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Is there progress in activity progress prediction?

Frans de Boer1 Jan C. van Gemert1 Jouke Dijkstra2 Silvia L. Pintea1,2

1 Computer Vision Lab, Delft University of Technology
2 Division of Image Processing (LKEB), Leiden University Medical Center

Abstract

Activity progress prediction aims to estimate what per-
centage of an activity has been completed. Currently this is
done with machine learning approaches, trained and eval-
uated on complicated and realistic video datasets. The
videos in these datasets vary drastically in length and ap-
pearance. And some of the activities have unanticipated
developments, making activity progression difficult to esti-
mate. In this work, we examine the results obtained by ex-
isting progress prediction methods on these datasets. We
find that current progress prediction methods seem not to
extract useful visual information for the progress predic-
tion task. Therefore, these methods fail to exceed simple
frame-counting baselines. We design a precisely controlled
dataset for activity progress prediction and on this synthetic
dataset we show that the considered methods can make use
of the visual information, when this directly relates to the
progress prediction. We conclude that the progress pre-
diction task is ill-posed on the currently used real-world
datasets. Moreover, to fairly measure activity progres-
sion we advise to consider a, simple but effective, frame-
counting baseline.

1. Introduction

Visual activity progress prediction is vital to our day-

to-day lives: e.g. in cooking, we predict how fast the food

is ready; in healthcare, estimating how long a surgery will

take allows for better resource allocation and shorter wait-

ing times; and for video-editing knowing where an activity

begins and ends helps with automatic cropping of the de-

sired video ranges. Here, we define activity progress predic-

tion as the task of predicting the percentage of completion

of an activity in a video in an online setting, i.e.: without ac-

cess to the length of the video. For our purpose, each video

contains a single activity, which covers the complete dura-

tion of the video and may consist of multiple phases. How-

ever, we assume there are no phase annotations available, as

is generally the case in real-world scenarios. The main chal-

lenge for progress prediction is extracting meaning from the

visual inputs, which, ideally relates to the specific phases of

the activity and, thus, enables predicting progress.

To address this challenge, current methods rely on deep

networks, such as VGG-16 [23], ResNet [9], YOLOv2

[22], or I3D [4] to extract visual information. Furthermore,

to remember information over time, current progress pre-

diction methods [3, 26] rely on memory blocks and recur-

rent connections [12]. While these embeddings and recur-

rent connections are useful for extracting visual information

and keeping track of the activity progression over time, they

may also overfit to uninformative artifacts. Here, we aim to

analyze if such undesirable learning strategies are occurring

when performing progress prediction.

To this end, we consider the state-of-the-art progress pre-

diction methods [3, 17, 26], as well as two more simple

learning-based methods: a 2D-only ResNet, and a ResNet

model augmented with recurrent connections. We evalu-

ate all these learning methods across three video datasets

used for progress prediction: UCF101-24 [24], Breakfast

[15, 16], and Cholec80 [25]. Additionally, we compare the

learning-based methods with simple non-learning baseline

methods such as simply frame counting.

We evaluate models on various dataset types and

regimes. We examine the learning methods when they are

presented with the full videos during training. In addition,

to avoid overfitting to absolute time/frame progression, we

also evaluate methods when trained on randomly sampled

video segments. For randomly sampling video segments, it

is not possible to do frame-counting, and only the visual in-

formation is available for activity progress prediction. If the

methods should fail to extract useful information from the

visual data, they would perform on par with non-learning

methods based on frame-counting. Finally, we design a

precisely controlled synthetic progress prediction dataset,

Progress-bar, on which the visual information is directly re-

lated to the progress.
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Figure 1. Length distributions for UCF101-24, Cholec80, and Breakfast. UCF101-24 are grouped into bins of size 10, for Cholec80 and

Breakfast the bins are of size 100. Most notable is the long-tail distribution of the video lengths in the Breakfast dataset, which makes

progress prediction difficult. The vertical red line depicts the mean of each dataset.

Difficulties in current progress prediction. Progress pre-

diction methods [3, 17, 26] evaluate on complicated and re-

alistic datasets such as UCF101-24 [24], Breakfast [15, 16],

and Cholec80 [25]. The appearance of the activities in

these videos is diverse. And the activity length drastically

varies between videos in these datasets, as shown Fig. 1.

