
 
 

Delft University of Technology

A 70-year record reveals the poleward shift of tropical cyclone tracks in the east China
coastal ocean is twice that of landward shift

Xu, Chaoran; Yang, Yang; Jia, Jianjun; Bricker, Jeremy D.; Wang, Ya Ping

DOI
10.1016/j.gloplacha.2024.104566
Publication date
2024
Document Version
Final published version
Published in
Global and Planetary Change

Citation (APA)
Xu, C., Yang, Y., Jia, J., Bricker, J. D., & Wang, Y. P. (2024). A 70-year record reveals the poleward shift of
tropical cyclone tracks in the east China coastal ocean is twice that of landward shift. Global and Planetary
Change, 242, Article 104566. https://doi.org/10.1016/j.gloplacha.2024.104566

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.gloplacha.2024.104566
https://doi.org/10.1016/j.gloplacha.2024.104566


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



A 70-year record reveals the poleward shift of tropical cyclone tracks in the 
east China coastal ocean is twice that of landward shift

Chaoran Xu a,b,c, Yang Yang d, Jianjun Jia b,*, Jeremy D. Bricker c,e,**, Ya Ping Wang b

a National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, 
China
b State Key Laboratory of Estuarine and Coastal Research, School of Marine Sciences, East China Normal University, Shanghai 200241, China
c Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor 48109, USA
d School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210046, China
e Faculty of Civil Engineering & Geosciences, Delft University of Technology, Delft 2628CN, Netherlands

A R T I C L E  I N F O

Editor: Dr Storelvmo Trude

Keywords:
K-means clustering
Tropical cyclone track
Poleward
Landward
East China coastal ocean

A B S T R A C T

Analyzing the spatial-temporal changes in tropical cyclone (TC) tracks in the east China coastal ocean (ECCO) to 
quantify the magnitude of poleward and landward migration of TCs is of significant importance for coastal 
disaster mitigation and planning due to its susceptibility to the impacts of TCs. In this study, the TCs that affected 
the ECCO from 1949 to 2022 are classified into three typical types of tracks using the k-means clustering method, 
mass moments, and track interpolation based on TC location, shape, and intensity information. Type 1 is a 
northwestward track, Type 2 is a northwest to northeast-turning track, and Type 3 is a northwest to northeast- 
turning offshore track. Type 1 tracks mainly make landfall in southern China, while Type 2 predominantly makes 
landfall in eastern China. Moreover, the proportion of Type 1 decreases while their landfall percentage increases 
over time, and the proportion of Type 2 tracks is increasing. The probability of TC effects on the eastern and 
northern parts of the ECCO is increasing, and the boundary where the TC center reaches after landfall is shifting 
landward. During the period from 1994 to 2022, there has been a significant migration in TC tracks, with the 
mean centroid of the TCs affecting the ECCO shifting westward by 0.66◦ in longitude and northward by 1.26◦ in 
latitude, which means the magnitude of the poleward shift is about twice that of the landward shift. This 
migration appears to have been pre-conditioned by a combined influence of a weakening westward steering flow, 
reduced vertical wind shear, and warmer sea surface temperature Our findings provide valuable insights into the 
longitudinal and latitudinal migration of TC tracks and have important implications for disaster prevention, 
mitigation planning, and the adjustment of crucial coastal protection zones in the ECCO and similar regions 
around the globe.

1. Introduction

Tropical cyclones (TCs) are highly destructive weather systems 
accompanied by gale-force winds, heavy rainfall, and storm surges 
(Muis et al., 2016). Over the past 50 years, 1942 disasters worldwide 
have been attributed to TCs, resulting in 779,324 deaths and US$140.76 
billion in damages (Bangladesh, 2020). The Western North Pacific 
(WNP) is known for its high TC activity, which poses significant risks to 
life and property in East Asia. Approximately one-third of these TCs 
make landfall or affect China, mainly in the East China Sea and the South 

China Sea, with fewer occurrences in the Bohai Sea and the North Yellow 
Sea (Kamahori et al., 2006; Wu et al., 2006; Wang et al., 2021). In China, 
particularly in the economically developed and densely populated 14 
eastern coastal provinces, storm surges account for the highest per
centage of marine disaster losses. Despite a decreasing trend in the 
number of TCs generated in the WNP in recent decades (Qian et al., 
2022), there has been a poleward shift in the average latitude where TCs 
reach their peak intensity in this region (Kossin et al., 2014; Kossin et al., 
2016). Additionally, TC tracks have shifted poleward as well (Yumoto 
et al., 2003; Zhao et al., 2013; Ming et al., 2021) and the landfall 
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locations of TCs are mainly determined by their track (Liu et al., 2001). 
Meanwhile, the strong winds and waves associated with TCs passing 
over the sea surface can substantially increase current velocity and bed 
shear stress. This effect leads to sediment resuspension (Hawkes and 
Horton, 2012) and alters the transport patterns of seafloor sediments 
(Schuerch et al., 2014). Therefore, analyzing the changes in TC tracks 
not only improves the ability to respond to risks but also supports the 
study of sediment transport patterns during TCs.

TC generation and development are closely related to local ther
modynamic and dynamical conditions, especially the changes in steer
ing flow, vertical wind shear stress (VWS), and sea surface temperature 
(SST) (Mei and Xie, 2016; Camargo and Wing, 2021). The steering flow 
can lead the movement of TCs. For example, the migration of TCs to
wards coasts maybe caused by the westward trend of steering flow in the 
WNP(Wang and Toumi, 2021). Weak VWS is essential for the mainte
nance and development of TCs (Emanuel, 1999; Ting et al., 2019), and 
may also contribute to geographical shifts of TC locations combined 
with the change of steering flow (Kossin et al., 2014; Wang and Toumi, 
2021). The influence of warming SST leads to the meridional expansion 
of the tropical region and energizes the development of TCs (Mei et al., 
2015; Sharmila and Walsh, 2018). This results in the northward move
ment of TCs, potentially increasing the risk of TC-related hazards in 
higher-latitude regions. According to the China Marine Disaster Bulletin 
1989–2020 (http://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyzhgb/), 
direct economic losses in the Yellow Sea and the East China Sea (the east 
China coast ocean, referred to as “ECCO” hereafter, Fig. 1a), including 
several high-latitude coastal provinces of China, are high and volatile. A 
comprehensive assessment of future TC risk, especially on a regional 
scale, requires an in-depth understanding of the spatial variability of TC 
tracks in the ECCO.

