and set 𝛽′𝑢𝑢′ =
1

𝜏𝑢𝑢′
, we obtain

𝛼′𝑢𝑢′ =
𝛼𝑢𝑢′

𝛽′𝑢𝑢′
= 𝛼𝑢𝑢′𝜏𝑢𝑢′ .

We can now obtain the original 𝛼𝑢𝑢′ by

𝛼𝑢𝑢′ =
𝛼′𝑢𝑢′

𝜏𝑢𝑢′
.

5.4.1. Two estimators
We now describe in more detail the tick.hawkes.ExpKern and tick.hawkes.HawkesADM4 estimators,

which we refer to as the ADM4 and Expkern estimators. Estimating both the baseline intensityℳ,

excitation matrix𝒜, and characteristic time matrix 𝒯 at once comes down to a non-convex optimization

problem. Therefore, both estimators assume a given value for the characteristic time matrix 𝒯 and

subsequently, estimate the baseline intensity ℳ̂ and excitation matrix �̂�.

We describe the available M-estimators (log-likelihood or least-squares), available choices for setting

excitation matrix 𝒯 , and the regularization method.

5.4. Estimating Hawkes processes using the Tick library 56

tick.hawkes.ExpKern
The Expkern estimator can estimate both the likelihood functional from Equation (5.40) as well as

the least-squares functional from Equation (5.41) for parameter estimation. Given decay matrix 𝒯 ,

it returns estimated baseline intensity ℳ̂ and estimated excitation matrix �̂� which optimize the

chosen functional. To enforce sparsity for the estimated excitation matrix, four different regularization

methods exist. These regularization methods penalize large values for the estimated excitation matrix �̂�.

The four methods are ℓ1-regularization, ℓ2-regularization, a linear combination of ℓ1 and ℓ2 (called

elastic net) and nuclear-regularization. We give a minimalistic overview of each of these regularization

methods.

• ℓ1-regularization, also called Lasso regularization, is defined as

∥𝒜∥1 = max

1≤𝑢′≤𝑈

𝑈∑
𝑢=1

|𝛼𝑢𝑢′ | , (5.42)

which equals the maximum absolute column sum. In terms of excitation matrix values, where all

terms are positive by definition, this is the maximum value one mark ’excites’ on all other marks,

i.e. the maximum column sum of the estimated excitation matrix.

• ℓ2-regularization, also called Ridge regularization, is defined as

∥𝒜∥2 =

√
𝜆max

(
𝒜𝑇𝒜

)
= 𝜎max(𝒜), (5.43)

where 𝜆𝑚𝑎𝑥 is the highest eigenvalues of𝒜𝑇𝒜 and 𝜎max(𝒜) represents the largest singular value

of estimated excitation matrix �̂�.

• Elastic net-regularization is a combination of ℓ1-regularization and ℓ2-regularization. It is char-

acterized by parameter 𝜋 governing the ratio between ℓ1 and ℓ2 regularization. The elastic net

regularization therefore becomes

∥𝒜∥𝜋=· = 𝜋 · ∥𝒜∥1 + (1 − 𝜋) · ∥𝒜∥2 for 𝜋 ∈ (0, 1). (5.44)

• Nuclear-regularization is defined as

∥𝒜∥∗ =
rank A∑
𝑖=1

𝜎𝑖(𝒜), (5.45)

which is the sum of singular values.

tick.hawkes.HawkesADM4
In contrast to the Expkern solver, the ADM4 solver is more restricted. The ADM4 estimator can only

estimate the maximum log-likelihood and assumes one characteristic time value 𝜏 between the excitation

of different marks. Therefore the excitation matrix equals

𝒯 = 𝜏 · 11𝑇 for 1 ∈ R𝑈 .

The choice for allowing only one characteristic time 𝜏 to be set, resulted in fast computation as compared

to the ExpKern estimator. Moreover, in Section 6.3.1 we will compare the runtime of both the ADM4

and ExpKern estimator to validate this is indeed the case.

The ADM4 estimator uses a mix of ℓ1-regularization from Equation (5.42) and Nuclear-regularization

from Equation (5.45). It therefore maximizes the log-likelihood under regularization

min

𝒜≥0,ℳ≥0

−ℒ(𝜃;ℋ𝑇) + 𝜋∥𝒜∥∗ + (1 − 𝜋))∥𝒜∥1. (5.46)

The ADM4 estimator uses an expectation minimization (EM) approach in order to maximize the

log-likelihood under regularization. In particular, by combining ℓ1 and Nuclear regularization, it

enforces both sparsity and a low-rank structure.

5.4. Estimating Hawkes processes using the Tick library 57

Remark 5.4.1. We established consistency for the marked Hawkes process with an exponential memory

kernel for the log-likelihood and least-squares estimates. These proofs were established for marked

Hawkes processes without regularization. Only Guo et al. [25] considered ℓ1-regularization of the

estimated excitation matrix �̂�.

Comparison between least squares and likelihood functionals
Bompaire [9] made a comparison between the least squares and negative log-likelihood functionals

in terms of runtime complexity. Given point process T with a total of 𝑛 arrivals for mark space

𝒰 = {1, . . . , 𝑈}. The complexity for the least squares estimate becomes 𝒪(𝑈3) compared to a complexity

of 𝒪(𝑛 ·𝑈) for the log-likelihood estimate. Remarkably, the complexity of the least-squares functional is

independent of the number of arrivals and only depends on the number of dimensions of the mark

space. The least squares functional is therefore preferred in cases where 𝑛 ≫ 𝑈2
. In the framework of

large-scale service systems, this is the case when there are many semantically similar arrivals reoccurring.

Finally, in Section 6.3.1, we will evaluate the Expkern and ADM4 estimator for their default values and

compare the results in terms of runtime and enforced sparsity.

6
Hierachical Hawkes processes

In this chapter, we unveil the outcomes of a novel hierarchical Hawkes model. We apply diverse

hierarchical linear models to the estimated excitation matrix �̂�, adhering to the five-level hierarchical

service architecture as can be found in Figure 4.4.

This chapter is structured into five sections. In Section 6.1, we initiate by constructing an illustrative

example, featuring a simple two-level hierarchical model. Subsequently, we progressively extend this

model, building up to a comprehensive five-level model in Section 6.2. Upon establishing the five-level

model, Section 6.3 delves into three essential practical considerations necessary to estimate the excitation

matrix. These considerations encompass (1) the selection of an estimator from the tick library, (2) the

determination of the characteristic time 𝜏, and (3) the conduction of a simulation study aimed at tackling

the configuration item - business application mapping.

Moving forward to Section 6.4, we decompose the estimated excitation matrix into different levels of

service, employing various hierarchical linear models. These models will be applied to the IT monitoring

data stream from the same business unit examined in Chapter 4. Finally, in Section 6.5, we will interpret

the findings from the previous section and discuss their implications for the field of Software Architecture.

This chapter builds around answering the final research question.

Research Question 4

How can the estimated excitation matrix contribute to understanding the associations within a

level of service?

6.1. Two-level hierarchical model
Before decomposing the two-level hierarchical model, it is important to first introduce the concepts of

fixed and random effects, as well as the concept of nesting.

Fixed and random effects
In the context of hierarchical linear models, fixed effects refer to the predictor or independent variables

that are presumed to exert a systematic and unchanging impact on the dependent variable, which,

in this chapter, corresponds to the estimated excitation value. The fixed effects are considered to be

constant across different groups or clusters. Essentially, fixed effects are employed to characterize the

average associations between the predictor variables and the outcome variable.

Conversely, random effects typically pertain to grouping factors that we aim to control for. Often, we

are not specifically interested in their direct impact on the response variable. Additionally, the data

for random effects is usually a sample from the entire set of possibilities. For instance, in the case of

configuration items, we are not primarily concerned with the individual effect of each configuration item

58

6.1. Two-level hierarchical model 59

on the excitation matrix. However, we acknowledge that the excitation values within a configuration

item might be correlated, and therefore, we seek to control for this correlation as a random effect.

Explicit nesting
Nesting can be categorized into two types: explicit and implicit. In the context discussed here, levels

two to five introduce implicit nesting. This implies incidents 𝑗 on configuration item 𝑘 are correlated to

incidents 𝑗 on another configuration item 𝑘′. Additionally, arrivals on the same configuration items 𝑘
but different business applications 𝑙 , 𝑙′ are correlated.

On the other hand, nesting at the level of message clusters (level one) is explicit. The clusters within the

message cluster hierarchy are only meaningful when associated with a specific business unit. This is

due to the fact that the message clustering process was conducted independently for each business unit.

Therefore, clusters of type 1 for one business unit 𝑚 have no relation to clusters of type 1 for another

business unit 𝑚′. Consequently, clusters of type 1 in one business unit 𝑚 bear no connection to clusters

of type 1 in another business unit 𝑚′. They represent distinct sets of semantically similar messages

unique to their respective business units.

6.1.1. Two-level mark space
In Section 5.3, we established the excitation of mark 𝑢′ on 𝑢 as 𝛼𝑢𝑢′ . However, from this point forward,

we will incorporate the service levels outlined in Section 4.1.3 to illustrate how we can integrate the

hierarchical service architecture into the excitation value. To begin with, we will use only two of the five

service levels. This gradual approach allows us to introduce the concept of decomposing the excitation

value into multiple service components before moving on to a more complex model that includes all

five levels of service.

For the service levels of interest, we will focus on the message cluster ℎ ∈ 𝐶𝐿𝑈 and the configuration

item 𝑘 ∈ 𝐶𝐼. Since each arrival originates from a single cluster and a single configuration item, our mark

space is now represented as𝒰 = 𝐶𝐿𝑈 × 𝐶𝐼. Consequently, we are interested in the excitation 𝛼𝑢𝑢′ of

arrivals from mark 𝑢′ (originating from cluster ℎ′ and configuration item 𝑘′) on arrivals from mark 𝑢
(originating from cluster ℎ and configuration item 𝑘).

In the context of the two-level example, the level-1 units correspond to clusters, and the level-2 units

correspond to configuration items. Instead of using 𝛼𝑢𝑢′ , we represent the excitation as 𝛼ℎ𝑘←ℎ′𝑘′ , where

ℎ and ℎ′ belong to the set of clusters 𝐶𝐿𝑈 , and 𝑘 and 𝑘′ belong to the set of configuration items 𝐶𝐼.

Remark 6.1.1. In Section 4.1.3, it was shown that the set of clusters 𝐶𝐿𝑈𝑚
depends on the business unit

𝑚. However, for the sake of illustration in this section, we will use the simplified notation 𝐶𝐿𝑈 .

Definition 6.1.2: Two-level hierarchy

Let level-1 units be ℎ, ℎ′ ∈ 𝐶𝐿𝑈 := {1, . . . , 𝑛𝑐𝑙𝑢} and let level-2 units be 𝑘, 𝑘′ ∈ 𝐶𝐼 := {1, . . . , 𝑛𝑐𝑖}.
The excitation of arrivals from mark 𝑢′ (originating from cluster ℎ′ and configuration item 𝑘′) on

arrivals from mark 𝑢 (originating from cluster ℎ and configuration item 𝑘) can hierarchically be

decomposed as {
𝛼ℎ𝑘←ℎ′𝑘′ := 𝛽0𝑘←0𝑘′ + 𝑟ℎ𝑘←ℎ′𝑘′ Level-1,

𝛽0𝑘←0𝑘′ = 𝛾00 + 𝑢0𝑘←0𝑘′ Level-2.

Remark 6.1.3. We use the notation "arrivals ℎ𝑘" to refer to all arrivals that originate from the combination

of message cluster ℎ and configuration item 𝑘.

Furthermore, we can represent the model in a combined form, leading to the equation

𝛼ℎ𝑘←ℎ′𝑘′ := 𝛾00 + 𝑢0𝑘←0𝑘′ + 𝑟ℎ𝑘←ℎ′𝑘′ . (6.1)

Now, we can provide interpretations for each of the coefficients:

6.1. Two-level hierarchical model 60

• 𝛼ℎ𝑘←ℎ′𝑘′ is the excitation of arrivals ℎ′𝑘′ on arrivals ℎ𝑘.

• 𝛽0𝑘←0𝑘′ is the mean effect of arrivals at configuration item 𝑘′ on arrivals at configuration item 𝑘.
This is called the level-1 intercept.

• 𝑟ℎ𝑘←ℎ′𝑘′ is the deviation of the excitation of arrivals ℎ′𝑘′ on arrivals ℎ𝑘 as compared to the mean

effect 𝛽0𝑘←0𝑘′ . This is called the level-1 random effect. It is assumed to be normally distributed with

mean zero and standard deviation 𝜎2
.

• 𝛾00 is the grand mean. This is called the level-2 intercept, which is a fixed effect.
• 𝑢0𝑘←0𝑘′ is the deviation of the excitation of arrivals 𝑘′ on arrivals 𝑘 from the grand mean. This

is called the level-2 random effect. It is assumed to be normally distributed with mean zero and

standard deviation 𝜏𝛽.

Hierarchical Hawkes
We can now substitute back the excitation 𝛼ℎ𝑘←ℎ′𝑘′ within the framework of marked Hawkes process.

