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Abstract

The maintenance and repairs of transition zones pose significant challenges in the railways industry
due to their accelerated degradation rates in comparison to free tracks. These zones, characterized
by track property variations, amplify their response when a source travels along the tracks. The
resulting amplifications in stress and strain fields lead to differential settlements, affecting both
track’s stability and passenger comfort. This study investigates the influence of incorporating
active control forces and moments at the interface of transition zones to mitigate the excessive
degradation of soft domains.

Three 1-dimensional models are developed, which include active control forces and moments
as a novel method to minimize the amplification of the response in the soft domain of transition
zones, as well as, the derivation of these forces. The purpose of these three models is to give the
reader an inside view of the method to derive these active control forces with models that increase
in complexity.

The first model involves an Euler-Bernoulli beam resting on a piece-wise inhomogeneous Win-
kler foundation. The second model extends this by including a shear beam and a second layer of
foundation, with the first layer being homogeneous and the second layer piece-wise inhomogeneous
(Kerr foundation). The third model is a hybrid model between the first two, on which the soft do-
main is represented by the description of the second model, and the rigid domain by the description
of the first model. Numerical solutions in the time-domain were applied to these models, and the
study focused on a transition zone subjected to a constant amplitude moving load with constant
velocity, traveling from a soft to stiff domain. The purpose of the first model is to give the reader a
general idea on the derivation of a very simplistic model. The second model’s purpose is to better
represent the different elements of a railway structure, on which the shear beam and the lower
layer of springs represent the mobilised soil under the tracks, while the top layer of springs and
the Euler-Bernoulli beam represent the ballast, the sleepers and the rail. Finally, the third model
was made to represent a transition zones, on which the soil is discontinued due to a man-made
structure, e.g. a concrete bridge, which leads the structure under the ballast, in the rigid domain,
to be consider infinitely stiff and to be represented just by an Euler-Bernoulli beam on a Winkler
foundation.

Findings reveal that the active control forces and moments are capable of fully mitigating the
dynamic amplification in soft domains of transition zones, however, they increase the dynamic
amplifications in the stiff domain. Moreover, the shape that these forces take over time is dictated
by the interaction between both domains of the transition zone, when the interface of the transition
zone has continuous elements, the forces take a similar shape to the eigenfield of the system,
while when there is discontinuous elements over the interface, the forces take a ’flipping’ shape.
Furthermore, of the two parameters studied (velocity of the moving load and vertical stiffness), the
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dominating parameter in the response of the system depends upon the regime that the system is
being subjected to. For relatively low and extremely high velocities of the moving load, the system
is dominated by the vertical stiffness ratio, while for medium velocities of the moving load, the
system is dominated by the velocity of the moving load. Finally, transition zones with discontinuous
elements require significantly more energy to be absorbed and added into the system by the active
control forces to mitigate the dynamic amplifications in the soft domain of the system.

These thesis offer valuable insights for preliminary designs of active control forces aimed at
diminishing the dynamic amplification of soft domains of transition zones railway.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background Information

Railways have been used for centuries all around the world to transport people and goods. With
globalization and the development of countries, more tracks are being placed to reach already
existing, and new destinations in a quicker and more efficient manner. As a consequence, every
year there is more of the railway systems to maintain and repair. During the construction of railway
tracks, as the rails are advancing, obstacles must be overcome to reach the destinations. Because
of these obstacles, (e.g. rivers, mountains, canals, etc.), manmade structures must be built for the
tracks to continue. For instance, bridges to cross over rivers, or tunnels to go through mountains.

The zones around the interface of these manmade structures and the pre-existing natural struc-
tures, are called “transition zones”. These zones are of particular importance to the railway indus-
try; they tend to exhibit a higher degradation and deterioration rate compared to tracks afar from
these zones (also known as “free tracks”). In fact, according to Meijers and Hölscher [20], transition
zones require 2 to 4 times more maintenance than the “free” track.

Moreover, according to the European Commission [6], €38.7 billion were spent in rail infras-
tructure by the European Member States (EU27) just in 2018. About 55% of this money (€21.3
billion) was spent only on renewals and maintenance, while only 20% of the money (€8 billion) in
new infrastructure.

This evidences the great saving potential that can be made, if the frequency of renewals and
maintenance of railways were to decrease. Specially as maintenance of tracks disrupts the normal
traffic of the railway system, often causing delays or cancelling of trains. However, for this to happen
significant improvements in the understanding on the behaviour of the accelerated degradation of
transition zones must be achieved.

1.2 Objectives of this Study and Research Question

The problem in transition zones arises when a train travels from or towards a stiffer structure, such
as a bridge, and an abrupt change in the stiffness of the system occurs. This increases the loading
of the different components of the tracks and in the soil underneath, increasing the deterioration
rate of the tracks.
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According to Paixao et al. [23], there are two main factors of problems at transition zones:

1. The abrupt variation of the track’s vertical stiffness due to different support conditions. For
instance, less stiffness over earthworks, while higher stiffness on bridges or culverts, and

2. The differential settlement between the structure and the backfilling of the abutment.

Furthermore, they (Paixao et al.) stated that these two factors severely amplify the dynamic
train-track interaction if the transition zone is not properly designed and/or maintained.

The differential settlements between the structure and the back-filling of the abutment deforms
the geometry of the tracks. This causes the interaction forces between the train’s wheels and the
tracks to increase, which leads to an increase in the differential settlements. This mechanism repeats
itself worsening the problem, until maintenance and repair are performed on the tracks [4]. This
thesis neglects the interaction forces between the train’s wheel and the tracks, and only focuses on
the effects of stiffness variation in the system.

Several solutions have been applied to attempt solving this issue, like the implementation of
“auxiliary rails” ( [13], [18], [29]), under sleeper pads ( [32], [25], [22], [14]), and even creating a
gradual change of stiffness along the tracks ( [32], [1], [17]). However, there is no evidence of this
solutions working for extended periods of time (40 years or more), without requiring maintenance,
or replacements of elements of the tracks.

This leads to the following research question:

What is the influence of introducing active control forces and moments in minimising the dy-
namic amplifications in railway transition zones?

The aim of this thesis is to study the effectiveness of implementing active control forces at the
location of the interface of transition zone to diminish the dynamic amplification of the tracks.

1.3 Outline of the Thesis

This thesis contains 5 chapters. In Chapter 2 the research description is presented, along with
previous studies on how to mitigate the deterioration of transition zones. Chapter 3 presents the
description and derivation of the models, the derivation of the active control forces, as well as, a
verification of Model A and Model B. Chapter 4 then presents a description of the findings and
discussion of them. Then, Chapter 5, illustrates the conclusions and recommendations for further
studies to be carried out in this topic.
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Chapter 2

Literature Review and Research
Methodology

2.1 Previous Studies

Throughout the years, several studies have been carried out to attempt attenuating the dynamic
amplifications and differential settlements at transition zones. However, no definite solution has
been found yet. In practice, there are several methods to reduce the degradation rate of transition
zones, some of them are presented below.

Several researchers have studied the implementation of “auxiliary rails” in transition zones.
This consists on adding extra rails to the sleepers over the transition zone, increasing the bending
stiffness of the track. It helps for a better distribution of the loads on the sleepers. Consequently,
this reduces the pressure acting on the ballast ( [28], [11], [13], [18], [29]). However, in some cases,
high stiffness also causes the dynamic forces in the wheel-rail interface, in the sleepers and in the
ballast to increase, ultimately leading to wear and fatigue problems [12].

Another method that has been studied is the usage of “increasing sleepers’ length” in the
transition zone. This consists in gradually increasing the sleepers’ length, width and height, while
decreasing the spacing between them. This reduces the stresses and vertical displacements due
to the increasing size of the area supporting the sleepers. ( [28], [26]). However, this does not
contribute much to the vertical stiffness as it also depends on the compaction and uniformity of the
ballast ( [21], [27], [3]).

Several authors suggest to create a smooth gradual change of stiffness along the tracks to
minimize the increase of interaction forces at the transition zone ( [32], [1], [17]). One method
that has been widely studied is the implementation of “Under Sleeper Pads” between the ballast
and the sleepers. This method consists in placing a rubber pad under the sleepers to reduce the
sleeper-ballast interaction forces controlling the vertical stiffness of the tracks and increasing the
track flexibility. This reduces the vibrations transmitted to the ballast by the passing train, as well
as the resonance frequency of the system, however it increases receptance value of it ( [32], [25], [2],
[22], [14]).

Another aspect of the track system degradation is the localized settlements of the sleepers and
the formation of voids under the sleepers, on which some may end up hanging. Extensive research
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has been carried out on the dynamics behaviour of railway tracks with partially or fully unsupported
sleepers ( [34], [30], [33], [19], [15]). These studies showed that the presence of these hanging sleepers
creates discontinuities and irregularities on the track support, which generates an increase on the
wheel-rail interaction forces, further worsening the problem. This normally leads to worsen vehicle’s
stability and riding comfort. Paixao et al [24], studied the influence of back-fill settlements in the
train-track interaction at transition zones. To do this, they performed non-linear dynamic analyses
on a two dimensional model. They concluded that the back-fills with a wedge shape seem to limit
the problems related to abrupt variations of the track’s stiffness and differential settlements.

Another method that has been studied is the implementation of tuned mass dampers (TMD) in
the system. This has been done mainly to suppress the noise radiation in the rails as in the work
of Xiao et al [31]. However, Jouna [16], in his Master’s thesis, studied the feasibility of placing
distributed TMD along the tracks to lower the dynamic amplification provoked at the tracks due
to the moving load in the transition zone. He concluded that the inclusion of these elements can
lead to a significant reduction of the dynamic amplification of the system. However, it does not
fully mitigate this response.