Most studies analyzing the spatial variability of TC tracks affecting 

China focus on the TCs throughout the entire generating region: TC 
tracks generated in the WNP (Mei and Xie, 2016; Zhao et al., 2020; Meng 
et al., 2023); TC tracks generated in the South China Sea (Luo et al., 
2022; Yin et al., 2023)and other related studies. For example, Zhao et al. 
(2013) pointed out that in the late 1980s, there was a noticeable 
northwestward shift in TC tracks across the entire WNP. Additionally, 
Wang and Toumi (2021) demonstrated a clear trend of onshore devel
opment for TCs in the WNP. By selecting representative TCs over the 
East China marginal sea, Xu et al. (2022) found that TCs show a pole
ward and landward migration. This provides valuable guidance for 
analyzing TC tracks that affect China. However, in previous studies, 
their analysis primarily focuses on all TC tracks within the generating 
region, with limited research on the regional response in the ECCO 
caused by changes in TC tracks, and the lack of a systematic analytical 
methodology for how to select representative TCs that affected specific 
regions. Xu et al. (2022) employed a TC wind field model to calculate the 
wind speed distribution of TCs over the ECCO since 1949 and found that 
TCs affecting this region can be categorized into three historical periods 
and that the TC activity exhibits both poleward (northward) and land
ward (westward) shifting trends. This provides a foundation for 
analyzing the poleward and landward shifts of TC tracks in a specific 
region. However, Xu et al. (2022) only found vague trends in the pole
ward and landward migration, and did not reveal the exact extent and 
magnitude of the poleward and landward migration. Further study to 
find out the exact extent and magnitude of the poleward and landward 
migration in the specific region is important for regional disaster pre
vention planning.

Conducting the classification of TC tracks in this region is a vital 
method for acquiring TC characteristics and assessing their effect(Shen 
et al., 2018; Meng et al., 2023; Yin et al., 2023). There are two main 
methods for TC track classification: the subjective identification method 
(Colbert and Soden, 2012; Hu et al., 2020) and the clustering analysis 
method (Nakamura et al., 2009; Meng et al., 2023). The clustering 
analysis method is more objective and convenient compared to the 
subjective identification method, as the K-means clustering method can 
effectively differentiate TCs by taking into account the TC position, track 
shape, intensity, and other circumstances and is widely used to classify 
TC tracks in the Indian Ocean (Paliwal and Patwardhan, 2013), Atlantic 
(Nakamura et al., 2009; Nakamura et al., 2021), and WNP (Meng et al., 
2023; Yin et al., 2023). In this study, we build on Xu et al. (2022) to 
further analyse the temporal and spatial variability of TCs in this region 
and quantify the exact extent and magnitude of the poleward and 
landward migration of the TCs affecting the ECCO. The selected TCs 
affecting the ECCO are first classified using the K-means clustering 
analysis method based on their positions, shapes, and intensities. Then 
we use the classified results to analyse the longitudinal and latitudinal 
response of TC tracks and the landward extent of TC centers after 
landfall. This analysis allows us to deepen our knowledge of the exact 
extent and magnitude of the poleward and landward migration of TC 
tracks over the ECCO during the past 70 years.

2. Materials and methods

2.1. Study area

The ECCO(Fig. 1) is one of the most severely affected by TCs. The 
densely populated and rapidly growing economy of the ECCO has 
rendered the region highly susceptible to natural disasters, resulting in 
significant annual losses attributed to TCs (Wang and Song, 2011; Xu 
and Huang, 2011). This study concentrates on the ECCO, spanning from 
21.5◦N to 36.5◦N and 119◦E to 124.5◦E (the area outlined in the red 
dashed box in Fig. 1), encompassing significant eastern provinces like 
Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian, which are 
economically developed and important provinces in eastern China.

Fig. 1. Study area. The red dashed box is the study area, the black box is the 
range of TC centers that may affect the study area (hereinafter referred to as 
“affected area”), and circled numbers are the coastal provinces of China's 
mainland and Taiwan region: ①Liaoning, ②Tianjin, ③Shandong, ④Jiangsu, 
⑤Shanghai, ⑥Zhejiang, ⑦Fujian, ⑧Guangdong, ⑨Guangxi, ⑩Hainan, and ⑪ 
Taiwan; YS is the Yellow Sea, ECS is the East China Sea, SCS is the South China 
Sea. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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2.2. Data source

The TC tracks analyzed in this study were pre-selected from our 
previous analysis of TCs affecting the ECCO from 1949 to 2022 based on 
the China Meteorological Administration (CMA) Tropical Cyclone Best 
Track Dataset (Xu et al., 2022). In the pre-selection process, data of TCs 
that entered the affected area (indicated by the black solid box in Fig. 1) 
were analyzed. Using a TC wind field model, wind speed distributions 
for these TCs across the affected area were calculated. TCs capable of 
generating wind speeds of 10.8 m/s or faster within the study area 
(indicated by the red dashed box in Fig. 1) were retained for further 
analysis and categorized into three historical periods: first period 
(1949–1967), second period (1968–1993), and third period 
(1994–2022). For detailed calculations, please refer to Xu et al. (2022). 
The detailed information for each TC in this study was obtained from the 
Shanghai Typhoon Institute of the CMA (www. Typhoon. org. cn) (Feng 
et al., 2014; Lu et al., 2021). It contains the time, eye latitude, eye 
longitude, minimum pressure, and maximum wind speed of the TC over 
the WNP every 6 h from 1949 to 2022. Monthly averaged mesoscale 
environmental data (meridional and zonal wind speeds at 200 hPa, 500 
hPa, and 850 hPa, and SST) over the period 1949–2022 with a hori
zontal resolution of 0.25◦ × 0.25◦ in the WNP are available from the fifth 
generation ECMWF atmospheric reanalysis of global climate and 
weather (ERA5) (Hersbach et al., 2023a, 2023b).

