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Abstract 
 

Introduction: In intensive care units (ICU), the most significant life support technology for patients with acute 

respiratory failure is mechanical ventilation. A mismatch between ventilatory support and patient demand is 

referred to as patient-ventilator asynchrony (PVA), and it is associated with a series of adverse clinical 

outcomes. Although the use of a reference signal for patient effort is critical in recognition of PVA, existing 

detection algorithms are frequently solely based on the ventilator’s airway pressure (Paw) and flow-time 

signals. The aim of this study was to develop an automated detection algorithm for PVA using the ventilator’s 

Paw, flow-time and esophageal pressure (Pes) signals. 

Methods: We proposed a two-dimensional convolutional neural network (2DCNN) to detect two types of 

PVA (reverse triggering (RT) and premature cycling) using a dataset of respiratory cycles recorded from 11 

patients. Mechanical ventilation experts with access to the Pes signal annotated 12.337 respiratory cycles to 

create a gold standard dataset. Several techniques for a potential class imbalance problem, as well as several 

changes to the initial model architecture, were investigated. A leave-one-patient-out cross-validation technique 

was used to evaluate model performance. The proposed Pes-based 2DCNN (Pes_2DCNN) was compared to a 

similar model based solely on the ventilator Paw and flow-time signals (PF_2DCNN).  

Results: The proposed Pes_2DCNN exhibited superior performance in detecting RT as compared to 

PF_2DCNN in terms of area under the receiver operating characteristic (AUROC) (0.80 ± 0.07 vs. 0.75 ± 0.13, 

respectively; p < 0.01). Furthermore, the results indicate that the class imbalance solutions did not improve the 

performance for detection of RT. For detection of premature cycling, Pes_2DCNN also outperformed 

PF_2DCNN in terms of AUROC (0.88 ± 0.09 vs. 0.71 ± 0.24, respectively; p < 0.01). 

Conclusion: The findings of this study suggest the added value of the Pes signal in detection of RT and 

premature cycling. However, because this is a preliminary study, more research is required to further 

investigate the importance of the Pes signal in PVA detection.  
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1 

1. Introduction 
 

In intensive care units (ICU), invasive mechanical ventilation (MV) is the most significant life support 

technology for patients with acute respiratory failure. Mechanical ventilators precisely regulate the delivery of 

oxygen, pressure, and air flow to support patients’ oxygenation, ventilation, and work of beathing. However, 

while they can be life-saving, they can also cause lung damage and substantial patient distress if patient effort 

and MV support are not well-matched. To provide comfortable ventilatory support to the patient, the 

interaction between the patient and the ventilator must be optimized. When either the initiation or termination 

of MV does not coincide with the neural timing of inspiration and expiration, or when the delivery of 

ventilatory support is insufficient to meet the patient’s demand, it is referred to as patient-ventilator asynchrony 

(PVA). This phenomenon is associated with a series of adverse clinical outcomes, such as prolonged duration 

of mechanical ventilation (1, 2), extended stays in ICU (3), and even mortality (4).  

PVA can be detected at the bedside by observing deviating patterns in the waveforms displayed on the 

ventilator. However, this is impractical because PVA can occur sporadically and detection is only possible 

when a physician is present at the bedside. Furthermore, the reported sensitivity of manual asynchrony 

detection based on visual analysis of ventilator waveforms is extremely low (16-28%) (5). These challenges 

prompted several attempts by researchers to develop computerized algorithms for automatic PVA detection. 

In our previous work, we reviewed existing detection algorithms for PVA, including their strengths and 

weaknesses (6). On the one hand, rule-based algorithms with heuristic rules and thresholds were proposed to 

distinguish a breath as PVA or non-PVA. On the other hand, machine learning (ML) models have been 

introduced to address the problem of PVA recognition.  

Classification algorithms must be validated by comparing them to a gold standard. Various data annotation 

procedures for creating a gold standard dataset have been reported in literature. For example, Pan et al. (7) 

made use of a dataset annotated by five junior respiratory therapists who could make remarks on difficult 

cycles. Three senior respiratory therapists reviewed the annotations and were in charge of identifying the 

remarked difficult cycles. Gholami et al. (8) used a panel of five experts who made decisions by voting. Blanch 

et al. (9) had the data independently annotated by five experts, where disagreements were discussed before 

reaching a consensus. Surprisingly, most studies performed data annotation with lack of knowledge about the 

activity of the diaphragm. To our knowledge, only one study used a reference signal for patient effort during 

annotation (10). The use of a reference signal, such as electrical activity of the diaphragm (EAdi) or esophageal 

pressure (Pes), is critical to effectively confirm the presence of PVA (9, 11). As a result, existing PVA detection 

algorithms mimic human expertise instead of recognizing true PVA.  

The Pes is a minimally invasive technique for monitoring transpulmonary pressure variations that originate in 

the diaphragm or any other inspiratory muscle. Because it decreases during inspiratory effort, it can be used as 

a signal to guide ventilation management. Pes recordings aid in the detection of PVA by directly comparing 

the onset and offset of patient effort in the esophageal pressure waveform to the onset and offset of inspiration 

in the airway pressure (Paw) and flow-time waveforms.  

Detection algorithms for PVA are frequently solely based on the ventilator’s Paw and flow-time signals. 

Despite the fact that the addition of Pes promises to aid in accurate recognition of PVA, no Pes-based detection 

algorithms exist for PVA. In order to prove the added value of using Pes in PVA detection, we developed a 

two-dimensional convolutional neural network (2DCNN) that detects PVA using the ventilator’s Paw, flow-

time and Pes signals. In addition, we compared its performance to that of a similar model based solely on the 

ventilator’ Paw and flow-time waveforms. 
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2 

2. Background 
 

2.1 Technical background 

Machine learning is a subfield of artificial intelligence in which machines learn or extract knowledge from the 

available data in order to make predictions or decisions. Machine learning combines statistical analysis 

techniques with computer science to develop algorithms capable of “statistical learning” (12). Unsupervised 

learning and supervised learning are the two types of learning techniques used in ML. Unsupervised learning 

algorithms search for patterns or clusters in the data without any input from the user (13). A supervised learning 

algorithm, on the other hand, is created by feeding it examples of a specific input and its corresponding output. 

The resulting algorithm is expected to be capable of predicting a unique output when exposed to new and 

previously unseen data (12). 

Traditional supervised learning methods often rely on hand-crafted features. The selection and calculation of 

these features is a challenging and time-consuming task. Deep learning is a subset of machine learning in 

which a neural network can extract useful features from data automatically. CNNs are among the deep learning 

techniques that are actively used for medical image analysis. This includes application fields such as disease 

classification, abnormality detection and computer-aided diagnosis (14).  

A CNN is composed of different layers, and the input image is passed through each layer in order to extract 

the features that are relevant for generating a classification output. Figure S1 shows a visual representation of 

a typical CNN and its training process (Supplementary materials 1). The CNN is made up of three types of 

layers: convolutional layers, pooling layers, and fully connected (FC) layers. The convolutional layers extract 

the features by applying different kernels to the input tensor (subset array of values). A kernel is a M x M 

matrix that is slid across the input tensor to multiply its values with the superimposed input values. The sum 

of the products of each input tensor pixel and the kernel yields a single numerical value for the newly generated 

feature map. By applying multiple kernels to the data, multiple feature maps are generated. These outputs serve 

as the input for the subsequent CNN layer. A convolutional layer is usually followed by a pooling layer. The 

aim of this layer is to downsample the feature maps in order to reduce the network’s computational costs (15). 

Multiple convolution and pooling steps can be repeated, resulting in a CNN with many layers of data. These 

data are eventually transformed into a one-dimensional array, which is fed into the FC layers. As a result, the 

FC layers determine the relationship between the extracted features and the outcome.  

The term ‘model architecture’ is used to refer to CNN building blocks such as the number, type, order, and 

shape of the layers. The model can start training after the model architecture has been determined and the data 

has been preprocessed. Training is the process by which the model learns the relationship between the input 

and the outcome. The input data consist of ground truth labels, which are typically assigned by experts during 

data annotation. To train the model, a subset of the dataset (the training set) is fed into it, along with the 

assigned labels. During training, the CNN learns which kernels to use in the convolutional layers and which 

weights to use in the FC layers in order to provide the best model performance. A loss function compares the 

predicted and actual outcomes under different kernels and weights. A high loss indicates that the model 

incorrectly predicts the outcome, whereas a low loss indicates that the model correctly predicts the outcome. 

Backpropagation is used to adjust the kernels and weights based on the loss value, with the aim to minimize 

the error between the output predictions and the ground truth labels (16). 

The period during which the entire training set has been passed through the CNN once (both forward 

propagation and backpropagation) is referred to as an epoch. This is equivalent to an iteration in small datasets. 

In large datasets, the entire dataset may not be able to pass through the CNN in a single batch. In this case, the 

larger dataset is divided into smaller batches. Whenever a single batch undergoes forward- and 

backpropagation, this is called an iteration. Once all batches have been forward- and backpropagated, this is 

called an epoch (15).  
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During model development, nested cross-validation (CV) is typically used to optimize and train the model, as 

depicted in Figure 1. The inner loop of CV is used to optimize the hyperparameters of the model, such as the 

batch size and number of epochs. The outer loop of CV is used to evaluate the model’s generalizability to new 

data. The inner loop is nested within the outer loop, hence the name “nested” CV. In the outer CV loop, the 

entire dataset is divided into a training-, and test set. The training set is used for the previously described 

training process, and the test set is used for evaluation of the final model. It is important that the test set contains 

data that the model has not seen during training. In every fold of the outer CV loop, the outer training set is 

used in the inner CV loop where the data is further split into an inner training set and a validation set. During 

the inner CV loop, different possible hyperparameter combinations are trained on the inner training set and 

evaluated on the validation set, resulting in a validation score for every inner CV fold. Validation scores are 

averaged over the inner CV folds to obtain a validation performance. The combination of hyperparameters 

with the highest validation score is returned to the outer CV loop. Here, these hyperparameters are used to 

train the model on the outer training set. When training on the outer training set is completed, the model is 

tested on the outer test set. This results in a test performance. A comparison of the validation performance and 

the test performance gives insight into the model’s fit to the data. Models that perform well in the inner CV 

loop (i.e., high validation performance), but have poor accuracy when applied to the test data in the outer CV 

loop (i.e., low test performance), are overfitted (12). In this case, the model has learned statistical regularities 

specific to the training set. This means that instead of learning the relevant pattern, it memorizes the irrelevant 

noise and thus performs poorly on subsequent new data, e.g. the test data. If the model performs poorly on 

both the training- and test sets, then the model is underfit to the data. The goal is to achieve a high test 

performance that is comparable to the validation performance (16). The test performance is averaged over the 

outer CV folds to obtain the final performance of the model on unseen data. 