When looking at literature on numerical models, Faragau et al [10] formulated a model con-
sisting of an Euler-Bernoulli beam resting on a inhomogeneous, non-linear Winkler foundation,
subjected to a moving load. This research showed that the plastic deformation of the foundation is
a consequence of constructive interference of the exited waves and the response of the system to the
load’s dead-weight. Then, Faragau et al [8], published a comparison of three solutions methods for
one-dimensional models, the ’time-domain method’, the ’integral-transform’ method, and a hybrid
method. They concluded that when dealing with non-linearities and inhomogeneities throughout
the depth of the model, the ’time-domain’ method is likely to be the most efficient method. Also,
Faragau et al [9] studied the influence of accounting for the interaction between the vehicle and
the supporting structure. For this, a one-dimensional model of an Euler-Bernoulli beam resting
on a locally inhomogeneous Kelvin foundation was formulated. In terms of modelling of the foun-
dation, Oliveira et al [5] derived a linear lattice model of the ballasts, to provide a framework to
study the settlement of ballasts in zones of stiffness variation of the railway track support. Finally,
Faragau [7], in his PhD dissertation, studied the initialization phase of differential settlements in
transition zones, solely due to the amplification of stresses and strains occurring at these zones, due
to a moving load. He demonstrated that the response amplification of the transition zone is due to
the interference between the free field and the steady-state field of the system. The more pronounce
the free field is, in comparison to the steady-state field, the more amplification is generated.

2.2 Research Description

This thesis will study the effectiveness of implementing active control forces and moments at the
interface of transition zone to diminish the dynamic amplification of the tracks.

For this, two models of a transition zone were formulated from a starting point taken as a base
model presented in [7]. The Base Model consists of an Euler-Bernoulli beam resting on a Winkler
foundation. Then, the first model produced, takes a step further and connects the base of the
Winkler foundation to a Shear beam which is also resting on step-wise inhomogeneous foundation,
to achieve an Euler-Bernoulli beam resting on a Kerr foundation, this model is referred as Model
A. Finally, the second model, which is referred to as ’Hybrid Model’, represents the soft domain of
the transition zone with the description of the first model, while the stiff domain of it is represented
by the description of the Base Model. Moreover, all three models include active control forces and
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moments in order to mitigate the dynamic amplification in the soft domain of the transition zone,
on which the base model had to be adapted for this. Figure (2.1) illustrates the schematics of the
three different models that are used in this thesis.

Soft Domain Stiff Domain

v

F0

kd,t(x)

ρt, EI

Soft Domain Stiff Domain

v

F0

kd,t

kd,b(x)

ρb, GA

ρt, EI

Soft Domain Stiff Domain

v

F0

kd,t

kd,b

ρb, GA

ρt, EI

Figure 2.1: Schematics of the three models. Base Model (top panel), Kerr foundation (middle
panel) and Hybrid Model (lower panel), where the vertical dashed line indicates a jump on stiffness
at x = xTC .

The reason of presenting three models is that the Base Model is a phenomenological model,
which can approximate many scenarios of change in vertical stiffness. The second model, Model
A, is formulated to better approximate the response of transition zones, as the lower (shear) beam
incorporates effects of the foundation more precisely. Finally, the third model, the Hybrid Model, is
formulated to represent a transition zone, on which the tracks go from earthworks, to a man-made
structure; how could be the scenario of a concrete bridge or a culvert, on which the soil underneath
the tracks is discontinued. Hence, the shear beam is not presented in the stiff zone of this model
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because a rigid structure is considered under the first layer of springs and dash-pots (which represent
the ballast). It must be noted that the second and third model are also phenomenological models.

Each of these models include active control forces and moments as a novel method to mitigate
the dynamic amplifications in the soft domain of transition zones, when subjected to a constant
moving load travelling from soft to stiff domains transition zones. The reason of including these
active control forces and moments is that previous alternative solutions proposed by researchers do
not fully achieve the desired mitigation in soft domains of transition zones.
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Chapter 3

Models and Solutions

This section illustrates the derivation of the Base Model and the two extra models that were
produced with the inclusion of the active control forces and moments. It also includes a overview
on the derivation of the active control forces, on which the system of equations that must be solved
for each model is presented. Moreover, a verification of the first and second model are presented
along the error accumulated in their response. The Base Model, is presented here solely to show
the adaptation of it. An extensive analysis have already been carried out by Andrei Faragau in [7].
Hence, the Base Model does not present any novelty and is not worth validating nor analysing in
this thesis.

The Base Model, as it names may indicate, it is used as a base for the derivation of Model
A and Model B (Hybrid Model). The first model, Model A, is an extension of the base one, on
which a shear beam and a second layer of springs have been added, to achieve a Kerr foundation.
These extra elements have been added to represent the mobilised soil under the tracks. The second
model, Model B, is a hybrid model between the base one and the first one. This model seeks to
better represent the transition zone by discontinuing the soil layer to better represent the interface
interaction between the soft and rigid domains of transition zones.

3.1 Base Model - Euler-Bernoulli beam on a Winkler foun-
dation

This section illustrates the derivation process of the active control force and moment required to be
applied at the interface of the transition zone in order to completely mitigate the response ampli-
fication in the soft domain of the transition zone. The model consists on an Euler-Bernoulli beam
resting on an piece-wise inhomogeneous Winkler foundation, the beam is subjected to a constant
moving load, which also moves with constant velocity. To do this, first, the model is formulated
with its corresponding interface and boundary conditions. Then, the steady-state solution of the
system is obtained, as well as, the transient response of it. The system is analysed in the spatial
frequency domain, by applying the Fourier transform over time. Finally, the active control force
and moment, FEB and MEB , and the wave amplitudes of the system are derived. The time-domain
counterparts are obtained by performing a numerical inverse Fourier transform.
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Soft Domain Stiff Domain

v

F0

kd,t(x)

ρt, EI

Figure 3.1: Model schematic: infinite Euler-Bernoulli beam on an inhomogeneous foundation, sub-
jected to a constant moving load, where the vertical dashed line indicates a jump on stiffness at
x = XTC .

3.1.1 Model Formulation

The foundation of the model has a jump on stiffness at x = xTC (where the subscript stands for
“Transition Centre”). This jump in stiffness divides the system in two semi-infinite domains. The
equation of motion of the system is given below.

EI
∂4w(x, t)

∂x4
+ ρ

∂2w(x, t)

∂t2
+ kd(x)w(x, t) = −F0δ(x− vt)

w(x, t) =

{
wL(x, t), for x ≤ xTC

wR(x, t), for x ≥ xTC

kd(x) =

{
kd,L, for x < xTC

kd,R, for x ≥ xTC

(3.1)
Where ∂

∂x and ∂
∂t stands for the partial derivative with respect to space and time, respectively.

EI is the bending stiffness of the beam and ρ is the mass per unit length of it. kd,L is the
homogeneous foundation stiffness of the left semi-infinite domain, while kd,R is of the right semi-
infinite domain. wL and wR represent the displacement field of the left and right semi-infinite
domain, respectively. Furthermore, F0 and v represent the magnitude and velocity of the constant
moving load, respectively.

At the interface between the two domains, apart from imposing continuity in the displacement,
slope, shear force balance and bending moment balance, an extra active control force and moment
are imposed. These force and moment seek to ensure that no transient response is generated in the
soft domain of the system (left domain) due to the moving load. Furthermore, the displacement
at infinite distances from the moving load should not tend to infinity. Hence, the interface and
boundary conditions read
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wL(xTC , t) = wR(xTC , t) (3.2)

w′
L(xTC , t) = w′

R(xTC , t) (3.3)

w′′
L(xTC , t) = w′′

R(xTC , t)−
MEB(t)

EI
(3.4)

w′′′
L (xTC , t) = w′′′

R (xTC , t)−
FEB(t)

EI
(3.5)

lim
(x−vt)→∞

wR(x, t) < ∞ (3.6)

lim
(x−vt)→−∞

wL(x, t) < ∞ (3.7)

Where the primes denote classical partial derivatives with respect to x.
Moreover, as the system is infinite, and is only locally inhomogeneous, the response is assumed

to be in the steady-state before the load reaches the transition zone. Hence, there is no need to
formulate initial conditions. Therefore, Equations 3.1 to 3.7 constitute a complete description of
the system. The next section derives the steady-state of the system.

3.1.2 Steady-State Solution

When kd,L = kd,R = kd the system described above becomes homogeneous, and consequently, its
solution is in the steady-state for all time moments. The equation of motion of the system with an
homogeneous Winkler foundation reads:

EI
∂4w(x, t)

∂x4
+ ρ

∂2w(x, t)

∂t2
+ kdw(x, t) = −F0δ(x− vt) (3.8)

To obtain the steady-state solution, the infinite domain is divided in two domains, in front of
the moving load, wf , and behind the moving load wb. These domains are as follows:

w(x, t) =

{
wb(x, t), for x ≤ vt

wf (x, t), for x ≥ vt
(3.9)

At the interface between both semi-infinite domains, continuity in displacement, slope, as well as
shear forces and bending moments are imposed. Furthermore, the displacement at infinite distance
from the moving load should not tend to infinity. Hence, the interface and boundary condition of
the homogeneous solution of the system are:

wb(vt, t) = wf (vt, t) (3.10)

w′
b(vt, t) = w′

f (vt, t) (3.11)

w′′
b (vt, t) = w′′

f (vt, t) (3.12)

w′′′
b (vt, t) = w′′′

f (vt, t) +
F0

EI
(3.13)

lim
x→−∞

wb(x, t) < ∞ (3.14)
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lim
x→∞

wf (x, t) < ∞ (3.15)

The resulting equations of motion of both fields are now homogeneous. This is because the force
has been transferred to the interface conditions expressing the vertical force equilibrium at x = vt.

The solution to the steady-state in the time-space domain can be assumed in the form of
harmonic waves, as follows:

wh(x, t) = Ahe
i(ωt−kx), for h = [b, f ] (3.16)

Where subscripts ”b” and ”f” stand for behind and front, respectively, k denotes the wave
number of the harmonic wave, and ω the frequency. Substituting the Homogeneous solution, eq.
(3.16), into the equation of motion in the time domain, eq. (3.8), the dispersion equation is obtained,
which reads:

EI

ρ
(k4 − ω2 + ω2

0) = 0 (3.17)

Where ω0 represents the cut-off frequency (ω0 =
√

kd

ρ ). To explicitly determine both ω and

k, an additional equation is needed. This equation comes in the form of the kinematic invariant
that relates the wavenumber, frequency and velocity of the moving load. The kinematic invariant
is given by:

ω = kv (3.18)

When solving together the expression for the dispersion equation and the kinematic invariant,
leads to four pairs (ω, k) = (ωe

1−4, k
e
1−4), which’s natures depends upon the load velocity. Note that

the subscript e is used to emphasise that these quantities are solutions of the dispersion equation
and kinematic invariant, and are no longer variables.