2.3. Clustering methodology

2.3.1. Mass moments
The varying lengths and shapes of TC tracks make it crucial to 

employ a standardized method for classification. Nakamura et al. (2009)
proposed a unified approach utilizing the mass moments method to 
describe TC tracks consistently. In this method, the mass moments of the 
open curve defining the entire TC track are utilized to consider both the 
shape and length of the track comprehensively. This method has been 
widely adopted by many researchers for analyzing TC tracks (Yu et al., 
2016; Nakamura et al., 2017; Wang et al., 2022; Yin et al., 2023). The 
method is defined and illustrated below.

First, the calculation for the latitude and longitude of the centroid of 
a TC track are given by Eq. (1) and Eq. (2) 

X
↼
=

1
∑n

i=1 w(i)
∑n

i=1
w(i)xi, (1)

Y
↼
=

1
∑n

i=1 w(i)
∑n

i=1
w(i)yi, (2)

where X
↼ 

and Y
↼ 

are the longitude and latitude of the centroid, xi, and yi 
are the i-th longitude and latitude of the TC center, n is the number of TC 
center locations, w(i) is a weight associated with the TC center (in this 
study, this weight is equal to ̅̅̅̅vi

√ , this allows the classification of TCs 
taking into account the intensity information (Nakamura et al., 2009; Yu 
et al., 2016), wherevi is maximum wind speed of the TC when the center 
is at location i).

Second, the variance of a TC track can be calculated by the following 
formula: 

Var(x) =
1

∑n
i=1 w(i)

∑n

i=1
w(i)

(
xi − X

↼)2
, (3)

Var(y) =
1

∑n
i=1 w(i)

∑n

i=1
w(i)

(
yi − Y

↼)2
, (4)

Var(xy) =
1

∑n
i=1 w(i)

∑n

i=1
w(i)

(
xi − X

↼)(
yi − Y

↼)
, (5)

where Var(x), Var(y), and Var(xy) respectively represent the variance in 
the longitudinal, latitudinal, and diagonal directions.

These five values (two centroids and three variances) together form 

the summary of the track information that will be used to identify track 
clusters. The two centroids determine the position of the effective center 
of gravity of the TC track, whereas the three variances offer an indica
tion of the TC track's shape. The classical covariance measure is often 
explained as a way to gauge the orientation and length of the principal 
axes of an ellipse that describes the data's dispersion in a plane.

2.3.2. K-means clustering
In this study, we employ the K-means method with a vector con

sisting of the five parameters defined in section 2.3.1 (two for latitudinal 
and longitudinal centroids and three for the variances) for identifying 
clusters from vector data. The variance components have considerably 
larger values compared to the centroid components. To ensure that both 
centroid and variance have equal weight in the clustering analysis, the 
variables are standardized; each centroid column is then multiplied by 
0.5/2, and each variance column by 0.5/3(Nakamura et al., 2009; Yu 
et al., 2016). This equalizes the importance of centroids and variances in 
the clustering process.

The results of the K-means clustering analysis are expressed using the 
absolute distance between the two TC samples, as shown in Eq. (6): 

dh,l =
∑5

m=1

⃒
⃒Th,m − Tl,m

⃒
⃒, (6) 

where Th and Tl represent the serial numbers of TC samples, and m 
represents the above five indicators. The classification results require 
the absolute distance between samples of different clusters to be the 
longest possible, and the distance between samples within a cluster to be 
the shortest possible.

The K-means cluster analysis package available in Matlab R2022b 
considers multiple runs with random seeding of clusters. The optimal 
number of clusters is determined by finding the maximum mean and the 
minimum number of negative “Silhouette” values. The Silhouette value 
measures both the cohesion within each cluster and the separation be
tween clusters. For a total of j points, the Silhouette score (Sj) is defined 
as follows: 

Sj =
min

(
bj
)
− aj

max
[
aj,min

(
bj
) ], (7) 

where aj signifies the mean distance from the j-th point to the other 
points within its own cluster, and bj represents the mean distance from 
the j-th point to points in a different cluster (Kaufman and Rousseeuw, 
1990). Silhouette values range from − 1 to 1. Clusters with a high mean 
silhouette value are cohesive and negative silhouette values are possible 
misclassified points.

2.3.3. Interpolation of tropical cyclone track
The interpolation of TC track method allows for the transformation 

of TC tracks with different data lengths into tracks of the same length, 
this method involves artificial interpolation of each TC track(the initial 
total number of TC centers is n) into M segments (M+1 data points) of 
equal length while omitting time information (Kim et al., 2011). After 
clustering analysis, we can calculate the mean track within each cluster 
by employing this method. This facilitates the comparison of the mean 
tracks from different clusters, enabling a clearer visualization of the 
differences in tracks among the various clusters.

For any single TC, the distance between 6-hourly segments of the 
original best-track data is defined as Eq. (8)

disti =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi+1 − xi)
2
+ (yi+1 − yi)

2
√

for i = 1,…, n − 1, (8) 

The length of interpolated segments is defined as Eq. (9)

edist = 1

/

M
∑n− 1

i=1
disti, (9) 
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where M is the number of interpolated segments. The interpolated po

sitions (x
‘

k,y
‘

k) are defined as: 

x
‘

k = x1, y
‘

k = y1 for k = 1, (10)

x
‘

k = xn, y
‘

k = yn for k = M + 1, (11)
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x
‘

k = xl +
(xl+1 − xl)

distl

[

(k − 1) edist −
∑l− 1

i=1
disti

]

y
‘

k = yl +
(yl+1 − yl)

distl

[

(k − 1) edist −
∑l− 1

i=1
disti

] , (12)

for k = 2,…,M,

Where l is an integer that satisfies condition (13)
∑l− 1

i=1
disti ≤ (j − 1)× edist <

∑l

i=1
disti for k = 2,…,M. (13) 

This procedure can determine new positions along the line con
necting the original 6-hourly positions. The interpolated TC track retains 
the shape, length, and geographical track information covering the TC 
track data, and is a widely used method (Kim et al., 2011; Zhang et al., 

2015).