In this thesis, we consider a marked Hawkes process with an exponential memory kernel, as seen

in Definition 5.3.4. However, our analysis can be applied to a family of memory kernels 𝜙𝑢𝑢′(·) for

which the memory kernel can be split into an instantaneous excitation 𝛼𝑢𝑢′ and a decreasing function

𝜙
′
𝑢𝑢′(·) governing the rate decay. Clearly, the exponential memory kernel satisfies this property, where

𝜙
′
𝑢𝑢′(𝑡) = exp

(
− 𝑡

𝜏𝑢𝑢′

)
.

We can now define a hierarchical Hawkes model with the decomposition from Definition 6.1.2. We denote

each arrival 𝑖 = 1, . . . , 𝑛 as (𝑇𝑖 , 𝑢𝑖) := (𝑇𝑖 , ℎ𝑖 , 𝑘𝑖). Here 𝑇𝑖 is the arrival time and 𝑢𝑖 ∈ 𝒰 := {1, . . . , 𝑈} the

mark of arrival 𝑖. The mark 𝑢𝑖 consists of the message cluster ℎ𝑖 ∈ 𝐶𝐿𝑈 and the configuration item

𝑘𝑖 ∈ 𝐶𝐼.

Definition 6.1.4: Hierarchical Hawkes

The conditional intensity function for mark ℎ𝑘 is defined as

𝜆ℎ𝑘(𝑡 |ℋ𝑡) := 𝜇ℎ𝑘 +
∑
𝑘′∈𝐶𝐼

∑
ℎ′∈𝐶𝐿𝑈

∑
(𝑇𝑖 ,ℎ𝑖 ,𝑘𝑖)∈ℋ𝑡

ℎ𝑖=ℎ
′

𝑘𝑖=𝑘
′

𝛼ℎ𝑘←ℎ′𝑘′𝜙
′
ℎ𝑘←ℎ′𝑘′(𝑡 − 𝑇𝑖),

with

𝛼ℎ𝑘←ℎ′𝑘′ := 𝛾00 + 𝑢0𝑘←0𝑘′ + 𝑟ℎ𝑘←ℎ′𝑘′ .

Substituting the second line into the first results in

𝜆ℎ𝑘(𝑡 |ℋ𝑡) := 𝜇ℎ𝑘 +
∑
𝑘′∈𝐶𝐼

∑
ℎ′∈𝐶𝐿𝑈

∑
(𝑇𝑖 ,ℎ𝑖 ,𝑘𝑖)∈ℋ𝑡

ℎ𝑖=ℎ
′

𝑘𝑖=𝑘
′

(𝛾00 + 𝑢0𝑘←0𝑘′ + 𝑟ℎ𝑘←ℎ′𝑘′)𝜙′ℎ𝑘←ℎ′𝑘′(𝑡 − 𝑇𝑖).

Remark 6.1.5. Hierarchical (linear) models are referred to as multilevel models, or mixed-effect models
in related literature. The "mixed-effect" refers to a mix of fixed and random effects. The name differs

among research disciplines. We adopt the name hierarchical model as it conveys the key characteristic

that our model consists of multiple, hierarchical levels.

6.1.2. Estimation of parameters
With regards to the two-level hierarchical model from Definition 6.1.2,we aim to estimate two types of

parameters. First of all, we are interested in the fixed effect 𝛾00. This fixed effect is the grand. Secondly,

our interest lies in the random effects at level-1 and level-2, denoted as 𝑟ℎ𝑘←ℎ′𝑘′ and 𝑢0𝑘←0𝑘′ , respectively.

We assume 𝑟ℎ𝑘←ℎ′𝑘′ ∼ 𝒩(0, 𝜎2) and 𝑢0𝑘←0𝑘′ ∼ 𝒩(0, 𝜏𝛽).

Parameter estimation
To analyze the variance of the excitation value 𝛼ℎ𝑘←ℎ′𝑘′ , it can be decomposed into two components,

each corresponding to one of the levels of the random effect. Thus, the variance of 𝛼ℎ𝑘←ℎ′𝑘′ is expressed

as follows:

6.2. Five-level hierarchical model 61

Var (𝛼ℎ𝑘←ℎ′𝑘′) = 𝜎2 + 𝜏𝛽

For each of the estimated excitation values 𝛼ℎ𝑘←ℎ′𝑘′ obtained from the estimated excitation matrix �̂�,

we can now calculate the 95% confidence interval as follows:

95%𝐶𝑜𝑛 𝑓 𝐼𝑛𝑡(𝛼ℎ𝑘←ℎ′𝑘′) = �̂�ℎ𝑘←ℎ′𝑘′ ± 1.96 · Var (�̂�ℎ𝑘←ℎ′𝑘′).

The confidence interval is particularly important as it may help answer the question of whether one mark

Granger causes the other. As established in Section 5.3.2, arrivals of mark ℎ′𝑘′ Granger cause arrivals of

mark ℎ𝑘 if and only if 𝛼ℎ𝑘←ℎ′𝑘′ ≠ 0. To test this, we can use a hypothesis test for 𝐻0 := 𝛼ℎ𝑘←ℎ′𝑘′ = 0 and

check if zero falls within the 95% confidence interval 𝐶𝑜𝑛 𝑓 𝐼𝑛𝑡(𝛼ℎ𝑘←ℎ′𝑘′).

6.2. Five-level hierarchical model
In Section 6.1, we introduced an initial example to illustrate the two-level hierarchical Hawkes model.

However, as detailed in Chapter 4, our hierarchical service architecture comprises five levels of service.

Consequently, we can expand the two-level model into a five-level hierarchical model by incorporating

the arrival nature, business application, and business unit levels. We can review the levels, starting

from the top (level-5) and moving down to the bottom (level-1):

• Business unit 𝑚 ∈ 𝐵𝑈 := {𝑏𝑢1 , . . . , 𝑏𝑢𝑛𝑏𝑢 },
• Business application 𝑙 ∈ 𝐵𝐴 := {𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 },
• Configuration item 𝑘 ∈ 𝐶𝐼 := {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 },
• Arrival nature 𝑗 ∈ 𝑆 := {𝐸, 𝐼},
• Message cluster ℎ ∈ 𝐶𝐿𝑈𝑚

:= {𝑐𝑙𝑢𝑚
1
, . . . , 𝑐𝑙𝑢𝑚

𝑛𝑚
𝑐𝑙𝑢

}.

In a similar manner to Definition 6.1.2, we can create a five-level hierarchy centered around the excitation

value 𝛼ℎ 𝑗𝑘𝑙𝑚←ℎ′ 𝑗′𝑘′𝑙′𝑚′ . However, it is important to note that by Definition 4.1.3, a business unit is

described as an "independently operational setup". This suggests that arrivals in one business unit will

never be associated with arrivals in another business unit. Therefore, when extending the two-level

hierarchy from Definition 6.1.2 to a five-level hierarchy 𝛼𝑖 𝑗𝑘𝑙𝑚←ℎ′ 𝑗′𝑘′𝑙′𝑚′ , it is assumed that:

𝛼ℎ 𝑗𝑘𝑙𝑚←ℎ′ 𝑗′𝑘′𝑙′𝑚′ = 0 for 𝑚, 𝑚′ ∈ 𝐵𝑈 : 𝑚 ≠ 𝑚′.

Therefore, we will exclusively focus on arrivals within a specific business unit of interest, denoted as

𝑚 ∈ 𝐵𝑈 . The corresponding excitation within this business unit can be represented as 𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙;𝑚 .

Instead, we will focus solely on the arrivals within the specific business unit of interest denoted as

𝑚 ∈ 𝐵𝑈 . The corresponding excitation within this business unit can be represented as 𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙;𝑚 .

Since this thesis does not involve comparing results between different business units 𝑚, 𝑚′ ∈ 𝐵𝑈 , we

can further simplify the notation. Thus, we denote the excitation as 𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙 , with the understanding

that the specific business unit under consideration is known to the reader. The mark space is now

represented as𝒰𝑚 = 𝐵𝐴 × 𝐶𝐼 × 𝑆 × 𝐶𝐿𝑈𝑚
.

In theory, this could potentially result in a very high number of marks, calculated as 𝑪𝒂𝒓𝒅(𝒰𝑚) =
𝑪𝒂𝒓𝒅(𝐶𝐿𝑈) · 𝑆 · 𝑪𝒂𝒓𝒅(𝐶𝐼) · 𝑪𝒂𝒓𝒅(𝐵𝐴). However, due to the sparsity of our data, it is important to

acknowledge that most of these potential marks are not observed.

6.2. Five-level hierarchical model 62

Definition 6.2.1: Five-level hierarchy

Fix level-5 unit 𝑚 ∈ 𝐵𝑈 . Let level-1 units be ℎ, ℎ′ ∈ 𝐶𝐿𝑈𝑚
:= {𝑐𝑙𝑢𝑚

1
, . . . , 𝑐𝑙𝑢𝑚

𝑛𝑚
𝑐𝑙𝑢

}, level-2

units be 𝑗 , 𝑗′ ∈ 𝑆 := {𝐸, 𝐼}, level-3 units be 𝑘, 𝑘′ ∈ 𝐶𝐼 := {𝑐𝑖1 , . . . 𝑐𝑖𝑛𝑐𝑖 } and level-4 units be

𝑙 , 𝑙′ ∈ 𝐵𝐴 := {𝑏𝑎1 , . . . , 𝑏𝑎𝑛𝑏𝑎 }.

The excitation of arrivals from mark 𝑢′ (originating from cluster ℎ′, arrival nature 𝑗′, configuration

item 𝑘′ and business application 𝑙′) on arrivals from mark 𝑢 (originating from cluster ℎ, arrival

nature 𝑗, configuration item 𝑘 and business application 𝑙) can hierarchically be decomposed as
𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙 = 𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ + 𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ Level-1,

𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ = 𝜅00𝑘𝑙←00𝑘′𝑙′ + 𝑟0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ Level-2,

𝜅00𝑘𝑙←00𝑘′𝑙′ = 𝛽000𝑙←000𝑙′ + 𝑧00𝑘𝑙←00𝑘′𝑙′ Level-3,

𝛽000𝑙←000𝑙′ = 𝛾0000 + 𝑢000𝑙←000𝑙′ Level-4.

Remark 6.2.2. We use the notation "arrivals ℎ 𝑗𝑘𝑙" to refer to all arrivals that originate from the combination

of message cluster ℎ of nature 𝑗, occurring at configuration item 𝑘, and business application 𝑙.

Now, we can provide interpretations for each of the coefficients:

• 𝛼ℎ 𝑗𝑘𝑙←𝑖′ 𝑗′𝑘′𝑙′ is the excitation of arrivals ℎ 𝑗𝑘𝑙 on arrivals ℎ′ 𝑗′𝑘′𝑙′.

• 𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ is the mean effect mean effect of arrivals 𝑗𝑘𝑙 on arrivals 𝑗𝑘𝑙. This is called the level-1
intercept.

• 𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ is the deviation of the excitation of arrivals ℎ 𝑗𝑘𝑙 on arrivals ℎ′ 𝑗′𝑘′𝑙′ as compared to

the mean effect 𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ . This is called the level-1 random effect. It is assumed to be normally

distributed with mean zero and standard deviation 𝜎2
.

• 𝜅00𝑘𝑙←00𝑘′𝑙′ is the mean effect mean effect of arrivals 𝑘𝑙 on arrivals 𝑘𝑙. This is called the level-2
intercept.

• 𝑟0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ is the deviation of the excitation of arrivals 𝑗𝑘𝑙 on arrivals 𝑗′𝑘′𝑙′ as compared to the mean

effect 𝜅00𝑘𝑙←00𝑘′𝑙′ . This is called the level-2 random effect. It is assumed to be normally distributed

with mean zero and standard deviation 𝜏𝜋.

• 𝛽000𝑙←000𝑙′ is the mean effect mean effect of arrivals 𝑙 on arrivals 𝑙. This is called the level-3 intercept.
• 𝑧00𝑘𝑙←00𝑘′𝑙′ is the deviation of the excitation of arrivals 𝑘𝑙 on arrivals 𝑘′𝑙′ as compared to the mean

effect 𝛽000𝑙←000𝑙′ . This is called the level-3 random effect. It is assumed to be normally distributed

with mean zero and standard deviation 𝜏𝜅.

• 𝛾0000 is the grand mean. This is called the level-4 intercept, which is a fixed effect.
• 𝑢000𝑙←000𝑙′ is the deviation of the excitation of 𝑙 on arrivals 𝑙′ as compared to the grand mean 𝛾0000.

This is called the level-4 random effect. It is assumed to be normally distributed with mean zero and

standard deviation 𝜏𝛽.

As the random effects are assumed to follow a normal distribution, there’s a possibility of negative

excitation values 𝛼𝑖 𝑗𝑘𝑙←𝑖′ 𝑗′𝑘′𝑙′ . However, excitation values, by definition, should be non-negative. To

overcome this issue, we apply a base-ten logarithm transformation to the excitation values, resulting

in log
10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′). Instead we therefore model log

10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′). Additionally, for the estimated

excitation values �̂�𝑖 𝑗𝑘𝑙←𝑖′ 𝑗′𝑘′𝑙′ for which �̂�𝑖 𝑗𝑘𝑙←𝑖′ 𝑗′𝑘′𝑙′ = 0, we substitute them with �̂�𝑖 𝑗𝑘𝑙←𝑖′ 𝑗′𝑘′𝑙′ = 1𝑒 − 20.

