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Secure Logistic Regression for Vertical Federated
Learning

Daojing He, Member, IEEE, Runmeng Du, Shanshan Zhu, Min Zhang, Kaitai Liang, Sammy Chan

Abstract—Data island effectively blocks the practical appli-
cation of machine learning. To meet this challenge, a new
framework known as Federated Learning was born. It allows
model training on a large amount of scattered data owned
by different data providers. This paper presents a parallel
solution for computing logistic regression based on distributed
asynchronous task framework. Compared to the existing work,
our proposed solution does not rely on any third party coordi-
nator, and hence has better security and can solve the multi-
training problem. The logistic regression based on homomorphic
encryption is implemented in Python, which is used for vertical
federated learning and prediction of the resulting model. We
evaluate the proposed solution using the MNIST data set, and
the experimental results show that good performance is achieved.

Index Terms—Federated learning, multiparty privacy compu-
tation, logistic regression, homomorphic encryption.

I. INTRODUCTION

Machine learning (ML) actively seeks regularity and valida-
tion rules through the input of massive data coming from var-
ious organizations, and finally comes up with suitable models.
ML plays a very important role in a variety of applications
including web search, online advertising, recommendation,
mechanical fault prediction and insurance pricing. However,
it has been increasingly difficult from a legislative perspective
for different data holders to jointly train models. For example,
the EU passed the General Data Protection Regulation (GDPR)
Act, which states that all information related to individuals
is personal data and the use of such data must be explicitly
authorized by the owners. In addition, a lot of laws and
regulations about how to protect private data are starting to
be published.

Secure Multiparty Computation (MPC) has been proposed
to compute encrypted data in model training such as random
decision trees, Naive Bayes classification, k-means clustering.
These work obviously incur considerable computing overhead.
To address this challenge, Google introduced the federated
learning (FL) system [1]. The definition of FL is that each
party’s data is kept locally, without breach of privacy or vio-
lation of regulations. Weights obtained by training using each
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participant’s own data are combined to update a global model
which could be used for prediction by every participants.
Yang et al. [2] expanded the concept of FL to cover more
scenarios, forming a comprehensive and secure FL framework
including horizontal federated learning (HFL), vertical federat-
ed learning (VFL) and federated transfer learning (FTL). As a
modeling method to guarantee data privacy, FL has many great
application scenarios in sales, finance and other industries.

HFL is applicable to the situation where data sets owned by
different parties share the same feature space but have different
samples. Each party can train its own local model based
on its own data set. Ultimately, all participants upload their
model updates to an aggregator, which creates a global model
by combining (for example, averaging) the model weights
received from the individual participants. By contrast, VFL
refers to collaborative scenarios, where individual party does
not have a complete data feature matrix or the class labels,
so the model needs to be trained by all participants. It should
be noted that, on the one hand, private set intersection (PSI)
is carried out on sample sets of all participants to create
a complete feature vector [3]. On the other hand, in the
process of cooperative training, the data feature matrix of
each participant will not be disclosed. VFL is suitable for
different feature vectors owned by different parties but sharing
the same sample userID space, where userID refers to the
unique identity of the user.

Thus, vertical federated learning is more complex and
requires higher data processing methods. Parties involved in
model training (for example, companies in different industries)
usually do not hold training data with the same feature
dimension, but rather want to use their features to obtain
cross-domain model by associating their data with others’ data
of same samples. This is a practical requirement for vertical
distributed datasets. At present, this need is also increasing.
Due to the difficulty of implementation and the lack of existing
work, VFL needs further research.

Logistic regression (LR) is a classic algorithm in machine
learning and it is widely used in finance, Internet and other
industries. Logistic function is one of the nonlinear activation
functions commonly used in deep learning, and has been
widely used in practical applications. Due to simplicity and
wide usage in many binary classification tasks of logistic
regression, privacy preserving logistic regression modeling
based on vertical distributed datasets has attracted a lot of
attention. The scheme of [4] is based on secret sharing and
homomorphic encryption techniques to encrypt the raw data
and distribute it to various computing parties who train the
secret model using the encrypted data. In [5], homomorphic
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Fig. 1: Data flow in SecureLR

encryption is added to logistic regression, and the gradient
information during the training process is transmitted to a
third party. There are also some works where participants help
each other to decrypt the gradient information which is used
to update the model parameters in the training process, while
the data is held locally [6]–[8]. Unfortunately, these solutions
appear to incur high computational or communicational over-
heads and data insecurity of parties.