UCF101-24 and Breakfast follow a long-tail distribution,

with few videos containing long activities. Moreover, there

can be unexpected activity progressions: e.g. the pancake

gets burned, or there is a surgery lag. Also, some of the

activities in these datasets do not have a clearly defined

endpoint: e.g. ‘skiing’, ‘walking the dog’, etc. Predicting

progress on these activities would be difficult even for a hu-

man observer. Therefore, we arrive at two main questions

we aim to address here: (i) How well can methods predict

activity progression on the current datasets? and (ii) Is it at

all possible to predict progress from visual data only?

2. Related work

Activity progress Prediction. The task of progress predic-

tion was formally introduced in [3]. Because the progress

of an activity is an easy-to-obtain self-supervision signal, it

is often used as an auxiliary signal in a multi-task prediction

problem, as in [13] to improve the performance of spatio-

temporal action localisation networks. Progress prediction

is also used as a pretext task for phase detection [18], or to

create embeddings to perform unsupervised learning of ac-

tion classes [17, 28]. The progress prediction problem can

also be modelled as a classification problem, choosing from

n bins each of size 1/n as is done in [7]. Based on the liter-

ature surveyed, of works done on progress prediction, only

[3, 21] have progress prediction as their primary task. This

work is also on the topic of progress prediction, but we do

not propose our own progress prediction method. Instead,

we consider the methods from [3, 17] in our analysis and

analyze their performance on the currently used datasets.

Remaining Duration. A topic closely related to progress

prediction is Remaining Duration (RD) prediction. While

the goal of progress prediction is to predict the course of

the activity as a percentage value in [0, 100%], RD aims at

predicting the remaining time t in minutes or seconds. Pre-

vious work that researches the RD problem often does this

in a surgical setting [1, 20, 26, 30] and thus refers to it as the

Remaining Surgery Duration (RSD) problem. Early meth-

ods work by pretraining a ResNet-152 model to predict ei-

ther the surgical phase [1] or the surgery progress [26], and

then using the frame embeddings created from the ResNet-

152 model in an LSTM block to perform RSD prediction.

Building on top of this is the observation in [20] that pre-

dicting extra information such as surgeon skill, may be ben-

eficial to do RSD prediction. Finally, RSD can also be mod-

elled in a way closer to progress. By dividing all RSD val-

ues by the highest possible RSD, the RSD can be predicted

as a value between 0 and 1 [29]. Unlike these methods that

model the passage of time as a decreasing remaining dura-

tion, we model it as an increasing progress value. We use

RSDNet [26] in our analysis, as it performs both RSD and

progress prediction.

Phase prediction. If an action consistently consists of sep-

arate sub-tasks or phases of similar duration, then recog-

nizing the current phase gives a good approximation of

the progress. Previous work jointly performs phase-based

progress prediction and surgical gesture recognition [27],

jointly predicting the phase and the surgery tools [25], or by

using the embeddings in an LSTM to predict the surgical

phase online [31]. More recent work applies transformers

to perform surgical phase recognition [14, 19]. In this work,

we do not consider phase-prediction methods as they are an

inaccurate proxy for progress. Furthermore, when activities

are non-linear, phase prediction is no longer a good indica-
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tor of activity progress. Knowing which phase is happening

may be useful as an extra signal, however we do not con-

sider this, as it requires additional annotations.

Activity Completion. The progress for each frame can be

calculated using linear interpolation if the current activity

time, t, the starting activity time, tstart, and the ending activ-

ity time, tend, are available. Early work on this topic only

predicts if an activity has been completed or not using an

SVM [5]. Follow-up work of Heidarivincheh et al. [10]

uses a CNN-LSTM architecture to predict the exact frame

at which the activity is completed, i.e. the activity comple-

tion moment. The detection of the activity completion mo-

ment is done in a supervised setting [10], where the exact

frame at which the activity ends is annotated. Alternatively,

activity completion can be done in a weakly supervised set-

ting where the only available annotation is if the activity has

been completed or not [11]. Although related to progress

prediction, activity completion only aims at predicting the

completion moment. In contrast, we focus on the more fine-

grained targets of activity progression at every frame.

3. Activity progress prediction
We formulate activity progress prediction as the task of

predicting a progress value pin ∈ [0, 100]% at frame i in a

video indexed by n, where

pin =
i

ln
, (1)

ln is the total number of frames for video n. Each video

consists of a single activity which starts at frame 1 and ends

at frame ln. The activity may consist of multiple phases, but

we do not use any phase annotation.