3. Results

3.1. Centroids and variances among three periods

We use the mass moments analysis to calculate the mean centroid 
locations and directional variances of the TC tracks for each of the three 
historical periods. The TC tracks in the third historical period 
(1994–2022) exhibit clear separation without overlapping those of the 
other two periods(1949–1967, 1968–1993), and the variance ellipses 
emphasize the distinct shape characteristics of each period (Fig. 2). The 
mean TC track centroid of the first period is positioned furthest south, 
with a larger variance in longitude compared to latitude with a negative 
tilt (negative mean variance) as shown in Table 1. The tilt represents the 
rotation angle of the major axis of the ellipse in the larger direction. The 
major axis of the variance ellipse indicates the direction and extent of 
the maximum distribution of track points. Conversely, the minor axis of 
the variance ellipse reflects the level of concentration in the distribution 
of tropical cyclone tracks in this direction (Nakamura et al., 2009; Yin 
et al., 2023). In the second period, the mean centroid of the TC tracks 
shows little change compared to the first period, with a slight shift to
wards the northeast. The variance in longitude is larger than in latitude, 
with a negative tilt. Additionally, the variance ellipse in the second 

Fig. 2. Mean centroid locations (green dots) and mean variance ellipses (black circles) for each historical TC track period. a is the first period (1949–1967); b is the 
second period (1968–1993); c is the third period (1994–2022); d is a map showing the three mean centroids together; the colored lines in a-c are individual TC tracks. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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period is similar in shape to that of the first period but with a larger 
longitudinal variance. For the third period, the mean centroid of TC 
tracks notably moves northward and westward compared to the first and 
second period, shifting 1.26◦ in latitude and 0.66◦ in longitude. More
over, its variance ellipse is nearly circular, indicating minimal tilt.

3.2. Characteristics of clusters

3.2.1. Optimal number of clusters
To further analyse the characteristics of TC tracks in each period, 

clustering analysis methods need to be applied to categorize the tracks 
for each period. Prior to this, the optimal number of clusters must be 
determined using the Silhouette score method outlined in Section 2.3.2. 
This method requires us to set the number of clusters in advance, and 
select the optimal number of clusters based on the Silhouette score re
sults corresponding to different numbers of clusters. In this study, 2–8 
clusters are randomly selected as the initial mean vector of the K-means 
algorithm. The maximum mean and the minimum number of negative 
values of Si are shown in Fig. 3.

In the first period, the maximum mean value of Si occurs when the 
number of clusters is 3, and the minimum number of negative values of 
Si occurs with 3, 5, 6, or 7 clusters. In the second period, the maximum 
mean values of Si occur with 2, 3, or 4 clusters, with the minimum 
number of negative values of Si occurring for 3 clusters. In the third 
period, the maximum mean values of Si are observed for 3 clusters, and 
the minimum number of negative values of Si with greater than 6 
clusters. However, even though the minimum number of negative values 

of Si for 3 clusters, doesn't represent the absolute minimum, it is very 
close to the minimum in the third historical period. It's important to note 
that a higher number of clusters is not necessarily better, as it can lead to 
results that are harder to generalize (Zheng et al., 2015; Yu et al., 2016). 
Therefore, based on this analysis, the optimal number of clusters for this 
study is 3, which aligns with the classification of TC tracks over the WNP 
(Zhao et al., 2020; Meng et al., 2023). Therefore, this study categorizes 
the TC tracks of each period into three clusters, resulting in a total of 
nine clusters. In the subsequent analysis, the first, second, and third 
clusters of the first historical period are abbreviated as p1c1, p1c2, and 
p1c3, respectively. Similarly, for the second period, they are denoted as 
p2c1, p2c2, and p2c3, and for the third period, as p3c1, p3c2, and p3c3.

3.2.2. Spatial distribution of all TC clusters
K-means clustering analysis also results in the centroid location and 

directional location of the variance ellipse for each TC cluster in every 
historical period (Table 2). The centroids of the three clusters in each 
period exhibit distinct differences, and the shapes of the variance el
lipses also vary. Among them, the centroids of p1c1, p2c1, and p3c1 are 
located in the southwestern-most part of each period. Their longitudinal 
variances are slightly larger than their latitudinal variances, displaying a 
negative tilt and forming ellipses expanding in the northwest direction. 
The centroids of p1c2, p2c2, and p3c2 are situated more towards the 
northeast compared to p1c1, p2c1, and p3c1. Their longitudinal vari
ances are very close to the latitudinal variances, displaying a very small 
negative tilt and forming nearly circular. The centroids of p1c3, p2c3, 
and p3c3 are located in the northeastern-most part of each period. Their 
longitudinal variances are significantly larger than the latitudinal vari
ances, displaying a strong positive tilt and forming ellipses expanding in 
the northeast direction.