This paper presents a distributed solution for computing
logistic regression avoiding disadvantages of the above men-
tioned schemes, called SecureLR. In SecureLR, the third party
is removed and only the participants are retained, as shown
in Fig. 1, where 1 represents plaintext data that cannot
be directly exchanged between participants, 2 represents
sample alignment and 3 represents privacy protection model
training. There are two main reasons of removing the third
party. First, it is hard to find a trustworthy third party. Second,
the involvement of a third party increases the risk of data
leakage, complexity of the system and the cost of establishing
the model.

We address the challenge of how can the participants
jointly build a model while the third party is removed. In
our implementation, we consider to build a distributed system
based on homomorphic encryption. There are two main types
of participants involved in SecureLR. The first type owns
features and labels and is called Guest. The second type only
owns feature and is called Host. Guest and Host want to jointly
build a machine learning model. However, since Host has
no label, Guest will assist Host in gradient decryption and
gradient update during model training.

The main contributions of this paper can be summarized as
follows:

1) We design a privacy preserving logistic regression train-
ing scheme based on homomorphic encryption in verti-
cal federated learning. The proposed scheme based on
piecewise function improves security at an acceptable

loss of efficiency. It also avoids the shortcomings of
existing schemes, including not leaking label of party,
protecting gradient information during training, and sig-
nificantly protecting data features of each party.

2) In the process of logistic regression model training, we
avoid using Taylor expansion formula and directly use
new logical functions to ensure loss function unchanged.
This way ensures the accuracy of the model. At the same
time, the security modeling of parties can be completed
without the coordination by the third party, which greatly
reduces the complexity of the system.

3) We propose a multi-party VFL framework without the
third party to solve multi-party logistic regression prob-
lem. The framework can deal with multi-participant
model training problems.

The rest of this paper is organized as follows. Section II
introduces related work of federated learning. Section III intro-
duces related preliminaries. Section IV shows the framework
of our proposed multiparty VFL system. Section V gives the
concrete structure of vertical federated learning. Section VI
shows our algorithm principle. Section VII evaluates the
designed algorithm. Section VIII concludes the paper.

II. RELATED WORK

Federated learning is a new machine learning mechanism
which can train a model based on a large corpus of scattered
data owned by different parties and maintain the data privacy at
the same time. However, federated learning raises several types
of issues, including the system challenges (e.g., a massive
number of edge clients with limited network connections) [9],
the statistic challenges (e.g., unbalanced and non-IID data
distributions) [10], and the data privacy preservation [11],
which have attracted a lot of recent research interests.

Logistic regression is a classic algorithm in machine learn-
ing. Our work belongs to privacy preserving machine learning
for federated learning. At present, there are three types of
privacy preserving logistic regression schemes including joint
modeling using homomorphic encryption or secret sharing
MPC technique [4], transmitting gradient information to the
third party [5] during model training and Guest providing help
for Host to decrypt gradient information [6]–[8].

However, the scheme of [4] based on homomorphic encryp-
tion or secret sharing MPC technique will take data out of the
local area, and increase the risk of data leakage. Transferring
gradient information to a third party who provides aggregation
and distribution service will result in more frequent communi-
cation rounds [5]. In addition, though gradient information is
encrypted and transmitted to a third party, it cannot be stored
locally, thus increasing the potential risk of data leakage. This
is because the third party may conspire with a participant to
cause the data of other participants to be leaked. At the same
time, in practice, it is almost impossible to find a completely
trustworthy third party. This makes it challenging to apply this
solution in a real production environment.