We predict progress percentages at every frame in the

test videos. During training, the videos can be presented to

the methods in two different ways: full-videos and video-

sequences. We start by using complete videos during train-

ing – full-videos, where each video frame represents a data

sample. Subsequently, we make the problem more realistic

by applying two sampling augmentations, as done in [3]:

(a) for every video, we sample a segment by randomly se-

lecting a start and end point; (b) we randomly subsample

every such segment to vary its speed. We denote the video

sampling strategy implementing both points (a) and (b), as

video-segments. On video-segments the methods can only

rely on the visual information for predicting progress.

3.1. Progress prediction methods

We consider 3 progress prediction methods from previ-

ous work: ProgressNet [3], RSDNet [26], and UTE [17].

We select these methods as they are the only methods in the

surveyed literature that report results on the progress predic-

tion task. Furthermore, these methods are the only methods

in surveyed literature that do not require additional annota-

tions, such as body joints [21].

ProgressNet [3]: A spatio-temporal network which uses

a VGG-16 [23] backbone to embed video frames and ex-

tracts further features using spatial pyramid pooling (SPP)

[8] and region of interest (ROI) pooling [6]. Additionally,

the model uses 2 LSTM layers to incorporate temporal in-

formation. Becattini et al. also introduce a Boundary Ob-

servant (BO) loss. This loss enables the network to be more

accurate around the areas of phase transitions. In our work,

we do not use the BO loss because it requires annotating

the phase boundaries. ProgressNet uses ROI pooling and

requires per-frame bounding box annotations. We use the

complete frame as the bounding box on datasets where we

do not have bounding box annotations.

RSDNet [26]: It uses a ResNet-152 [9] backbone, fol-

lowed by an LSTM layer with 512 nodes, and two addi-

tional single-node linear layers to jointly predict RSD and

video progress. The trained ResNet model creates embed-

dings from all the frames, which are concatenated with the

elapsed time in minutes. RSDNet jointly trains on RSD

and progress prediction but evaluates only on RSD predic-

tion. Here, we evaluate only the progress prediction head

and train with both the RSD and progress loss.

UTE [17]: This is a simple 3-layer MLP (Multilayer Per-

ceptron) which takes as input features extracted from RGB

video frames such as dense trajectories [30] or I3D network

embeddings [4]. Both dense trajectories and I3D embed

frames over a sliding window which encodes temporal in-

formation into the features. This gives the UTE network

access to temporal information. Here, we use 3D convo-

lutional embeddings from the I3D backbone of dimension

1024 and an embedding window of size 16 on all datasets.

We use precisely the same network design as in [17].

3.2. Learning based baselines

Next to the published methods above, specifically de-

signed for progress prediction, we also consider two more

baselines. The first is a spatial only ResNet-2D model, and

the second is a spatio-temporal ResNet-LSTM model. We

use ResNet-LSTM as it is a progress-only variation of RS-

DNet. Furthermore, the 2D variant ResNet-2D can give

us insights into the spatial-only information contained in

the datasets, for progress prediction. We do not consider

other architectures, such as a Video Transformer [2], be-

cause they do not share the same architecture structure as

the progress prediction methods we consider in Section 3.1,

so they would not display similar behaviors during training.

ResNet-2D. A spatial 2D ResNet [9] architecture that can

only make use of 2D visual data present in individual video

frames, without access to any temporal information. The

last layer of the ResNet predicts the progress at each frame
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via a linear layer, followed by a sigmoid activation.

ResNet-LSTM. Additionally, we extend the above ResNet-

2D with an LSTM block with 512 nodes, and a final

progress-prediction linear layer using a sigmoid activation.

The LSTM block adds temporal information, which allows

us to test the added value of the memory blocks for activity

progress prediction.

3.3. Naive baselines

Next to the learning-based baselines, we consider a set

of naive non-learning baselines. These non-learning base-

lines represent upper-bounds on the errors we expect the

learning-based methods to make.

Static-0.5. This is the most obvious non-learning baseline,

which always predicts 50% completion at every frame. This

is the best guess without any prior information.

Random. Additionally, we consider a random baseline that

predicts a random value in [0, 100]% at every frame. This

represents the worst progress prediction a model can make,

indicating that it failed to learn anything.