 

Figure 1 Schematic representation of nested cross-validation. This approach is typically used to optimize and train the model. The 

final performance of the model on unseen data is obtained by averaging the test performances over the outer cross-validation folds. 

CV: cross-validation. 

2.2 Patient-ventilator asynchrony nomenclature and taxonomy 

Research on patient-ventilator asynchrony lacks a standardized vocabulary and associated taxonomy. This 

complicates the communication among students and researchers, as well as comparison of study results.  

Table 1 summarizes PVA taxonomy and the various names used in the literature, as well as providing graphic 

representations of the different types of PVA. 

Asynchronies can be classified in a variety of ways. Several authors used a systematic approach to assess PVA 

based on the four stages of respiration: triggering, inspiration, cycling and expiration (2, 17). The trigger event 

is assessed in terms of synchrony with the start of patient inspiratory effort. It can happen early (before the 

start of the patient’s inspiratory effort), on time (synchrony), or late (a clinically important delay). In addition, 

two other conditions are described that are not related to timing but rather to ventilator function:  

auto triggering, which occurs when a signal other than the inspiratory pressure generated by the respiratory 

muscles (Pmus) triggers an inspiration; and a failed trigger, which occurs when the Pmus fails to trigger 

inspiration.  
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During the inspiratory phase, the patient-ventilation interaction is characterized by the relationship of work 

performed by the ventilator and the patient. Flow asynchrony can occur during inspiration when the ventilator 

fails to meet the patient’s flow demand. This usually happens when the flow delivery is set too low or when 

the combination of tidal volume (VT) and inspiratory time fails to provide adequate flow (18). The end of 

inspiration, cycling, is assessed in terms of synchrony with the end of the patient’s inspiratory effort (i.e., 

Pmus). It can occur early (before the end of the patient’s inspiratory effort), on time (synchrony), or late (a 

clinically important delay). During expiration, the patient-ventilator interaction is characterized by work, as 

normal expiration is passive. Patient expiratory work may be normal, as when exercising or coughing, but it 

may also indicate the presence of anxiety, acidosis or high resistive load (e.g., chronic obstructive pulmonary 

disease) (19). 

According to Esperanza et al. (20), categorizing asynchronies based on the phase of the respiratory cycle in 

which they occur does not correspond well with the clinical and pathophysiological mechanisms involved. 

Other authors agree that it is better to focus on the conditions that cause PVA in order to understand the 

underlying mechanisms and develop treatment strategies (21, 22).  

Esperanza and coworkers focus on classification based on the appropriateness of ventilator assistance level 

(20). They divide asynchronies into two categories: insufficient assistance (patients with high respiratory drive) 

and overassistance (patients with low respiratory drive). Asynchronies caused by insufficient assistance 

include flow starvation, short-cycling, double triggering and breath stacking. Flow starvation is similar to flow 

asynchrony as described by De Wit (18) and work shifting as described by Chatburn et al. (19). Short-cycling 

corresponds to premature cycling as described by De Wit (18) and early cycling as described by Chatburn et 

al. (19). Esperanza et al. (20) consider double triggering and breath stacking to be the same phenomenon, 

referring to two complete inspirations separated by a very short expiratory time. However, some authors argue 

that breath stacking should not be used interchangeably with double triggering. According to them, the term 

should only be used to refer to the clinical consequence of double triggering when incomplete expiration 

between two breaths results in a higher than intended VT (23). Overassistance includes ineffective effort during 

expiration (IEE) and delayed or prolonged cycling. Ineffective efforts, defined by Chatburn et al. (19) as failed 

triggers, are the most common type of asynchrony, affecting nearly 50% of mechanically ventilated patients 

(18, 24, 25). IEEs occur when the patient’s attempt to initiate a breath does not reach the ventilator’s trigger 

threshold. Delayed or prolonged cycling corresponds to late cycling, and it occurs when mechanical 

insufflation continues after neural inspiration has ended. Overassistance results in hyperventilation, 

hypocapnia, and respiratory alkalosis, which decreases respiratory drive and increases the likelihood of PVA 

in a vicious circle (26). The phenomenon of reverse triggering is discussed separately by Esperanza et al. (20). 

In reverse triggering, mechanical insufflation elicits a neural response, resulting in a ventilator-induced 

diaphragmatic contraction. According to Chatburn et al. (19), this phenomenon is referred to as early 

triggering.  

It is clear that there is no consistent nomenclature or taxonomy for PVA. Training on ventilator waveforms is 

frequently based on simple pattern recognition (e.g., double triggering, ineffective triggering) and thus 

becomes an experience-based exercise rather than a systematic process. There is no widely accepted, formal, 

systematic method for reading ventilator waveforms, as there is for electrocardiograms (ECG). Existing 

automated detection algorithms for PVA are often validated by comparing them to the gold standard, which is 

the visual inspection of ventilator waveforms by an expert. However, because all experts in this field use 

different definitions of PVA, these algorithms are unreliable. To reliably detect PVA, a detection algorithm 

based on a reference signal of the patient effort, such as the Pes signal, is highly required.  
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Table 1 Taxonomy of patient-ventilator asynchrony (17-22, 27). PVA types are divided into trigger asynchronies, inspiration asynchronies, and termination asynchronies. The 

terminology of PVA types that we use in this study is presented in bold while the other names that appear in the literature are presented in italic. The graphic representations of late 

triggering and flow asynchrony (27) could not be plotted from our dataset as these types of PVA were not present in our study population.  

PVA type  Description Waveform characteristics Graphic representation Possible causes 

Trigger asynchronies – during the beginning of inspiration 

 

Ineffective effort 

during expiration (IEE) 

 

• Ineffective trigger 

• Failed trigger 

• Missed trigger 

• Wasted effort 

 

Patient effort not 

followed by a 

mechanical breath 

 

Presence of a negative 

deflection in the Pes signal in 

the expiratory phase of a 

breath without triggering a 

new mechanical breath 

  

• Inadequate trigger 

sensitivity 

• Overassistance 

• Sedation 

• Presence of AutoPEEP 

• Low respiratory drive 

  

Reverse triggering (RT) 

  

• Early trigger 

• Early inflation 

 

A machine-induced 

breath preceding 

patient effort  

 

A controlled machinal breath 

followed by a negative 

deflection in the Pes signal  

  

• Oversedation 

• Overdistention 

 

Late triggering 

 

• Delayed trigger 

• Late inflation 

 

The ventilator 

responding to 

patient effort after a 

clinically important 

delay (e.g., 100 ms 

(28)) 

 

Paw drops below baseline, 

positive deflection in flow-

time or start negative 

deflection Pes signal > 100 

ms before start mechanical 

breath 

 

 

 

 

 

 

 

 

 

 

• Inadequate trigger 

sensitivity 

• Presence of AutoPEEP 

• Low respiratory drive 

 

Auto triggering 

  

• False trigger 

 

 

 

 

 

A nonpatient (e.g., 

non-Pmus) signal 

triggering a 

mechanical breath 

 

A triggered breath without 

the presence of a negative 

deflection in the Pes signal 

  

• Air leaks in the endotracheal 

tube cuff, ventilator circuit or 

chest tube  

• Flow oscillations (water of 

secretion in the circuit, 

cardiac oscillations) 



13 

 

 
PVA type Description Waveform characteristics Graphic representation Possible causes 

Inspiration asynchronies – during the gas delivery 

 

Flow asynchrony 

 

• Flow starvation 

• Work shifting  

• Flow limited 

• Insufficient flow 

• Inspiratory airflow 

dyssynchrony 

 

The delivered flow 

not meeting the 

patient’s inspiratory 

flow demands 

 

 

An upward concavity in Paw 

preceding the end of a 

mechanical breath 

 

  

• Inadequate flow 

• Dyspnoea 

• Delirium/Pain  

 

Termination asynchronies – during the end of inspiration 

 

Premature cycling 

 

• Early cycling 

• Short cycling 

• Premature termination 

 

When inspiration 

ends before the end 

of patient effort 

 

Observed termination of 

delivered breath while 

negative deflection in the 

Pes signal is still present 

  

• Inadequate cycling criteria 

• Inadequate setting of ventilator 

inspiratory time 

 

Delayed cycling 

 

• Late cycling 

• Prolonged cycling 

• Delayed termination 

• Runaway phenomena  

 

When inspiration 

ends after the end of 

patient effort  

 

Observed continuation of 

delivered breath while 

negative deflection in the 

Pes signal being no longer 

present 

  

• Inadequate cycling criteria 

• Inadequate setting of ventilator 

inspiratory time 

 

Double triggering (DT) 

 

• Double cycling 

 

Two (or more) 

mechanical breaths 

are delivered during 

one single inspiratory 

effort 

 

Two assisted breaths during 

one negative deflection of 

Pes signal 

  

• Inadequate trigger sensitivity 

• Inadequate setting of ventilator 

inspiratory time 

• High respiratory drive 

Pmus: inspiratory pressure generated by the respiratory muscles; Pes: esophageal pressure; Paw: airway pressure; AutoPEEP: intrinsic positive end-expiratory pressure.  
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3 

3. Methods 
 

3.1 Study population and data collection 

The patients considered in this study are adults who were admitted to the ICU of the Leiden University Medical 

Center from December 2022 to March 2023. Only patients receiving invasive mechanical ventilation because 

of acute respiratory failure or with a ventilation duration of at least 48 hours are included. Patients are required 

to have an esophageal balloon catheter in order to measure the esophageal pressure (Pes) (Hamilton Medical 

AG, Bonaduz, Switzerland). Patients are only included if the patient or next of kin gives consent to the use of 

their data. In our study, 17 patients were eligible for inclusion, however, only 11 are included in the final 

dataset due to several reasons (Figure S2, Supplementary materials 2).  

The Pes is recorded in conjunction with the ventilator airway pressure (Paw) and flow-time waveforms. All 

signals are recorded on a dedicated data acquisition system (Hamilton Medical AG). Only the recordings under 

pressure control ventilation (PCV), pressure support ventilation (PSV), and adaptive support ventilation (ASV) 

modes from the Hamilton-C6 ventilator (Hamilton Medical AG) are included. The baseline demographics, 

ICU admission diagnoses, and outcome of the mechanically ventilated patients enrolled in the study are 

collected. The study is approved by the local monitoring board Medisch Ethische Toetsingscommissie – Leiden 

Delft Den Haag (No. 2022-061). 

3.2 Data screening 

For data annotation purposes, the raw recordings were manually analyzed to identify a region of interest (ROI) 

where PVA was most prevalent. These target ROIs are essential for ensuring that the dataset contains sufficient 

PVA cycles. Given that PVA is a relatively rare event, identifying these ROIs across the patient recordings 

remains a difficult task.  