Instead of transmitting encrypted data to a third party, some
intermediate results could be encrypted with homomorphic
encryption and transmitted during the training process. This
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brings some significant advantages. First, the raw data are
kept locally by each party. Second, the amount of data to
be encrypted is minimized through careful design. Third, the
overall computation overhead could be reduced greatly. In this
research direction, Hardy et al. [6] proposed a solution for
federated logistic regression based on vertically partitioned
data. Yang et al. [7] presented a solution for parallel dis-
tributed logistic regression for VFL, and the role of third-
party coordinator is removed as in our proposed solution.
Wei et al. [8] proposed a protocol that can complete the
logistic regression modeling of vertically partitioned data by
asynchronous gradient sharing, However, schemes of [7], [8]
have the risk of leaking information because participants can
recover feature information by constructing a large number
of linear equations [12]. The works of [7], [8] are most
similar to the research content of this paper. The differences
between the work of [7], [8] and ours lie in the difference of
logical functions, the computation method of gradient and the
different decryption ways of gradient information.

III. BACKGROUND KNOWLEDGE AND SECURITY MODEL
ARCHITECTURE

A. Vertical Federated Learning
VFL refers to multiple data sets where users overlap more

and user features overlap less, which is applicable to users
who share the same sample in data sets owned by different
parties. For example, if there are two different organizations,
one is a bank in one place and the other is an e-commerce
company in the same place. Their user base is likely to include
most of the residents of the area, so the intersection of users
is large. However, since banks only record users’ payment
behavior and credit ratings, while e-commerce companies keep
users’ browsing and purchase history, there is less intersection
between their user features. VFL is a federated learning
that aggregates these different features in encrypted state to
enhance model capabilities.

Consider there are m participats in VFL, that is, one Guest
and m − 1 Hosts are defined. Let {Xk ∈ Rn×dk}mk=1 be the
feature matrix distributed on m private parties with each row
Xk

i ∈ R1×dk being a userID data instance, where n1, . . . , nm
must be the same userID set. This is because they perform
Private Set Intersection (PSI) [13]. Let Fk = {f1, . . . , fdk

}
denote the feature set of the corresponding feature matrix,
where Fp∩Fq = ∅,∀p 6= q ∈ {1, . . . ,m}. This is determined
by the characteristic of VFL. Also when building a model
for a common task, VFL considers that Guest has a label for
classification or regression. Let y ∈ R1×dk denote the label
matrix.

VFL can be expressed follows.
Given: The Guest owns the feature matrix and the label

matrix, while the Hosts only owns the feature matrix.
Learn: A machine learning model Model, in which data

matrix information of any party is not provided to others
during the learning process. The model Model has a function
that projects Modeli on each side, and Modeli takes input
from its own feature Xi.

Lossless and Eiffient Constraint: We require the the model
Model to ensure the efficiency of execution without loss of

precision. In this paper, Model is a logistic regression model.
Here we do not consider the situation where some of the Hosts
(clients) is missing or corrupted.

B. Secure Multiparty Computation and Security Modle

Secure Multiparty Computation. The problem that MPC
solves is that in the environment of n participants, each
participant has its own private input xi. Then they work
together to compute a function f(x1, . . . , xn). MPC ensures
the independence of the input and the correctness of the
computation. In the end, each participant cannot get more
information other than the output. Most previously proposed
protocols are based on the security protocol under the semi-
honest model. This model assumes that all participants in the
MPC protocol will faithfully execute the protocol, but they will
record the information received during the protocol execution
and attempt to use these information to infer privacy input of
other participants after the protocol execution [14]. The semi-
honest model is a less secure model, but it accurately depicts
many real application scenarios. The security protocol under
the semi-honesty model is the key and foundation of designing
privacy protection protocol.

Semi-honest model. Semi-honest model is an important
MPC model in which every participant’s behavior is consistent
with the requirements of the algorithm. However, it will retain
information about the computation process and try to use these
information to obtain more private information about other
participants

Homomorphic encryption. It is a cryptographic technique
based on computational complexity theory. Processing the
homomorphic encrypted data to get an output, and decrypting
this output, we can find that the decryption result is the same as
the output from processing unencrypted raw data in the same
way. Paillier cryptosystem has additive homomorphism [15],
that is, E(m1) + E(m2) = E(m1 + m2) and E(m1)m2 =
E(m1m2), where m1,m2 are plain message. Paillier cryp-
tosystem has three stages including Key generation (pk, sk),
Encryption E(·) and Decryption D(·).