Frame-counting. Finally, we consider a non-learning base-

line which computes training-set statistics. It is a frame-

counting strategy that makes per-frame average progress

predictions. For frame i in video n this baseline predicts

a progress value equal to the average training-progress at

frame i of all training videos indexed by m ∈ {1, ..., Ni}:

p̂in =
1

Ni

Ni∑

m=1

pim, (2)

where Ni is the count of all the training videos with a length

of at least i frames.

4. Empirical analysis
4.1. Datasets description

Each of the considered progress prediction methods eval-

uates on different datasets: RSDNet on Cholec80 [25],

ProgressNet on UCF101-24 [24], and UTE on Breakfast

[15, 16]. To analyze these methods, we use all 3 datasets

for all methods.

Cholec80 [25]: Consists of 80 videos of endoscopic chole-

cystectomy surgery. Note that [26] uses an extended version

of this dataset, Cholec120, containing 40 additional surgery

videos. However, Cholec120 is not publicly available, so

we used Cholec80 to report our results. We randomly create

four folds of the data, and follow the same train/test dataset

split sizes as in [26]. This dataset has limited visual vari-

ability both across training and test splits. Moreover, the

presence of different medical tools in the frames informs of

the different surgery phases, which could aid the progress

prediction task.

UCF101-24 [24]: Consists of a subset of UCF101 con-

taining 24 activities, each provided with a spatio-temporal

action tube annotation.1 Becattini et al. [3] split the dataset

into 2 categories: telic and atelic activities. Telic activities

are those with a clear endpoint, such as ‘cliff diving’, while

atelic activities, such as ‘walking the dog’, do not have a

clearly defined endpoint. Predicting progress for atelic ac-

tivities is more difficult than for telic ones. The original im-

plementation of ProgressNet first trains on telic activities,

and then fine-tunes on all activities. We did not observe a

difference when using this training procedure, and instead

train all methods on the full dataset.

Breakfast [15, 16]: Contains 10 cooking activities: e.g.

‘making coffee’, ‘baking pancakes’, or ‘making tea’, etc.,

performed by 52 individuals in 18 different kitchens. We

use the default splits and train each model across all cook-

ing activities. Because the tasks are performed by differ-

ent individuals in different kitchens, the video appearance

varies even within the same task, making this dataset extra

challenging for progress prediction.

UCF101-24 contains training videos of up to 599

frames, while Cholec80 and Breakfast contain videos with

thousands of frames. When training on full-videos, we

could not train the ProgressNet model on the original

Cholec80 and Breakfast datasets, because of the long

videos leading to memory problems. Thus, for the ex-

periments on full-videos, we use a subsampled version of

Cholec80 from 1 fps to 0.1 fps (the original fps is 25;

[26] subsamples this down to 1 fps); and we subsample the

Breakfast dataset from 15 fps down to 1 fps. For our exper-

iments on video-segments we use the original datasets.

4.2. Experimental setup

For the considered progress prediction methods only the

code for UTE is published.2 For the other methods, we fol-

low the papers for implementation details and training pro-

cedures. We train RSDNet in a 2-step procedure following

[26], however for training the LSTM blocks we found that

using the Adam optimizer with a learning rate of 10−4 and

no weight decay, for 30k iterations works best. For Pro-

gressNet not all training details are mentioned in the paper,

so we use Adam with a learning rate of 10−4 for 50k it-

erations, and we keep the VGG-16 backbone frozen during

training. For all experiments we report the MAE (Mean Ab-

solute Error) in percentages. Our code is available online at

https://github.com/Frans-db/progress-prediction.

1Following [3] we use the revised annotations available at https:
//github.com/gurkirt/corrected-UCF101-Annots

2https://github.com/Annusha/unsup_temp_embed
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(a) UCF101-24 on full-videos. (b) Breakfast on full-videos. (c) Cholec80 on full-videos.

Figure 2. MAE scores on full-videos . We plot the MAE in percentages for all learning methods when inputting both full-video data and

random-noise. (a) MAE for the UCF101-24 dataset: For all methods except ProgressNet inputting random-noise performs on par or better

than inputting full-videos. (b) MAE for the Breakfast dataset: When using random-noise as input to the methods, they perform on par or

better than when inputting full-videos, indicating that the methods overfit to training artifacts. (c) MAE for the Cholec80 dataset: On this

dataset, using visual full-videos is better than inputting random-noise, however the frame-counting baseline remains hard to exceed.

4.3. (i) How well can methods predict activity progression
on the current datasets?