This substitution has a notable consequence. Due to the substitution, we can no longer generate two

streams of independent data. In other words, every mark now Granger causes every other mark because

zero-valued excitation values have been replaced by a positive value.

6.2.1. Assumptions
It is worth noting that the current model makes certain assumptions, which include:

1. All of the random effects 𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ , 𝑟0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ , 𝑧00𝑘𝑙←00𝑘′𝑙′ , 𝑢000𝑙←000𝑙′ are assumed to be normally

distributed with mean zero.

6.3. Practical considerations 63

2. All the random effects are assumed to be independent. Therefore all possible covariance terms

among 𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ , 𝑟0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ , 𝑧00𝑘𝑙←00𝑘′𝑙′ and 𝑢000𝑙←000𝑙′ are considered to be zero.

3. Homogeneity of variance per level; The variance structure within each level is assumed to be consistent

across all components at that level. In other words, there is no variation in the variance structure

among items within the same level.

6.2.2. Variance partitioning
Due to the homogeneity of variance per level, the total variability of the estimated log-excitation

log
10
(�̂�ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′) can be partitioned into four components:

• (level 1) among message clusters within a cluster type, 𝜎2 = 𝑣𝑎𝑟(𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′);
• (level 2) among cluster types within a configuration item, 𝜏𝜋 = 𝑣𝑎𝑟(𝑟0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′);
• (level 3) among configuration items within a business application, 𝜏𝜅 = 𝑣𝑎𝑟(𝑧00𝑘𝑙←00𝑘′𝑙′).
• (level 4) among business applications, 𝜏𝛽 = 𝑣𝑎𝑟(𝑢000𝑙←000𝑙′).

This allows us to calculate the proportion of variation for each of the four levels:
𝜎2

𝜎2+𝜏𝜋+𝜏𝜅+𝜏𝛽 ,
𝜏𝜋

𝜎2+𝜏𝜋+𝜏𝜅+𝜏𝛽 ,

𝜏𝜅
𝜎2+𝜏𝜋+𝜏𝜅+𝜏𝛽 and

𝜏𝛽
𝜎2+𝜏𝜋+𝜏𝜅+𝜏𝛽 . Finally, in Section 6.4, we will partition each of the variance components

and provide interpretations of the results.

6.3. Practical considerations
In this section, we will evaluate three practical aspects that need to be addressed in order to estimate

the excitation matrix. Firstly, we will determine the appropriate estimator to use from the Tick library,

specifically comparing the ExpKernel and ADM4 estimators. We will analyze their differences in terms of

runtime performance and sparsity. Secondly, we will elaborate on the selection of the characteristic time

𝜏, conducting a sensitivity analysis within a limited range of characteristic times and explaining our

final choice. Lastly, we will conduct a simulation study to examine the impact of spurious connections

between configuration items and business applications.

For Section 6.3.1 and 6.3.2, we use the message cluster setting as established in Section 4.3. In each

the the two sections we fixed the other parameters and only inspected one practical consideration at a

time. Although it would be interesting to simultaneously investigate the influence of multiple practical

considerations, this is not feasible due to runtime constraints. Combining all clustering settings from

Section 4.3 with different Tick solvers and a wide range of characteristic times would result in months of

runtime.

6.3.1. Choice of estimator
In Section 5.4, we introduced two estimators: the ADM4 estimator, which incorporates a combination of

ℓ1 and Nuclear regularization for the regularized log-likelihood functional, and the ExpKern estimator,

which offers the flexibility to customize regularization functions for both the log-likelihood and the

least-squares functional.

We conducted a comparative analysis between the ADM4 and ExpKern estimators in terms of runtime

and their ability to impose the desired level of sparsity. We ran both estimators with their default

settings and also ran an estimation with the ExpKern estimator using a log-likelihood functional instead

of the default least-squares functional. In all three scenarios, we maintained a fixed characteristic time

of 𝜏 = 10, 000 𝑠.

In our initial attempts, we tested all three scenarios as described above. However, we encountered

convergence issues with both scenarios for the ExpKern estimator (log-likelihood and least-squares).

We suspected that the high dimensionality of the mark space was the cause of the convergence prob-

lems. To address this, we reduced the mark space by increasing the minimum cluster size for the

HDBSCAN clustering algorithm. Specifically, we set the minimum cluster size to 6 (instead of 4), for

both event and incident clusters. This reduction decreased the mark space by a factor two. Despite

the adjustment made to the mark space, the ExpKern estimator using the log-likelihood functional

6.3. Practical considerations 64

still did not converge. However, the ExpKern estimator using the default least squares function was

able to converge successfully. The results for the estimated excitation matrix �̂� for both the AMD4

estimator and the ExpKern estimator using the default least squares functional are visualized in Figure 6.1.

The comparison between the two estimators revealed substantial differences in terms of runtime and

sparsity enforcement. Specifically, it took the ADM4 estimator approximately 195 seconds to converge,

while the ExpKern estimator required a much longer time of 6436 seconds (more than 1.5 hours) to

converge. Additionally, as observed in Figure 6.1, the ExpKern estimator did not effectively enforce

sparsity. Given the substantial runtime and the lack of sparsity enforcement with the ExpKern estimator,

the ADM4 estimator will be the primary choice for further analysis.

Remark 6.3.1. It is worth noting that we have the option to adjust the regularization parameters for the

ExpKern estimator. However, given that the ADM4 estimator has already demonstrated satisfactory

performance in terms of runtime and sparsity enforcement, there was no need to explore further

adjustments at this stage.

Figure 6.1: Estimated excitation matrix �̂� for the default settings of the ADM4 estimator (left), and Expkern estimator with least

squares functional (right). Both estimators used characteristic time 𝜏 = 10.000𝑠.

6.3.2. Characteristic time 𝜏
As outlined in Definition 5.3.4, we revisit the exponential memory kernel denoted as

𝜙𝑢𝑢′(𝑡) = 𝛼𝑢𝑢′ · exp

(
− 𝑡

𝜏𝑢𝑢′

)
.

However, estimating the excitation matrix �̂� (of values 𝛼𝑢𝑢′ ∈ R𝑈×𝑈) and characteristic time matrix �̂�
(of values 𝜏𝑢𝑢′ ∈ R𝑈×𝑈) comes down to a non-convex optimization problem. Hence, the current practice

is to select a value for 𝜏 that accurately reflects the specific context of interest. Secondly, we calculate 𝒯
by taking the product of 𝜏 and the identity matrix 11𝑇 , yielding 𝒯 = 𝜏 · 11𝑇 . After setting a value for 𝒯 ,

we proceed to estimate the excitation matrix �̂�

A prior baseline model designed by system engineers at ING assumed arrivals are equally likely to

excite subsequent arrivals for a time period of 4 hours. After this time period, an arrival is assumed

not to excite subsequent arrivals. This poses us with a trade-off for setting a value for 𝜏. Setting a

6.3. Practical considerations 65

high value for 𝜏 corresponds with the intuition that it is likely for arrivals to result in an increase in

probability for subsequent arrivals over the course of the entire 4-hour interval after the initial arrival,

but fails to incorporate that it is unlikely for arrivals to excite subsequent arrivals after the 4-hour

interval. Alternatively, a small 𝜏 value mimics the setting where it is unlikely to excite subsequent

arrivals after 4 hours but it may not adequately capture the high excitation during the initial 4-hour period.

To understand how the characteristic time relates to the baseline model, we introduce the concept of the

vanishing time, represented as 𝜉. The vanishing time signifies the duration after which only 1% of the

initial excitation 𝛼 remains.

Definition 6.3.2: Vanishing time

Given exponential memory kernel 𝜙(𝑡) = 𝛼 · exp

(
− 𝑡𝜏

)
with fixed parameters 𝛼 ∈ R+ , 𝜏 ∈ R∗+.

The vanishing time 𝜉 is defined such that

𝜙(𝜉) = 0.01 · 𝛼.

The relation between vanishing time and characteristic time equals

𝜏 =
𝜉

log 100

.

For example, a vanishing time of 𝜉 = 24 hours results in

𝜏 =
24

log 100

≈ 5.2 hours ≈ 18.700 seconds.

So after roughly 5.2 hours, the initial excitation is reduced by a factor 𝑒. The influence of different

vanishing times on the original excitation, together with the baseline model, is displayed in Figure 6.2.

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28
Time (hours)

F
ra

ct
io

n
of

 o
rig

in
al

 e
xc

ita
tio

n Legend

Baseline model

Vanishing time ξ1 = 168 hour

Vanishing time ξ2 = 100 hour

Vanishing time ξ3 = 48 hour

Vanishing time ξ4 = 24 hour

Vanishing time ξ5 = 12 hour

Vanishing time ξ6 = 4 hour

Figure 6.2: Fraction of original excitation over time for six values of vanishing time 𝜉· together with ING’s baseline model.

Sensitivity analysis on the influence of characteristic time 𝜏
We perform a sensitivity analysis on the same business unit that was examined in Section 4.3. We

employ the optimal clustering settings as determined in Section 4.3 and use the ADM4 estimator with

default regularization settings. It is worth noting that the ADM4 estimator allows for the specification of

a single characteristic time denoted as 𝜏, which is used to create the matrix 𝒯 = 𝜏 · 11𝑇 . This limitation

in characteristic time does not affect our investigation, since introducing distinct characteristic times 𝜏𝑢𝑢′
between each pair of marks would introduce excessive complexity, which is not within the scope of our

analysis.

6.3. Practical considerations 66

We run the ADM4 estimator for vanishing times ranging from 2 to 96 hours (4 days) with a 2-hour time

difference. This results in

𝜉 ∈ [2, 4, 6, . . . , 94, 96].
We compute the maximum likelihood and runtime for each of the vanishing times.

It is worth noting that we encountered an interesting phenomenon during this sensitivity analysis.

For vanishing times up to 22 hours, the ADM4 solver failed to converge to a maximum likelihood

solution. This failure was attributed to the singular value decomposition’s inability to converge. The

intuition behind this is that the excitation decays too rapidly to effectively capture relationships between

marks when the vanishing time is too short. The first vanishing time for which a maximum likelihood

solution was found was 24 hours. However, even for this and subsequent vanishing times, the maximum

likelihood values exhibited a high degree of instability, as illustrated in Figure 6.3. This instability

highlights the non-convex nature of the optimization problem involving the characteristic time and the

excitation. Finally, the runtime for each of the vanishing times was approximately 10 minutes, with a

negligible variation of only a few seconds 1.

In conclusion, we settled on a vanishing time of 24 hours, which corresponds to a characteristic time

of approximately 18,700 seconds. This choice was made as it allowed us to obtain a likelihood, and it

resulted in the highest likelihood among the tested vanishing times. To provide a point of reference, we

compared our chosen characteristic time of approximately 18,700 seconds to the baseline model. Using

this characteristic time, we found that approximately 46% of the excitation remained after the 4-hour

cutoff point specified in the baseline model. This result can also be found in Figure 6.3.

30 40 50 60 70 80
Vanishing time

10
102

10
85

10
68

10
51

10
34

10
17

10
0010
0

10
17

10
34

10
51

10
68

10
85

10
102

Li
ke

lih
oo

d

Figure 6.3: Likelihood for a range of vanishing times.

Remark 6.3.3. Additionally, we conducted six simulations with large vanishing times, ranging from 5

to 10 days with a 1-day difference. However, all of these vanishing times resulted in low maximum

likelihood values. Therefore, we did not include them in the analysis.

6.3.3. Resolution for configuration item - business application mapping
In Section 4.1.2, we discussed the convoluted relation between the level-3 configuration items and

the level-4 business applications. We have seen that arrivals registered on business application 𝑙, can

be assigned to configuration item UNKNOWN for business application 𝑙. However, when an arrival is

registered on a configuration item associated with multiple business applications, a straightforward

solution is not readily available.

Whenever dealing with a registered configuration item that is linked to multiple business applications,

we have identified four possible approaches for resolving the mapping. In the upcoming section, we will

delve into a comprehensive discussion of these four options. To determine the most suitable resolution

method for our framework, we will conduct a brief simulation study.

1The simulation was run on Intel Core I7-10850H processor, where 4 cores were used.

6.3. Practical considerations 67

Remark 6.3.4. The practical considerations of choosing the estimator (Section 6.3.1) and determining the

characteristic time 𝜏 (Section 6.3.2) explicitly relate to the estimation of the excitation matrix �̂� ∈ R𝑈×𝑈 .

Conversely, the practical consideration regarding the resolution of the configuration item - business

application relates to the construction of the mark space𝒰 := 1, . . . , 𝑈 and the determination of which

mark 𝑢 ∈ 𝒰 a specific arrival is assigned to.

Options for resolution

1. Drop the arrival and exclude it from further analysis.

2. Duplicate the arrival for each linked business application, resulting in multiple marks

assigned to the arrival.

3. Randomly assign the arrival to one of the linked business applications.

4. Create a new synthetic business application labeled business application group {BA
set}, where {BA set} encompasses all the linked business applications.

Certainly, the first two options result in bias. Even more so, the first option leads to loss of information,

as we discard observed arrivals. The second option, where the arrival is associated with multiple marks,

might inadvertently establish a misleading Granger causal relationship among the assigned marks. In

contrast, randomly assigning the arrival to one of the business applications could be one of the options

to reduce this bias. Finally, creating a new, synthetic business application group might especially be

useful when numerous distinct configuration items are linked to the same set of business applications.

