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Particle-Laden Pipe Flows at High Volume Fractions Show Transition Without Puffs
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Using ultrasound imaging velocimetry, we are able to present unique insight in transitional particle-laden
flows. Together with a Moody diagram of time-averaged properties, we demonstrate that the laminar-
turbulent transition behavior at high volume fractions is distinct from the single-phase case and cases with
low volume fractions. For low volume fractions, a sharp transition is found with the presence of turbulent
puffs, similar to the single-phase case. Seemingly, particles in this regime trigger subcritical transition.
For high volume fractions a smooth transition is discovered without turbulent puffs in the transition regime.
For this regime, particles cause a supercritical transition.

DOI: 10.1103/PhysRevLett.121.194501

In 1883, Reynolds performed experiments on laminar-
turbulent flow transition that remain relevant to this
very day [1]. Despite considerable research efforts, many
aspects of this phenomenon remain unknown. Since pipe
flow is linearly stable, finite amplitude perturbations are
required to trigger the flow to a turbulent state [2–4].
Depending on the amplitude of the perturbation, the onset
to turbulence is found to vary [5]. This onset is usually
expressed with the Reynolds number (Re ¼ UbD=ν; Ub is
the bulk flow velocity, D the pipe diameter, and ν the
kinematic viscosity), which typically ranges from 1700 to
2300 [2,6]. The onset of transition starts with the appear-
ance of turbulent “puffs.” Depending on the Reynolds
number, puffs typically extend 20–30 diameters along the
pipe [3,7] and become more numerous with an increasing
Reynolds number. Initially, they have a finite lifetime [8,9].
For Reynolds numbers above approximately 2040 they
split and grow, leading to sustained turbulence [6].
The transition behavior changes significantly when

particles are added [10]. Particle-laden flows are of major
interest because of their environmental and industrial
applications. Recent research relies predominantly on
numerical simulations (e.g., [11,12]), because the opaque
nature of these flows precludes conventional experimental
techniques. However, we show in this Letter that ultra-
sound-based techniques can provide unprecedented insight
in these flows.
A seminal study of the influence of particles on laminar-

turbulent transition was performed by Matas et al. [10].
Based on low-frequency variations in the pressure drop,
they were able to detect turbulent puffs and by that the
critical (i.e., transition) Reynolds number, Rec. For par-
ticles bigger than D=65 the value of Rec was found to be a
nonmonotonic function of the particle volume fraction (ϕ):
initially, for increasing volume fractions, Rec decreased.
However, for larger volume fractions Rec increased with

increasing ϕ and the transition is eventually delayed
compared to single-phase flows.
Yu et al. [11] studied the same experiment numerically.

Having access to the velocity fields, the authors pointed out
that the flow was not smooth, even in the laminar regime.
This was attributed to local disturbances by the particles.
This made it difficult to judge whether the flow is laminar
or turbulent. To capture Rec they used the energy of the
streamwise velocity fluctuation as indicator. For a critical
value of this energy, large-scale vortices (i.e., similar in size
as the particles) start to appear, indicating that the flow is
turbulent.
Further progress was made in a recent study by Lashgari

et al. [12]. Although they used a channel flow configura-
tion, the results are relevant for pipe flow as well, despite
the presence of secondary flow patterns in channels [13].
Based on the stress budget, the authors found three different
regimes as functions of Re and volume fraction: a laminar-
like (viscous stress dominated), turbulentlike (Reynolds
stress dominated), and inertial shear-thickening (particle
stress dominated) regime. For low volume fractions they
found a sharp laminar-turbulent transition, i.e., a fairly
sudden increase in flow resistance with increasing Re. For
higher volume fractions this was no longer the case. They
conclude that inertial shear thickening and coherent turbu-
lence coexists with different relevance. The computation-
ally intensive nature of these simulations prohibits studying
an extensive parameter range, especially since the transition
regime requires a very long data series for convergence [8].
In this Letter we show that laminar-turbulent transition

behavior for higher volume fractions in pipe flow is dif-
ferent than transition at lower volume fractions. Through
unique experimental velocity data, we refine the transition
scenarios in particle-laden flows and explain the observed
flow resistance curves. A sharp transition is found for low
volume fractions, with the presence of turbulent puffs in the
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transition region. For higher volume fractions a gradual
transition is observed; turbulent puffs appear to be absent.
Experiments are performed in a glass pipe setup with an