Figure 3.2: Dispersion curves Euler-Bernoulli beam on a Winkler foundation and kinematic invari-
ant corresponding to three velocities: sub-critical (green), critical (red) and super-critical (blue).
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The dispersion curves and the kinematic invariant are graphically represented in Figure (3.2).
For velocities below the critical velocity (the velocity at which the system matches the cut-off
frequency), there is no intersection between the kinematic invariant and the dispersion curves.
This leads to complex-valued (ωe, ke) pairs. This means that the waves are evanescent for every
(ωe, ke) pair, meaning that there is no energy radiating away from the load. For super-critical
velocities, the kinematic invariant intersects the two dispersion curves at four locations. This gives
real valued (ωe, ke) pairs. In this scenario, all waves and energy propagates away from the load.
The last scenario is when the velocity of the system matches the critical velocity. This results in the
kinematic invariant being tangential to the dispersion curves. This results in repeated real-valued
(ωe, ke) pairs which induces resonance. The expression of the critical velocity of the system is:

ccr = 4

√
4kdEI

ρ2
(3.19)

With the known (ωe, ke) pairs, the solutions are given by:

wh(x, t) = Ahe
−ike

1(x−vt) + bhe
−ike

2(x−vt) + Che
−ike

3(x−vt) +Dhe
−ike

4(x−vt), for h = [b, f ] (3.20)

It must be noted that the above expression is not valid for when v = ccr. Furthermore, the
eight unknown amplitudes are determined from the interface and boundary conditions. Moreover,
the wavenumbers of the eigenfield are chosen such that:

Re(ke1) > 0, Im(ke1) ≥ 0, (3.21)

Re(ke2) > 0, Im(ke2) ≤ 0, (3.22)

Re(ke3) < 0, Im(ke3) ≤ 0, (3.23)

Re(ke4) < 0, Im(ke4) ≥ 0. (3.24)

When applying the boundary conditions at infinite distances from the moving load, the wavenum-
bers ke2 and ke3 are admissible in the domain that extends to −∞, and the ke1 and ke4 are admissible
in the domain that extends to ∞. This leads to the Ab = Db = Bf = Cf = 0. The eigenfield, in
the time domain then becomes:

we(x, t) =

{
Bbe

−ike
2(x−vt) + Cbe

−ike
3(x−vt), for x < vt

Afe
−ike

1(x−vt) +Dfe
−ike

4(x−vt), for x ≥ vt
(3.25)

Hence, the eigenfield has been obtained in the time domain.

3.1.3 Transient Response

The response of the inhomogeneous system described in equations (3.1)-(3.7) is obtained applying
the Fourier transform over time and the solution is represented by a summation of wave modes.
The response obtained in the Fourier domain is analytical, while the inverse transform is performed
numerically. The equation of motion in the Fourier domain reads

∂4W (x, ω)

∂x4
+W (x, ω)k4(x) = − F0

EIv
e−iω x

v (3.26)
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k(x, ω) =

kL = 4

√
− ρ

EIω
2 +

kd,L

EI , x < xTC

kR = 4

√
− ρ

EIω
2 +

kd,R

EI , x ≥ xTC

To determine the displacement field in the frequency domain, a particular solution is superim-
posed to the solution of the homogeneous equation. The particular solutions WP,L and WP,R are
the frequency-domain eigenfield of the homogeneous system, with the properties of the left and
right domain, respectively. These solutions were sought having the same spatial distribution as the
forcing in the system and are given by the following equations:

WP,L(x, ω) = − F0

EI

v3

ω4 − k4Lv
4
e−iω x

v , for x ≤ xTC (3.27)

WP,R(x, ω) = − F0

EI

v3

ω4 − k4Rv
4
e−iω x

v , for x > xTC (3.28)

The complete solutions to the displacement field in the frequency domain (including the solution
of the homogeneous equation) is given as follows:

WL(x, ω) = ALe
−ikLx +BLe

ikLx + CLe
kLx +DLe

−kLx +WP,L, for x ≤ xTC (3.29)

WR(x, ω) = ARe
−ikRx +BRe

ikRx + CRe
kRx +DRe

−kRx +WP,R, for x ≥ xTC (3.30)

This thesis only focuses on sub-critical velocities. Hence, the four branches of the wave numbers,

kh (where h = [L,R]) are all complex values when ω is below the cut off frequency (ωco =
√

kd,h

ρ ).

Throughout this thesis, the branches of kh are chosen such that the imaginary part is negative and
the real part is positive. This choice leads to (AL = DL = BR = CR = 0), when the boundary
conditions, applied at infinite distance from the moving load, imposes a finite displacement. This
leads to the following expression for the displacement field in the frequency domain:

WL(x, ω) =

{
BLe

ikLx + CLe
kLx +WP,L, for x ≤ xTC

ARe
−ikRx +DRe

−kRx +WP,R, for x ≥ xTC

(3.31)

The remaining four amplitudes are determined from interface conditions (Eqs. (3.2)-(3.5)) (note
that to obtain the response of the unmodified transition zone, the forces FEB and MEB must be
set to zero in the interface conditions). Then to obtain the solution in the time domain, the inverse
Fourier transform was applied numerically.

3.1.4 Derivation of Active Forces and Moment

This sections derives the expressions of the active force and moment that can be applied at the
interface of the transition zone, to ensure the mitigation of the transient response in the soft domain
of the system (left domain). In order for this to happen, these forces must ensure that the magnitude
of the amplitude of the free waves in the soft domain (BL and CL) are zero.

BL = CL = 0 (3.32)

The forces are then obtained, in the frequency domain, by applying the interface conditions and
solving for the two wave amplitude of the rigid domain, and for the active force and moment, FEB
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and MEB , respectively. Then, an inverse Fourier transform is performed numerically in order to
bring these force and moment, and the displacement field amplitudes into the time domain. The
expressions are not given here due to brevity, however, they can be obtain straightforwardly by the
use of a symbolic mathematical software (e.g. Maple).

3.2 Model A - Euler-Bernoulli Beam on an Inhomogeneous
Kerr Foundation

The model formulated in this section, an Euler-Bernoulli on an inhomogeneous Kerr foundation (also
known as a two-parameter elastic foundation), is superior than the one in the previous section, a
Euler-Bernoulli beam on a Winkler foundation. This is because of the inclusion of the shear beam
and the bottom layer of springs. These elements have been added to represent the mobilised soil
under the tracks. This way, a better understanding on the stresses arising at the different parts of
the system can be achieved, namely the stresses at the track level, and at the soil under the tracks.
For this, a similar derivation as the previous section to derived the active forces is performed.
First, the model is formulated with its corresponding interface and boundary conditions. Then,
the steady-state solution of the system is obtained, as well as, the transient response of it. The
system is analysed in the spatial frequency domain, by applying the Fourier transform over time.
Finally, the active forces and moment, FEB , FS and MEB , and the wave amplitudes of the system
are derived. The time-domain counterparts are obtained by performing a numerical inverse Fourier
transform.

3.2.1 Model Formulation

The model of the transition zone formulated in this section is a two-layer model. It consists of an
infinite Euler-Bernoulli beam with bending stiffness EI, and linear density ρt and a shear beam,
with shear stiffness GA and linear density ρb. Both beams are connected by a layer of springs with
stiffness kd,t. The shear beam rests on a Winkler foundation of stiffness kd,b (the subscripts ”t”
and ”b” stand for top and bottom, respectively, referring to either the top or the bottom layer of
springs). Similarly as in Chapter 2, there is a jump of stiffness at x = xTC , in this case, only in the
bottom layers of springs. The system is shown in Figure (3.1) and its equations of motion are:

EI
∂4w(x, t)

∂x4
+ ρt

∂2w(x, t)

∂t2
+ kd,t(w(x, t)− u(x, t)) = −F0δ(x− vt) (3.33)

−GA
∂2u(x, t)

∂x2
+ ρb

∂2u(x, t)

∂t2
+ u(x, t)(kd,t + kd,b(x))− w(x, t)kd,t = 0 (3.34)

w(x, t) =

{
wL(x, t) x ≤ xTC

wR(x, t) x ≥ xTC

u(x, t) =

{
uL(x, t) x ≤ xTC

uR(x, t) x ≥ xTC

kd,b(x) =

{
kd,b,L x < xTC

kd,b,R x ≥ xTC

Where w and u are the displacement fields of the Euler-Bernoulli beam and of the shear beam,
respectively.
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Soft Domain Stiff Domain

v

F0

kd,t

kd,b(x)

ρb, GA

ρt, EI

Figure 3.3: Model schematic: infinite Euler-Bernoulli beam on a Kerr foundation, where the vertical
dashed line indicates a jump on stiffness in the bottom layer of springs at x = xTC .

At the interface between the two domains (x = xTC), the same conditions as in Section 3.1 are
applied to the Euler-Bernoulli beam. Namely, continuity in displacement and slope, as well as in
shear force and bending moment, with the inclusion of an extra force and moment at the interface
of the transition zone (Eqs. (3.2)-(3.5)). Similarly as in Section 3.1, these forces seek to mitigate
the transient response in the soft domain of the system (left domain). Moreover, the conditions
applied at infinite distance from the moving load are also the same as in Section 3.1 (Eqs. (3.6)
and (3.7)). For the shear beam, two interface conditions are required, these conditions ensure the
continuity of displacement and shear forces in the beam. This model also includes an extra force
at the interface centre, which also seeks to mitigate the transient response of the system in the soft
domain of the system. Moreover, the displacement of the shear beam at infinite distance from the
moving load should not tend to infinity. Hence, the added interface and boundary conditions due
to the inclusion of a shear beam are:

uL(xTC , t) = uR(xTC , t) (3.35)

u′
L(xTC , t) = u′

R(xTC , t) +
FS(x)

GA
(3.36)

lim
x→∞

uR(x, t) < ∞ (3.37)

lim
x→−∞

uL(x, t) < ∞ (3.38)
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Similarly to the situation in Section 3.1, the initial conditions do not influence the response in
the vicinity of the transition zone, hence, there is no need to formulate initial conditions. Therefore,
Eqs. (3.33)-(3.38) together with Eqs. (3.2)-(3.7) constitute a complete description of the problem.
The next section derives the steady-state of the system.