With the fourth resolution option in place, arrivals on these distinct configuration items are therefore

assigned to the same, synthetic business application group. The drawback of this method is that

it might become difficult to interpret the results, as we will obtain results regarding the interaction

between individual business applications and business application group’s.

Simulation setting
In this simulation study, we make the assumption that the mark is solely composed of the configuration

item and business application. Furthermore, we consider a service architecture consisting of five

configuration items and three business applications. The corresponding mapping is illustrated in Figure

6.4. Specifically, the configuration item - business application relationship includes three scenarios:

• One configuration item is linked to one business application.

• One configuration item is linked to two distinct business applications.

• Three configuration items are linked to the same business application.

In particular, the simulation study is performed in the framework of the two-level hierarchical model

as constructed in Section 6.1. We capture the relation between configuration items (resp. business

applications) through means of matrix ℰ (resp. matrix 𝒦). Each of the excitation values is now

calculated as:

𝛼𝑘𝑙←𝑘′𝑙′ := 𝜅0𝑙←0𝑙′ + 𝑒𝑘𝑙←𝑘′𝑙′ for 𝑘, 𝑘′ ∈ 𝐶𝐼, 𝑙, 𝑙′ ∈ 𝐵𝐴,
for 𝜅0𝑙←0𝑙′ ∈ 𝒦 and 𝑒𝑘𝑙←𝑘′𝑙′ ∈ ℰ.

We assume that the influence between the three configuration items is as displayed in𝒦 ,

𝒦 =

10 2 0

0 8 1

1.5 1 15

 .
The interplay between business applications is encapsulated by matrix ℰ. We set the diagonal elements

as 𝑒𝑘,𝑘′ = 10 for 𝑘 = 𝑘′, while the off-diagonal elements are sampled from a uniform distribution 2

𝑒𝑘,𝑘′ = 𝒰[0, 2] for 𝑘 ≠ 𝑘′. We sample ℰ only once and keep the value fixed throughout the rest of the

simulation. This results in

2𝒰 should not be confused with the mark space. Here, and only here,𝒰 indicates the uniform distribution.

6.3. Practical considerations 68

Configuration
 item 1

Configuration
 item 2

Configuration
 item 3

Configuration
 item 4

Configuration
 item 5

Business
application 1

Business
application 2

Business
application 3

Figure 6.4: Simulation study configuration item - business application mapping for five configuration items and three business

applications.

ℰ =

10 0.042 1.3 1.5 1.0

0.45 10 1.5 0.34 0.18

1.4 1.9 10 1.05 1.6
1.2 1.4 0.58 10 1.4
1.1 0.28 0.75 1.3 10

.

Finally, the excitation matrix was divided by a factor 100.

𝒜 =
1

100

20 10 0.042 2.8 3.0 2.5
10 20 10 3.0 1.8 1.7
2.4 12 18 1.5 0.34 0.18

1.4 1.9 2.9 25 16 17

1.2 1.4 2.4 16 25 16

1.1 0.28 1.3 16 16 25

.

The baseline intensity and characteristic time matrix are, respectively, defined as

ℳ = 0.03 · 1𝑇 for 1 ∈ R6 ,

𝒯 = 𝜏 · 11𝑇 = 3.0 · 11𝑇 ,

for 1 ∈ R6
. The choices for𝒜 ,ℳ and 𝒯 , as well as dividing the excitation matrix by 100, were made such

that the simulation roughly represented the excitation behavior as estimated from the IT monitoring

data stream.

Simulation procedure
In order to perform the simulation study for each of the four resolution options, we perform Algorithm

2. In particular, we repeat 1000 experiments and obtain the mean and standard deviation for each of

the resolution options. Additionally, we run a benchmark. This benchmark estimates the excitation

matrix from the original simulated data T𝑀𝑃𝑃 instead of the latent data T̂𝑀𝑃𝑃 . By comparing the

results of the estimated benchmark excitation matrix and the true excitation matrix, we obtain a feel

for the natural deviation of the estimator. Additionally, we set the probability of being assigned to the

business application (resp. configuration item) to 20% (resp. 80%). This ratio was selected to mirror the

proportion of arrivals registered on a business application as observed from the IT monitoring data

stream at ING.

6.3. Practical considerations 69

Algorithm 2 Simulation study for four resolution options

Establish mark setting (see Figure 6.4),

Fix true parameters𝒜 ,ℳ and 𝒯 ,

for 𝑖 = 1, . . . , 1000 do
Sample timestamps T𝑖 using𝒜 and 𝒯 ,

Create T̂𝑖 by randomly assigning 20% of arrivals to the business application and 80% of the arrivals

to the configuration item,

for Resolvement method 𝑗 do
Estimate excitation matrix �̂�𝑖 , 𝑗 using 𝒯 , T̂𝑖 , and resolution option 𝑗,

end for
Estimate excitation matrix �̂�𝑖 ,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 using 𝒯 and �̂�𝑖 ,

end for
for Resolvement method 𝑗 and baseline do

Compute mean and standard deviation for

[
𝑒𝑟𝑟

(
�̂�1, 𝑗

)
, 𝑒𝑟𝑟

(
�̂�2, 𝑗

)
, . . . , 𝑒𝑟𝑟

(
�̂�1000, 𝑗

)]
.

end for

Remark 6.3.5. Using 𝒯 and T𝑀𝑃𝑃 , we can estimate ℳ̂ and compare it toℳ. However, since our

primary concern is the impact of the configuration item - business application mapping on the estimated

excitation matrix, we will not delve into interpreting the results regarding the baseline intensity.

In order to calculate the error between the estimated excitation matrix �̂� and the true excitation matrix

𝒜, we calculate the following error metric

𝑒𝑟𝑟(�̂�) = ∥�̂� − 𝒜∥𝐹∥𝒜∥𝐹
, (6.2)

for each of the 1000 runs. Once we obtain the 1000-dimensional error vector for each of the resolution

options, we can compute its mean and standard deviation.

For the last option of creating a business application group, we create a new mark, namely{Configuration

item 2, Business application group 1}. This can be found in Figure 6.5. Therefore �̂� ∈ R7
whereas𝒜 ∈

R6
. As the dimensions do not correspond, we can not directly compare the two matrices. In order to

resolve this issue, we only look at the submatrix �̂�𝑠𝑢𝑏 , where we drop the column and row with regards

to mark between {configuration item 2, business application group {1,2}}.

Simulation results
The results from the simulation study as performed in Algorithm 2 are depicted in Table 6.1. The second

row displays the increase in mean error as compared to the unmodified benchmark scenario.

It was found that indeed the duplication scenario resulted in the highest mean error. Interestingly

enough, dropping arrivals results in a smaller mean error as compared to randomly assigning the arrival

to a business application.

Table 6.1: Results for the mean and standard deviation for 𝑒𝑟𝑟(�̂�) for four recovering methods as well as an unmodified

benchmark. The second row shows the increase as compared to the mean benchmark error.

Benchmark Drop Duplicate Randomly
assign

Create
BA group

Mean of 𝑒𝑟𝑟(�̂�) 0.36 0.44 0.52 0.47 0.46

Increase from benchmark 22% 44% 31% 28%

Sd of 𝑒𝑟𝑟(�̂�) 0.073 0.084 0.069 0.10 0.080

Establishing on resolution choice
Considering the outcomes presented in Table 6.1, the most straightforward choice would be to drop

arrivals associated with configuration items linked to multiple business applications. However, there

6.4. Main results: Hierarchical linear model 70

Configuration
 item 1

Configuration
 item 2

Configuration
 item 3

Configuration
 item 4

Configuration
 item 5

Business
application 1

Business
application group {1,2}

Business
application 3

Business
application 2

Figure 6.5: Simulation study configuration item - business application mapping for five configuration items, three business

applications, and one artificial business application group.

exists an unexamined advantage associated with the choice of crafting a new business application

group. In scenarios where two separate configuration items are linked to an identical set of business

applications, they will consequently be allocated to the same synthetic business application group
{·}. This feature permits arrivals registered on distinct configuration items to be aggregated under the

same (synthetic) business application.

Authors note: This paragraph is removed due to confidentiality.

Table 6.2: Number of configuration items linked to the same Business application group{·}

Authors note: This table is removed due to confidentiality.

6.4. Main results: Hierarchical linear model
In Section 6.3, we established all practical considerations in order to obtain the estimated excitation

matrix �̂�. This allows for following the procedure in Algorithm 1 from Section 1.6 to obtain the

estimated excitation matrix �̂� for one business unit 𝑚 ∈ 𝐵𝑈 . Furthermore, in Sections 6.1 and 6.2

we established how each of the elements �̂�ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ∈ �̂� can be decomposed into different levels of

service using a hierarchical linear model.

We now evaluate the results from the estimated excitation matrix, focusing on the business unit discussed

in Section 4.3. We recall the estimated excitation matrix was obtained by using the optimal clustering

section from 4.3, using the ADM4 estimator with a characteristic time of 𝜏 ≈ 18.700 𝑠 (i.e. a vanishing

time 𝜉 = 24 hours) and a configuration item - business application resolution of creating business
application group’s

In order to evaluate the hierarchical model, we have transformed the estimated excitation matrix

�̂� ∈ R𝑈×𝑈 to a long format. This long format creates a table that is𝑈2
rows by 9 columns, where each

row represents a combination of service level variables ℎ, 𝑗, 𝑘, 𝑙, ℎ′, 𝑗′, 𝑘′, 𝑙′ along with the corresponding

estimated excitation value �̂�ℎ 𝑗𝑘𝑙 ← ℎ′ 𝑗′𝑘′𝑙′. An example of the long format table showing the highest

estimated excitation values �̂�ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ can be found in Table 6.9.

6.4. Main results: Hierarchical linear model 71

Establishing on simpler models
Rather than modeling the complete five-level model as defined in Definition 6.2.1, we will explore a set

of simpler linear hierarchical models and analyze their outcomes. The rationale behind selecting these

simpler models is to reduce the complexity of the estimated components and enhance interpretability.

Additionally, as outlined in Section 4.1.3, we model the estimated excitation behavior on a logarithmic

scale with base 10, and we substitute zero-excitation values with 1e-20.

We distinguish between the transferring excitation level, represented by levels ℎ′, 𝑗′, 𝑘′, and 𝑙′, and the

receiving excitation level, represented by levels ℎ, 𝑗, 𝑘, and 𝑙, for each excitation value 𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ .

6.4.1. Model 1: Business application
In order to obtain an overview of the excitation behavior between business applications, we consider

the following model. This model only accounts for the transferring and receiving business applications

𝑙′ and 𝑙, respectively.

log
10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′) = 𝛽000𝑙←000𝑙′ + 𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ,

𝛽000𝑙←000𝑙′ = 𝛾0000 + 𝑢000𝑙←000𝑙′ ,

where,

𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ∼ 𝒩(0, 𝜎2),
𝑢000𝑙←000𝑙′ ∼ 𝒩(0, 𝜏𝛽).

It can be found from Table 6.3 that the business application, in this simple model, already explains

over 29% of the total variation. To compare how similar the transferring excitation behavior between

business applications is, we can compare the Euclidean distance between 𝛽000𝑙←000𝑙′ for different values

of 𝑙′ ∈ 𝐵𝐴. The results for this can be found in Figure 6.6. Here, we have applied hierarchical clustering

and created a dendrogram using complete linkage. Note how the behavior of the synthetically created

business application group’s does not differ from the behavior of genuine business applications.

Additionally, we provide a more in-depth analysis of Figure 6.6 in Section 6.5.1.

Table 6.3: Model 1: a two-level model using only the business application.

Variance Perc. of total variance Standard deviation
�̂�𝛽 3.56 e-3 29.1 % 5.97 e-2

�̂�2
8.65 e-3 9.30 e-2

Estimate Std. Error t-value
�̂�0000 4.18 e-3 9.67 e-4 4.32

Authors note: This figure is removed due to confidentiality.

Figure 6.6: Logarithmically scaled heatmap of the excitation effect between different business applications. Additionally, a

dendrogram showing the results of complete linkage using an Euclidean distance is visualized. Furthermore, seven block

regarding the transferring business application are created.

Remark 6.4.1. Moreover, we can cluster the receiving business applications 𝑙 ∈ 𝐵𝐴. This resulted in

similarly behaving chunks of business applications. The results can be found in Figure C.4.

6.4.2. Model 2: Configuration item
Similarly as in Section 6.4.1, we can obtain an overview of the behavior between configuration items.

We therefore consider the following model:

6.4. Main results: Hierarchical linear model 72

log
10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′) = 𝜅00𝑘0←00𝑘′0 + 𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ,

𝜅00𝑘0←00𝑘′𝑙 = 𝛾0000 + 𝑢00𝑘0←00𝑘0 ,

where,

𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ∼ 𝒩(0, 𝜎2),
𝑢00𝑘0←00𝑘′0 ∼ 𝒩(0, 𝜏𝜅).

It can be found from Table 6.4 that the configuration item explains for over 31% of the total variance.

We once again use hierarchical clustering, however now we consider 𝜅00𝑘0←00𝑘′0 and cluster similar

behaving configuration item blocks. The results can be found in Figure 6.7. Interestingly, it can be

found that the configuration item UNKNOWN accounts for distinct behavior as compared to the genuine

configuration items. Furthermore, its excitation behavior seems to be rather low. Additionally, we

provide a more in-depth analysis of Figure 6.7 in Section 6.5.2.