In order to better visualize the differences among the tracks within 
each cluster, following the method in section 2.3.3, the lifetime of each 
TC is divided into an average of 28 time nodes (7 days, which is the 
mean TC life span based on the analysis of TC life span in section 3.3) 
arranged chronologically. Subsequently, the time series of TC positions 
are obtained by averaging the interpolated positions at these nodes. 
Finally, the TC mean track is derived by averaging the positions of 
corresponding time nodes among all TC tracks. The mean track for each 
cluster is represented by the black dots in Fig. 4. From Fig. 4, we can see 
that p2c1 and p3c1 represent a typical type of TC track moving north
westward and potentially making landfall in China. Although the mean 
track of p1c1 shows a slight northeastward turn towards the end of its 
lifetime, this deviation is small. Combined with the characteristics of the 
variance ellipses, we categorize p1c1, p2c1, and p3c1 as westward TC 
tracks. Furthermore, these tracks have the shortest track lengths. 
Moreover, with time, the westward and northward trends of this typical 
track become increasingly evident. p1c2, p2c2, and p3c2 represent a 
typical type of TC track characterized by an initial northwest propaga
tion, then turning to the northeast. These TCs develop primarily in the 
ECCO throughout their lifetime and have slightly longer track lengths 
compared to the previous typical TC track. Although the mean centroid 
positions of this track show relatively minor changes over time, the 
variance ellipses indicate an expanding trend. With time, the range 
covered by these ellipses increases, potentially affecting more areas in 
the ECCO. The mean tracks of p1c3, p2c3, and p3c3 are similar to the 
second cluster mean tracks but are located farther offshore. These mean 
tracks have the longest track lengths. We define them as northwest to 

Table 1 
Mean centroid and variance values of the variance ellipse for each period.

Historical Period Longitude 
centroid (◦E)

Latitude 
centroid (◦N)

Longitudinal 
Variance (deg2)

Latitudinal 
Variance (deg2)

Diagonal 
Variance (deg2)

First(1949–1967) 127.39 21.42 55.36 33.10 − 7.48
Second(1968–1993) 127.51 21.53 61.13 28.84 − 8.84
Third(1994–2022) 126.73 22.68 54.55 36.98 − 2.33

Fig. 3. The result of silhouette analysis in the three historical periods. a is the 
first period(1949–1967), b is the second period(1968–1993), c is the third 
period(1994–2022). The blue line is the maximum mean value of Si, and the red 
line is the minimum number of negative values of Si, the black dashed line 
corresponds to the location where the optimal number of clusters occurs. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.) (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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northeast-turning offshore tracks. Although there are fewer TCs with 
this typical track, it still tends to move towards the coast and northward. 
Therefore, we summarize three typical types of TC tracks affecting the 
ECCO: northwestward (Type 1), northwest to northeast-turning (Type 
2), and northwest to northeast-turning offshore (Type 3). This is 
consistent with the classification results of TC tracks in the entire WNP 
as presented by Zhao et al. (2020) and Meng et al. (2023).

3.3. Lifespan, Landfall, and Seasonality

The length of TC tracks is generally consistent with their lifespan, 
which plays a crucial role in determining TC intensity (Camargo et al., 

2007). Most powerful TCs are generated in ocean basins far from 
coastlines, ensuring they have ample time for full development, and the 
longer the lifespan, the higher the probability of further development (Li 
et al., 2010; Song et al., 2018). Fig. 5 illustrates the variations in TC 
lifespans ranging from 2 to 17 days, with the majority fluctuating be
tween 6 and 12 days. Therefore, in section 3.2.2, we opted for a 28 
points/7 days interpolation based on the lifespan of the majority of TCs. 
This method is commonly used to determine the number of interpolation 
points when calculating the mean TC track (Nakamura et al., 2009; Shen 
et al., 2018). We can observe that as TC tracks move farther away from 
the coastline, the lifespan of TCs gradually increases. Type 3 has the 
longest mean lifespan, followed by Type 2, and Type 1 has the shortest 

Table 2 
Mean centroid and variance values of the variance ellipse for each cluster.

Historical Period Cluster Longitude 
centroid (◦E)

Latitude 
centroid (◦N)

Longitudinal 
Variance (deg2)

Latitudinal 
Variance (deg2)

Diagonal 
Variance (deg2)

First(1949–1967) p1c1 125.88 18.56 55.05 19.32 − 17.41
p1c2 129.01 25.51 35.57 53.14 − 3.16
p1c3 135.26 27.00 241.59 56.08 101.98

Second(1968–1993)
p2c1 125.15 18.68 58.66 16.87 − 15.14
p2c2 130.11 25.90 42.18 40.17 − 9.71
p2c3 135.19 25.30 166.09 76.39 46.68

Third(1994–2022)
p3c1 122.79 19.98 37.43 17.07 − 10.62
p3c2 130.59 25.30 59.30 50.74 − 5.07
p3c3 136.02 29.29 232.20 149.44 141.32

Fig. 4. Mean centroid locations, mean variance ellipses, and mean TC track for each cluster. a-i are p1c1, p1c2, p1c3, p2c1, p2c2, p2c3, p3c1, p3c2, and p3c3, 
respectively. The red dots are mean centroids locations, the black circles are mean variance ellipses, the black dots are mean TC tracks, and the colored lines in a-i are 
individual TC tracks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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mean lifespan. This variation aligns with the lengths of the three typical 
types mentioned in section 3.2.2. Because type 2 and type 3 move 
northeastward, they stay longer over the open ocean compared to Type 
1. However, Type 1 exhibits more greater intensity in its lifespan 
compared to the other two typical types. This phenomenon could be 
attributed to the slower movement of TCs at low latitudes and their 
faster movement at higher latitudes (Chang and Yu, 2017), therefore, 
some Type 1 TCs may spend a longer part of their lifespan on a short 
track at low latitude than on a long high-latitude track. The lifespan of a 
TC typically influences the size of the variance ellipse; a longer track 
results in a larger ellipse, unless the TC is exceptionally slow-moving 
(Nakamura et al., 2009). The variance ellipse in section 3.2.2 also ex
hibits this variation.