3.2.2 Steady-State Solution

When both layers of springs have constant stiffness throughout the infinite domain, the system
becomes homogeneous, and consequently, its response to the moving load is in the steady-state.
The characteristics of the steady-state solution, as seen in Section 3.1, helps in understanding the
transient response. Consequently, the steady-state response is derived first. To obtain the solution
in this scenario, we use the same approach described in Section 3.1.2, which is to divide the infinite
domain in two semi-infinite ones, namely behind and in front of the moving load.

EI
∂4w(x, t)

∂x4
+ ρt

∂2w(x, t)

∂t2
+ kd,t(w(x, t)− u(x, t)) = −F0δ(x− vt) (3.39)

−GA
∂2u(x, t)

∂x2
+ ρb

∂2u(x, t)

∂t2
+ u(x, t)(kd,t + kd,b)− w(x, t)kd,t = 0 (3.40)

w(x, t) =

{
wb(x, t) x ≤ xTC

wf (x, t) x ≥ xTC

u(x, t) =

{
ub(x, t) x ≤ xTC

uf (x, t) x ≥ xTC

At the interface between both semi-infinite domains, continuity in displacement, slope, as well
as, shear forces and moments are imposed. Furthermore, the displacements at infinite distance
from the moving load should not tent to infinity. Hence, the interface and boundary conditions
that must be added to those presented in Section 3.1.2 (eqs. (3.10)-(3.15)) are:

ub(vt, t) = uf (vt, t) (3.41)

u′
b(vt, t) = u′

f (vt, t) (3.42)

lim
x→−∞

ub(x, t) < ∞ (3.43)

lim
x→∞

uf (x, t) < ∞ (3.44)

The resulting equations of motion, of both fields, now are homogeneous. This is because the
force of the moving load has been transferred to the interface conditions expressing the vertical
force equilibrium at x = vt.

Moreover, similarly as in Section 2.2, the solution of the homogeneous equations of motion can
be assumed in the form of harmonic waves, as follows:

Wh(x, t) = Ahe
i(ωt−kx), for h = [b, f ] (3.45)

Uh(x, t) = Bhe
i(ωt−kx), for h = [b, f ] (3.46)
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After substituting the assumed solutions in the equations of motion, in order to obtain non-
trivial solutions, the determinant of the system is set to zero, resulting in the dispersion equation
of the system:

ak6 + bk4 + ck2 = 0 (3.47)

where
a = EIGA
b = EI(−ω2ρb + kd,b + kd,t)
c = GA(−ω2ρt + kd,t)
d = ω4ρbρt − ω2kd,bρt − kd,tω

2(ρb + ρt) + kd,bkd,t

Figure 3.4: Dispersion curves Euler-Bernoulli beam on a Kerr foundation

It can be seen that the dispersion equation is a polynomial of order six in k. This means that
compared to the system in Section 3.1 (which has a polynomial of order four, see Eq. (3.17)), the
system with an additional shear beam, has two additional solutions for the wave-number, meaning
that its solution is composed of six waves instead of four. Similarly to the system in Section 3.1,
the nature of the waves in the system with an additional shear beam depends upon the velocity
of the moving load. Moreover, the waves’ nature also depend upon the shear stiffness and linear
weight of the shear beam. To determine the types of waves, we first need to solve the system of
equations consisting of the dispersion equation and the kinematic invariant for k. The dispersion
curve is graphically presented in Fig. (3.4). The two-layer system has four dispersion curves (two
for positive frequencies and two for negative ones). The additional curves appear because the
dispersion equation has a term proportional to ω4, while in the previous case the highest power of
ω, in the dispersion equation, was two.
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From the dispersion curves from Fig. (4.2) it can be seen that the system posses 3 critical
velocities (the velocities at which the kinematic invariant is tangential to one of dispersion curves,
and at which the system undergoes resonance-like behaviour). The first lowest critical velocity is
given when the kinematic invariant is tangential to lower part of the lower branch dispersion curve.
This sets the change in the behaviour of the system, going from having only evanescent waves to
have at least one pair of propagating waves. The next critical velocity is given when the kinematic
invariant is tangential to the upper part of the lower dispersion curve branch. When the velocity
of the moving load is between the first and the second critical velocity, the kinematic invariant
intersects the dispersion curve at three distinct points, meaning that the solution is composed of
three pairs of propagating waves. The final critical velocity is given when the kinematic invariant
is tangential to the upper dispersion curve branch. When the velocity of the system is between the
second and the third critical velocity, the kinematic invariant intersects the dispersion curve only
at one point, meaning that the solution is composed of 1 pair of propagating waves, and 2 pairs of
evanescent waves. Finally, when the velocity of the moving load is greater than the third critical
velocity, the solution of the system is composed of 3 pairs of propagating waves, as the kinematic
invariant intersects the lower dispersion curve branch at one location and the upper at two distinct
locations. For this system, sub-critical regime is considered when the velocity of the moving load
is less than the first critical velocity of the system. This implies that for any sub-critical velocities,
the system will not have any propagating waves.

With the known pairs (ωe,ke), the solutions in the time domain are given by the following
expressions:

Wh(x, t) = A1he
−ike

1(x−vt) +A2he
−ike

2(x−vt) +A3he
−ike

3(x−vt) +A4he
−ike

4(x−vt)

+A5he
−ike

5(x−vt) +A6he
−ike

6(x−vt), for h = [b, f ]

Uh(x, t) = B1he
−ike

1(x−vt) +B2he
−ike

2(x−vt) +B3he
−ike

3(x−vt) +B4he
−ike

4(x−vt)

+B5he
−ike

5(x−vt) +B6he
−ike

6(x−vt), for h = [b, f ]

(3.48)

The twelve unknown amplitudes are determined from the interface and boundary conditions.
Since the system now has 6 new complex-valued wavenumbers, the choice of wavenumbers of the
eigenfield given in Eqs.(3.21)-(3.24) have to be adapted. To do this, two more conditions are
imposed, which are:

Re(ke5) > 0, Im(ke5) < 0, (3.49)

Re(ke6) < 0, Im(ke6) > 0, (3.50)

Throughout this thesis, the branches of kh are chosen such that the imaginary part of the
wavenumbers is negative and the real part positive. This choice leads to A4b = A5b = A6b = A1f =
A2f = A3f = 0 when the boundary conditions, applied at infinite distance from the moving load,
imposes a finite displacement. This is the shape of the solution for the parameters that we use (that
lead to the dispersion curves presented above) and for sub-critical velocities. For other parameter
choices and for the super-critical velocities, the shape of the solution can be different with 4 waves
behind the load and only 2 in front. The eigenfield, in the time domain, then becomes:

W e(x, t) =

{
A1be

−ike
1(x−vt) +A2be

−ike
2(x−vt) +A3be

−ike
3(x−vt), for x < vt

A4fe
−ike

4(x−vt) +A5fe
−ike

5(x−vt) +A6fe
−ike

6(x−vt), for x ≥ vt
(3.51)
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Ue(x, t) =

{
B1be

−ike
1(x−vt) +B2be

−ike
2(x−vt) +B3be

−ike
3(x−vt), for x < vt

B4fe
−ike

4(x−vt) +B5fe
−ike

5(x−vt) +B6fe
−ike

6(x−vt), for x ≥ vt
(3.52)

It must be noted that the amplitudes A and B are related through the eigenvectors as follows:
Bn = Anq

e
n,2, where n = [1, ..., 6] and qen,2 represents the second entry in the corresponding nth

eigenvector, as shown in eq. (3.53) as follows:

Bn = −EIk4n − ρtω
2 + kd,t

kd,t
An (3.53)

Then the eigenfield in the time domain has been obtained.

3.2.3 Transient Response

Similarly to Section 3.1.3, to obtain the response of the inhomogeneous system, the Fourier trans-
form was applied, and the solutions to the displacement fields are sought in the form of a summation
of wave modes. The equation of motion representing the inhomogeneous system in the Fourier do-
main reads:

EI
∂4W (x, ω)

∂x4
+W (x, ω)(−ρtω

2 + kd,t) + U(x, ω)kd,t = −F

v
e−iω x

v (3.54)

−GA
∂2U(x, ω)

∂x2
+ U(x, ω)(−ρbω

2 + kd,b(x) + kd,t)−W (x, ω)kd,t = 0 (3.55)

To determine the displacement fields in the frequency domain, particular solutions are imposed
to the solutions of the homogeneous equation (for the Euler-Bernoulli and the shear beam). The
particular solutions WP and UP are the frequency-domain eigenfield of the homogeneous system,
with the properties of the left and right domain, depending upon the location with respect to the
interface of the transition cnetre. These solutions were sought having the same spatial distribution
as the forcing in the system and are given by the following equation:

WP,h(x, ω) =
Fv3(ahω

2 + v2(EI(kd,b,h + kd,t)))

EI(ahω6 + v2(bhω4 + v2(chω2 + v2dh)))
e−iω x

v (3.56)

UP,h(x, ω) =
Fv5kd,t

EI(ahω6 + v2(bhω4 + v2(chω2 + v2dh)))
e−iω x

v (3.57)

ah = EI(−ρbv
2 +GA)

bh = v4ρbρt − v2GAρt + EI(kd,b,h + kd,t)

ch = −(((ρb − ρt)kdt + kd,b,hρt)v
2 −GAkd,t)

dh = kd,b,hkd,t

h =

{
L, x < xTC

R, x ≥ xTC

The solution in the Fourier domain (after applying the boundary conditions at infinity), reads:

W (x, ω) =

{
AL1e

−ik1x +AL2e
−ik2x +AL3e

−ik3x +WP,L, for x ≤ xTC

AR4e
−ik4x +AR5e

−ik5x +AR6e
−ik6x +WP,R, for x ≥ xTC

(3.58)
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U(x, ω) =

{
BL1e

−ik1x +BL2e
−ik2x +BL3e

−ik3x + UP,L, for x ≤ xTC

BR4e
−ik4x +BR5e

−ik5x +BR6e
−ik6x + UP,R, for x ≥ xTC

(3.59)

Where the wave amplitudes of the top and bottom domain are related by the expression given
in Eq. (3.53).