(i.1) Progress predictions on full-videos. Here we want

to test how well the learning-based models perform when

trained on full-videos. We compare this with using random-

noise as input – we replace each frame with randomly sam-

pled noise. Intuitively, learning from random-noise over

complete videos will give recurrent models access to frame

indices, and this should reach the frame-counting baseline,

which computes dataset statistics per frame. If the models

learn to extract useful appearance information, their MAE

scores should be considerably higher than when inputting

random-noise. Additionally, we compare the learning-

based methods with the naive baselines: static-0.5, random,

and frame-counting.

Fig. 2(a) shows that the full-video visual information

(blue bars) is less useful than inputting random-noise (or-

ange bars). When training on the full-videos of UCF101-

24 both the ResNet-2D and UTE models perform on par

with the static-0.5 baseline. This is because these spatial-

only networks do not have any way of integrating tempo-

ral information and they fail to extract progress information

from the visual data alone. When provided with random-

noise as inputs, they always predict 0.5 and score on par

with the static-0.5 baseline. The results are similar for the

recurrent models on full-videos, ResNet-LSTM and RSD-

Net who are both close to the static-0.5 baseline. We ob-

serve that the recurrent models overfit on the embedded fea-

tures and fail to generalise. When these recurrent networks

are provided with random-noise they can only rely on the

number of frames seen so far, and thus reach the frame-

counting baseline. ProgressNet is the only outlier here:

when given full-videos it performs better than when given

random-noise as input. However, ProgressNet still cannot

outperform the non-learning frame-counting baseline.

For Breakfast in Fig. 2(b) the results look very similar to

those on UCF101-24. Both the ResNet-2D and UTE mod-

els cannot learn from visual information alone. ResNet-

LSTM and RSDNet both perform worse than the static-0.5

baseline on full-videos, indicating that they are overfitting

on the training data. When provided with random-noise as

input, they again can only rely on the number of frames

seen, and thus approach the frame-counting naive baseline.

Cholec80 in Fig. 2(c) is the only dataset where the

spatial-only networks ResNet-2D and UTE perform better

than the static-0.5 baseline. Here, we see that using the full-

videos (blue bars) is better than inputting random-noise (or-

ange bars). This hints to the visual information present in

this dataset being indicative of the activity progress. When

inputting random-noise the spatial-only methods again per-

form on par with the static-0.5 baseline, as expected. How-

ever, this dataset still remains challenging as the methods

are not far from the frame-counting baseline. ResNet-

LSTM and RSDNet are the only who perform slightly bet-

ter than this naive baseline, indicating that they can extract

some useful visual information from the video frames.

Observation: The current datasets make it difficult for the
progress prediction methods to extract useful visual infor-
mation. Therefore, the methods overfit to training set arti-
facts, and are outperformed by simple baselines based on
dataset statistics.

(i.2): Progress predictions on video-segments. We test

the performance of learning methods when trained to pre-

dict progress from video-segments. Using video-segments
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(a) UCF101-24 on video-segments. (b) Breakfast on video-segments. (c) Cholec80 on video-segments.

Figure 3. MAE scores on video-segments . We plot the MAE in percentages for all considered methods when inputting both video-

segments and frame-indices. (a) MAE for the UCF101-24 dataset: For all methods inputting frame-indices is better than inputting

video-segments. ResNet-2D and UTE get the biggest boost in performance because they can learn the one-to-one mapping from index to

progress during training. (b) MAE for the Breakfast dataset: Also here frame-indices are more informative than the visual data. (c) MAE

for the Cholec80 dataset: All learning methods perform on par with the frame-counting baseline, except for RSDNet which is slightly

worse. This could be due to suboptimal hyperparameter settings.

should encourage the methods to focus more on the visual

information and not on the temporal position of the frames,

as this is no longer informative. We compare inputting

video-segments with inputting frame-indices – the absolute

index of each frame, replicated as images. Intuitively, learn-

ing from frame-indices should be on par with the frame-

counting baseline, since the only information available is

the dataset statistics per frame. Ideally, we would expect all

methods to solve the progress prediction task by relying on

visual information, and therefore having lower errors than

when inputting frame-indices. Again, we also compare with

the naive baselines: static-0.5, random and frame-counting.