Table 6.4: Model 2: a two-level model using only configuration item.

Variance Perc. of total variance Standard deviation
�̂�𝜅 4.04 e-3 31.8 % 6.35 e-2

�̂�2
8.66 e-3 9.31 e-2

Estimate Std. Error t-value
�̂�0000 5.04 e-3 1.19 e-4 4.24

Authors note: This figure is removed due to confidentiality.

Figure 6.7: Logarithmically scaled heatmap of the excitation effect between different configuration items. Additionally, a

dendrogram showing the results of complete linkage using an Euclidean distance is visualized. Furthermore, seven block

regarding the transferring configuration item are created.

Remark 6.4.2. Moreover, we can cluster the receiving configuration items 𝑘 ∈ 𝐶𝐼. This resulted in

similarly behaving chunks of configuration items. The results can be found in Figure C.3.

6.4.3. Model 3: CI nested in BA
We can once again decompose the behavior of business applications with respect to other business

applications. However, in this model, we will account for the variation within each business application

caused by the configuration item. This results in the following model:

log
10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙) = 𝜅00𝑘𝑙←00𝑘′𝑙′ + 𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ,

𝜅00𝑘𝑙←00𝑘′𝑙′ = 𝛽000𝑙←000𝑙′ + 𝑧00𝑘𝑙←00𝑘′𝑙′ ,

𝛽000𝑙←000𝑙′ = 𝛾0000 + 𝑢000𝑙←000𝑙′ ,

where,

𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ∼ 𝒩(0, 𝜎2),
𝑧00𝑘𝑙←00𝑘′𝑙′ ∼ 𝒩(0, 𝜏𝜅),
𝑢000𝑙←000𝑙′ ∼ 𝒩(0, 𝜏𝛽).

From Table 6.5, we can see that the business application explains 25.7% of the total variation. Furthermore,

knowing the configuration item given the business application explains an additional 3.1% of the

variation.

6.4. Main results: Hierarchical linear model 73

Table 6.5: Model 3: a three-level model where the configuration item is nested in the business application.

Variance Perc. of total variance Standard deviation
�̂�𝜅 3.78 e-4 3.1% 1.95 e-2

�̂�𝛽 3.11 e-3 25.7% 5.57 e-2

�̂�2
8.63 e-3 9.29 e-2

Estimate Std. Error t-value
�̂�0000 4.27 e-3 9.44 e-4 4.53

6.4.4. Model 4: Nature nested in CI, CI nested in BA
If we additionally include the arrival nature, we obtain the full model

log
10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙) = 𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ + 𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′

𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ = 𝜅00𝑘𝑙←00𝑘′𝑙′ + 𝑟0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′

𝜅00𝑘𝑙←00𝑘′𝑙′ = 𝛽000𝑙←000𝑙′ + 𝑧00𝑘𝑙←00𝑘′𝑙′ ,

𝛽000𝑙←000𝑙′ = 𝛾0000 + 𝑢000𝑙←000𝑙′ ,

where,

𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ∼ 𝒩(0, 𝜎2),
𝑧00𝑘𝑙←00𝑘′𝑙′ ∼ 𝒩(0, 𝜏𝜅),
𝑟0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ ∼ 𝒩(0, 𝜏𝜋)
𝑢000𝑙←000𝑙′ ∼ 𝒩(0, 𝜏𝛽).

In this model, the arrival nature is modeled as a random effect. It can be observed that the knowledge of

the configuration item accounts for 0% of the total variation. In Section 6.5.3, we will elaborate on the

implications this model poses.

Table 6.6: Model 4: a four-level model where the arrival nature is nested in the configuration item, and the configuration item is

nested in the business application. This arrival nature is assumed to be a random effect.

Variance Perc. of total variance Standard deviation
�̂�𝜋 1.95 e-3 13.9% 4.42 e-2

�̂�𝜅 0 0.0% 0

�̂�𝛽 3.57 e-3 25.4% 5.97 e-2

�̂�2
8.51 e-3 9.22 e-2

Estimate Std. Error t-value
�̂�0000 4.45 e-3 1.03 e-3 4.33

6.4.5. Model 5: Fixed nature and CI
So far we have considered all variables of interest to be of random effect. However, in Section 6.1, we

additionally described the fixed effect. Here we saw that we model a variable as a random effect if we

can consider the variable as a sample of the entire set of possibilities. This is very intuitive for both

the configuration items and business applications: we can see them as coming from a distribution

of configuration items or business applications, respectively. Might we observe a new, previously

unobserved, business application, then we generalize observation from results as from the model in

Section 6.4.4.

This analogy does not hold for the arrival nature. There are only two arrival natures, namely events

and incidents. Moreover, there is no distribution of arrival natures. Therefore it is more natural

to model the arrival nature as a fixed effect and assume it has a systematic and constant influence

on the excitation value. This results in the following model, where the intercept is no longer a

fixed 𝛾, but dependent on the transferring and receiving arrival nature 𝑘 and 𝑘′, respectively. This re-

6.4. Main results: Hierarchical linear model 74

sults in four fixed effects, one for each combination of arrival natures. The respective model now becomes

log
10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙) = 𝜅00𝑘𝑙←00𝑘′𝑙′ + 𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′

𝜅00𝑘𝑙←00𝑘′𝑙′ = 𝛽000𝑙←000𝑙′ + 1(𝑘=𝐼 ,𝑘′=𝐼)𝛾𝐼←𝐼 + 1(𝑘=𝐸,𝑘′=𝐼)𝛾𝐸←𝐼
+ 1(𝑘=𝐼 ,𝑘′=𝐼)𝛾𝐼←𝐼

𝛽000𝑙←000𝑙′ = 𝛾𝐸←𝐸 + 𝑢000𝑙←000𝑙′ ,

where,

𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ∼ 𝒩(0, 𝜎2),
𝑢000𝑙←000𝑙′ ∼ 𝒩(0, 𝜏𝛽).

Here 1{·} refers to the indicator function. The estimated variables can be found in Table 6.7. Notice the

percentage of variation explained by the configuration item is identical to that in Table 6.4. We will

further elaborate on these results in Section 6.5.3.

Additionally, it is important to elaborate on the interpretation of the estimated fixed effects in this model.

In this context, the fixed effects between events, denoted as ˆ𝛾𝐸←𝐸, represent the grand mean. The other

three fixed effects, namely �̂�𝐼←𝐸, �̂�𝐸←𝐼 and �̂�𝐼←𝐼 , should be understood as the additional fixed effects with
respect to the grand mean ˆ𝛾𝐸←𝐸. For example, the actual fixed effect for incidents on incidents can be

calculated as �̂�𝐸← 𝐸 + �̂�𝐼 ← 𝐼.

Table 6.7: Model 5: a three-level model where the arrival nature is nested in the configuration item. The arrival nature is modeled

as a fixed effect.

Variance Perc. of total variance Standard deviation
�̂�𝜅 4.04 e-3 31.8% 6.35 e-2

�̂�2
8.63 e-3 9.31 e-2

Estimate Std. Error t-value
�̂�𝐸←𝐸 4.81e-03 1.19e-03 4.03

�̂�𝐼←𝐸 7.80e-05 1.22e-04 0.64

�̂�𝐸←𝐼 6.62e-04 1.22e-04 5.44

�̂�𝐼←𝐼 1.52e-04 1.23e-04 1.24

6.4.6. Model 6: Fixed nature and CI nested in BA.
Similarly, we can change the random effect for the nature of the model from Section 6.4.4 to a fixed effect.

This results in the following model:

log
10
(𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙) = 𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ + 𝑒ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′

𝜋0𝑗𝑘𝑙←0𝑗′𝑘′𝑙′ = 𝜅00𝑘𝑙←00𝑘′𝑙′ + 1(𝑘=𝐼 ,𝑘′=𝐸)(𝛾𝐼←𝐸) + 1(𝑘=𝐸,𝑘′=𝐼)𝛾𝐸←𝐼

+ 1(𝑘=𝐼 ,𝑘′=𝐼)𝛾𝐼←𝐼
𝜅00𝑘𝑙←00𝑘′𝑙′ = 𝛽000𝑙←000𝑙′ + 𝑧00𝑘𝑙←00𝑘′𝑙′ ,

𝛽000𝑙←000𝑙′ = 𝛾𝐸←𝐸 + 𝑢000𝑙←000𝑙′ ,

where,

𝜖ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ ∼ 𝒩(0, 𝜎2),
𝑧00𝑘𝑙←00𝑘′𝑙′ ∼ 𝒩(0, 𝜏𝜅),
𝑢000𝑙←000𝑙′ ∼ 𝒩(0, 𝜏𝛽).

The fixed and random effects are presented in Table 6.8. Once more, we observe a remarkable similarity

between the explained variation with the model from Section 6.4.3. Indeed, as with the fixed effect

6.5. Consequences for Software Architecture 75

model in the previous section, it is important to carefully consider the interpretation of the estimated

fixed effect variables. Finally, we will further elaborate on the results from this model in Section 6.5.3.

Table 6.8: Model 6: a four-level model where the arrival nature is nested in the configuration item, and the configuration item is

nested in the business application. The arrival nature is modeled as a fixed effect.

Variance Perc. of total variance Standard deviation
�̂�𝜅 3.78 e-4 3.1% 1.95 e-2

�̂�𝛽 3.11 e-3 25.7% 5.57 e-2

�̂�2
8.63 e-3 9.29 e-2

Estimate Std. Error t-value
�̂�𝐸←𝐸 4.04 e-03 9.47 e-04 4.26

�̂�𝐼←𝐸 3.01 e-05 1.22 e-04 0.246

�̂�𝐸←𝐼 7.25 e-04 1.22 e-04 5.93

�̂�𝐼←𝐼 1.71 e-04 1.25 e-04 1.38

6.5. Consequences for Software Architecture
So far, our analysis has focused on arrivals from the IT monitoring data stream for one business unit

only. Therefore, we are not able to draw conclusions between different business units. However, for the

other four levels of service, namely the business application, configuration item, nature, and cluster

level, we can indeed illustrate the implications for software architecture.

6.5.1. Business application level consequences
In particular, we estimated the associations between different business applications 𝑙 , 𝑙′ ∈ 𝐵𝐴 and

visualized them in Figure 6.6. After clustering blocks of business applications that behave similarly

together, we can draw several conclusions.

Firstly, there are 52 business applications and 13 synthetically created Business Application Groups.

Interestingly, the synthetic Business Application Groups do not exhibit substantially different be-

havior compared to genuine business applications. This is evident from the fact that the synthetic

business application groups are clustered together with genuine business applications in similar blocks.

Additionally, it can be found the seven created blocks of similarly behaving business applications are not

of equal size. On the left side, we observe two groups consisting of four and three business applications,

while on the right side, there is a larger block consisting of 31 business applications. This suggests that

the coherence between business applications is distributed unevenly; some business applications interact

only with a few others, while others interact with almost half of the total number of business applications.

Authors note: This paragraph is removed due to confidentiality.

Unfortunately, due to time constraints, we were unable to engage in discussions with system engineers

to clarify the difference between business applications that share similar names but are distinguished by

a numerical suffix. Nevertheless, the noteworthy observation persists that business applications with

similar names do not consistently cluster together in the same block.

6.5.2. Configuration item level consequences
In a similar vein, we have estimated associations between the configuration items 𝑘, 𝑘′ ∈ 𝐶𝐼 and

visualized them in Figure 6.7. As in the case of Figure 6.6, it is evident that the blocks containing

configuration items are not equal in size. Specifically, among the 58 configuration items of interest, we

find two blocks each comprising two configuration items, alongside two separate blocks, each featuring

only one configuration item.

Indeed, a notable discovery pertains to the UNKNOWN configuration item. This category encompasses

all arrivals that were recorded on the business application but could not be attributed to any specific

configuration item. Intriguingly, it appears that arrivals assigned to the UNKNOWN configuration item do

6.5. Consequences for Software Architecture 76

not exhibit substantial associations with arrivals assigned to any of the other configuration items. This

is evident from their relatively low estimated excitation values.

Conversely, it is worth noting the behavior of the other three smaller blocks. These blocks display

notably high excitation values in relation to a specific configuration item name removed. However, due to

our limited knowledge of the semantics associated with these configuration items, we are unable to draw

definitive conclusions regarding the validity or appropriateness of these results. Therefore, engaging in

discussions with system engineers to gain insights into these findings would be of considerable interest

for a more comprehensive interpretation.

Finally, in our analysis, we initially anticipated observing significant self-excitation effects on the

diagonal of the matrix. This would mean that arrivals within the same configuration item would

be strongly associated with each other. However, this expectation was not confirmed in Figure 6.7.

This suggests that configuration items form more of a connected network, and to a lesser extent, they

influence arrivals on the same configuration item. The same conclusion can be drawn for business

applications based on Figure 6.6.

6.5.3. Arrival nature level consequences
We found that the percentage of variation explained by the configuration item is identical (31.8 %)

regardless of whether we incorporate the arrival nature or not (see Tables 6.4 and 6.7). This can be

interpreted in the following way: it seems that knowledge of the arrival nature does not substitute for

knowledge of the configuration item at all. Otherwise, including the arrival nature would reduce the

percentage of variation explained by the configuration item. This is coherent with the thought that

knowing the arrival nature for a specific arrival provides us with no additional knowledge regarding

the configuration items on which that arrival occurred, and conversely. In this sense, we can say that the

information between the configuration item and the arrival nature is orthogonal. Additionally, the same

conclusion can be drawn with respect to the business application (See Tables 6.5 and 6.8).