C. Logistic Regression

Logistic regression model is a classification model, which is
widely used in machine learning. Machine learning often uses
the logistic function to achieve this purpose: p(y = 1|X;W) =
hw(X) = 1

1+e−WX .
In the setting of VFL of m parties, assuming data matrix
{Xk ∈ Rn×dk}mk=1, label matrix Y ∈ Rn×1 and parameter ma-
trix {Wk ∈ Rdk×1}mk=1 corresponding to the feature matrix,
where Xi ∈ R1×Σm

k=1dk is a complete user data instance.
The loss function is L(W) = − 1

n

∑n
i=1 Yi log hw(Xi) +

(1−Yi) log(1−hw(Xi)), where ∂Li(W)
∂W = (hw(Xi)−Yi)Xi.

And the gradients formula is ∂L(W)
∂ W = − 1

n

∑n
i=1

∂Li(W)
∂W =

1
n

∑n
i=1(hw(Xi)− yi)Xi. In the setting of VFL of m parties,

assuming data matrix {Xk ∈ Rn×dk}mk=1, y ∈ Rn×1, model
parameters {Wk ∈ R1×dk}mk=1 corresponding to the data
matrix, and Xi ∈ R1×Σm

k=1dk is a complete userID data
instance.
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D. Gradient Descent

Stochastic gradient descent (SGD) is an effective approxi-
mation algorithm for approaching a local minimum of a loss
function, step by step. In addition, SGD can be generalized
to work for logistic regression and neural network training,
where no closed-form solution exists for the corresponding op-
timization problems. As a result, SGD is the most commonly
used approach to train such models in practice and the main
focus of this work. The SGD algorithm works as follows: W
is initialized as a vector of random values. In each iteration,
a complete userID data instance (Xi, yi) is selected randomly
and W is updated as W = W− η ∂Li(W)

∂W .

E. Piecewise Function

In addition to solve the problem of linear regression, mainly
the extra challenge of logistic regression algorithm is to
compute logistic function, where function hw(Xi) involving
division and exponentiation are difficult to use the MPC
technique to solve. Therefore, previous work used Taylor
expansion polynomials to approximate the function hw(Xi),
and it has been shown that the approximation using a higher
degree polynomial is very accurate [16]. However, for efficien-
cy reasons, the degree of approximation polynomial is set to 2
or 3 in the secure computation. As a result, the accuracy loss of
the training model is greater than that of logistic regression.
The piecewise function is that if u < −1/2, f(u) = 0; If
u > 1/2, f(u) = 1; Otherwise, f(u) = u + 1/2. This
piecewise function can not only perform efficient computation,
but also greatly protect the privacy of data.

In addition, with the new logistic function, there are two
options when computing the back propagation. First, we can
use the same update function as the logistic function, that
is, we can continue to use the logistic function to compute
the partial derivatives. Second, we can compute the partial
derivatives of the new function. We are in line with [17], that
is, we continue to use the logistic function to compute partial
derivatives. This is because the accuracy of the first method
matches that of using the logistic function. Based on piecewise
function and participant pattern for VFL (one Guest and
multiple Hosts), we can derive that if

∑m
k=1(X

k
i Wk) < −1/2,

f(XWi) = 0; If
∑m

k=1(X
k
i Wk) > 1/2, f(XWi) = 1;

Otherwise, f(XWi) = 1
2 + XWi. In addition, [17] proves

that the piecewise function f(XWi) achieves almost the same
accuracy as the logistic function hw(Xi).

The main reason that logistic regression algorithms work
well for classification problems is that the predicted range
is between 0 and 1. Therefore, it is very important that the
two tails of the activation function converge to 0 and 1. Both
the logistic function hw(Xi) and the function f(XWi) would
converge to 0 and 1. When XWi approaches negative infinity,
hw(Xi) converges to 0, and f(XWi) is equal to 0. When
XWi approaches positive infinity, hw(Xi) converges to 1 and
f(XWi) is equal to 1. In contrast, the approximation of a low-
order Taylor expansion polynomial may approach a logistic
function over a certain interval, but the tail is unbounded.
In addition, [17] proves that the piecewise function f(XWi)

Fig. 2: System Framework

achieves almost the same accuracy as the logistic function
hw(Xi).