Fig. 3(a) shows that the visual information encoded in

video-segments (green bars) is less useful than knowing

the current frame index (red bars). When trained on video-

segments of UCF101-24 all methods perform on par with

the static-0.5 baseline. Thus, the models cannot learn

to predict progress from the visual video data. Interest-

ingly, ProgressNet using full-videos in Fig. 2(a) is better

than the frame-counting baseline, however, here it fails to

learn when trained on video-segments. When provided with

frame-indices as input, all methods improve. The improve-

ment is most visible for ResNet-2D and UTE, which do

not use recurrent blocks. This is because the non-recurrent

methods can learn the one-to-one mapping from index to

progress during training.

The results on the Breakfast dataset in Fig. 3(b) are

similar to those of UCF101-24 in Fig. 3(a). None of the

networks can extract useful information from the video-

segments. All methods improve when trained on frame-

indices. The improvement is again more obvious for

ResNet-2D and UTE. Moreover, all results are on par with,

or worse than the frame-counting baseline.

On Cholec80 in Fig. 3(c) all results are close to the

frame-counting baseline. This is dissimilar to Fig. 2(c)

where inputting visual data was better than inputting ran-

dom noise of the same length as the full video. Again,

ResNet-2D and UTE improve when provided with frame-

indices as input. For ResNet-LSTM and ProgressNet and

RSDNet the performance is on par with the frame-counting

baseline when trained on video-sequences indicating that

these methods overfit to the training data. When trained on

frame-indices most methods approach the frame-counting

baseline, as this is the information encoded in the frame in-

dices across the full training set. RSDNet performs worst

when given frame-indices as inputs; we hypothesise that

this is due suboptimal hyperparameter settings.

Observation: When restricting the models to rely only on
visual information, the models are outperformed by sim-
ply considering the current frame index, and performing
dataset statistics. This is due to the current progress pre-
diction datasets not containing sufficient visual information
to guide progress prediction.

4.4. (ii) Is it at all possible to predict activity progress from
visual data only?

We observe that current progress prediction datasets are

not well-suited for the task, as the learning models fail to

extract useful information from visual data alone. To test

that the problem is indeed with the datasets used for evalu-

ation and not the learning models, we test here if progress

prediction is possible from visual data alone. For this we

aim to construct a synthetic dataset in such a way that the

learning-based methods perform optimal using visual infor-
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(a) 
t=0

p=1.4%

(b) 
t=15

p=22.2%

(c) 
t=35

p=50.0%

(d) 
t=58

p=81.9%

(e) 
t=71

p=100.0%

Figure 4. Visualisation of a progress bar from our synthetic

Progress-bar dataset at timesteps t=0, t=15, t=35, t=58, and

t=71. Each coloured section indicates visually a 25% section, but

due to variance in the speed, the actual video progress may differ

at these points.

mation, and outperform all the naive baselines.

Our synthetic Progress-bar dataset, shown in Fig. 4, con-

tains a progress bar (similar, for example, to a download

bar) that slowly fills up from left to right. Each frame has

a resolution of 32×32px. We generate 900 videos for the

training split, and 100 for the test split. Each bar has its own

rate of progression, but there is a variance per notch causing

some uncertainty. Therefore, even on this simple dataset it

is impossible to make no errors. This is why in the first im-

age the progression appears to be slightly beyond 25%, but

because the video may slow down after this section it is ac-

tually at 22.2%. Due to the large variance in video length,

ranging from 19 to 145 frames, the frame-counting base-

line, and thus frame-counting strategies, will give worse re-

sults than relying on visual information. Also, because of

the different progress rates per video, the learning meth-

ods cannot just rely on visual information alone, but also

have to use temporal information to perform well on this

progress prediction task. Due to the reduced frame resolu-

tion and data complexity of our synthetic dataset, we scale

down the ResNet backbone, for these experiments. Specifi-

cally, to avoid overfitting, we use ResNet-18 as a backbone

for ResNet-2D, ResNet-LSTM, and RSDNet. ProgressNet

and UTE remain unchanged.