6.5.4. Message cluster level consequences
From the models in Section 6.4.1 to 6.4.6, we elucidated the variation explained by each of the levels

of service. This facilitated the clustering of the business applications and configuration items in

different blocks. Additionally, we demonstrated that the information provided by each of these service

levels cannot be replaced by relying on knowledge about the arrival nature 𝑆. However, instead of

decomposing the estimated excitation matrix �̂� in each of these levels of service, we can instead directly

identify the top-𝐾 highest estimated associations by ascendingly ordering each of the excitation values

𝛼ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ . Furthermore, we can specifically examine the top-𝐾′ excitation values 𝛼𝑖 𝑗𝑘𝑙←𝑖′ 𝑗′𝑘′𝑙′ where

𝑘 = 𝐸 and 𝑘′ = 𝐼, which represents events associated to incidents.

Authors note: This paragraph is removed due to confidentiality.

Table 6.9: Top K = 3 estimated excitation values �̂�ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′ 𝑙′ .

Authors note: This table is removed due to confidentiality.

7
Conclusion & Discussion

In this thesis, we unveiled to what extent marked Hawkes processes can contribute to providing a

comprehensive overview of the complex relations between different levels of service in large-scale

service systems. In summary, we have seen that the IT monitoring data stream consists of two arrival

natures, namely events and incidents. We have seen how we can construct clusters for each of the

two natures by making use of the message feature. Subsequently, we assumed independence between

business units. Therefore clustering could be performed per business unit. For each business unit𝑚 ∈ 𝐵𝑈 ,

this resulted in mark space𝒰𝑚 = 𝐵𝐴×𝐶𝐼 ×𝑆×𝐶𝐿𝑈𝑚
. For each of the arrivals, a unique five-level mark

could therefore be assigned, consisting of the (1) message cluster ℎ, (2) arrival nature 𝑗, (3) configuration item
𝑘, (4) business application 𝑙, (5) business unit 𝑚. Given the marked monitoring data stream, we considered

the arrivals on one specific business unit only. Subsequently, we considered the marked Hawkes process

framework with an exponential memory kernel. This enabled us to estimate excitation matrix �̂�, which

captures the estimated excitation between all marks 𝑢, 𝑢′ ∈ 𝒰𝑚
. By substituting back the mark, we

obtained �̂�ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙′ . From here on, we have established a hierarchical Hawkes model on the service

architecture of a large commercial bank.

Finally, this thesis was structured through means of four research questions. In this section, we

summarize the answers to the research questions that were tackled throughout this thesis and discuss

future work.

Research Question 1: How can we design a hierarchical architecture that resembles the operations of
large-scale service systems?

First, we have established four distinct levels of service: business unit, business application, configu-
ration item and arrival nature. Through their definition, these levels inherently form a hierarchical

architecture. However, it became evident that using "arrival nature" as the lowest-level hierarchy lacks

the necessary granularity for our problem analysis. Consequently, we introduced a new, lower level of

service. This new level was obtained by grouping arrivals together based on their messages. This led to

the development of Research Question 2.

Research Question 2: How can IT messages with similar semantics be grouped together?

We demonstrated that relying solely on template mining, such as demonstrated by the use of Drain,

is insufficient for effectively clustering semantically similar messages. Consequently, we explored an

approach that combines message embedding, followed by UMAP dimension reduction and HDBSCAN

clustering. A comparative analysis unveiled that TF-IDF embedding outperforms Doc2vec embedding,

as evidenced by higher DBCV clustering scores and lower percentages of messages with low certainty

regarding their assigned cluster. Moreover, outcomes from an extensive grid search indicated almost

identical hyperparameter results for both event and incident records. Additionally, we discussed how a

low number of clusters leads to high variance, while a high number of clusters introduces bias.

77

7.1. Discussion and future research 78

Research Question 3: How can the marked Hawkes process be employed to capture interactions
among arrivals? And how can the interactions be estimated?

We have demonstrated that we can model the cross-exciting behavior observed in large-scale ser-

vice systems by constructing a mark space 𝒰𝑚
for each business unit 𝑚 ∈ 𝐵𝑈 . This mark space

effectively integrates message clusters, arrival nature, and three additional levels of service. We have

introduced a class of memory kernels that can be separated into two components: one governing the

instantaneous increase in probability and another determining the rate of decay. Indeed, the exponential

memory kernel belongs to this class, which allows us to derive an estimated excitation matrix denoted as

Â. We demonstrated that the estimated excitation matrix can be obtained through both maximum likeli-

hood and least squares estimators. Furthermore, we described the Tick package which has incorporated

these functionalities through two estimators, namely the ExpKern and ADM4 estimator. Additionally, it

was found both of these estimators can be employed with various regularization techniques to enforce a

sparse estimated excitation matrix.

Research Question 4: How can the estimated excitation matrix contribute to understanding the
associations within a level of service?

First of all, we have seen that the choice of characteristic time (which determines the duration during

which an arrival can have an influence on others) exerts a substantial influence on the estimated excitation

matrix and, consequently, on the comprehension of service levels. Secondly, we have demonstrated

that each of the estimated excitation values �̂� ∈ �̂� can be decomposed into its constituent components

from the mark space, resulting in �̂�ℎ 𝑗𝑘𝑙←ℎ′ 𝑗′𝑘′𝑙 . The employed hierarchical linear models elucidate the

variation explained by each of these service levels, facilitating the grouping of components at the same

level of service into different blocks. Notably, we have highlighted which message clusters are estimated

to have resulted in an increase in the probability of observing other message clusters and posted that

these associations appear sensible, particularly in light of the incident ID feature.

7.1. Discussion and future research
Throughout the process of working with event and incident data for over a year, we have compiled

a set of recommendations. These are intended to serve as guidelines for AIOps engineers looking to

further expand the application of the hierarchical Hawkes model. we have developed recommendations

specifically for system engineers, outlining steps they can take to adapt the IT architecture such that

they can harness the full potential of the hierarchical Hawkes model effectively.

Currently, we only use the first arrival time of each event record. It could therefore prove advantageous

to divide the timeline into discrete bins and then employ an estimation technique to quantify the number

of occurrences in each bin. This would enable us to assign tally counts to these discrete bins.

However, the current set of expiration durations, denoted as 𝑇𝐸𝑋𝑃, permits a maximum expiration

of 1 week. This entails that the minimum bin size must also be set to at least 1 week, which may not

be practically feasible. Although we acknowledge that recording all arrivals separately is not feasible

from a data storage perspective, we recommend that system engineers consider reducing the allowed

expiration durations to a more practical range, for instance, 𝑇𝐸𝑋𝑃 := {0 𝑠, 1 𝑚, 15 𝑚}.

Moreover, to derive valuable insights from the excitation matrix, it is crucial that the mark space𝒰𝑚

accurately represents the levels of service. Therefore it should be evaluated with system engineers if the

current mark space𝒰𝑚
should be augmented to incorporate additional levels of service. Additionally,

the current mark space does not encompass parameters like priority (𝑝𝑟𝑖𝑜𝑖) and level environment

(𝑙𝑒𝑣𝑒𝑙_𝑖𝑑𝑖). It would be beneficial to explore whether incorporating these features could lead to a more

comprehensive and representative mark space.

Furthermore, the current hierarchical Hawkes model assumes marked Hawkes processes with a constant

7.1. Discussion and future research 79

baseline. However, as demonstrated in Section 3.2.1, patterns like seasonality and declining trends in

the number of arrivals can be observed. Therefore, exploring the integration of this information into a

baseline function and assessing its influence on the excitation matrix presents an intriguing path for

future research. Additionally, it is established by means of conversations with systems engineers that it

is likely for arrivals to lead to subsequent arrivals only after a short time interval. Hence, exploring

memory kernels capable of incorporating a delay in intensity increase, such as the Gamma distributed

memory kernel mentioned in Section 5.2.1, becomes a subject of interest.

Furthermore, it is worth noting that the analysis conducted thus far has been restricted to real-world

data from a single business unit. Expanding this investigation to include all 𝑛𝑏𝑢 business units and

comparing the findings across these various units could therefore provide valuable insights for Software

Architecture.

In our work, we estimate the excitation matrix using the determined cluster. We then did a post-

processing of this estimated excitation matrix by fitting a hierarchical linear mixed model. For future

work, it could be nice to establish a formal hierarchical Hawkes model that would encompass directly

the hierarchical nature of the data into the fitting of the process. This would bypass our 2-step procedure

by fitting directly a well-specified model. Furthermore, one could also study such a statistical model to

establish theoretical properties (consistency and the asymptotic law of the estimators) that could be

used to construct valid statistical tests and confidence intervals for the estimated parameters.

References

[1] Roozbeh Aghili, Heng Li, and Foutse Khomh. Studying the Characteristics of AIOps Projects on
GitHub. 2022. arXiv: 2212.13245 [cs.SE].

[2] Muhammad Sidik Asyaky and Rila Mandala. “Improving the Performance of HDBSCAN on Short

Text Clustering by Using Word Embedding and UMAP”. In: Institute of Electrical and Electronics

Engineers Inc., 2021. isbn: 9781665417433. doi: 10.1109/ICAICTA53211.2021.9640285.

[3] E. Bacry et al. “Tick: A python library for statistical learning, with an emphasis on hawkes

processes and time-dependent Models”. In: Journal of Machine Learning Research 18 (Apr. 2018),

pp. 1–5.

[4] Emmanuel Bacry et al. Sparse and low-rank multivariate Hawkes processes. 2020. arXiv: 1501.00725.

[5] European Central Bank. Sanctions. Accessed: 2023-08-04. url: https://www.bankingsupervision.
europa.eu/banking/tasks/sanctions/html/index.en.html.

[6] Joeran Beel et al. “Research-paper recommender systems: A literature survey”. In: International
Journal on Digital Libraries (July 2015), pp. 1–34. doi: 10.1007/s00799-015-0156-0.

[7] Samir Bhatt et al. Semi-Mechanistic Bayesian Modeling of COVID-19 with Renewal Processes. Dec. 2020.

url: http://arxiv.org/abs/2012.00394.

[8] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. Beĳing: O’Reilly, 2009. isbn: 978-0-596-51649-9. doi: http:
//my.safaribooksonline.com/9780596516499. url: http://www.nltk.org/book.

[9] Martin Bompaire. “Machine learning based on Hawkes processes and stochastic optimization.

(Apprentissage automatique avec les processus de Hawkes et l’optimisation stochastique)”. In:

2019.

[10] Alexandre Brouste and · Christian Farinetto. “Fast and asymptotically efficient estimation in the

Hawkes processes”. In: Japanese Journal of Statistics and Data Science 2023 (Feb. 2023), pp. 1–19. issn:

2520-8764. doi: 10.1007/S42081-023-00186-2. url: https://link.springer.com/article/10.
1007/s42081-023-00186-2.

[11] Alvaro Cartea, Samuel N. Cohen, and Saad Labyad. “Gradient-based estimation of linear Hawkes

processes with general kernels”. In: (Nov. 2021). url: http://arxiv.org/abs/2111.10637.

[12] Junjie Chen et al. “Continuous Incident Triage for Large-Scale Online Service Systems”. In: Nov.

2019, pp. 364–375. doi: 10.1109/ASE.2019.00042.

[13] Junjie Chen et al. “How Incidental are the Incidents? Characterizing and Prioritizing Incidents

for Large-Scale Online Service Systems”. In: Institute of Electrical and Electronics Engineers Inc.,

Sept. 2020, pp. 373–384. isbn: 9781450367684. doi: 10.1145/3324884.3416624.

[14] Yujun Chen et al. “Outage prediction and diagnosis for cloud service systems”. In: Association for

Computing Machinery, Inc, May 2019, pp. 2659–2665. isbn: 9781450366748. doi: 10.1145/3308558.
3313501.

[15] E. S. Chornoboy, L. P. Schramm, and A. F. Karr. “Maximum likelihood identification of neural

point process systems”. In: Biological Cybernetics 59 (4-5 Sept. 1988), pp. 265–275. issn: 03401200.

doi: 10.1007/BF00332915.

[16] Cost of Data Center Outages. Podemon Institute, Jan. 2016.

[17] D.R. Cox and V. Isham. Point Processes. Routledge., 1980. doi: https://doi.org/10.1201/
9780203743034.

[18] Daan van Monsjou. ING-klanten hebben last van storing waardoor geld overboeken niet mogelĳk is.
https://tweakers.net/nieuws/209044/ing-klanten-hebben-last-van-storing-waardoor-
geld-overboeken-niet-mogelijk-is.html. Accessed: 2023-04-24, Published: 2023-04-24.