One hour of data was selected for annotation for each patient, so that all patients contribute more or less equally 

to the dataset. This yielded 11 hours of data for annotation across all patients. The screening was performed 

by a technical medicine student who accepted professional education and training on MV and PVA 

recognition. The ROIs were selected based on visual inspection, with the aim of including parts of the 

recordings with as many different types of cycles as possible (normal breaths, PVA, and artefacts). The 

remainder of the recordings are excluded from the study.  

3.3 Data annotation 

Six types of PVA were considered; double triggering (DT), ineffective effort during expiration (IEE), reverse 

triggering (RT), auto triggering, premature cycling, and delayed cycling. Based on expert opinion and literature 

(11, 28), we created heuristic rules for detecting different types of PVA and implemented them in an annotation 

protocol (Supplementary materials 3). DT occurs when the patient’s inspiratory effort exceeds the 

ventilator’s inspiratory time, resulting in a second inspiration triggered by the same effort. IEE happens when 

a patient tries but fails to trigger a breath during the expiratory phase. RT occurs when a machine-induced 

breath precedes patient effort. Auto triggering is a mechanical breath being triggered without the presence of 

patient effort. Premature cycling occurs when the inspiration ends before the end of patient effort, while 

delayed cycling occurs when inspiration ends after the end of patient effort. The typical waveforms of these 

asynchronies are shown in Table 1.3.3 

The waveforms were manually annotated by four mechanical ventilation experts among the staff of the ICU. 

The tasks were assigned to the annotators at random, and annotation occurred independently. A self-developed 

software programmed in Python 3.9 with Label Studio 1.7 as the user interface library was used for annotation 

(see Figure 2). Continuous time-dependent ventilator waveforms (Paw, flow-time, VT and Pes) were provided 

to the annotators. Each breath was manually annotated based on visual inspection and the annotation protocol. 

Next to the six asynchronies discussed above, there were three other labels that could be assigned to the data 
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during annotation: cough, peristalsis, and other artefacts. Clinical artefacts such as cough and peristalsis have 

morphological similarities to common forms of PVA. Therefore, it was considered essential to explicitly 

identify and include these in the dataset in order to reduce the false positive detection rate for PVA 

classification. Furthermore, the annotation of these clinical artefacts is thought to be useful for potential future 

work. Normal breaths were defined as breaths not classified as PVA or artefact.  

Data annotation was used to create a gold standard dataset of classified PVA observations for our supervised 

learning algorithm. The goal of our model is to achieve comparable classification performance as experts with 

access to the Pes signal, identifying PVA while discarding artefacts, without the labor-intensive visual 

inspection performed by experts. 

Table 2 provides a comprehensive statistical overview of the breath types and numbers annotated in this study. 

Even after selecting ROIs with enriched PVA frequency, our dataset has a low frequency of PVA and clinical 

artefacts when compared to normal respiratory cycles. Because some PVA are too rare in our dataset, it was 

decided to exclude them from analysis. A minimum of 1% of the number of normal respiratory cycles was 

considered a requirement to be included in model training. As a result, only breaths labeled normal, reverse 

triggering, premature cycling, cough, peristalsis, or other artefacts were used for model development.  

Table 2 The different breath types, their frequency in the dataset, and the number of patients who experienced them. Even after selecting 

ROIs with enriched PVA frequency, our dataset has a relatively low frequency of PVA and clinical artefacts as compared to normal 

respiratory cycles. Therefore, only the highlighted PVA types were selected to be included in model development.  

Event Type Number Percentage (%) Patients (n) 

Normal 10.285 83.4 11 

DT 19 0.2 4 

IEE 4 0.03 2 

RT 836 6.8 5 

Auto triggering 6 0.05 2 

Premature cycling 112 0.9 4 

Delayed cycling 13 0.1 3 

Cough 274 2.2 9 

Peristalsis 453 3.7 11 

Other artefacts 335 2.7 11 

Total 12.337   

DT: double triggering; IEE: ineffective effort during expiration; RT: reverse triggering. 

 

Figure 2 User interface of the annotation software. 
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3.4 Preprocessing 

Before training the model, the raw continuous ventilator Paw, flow-time and Pes waveforms were preprocessed 

and some adjustments were made to the dataset.  

3.4.1 Data transformation 

In order to create appropriate inputs for a CNN, the ventilator waveforms are transformed. Figure 3 depicts 

the data transformation steps in our study. First, the signals are segmented into individual respiratory cycles. 

Then, as CNNs can only accept a fixed size tensor as input, the Paw, flow-time and Pes of each segment are 

resampled to a uniform length of 300. In essence, this yields a 300 x 3 size image for each breath. Although 

the raw sample rate of the breath is altered by this resampling process, the characteristic shape of the 

asynchronous breath is still preserved for further analysis.  

After resampling, each segment’s amplitude is normalized using feature scaling in accordance with Equation 

(1), where Xi denotes the signal’s amplitude value at the ith sample point of the segment, Xmax denotes the 

signal’s maximum value inside the segment, and Xmin denotes its minimum value. 

𝑋𝑖
′ =  

𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

 

 

Figure 3 Schematic of the data transformation. (1) Ventilator waveforms prior to preprocessing. (2) Ventilator waveforms are 

segmented into individual respiratory cycles. (3) The duration of each segment is resampled to a uniform length of 300. (4) The 

amplitude of each segment is normalized. (5) The combination of all ventilator signals yields a 300 x 3 image that serves as the input 

tensor for the CNN. 
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3.4.2 Data cleaning 

Following data transformation, some steps are taken to clean the dataset. First, all breaths with a missing Pes 

signal are removed from the dataset. Second, as discussed in Section 3.3, the minimum number of breaths per 

breath type in our dataset must be 1% of the number of normal respiratory cycles to be included in model 

training. As a result, all breaths with the labels DT, IEE, auto triggering, and delayed cycling are excluded 

from the analysis because they occurred too infrequently in the dataset to adequately train the algorithm to 

detect these types of PVA.  

3.4.3 Class imbalance 

Despite selecting ROIs for PVA and artefact enrichment in our dataset, the relatively low proportion of 

abnormal breath types resulted in a significant class imbalance problem (29). Because samples from the small, 

but important, classes can be overwhelmed by the majority class samples, unbalanced training sets can often 

be an obstacle to training accurate ML models (30). We experimented with various techniques to generate a 

balanced dataset for model training (see Figure 4). First, we experimented with the synthetic minority over-

sampling technique (SMOTE) (31). SMOTE addresses the issue of class imbalance by generating synthetic 

samples of minority class observations, i.e. PVA and artefacts. SMOTE was used with a minority class to 

majority class observations ratio of 1:2. As a result, we maintained a constant number of normal breaths, say 

𝑋, while upsampling the number of breaths in the other classes to 0.5𝑋. In this way, we attempted not to disrupt 

the relationship to the real world situation too much, where normal breaths are more common than PVA. 

Second, we used the random undersampling technique (RUS) to randomly remove samples from the normal 

breath subset (32). In this method we used the average number of breaths in all minority classes, say 𝑌, and 

undersampled the number of normal breaths to 3𝑌. To ensure that the majority class is larger than the largest 

minority class, we chose a factor 3 rather than a factor 2. Finally, we tried a combination of the two techniques 

in which we first oversampled all minority classes to 30% of the initial number of normal breaths, i.e. 0.3𝑋. 

The majority class observations (normal breaths) were then undersampled to twice as much, i.e. 0.6𝑋, to 

achieve the 1:2 minority class to majority class observations ratio. We compared the impact of these techniques 

on the performance of our model to determine which method works best for our data. 

 

Figure 4 Class imbalance solutions examined in this study. X is the number of normal respiratory cycles (blue outlined graphs) in the 

original dataset and Y is the average number of PVA and artefacts (red outlined graphs) in the original dataset. SMOTE upsamples the 

number of samples in the minority classes (i.e., PVA and artefacts) with a minority class to majority class observations ratio of 1:2. 

RUS undersamples the number of majority class observations (normal respiratory cycles) with a minority class to majority class 

observations ratio of 1:3. A combination of SMOTE and RUS was used with a minority class to majority class observations ratio of 

1:2. SMOTE: synthetic minority over-sampling technique; RUS: random undersampling technique. 
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3.5 The model architecture 

The 2DCNN model architecture is illustrated in Figure 5 and the detailed network configurations are shown 

in Table 3. The model consists of one convolutional branch with four convolutional blocks for extracting the 

features of the ventilator Paw and flow-time and Pes waveforms. Each block consists of a convolutional layer, 

a batch normalization (BN) layer and a max pooling layer. The decision was made to replace the traditional 

2D convolution with dilated convolution. This method expands the kernel by inserting holes between the 

consecutive elements. This allows the same kernel to be applied to a larger portion of the input breath. The 

aim is to generate higher resolution feature maps, capturing information over a larger area with more context 

while using the same number of parameters (33).  

During training, the distribution of each layer’s inputs changes as the parameters of the previous layers change. 

This is referred to as internal covariance shift and is known to slow down the training (34). BN can stabilize 

the distribution of nonlinear inputs while the model trains. Therefore, we decided to add a BN layer after each 

convolutional layer but before the activation function. 

The convolutional blocks are followed by two fully connected layers. The number of fully connected layers 

was determined empirically. Initially, only one fully connected layer was used. However, adding another fully 

connected layer improved the performance. This might be due to the model’s ability to learn a more complex 

and flexible decision boundary to distinguish PVA from non-PVA breaths with two fully connected layers. 

However, as shown in Table 3, adding another fully connected before the final fully connected layer greatly 

increased the number of trainable parameters, increasing the risk of overfitting. As a result, it was decided to 

add a dropout layer after the first fully connected layer and before the output layer. During training, this layer 

randomly drops units (along with their connections) from the neural network. This prevents units from 

excessive co-adaptation. Dropout has been shown to significantly reduce overfitting and outperform other 

regularization techniques (35, 36). The output of the last fully connected layer is fed into a 6-way softmax 

activation function, which generates a probability distribution over the six possible class labels. The final 

output is a vector containing the estimated probabilities of each class label, given the input breath (37).  

 

Figure 5 The proposed 2DCNN’s model architecture, along with the procedure for generating a probability distribution over the six 

possible class labels given the input breath. In this visual representation, the model has generated the highest probability for reverse 

triggering (0.945). Conv2D: two-dimensional convolutional layer; ReLU: Rectified linear unit; BN: batch normalization; Max Pool: 

max pooling layer; FC: fully connected; DR: dilation rate; RT: reverse triggering.  
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Table 3 Layer details and parameters used for the proposed 2DCNN model. 