From 1949 to 2022, a total of 590 TCs have affected the ECCO. From 
Table 3, we can see that Type 1 is the most prevalent in each period, 
constituting 59.6 %, 60 %, and 52.1 % of TCs, respectively. Type 2 
comes next, accounting for 36.4 %, 32.7 %, and 44 % of TCs in each 
historical period. Type 3 is the least common, making up 4.0 %, 7.3 %, 
and 3.9 % respectively. Meanwhile, the percentage of Type 2 increases 

between the second and third period, while the percentage of Type 1 
decreases. In the second and third periods, the percentage of landfalls for 
Type 1 is higher than Type 2, while in the first period, the landfall 
percentages for both types are similar. From Fig. 4, it can be observed 
that Type 1 is closer to land and tends to move more northwestward, 
whereas Type 2 is farther from land and moves in a northeastward di
rection away from the coast. Landfall percentages of both Type 1 and 2 
show increase. This analysis of the TC percentage and landfall per
centage in each cluster can aid in disaster risk reduction by enhancing 
our understanding of the relative landfall probability for countries 
exposed to TCs.

The differences among the nine clusters in the study period should 
also be taken into account. Fig. 6 illustrates that the primary active 
period for TCs affecting the ECCO is from April to December. Type 1 has 
the longest active period, ranging from April to December. Type 2 and 
Type 3 exhibit relatively smaller fluctuations in their active periods, 
primarily from May to October. According to the different active 
months, we can categorize the active periods of the three typical types 
into three seasons: pre-peak, peak, and post-peak. For Type 1, the three 
seasons are April to June, July to September, and October to December, 
respectively. For Type 2, the seasons are May to June, July to September, 
and October. Due to the smaller number of TCs, Type 3 is categorized 
into seasons consistent with Type 2 in this study. It can be seen that the 
most active period for all three typical types is from July to September. 
Additionally, the pre-peak and post-peak periods for Type 1 are longer 
compared to the corresponding active periods for the other two types. 
This could be attributed to the fact that TC generation requires high SST 
(Emanuel, 1986; Emanuel, 2003). Type 1, being at the lowest latitudes, 
experiences higher sea surface temperatures in this region, leading to 
longer active periods. The little high fluctuations in Type 3 may be due 
to the lower number of TCs of this type.

Fig. 5. Box-whisker plot for TC lifespan in each cluster. The red lines represent 
the medians, the blue boxes represent the 25 %–75 % data intervals, the black 
dashed lines represent the upper and lower data limits, and the red crosses 
represent outliers. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

Table 3 
Number of TCs, TC percentage, number of landfalls, and landfall percentage. The 
TC percentage represents the proportion of each type of TC track to the total 
number of TC tracks in that specific period. The landfall percentage represents 
the proportion of each type of TC track to the total number of TC tracks in that 
specific cluster.

cluster TC 
number

TC Percentage 
(%)

Landfall 
number

Landfall percentage 
(%)

p1c1 90 59.6 45 50.0
p1c2 55 36.4 30 54.6
p1c3 6 4.0 2 33.3
p2c1 123 60.0 60 48.8
p2c2 67 32.7 28 41.8
p2c3 15 7.3 2 13.3
p3c1 122 52.1 71 58.2
p3c2 103 44.0 44 42.7
p3c3 9 3.9 3 33.3
total 590 – 285 48.3

Fig. 6. Box-whisker plot for the month of each TC's lifespan in each cluster. The 
red lines represent the medians, the blue boxes represent the 25 %–75 % data 
intervals, the black dashed lines represent the upper and lower data limits, and 
the red crosses represent the outliers. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this 
article.) (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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4. Discussion

4.1. Longitudinal and latitudinal response of TC tracks

Storm surges, especially when they align with exceptionally high 
tides and waves, have the potential to cause significant storm surge di
sasters, posing threats to critical infrastructures such as ports, fisheries, 
and engineering facilities (Yang et al., 2016). All 11 coastal provinces in 
mainland China are exposed to varying degrees of these threats. From 
Section 3.1, the mean centroid position of TCs affecting the ECCO is 
shifting northward (in the latitudinal direction) and closer to the coast 
(in the longitudinal direction). Moreover, in Section 3.2.2, both TC 
tracks of Type 1 and Type 3 exhibit a noticeable northward shift. 
Although the mean track change for Type 2 is not as pronounced, the 
variance ellipse of the mean track shows an expansion trend both to
wards the coast and northward. This phenomenon can also be inter
preted as Type 2 tracks fluctuating and expanding northward and closer 
to the coast.

From the perspective of each TC track's mean centroid relative to its 
entire track, the centroid is located approximately in the middle portion 
of the TC track. This area coincides with the region where the TC in
tensity is strongest (Fig. 2). This is close to the location of a TC's Lifetime 
Maximum Intensity (LMI). The location of the LMI serves as a crucial 
indicator for tracking the migration of TCs. The poleward and landward 
migration of TCs has been widely studied (Kossin et al., 2014; Moon 
et al., 2015; Feng et al., 2021; Wang and Toumi, 2021; Li et al., 2022; 
Meng et al., 2023). Therefore, we approximate the change in the mean 
centroid of TC tracks as the change in the LMI to indicate the migration 
of TC tracks in the ECCO. The second historical period and the first 
historical period show minor changes in the mean centroid, while the 
third historical period experienced a larger change in the mean centroid 
location. In Section 3.1, it was found that during this period, the mean 
centroid shifted westward by 0.66◦in longitude and northward by 
1.26◦in latitude. By analyzing TC tracks, we quantified the magnitude of 
poleward and landward migration of TCs in the 70-year record. This 
reveals the poleward shift of TC tracks in ECCO is twice the landward 
shift. This is a quantitative analysis of TC tracks based on the qualitative 
result of Xu et al. (2022).

To assess the validity of the change of the TC tracks presented in this 
study, we compare the latitudinal and longitudinal migration rates of 
TCs affecting the ECCO with TCs generated in the entire WNP. The data 
collected for previous study spans from 1979 to 2018. Therefore, we 
perform linear regression on the annual mean longitude and latitude of 
TC centroids during 1979–2018, deriving their decade migration rates in 
the ECCO. As shown in Fig. 7， the migration rate of TC tracks in this 
region is 0.2◦/decade in longitude and 0.51◦/decade in latitude. As 

shown in Tables 4 and 5, although the migration rate in longitude in this 
study is lower, it still exhibits an onshore migration trend. We can 
consider the longitude and latitude migration trend obtained in this 
study as robust. The variations in migration rates between different 
studies can be attributed to the differences in the TC datasets used, the 
methods employed for trend analysis, and the variation in the definition 
of LMI across this study. These differences could potentially introduce 
variations across analyses. The longitudinal migration rate is lower and 
the latitudinal migration rate is moderate, indicating a significant 
northward trend compared to the coastal migration trend in the ECCO. 
However, it's worth noting that this study did not analyse the TC tracks 
in other TC datasets, which is a topic that warrants further investigation.