80

https://arxiv.org/abs/2212.13245
https://doi.org/10.1109/ICAICTA53211.2021.9640285
https://arxiv.org/abs/1501.00725
https://www.bankingsupervision.europa.eu/banking/tasks/sanctions/html/index.en.html
https://www.bankingsupervision.europa.eu/banking/tasks/sanctions/html/index.en.html
https://doi.org/10.1007/s00799-015-0156-0
http://arxiv.org/abs/2012.00394
https://doi.org/http://my.safaribooksonline.com/9780596516499
https://doi.org/http://my.safaribooksonline.com/9780596516499
http://www.nltk.org/book
https://doi.org/10.1007/S42081-023-00186-2
https://link.springer.com/article/10.1007/s42081-023-00186-2
https://link.springer.com/article/10.1007/s42081-023-00186-2
http://arxiv.org/abs/2111.10637
https://doi.org/10.1109/ASE.2019.00042
https://doi.org/10.1145/3324884.3416624
https://doi.org/10.1145/3308558.3313501
https://doi.org/10.1145/3308558.3313501
https://doi.org/10.1007/BF00332915
https://doi.org/https://doi.org/10.1201/9780203743034
https://doi.org/https://doi.org/10.1201/9780203743034
https://tweakers.net/nieuws/209044/ing-klanten-hebben-last-van-storing-waardoor-geld-overboeken-niet-mogelijk-is.html
https://tweakers.net/nieuws/209044/ing-klanten-hebben-last-van-storing-waardoor-geld-overboeken-niet-mogelijk-is.html

References 81

[19] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Second. Probability

and its Applications (New York). Elementary theory and methods. New York: Springer-Verlag,

2003, pp. xxii+469. isbn: 0-387-95541-0.

[20] Cedric De Boom et al. “Learning Semantic Similarity for Very Short Texts”. In: 2015 IEEE
International Conference on Data Mining Workshop (ICDMW). 2015, pp. 1229–1234. doi: 10.1109/
ICDMW.2015.86.

[21] Alexis Derumigny and Johannes Schmidt-Hieber. On lower bounds for the bias-variance trade-off.

2023. arXiv: 2006.00278 [math.ST].

[22] Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. “Graphical Modeling for Multivariate

Hawkes Processes with Nonparametric Link Functions”. In: (May 2016). url: http://arxiv.org/
abs/1605.06759.

[23] C. W. J. Granger. “Investigating Causal Relations by Econometric Models and Cross-spectral

Methods”. In: Econometrica 37.3 (1969), pp. 424–438. issn: 00129682, 14680262. url: http://www.
jstor.org/stable/1912791 (visited on 05/06/2023).

[24] Asela Gunawardana, Christopher Meek, and Puyang Xu. “A Model for Temporal Dependencies in

Event Streams”. In: Advances in Neural Information Processing Systems. Ed. by J. Shawe-Taylor et al.

Vol. 24. Curran Associates, Inc., 2011. url: https://proceedings.neurips.cc/paper_files/
paper/2011/file/c9f95a0a5af052bffce5c89917335f67-Paper.pdf.

[25] Xin Guo et al. “Consistency and Computation of Regularized MLEs for Multivariate Hawkes

Processes”. In: (2018). url: https://www.researchgate.net/publication/328118461_Consist
ency_and_Computation_of_Regularized_MLEs_for_Multivariate_Hawkes_Processes.

[26] Peter Hall and Feng Chen. “Inference for a nonstationary self-exciting point process with an

application in ultra-high frequency financial data modeling”. In: Journal of Applied Probability, Vol.
50, No. 4 (Dec. 2013), pp. 1006–1024. url: https://www.jstor.org/stable/43284141.

[27] Stephen Hardiman, Nicolas Bercot, and Jean-Philippe Bouchaud. “Critical reflexivity in financial

markets: A Hawkes process analysis”. In: Physics of Condensed Matter 86 (Feb. 2013). doi: 10.2139/
ssrn.2221243.

[28] Alan G Hawkes. “Point Spectra of Some Mutually Exciting Point Processes”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 33 (3 Oct. 1971), pp. 438–443. doi: 10.1111/j.2517-
6161.1971.tb01530.x.

[29] Alan G Hawkes. “Spectra of some self-exciting and mutually exciting point processes”. In:

Biometrika 58 (1 1971), p. 83. url: http://biomet.oxfordjournals.org/.

[30] Alan G Hawkes and David Oakes. “A Cluster Process Representation of a Self-Exciting Process”.

In: Journal of Applied Probability 11 (3 1974), pp. 493–503. url: https://about.jstor.org/terms.

[31] Martin Hilbert. “Scale-free power-laws as interaction between progress and diffusion”. In:

Complexity 19.4 (2014), pp. 56–65. doi: https://doi.org/10.1002/cplx.21485. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cplx.21485. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cplx.21485.

[32] C. Huyen. Designing Machine Learning Systems: An Iterative Process for Production-ready Applications.
O’Reilly Media, Incorporated, 2022. isbn: 9781098107963.

[33] IBM. Business Applications. https://www.ibm.com/docs/en/taddm/7.3.0?topic=using-
business-applications. Accessed: 2023-17-06, Published: 2022-29-11.

[34] IBM. Configuration items. https://www.ibm.com/docs/en/cdfsp/7.6.1.x?topic=overview-
configuration-items. Accessed: 2023-03-22, Published: 2022-19-05.

[35] IBM. Organizational business units. https://www.ibm.com/docs/el/license-metric-tool?
topic=scenarios-organizational-business-units. Accessed: 2023-17-06, Published: 2023-29-

03.

[36] IBM. What is AIOps? https://www.ibm.com/topics/aiops. Accessed: 2023-15-05. Apr. 2022.

[37] Tsuyoshi Idé et al. Cardinality-Regularized Hawkes-Granger Model. 2022. eprint: 2208.10671.

https://doi.org/10.1109/ICDMW.2015.86
https://doi.org/10.1109/ICDMW.2015.86
https://arxiv.org/abs/2006.00278
http://arxiv.org/abs/1605.06759
http://arxiv.org/abs/1605.06759
http://www.jstor.org/stable/1912791
http://www.jstor.org/stable/1912791
https://proceedings.neurips.cc/paper_files/paper/2011/file/c9f95a0a5af052bffce5c89917335f67-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/c9f95a0a5af052bffce5c89917335f67-Paper.pdf
https://www.researchgate.net/publication/328118461_Consistency_and_Computation_of_Regularized_MLEs_for_Multivariate_Hawkes_Processes
https://www.researchgate.net/publication/328118461_Consistency_and_Computation_of_Regularized_MLEs_for_Multivariate_Hawkes_Processes
https://www.jstor.org/stable/43284141
https://doi.org/10.2139/ssrn.2221243
https://doi.org/10.2139/ssrn.2221243
https://doi.org/10.1111/j.2517-6161.1971.tb01530.x
https://doi.org/10.1111/j.2517-6161.1971.tb01530.x
http://biomet.oxfordjournals.org/
https://about.jstor.org/terms
https://doi.org/https://doi.org/10.1002/cplx.21485
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cplx.21485
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cplx.21485
https://onlinelibrary.wiley.com/doi/abs/10.1002/cplx.21485
https://onlinelibrary.wiley.com/doi/abs/10.1002/cplx.21485
https://www.ibm.com/docs/en/taddm/7.3.0?topic=using-business-applications
https://www.ibm.com/docs/en/taddm/7.3.0?topic=using-business-applications
https://www.ibm.com/docs/en/cdfsp/7.6.1.x?topic=overview-configuration-items
https://www.ibm.com/docs/en/cdfsp/7.6.1.x?topic=overview-configuration-items
https://www.ibm.com/docs/el/license-metric-tool?topic=scenarios-organizational-business-units
https://www.ibm.com/docs/el/license-metric-tool?topic=scenarios-organizational-business-units
https://www.ibm.com/topics/aiops
2208.10671

References 82

[38] Gartner Inc. AIOps (Artificial Intelligence for IT Operations). Accessed: 2023-08-04. url: https://www.
gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-
operations.

[39] Guofei Jiang et al. “Ranking the importance of alerts for problem determination in large computer

systems”. In: Cluster Computing 14 (June 2009), pp. 213–227. doi: 10.1007/s10586-010-0120-0.

[40] Julia Kagan. What Is Wholesale Banking? Types of Services and Example. https://www.investopedia.
com/terms/w/wholesalebanking.asp. Accessed: 2023-13-06, Published: 2020-04-05.

[41] Matthias Kirchner. “An estimation procedure for the Hawkes process”. In: Quantitative Finance
17.4 (Sept. 2016), pp. 571–595. doi: 10.1080/14697688.2016.1211312. url: https://doi.org/10.
1080%2F14697688.2016.1211312.

[42] P.J. Laub, Y. Lee, and T. Taimre. The Elements of Hawkes Processes. Springer International Publishing,

2022. isbn: 9783030846398. url: https://books.google.nl/books?id=HJtXEAAAQBAJ.

[43] Patrick J Laub, Thomas Taimre, and Philip K Pollett. “Hawkes Processes”. In: (2015).

[44] Laurent Lesage et al. “Hawkes Processes Framework With a Gamma Density As Excitation

Function: Application to Natural Disasters for Insurance”. In: Methodology and Computing in Applied
Probability 24 (Mar. 2022), pp. 1–29. doi: 10.1007/s11009-022-09938-1.

[45] Zhenmin Li et al. UCLog: A unified, correlated logging architecture for intrusion detection Log Anonymiza-
tion and Information Management (LAIM) View project MyProxy View project UCLog: A Unified,
Correlated Logging Architecture for Intrusion Detection. 2005. url: https://www.researchgate.net/
publication/228746403.

[46] Elizabeth D Liddy. “Natural language processing”. In: (2001).

[47] Derek Lin et al. “Unveiling clusters of events for alert and incident management in large-scale

enterprise it”. In: Association for Computing Machinery, 2014, pp. 1630–1639. isbn: 9781450329569.

doi: 10.1145/2623330.2623360.

[48] Qingwei Lin et al. “Log clustering based problem identification for online service systems”. In: IEEE

Computer Society, May 2016, pp. 102–111. isbn: 9781450341615. doi: 10.1145/2889160.2889232.

[49] Jinyang Liu et al. “Logzip: Extracting Hidden Structures via Iterative Clustering for Log Compres-

sion”. In: (Sept. 2019). url: http://arxiv.org/abs/1910.00409.

[50] Jian Guang Lou et al. “Experience report on applying software analytics in incident management

of online service”. In: Automated Software Engineering 24 (4 Dec. 2017), pp. 905–941. issn: 15737535.

doi: 10.1007/s10515-017-0218-1.

[51] Jian Guang Lou et al. “Software analytics for incident management of online services: An

experience report”. In: 2013, pp. 475–485. isbn: 9781479902156. doi: 10.1109/ASE.2013.6693105.

[52] Yingzhe Lyu et al. “Towards a Consistent Interpretation of AIOps Models”. In: ACM Transactions
on Software Engineering and Methodology 31 (1 Jan. 2022), pp. 1–38. issn: 1049-331X. doi: 10.1145/
3488269.

[53] Leland McInnes, John Healy, and Steve Astels. “hdbscan: Hierarchical density based clustering”.

In: The Journal of Open Source Software 2 (Mar. 2017). doi: 10.21105/joss.00205.

[54] Christopher Meek. “Toward Learning Graphical and Causal Process Models”. In: CIUAI. 2014.

[55] Seyed Ali Mirheidari, Sajjad Arshad, and Rasool Jalili. Alert Correlation Algorithms: A Survey and
Taxonomy. 2013.

[56] Davoud Moulavi et al. “Density-based clustering validation”. In: vol. 2. Society for Industrial

and Applied Mathematics Publications, 2014, pp. 839–847. isbn: 9781510811515. doi: 10.1137/1.
9781611973440.96.

[57] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. “Natural language

processing: an introduction”. In: Journal of the American Medical Informatics Association 18.5

(Sept. 2011), pp. 544–551. issn: 1067-5027. doi: 10.1136/amiajnl-2011-000464. eprint: https:
//academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf. url: https:
//doi.org/10.1136/amiajnl-2011-000464.

https://www.gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-operations
https://www.gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-operations
https://www.gartner.com/en/information-technology/glossary/aiops-artificial-intelligence-operations
https://doi.org/10.1007/s10586-010-0120-0
https://www.investopedia.com/terms/w/wholesalebanking.asp
https://www.investopedia.com/terms/w/wholesalebanking.asp
https://doi.org/10.1080/14697688.2016.1211312
https://doi.org/10.1080%2F14697688.2016.1211312
https://doi.org/10.1080%2F14697688.2016.1211312
https://books.google.nl/books?id=HJtXEAAAQBAJ
https://doi.org/10.1007/s11009-022-09938-1
https://www.researchgate.net/publication/228746403
https://www.researchgate.net/publication/228746403
https://doi.org/10.1145/2623330.2623360
https://doi.org/10.1145/2889160.2889232
http://arxiv.org/abs/1910.00409
https://doi.org/10.1007/s10515-017-0218-1
https://doi.org/10.1109/ASE.2013.6693105
https://doi.org/10.1145/3488269
https://doi.org/10.1145/3488269
https://doi.org/10.21105/joss.00205
https://doi.org/10.1137/1.9781611973440.96
https://doi.org/10.1137/1.9781611973440.96
https://doi.org/10.1136/amiajnl-2011-000464
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464

References 83

[58] Y Ogata. “On Lewis’ simulation method for point processes”. In: (1981). doi: 10.1109/TIT.1981.
1056305.

[59] Yosihiko Ogata. “The asymptotic behaviour of maximum likelihood estimators for stationary

point processes”. In: Ann. Inst. Statist. Math 30 (1978), pp. 243–261.