inner diameter of 10� 0.01 mm. Water is used as the con-
tinuous phase and polystyrene particles (Synthos; diameter
d ¼ 530 μm; D=d ¼ 19; density ρ ¼ 1.032 kg=L) are
used as the dispersed phase. Salt ðNa2SO4Þ is added to
the water to make the particles neutrally buoyant. To avoid
perturbations by a pump, the flow is gravity driven. The
outflow is fed back to a feeding tank using a set of
peristaltic pumps. This tank is equipped with an overflow
to maintain a precise, fixed pressure head. The height of the
tank is changed to vary Re, in random order. A converging
inlet chamber is used to ensure smooth inflow conditions.
After this inlet chamber a ring (inner diameter of 8.5 mm) is
placed to trip the flow. The pipe length (L) after the ring is
310D. The pressure drop (ΔP) is measured between 125D
to 250D downstream using a Validyne DP15. Pressure
data were averaged for at least 30 seconds, ensuring
convergence.
Velocity data is obtained 270D downstream using ultra-

sound imaging velocimetry (UIV; [14]), based on a
SonixTOUCH echography system with an L14-5/38 linear
probe. UIV provides time-dependent velocity fields within
a thin slice. This is achieved by local cross-correlation of
tracer particle images obtained by echography. Here the
slice is aligned with the streamwise and radial axes. With
the hardware and processing settings used, the spacing
between vectors in the radial and streamwise direction is
0.45 mm and 4.8 mm, respectively; the thickness of the
slice is 2 mm. To improve the signal-to-noise ratio the
local cross-correlation is determined using results of a
sliding average of ten subsequent ultrasound images. This
introduces temporal filtering: the effective temporal reso-
lution reduces from 260 (the image frame rate) to 26 Hz,
equivalent to a spatial resolution of 1.5D at a typical
centerline velocity of 0.4 m=s. This relatively coarse
resolution is still much smaller than the typical puff length
of 20–30D, which means that turbulent puffs can be
detected. This is validated with a single-phase reference
measurement in both a laminar and turbulent state, using
tracer particles with a diameter of 56 μm. All acquisition
and processing settings are kept constant. For the laminar
case, a root-mean-square variation of 0.8% ðurms=UcÞ is
found. This variation comprises measurement uncertainty
and physical variations in the flow; the value serves as
reference value for undisturbed, laminar flows.
The temperature is measured in the downstream collec-

tion chamber and the viscosity of the water is corrected
accordingly. The volumetric flow rate is determined with
an accuracy better than 0.5% by measuring the time it
takes to collect a given volume of suspension from the
outflow. A single-phase system characterization, without
ring, confirms that the setup is disturbance free up to at least
Re ≈ 4000: in this range the Darcy friction factor, i.e., the

dimensionless pressure difference f≡ΔP=ð1
2
ρU2

bL=DÞ,
was found to agree with Poiseuille’s law, f ¼ 64=Re.
Particles are added in steps, from 0% to 20% weight (as

the particles are neutrally buoyant, volume fraction equals
weight fraction). After the measurements, a sample of the
suspension was collected and weighted. Rinsing, drying
and weighing the particles gave an uncertainty in volume
fraction at the highest load of 1%. The dynamic viscosity of
the suspension (μ ¼ νρ) is corrected using Eilers’s model
[15], given by the following:

μ

μ0
¼

�
1þ 1.25

ϕ

1 − ϕ=0.64

�
2

; ð1Þ

with μ0 as the single-phase viscosity. With this empirical
relation, the viscosity diverges at high volume fractions,
when the systems approaches the jamming transition.
However, for the volume fractions used here (ϕ ≤ 20%),
there is a good agreement with experimental data [16]. This
is also evident from the fact that using this correction all
laminar(like) results collapse on the 64=Re curve.
Figure 1(a) shows the transition behavior for five

selected cases. The friction factor is shown as function
of Reynolds number, commonly known as a Moody
diagram. The friction factor for Poiseuille flow, 64=Re,
is plotted as a continuous line. The single-phase transition
curve is presented as well (“0%”) and a transition at Rec ≈
2000 is found, a value specific for this facility and
perturbation. In panel (b) of Fig. 1, all experiments are
shown in an alternative manner.
From both panels three different observations can be

made: in the first place, Rec decreases for increasing
volume fraction. In panel (b), the dashed curve
(“L → T”) indicates where the friction factor exceeds
Poiseuille’s law by 10%, a pragmatic way to describe
the onset of transition. A minimum (Rec ≈ 1350) is found
for ϕ ≈ 8%. This is in agreement with the observations of
Matas et al. [10] and Yu et al. [11].
Second, Rec does not increase for higher volume