The unknown amplitudes can be obtained from the interface conditions (Eqs. (3.2)-(3.7) and
(3.35)-(3.38)) (note that to obtain the response of the unmodified transition zone, the forces FEB ,
FS and MEB must be set to zero in the interface conditions). Then the solutions in the time domain
are obtained by numerically evaluating the inverse Fourier transform over the displacement field in
the frequency domain.

3.2.4 Derivation of Active Forces and Moment

This sections derives the expressions of the active forces and moments that can be applied at the
interface of the transition zone, to ensure the mitigation of the transient response in the soft domain
of the system (left domain). In order for this to happen, these forces and moment must ensure that
the magnitude of the amplitude of the waves in the soft domain (AL1,AL2 and AL3) are zero.

AL1 = AL2 = AL3 = 0 (3.60)

Replacing the above conditions, into the expressions for the complete solution to the displace-
ment field, given in Section 3.2.3, in Eqs. (3.58) and (3.59), we obtained the expression for the
complete solution to the displacement field of the adapted transition zone as follows:

W (x, ω) =

{
WP,L, for x ≤ xTC

AR4e
−ik4x +AR5e

−ik5x +AR6e
−ik6x +WP,R, for x > xTC

(3.61)

U(x, ω) =

{
UP,L, for x ≤ xTC

BR4e
−ik4x +BR5e

−ik5x +BR6e
−ik6x + UP,R, for x > xTC

(3.62)

Now the interface conditions (Eqs. (3.2)-(3.5) and (3.35)-(3.36)) can be applied in the above
equations, which yields the following system of equations:

−eikR4xTC −ekR5xTC −ekR6xTC 0 0 0
−ikR4e

ikR4xTC −ikR5e
kR5xTC −ikR6e

kR6xTC 0 0 0
k2R4e

ikR4xTC k2R5e
kR5xTC k2R6e

kR6xTC 1
EI 0 0

ik3R4e
ikR4xTC ik3R5e

kR5xTC ik3R6e
kR6xTC 0 1

EI 0
−BR4e

ikR4xTC −BR5e
kR5xTC −BR6e

kR6xTC 0 0 0
−iBR4e

ikR4xTC −iBR5e
kR5xTC −iBR6e

kR6xTC 0 0 − 1
GA




AR4

AR5

AR6

MEB

FEB

FS

 =

=


WP,R −WP,L

(WP,R −WP,L)(−iω/v)
(WP,R −WP,L)(−iω/v)2

(WP,R −WP,L)(−iω/v)3

UP,R − UP,L

(UP,R − UP,L)(−iω/v)


The system of equations was then solved numerically, in the frequency domain, solving for the

three wave amplitude of the rigid domain (AR4, AR5, AR6), and for the active forces and moment
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(FEB , FS and MEB). Then, an inverse Fourier transform was performed numerically in order
to bring the interface forces and the displacement field amplitudes into the time domain. It is
important to note that this system of equations cannot be solved analytically due to its complexity.

To verify that the correct active forces and moment are obtained, a small verification is carried
out. For this, the interface conditions (Eqs. (3.2)-(3.5) and (3.35)-(3.36)) are replaced in the
complete solution of the displacement field given in Section 3.2.3, in Eqs. (3.58) and (3.59), which
yields the following system of equations:

eikL1xTC eikL2xTC eikL3xTC −eikR4xTC −ekR5xTC −ekR6xTC

ikL1e
ikL1xTC ikL2e

ikL2xTC ikL3e
ikL3xTC −ikR4e

ikR4xTC −ikR5e
kR5xTC −ikR6e

kR6xTC

−k2L1e
ikL1xTC −k2L2e

ikL2xTC −k2L3e
ikL3xTC k2R4e

ikR4xTC k2R5e
kR5xTC k2R6e

kR6xTC

−ik3L1e
ikL1xTC −ik3L2e

ikL2xTC −ik3L3e
ikL3xTC ik3R4e

ikR4xTC ik3R5e
kR5xTC ik3R6e

kR6xTC

BL1e
ikL1xTC BL2e

ikL2xTC BL3e
ikL3xTC −BR4e

ikR4xTC −BR5e
kR5xTC −BR6e

kR6xTC

iBL1e
ikL1xTC iBL2e

ikL2xTC iBL3e
ikL3xTC −iBR4e

ikR4xTC −iBR5e
kR5xTC −iBR6e

kR6xTC



AL1

AL2

AL3

AR4

AR5

AR6

 =



WP,R −WP,L

(WP,R −WP,L)(−iω/v)
(WP,R −WP,L)(−iω/v)2 − FEB

EI

(WP,R −WP,L)(−iω/v)3 − MEB

EI
UP,R − UP,L

(UP,R − UP,L)(−iω/v) + FS

GA


Then, the system of equation is solved to obtain the wave amplitudes of the soft domain, when

the magnitude of the active forces is set to 0, to obtain the wave amplitudes of a transition zone
without the inclusion of these forces. Then the system is solved by including the magnitude of the
active forces that were obtained previously. To bring the wave amplitudes to the time domain, and
inverse Fourier transform was performed numerically.

Figure (3.5) illustrates a comparison between the absolute value of the wave amplitudes of a
normal transition zone and a transition zone that includes the active forces and moment, in the
frequency domain. It can be seen that these forces completely mitigate the amplitudes of the waves
in the soft domain of the transition zone. Hence, the correct active forces and moment are obtained.

3.2.5 Work Done by the Active Control Forces and Moments

To calculate the work done by the active control forces and moment, the spectral energy density
was calculated, and then integrated over the frequency domain. For this, the following equations
illustrates how to calculate this:

EFEB
= − 1

2π

∫ ∞

−∞
(iωFEB(ω)(w(x = xTC , ω)))dω (3.63)

EMEB
= − 1

2π

∫ ∞

−∞
(iωMEB(ω)(w

′(x = xTC , ω)))dω (3.64)

EFS
= − 1

2π

∫ ∞

−∞
(iωFS(ω)(u(x = xTC , ω)))dω (3.65)
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Figure 3.5: Comparison between the amplitudes of the absolute value of the image of the waves
in the soft domain for a transition zone with and without the active forces and moment, in the
frequency domain.

3.2.6 Verification Model A

To validate the model, a limit case is considered, in which the foundation is piece-wise homogeneous.
To do this, the bottom layer of springs is set to be homogeneous and infinitely stiff; i.e. kd,b,L =
kd,b,R = 6.86 ∗ 10290N/m. The shear beam was also set to be infinitely stiff; i.e. GA = 2.68 ∗
10290N/m2, while the coefficient of stiffness of the stiff domain of top layer of spring, kd,t,R, is set
equal to kd,t,L.

The limit case solution is compared to the analytical steady-state solution of the Base Model,
derived in Section (3.1.3). The error, E(x), which is presented in Figure (3.6) is defined as the
summation over time of the absolute value of the difference between the limit case solution of
Model A, wModelA and the benchmark solution, which is given by the Base Model, wBaseModel,
divided by the summation of the benchmark solution over time, as follows:

E(x) =

∑tmax
t=0 |wModelA(x, t)− wBaseModel(x, t)|∑tmax

t=0 |wBaseModel(x, t)|
(3.66)
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It can be seen that some error is accumulated in the solution of Model A, however it is of very
small magnitude.

Figure 3.6: Error accumulated versus space, as defined in Eq. (3.66), for the limit case considered
in Model A.

Figure 3.7: Comparison of the response of Model A, subjected to the limit case, and the Base
Model.

Figure (3.7) illustrates a snapshot of the response of Model A under the limit case, when the
moving load is at the interface of the transition zone. This figure also includes the behaviour of
the Base Model. Both models are subjected to 75% of the critical velocity of the systems. It can
be concluded, that there is a very good correlation between the behaviour of the Base Model and
Model A when subjected to the limit case. Therefore, it can be assumed that the model produced
is accurate and trustworthy.

For the verification of the model, the relevant parameters summarised in Table 3.1, were used.
For the Base Model, the parameters of the Euler-Bernoulli beam, and the top spring layers were
adopted.

3.3 Model B - Hybrid Model

The model formulated in this section represents the soft domain of the transition zone as an Euler-
Bernoulli beam resting on a double parameter foundation (Model A), while the stiff zone of the
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Amplitude of the load exerted by the train F 20, 000N
Mass per unit length of the tracks, ρt 974.165kg/m
Bending stiffness of the tracks, EI 6.42 ∗ 106Nm2

Distributed spring stiffness of the top spring layer, kd,t 6.7 ∗ 106N/m
Top spring layer damping 8, 078.9Ns/m2

Shear stiffness of the shear beam, GA 2.68 ∗ 107N/m2

Mass per unit length of the shear beam, ρb 2020kg/m
Distributed spring stiffness of the bottom spring layer (soft domain), kd,b 6.86 ∗ 106N/m

Bottom spring layer damping 77, 693Ns/m2

Table 3.1: Parameters used for modelling of the transition zone.

transition zone is represented by a Euler Bernoulli beam on a Winkler foundation (Base Model).
The Euler-Bernoulli beam is subjected to a constant amplitude moving load, which moves with
constant velocity. This model is a different scenario of a transition zone, on which there is a
discontinuity of the shear beam into the rigid domain.

To do this, the same steps are followed as in Section 3.2, and are repeated here for the reader’s
convenience. First, the model is formulated with its corresponding interface and boundary condi-
tions. Then, the steady-state solution of the system is obtained, as well as, the transient response of
it. The system is analysed in the spatial frequency domain, by applying the Fourier transform over
time. Finally, the active control forces and moment, FEB , FS and MEB , and the wave amplitudes
of the system are derived, and brought back to the time domain by performing a numerical inverse
Fourier transform.