[60] Yosihiko Ogata and Yoslhlko Ogata. “Statistical Models for Earthquake Occurrences and Residual

Analysis for Point Processes”. In: Journal of the American Statistical Association 83 (1988), pp. 9–27.

issn: 0162-1459. doi: 10.1080/01621459.1988.10478560. url: https://www.tandfonline.com/
action/journalInformation?journalCode=uasa20.

[61] T Ozaki. “Maximum likelihood estimation of Hawkes’ self-exciting point processes”. In: Ann. Inst.
Statist. Math 31 (1979), pp. 145–155.

[62] Jakob Gulddahl Rasmussen. “Lecture Notes: Temporal Point Processes and the Conditional

Intensity Function”. In: (2018).

[63] Patricia Reynaud-Bouret and Sophie Schbath. “Adaptive estimation for hawkes processes; Appli-

cation to genome analysis”. In: Annals of Statistics 38 (5 Oct. 2010), pp. 2781–2822. issn: 00905364.

doi: 10.1214/10-AOS806.

[64] Marian-Andrei Rizoiu, Young Lee, and Swapnil Mishra. “A Tutorial on Hawkes Processes for

Events in Social Media”. In: Dec. 2017, pp. 191–218. isbn: 9781970001075.

[65] Marian-Andrei Rizoiu, Young Lee, and Swapnil Mishra. “A Tutorial on Hawkes Processes for

Events in Social Media”. In: Dec. 2017, pp. 191–218. isbn: 9781970001075.

[66] Sabin Roman and Francesco Bertolotti. “A master equation for power laws”. In: Royal Society Open
Science 9.12 (Dec. 2022). doi: 10.1098/rsos.220531. url: https://doi.org/10.1098%2Frsos.
220531.

[67] Paula Rooney. Microsoft’s CEO: 80-20 Rule Applies To Bugs, Not Just Features. https://www.crn.
com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-
features.htm. Oct. 2002.

[68] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and validation of cluster

analysis”. In: Journal of Computational and Applied Mathematics 20 (1987), pp. 53–65. issn: 0377-0427.

doi: https://doi.org/10.1016/0377-0427(87)90125-7. url: https://www.sciencedirect.
com/science/article/pii/0377042787901257.

[69] Tiago Santos, Florian Lemmerich, and Denis Helic. Surfacing Estimation Uncertainty in the Decay
Parameters of Hawkes Processes with Exponential Kernels. 2021. arXiv: 2104.01029 [cs.LG].

[70] Ruben Sipos et al. “Log-based predictive maintenance”. In: Association for Computing Machinery,

2014, pp. 1867–1876. isbn: 9781450329569. doi: 10.1145/2623330.2623340.

[71] Dylan Slack et al. “Fooling LIME and SHAP: Adversarial attacks on post hoc explanation methods”.

In: Association for Computing Machinery, Inc, Feb. 2020, pp. 180–186. isbn: 9781450371100. doi:

10.1145/3375627.3375830.

[72] John Spacey. 11 Examples of a Configuration Item. https://simplicable.com/IT/configuration-
item. Accessed: 2023-01-08.

[73] Tanya Tsui et al. “Spatial clustering of waste reuse in a circular economy: A spatial autocorrelation

analysis on locations of waste reuse in the Netherlands using global and local Moran’s I”. In:

Frontiers in Built Environment 8 (2022). issn: 2297-3362. doi: 10.3389/fbuil.2022.954642. url:

https://www.frontiersin.org/articles/10.3389/fbuil.2022.954642.

[74] Piet Van Mieghem. Performance Analysis of Complex Networks and Systems. Cambridge University

Press, 2014. doi: 10.1017/CBO9781107415874.

[75] Wallstreet Mojo. Strategic Business Unit. https://www.wallstreetmojo.com/strategic-busine
ss-unit/. Accessed: 2023-17-06.

[76] Song Wei et al. “Causal Graph Discovery from Self and Mutually Exciting Time Series”. In: (Jan.

2023). url: http://arxiv.org/abs/2301.11197.

[77] What is iDEAL? https://www.ideal.nl/en/consumers/what-is-ideal/. Accessed: 2023-08-03.

https://doi.org/10.1109/TIT.1981.1056305
https://doi.org/10.1109/TIT.1981.1056305
https://doi.org/10.1080/01621459.1988.10478560
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://doi.org/10.1214/10-AOS806
https://doi.org/10.1098/rsos.220531
https://doi.org/10.1098%2Frsos.220531
https://doi.org/10.1098%2Frsos.220531
https://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
https://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
https://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://arxiv.org/abs/2104.01029
https://doi.org/10.1145/2623330.2623340
https://doi.org/10.1145/3375627.3375830
https://simplicable.com/IT/configuration-item
https://simplicable.com/IT/configuration-item
https://doi.org/10.3389/fbuil.2022.954642
https://www.frontiersin.org/articles/10.3389/fbuil.2022.954642
https://doi.org/10.1017/CBO9781107415874
https://www.wallstreetmojo.com/strategic-business-unit/
https://www.wallstreetmojo.com/strategic-business-unit/
http://arxiv.org/abs/2301.11197

References 84

[78] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. “Learning Granger Causality for Hawkes

Processes”. In: (2016).

[79] William Yurcik et al. “UCLog+: A Security Data Management System for Correlating Alerts,

Incidents, and Raw Data From Remote Logs”. In: (2005).

[80] Ke Zhang et al. “Automated IT system failure prediction: A deep learning approach”. In:

Institute of Electrical and Electronics Engineers Inc., 2016, pp. 1291–1300. isbn: 9781467390040.

doi: 10.1109/BigData.2016.7840733.

[81] Xu Zhang et al. “Robust log-based anomaly detection on unstable log data”. In: Association for

Computing Machinery, Inc, Aug. 2019, pp. 807–817. isbn: 9781450355728. doi: 10.1145/3338906.
3338931.

[82] Nengwen Zhao et al. “Real-time incident prediction for online service systems”. In: Association for

Computing Machinery, Inc, Nov. 2020, pp. 315–326. isbn: 9781450370431. doi: 10.1145/3368089.
3409672.

[83] Nengwen Zhao et al. “Understanding and handling alert storm for online service systems”. In: IEEE

Computer Society, June 2020, pp. 162–171. isbn: 9781450371230. doi: 10.1145/3377813.3381363.

[84] Xiang Zhou et al. “Latent error prediction and fault localization for microservice applications

by learning from system trace logs”. In: Association for Computing Machinery, Inc, Aug. 2019,

pp. 683–694. isbn: 9781450355728. doi: 10.1145/3338906.3338961.

https://doi.org/10.1109/BigData.2016.7840733
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1145/3377813.3381363
https://doi.org/10.1145/3338906.3338961

A
Source Code

Plotly does not provide a logarithmic scale for options for heatmaps. We have defined a function for

this and shared the results on the Plotly Community form 1

1 """
2 Custom code for generating color bar with logarithmic scaled bar.
3 """
4 def colorbar(n):
5 """
6 Args:
7 n: Maximum value to display in bar
8 return:
9 Dictionary item with heatmap colorbar items

10 """
11

12 adjusted_colorbar = dict(
13 tick0 = 0,
14 title = "Log␣color␣scale",
15 tickmode = "array",
16 tickvals = np.linspace(0, n, n+1),
17 ticktext = 10**np.linspace(0, n, n+1))
18 return adjusted_colorbar
19

20

21 fig = go.Figure(data = go.Heatmap(
22 z = np.log10(window[’size’]),
23 x = window[’time’],
24 y = window[’day’],
25 text = window[’size’],
26 colorscale=’Inferno’,
27 hovertemplate = "Date:␣%{y}␣%{x}␣
" + "Count:␣%{text}",
28 colorbar = colorbar(n),
29 reversescale = True))

1https://community.plotly.com/t/how-to-set-log-scale-for-z-axis-on-a-heatmap/292

85

B
Additional theorems

B.1. Kullback-Leibler divergence
The Kullback-Leibler (KL) divergence, also known as relative entropy, is a measure of how one probability

distribution diverges from another.

Definition B.1.1: Kullback-Leibler divergence

Given two discrete probability distributions 𝑃(𝑥) and 𝑄(𝑥) over a discrete random variable 𝑥,

the KL divergence from 𝑃 to 𝑄 is defined as:

𝐷KL(𝑃∥𝑄) =
∑
𝑥

𝑃(𝑥) log

(
𝑃(𝑥)
𝑄(𝑥)

)
(B.1)

where the sum is taken over all possible values of 𝑥, and 𝑃(𝑥) and𝑄(𝑥) represent the probabilities

of the corresponding events under distributions 𝑃 and 𝑄, respectively.

1. Non-negativity: 𝐷KL(𝑃∥𝑄) ≥ 0, with equality if and only if 𝑃(𝑥) = 𝑄(𝑥) for all 𝑥.

2. Non-commutativity: 𝐷KL(𝑃∥𝑄) ≠ 𝐷KL(𝑄∥𝑃) in general.

3. Invariance under Re-parametrization: 𝐷KL(𝑃∥𝑄) is invariant under re-parametrization of

the random variable 𝑥.

4. Additivity: For independent random variables 𝑥 and 𝑦, 𝐷KL(𝑃(𝑥, 𝑦)∥𝑄(𝑥, 𝑦)) =

𝐷KL(𝑃(𝑥)∥𝑄(𝑥)) + 𝐷KL(𝑃(𝑦)∥𝑄(𝑦)).

86

C
Parameter settings

C.1. Hyperparameter grid HDBSCAN & UMAP
The total hyperparameter grid is as follows

n_neighbors : [12, 13, 14, 15],
n_components : [3, 4, 5, 6],
min_cluster_size : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
cluster_selection_epsilon : [0.5, 0.6, 0.7],
cluster_selection_method : [eom, leaf],
metric : [euclidean,manhattan]

(C.1)

C.2. Periodogram
A periodogram for the event and incident data stream for a two-month period, as used in Section 3.2.1

can be found in Figures C.1 and C.2. Both highest peaks are attained at approximately (24 · 60 · 60)−1𝐻𝑧,
resulting in a seasonal period of approximately 24 hours.

87

C.3. Additional excitation figures 88

Figure C.1: Periodogram for the arrival time of events.

Authors note: This figure is removed due to confidentiality.

Figure C.2: Periodogram for the arrival time of incidents.

C.3. Additional excitation figures

Authors note: This figure is removed due to confidentiality.

Figure C.3: Logarithmically scaled heatmap of the excitation effect between different business applications. Additionally, a

dendrogram showing the results of complete linkage using an Euclidean distance is visualized. Furthermore, seven blocks

regarding the transferring business application, as well as seven blocks regarding the receiving business application are created.

Authors note: This figure is removed due to confidentiality.

Figure C.4: Logarithmically scaled heatmap of the excitation effect between different configuration items. Additionally, a

dendrogram showing the results of complete linkage using an Euclidean distance is visualized. Furthermore, seven blocks

regarding the transferring configuration item, as well as seven blocks regarding the receiving configuration item are created.

	Preface
	Abstract
	Nomenclature
	I Preliminaries
	Introduction
	ING bank
	Incidents & events
	AIOps
	Hawkes processes
	Research questions
	Thesis outline

	Background & Related work
	Incident management
	Hawkes processes

	II Problem framework
	Descriptive analysis
	Structure of the arrival data
	Feature vector
	Compression rules

	Feature analysis
	Temporal occurrence
	Level identifiers
	Message structure
	Incident identifier
	Differentiating between priorities
	Pareto principle

	Hierarchical service architecture
	Top level service structure
	Structure of the service data
	Analysis of mapping
	A five-level hierarchy

	Bottom level message cluster
	Log parsing
	Clustering: embedding
	Clustering: HDBSCAN
	Clustering: dimensionality reduction using UMAP
	Clustering: validation

	Real-world data
	Drain
	HDBSCAN
	Results

	III Hawkes process analysis
	Hawkes Processes
	Stochastic processes
	Point processes
	Counting processes
	Homogeneous Poisson processes
	Non-homogeneous Poisson processes
	Conditional intensity function
	Compensator

	One-dimensional Hawkes processes
	Memory kernel
	Estimation procedures
	Consistency of the MLE for one-dimensional Hawkes processes

	Marked Hawkes processes
	Conditional intensity function
	Granger causality
	Estimation procedure

	Estimating Hawkes processes using the Tick library
	Two estimators

	Hierachical Hawkes processes
	Two-level hierarchical model
	Two-level mark space
	Estimation of parameters

	Five-level hierarchical model
	Assumptions
	Variance partitioning

	Practical considerations
	Choice of estimator
	Characteristic time t
	Resolution for configuration item - business application mapping

	Main results: Hierarchical linear model
	Model 1: Business application
	Model 2: Configuration item
	Model 3: CI nested in BA
	Model 4: Nature nested in CI, CI nested in BA
	Model 5: Fixed nature and CI
	Model 6: Fixed nature and CI nested in BA.

	Consequences for Software Architecture
	Business application level consequences
	Configuration item level consequences
	Arrival nature level consequences
	Message cluster level consequences

	Conclusion & Discussion
	Discussion and future research

	References
	Source Code
	Additional theorems
	Kullback-Leibler divergence

	Parameter settings
	Hyperparameter grid HDBSCAN & UMAP
	Periodogram
	Additional excitation figures