Fig. 5 shows the results of all the learning-based methods

when predicting progress from both full-videos and video-

segments. For this dataset the frame-counting baseline has

an MAE of 12.9%, which is outperformed by all learning-

based methods. UTE performs the best out of all the net-

works, even though it does not have memory. This is be-

cause UTE relies on 3D convolutional embeddings over a

temporal-window of size 16 frames. This temporal-window

gives the method information about 7 future frames, which

is sufficient on this simple dataset. For the LSTM-based

methods inputting full-videos still performs slightly better

than inputting video-segments. At a closer look, this is be-

cause the video-segments sampling method has a bias to-

wards frames in the middle of a video. The earlier frames
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Figure 5. MAE scores on our synthetic Progress-bar dataset,
when training on full-videos and video-segments . The frame-

counting baseline has an MAE of 12.9%, while the static baseline

is at 25% and the random baseline at 33.3%. We see that all meth-

ods outperform the frame-counting baseline. UTE obtains the best

result due to its 15-frame temporal window, which allows it to see

7 frames into the future. We conclude that the progress prediction

methods are able to learn progress from visual information, if it is

clearly present in the videos.

are less likely to get sampled, thus the progress prediction

methods will have a higher error there.

Observation: It is feasible for the progress prediction
methods to make effective use of the visual data present
in the videos and outperform the frame-counting baseline,
when the visual data is a clear indicator for the video pro-
gression.

5. Discussion and limitations of our analysis
Discussion. This paper empirically shows that the current

progress prediction datasets do now allow for learning use-

ful visual information, and methods are outperformed by

naive baselines relying on dataset statistics. We observe that

the progress prediction models perform well on the training

data, yet cannot generalize well to the unseen test data. As

future research, it would be interesting to pinpoint the pho-

tometric artifacts that the models overfit to. However, we

also saw that some useful visual information was learned

on the Cholec80. This may be due to the presence of clear

visual phase delineators. Fig. 6(a) and Fig. 6(b) show ex-

amples of predictions on the Cholec80 dataset. The first

frames highlighted in these videos (t=210 and t=200) are

the moment when the first medical tool is present in the

video, and the progress prediction methods adjust their pre-

dictions to this new visual information. Similarly, the sec-

ond highlighted timesteps (t=1250 and t=1650) represent

the moment the collection bag is present which signals the

end of the procedure. On our synthetic Progress-bar dataset
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(a) Video-04 of Cholec80 (b) Video-05 of Cholec80

Figure 6. Activity progress prediction examples of Cholec80. (a) Video-04 at timestamps t=210 and t=1250. (b) Video-05 at timestamps

t=200 and t=1650. At t=210 and t=200 the methods recognize the medical tool, and correct their progress downwards to signal the start

of the medical procedure. At t=1250 and t=1650 the methods recognize the collection bag and correct their progress to signal the end of

the procedure.
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Figure 7. Progress prediction example on Video-00015 of our syn-

thetic Progress-bar dataset at timestamps t=10 and t=55. The

learning methods can almost perfectly follow the ground truth.

in Fig. 7 we also show the predictions and highlight two

moments in the videos. Here, the networks almost perfectly

follow the ground truth progression. These results illustrate

that for progress prediction is essential to have clearly rec-

ognizable visual transition points, that consistently corre-

spond to a certain progress prediction percentage. This is

related to the idea of Becattini et al. [3] who use phase an-

notations to increase the loss around the phase boundaries.

Limitations. The first limitation of our research is that

we could only find 3 progress prediction methods to ana-

lyze, on 3 datasets. Additionally, we do not consider here

other video-architectures such as a Video Transformer [2],

as these are not directly related to the progress prediction

methods we analyze. However, we do consider 2D (ResNet)

and 3D (I3D) convolutional embeddings, as well as recur-

rent networks (with LSTM blocks). Thirdly, we were un-

able to match the results of ProgressNet exactly as reported

in [3]: when trained on video-segments, the authors report

an MSE of 0.052 (MAE of approximately 22.8%), while

we obtain an MAE of 25.9%. Nonetheless, the frame-

counting outperforms the result reported in [3], which still

validates our conclusions. Finally, we observed that on both

UCF101-24 and Breakfast the methods have a tendency to

overfit. Maybe better strategies to overcome this overfitting

phenomenon could improve the results.

6. Conclusion

In this paper, we investigate the behaviour of current

progress prediction methods on the currently used bench-

mark datasets. We show that on the currently used datasets,

the progress prediction methods can fail to extract useful

information from visual data, and are exceeded by sim-

ple non-learning baselines based on frame counting. Addi-

tionally, we evaluate all the methods on a synthetic dataset

we specifically design for the progress prediction task. On

our synthetic dataset the results show that all the methods

can make use of the visual information and outperform the

naive, non-learning baselines. We conclude that in its cur-

rent form the task of progress prediction is ill-posed, as the

currently used datasets for progress prediction are not suit-

able for this task.
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