3.3.1 Model Formulation

The model of the transition zone is a hybrid between the model presented in Section 3.1, and the
model presented in Section 3.2. It’s soft domain is represented by the model in Section 3.2, a con-
tinuous Euler-Bernoulli and a shear beam. Both beams are connected by means of a homogeneous
layer of springs, with stiffness kd,t. The shear beam is also resting on a Winkler foundation of
stiffness kd,b (note that the subscript t and b stand for top and bottom, respectively). The rigid
domain of the transition zone is represented by the model formulated in Section 3.1, a continuous
Euler-Bernoulli beam, which rests on a Winkler foundation with the same properties as the top
layer of springs of the soft domain. Similarly as in the previous models, the transition zone is
located at x = xTC . Which in this model represent the location at which the shear beam and the
bottom layer of springs are discontinued. In this model the end of the shear beam is considered as
a free-end. The system is shown in Figure (3.8) and its equations of motion are:

For x ≤ xTC :

EI
∂4w(x, t)

∂x4
+ ρt

∂2w(x, t)

∂t2
+ kd,t(w(x, t)− u(x, t)) = −F0δ(x− vt) (3.67)

−GA
∂2u(x, t)

∂x2
+ ρb

∂2u(x, t)

∂t2
+ u(x, t)(kd,t + kd,b)− w(x, t)kd,t = 0 (3.68)
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For x > xTC :

EI
∂4w(x, t)

∂x4
+ ρt

∂2w(x, t)

∂t2
+ kd,t(w(x, t)) = −F0δ(x− vt) (3.69)

w(x, t) =

{
wL(x, t), for x ≤ xTC

wR(x, t), for x ≥ xTC

Soft Domain Stiff Domain

v

F0

kd,t

kd,b

ρb, GA

ρt, EI

Figure 3.8: Model schematic: Hybrid Model, where the vertical dashed line represents a jump of
stiffness, at x = xTC .

At the interface between the two domains (x = xTC), the same conditions as in Section 3.1
are applied to the Euler-Bernoulli beam. Namely, continuity in displacement and slope, as well
as in shear force balance and bending moment balance, with the inclusion of an extra force and
moment at the interface of the transition zone (Eqs. (3.2)-(3.5)). Similarly as in Section 3.1.1, these
forces seek to mitigate the dynamic amplification in the soft domain of the system (left domain).
Moreover, the conditions applied at infinite distance from the moving load are also the same as in
Section 3.1.1 (Eqs. (3.6) and (3.7)). For the shear beam, two boundary conditions are required.
At x = xTC , the end of the shear beam is free, hence the shear force is equal to the active control
force, and in its absence, the boundary condition describes a free end. Moreover, the displacement
of the shear beam at infinite distance from the moving load should not tend to infinity, which is
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described by eq. (3.38) in Section 3.2.1. Hence, the new boundary conditions of a shear beam are
at the location of the transition zone is:

u′
L(xTC , t) = −FS(t)

GA
(3.70)

Where the primes denote classical partial derivatives with respect to x.
Similarly to the previous models in Section 3.1.1 and Section 3.2.1, the initial conditions do not

influence the response in the vicinity of the transition zone, hence, there is no need to formulate
initial conditions. Therefore, Eqs. (3.67)-(3.69) together with Eqs. (3.2)-(3.7), (3.37) and Eq.
(3.70) constitute a complete description of the problem. Moreover, when the load is far away from
the transition zone to its left, the steady-state is described by Eq. (3.25) and to its right by Eqs.
(3.51) and (3.52).

3.3.2 Transient Response

Similarly as in the previous sections, to obtain the response of the inhomogeneous system, the
Fourier transform was applied, and the solutions to the displacement field were sought in the form
of a summation of wave modes. The equations of motion representing the inhomogeneous system
in the Fourier domain reads:

For x ≤ xTC :

EI
∂4W (x, ω)

∂x4
+W (x, ω)(−ρtω

2 + kd,t) + U(x, ω)kd,t = −F0

v
e−iω x

v (3.71)

−GA
∂2U(x, ω)

∂x2
+ U(x, ω)(−ρbω

2 + kd,b + kd,t)−W (x, ω)kd,t = 0 (3.72)

For x ≥ xTC :

EI
∂4W (x, ω)

∂x4
+W (x, ω)(−ρtω

2 + kd) = −F0

v
e−iω x

v (3.73)

To determine the displacement fields in the frequency domain, particular solutions are imposed
to the solutions of the homogeneous solutions (for the Euler-Bernoulli beam and the shear beam).
The particular solution of Euler-Bernoulli beam and shear beam’s displacement field of the left
domain of the system is given by eq. (3.56) and eq. (3.57), respectively. On other hand, the
particular solution that must be imposed on the right domain of the system is given by eq. (3.28).

The solution in the Fourier domain (after applying the boundary conditions at infinity), reads:

W (x, ω) =

{
AL1e

−ik1x +AL2e
−ik2x +AL3e

−ik3x +WP,L, for x ≤ xTC

AR3e
−ik3x +AR4e

−ik4x +WP,R, for x ≥ xTC

(3.74)

U(x, ω) =
{
BL1e

−ik1x +BL2e
−ik2x +BL3e

−ik3x + UP,L, for x ≤ xTC (3.75)

Where the wave amplitudes of the top and bottom domain are related by the expression given
in Eq. (3.53).

The unknown amplitudes can be obtained from the interface conditions (Eqs. (3.2)-(3.5), (3.35)
and (3.70)) (note that to obtain the response of the unmodified transition zone, the forces FEB , FS

and MEB must be set to zero in the interface conditions). Then the solutions in the time domain
are obtained by numerically evaluating the inverse Fourier transform over the displacement field in
the frequency domain.
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3.3.3 Derivation of Active Control Forces and Moments

This section derives the active control forces and moments that can be applied at the interface of
the transition zone, such that the transient response in the soft domain of the system (left domain)
is mitigated. For this to happen, these forces must ensure that the magnitude of the amplitude of
the waves in the soft (AL1,AL2 and AL3) domain are zero.

AL1 = AL2 = AL3 = 0 (3.76)

Replacing the above conditions, into the expressions for the complete solution to the displace-
ment field, given in Section 3.3.2, in Eqs. (3.74) and (3.59), we obtained the expression for the
complete solution to the displacement field of the adapted transition zone as follows:

W (x, ω) =

{
WP,L, for x ≤ xTC

AR3e
−ik3x +AR4e

−ik4x +WP,R, for x ≥ xTC

(3.77)

U(x, ω) = UP,L, for x ≤ xTC (3.78)

Now the interface conditions (eqs. (3.2)-(3.5) and (3.70)) can be applied in the above equations,
which yields the following system of equations:

−e−ikRxTC −e−kRxTC 0 0 0
ikRe

−ikRxTC kRe
−kRxTC 0 0 0

k2Re
−ikRxTC −k2Re

−kRxTC 1
EI 0 0

−ik3Re
−ikRxTC k3Re

−kRxTC 0 1
EI 0

0 0 0 0 − 1
GA




AR3

AR4

MEB

FEB

FS

 =


WP,R −WP,L

(WP,R −WP,L)(−iω/v)
(WP,R −WP,L)(−iω/v)2

(WP,R −WP,L)(−iω/v)3

−UP,L(−iω/v)


The system of equations was then solved numerically, in the frequency domain, solving for the

three wave amplitude of the rigid domain (AR4, AR5, AR6), and for the interface forces (FEB , FS

and MEB). Then, an inverse Fourier transform was performed numerically in order to bring the
interface forces and the displacement field amplitudes into the time domain.

The verification of the derivation of the correct active fores and moment was done as for the
previous model in Section 3.2.4, but was not presented here to avoid repetition.

3.3.4 Verification Model B

To validate the solution of the Hybrid Model, a limit case is considered, in which the foundation
is piece-wise homogeneous. To do this, the bottom layer of springs is set to be infinitely stiff; i.e.
kd,b = 6.86∗10290N/m, as well as, the shear beam; i.e. GA = 2.68∗10290N/m2, while the coefficient
of stiffness of the stiff domain of the top layer of springs stiffness, kd,t,R, is set equal to the one in
the soft domain, kk,t,L.

The limit case is compared to the analytical steady-state solution of the Base Model, derived in
Section (3.1.3). The error, E(x), which is presented in Figure (3.9) is defined as the summation over
time of the absolute value of the difference between the limit case solution of the Hybrid Model,
wHybridModel and the benchmark solution, which is given by the Base Model, wBaseModel, divided
by the summation of the benchmark solution over time, as follows:
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Figure 3.9: Error accumulated versus space, as defined in Eq. (3.79), for the limit case considered
in the Hybrid Model.

E(x) =

∑tmax
t=0 |wHybridModel(x, t)− wBaseModel(x, t)|∑tmax

t=0 |wBaseModel(x, t)|
(3.79)

It can be seen that some error is accumulated in the solution of the Hybrid Model, however it
is of very small magnitude.

Figure 3.10: Comparison of the response of the Hybrid Model, subjected to the limit case, and the
Base Model.

Figure (3.10) illustrates a snapshot of the response of the Hybrid Model when the moving load
is at the interface of the transition zone. This figure also includes the behaviour of the Base Mode.
This figure also includes the behaviour of the Base Model. Both models are subjected to 75%
of the critical velocity of the systems. It can be concluded, that there is a very good correlation
between the behaviour of the Base Model and the Hybrid Model when subjected to the limit case.
Therefore, it can be assumed that the model produced is accurate and trustworthy.

For the verification of this model, the parameters shown in Table 3.1 were used.
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Chapter 4

Findings and discussion

This section presents and analyzes the outcomes of deriving the active control forces and moments
crucial for mitigating the transient response of the soft domain within the developed transition
zone models. It comprises three subsections: the first two showcase results from Model A (Euler-
Bernoulli beam on a Kerr foundation) and Model B (hybrid model), respectively, while the third
subsection offers a comparative discussion of the findings obtained from both models.

4.1 Results Model A

First, the behaviour of the transition zone without the inclusion of the interface forces is studied. To
do this, the displacement close to the transition zone is analysed, and compared to the displacement
under the load for when the moving load is sufficiently far away (in the soft domain) of the transition
zone, to not get affect by it. The left panel of Figure (4.1) represents the displacement under the
load far away of the transition zone, for different velocities of the moving load. As it can be seen
in the displacement plot far away from the transition zone, the critical velocity of the system is
given at the point on which the response reaches an extreme value, which marks the transition from
sub-critical to super-critical regime (when the relative velocity equals 1), the second critical velocity
occurs when the relative velocity of the system 1.19, and the third critical velocity at 1.31. The
displacement under the load increases with increasing velocities of the moving load for sub-critical
velocities, while it decreases with increases velocities for super-critical regime. The right panel of
Figure (4.1) illustrates the maximum displacement under the moving load for when the load is

close to the transition zone, for various foundation stiffness ratios. The stiffness ratio, P =
kd,b,L

kd,b,R
,

is defined as the relationship between the soft to stiff stiffness of the bottom layer of springs of
the model. It can be seen that the system amplifies its response with increasing velocity of the
moving load, reaching a maximum at critical velocity, once this velocity is passed, the response of
the system decreases. Moreover, it can also be observed that the amplification of the response close
to the transition zone also increases with increasing stiffness ratio.