4.2. Landward extent of TC centers after landfall

The ocean affects the land through mass transport and transfer of 
energy, primarily manifesting as waves, tides, and even extreme 
weather events such as TCs (Gao et al., 2023). Therefore, the spatial- 
temporal variations of TC tracks are crucial in understanding their ef
fect on land. We derived the westernmost boundaries reached by TC 
centers while maximum wind speed still exceeded 17.2 m/s, for TC 
tracks of Type 1 and Type 2 in each of the three historical periods 
(Fig. 8). 17.2 m/s is chosen as the threshold wind speed because this 
corresponds to the threshold for a severe weather alert in China. We 
observed that Type 1 primarily lands in the southern provinces of China, 
including Guangxi, Guangdong, and Fujian. Moreover, over time, the 
land area traversed by TC centers while those TCs still have maximum 
wind speed greater than 17.2 m/s after landfall for Type 1 is gradually 
expanding. Type 2, on the other hand, predominantly lands in the 
eastern provinces of China, including Jiangsu, Shanghai, and Zhejiang. 
Similar to Type 1, Type 2 also exhibits a trend of expanding land areas 
with wind speed exceeding 17.2 m/s over time. The proportion of Type 2 

Fig. 7. The linear trend of annual mean longitude and latitude of TC centroid during 1979–2018. a is longitude, and b is latitude. The black solid line is the linear 
trend, and the red dashed line is the 95 % confidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4 
The migration rate of LMI in longitude. Positive values of migration rate 
represent migration towards the coast (landward). CMA (China Meteorological 
Administration), IBTrACS (International Best Track Archive for Climate Stew
ardship), JTWC (Joint Typhoon Warning Center), and JMA (Japan Meteoro
logical Agency).

Time period Migration rate 
in longitude (◦/decade)

Datasets Source

1979–2018 0.53 JMA Li et al., 2022
1979–2018 0.61 CMA Li et al., 2022
1979–2018 0.57 JTWC Li et al., 2022
1982–2012 0.43 IBTrACS Wang and Toumi, 2021
1979–2018 0.2 CMA This study
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TCs increases over time (Table 3), as discussed in section 4.1. Therefore, 
even though the overall number of TCs in the WNP is decreasing (Lee 
et al., 2020), the migration of these TC tracks could lead to more TCs 
impacting the eastern and northern regions of China. As described in 
section 3.3, the percentage of Type 1 decreases but the landfall per
centage of Type 1 increases over time. This may be because the effect of 
Type 1 is more concentrated in southern China. Due to the northeast
ward movement of TC tracks, the percentage of Type 1 is decreasing and 
gradually shifting towards Type 2, which affects eastern China. This 
aligns with the results of Zhao et al. (2013). Additionally, the increasing 
landfall percentage of Type 1 can be attributed to the onshore migration 
trend of TC tracks (Wang and Toumi, 2021). In summary, the percentage 
of Type 1 decreases and the percentage of Type 2 increases, which means 
more TCs will strike the north and east parts of the ECCO. Landfall 
percentages of both Type 1 and 2 show increase(Table. 3), TCs affecting 
the ECCO and making landfall in the ECCO are gradually increasing in 
frequency, and the northern and eastern part of ECCO will face more TC 
disasters. The probability of TC effects on China's eastern and northern 
regions is increasing, and the boundaries reached by the TC center are 
increasing westward. This provides planning suggestions for disaster 
reduction in northern cities to enhance their response capabilities to 
future extreme events. Additionally, it offers reference points for 

defining research boundaries when planning coastal zones.

4.3. Factors affecting TC tracks

The migration of the TC tracks is related to environmental condi
tions, especially the mesoscale steering flow, VWS, and the SST (Mei 
et al., 2015; Camargo and Wing, 2021; Wang and Toumi, 2021). The 
steering flow can lead the movement of TCs. A high VWS environment is 
known to be one of the main reasons for the failure of TC development 
and for the weakening of TCs (Gray, 1968). Similarly to VWS, the SST in 
the lower latitude western North Pacific (LLWNP, 5◦-15◦N,130◦-180◦E) 
energizes TC generation (Mei et al., 2015; Mei and Xie, 2016) and 
warming SST can lead to meridional expansion of the tropical region 
(Sharmila and Walsh, 2018). This could provide a theoretical upper limit 
of the energy for the northward movement of TCs. Therefore, in this 
section, we will explain the changes in TC tracks in terms of changes in 
these three environmental conditions. Steering flow is defined as mid
tropospheric (500 hPa) wind fields(Wang et al., 2022). It aligns with the 
pressure-weighted deep-layer wind field between 300 and 850 hPa 
(Aryal et al., 2018). VWS is calculated by the wind field between 200 
and 850 hPa (Zehr, 2003)。.

From section 3.3, we learned that the active months for TC activity in 
the ECCO are from May to October. Therefore, we derive the mean 
steering flow, VWS, and SST in the three periods from May to October 
and calculate the spatial difference of steering flow, VWS, and SST as 
shown in Fig. 9.

From Fig. 9a, during the second period, the westward steering flow 
strengthened between 20◦-40◦N compared to the first period. This could 
lead to eastward migration of TC tracks. The difference in mean tracks 
between p2c1 and p2c2 is significantly greater than between p1c1 and 
p1c2. This difference could be related to a cyclonic northeastward 
steering flow change on the west side of Taiwan. This might cause some 
TCs whose tracks are located between Type 1 and Type 2 moving 

Table 5 
The migration rate of LMI in latitude. Positive values of migration rate represent 
poleward migration.