fractions. This is in contrast to what was reported by
Matas et al. [10], yet this is likely due to their method of
determining the flow state (using the spectrum of pressure
fluctuations). Here, we observe a change in transition
behavior in the sense that there is no sharp transition
anymore. This can be seen for the ϕ ¼ 17.5% case in
Fig. 1, where the local minimum has disappeared. In panel
(b), the solid curve (“flocal max”) indicates the local maxi-
mum in the friction factor curve (again a pragmatic way of
describing the end of transition). No local maximum can be
observed for cases with ϕ > 15%; i.e., the friction factor
monotonically decreases with increasing Re.
In the third place, a drag increase is found for particle-

laden pipe flow in the turbulent regime. This drag increase
is found to be a function of volume fraction, but seemingly
there is a maximum drag increase of 17% for ϕ ¼ 10%
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(corrected with Eilers’s viscosity fit) with respect to
Blasius’s friction law for turbulent flows (dashed line,
f ¼ 0.316Re−1=4). For ϕ > 10% this drag increase is
reduced as can be seen in Fig. 1(a) in the 14% transition

curve. The drag increase for cases up to ϕ ¼ 10% are in
line with results from numerical simulations [17], once
adjusted for geometry differences (channel versus pipe).
To investigate this change in laminar-turbulent transition

in more detail, UIV is applied to two representative cases:
ϕ ¼ 1% and ϕ ¼ 14%.
The velocity measurements here rely on the dispersed

phase as tracers. Their response time is sufficiently small,
as they are neutrally buoyant. However, the particles are
relatively large and can thus only follow turbulent eddies of
equal or larger size. This means that the suspension
behavior can only be inferred in a semiquantitative way,
as flow features smaller than a particle diameter are lost.
In Fig. 2, representative visualizations of the radial (v)

velocities for various Reynolds numbers are shown for the
case of ϕ ¼ 1%. Each panel is constructed as a time series
of the radial profile of the radial velocity component. Using
Taylor’s hypothesis, this can qualitatively be interpreted as
a spatial representation of the flow in the pipe. Recently,
Cerbus et al. [18] confirmed that the friction factor in the
transition regime is a combination of the laminar (64=Re, in
between puffs) and a turbulent friction factor (for the puffs):

f ¼ γfpuffs þ ð1 − γÞflam; ð2Þ
where γ, the intermittency, represents the fraction of flow
corresponding to puffs. Since the friction factor for each
Reynolds number is known, γ can be determined. Because
there is a drag increase in the turbulent region (for ϕ ¼ 1%
a drag increase of 4% is found), a slightly different
multiplier for Blasius’s law is used (0.329 instead of
0.316) based on a fit to our data. The resulting intermittency
values are shown in the Figure. The values match with a
visual inspection of the flow structure and pressure signals.
For Re ¼ 1375, laminarlike flow is observed. By “lam-

inarlike,” we imply that the friction factor is on the 64=Re
curve, as long as Re is based on the effective viscosity
[Eq. (1)]. A continuous variation is apparent in the velocity
data, which can be attributed to fluctuations introduced by
the particles. A variation urms=Uc of 3.0% is found. These
fluctuations are associated with the increased effective
viscosity. The next three panels are in the transition region,
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FIG. 2. Radial (v) velocity data as function of time for five different Reynolds numbers for ϕ ¼ 1%. The intermittency γ represents the
fraction of puffs and is obtained from the pressure drop signal. The velocity data are normalized using the centerline velocity. A bar of
length 30D (based on the averaged centerline velocity for each Re) is shown in the top right corner for each panel. Only the top half of
the pipe is shown; the radial positions (r) are normalized with the pipe radius R.
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FIG. 1. The friction factor as function of Reynolds number (panel
a, selected cases) and as function of Reynolds number and volume
fraction (panel b, where each marker represents a measurement).
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corresponding to γ ¼ 0.2, 0.4, and 0.7, respectively. In
these panels, puffs can be identified as confined regions
with significant fluctuations. The length scale for these
puffs is found to be Oð30DÞ, which is in agreement with
results for puffs in single-phase flow [3,7]. For γ ¼ 0.2 the
time-dependent centerline velocity is superimposed (in
arbitrary scaling), showing the characteristic sawtooth
shape around both puffs [8]. Seemingly, for this particle
volume fraction the physical mechanism is not changed
significantly. For the final panel, with γ ¼ 1, the flow is
found to be fully turbulent, as can be seen from the
continuously fluctuating velocity component. From these
observations, it is clear that a particle-laden flow can
exhibit a traditional laminar to turbulent transition; the
main effect of the particles is an earlier onset, as Rec ≈
2000 decreases to Rec ≈ 1700 for ϕ ¼ 1%.
The second case investigated is the flow with ϕ ¼ 14%.