F. The blind millionaire problem

According to f(XWi), it is noted that the millionaire prob-
lem is involved in the secure logistic regression model training.
The millionaire problem refers to that two millionaires Alice
and Bob have wealth t1 and t2, respectively, and they want
to secretly determine the size relationship between t1 and t2.
Sometimes it is necessary to make a secure comparison of the
size of the corresponding inscription data when participants
are only aware of the encrypted data. We call it the blind
millionaire problem and it has higher security requirements
than the millionaire problem. We construct a solution to solve
blind millionaire problem by improving the method of [18].
Based on the piecewise function, the blind millionaire can be
defined as: if E(

∑m
k=1(X

k
i Wk)) < E(−1/2), f(XWi) = 0;

If E(
∑m

k=1(X
k
i Wk)) > E(1/2), f(XWi) = 1; Otherwise,

f(XWi) = E( 1
2 + XWi).

IV. SYSTEM FRAMEWORK

Fig. 2 shows the framework of our proposed multiparty VFL
system, which consists of a Guest and multiple Hosts. Any two
can communicate with each other. Multiparty VFL framework
consists of four layers. Starting from the bottom layer, the
first layer is the Data layer Data, which integrates MySQL
database. MySQL is used to store original Data. We designed
a unified communication model to facilitate subsequent recon-
struction and optimization. The second layer Module contains
library methods such as pandas and numpy of Python, phe for
encrypting and decrypting data, and gmpy for handling large
integer operations. The third layer is the computation layer
Compare. We extracted the low-level abstraction of the blind
millionaire problem and implemented the Engine respectively
to facilitate the application layer algorithmn invocation. The
fourth layer is Application, which is mainly secure logistic
regression model training, where secure logistic regression
model training can call computation layer Compare to get
corresponding result. Distributed framework adopts multi-
threading, based on Python language implementation, to better
support high concurrency. SecureLR is implemented in the
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framework. In Fig. 2, next to the connections between guest
and hosts, four layers involved in the VFL can not be incor-
porated because the layers are independent of each other. The
piecewise function f(XWi) is the loss function used in the
implemented framework. The arrows indicate that participants
can communicate with each other.

V. OVERVIEW OF PROPOSED METHOD

In this section, we give the concrete structure of SecureLR.
According to the architecture of VFL, the steps of SecureLR
should include initialization, data preparation and privacy
protection training. A brief overview follows.

Initialization: During initialization, the public parameters
are generated by the Guest. The Guest also generates secret
key pairs and publishes the public key to Hosts and keep
the private key locally. In addition, Guest and Hosts initialize
parameter matrix {Wk ∈ R1×dk}mk=1.

Data preparation: Before the model training, Guest and
Hosts encrypt the data XkWk and then call the blind mil-
lionaire to get the corresponding comparison matrix f(XW).

Privacy protection model training: The Guest owns the
feature matrix and the label matrix, while the Hosts only own
the feature matrix. The logistic regression model M has a
function that projects Mi on each side, and Mi takes input
from its own feature matrix Xk

i∗ ∈ R1×dk . In the process of
model training, Guest and Hosts interact and communicate
with each other, and finally all participants get the respective
local model.

VI. DETAILED DESIGN

The process of model training is that, first, we need to define
a loss function and get a prediction matrix based on forward
propagation according to corresponding comparison matrix.
Comparing with the real sample to get the loss value, we
use the back propagation to update the weight (parameter),
iterate back and forth until the loss function is very small and
accuracy rate can reach the ideal value. The parameters in
this case are the parameters required by the model. Privacy
protection model training is as follows.

1) Guest and Hostk,∈ [2,m] encrypt the data XkWk and
then call the blind millionaire algorithm to get the
corresponding comparison matrix, that is a prediction
matrix f(XW).

2) Then Guest computes loss value 5Y = f(XW) − Y
by comparing f(XWi) to Yi. At this point, Guest
can compute gradient value ∂L(W1)

∂W1 and update model
parameters W1 ∈ R1×d1 .