Time period Migration rate 
in latitude (◦/decade)

Datasets Source

1979–2018 0.50 CMA Meng et al., 2023
1979–2018 0.61 JTWC&CMA Feng et al., 2021
1982–2012 0.47 IBTrACS Moon et al., 2015
1982–2012 0.37 IBTrACS Kossin et al., 2014
1979–2018 0.51 CMA This study

Fig. 8. Boundaries reached by TC centers after landfall with maximum wind speed exceeding 17.2 m/s. Panel a represents the land range of Type 1 during the three 
periods, while Panel b shows the land range of Type 2 during the three periods. Type 3, due to their limited number, was not analyzed in this study. The points 
indicate the TC centers and the dashed lines represent the TC land boundaries.
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northeastward, making their tracks similar to Type 2. Therefore, the 
distinctions between Type 1 and Type 2 in the second period in Section 
3.2.2 become more pronounced compared to the first period. However, 
the VWS in this region strengthens (Fig. 9c), which suppresses the 
development of TCs. Therefore, the mean TC lifespan during the second 
period is significantly shorter than in the first period, as shown in section 
3.3. Meanwhile, during the second period, the SST in LLWNP doesn't 
show significant changes relative to the first period. There is warming in 
the west but cooling in the east (Fig. 9e). Under the background of the 
combination of stronger VWS and relatively stable SST, the TCs did not 
gain much energy during this period. Therefore, the TC mean centroid 
during the second period exhibits only minor northeastward movement 
compared to the first period. In contrast, during the third period, the 
westward steering flow weakened (Fig. 9b). Additionally, there is a 
northwestward steering flow change near Taiwan, causing TC tracks to 
shift further towards the northwest. During the third period, the VWS 
decreased in the northern part of Taiwan (Fig. 9d), compared to the 
second period. This relative reduction in VWS provides a more favorable 
environment for the northward movement and development of TCs. 
However, the VWS in the south of Taiwan increased. This might lead to a 
decrease in the proportion of p3c1 and an increase in the proportion of 
p3c2 as described in section 3.3 (Table 3). Simultaneously, in the third 
period, the SST increased significantly compared to the second period 
(Fig. 9f). As a result, the theoretical upper limit of energy that TCs can 
gain while moving towards higher latitudes keeps rising. The combined 

effect of these environmental conditions contributed to the more pro
nounced trend of TC tracks shifting both towards the coast and north
ward during the third period.

Although the migration of TC tracks in the ECCO has closely related 
to the steering flow, VWS and SST, the phase of Pacific Decadal Oscil
lation(PDO), El Niño-Southern Oscillation (ENSO), vorticity, relative 
humidity and other meteorological conditions also can influence TC 
activity (Mei et al., 2015; Wang et al., 2019; Zhao et al., 2020; Wang 
et al., 2022; Meng et al., 2023). This study has not analyzed other 
meteorological conditions. Investigating these factors could be a priority 
for future research on TCs within different clusters.

5. Conclusions

Based on the TC position, shape, and intensity information, three 
typical types of TC tracks in the ECCO since 1949 are derived. The 
clustering analysis offers an initial insight into the traits of TC tracks 
within each cluster. This study is a systematic approach to research the 
effect of representative TCs in a specific region by quantifying the 
magnitude of poleward and landward track migration. This is also of 
importance for the study of the regularity of TC changes in other regions 
of the world that are significantly affected by TCs. The main conclusions 
are as follows:

Fig. 9. Spatial difference of steering flow, VWS, and SST from May to October. a, b are the differences in steering flow; c, d are the differences in VWS; e, f are the 
differences in SST in the LLWNP. The left figures are the difference between the first (1949–1967) and second (1968–1993) periods, and the right figures are the 
difference between the second (1968–1993) and third (1994–2022) periods. The black dots indicate where the difference is significant at a confidence level of 95 %.
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1. Period 3 (1994–2022) represents a significant phase during which TC 
tracks underwent substantial migration. The mean centroid of the 
TCs affecting the ECCO shifted westward by 0.66◦in longitude and 
northward by 1.26◦in latitude. This migration trend is closely linked 
to mesoscale steering flow, VWS, and SST. The combination of 
weakening westward steering flow, reduced VWS, and warmer SST 
may have facilitated the northward and onshore development of 
tropical cyclones during Period 3.

2. There are three typical types of TC tracks in the ECCO region. Type 1 
is a northwestward track, Type 2 is a northwest to northeast-turning 
track, and Type 3 is a northwest to northeast-turning offshore track. 
Type 1 primarily makes landfall in southern China, whereas Type 2 
predominantly affects eastern China. Furthermore, the percentage of 
Type 1 decreases but the landfall percentage of Type 1 increases over 
time. The percentage of Type 2 is on the rise, and the affected land 
boundary is shifting westward.

3. TC lifespans range from 2 to 17 days, with the majority between 6 
and 12 days. We categorize the active periods of the three typical 
types into three seasons: pre-peak, peak, and post-peak. For Type 1, 
the three seasons are April to June, July to September, and October 
to December, respectively. For Type 2, the seasons are May to June, 
July to September, and October. Due to the smaller number of Type 3 
TCs, Type 3 is categorized into seasons consistent with Type 2 in this 
study.

4. The probability of TCs affecting eastern and northern China is 
increasing due to the latitudinal and longitudinal migration of TC 
tracks. Regional planning for disaster prevention and mitigation can 
be informed by the spatial-temporal distribution of TC tracks.

This study uses one TC dataset (The CMA Dataset of TC Tracks) only 
to analyse the change of TC tracks, but there are also other meteoro
logical conditions that can influence this. Analyzing the variations and 
disparities in TC tracks by integrating different TC datasets and 
considering more meteorological parameters will be a crucial aspect of 
our future research endeavors.
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