Layers Types Dilation rate Activation 

function 

Output shapes Size of 

kernel 

No. of kernels Stride  No. of 

parameters 

0 Input - - 300 x 3 - - - 0 

1 2D Convolution 1 ReLU 300 x 3 x 16 50 x 1 16 1 816 
2 Batch Normalization - - 300 x 3 x 16 - - - 1200 

3 2D Max Pooling - - 150 x 2 x 16 2 x 2 - 2 0 

4 2D Convolution 2 ReLU 150 x 2 x 32 10 x 1  32 1 5152 
5 Batch Normalization - - 150 x 2 x 32 - - - 600 

6 2D Max Pooling - - 75 x 1 x 32 2 x 2 - 2 0 

7 2D Convolution 2 ReLU 75 x 1 x 64 5 x 1  64 1 10304 
8 Batch Normalization - - 75 x 1 x 64 - - - 300 

9 2D Max Pooling - - 38 x 1 x 64 2 x 2 - 2 0 

10 2D Convolution 3 ReLU 38 x 1 x 32 3 x 1 32 1 6176 
11 Batch Normalization - - 38 x 1 x 32 - - - 152 

12 2D Max Pooling - - 19 x 1 x 32 2 x 2 - 2 0 

13 Fully connected - ReLU 256 - - - 155904 
14 Fully connected - Softmax 6 - - - 1542 

ReLU: Rectified linear unit 

To lessen information loss at the edges of the input feature maps during convolution, we used padding in each 

convolutional layer of our initial model. Padding is the technique of adding additional rows and columns of 

zeros to the input feature map before performing convolution, in order to maintain the spatial dimensions of 

the input and output feature maps.  

We experimented with a few changes to our initial model for optimization purposes. First, we wanted to 

experiment with the kernel size in the convolutional layers. As such, the effect of changing the first dimension 

of the kernel size of the kernels in the first convolutional layers on the performance was assessed. We started 

out with a small kernel size and increased it after evaluating the model’s performance. The following kernel 

sizes were tested: 5 x 1, 10 x 1, 20 x 1, and 50 x 1. We found that changing the kernel size in the first dimension 

had little effect on both the performance and the number of trainable parameters. As a result, we chose the 

kernel size of 50 x 1 and established this model as our initial model (Initial_2DCNN).  

In comparison to the first dimension, the second dimension of our input tensor is relatively small (3 vs. 300). 

The previously discussed kernels with size A x 1, with A being 5, 10, 20 and 50, are able to move both 

horizontally and vertically over the 300 x 3 input breath. Using a kernel that only moves horizontally over the 

input tensor highly reduces the number of training parameters, and consequently, the computational cost of the 

model. To determine whether the use of such a kernel would maintain the initial model’s performance, we 

changed the kernel size in the first convolutional layer to 50 x 3. Furthermore, we stopped using padding in 

each convolutional layer in order to prevent zeros from being added around the input feature map. In this way, 

we can ensure that the kernels in the convolutional layers can only move horizontally over the input feature 

maps. We named this model Conv_2DCNN and provided its detailed network configurations in Table S1 

(Supplementary materials 4). 

In addition to the kernel size in the convolutional layers, we wanted to experiment with the pool size in the 2D 

Max Pooling layers. Therefore, we changed the pool size from 2 x 2 to 2 x 1. The aim of the pooling layers, 

as discussed in Section 2.1, is to downsample the feature maps in order to reduce the network’s computational 

costs. The pool size specifies which dimensions of the input data are reduced. In our initial model, we used a 

pool size of 2 x 2 to reduce the data in both dimensions. This means that in each pooling layer, the amount of 

data in both the first and second dimensions is divided by two. As a result, the output shape in the second 

dimension decreases from 3 to 1 across the layers. However, the second dimension of our data contains the 

ventilator waveforms, which are expected to contain the most important features for the CNN to learn. 

Therefore, we were interested in the performance with a pool size of 2 x 1 in which only the first dimension 

of the feature maps is reduced in each pooling layer. This means that after each pooling layer, the shape of the 

output in the second dimension remains 3. We named this model Pool_2DCNN and the detailed network 

configurations of this model are presented in Table S2 (Supplementary materials 4). 
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3.6 Performance evaluation  

The model we have developed can be described by Equation (2): 

𝑦𝑖𝑘 = 𝑓(𝑥𝑖) (2) 

Let 𝑓 be the model that is trained on N training samples, 𝑥𝑖 , for 𝑖 = 1,2,3, … , 𝑁. Each sample is a segmented 

breath which is a two-dimensional matrix of size 300 x 3, indicating 300 timepoints and 3 ventilator waveforms 

(Paw, flow-time and Pes). The corresponding breath labels, 𝑦𝑖  , for 𝑖 = 1,2,3, … , 𝑁, are one-hot encoded 

labels, denoted by 𝑦𝑖𝑘, for 𝑘 = 0,1, … , 𝑘 − 1, where k is the total number of classes. In our study, 𝑘 = 6 

because we are classifying six different breath labels. 

In order to train and evaluate the proposed model 𝑓, the data was divided into two parts: a training set and a 

test set. Several calculations are repeated during model training with the aim of minimizing the expected value 

(𝐸(𝑥,𝑦)) of a loss function 𝐿(𝑓(𝑥), 𝑦), resulting in the optimization of model function 𝑓 to 𝑓∗, as shown in 

Equation (3):  

𝑓∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑓𝐸(𝑦,𝑥)𝐿(𝑓(𝑥), 𝑦) (3) 

This optimized model function 𝑓∗ is used in the testing phase to predict the labels of data that were not used 

during training. In this study, we used categorical cross-entropy as the loss function. When the validation loss 

did not decrease for 5 consecutive epochs, the training was stopped, and the model was saved as the best one. 

For model training and testing, we used leave-one-patient-out cross-validation to divide patients into a training 

and testing cohort. In this way, a single patient’s observations cannot be in both training and test sets, which 

may introduce bias and lead to poor generalizability to subsequent patients. This bias can be caused by intra-

patient waveform similarities resulting from static ventilation settings and other patient-specific physiologic 

factors. 

To assess the classification metrics, we used 11 folds, corresponding to the number of patients in our dataset. 

Thus, in each fold 10 patients were used for training and 1 patient was used for testing until all patients were 

evaluated. This strategy is illustrated in Figure 6. In each iteration, the true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN) outcomes were determined to evaluate several performance 

metrics. It was decided to evaluate the sensitivity and specificity as these are two established methods for 

validating clinical alarm algorithms (38). In addition, we assessed the accuracy as this is a simple and intuitive 

metric that is easy to interpret. However, because we are dealing with imbalanced data, we also decided to 

evaluate the F1 score as this metric emphasizes the detection of the positive class (PVA) over the detection of 

the negative class (normal breaths). To determine the average model performance, these metrics are computed 

in each fold according to Equation (4) to (7), and then averaged over all folds.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6) 

𝐹1 =  
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(7) 

 

These metrics use a fixed threshold to either classify an observation as positive or negative. This threshold is 

often set by default at 0.5. In order to evaluate the models’ performance across different classification 

thresholds, the ROC curves of the models were plotted in each fold of the cross-validation loop. The area under 

the ROC (AUROC) curve was subsequently averaged across all folds. 
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After evaluating different solutions to the class imbalance problem and experimenting with changes to the 

model architecture, we chose the model with the best performance per PVA type (i.e., RT and premature 

cycling) to conduct the final performance evaluation. In our final performance evaluation, we compared the 

performance of our 2DCNN based on the Paw, flow-time and Pes waveforms of the ventilator (Pes_2DCNN) 

with a 2DCNN solely based on the Paw and flow-time waveforms (PF_2DCNN). The PF_2DCNN was trained 

using the same dataset and evaluated using the same protocol as with our Pes_2DCNN. To allow for 

comparison, the batch size and number of epochs were set to be the same for both models.  

 

 

 

 

 

 

 

 

 

 

3.7 Statistical analysis and software 

Preprocessing and development of the models was performed in Python 3.9 using the following packages: 

NumPy 1.21.5, Pandas 1.3.5, SciPy 1.9.1, Matplotlib 3.5.2, Scikit-learn 1.0.2, TensorFlow 2.11.0 and Keras 

2.11.0. 

Patient characteristics and performance metrics are reported as mean ± standard deviation (std. dev.). The 

performance of the Pes-based 2DCNN (Pes_2DCNN) and the 2DCNN solely based on the ventilator’s airway 

and flow-time signals (PF_2DCNN) was compared using DeLong test (39, 40). A two-sided p-value of 0.05 

was considered statistically significant.  

 

 

 

 

 

  

Figure 6 Leave-one-patient-out cross validation. In this study, 11 folds were used according to the number of included patients. 
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4 

4. Results 
 

4.1 Patient characteristics 

Of the 17 patients who met the inclusion criteria, 11 were enrolled in the study, while the remaining six were 

excluded for various reasons (Figure S2, Supplementary materials 2). Table 4 shows the demographics, 

clinical information on ICU stay, and conditions that led to the initiation of mechanical ventilation of the 11 

patients enrolled in this study. Patients were 55.8 ± 11.8 years old on average, with 5 (45%) being female. 

Mechanical ventilation was initiated because of a respiratory disease in three (27%) patients, a cardiac disease 

in three (27%) patients, sepsis in two (18%) patients, an operation in two patients (18%), and acute liver failure 

in one (9%) patient. The average length of ICU stay was 27.4 ± 20.9 days, and the mean duration of mechanical 

ventilation was 23.9 ± 16.6 days. During data collection, patients were deeply sedated (low RASS value). 

Table 4 Patient demographics and clinical data. 

Patient  Age (years) Gender Weight (kg) Reason for MV Days in ICU  Days on 

MV 

RASS 

1 40 Female 59 Cardiac disease 17 17  - 2 

2 47 Male 90 Postoperative 67 50 - 4 

3 75 Female 95 Sepsis 28 28 - 4 

4 61 Male 93 Postoperative 19 15 - 4 

5 65 Female 100 Sepsis 56 44 - 4 

6 57 Female 87 Respiratory disease 7𝑎 7𝑎 - 4 

7 55 Male 62 Respiratory disease 7 6 - 4 

8 44 Male 35 Cardiac disease 50 46 - 4 

9 39 Female 63 Acute liver failure 8 8 - 4 

10 58 Male 128 Cardiac disease 36𝑏 36𝑏 - 5 

11 73 Male 100 Respiratory disease 6𝑎 6𝑎 - 5 

Mean ± std. dev.  55.8 ± 11.8  82.9 ± 24.6  27.4 ± 20.9 23.9 ± 16.6 - 4 ± 0.7 

MV: mechanical ventilation; ICU: intensive care unit; RASS: Richmond Agitation Sedation Scale; std. dev.: standard deviation.  

𝑎: This patient was transferred to another hospital’s ICU during admission. As a result, the stated days in ICU and days on MV only 

cover admission to LUMC’s ICU. 