Figure (4.2) illustrates the force amplification of the transition zone along the tracks, for a
system with and without the inclusion of the active control forces, when subjected to a constant
moving load of 75% of the critical velocity of the system, and a stiffness ratio, P , equal to 2. It can
be seen that the force amplification in the soft domain (to the left of the vertical dashed line) has
been completely mitigated in both beams, when the system has active control forces, meaning that
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Figure 4.1: Maximum displacement under the moving load; far from the transition zone (left panel),
and close to the transition zone (right panel) of Model A.

it responds in its steady-state until the moving load reaches the interface. However, when looking
at the stiff domain (to the right of the vertical dashed line), it can be seen that the forces in the
component of the system amplify, leading to higher displacements under the moving load in the
beams. It can also be seen that this force amplification extends to 10m in the proximity of the
transition zone.

Figure 4.2: Maximum force experienced at both springs levels in Model A over time. Top spring
layer (left panel) and bottom spring layer (right panel).

The time history comparison of the behavior of the active control forces and moment are pre-
sented in Figure (4.3), for several velocities, and a stiffness ratio, P , equal to 2. The duration of the
active control forces and moment over time can be seen to decrease with increasing velocity of the
moving load. Moreover, apart from reducing on their reaction time, the active forces and moment,
as the velocity of the moving load approaches the critical velocity, starts developing opposite sign
peaks much smaller in amplitude than the main peak. The higher the velocity of the moving load
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(once the wavy pattern starts), the more ‘wavy’ the active forces and moment become over time.

Figure 4.3: Time history comparison of the behaviour of the active control forces and moment of
Model A, for a stiffness ratio equal to 2, for several specific velocities. The dashed line indicates
the moment in time when the moving load crossed over the interface of the transition zone.

Figure (4.4) depicts the energy required by the active control forces and moment to mitigate the
transient response in the soft domain of the transition zone for various velocities. It can be seen that
the active control force acting at the Euler-Bernoulli beam and at the shear beam are responsible
of absorbing energy out of the system, while the active moment acting at the Euler-Bernoulli beam
adds energy into the system. It can be seen that the peak in absorption and addition of energy in
the system happens at critical velocity, regardless of the stiffness ratio of the system. Moreover,
the higher the stiffness ratio, the more energy that is absorbed and added into the system by the
active control forces and moment. It can be noted that for low stiffness ratio (e.g. 1.5 or smaller),
the active contorl force acting on the Euler-Bernoulli beam tends to input some energy into the
system, but it mostly absorbs energy out of the system, while for higher stiffness ratios, this active
control force only absorbs energy.

The impact of stiffness ratio on the response of the interface forces also deserves scrutiny. Figure
(4.5) illustrates this analysis. The figure illustrates the energy required by the interface forces to

Page 40 of 55



CHAPTER 4. FINDINGS AND DISCUSSION

Figure 4.4: Energy required by the active control forces and moment applied at the interface of
the transition zone of Model A in order to mitigate the transient response, for varying velocities,
while keeping constant several stiffness ratios. Shear force at Euler-Bernoulli beam (top-left panel),
Moment at Euler-Bernoulli beam (top-right panel), and shear force at shear beam (bottom panel)

mitigate the transient response in the soft domain of the system for various stiffness ratios, while
keeping the velocity of the moving load constant. It can be seen that for relatively low velocities
(less than 50% of the critical velocity of the system), the difference in energy requirements by
the active control forces and moments are negligible, while for higher velocities, there is a large
difference in the energy required, which increases with increasing stiffness ratios. It can also be
seen that at critical velocities the energy requirements of the active control forces and moments is
at its maximum.

Investigating the extreme values of forces and moments in response to varying stiffness ratios
and velocities also yields insightful findings. Figure (4.6) illustrates these extreme values for differ-
ent stiffness ratios as the velocity changes. It can be seen that as the stiffness ratio of the transition
zone increases, the peaks of these forces tend to shift further into the super-critical regime. More-
over, the response of the moment imposed at the Euler-Bernoulli beam demonstrates solely positive
amplitudes when the velocity is below 50% of the critical velocity. Conversely, for the same ve-
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Figure 4.5: Energy required by the active control forces and moment applied at the interface of the
transition zone of Model A in order to mitigate the transient response, for varying stiffness ratios,
while keeping constant several velocities.

locities, the force imposed at the Euler-Bernoulli beam and the force imposed at the shear beam
displays only negative amplitudes. It is important to note that positive amplitudes means that
there is energy being added into the system, while negative amplitudes means that energy is being
absorbed out of the system.

4.2 Results Model B

Figure (4.7) illustrates the displacement under the moving load when the load is close to the
transition zone (left panel) and far from it (right panel). It can be seen that the hybrid Model
amplifies the response of the displacement under the moving load with increasing velocities, for
sub-critical regime. Followed by a decreased of the amplification for super-critical regime. It is
important to note that the top layer of springs represent the sleepers and ballast, which normally
they don’t change their distribution over space when the tracks change structures. For this reason,
in this model no stiffness ratio is considered, and the top layer of springs is considered homogeneous
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Figure 4.6: Extreme value of the active control forces and moment applied at the interface of the
transition zone of Model A. Shear force imposed at Euler-Bernoulli beam (top-left panel), Moment
imposed at Euler-Bernoulli beam (top-right panel), and shear force imposed at the shear beam
(bottom panel).

throughout the model.

Figure (4.8) illustrates the force amplification of the transition zone along the tracks, for a
system with and without the inclusion of the active control forces, when subjected to a constant
moving load of 75% of the critical velocity of the system. The same is observed as in Figure (??),
more specifically that the force amplification has been mitigated in the soft domain, for both beams,
while there is an increase in the force amplifications in the rigid domain of the system, which extends
to close to 10m after the interface of the transition zone.

The time history comparison of the behavior of the active control forces and moment are pre-
sented in Figure (4.9), for several velocities. The duration of the active control forces and moments
over time exhibits a decreasing trend as the velocity of the moving load increases. Moreover, small
amplitude peaks start developing as the velocity of the moving load approaches the critical velocity.
Furthermore, the higher the velocity of the moving load, once these opposite sign peak pattern
started, the more peaks that the active control forces and moment starts developing. Furthermore,
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Figure 4.7: Maximum displacement under the moving load; far from the transition zone (left panel),
and close to the transition zone (right panel) of Model B.

Figure 4.8: Maximum force experienced at both springs levels in the Hybrid Model. Top spring
layer (left panel) and bottom spring layer (right panel).

the active control force applied at the shear beam demonstrates a different behavior than the active
control force applied at the Euler-Bernoulli beam. From the lower panel of Figure (4.9), it can be
seen that the active shear force imposed at the shear element exhibits a ‘flipping nature’, meaning
that it displays two major peaks on its response over time. These two peaks have always opposite
signs, and they occurs regardless of the velocity of the moving load. However, they get more pro-
nounce with higher velocities of the moving load. Moreover, it is important to note that the time
moment at which the amplitude of the interface forces changes sign does not align precisely with the
time moment at which the moving load crosses over the interface of the transition zone. Instead,
the change in sign occurs slightly after the moving load crosses the interface of the transition zone.

The energy required by the active control forces and moment to fully mitigate the dynamic
amplification of the soft domain in the transition zone is presented in Figure (4.10). It can be seen
that only the active moment applied at the Euler-Bernoulli beam adds energy into the system,
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Figure 4.9: Time history comparison of the behaviour of the active control forces and moment of
the Hybrid Model. The dashed line indicates the moment in time when the moving load crossed
over the interface of the transition zone.

while the force acting on the Euler-Bernoulli beam and the shear beam absorbs energy out of the
system. Similarly to the previous model the energy inputted/absorbed by the active control forces
and moment reach a maximum at critical velocity. Moreover, regardless of the velocity of the
moving load, these forces solely input or absorb energy in the system.

In Figure (4.11), the extreme amplitudes of the active control forces and moments applied
at the interface of the transition zone for varying velocities are presented. It can be seen that the
amplitudes of the active control forces reach a peak at critical velocity. It can be seen that the active
control forces acting at the Euler-Bernoulli beam exhibit solely negative amplitudes for velocities
smaller than 50% of the critical velocity, while the active moment exhibits only positive amplitudes.
However, the active control force acting at the shear beam exhibits both sign amplitudes, positive
and negative, but with a tendency to have higher positive amplitudes than negative.
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Figure 4.10: Energy required by the active control forces and moment applied at the interface of
the transition zone of the Hybrid Model in order to mitigate the transient response, for varying
velocities. Shear force imposed at Euler-Bernoulli beam (top-left panel), Moment imposed at Euler-
Bernoulli beam (top-right panel), and shear force imposed at the shear beam (bottom panel).

4.3 Comparison Between Models and Discussion

It can be seen that both models, Model A and the Hybrid Model, amplify their response for in-
creasing velocities (Figure (4.1) and Figure (4.7), for Model A and the Hybrid Model, respectively).
When the moving load is passing over the transition zone, the system experiences amplification
of the response, leading to greater displacements under the moving load just before the interface.
This happens due to the difference on the vertical stiffness between both domains, on which, the
higher the difference, the more pronounce the free-field becomes. This free-field interferes the eigen-
field, increasing the displacement under the moving load (amplifying the response), which leads the
stresses in the different components of the transition zone to increases, ultimately accelerating the
degradation of them.