3) Guest computes E(5Y) and sends it to the Hosts
so that Hosts do not know the loss value. Hosts can
compute own gradient value E(∂L(Wk)

∂Wk ) and update
model parameters {E(Wk) ∈ R1×dk}mk=2.

4) Model training ends until the maximum number of itera-
tions is reached or some convergence conditions are sat-
isfied. Guest sends a signal that the model iteration is ter-
minated. Hostk,∈ [2,m] randomly selects a matrix Rk ∈
Rdk×1, computes E(WkRk) = E(Wk)Rk and sends it
to Guest. Guest computes WkRk = D(E(WkRk)) and

Fig. 3: Results Comparison between SecureLR and [8]

send it to Hostk, k ∈ [2,m]. Finally, Hostk, k ∈ [2,m]
computes Wk = WkRk/Rk.

5) Guest and Hostk,∈ [2,m] return the parameter matrix
Wk respectively.

The above shows the main steps of our proposed privacy
protection model training.

VII. EVALUATION

We have set up a simple two-party VFL framework. All the
algorithms mentioned in this paper are implemented in the
framework. The framework focuses on the improvement of
data privacy protection, and the improvement is very obvious.

Experimental equipment include two PCs based on x64
processor with 16.0 GB RAM (15.4GB available), Windows10
64-bit operating system and AMD Ryzen 5 5500U with
Radeon Graphics 2.10 GHz. The algorithms are deployed by
running programs on the two experimental machines respec-
tively. The algorithms are implemented using Python language
and related libraries MySQL, and other related tools.

Dataset is MNIST. Since the labels of MNIST dataset
are multi-classification labels and this paper deals with the
dichotomous problem, we use the tag value after the tag
data is dichotomized as the actual value Y. The sampling
interval is 100, 200, 400, 600, 800 and 1000. The abscissa
is the number of samples and the ordinate is the running time
of the algorithm. In terms of security, we are more secure
than traditional logistic regression schemes. Data security is
protected, data islands are broken, and data availability is
improved. Compared with other vertical logistic regression
federated learning frameworks, on the one hand, our scheme
eliminates the third party and greatly protects the data privacy
of the participants, namely, Guest and Host.

We compare SecureLR to [8], which solved a two-party
logistic regression in VFL. For fair comparison, we uniform
the parameters. Threshold l = 0.01. Learning rate η = 0.3.
Participant pattern: one Guest and one Host. The comparison
results are shown in Fig. 3.

Fig. 3 shows that the efficiency of [8] is higher than
SecureLR. Our computational load is mainly consumed in the
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Fig. 4: Experimental results of SecureLR

computation of the comparison matrix, as in [8], which is
directly transmitted to Guest with product matrix in plaintext.
Since Guest has label matrix, Guest can completely recover
the data information of Host by constructing a large number of
linear equations. SecureLR guarantees security at the expense
of efficiency. However, Fig. 3 shows that our efficiency loss
is within acceptable limits. Currently, trading off data security
with some acceptable costs is an inevitable trend in the data
field.

Since SecureLR mainly solves the problem of multi-party
training, in our experiment each participant has a dataset of
size 100 and the number of participants is 2, 3, 4, 5 and 6.
The experimental results are shown in Fig. 4.

Fig. 4 shows that the prediction time of SecureLR remain
the same with the growth in the number of participants under
the condition that our algorithm holds the dataset of invariant
size.

VIII. CONCLUSION

The goal of federated learning is to achieve common
modeling while ensuring data privacy and legal compliance.
This paper has presented a parallel distributed logistic regres-
sion algorithm for vertical federated learning. Unlike existing
solutions, we not only remove the third party coordinator
from the system, but also ensure that there is no information
leakage during the training process. This system design brings
some significant advantages, such as avoiding the practical
difficulty of finding an authoritative third party coordinator
that all participants can trust, and improving the security of
system deployment. We have evaluated the implementation of
the system, and the experimental results demonstrated that the
system has high security. In addition, our implementation can
be easily extended to support federated model training with
multiple participants. In the future research, we will study
the vertical federated learning method combining logistic
regression and deep neural network.
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