𝑏: This patient was still admitted to the ICU at the end of this study. As a result, the stated days in ICU and days on MV are not the 

definite durations. 

Table 5 summarizes the ventilator settings and the patients’ respiratory mechanics during data collection. The 

ventilator mode was PSV in seven (64%) patients, PCV in two (18%) patients, and ASV in two (18%) patients. 

Table 5 Ventilator settings and respiratory mechanics of the patients during data collection. 

Patient  MV mode Inspiratory 

pressure (cmH2O)  

Applied PEEP 

(cmH2O) 

VT (ml) RR (breaths/min) 

1 PSV 14 11 402 24 

2 PSV 12 10 470 27 

3 ASV 11 12 397 21 

4 PSV 8 8 557 17 

5 PSV 16 8 395 30 

6 ASV 20 14 458 21 

7 PCV 17 8 299 26 

8 PSV 11 8 514 19 

9 PSV 8 5 573 17 

10 PSV 10 8 456 28 

11 PCV 16 10 459 20 

Mean ± std. dev.  13 ± 3.7 9.3 ± 2.3 452.7 ± 75.1 22.7 ± 4.3  

MV: mechanical ventilation; PEEP: positive end expiratory pressure; VT: tidal volume; RR: respiratory rate; PSV: pressure support 

ventilation; ASV: adaptive support ventilation; PCV: pressure control ventilation; std. dev.: standard deviation. 
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4.2 Performance evaluation  

4.2.1 Approach selection for final model evaluation  

Figure 7 illustrates the performance comparison among Initial_2DCNN, Conv_2DCNN, and Pool_2DCNN 

for RT detection using the original class imbalanced dataset. Additionally, the figure shows the comparison of 

these models using the three different solutions for the class imbalance problem, i.e. SMOTE, RUS, and a 

combination of SMOTE and RUS. Whereas the accuracy and specificity appear to be acceptable, the sensitivity 

and F1 score are extremely low. However, these metrics only reflect performance based on a default threshold 

of 0.5 for differentiating between positive and negative class observations. The area under the ROC (AUROC) 

curve provides a more comprehensive representation of the model’s ability to differentiate between classes as 

the performance of the models is analyzed for all possible threshold values (41). When evaluating the AUROC 

figure, it is important to note that the applied class imbalance solutions have little to no effect on the models’ 

performance when compared to using the imbalanced dataset. When the class imbalance solutions were used, 

the performance of Initial_2DCNN and Conv_2DCNN even deteriorated.  

We found a slight advantage in AUROC for Conv_2DCNN on the class imbalanced dataset over the other 

approaches (0.80 ± 0.07). Consequently, it was decided to use this approach for the final performance 

comparison of our Pes-based 2DCNN (Pes_2DCNN) and the 2DCNN solely based on the ventilator’s Paw 

and flow-time waveforms (PF_2DCNN) for the detection of RT.  

 

Figure 7 Performance comparison among Initial_2DCNN, Conv_2DCNN, and Pool_2DCNN for RT detection using the original class 

imbalanced dataset and the three different solutions for the class imbalance problem: SMOTE, RUS, and a combination of SMOTE 

and RUS. (a) Accuracy, (b) Sensitivity, (c) Specificity, (d) F1-score, (e) Area under the ROC curve. Initial_2DCNN: the initial 2DCNN 

prior to model adjustments; Conv_2DCNN: 2DCNN with kernel size of 50 x 3 in first convolutional layer; Pool_2DCNN: 2DCNN 

with pool size of 2 x 1; Imb: imbalanced dataset; SMOTE: synthetic minority over-sampling technique; RUS: random undersampling 

technique; S+R: combination of SMOTE and RUS; AUROC: area under the receiver operating characteristic. 
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Figure 8 compares the performance of Initial_2DCNN, Conv_2DCNN, and Pool_2DCNN in detecting 

premature cycling using the original class imbalanced dataset and the three different class imbalance solutions. 

For this type of asynchrony, Initial_2CNN based on a combination of SMOTE and RUS resulted in the highest 

AUROC (0.88 ± 0.09). As a result, we decided to apply this approach to the final performance comparison of 

Pes_2DCNN and PF_2DCNN for the detection of premature cycling. Performance results under 

Initial_2DCNN, Conv_2DCNN, and Pool_2DCNN for the detection of all PVA and non-PVA breaths are 

presented in Table S3, Table S4, and Table S5 of Supplementary materials 5.  

 

Figure 8 Performance comparison among Initial_2DCNN, Conv_2DCNN, and Pool_2DCNN for premature cycling detection using 

the original class imbalanced dataset and the three different solutions for the class imbalance problem: SMOTE, RUS, and a 

combination of SMOTE and RUS. (a) Accuracy, (b) Sensitivity, (c) Specificity, (d) F1-score, (e) Area under the ROC curve. 

Initial_2DCNN: the initial 2DCNN prior to model adjustments; Conv_2DCNN: 2DCNN with kernel size of 50 x 3 in first convolutional 

layer; Pool_2DCNN: 2DCNN with pool size of 2 x 1; Imb: imbalanced dataset; SMOTE: synthetic minority over-sampling technique; 

RUS: random undersampling technique; S+R: combination of SMOTE and RUS; AUROC: area under the receiver operating 

characteristic. 
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4.2.2 Final model evaluation 

Because the best performance results for RT detection were achieved with Conv_2DCNN on the original 

imbalanced dataset, it was decided to use this approach to compare the performance of Pes_2DCNN and 

PF_2DCNN in detecting RT. Table 6 displays the classification results of Pes_2DCNN and PF_2DCNN in 

detecting all breath types. The results for detection of RT are highlighted. In terms of AUROC, the proposed 

Pes_2DCNN model performed slightly better in detecting RT than the PF_2DCNN (0.80 ± 0.07 vs. 0.75 ± 

0.13, respectively; p < 0.01).  

Table 6 Performance comparison of Pes_2DCNN and PF_2DCNN in detecting all breath types. These results are achieved with the 

Conv_2DCNN model architecture on the original class imbalanced dataset. Performance metrics for detection of RT are highlighted.  

Model Type of breath Accuracy Sensitivity Specificity F1 score AUROC 

Pes_2DCNN Normal 0.80 ± 0.21 0.85 ± 0.24 0.56 ± 0.12 0.84 ± 0.21 0.83 ± 0.18 

RT 0.85 ± 0.07 0.46 ± 0.14 0.93 ± 0.05 0.34 ± 0.27 0.80 ± 0.07 

Premature cycling 0.98 ± 0.03 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.65 ± 0.19 

Cough 0.95 ± 0.04 0.21 ± 0.14 0.98 ± 0.03 0.20 ± 0.15 0.86 ± 0.10 

Peristalsis 0.89 ± 0.20 0.40 ± 0.18 0.91 ± 0.20 0.32 ± 0.19 0.82 ± 0.16 

Other artefacts 0.96 ± 0.05 0.17 ± 0.28 0.98 ± 0.03 0.17 ± 0.29 0.80 ± 0.15 

PF_2DCNN Normal 0.83 ± 0.16 0.90 ± 0.21 0.40 ± 0.20 0.87 ± 0.17 0.78 ± 0.10 

RT 0.84 ± 0.08 0.44 ± 0.13 0.92 ± 0.10 0.34 ± 0.28 0.75 ± 0.13 

Premature cycling 0.98 ± 0.03 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.83 ± 0.14 

Cough 0.96 ± 0.03 0.19 ± 0.19 0.99 ± 0.02 0.22 ± 0.18 0.88 ± 0.11 

Peristalsis 0.96 ± 0.04 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.83 ± 0.14 

Other artefacts 0.96 ± 0.05 0.16 ± 0.13 0.98 ± 0.02 0.14 ± 0.14 0.55 ± 0.13 

Pes_2DCNN: 2DCNN based on Paw, flow-time and Pes; PF_2DCNN: 2DCNN solely based on Paw and flow-time; RT: reverse 

triggering; AUROC: area under the receiver operating characteristic. 

Figure 9 depicts the ROC curves for Pes_2DCNN and PF_2DCNN, as well as the corresponding AUC values 

for the detection of RT. It can be seen that, in addition to a better performance in detecting RT, Pes_2DCNN 

has lower variability in performance across different subsets of the data. ROC curves for the detection of RT 

for all cross-validation folds are presented in Figure S3 of Supplementary materials 6. 

 

Figure 9 ROC curves for the detection of reverse triggering for both Pes_2DCNN (left) and PF_2DCNN (right) using the Conv_2DCNN 

model based on the original class imbalanced dataset. Difference in AUC between the two models is statistically significant (p < 0.01).  

ROC: receiver operating characteristic; Pes_2DCNN: 2DCNN based on Paw, flow-time and Pes; PF_2DCNN: 2DCNN solely based on 

Paw and flow; AUC: area under the curve; std. dev.: standard deviation. 
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The application of Initial_2DCNN on our data, after being modified by a combination of SMOTE and RUS, 

yielded the best performance for detection of premature cycling. As a result, we decided to use this approach 

for the comparison of Pes_2DCNN and PF_2DCNN in detecting premature cycling. Table 7 shows the 

classification results of Pes_2DCNN and PF_2DCNN in detecting all types of breaths. The results for 

premature cycling detection are highlighted. The results indicate that, in terms of AUROC, the proposed 

Pes_2DCNN model outperformed PF_2DCNN in detecting premature cycling (0.88 ± 0.09 vs. 0.71 ± 0.24, 

respectively; p < 0.01).  

Table 7 Performance comparison of Pes_2DCNN and PF_2DCNN in detecting all breath types. These results are achieved with the 

Initial_2DCNN model architecture using a combination of SMOTE and RUS as a solution for the class imbalance problem in the 

dataset. Performance metrics for detection of premature cycling are highlighted. 