However, it is important to note that the amplification of the response close to the transition zone
of Model A and the Hybrid Model is not identical, even if the vertical stiffness of the rigid domain
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Figure 4.11: Extreme value of the active control forces and moment applied at the interface of the
transition zone of Model A. Shear force imposed at Euler-Bernoulli beam (top-left panel), Moment
imposed at Euler-Bernoulli beam (top-right panel), and shear force imposed at the shear beam
(bottom panel).

were to be matched in both models. This disparity arises from the modeling approach employed
in the Hybrid Model, where the shear beam is configured with an free end. This configuration
intensifies the excitation of the free-field when the eigenfield interacts with the transition zone. In
the scenario where both models were to have the same properties, the amplification of the response
in the hybrid model would be greater than in Model A.

Figure (4.2) and Figure (4.8) illustrates the force amplification of the two layer of springs,
along the transition zone for Model A and the Hybrid Model, respectively. It can be seen that in
both models the active control forces completely mitigate the force amplification of both layer of
springs in the soft domain, and that the free-field of the soft domain has completely been mitigated.
However, in the stiff domain, the active control forces increases further the force amplification in
the system. This means that the stresses in the different components of the transition zone in the
rigid domain, increases, which would leads to this zone to degrade at a quicker pace than when the
transition zone does not include active control forces.
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When comparing Model A and the Hybrid Model’s active control forces and moment behaviour
over time, we can see several similarities on their results. The time for which the active control
forces and moments are activated due to the passing load are very similar, for the same velocities
of the moving load. In both models these activation time decreases with increasing velocity. This
is due to the reduced time of interaction between the moving load and the transition zone, due
to the quicker passage of the moving load over the transition zone. Moreover, both models also
develop opposite sign peaks much smaller, in the active control forces and moments, than the main
peak at the same velocity (at 50% of the critical velocity), and as the velocity of the moving load
increases, their ‘wavy pattern’ is also the same. These additional peaks are closely related to the
eigenfield response of the elements within the transition zone (Euler-Bernoulli beam and shear
beam). Notably, as the velocity of the moving load increases, the eigenfield response exhibits a
more pronounced ‘wavy’ pattern, giving rise to the observed opposite sign small peaks in the active
control forces and moments.

Furthermore, in the case of the active control forces and moments imposed at the Euler-Bernoulli
beam, both models reach their maximum amplitude of force and moment at the same time. How-
ever, in the case of the active control forces imposed at the shear beam, it can be seen that they
react quite different. The force imposed at the shear beam in the Hybrid Model exhibits a ‘flipping’
nature on their amplitude over time, on which, two opposite sign, peaks are exhibited. It can
also be seen that the amplitudes of the active control forces exhibited by Hybrid Model are much
higher than those exhibited by Model A. This ‘flipping’ nature of the response of the force applied
at the shear beam can be attributed to the shear beam’s discontinuity in the rigid domain of the
transition zone. Specifically, the waves traveling in the shear beam are reflected backward in the
beam due to its boundary condition (free end), leading to a rapid sign change in the active control
force to compensate for the reflected field in the shear beam. This free end of the shear beam is
also the reason of the increased extreme amplitudes exhibited by the active control forces. Due
to the unfixed nature of the end on the shear beam, more energy is required to restore it to its
original position, and to mitigate the dynamic amplifications of the soft domain of the transition
zone. Hence, the shape that the interface forces and moments takes, depend upon the interaction
of both domains at the interface of the transition zone. When there is continuity in the elements
over the transition zone, the active control forces and moments exhibit a profile which is similar to
the eigenfield response of the system, however, when there is no continuation over the transition
zone, and the elements are free to deform, the response exhibits a ‘flipping’ nature. This implies
that there would be a sudden change in the stresses in the elements of the transition zone.

When looking at the curve of energy demands of the active control forces and moments for Model
A (Figure (4.4)) and for the Hybrid Model (Figure (4.10)), there can be seen a clear similitude on
the shape of the profiles. It can be seen that in both models the active control force applied at
the Euler-Bernoulli beam and the active control force acting at the shear beam are responsible of
absorbing energy out of the system, while the active moment applied at the Euler-Bernoulli beam
adds energy into the system. In both models, it can be seen that the absorption and addition of
energy, by the active control forces and moments, peak at critical velocity. Moreover, it is also
important to note that overall the active control forces absorb energy out of the system, this way
the dynamic amplifications in the soft domain of the transition zone can be mitigated.

When looking at the energy requirements by the active control forces vs stiffness ratio, for
constant velocities in Model A (Figure (4.5)), it can be seen that there is a considerable change in
the energy required to mitigate the dynamic amplifications in the soft domain of the transition zone
for different velocities of the moving load. Notably, there is a modest change observed specifically
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when comparing the energy required by the active control forces and moments for velocities lower
than 50% of the critical velocity. However, for the other velocities, the difference in energy is even
more pronounced, reaching the highest energy demands at critical velocity, and then lowering for
super-critical regime.

The combined analysis of the energy requirement vs velocity of both Models (Figure (4.4) for
Model A and Figure (4.10) for the Hybrid Model) and the energy demand vs stiffness ratio (Figure
(4.5)) leads to the conclusion that depending upon the regime of velocity of the moving load and of
the stiffness ratio, the dominating parameters in the reposes of the system differ. For relatively low
velocities (up to 75% of the relative velocity), and low stiffness ratios (up to a stiffness ratio equal to
3) a 25% change in stiffness ratio leads to much more significant change in the response of the system,
than a change of 25% in the relative velocity, meaning that for low stiffness ratios and velocity the
system is dominated by the change in stiffness ratio. However, for higher velocities (greater than
75% of the relative velocity), it can be seen that the response of the system is dominated by the
change of velocity of the moving load, where a change in 25% of the relative velocity leads to much
more significant changes in the response of the system than any change in stiffness ratios. This
holds until extremely high velocities have been reach (greater than 1.50% of the relative velocity),
on which the system is dominated again by the change in stiffness ratio. Hence, it can be concluded
that for relatively low and very high velocities of the moving load, the most influential parameter
into the system is the stiffness ratio of the bottom layer of springs in the transition zone, however,
for medium velocities of the moving load, the response of the system is dominated by the velocity
of the moving load.

It can be seen that in both models, when looking at the active control forces on the elements
which are continuous over the transition zone (all the panels of Figure (4.6) for Model A and top
panels of Figure (4.11) for the Hybrid Model), that they exhibit solely either positive or negative
amplitudes in their response for velocities less than 50% of the critical velocity. For these velocities,
the response of the eigenfield does not develop smaller amplitude peaks, but only a single peak
corresponding to the displacement under the moving load. As a result, the active control forces
and moment exhibit either solely positive or negative amplitudes for such velocities. Once, the
velocity increases further, these small amplitude peaks in the eigenfield start appearing, which are
reflected in the behaviour of the active control forces and moments. Moreover, the behaviour of
the active control force imposed at elements that are not continuous over the transition zone, as is
the case of the shear beam in the Hybrid Model (bottom panel Figure (4.11)), they exhibits always
positive and negative amplitudes due to the wave reflection at the transition zone, which leads to
the ‘flipping ’ nature of the active control force.
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Chapter 5

Conclusions and Further Studies

This chapter summarises the main findings and conclusions obtained from this study. It also gives
meaningful leads on how to continue with this research, and which aspects of it could be improved.

5.1 Conclusions

The effectiveness of implementing active control forces and moments at the location of the transition
between a soft to a rigid domain of a transition zone to mitigate the force amplifications of the
soft domain was the main goal of this research. In response to the research question the main
conclusions with respect to the implementation and behaviour of these active control forces and
moments are presented as follows:

• The active control forces are capable of fully mitigating the dynamic amplification in the soft
domain of transition zones. However, the active control forces leads to force amplification in
the rigid domain of transition zones.

• The shape that the active control forces and moments over time takes depend upon the
interface interaction between both domains of the transition zone. When the interface has
continuous elements, the shape of the active forces and moment takes is similar to the eigenfield
of the system. However, when the interface has discontinued elements, the shape of the active
control forces and moments exhibit a ‘flipping’ nature.

• Of the two parameters studied (velocity and vertical stiffness), the dominating parameter in
the response of the system depends upon the regime that the system is being subjected to.
For relatively low and extremely high velocities of the moving load, the system is dominated
by the vertical stiffness ratio, however, for medium velocities of the moving load, the system
is dominated by the velocity of the moving load. Also, the duration over which the active
control forces and moments are active, reduces with increasing velocities. This means that
the elements that will be derived to apply these active control forces and moment must be
sensitive enough to do it swiftly.

• Transition zones with discontinuous elements over their interfaces between the soft and the
rigid domain, require much more energy to be absorbed and added to the system, in order to
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mitigate the dynamic amplifications, than those with continuous elements over the interface
of the transition zone. This must also be considered when designing transition zones, as the
geometry of transition interface influences the required capabilities of the elements to be used.

To sum up, it was concluded that it is possible to diminish the dynamic amplifications in the
soft domain of the transition zones, as well as lowering the amplifications in the rigid domain, by
implementing active control forces and moments at the location of the transition centre, when the
transition zone is subjected to a constant moving load travelling from a soft to a rigid domain,
when the sensitivity of stiffness and velocities variations are taken into account. Hence, the results
presented in this thesis can be used as a first step to design the passive elements that can be used
to mitigate the dynamic amplifications in soft domains of transition zones, however must be kept
in mind that this method amplifies the dynamic amplification at rigid domains of transition zones,
and depending upon their properties (of the elements in the rigid domain of the transition zone),
the performance of transition zones may be lowered.

5.2 Further Studies

Although this thesis generated new insights into how to mitigate the dynamic amplification in the
soft domain of transition zones, it has its obvious limitations. For example, simplistic models have
been used. There are several aspects on which this thesis could be improved. Some further studies
aspects to consider are:

• The most interesting recommendation for further studies of this thesis is to design a passive
control strategy that is able to show a similar level of mitigation success as the active control
developed in this thesis.

• The method developed in this thesis to mitigate the dynamic amplifications in the soft domain
works. However, this amplify the response in the stiff domain of transition zones. For this
reason, it could be interesting to investigate a criterion for determining these active control
forces, such that a balance is reach in terms of minimizing the dynamic amplifications in the
soft domain of transition zones, and not increasing the dynamic amplifications in the rigid
domain too much.
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proyecto y conservaćıon. Technical report, Fundacion Caminos de Hierro, 2007.

[22] A. Paixão, C. Alves Ribeiro, N. Pinto, E. Fortunato, and R. Calçada. On the use of under
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