In Fig. 3, representative examples of the radial velocity
component are shown for six different Reynolds numbers.
For each Re, the value of γ� is reported. As will be
discussed later, this parameter can no longer be interpreted
as intermittency, hence the asterisk. For ϕ ¼ 14%, a drag
increase of 8% is found in the turbulent region. Based on
this, the constant in Blasius’s equation is changed to 0.341
and the values of γ� are again determined using Eq. (2). For
the laminarlike case (Re ¼ 760) a variation of 10.3%
ðurms=UcÞ is found, as a result of the presence of the
particles. Despite the “laminar” nature, we can again
observe structures. These extend in the radial direction,
which confirms that they are physical fluctuations rather
than measurement errors smeared out by the sliding
average (which only operates in the temporal direction).
The next four sets are captured in the transition region,

for γ� ¼ 0.3, 0.5, 0.7, and 0.9 respectively. However, from
the radial velocity data no clear puffs can be distinguished,
which is in contrast to the previous case with ϕ ¼ 1%. In all
signals, continuous radial velocity fluctuations are present,
which are increasing in intensity as a function of Reynolds
number. For case γ� ¼ 0.3, the centerline velocity is shown,
which shows no recognizable puff signatures. This indi-
cates that the transition behavior at high volume fractions is
different from transition behavior of a single-phase flow or

dilute suspensions. The intermittency parameter γ� reported
earlier does here not represent a fraction of puffs, but only
the relative position between (extrapolated) laminar and
turbulent friction factor curves. For ϕ > 15% it is no longer
possible to define a γ�, which is indicative of the absence of
distinct, coexisting laminar (low friction) and turbulent
(higher friction) states.
These observations raise the question what happens in an

intermediate case. A UIV dataset for the case ϕ ¼ 8% is
analyzed, which has a friction factor curve in between
ϕ ¼ 1% and 14% (Fig. 1). In the transition region, weak
large-scale structures can be seen; however, they are not as
distinct as the puffs shown in the case for ϕ ¼ 1%. The flow
in between these structures has an increasing fluctuation
intensity due to the particles. This indicates that there is a
gradual change from the transition behavior found for
ϕ ¼ 1% to the behavior found for ϕ ¼ 14%. With increas-
ing concentration, puffs become weaker with respect to the
surrounding flow, which exhibits more intense fluctuations.
An explanation of the observed behavior relies on two

mechanisms: the (local) disturbances introduced by the
particles may interfere with the self-sustaining nature [19]
of puffs. Splitting and growth of puffs has been identified
as a key mechanism in the transition to turbulence [6].
Absence of puffs, however, therefore suggests that an
alternative route must be present, as the flow clearly
becomes turbulent. This second route is again rooted in
the local disturbances by the particles: for single-phase and
dilute systems, flow disturbances are small and lead to a
subcritical transition (evident in the coexistence of laminar
and turbulent regions). On the other hand, in the densely
laden cases, the disturbances can no longer be considered to
be small and lead to a supercritical transition. The disturb-
ances grow globally, with increasing Reynolds number,
towards a fully turbulent flow.
In summary, we show that the transition behavior for

particle-laden flows at high volume fraction is distinctly
different from the transition of single-phase or dilute
particle-laden flows. For low volume fractions, particles
trigger earlier (subcritical) transition, as the particles
introduce disturbances to the flow. From the friction curve
a sharp transition is observed. For higher volume fractions,
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FIG. 3. Radial (v) velocity data as function of time for six different Reynolds numbers for ϕ ¼ 14%.

PHYSICAL REVIEW LETTERS 121, 194501 (2018)

194501-4



transition behavior is found to be distinctly different.
In the Moody diagram a gradual transition is observed.
Investigating the velocity field with UIV shows that there
are no turbulent puffs in the transition region for the
high volume fraction case, contrary to the dilute case.
A description in terms of a supercritical transition is more
appropriate. This also suggests that the friction factor
curve for densely laden flows will be more universal than
that for single-phase flows, for which the transition region
is notoriously unpredictable.
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