Model Type of breath Accuracy Sensitivity Specificity F1 score AUROC 

Pes_2DCNN Normal 0.73 ± 0.20 0.71 ± 0.26 0.77 ± 0.13 0.77 ± 0.19 0.85 ± 0.10 

RT 0.72 ± 0.18 0.50 ± 0.17 0.79 ± 0.23 0.34 ± 0.27 0.72 ± 0.20 

Premature cycling 0.98 ± 0.03 0.02 ± 0.04 1.00 ± 0.00 0.04 ± 0.07 0.88 ± 0.09 

Cough 0.93 ± 0.07 0.41 ± 0.24 0.95 ± 0.07 0.24 ± 0.15 0.83 ± 0.11 

Peristalsis 0.98 ± 0.03 0.50 ± 0.21 0.93 ± 0.07 0.30 ± 0.17 0.82 ± 0.08 

Other artefacts 0.91 ± 0.13 0.25 ± 0.18 0.93 ± 0.13 0.18 ± 0.17 0.66 ± 0.17 

PF_2DCNN Normal 0.71 ± 0.21 0.71 ± 0.28 0.55 ± 0.23 0.75 ± 0.22 0.70 ± 0.11 

RT 0.80 ± 0.14 0.27 ± 0.25 0.87 ± 0.17 0.20 ± 0.22 0.67 ± 0.17 

Premature cycling 0.97 ± 0.04 0.08 ± 0.09 0.99 ± 0.02 0.10 ± 0.10  0.71 ± 0.24 

Cough 0.94 ± 0.05 0.29 ± 0.19 0.96 ± 0.04 0.22 ± 0.13 0.79 ± 0.14 

Peristalsis 0.89 ± 0.12 0.09 ± 0.13 0.91 ± 0.12 0.04 ± 0.07 0.52 ± 0.07 

Other artefacts 0.90 ± 0.14 0.31 ± 0.29 0.91 ± 0.14 0.23 ± 0.26 0.63 ± 0.20 

Pes_2DCNN: 2DCNN based on Paw, flow-time and Pes; PF_2DCNN: 2DCNN solely based on Paw and flow-time; RT: reverse 

triggering; AUROC: area under the receiver operating characteristic.  

Figure 10 shows the ROC curves for Pes_2DCNN and PF_2DCNN with the corresponding AUC values for 

the detection of premature cycling. It is observed that removing the Pes signal compromised the model’s 

performance for premature cycling detection. Furthermore, the results suggest that the 2DCNN based solely 

on ventilator pressure and flow-time signals is more sensitive to data subset selection and thus less stable than 

the 2DCNN based on the ventilator pressure, flow-time and Pes signals. ROC curves for the detection of 

premature cycling for all cross-validation folds are presented in Figure S4 of Supplementary materials 6.  

Figure 9 ROC curves for the detection of premature cycling for both Pes_2DCNN (left) and PF_2DCNN (right) using the Initial_2DCNN 

model on data modified by a combination of SMOTE and RUS. Difference in AUC between the two models is statistically significant  

(p < 0.01). ROC: receiver operating characteristic; Pes_2DCNN: 2DCNN based on Paw, flow-time and Pes; PF_2DCNN: 2DCNN solely 

based on Paw and flow-time; AUC: area under the curve; std. dev.: standard deviation. 
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 5 

5. Discussion 
 

The aim of this study was to demonstrate the added value of using the Pes signal in PVA detection by 

developing a 2DCNN based on the ventilator’s Paw, flow-time and Pes signals (Pes_2DCNN) that detects two 

types of PVA, namely reverse triggering and premature cycling. Several class imbalance solutions and model 

adjustments were considered to select the approach that results in the best performance for Pes_2DCNN. 

Subsequently, the performance of the final Pes_2DCNN was compared to that of a similar model based solely 

on the ventilator’s Paw and flow-time signals (PF_2DCNN). For reverse triggering, the difference in 

performance between Pes_2DCNN and PF_2DCNN was trivial, but statistically significant (0.80 ± 0.07 vs. 

0.75 ± 0.13, respectively; p < 0.01). For premature cycling, the difference in performance between 

Pes_2DCNN and PF_2DCNN was more prominent (0.88 ± 0.09 vs. 0.71 ± 0.24, respectively; p < 0.01). 

Despite the fact that this is a proof-of-concept study, these results suggest the importance of using the Pes 

signal in detection of reverse triggering and premature cycling.  

Patient-ventilator asynchrony is the mismatch between the patient’s respiratory demand and the ventilator’s 

support. During spontaneous MV, patients interact with the ventilator and the ventilator responds according to 

a set of rules. PSV is a mode that is frequently used in ICU patients who are recovering from critical illness 

and are thus less sedated. As a result, some PVA is to be expected in these patients. Controlled ventilation 

modes, such as PCV, are preferred during the acute phase of the disease to improve oxygenation without 

causing lung damage, and to reduce the patient’s work of breathing (42). Patients are usually deeply sedated, 

yet patient-ventilator interaction is still to be expected. Akoumianaki et al. (43) reported presence of RT in 

eight of eight patients with acute respiratory distress syndrome (ARDS) during deep sedation. The authors in 

(44) reported on the incidence of RT in a larger group of heavily sedated, mechanically ventilated patients with 

a broader range of admission diagnoses. They found that 44% of the patients had at least 10% of their breaths 

showing RT. This suggests that this is a very common phenomenon in deeply sedated, mechanically ventilated 

ICU patients.  

As RT was only recently discovered, our understanding of its clinical meaning in mechanically ventilated 

patients is limited. Thus, few clinicians are familiar with it and trained to recognize it (20). An accurate 

automated detection algorithm will aid in proper understanding and management of RT. Rodriguez et al. (45) 

presented a rule-based framework for detecting RT using the ventilator’s Paw and flow-time signals. The 

algorithm computes the time between the ventilator waveforms’ local minima and maxima. Asynchrony is 

established if these durations exceed predefined thresholds. This approach, however, has some limitations. 

First, as the authors point out, this algorithm may misclassify RT that occurs during a long inspiratory pause. 

Furthermore, the algorithm was created and proven useful only in volume-controlled continuous mandatory 

ventilation (VC-CMV) with constant flow (square shaped flow-time signal). As a result, it cannot be used in 

other modes of ventilation such as PCV and PSV. Finally, the algorithm was developed and tested using a 

homogeneous patient population of only ARDS patients.  

Mellado et al. (44) proposed a rule-based method for detecting RT as well. They developed an algorithm 

that consists of four simple criteria based on the ventilator’s Paw and EAdi signals. The sensitivity and 

specificity were 0.84 and 0.93, respectively. However, they assessed EAdi with a catheter that filters the signal 

rather than presenting the raw signal. This may cause the onset of EAdi to be delayed. In addition, EAdi is 

only available in the neurally adjusted ventilation assist (NAVA) mode by Servo (Maquet, Sweden) (20).   

One significant difference between our study and the previously discussed studies is that we use a 

machine learning approach to detect RT rather than a rule-based approach. Rule-based algorithms have a 

limited ability to handle complex patterns as they rely on predefined rules and criteria to detect PVA. They 

may be incapable of detecting more complex patterns or subtle changes in the patient’s ventilator waveforms 

that may indicate RT. Furthermore, they are sensitive to noise and outliers in the data. Another significant 

difference is that we use the Pes signal in the detection of RT. Multiple experts in this field agree that the only 

way to reliably recognize RT is by using the esophageal pressure measurement to detect muscle contraction 
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after the start of mechanical insufflation (9, 20, 46). This is consistent with our findings, which suggest the 

added value of the Pes signal in the detection of RT.  

 

The results of this study also suggest the added value of using the Pes signal in the detection of premature 

cycling. Attempts to develop detection algorithms for this type of PVA have previously been made. Gholami 

et al. (8) presented a machine learning framework for detecting cycling asynchronies through the use of random 

forests. Pan et al. (7) proposed a 1DCNN for the detection of premature cycling and delayed cycling. Both 

algorithms, however, are based on the ventilator’s Paw and flow-time signals. Premature cycling is typically 

recognized by an early reversal of flow accompanied by a decreased airway pressure in the expiratory phase. 

However, if you only consider the airway pressure and flow-time signal, an IEE event also fits this description. 

These ambiguity problems were not encountered in these studies because they proposed binary classification 

models. However, in order to develop multiclass classification algorithms for multiple types of PVA, the Pes 

signal must be included in order to accurately differentiate between premature cycling and IEE. Furthermore, 

when the proposed model in this study has access to the Pes signal in addition to the Paw and flow-time 

waveforms, it performs better in detecting premature cycling than when it only has access to the Paw and flow-

time waveforms. 

 

There are several limitations to this study that we wish to highlight. First, CNNs are required to be trained with 

a sufficient amount of data to learn the complex relationships between input features and output labels, and to 

improve generalization. As this is a single-center study, the generalizability of the proposed model can be 

questioned. Different types of patient care in other centers may affect the model’s performance. Furthermore, 

we only included data from 11 patients. Therefore, the number of breaths used for model training may be 

insufficient to cover all possible shapes and aspects of asynchronous breaths encountered by patients. We 

attempted to mitigate this problem by selecting ROIs prior to annotation where PVA is more prevalent than it 

would be normally. Nonetheless, this emphasizes the fact that our dataset does not adequately represent the 

true prevalence of PVA in the ICU population, which also casts doubt on our model’s generalizability.  

Another limitation of this study is that we did not perform external validation of the model to assess the 

generalization ability of our model. This also reflects the preliminary nature of this investigation. However, 

we should note that the leave-one-patient-out cross-validation approach we employed to overcome overfitting 

is well established in the machine learning literature (47). Specifically, we made sure that a single patient’s 

observations could not be mixed in both training and test sets to avoid bias introduced by intra-patient 

waveform similarities and, as a result, poor generalizability to subsequent patients. 

Third, because CNNs are more commonly used to process 2D spatial data such as images (48), we decided 

to develop a 2DCNN. Therefore, we had to segment the ventilator waveforms into individual breaths that serve 

as 2D images for the CNN to use as input. However, in this way we did not take into account the temporal 

information in the ventilator waveforms. This means that the 2DCNN may not be able to detect important 

patterns or trends in the data that span across time. Further refinement is required to account for the temporal 

dynamics of ventilator waveforms in the detection of PVA. 

A fourth limitation of this study is that, despite the selection of ROIs prior to annotation, only two types of 

PVA occurred with sufficient frequency in the study population to be included in model development. As a 

result, our model is not able to detect other clinically relevant asynchronies, such as double triggering and 

ineffective efforts during expiration (4, 25). Furthermore, flow asynchrony was not considered from the 

beginning of the study. This is because the only mandatory ventilation type that is used in the LUMC is pressure 

control, whereas flow asynchrony occurs more frequently in the volume control condition. Future research 

should include additional medical centers to increase the diversity of the dataset and, as a result, extend the 

model’s detection capability to all possible types of PVA.  

Finally, the annotated dataset was established by independent clinicians with access to the esophageal 

pressure as a reference signal of patient effort. Due to time constraints, each patient’s data was annotated by 

only one clinician. Despite the use of an annotation protocol and the clinicians in this study having extensive 

experience in the interpretation of ventilator waveforms, errors in the annotated dataset may still exist. One 

possible explanation is that the annotation process did not provide a complete picture of the patients. Providing 

clinicians with not only the ventilator waveforms, but also the ventilator settings and measurements, patient 

demographics, and vital signs, could lead to a more comprehensive understanding of the problematic cycles 
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during annotation. Nonetheless, future research should include assessment of inter-rater agreement. If the inter-

rater agreement appears to be poor, more reliable annotation could be obtained by involving multiple clinicians 

in the annotation of every single patient’s data and accepting only breaths that are labeled identically by the 

majority of the clinicians.  

 

There are numerous important and unanswered questions regarding PVA and its impact on clinical outcomes. 

While the association between PVA and poor patient outcome has been recognized, causality has yet to be 

proven (1, 3, 4, 18). It is possible that PVA simply reflects more severe lung injury, and that the underlying 

lung injury, rather than the PVA, is the cause of poorer outcomes. Once a causal relationship is proven, the 

question rises which underlying mechanisms contribute to this relationship. It could be the result of increased 

sedation in response to the clinician’s detection of PVA, the result of respiratory muscle fatigue due to excess 

work of breathing, or the result of excessive tidal volumes due to double triggering or reverse triggering.  

It is also unknown whether the relationship between PVA and poor outcomes applies to all types of PVA. 

More research in ICU populations is needed to answer these questions, with the aim to ultimately better 

understand the concept of PVA. To conduct this research, accurate automated detection algorithms for all types 

of PVA must be developed. This type of detection algorithms is typically trained on “ground truth” labels 

generated by human experts. However, there is no widely accepted, formal, systematic method for reading 

ventilator waveforms, as there is for ECGs. Most healthcare professionals and researchers in this field have 

relied on self-study, experience, and learning from mentors (17). Nonetheless, visual inspection of ventilator 

waveforms by experts is frequently used as the gold standard in the validation of detection algorithms for PVA 

(8, 46, 49-51). The questions remains how this can be considered the gold standard when every expert employs 

a different taxonomy. Agreement on the definitions for various types of PVA is the foundation of a systematic 

method for detecting asynchronies. Therefore, establishing these definitions with a reference signal for patient 

effort is crucial for development of these algorithms. The development of an automated detection algorithm 

based on a reference signal of patient effort, as demonstrated in this study, is a promising approach for 

accurately detecting PVA and gaining a better understanding of this phenomenon.  
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6  

6. Conclusion 
 

In conclusion, a 2DCNN was developed for the detection of two types of PVA, reverse triggering and 

premature cycling, based on the ventilator’s Paw, flow-time and Pes signals. Additionally, the performance of 

this detection algorithm was compared to that of a similar model based solely on the ventilator’s Paw and flow-

time signals. The Pes-based 2DCNN showed better performance in detecting RT and premature cycling as 

compared to the Paw and flow-based model. However, because this is a preliminary study, more research is 

required to further investigate the added value of the Pes signal in PVA detection.  
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Supplementary materials 

 

1. Typical CNN and its training process  
Supplementary material 1 

 

 

Figure S1 A visual representation of a typical convolutional neural network (CNN) architecture and its training process (16). A CNN 

consists of different layers: convolutional layers, pooling layers (e.g., max pooling), and fully connected (FC) layers. An input image 

is passed through these layers during the training process. Through forward propagation, the loss of the model under specific kernels 

and weights is computed by comparing the output of the model with the ground truth label. Subsequently, the model’s learnable 

parameters, i.e., kernels and weights, are adjusted via backpropagation with the aim of minimizing the loss function.  
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2. Patient inclusion  
Supplementary materials 2  

 

 

Figure S2 Flowchart of patient inclusion. 
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3. Data annotation protocol for patient-ventilator asynchrony 
Supplementary materials 3 

The following labels can be assigned to the data:  

- Reverse triggering 

- Auto triggering 

- Ineffective effort during expiration (IEE)  

- Premature cycling 

- Delayed cycling  

- Double triggering 

- Cough  

- Peristalsis  

- Other artefacts  

 

PAWON = the onset of airway pressure (beginning of ventilator pressurization) 

PAWOFF = the termination of airway pressure (end of insufflation) 

PESON = the onset of esophageal pressure (beginning of inspiratory effort) 

PESOFF = the termination of esophageal pressure (end of inspiratory effort) 

Criteria for annotation:  

1. Normal breath (no need to annotate these cycles) 

A. Mandatory or assisted breath 

B. PESON and PAWON occur simultaneously, with a ± 100 ms error margin (28) 

2. Double triggering: 

A. First breath is an assisted breath that starts with a negative deflection 

B. PESON of first effort and PAWON of first breath occur simultaneously, with a ± 100 ms error margin 

(28) 

C. PAWON of second breath occurs before PESOFF of first effort 

3. Ineffective effort during expiration:  

A. Mandatory or assisted breath 

B. PESON occurs after PAWOFF (i.e., during ventilator expiration) 

4. Reverse trigger – three criteria:  

A. Mandatory breath: PAWON does not start with a negative deflection 

B. Presence of negative PES signal 

C. PESON
 occurs > 100 ms after PAWON but before PAWOFF (28) 

5. Auto triggering: 

A. Mandatory breath: PAWON does not start with a negative deflection 

B. Absence of negative PES signal 

6. Premature cycling:  

A. Assisted breath: PAWON starts with a negative deflection 

B. PESON and PAWON occur simultaneously, with a ± 100 ms error margin (28) 

C. PAWOFF occurs < 100 ms before PESOFF (28) 

7. Delayed cycling: 

A. Assisted breath: PAWON starts with a negative deflection 

B. PESON and PAWON occur simultaneously, with a ± 100 ms error margin (28) 

C. PAWOFF occurs > 100 ms after PESOFF (28) 

8. Cough: 

A. Sharp inhalation and exhalation spikes in the flow-time waveform 

B. Presence of simultaneous disturbances in the PAW and PES signal 

9. Peristalsis 

A. (Multiple) positive deflection(s) in the PES signal with a higher amplitude than average patient 

efforts 

B. Absence (or minimal presence) of simultaneous disturbances in the PAW and flow-time signal 

10. Other artefacts: anything that is not a normal breath and does not meet the criteria outlined above 
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4. Model architecture of alternative models  
Supplementary materials 4 

 

Table S1 Layer details and parameters used in the 2DCNN with adjusted kernel size of 50 x 3 in the first 2D convolutional layer  

and padding set to “valid” in all convolutional layers (Conv_2DCNN). 

Layers Types Dilation rate Activation 

function 

Output shapes Size of 

kernel 

No. of 

kernels 

Stride  No. of 

parameters 

0 Input - - 300 x 3 - - - 0 

1 2D Convolution 1 ReLU 251 x 1 x 16 50 x 3 16 1 2416 
2 Batch Normalization - - 251 x 1 x 16 - - - 1004 

3 2D Max Pooling - - 126 x 1 x 16 2 x 2 - 2 0 

4 2D Convolution 2 ReLU 108 x 1 x 32 10 x 1  32 1 5152 
5 Batch Normalization - - 108 x 1 x 32 - - - 432 

6 2D Max Pooling - - 54 x 1 x 32 2 x 2 - 2 0 

7 2D Convolution 2 ReLU 46 x 1 x 64 5 x 1  64 1 10304 
8 Batch Normalization - - 46 x 1 x 64 - - - 184 

9 2D Max Pooling - - 23 x 1 x 64 2 x 2 - 2 0 

10 2D Convolution 3 ReLU 17 x 1 x 32 3 x 1 32 1 6176 
11 Batch Normalization - - 17 x 1 x 32 - - - 68 

12 2D Max Pooling - - 9 x 1 x 32 2 x 2 - 2 0 

13 Fully connected - ReLU 256 - - - 73984 
14 Fully connected - Softmax 6 - - - 1542 

ReLU: Rectified linear unit 

Table S2 Layer details and parameters used in the 2DCNN with adjusted pool size of 2 x 1 in all 2D Max Pooling layers 

(Pool_2DCNN). 

Layers Types Dilation rate Activation 

function 

Output shapes Size of 

kernel 

No. of 

kernels 

Stride  No. of 

parameters 

0 Input - - 300 x 3 - - - 0 

1 2D Convolution 1 ReLU 300 x 3 x 16 50 x 1 16 1 816 
2 Batch Normalization - - 300 x 3 x 16 - - - 1200 

3 2D Max Pooling - - 150 x 3 x 16 2 x 1 - 2 0 

4 2D Convolution 2 ReLU 150 x 3 x 32 10 x 1  32 1 5152 
5 Batch Normalization - - 150 x 3 x 32 - - - 600 

6 2D Max Pooling - - 75 x 3 x 32 2 x 1 - 2 0 

7 2D Convolution 2 ReLU 75 x 3 x 64 5 x 1  64 1 10304 
8 Batch Normalization - - 75 x 3 x 64 - - - 300 

9 2D Max Pooling - - 38 x 3 x 64 2 x 1 - 2 0 

10 2D Convolution 3 ReLU 38 x 3 x 32 3 x 1 32 1 6176 
11 Batch Normalization - - 38 x 3 x 32 - - - 152 

12 2D Max Pooling - - 19 x 3 x 32 2 x 1 - 2 0 

13 Fully connected - ReLU 256 - - - 467200 
14 Fully connected - Softmax 6 - - - 1542 

ReLU: Rectified linear unit 
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5. Complete performance results of the investigated models  
Supplementary materials 5 

 

Table S3 Performance of Initial_2DCNN for all breath types. 

 Type of breath Accuracy Sensitivity Specificity F1 score AUROC 

Class 

imbalance 

Normal 0.82 ± 0.19 0.85 ± 0.24 0.60 ± 0.17 0.85 ± 0.21 0.86 ± 0.13 

RT 0.76 ± 0.21 0.44 ± 0.12 0.83 ± 0.24 0.32 ± 0.25 0.78 ± 0.12 

Premature cycling 0.97 ± 0.03 0.00 ± 0.00 0.99 ± 0.01 0.00 ± 0.00 0.84 ± 0.18 

Cough 0.96 ± 0.03 0.22 ± 0.14 0.98 ± 0.02 0.22 ± 0.17 0.86 ± 0.10 

Peristalsis 0.93 ± 0.07 0.42 ± 0.13 0.95 ± 0.06 0.35 ± 0.20 0.85 ± 0.13 

Other artefacts 0.97 ± 0.04 0.14 ± 0.14  0.99 ± 0.00 0.14 ± 0.13 0.87 ± 0.09 

SMOTE 

 

 

 

Normal 0.70 ± 0.19 0.70 ± 0.25 0.76 ± 0.12 0.76 ± 0.19 0.83 ± 0.11 

RT 0.77 ± 0.13 0.49 ± 0.16 0.83 ± 0.17 0.33 ± 0.30 0.73 ± 0.15 

Premature cycling 0.98 ± 0.03 0.06 ± 0.11 1.00 ± 0.00 0.09 ± 0.16 0.87 ± 0.10 

Cough 0.90 ± 0.10 0.32 ± 0.20 0.92 ± 0.10 0.21 ± 0.15 0.76 ± 0.11 

Peristalsis 0.89 ± 0.16 0.45 ± 0.22 0.91 ± 0.16 0.28 ± 0.17 0.76 ± 0.13 

Other artefacts 0.91 ± 0.12 0.21 ± 0.18 0.93 ± 0.12 0.19 ± 0.20 0.66 ± 0.19 

RUS Normal 0.63 ± 0.20 0.61 ± 0.26 0.85 ± 0.15 0.69 ± 0.23 0.86 ± 0.09 

RT 0.81 ± 0.09 0.48 ± 0.16 0.87 ± 0.09 0.34 ± 0.27 0.73 ± 0.19 

Premature cycling 0.98 ± 0.03 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.64 ± 0.35 

Cough 0.82 ± 0.18 0.41 ± 0.23 0.84 ± 0.19 0.19 ± 0.17 0.77 ± 0.23 

Peristalsis 0.85 ± 0.12 0.55 ± 0.16 0.87 ± 0.13 0.29 ± 0.23 0.82 ± 0.11 

Other artefacts 0.94 ± 0.08 0.30 ± 0.27 0.96 ± 0.08 0.20 ± 0.17 0.72 ± 0.21 

SMOTE + 

RUS 

Normal 0.73 ± 0.20 0.71 ± 0.26 0.77 ± 0.13 0.77 ± 0.19 0.85 ± 0.10 

RT 0.72 ± 0.18 0.50 ± 0.17 0.79 ± 0.23 0.34 ± 0.27 0.72 ± 0.20 

Premature cycling 0.98 ± 0.03 0.02 ± 0.04 1.00 ± 0.00 0.04 ± 0.07 0.88 ± 0.09 

Cough 0.93 ± 0.07 0.41 ± 0.24 0.95 ± 0.07 0.24 ± 0.15 0.83 ± 0.11 

Peristalsis 0.98 ± 0.03 0.50 ± 0.21 0.93 ± 0.07 0.30 ± 0.17 0.82 ± 0.08 

Other artefacts 0.91 ±0.13 0.25 ± 0.18 0.93 ± 0.13 0.18 ± 0.17 0.66 ± 0.17 

SMOTE: synthetic minority over-sampling technique; RUS: random undersampling technique; AUROC: area under the receiver 

operating characteristic; RT: reverse triggering.  
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Table S4 Performance of Conv_2DCNN for all breath types. 

 Type of breath Accuracy Sensitivity Specificity F1 score AUROC 

Class 

imbalance 

Normal 0.80 ± 0.21 0.85 ± 0.24 0.56 ± 0.12 0.84 ± 0.21 0.83 ± 0.18 

RT 0.85 ± 0.07 0.46 ± 0.14 0.93 ± 0.05 0.34 ± 0.27 0.80 ± 0.07 

Premature cycling 0.98 ± 0.03 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.65 ± 0.19 

Cough 0.95 ± 0.04 0.21 ± 0.14 0.98 ± 0.03 0.20 ± 0.15 0.86 ± 0.10 

Peristalsis 0.89 ± 0.20 0.40 ± 0.18 0.91 ± 0.20 0.32 ± 0.19 0.82 ± 0.16 

Other artefacts 0.96 ± 0.05 0.17 ± 0.28 0.98 ± 0.03 0.17 ± 0.29 0.80 ± 0.15 

SMOTE Normal 0.66 ± 0.15 0.63 ± 0.20 0.80 ± 0.09 0.73 ± 0.15 0.81 ± 0.11 

RT 0.81 ± 0.10 0.56 ± 0.19 0.85 ± 0.11 0.39 ± 0.33 0.77 ± 0.12 

Premature cycling 0.97 ± 0.04 0.00 ± 0.00 0.99 ± 0.01 0.00 ± 0.00 0.61 ± 0.06 

Cough 0.94 ± 0.05 0.33 ± 0.18 0.96 ± 0.04 0.25 ± 0.19 0.66 ± 0.19 

Peristalsis 0.84 ± 0.14 0.45 ± 0.16 0.85 ± 0.15 0.25 ± 0.17 0.74 ± 0.13 

Other artefacts 0.87 ± 0.13 0.37 ± 0.28 0.89 ± 0.13 0.18 ± 0.22 0.67 ± 0.13  

RUS Normal 0.71 ± 0.21 0.69 ± 0.29 0.82 ± 0.15  0.74 ± 0.26 0.84 ± 0.13 

RT 0.75 ± 0.19 0.45 ± 0.27 0.83 ± 0.24 0.28 ± 0.25 0.68 ± 0.18 

Premature cycling 0.98 ± 0.03 0.00 ± 0.00 1.00 ± 0.01 0.00 ± 0.00 0.64 ± 0.24 

Cough 0.93 ± 0.05 0.33 ± 0.19 0.95 ± 0.04 0.19 ± 0.12 0.84 ± 0.10 

Peristalsis 0.89 ± 0.15 0.55 ± 0.16 0.90 ± 0.15 0.35 ± 0.19 0.82 ± 0.14 

Other artefacts 0.89 ± 0.13 0.31 ± 0.22 0.91 ± 0.14 0.17 ± 0.24 0.75 ± 0.14 

SMOTE + 

RUS 

Normal 0.62 ± 0.24 0.61 ± 0.29 0.82 ± 0.09 0.68 ± 0.24 0.81 ± 0.10 

RT 0.78 ± 0.15 0.53 ± 0.21 0.82 ± 0.19 0.37 ± 0.31 0.74 ± 0.19 

Premature cycling 0.97 ± 0.03 0.16 ± 0.20 0.99 ± 0.01 0.19 ± 0.27 0.77 ± 0.13 

Cough 0.94 ± 0.04 0.37 ± 0.21 0.95 ± 0.03 0.24 ± 0.18 0.73 ± 0.21 

Peristalsis 0.89 ± 0.08 0.49 ± 0.27 0.91 ± 0.08 0.22 ± 0.20 0.77 ± 0.14 

Other artefacts 0.81 ± 0.22 0.20 ± 0.13 0.83 ± 0.23 0.08 ± 0.09 0.55 ± 0.19 

 

Table S5 Performance of Pool_2DCNN for all breath types. 

 Type of breath Accuracy Sensitivity Specificity F1 score AUROC 

Class 

imbalance 

Normal 0.80 ± 0.19 0.86 ± 0.25 0.54 ± 0.18 0.84 ± 0.21 0.85 ± 0.16 

RT 0.73 ± 0.20 0.36 ± 0.06 0.83 ± 0.23 0.24 ± 0.22 0.65 ± 0.22 

Premature cycling 0.98 ± 0.03 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.73 ± 0.13 

Cough 0.95 ± 0.04 0.36 ± 0.27 0.97 ± 0.04 0.23 ± 0.12 0.91 ± 0.07 

Peristalsis 0.96 ± 0.03 0.39 ± 0.23 0.98 ± 0.02 0.37 ± 0.18 0.87 ± 0.09 

Other artefacts 0.94 ± 0.09 0.21 ± 0.27 0.96 ± 0.09 0.20 ± 0.27 0.80 ± 0.16 

SMOTE Normal 0.65 ± 0.23 0.66 ± 0.27 0.75 ± 0.15 0.72 ± 0.21 0.80 ± 0.13 

RT 0.72 ± 0.18 0.37 ± 0.25 0.79 ± 0.23 0.29 ± 0.28 0.63 ± 0.23 

Premature cycling 0.97 ± 0.03 0.09 ± 0.10 0.99 ± 0.01 0.09 ± 0.13 0.63 ± 0.17 

Cough 0.94 ± 0.03 0.37 ± 0.26 0.97 ± 0.03 0.21 ± 0.16 0.86 ± 0.08 

Peristalsis 0.91 ± 0.08 0.36 ± 0.20 0.92 ± 0.08 0.22 ± 0.18 0.78 ± 0.12 

Other artefacts 0.85 ± 0.19 0.31 ± 0.29 0.87 ± 0.20 0.16 ± 0.24 0.67 ± 0.17 

RUS Normal 0.67 ± 0.24 0.62 ± 0.32 0.81 ± 0.15 0.68 ± 0.31 0.79 ± 0.16 

RT 0.68 ± 0.23 0.53 ± 0.19 0.75 ± 0.30 0.28 ± 0.25 0.72 ± 0.20 

Premature cycling 0.97 ± 0.03 0.03 ± 0.05 1.00 ± 0.01 0.02 ± 0.03 0.81 ± 0.21 

Cough 0.94 ± 0.06 0.25 ± 0.16 0.96 ± 0.07 0.21 ± 0.18 0.87 ± 0.06 

Peristalsis 0.89 ± 0.13 0.55 ± 0.26 0.91 ± 0.14 0.31 ± 0.19 0.83 ± 0.09 

Other artefacts 0.86 ± 0.20 0.33 ± 0.30 0.88 ± 0.20 0.15 ± 0.14 0.72 ± 0.22 

SMOTE + 

RUS 

Normal 0.74 ± 0.20 0.75 ± 0.27 0.77 ± 0.14 0.78 ± 0.24 0.81 ± 0.15 

RT 0.75 ± 0.22 0.51 ± 0.23 0.81 ± 0.28 0.31 ± 0.26 0.69 ± 0.18 

Premature cycling 0.98 ± 0.03 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.70 ± 0.17 

Cough 0.95 ± 0.03 0.37 ± 0.25 0.97 ± 0.01 0.21 ± 0.13 0.80 ± 0.15 

Peristalsis 0.95 ± 0.03 0.44 ± 0.23 0.97 ± 0.03 0.34 ± 0.19 0.81 ± 0.08 

Other artefacts 0.86 ± 0.18 0.34 ± 0.27 0.88 ± 0.19 0.17 ± 0.19 0.70 ± 0.16 

SMOTE: synthetic minority over-sampling technique; RUS: random undersampling technique; AUROC: area under the receiver 

operating characteristic; RT: reverse triggering.  
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6. ROC curves for all cross-validation folds  
Supplementary materials 6 

 

Figure S3 ROC curves for the detection of reverse triggering of both Pes_2DCNN (left) and PF_2DCNN (right) for all cross-validation 

folds and mean ROC over 11 folds. Note that folds with an AUC of nan indicate that the test patient in that fold did not show any reverse 

triggering breaths. ROC: receiver operating characteristic; Pes_2DCNN: 2DCNN based on Paw, flow-time and Pes; PF_2DCNN: 

2DCNN solely based on Paw and flow; CV: cross-validation; AUC: area under the curve. 

Figure S4 ROC curves for the detection of premature cycling of both Pes_2DCNN (left) and PF_2DCNN (right) for all cross-validation 

folds and mean ROC over 11 folds. Note that folds with an AUC of nan indicate that the test patient in that fold did not show any 

premature cycling breaths. ROC: receiver operating characteristic; Pes_2DCNN: 2DCNN based on Paw, flow-time and Pes; 

PF_2DCNN: 2DCNN solely based on Paw and flow; CV: cross-validation; AUC: area under the curve. 

 


