R —_
. " i'-*: .i s =

- l-_ e

Gradient Descent

Optimizat

1on. of

Embodied SNNs

Introducing a Scalable, Blologlcally Representative
Closed Loop Model for Motor Control Simulation

MastersThesm Report |
Joy Brand ==
g A " '_I.q-.ll == I
S - . "
2 . . -
§ . - ‘ - l'i
é " ™ - -‘l.- _— - y - 3
= L
2 . -'ll -' ® 9
o® % ae
.
L]
-
- - “

Gradient Descent
Optimization of

Embodied SNNs

Introducing a Scalable, Biologically
Representative Closed-Loop Model for Motor
Control Simulation

by

Joy Brand

Student Name Student Number
Brand 4716795

Supervisor: Dr. W. Mugge, TU Delft & Dr. M. Negrello, Erasmus MC

Daily Supervisor: L.P.L. Landsmeer, Erasmus MC & E.M. Fernandez Santoro, Erasmus MC
Project Duration: February 15, 2024 - Month, Year

Faculty: Faculty of Biomedical Engineering, Delft

Cover: Tam Nguyen. What is a neural network? A computer scientist
explains. en-EUROPE. Dec. 2020. [33]

o]
TUDelft

Preface

Neurons are fundamental units of the nervous system, processing and transmitting information. They
enable brain-muscle communication, allowing organisms to interact with their environment. The cere-
bellum plays a key role in motor control by fine-tuning movements and coordinating precise actions.
Understanding its relationship with the body is crucial for unraveling neural functions and related im-
pairments, but its complex neural networks present significant research challenges.

Researchers study brain activity using in vivo, in vitro, and in silico methods. In vivo experiments record
directly from living brains but offer limited control over variables and difficulty isolating individual neuron
functions. In vitro experiments use cultured neurons in controlled settings but face technical challenges
and limited reproducibility due to neuron viability. To overcome these challenges, a third approach—in
silico experiments—has emerged, transitioning from traditional electrophysiological methods into the
realm of computational neuroscience. In silico experiments employ computational models to simulate
neural activity, overcoming many biological constraints. This approach allows for hypothesis testing,
prediction of neural behavior, and integration of large data sets, complementing traditional methods
and enhancing our understanding of brain function.

Embodied Spiking Neural Networks (SNNs) simulate neural circuits by modeling neurons that commu-
nicate through discrete spikes, capturing temporal neural dynamics more accurately than traditional
models. Accurate parameterization of these models becomes complex as they incorporate detailed
brain-environment interactions. Traditional optimization algorithms struggle with memory limitations
and scalability. Gradient descent optimization offers an efficient solution by adjusting thousands of
parameters to minimize errors between simulated and observed behaviors. In the context of embodied
brain simulations this approach could enable researchers to test and validate hypotheses in scalable
embodied brain models encompassing the mechanisms of motor control.

In collaboration with NeuroComputing Lab at the Erasmus Medical Center, which specializes in the brain
dynamics of the cerebellum, the current Master’s Thesis Project focuses on developing and validating
a novel gradient descent optimization approach for parameter tuning in an embodied SNN model. The
project involves building a simulation to validate the efficacy of gradient descent in optimizing SNNs
within an embodied context. A simulated model of a mouse forearm, including both flexor and extensor
muscles, is created to serve as the environment for this proof of concept, providing a foundation for
more comprehensive simulations that integrate the cerebellum and the entire musculoskeletal system
of the mouse. By aiming to simulate the intricate mechanisms of motor control with high precision, this
research aspires to make contributions to the field of computational neuroscience.

The thesis is organized into five key sections: the introduction provides an overview of the scientific
background, including the significance of gradient descent optimization and the role of embodied SNNs
in modeling the processes of motor control; the methods section explains the theories and techniques
that are used and details the implementation of it; the results section presents the outcomes of the sub-
systems of the simulations and the full system, examining informative gradient calculations, biological
representative behaviour and computational performance of the system; the discussion summarizes
the project’'s outcomes and contributions to the field and outlines directions for future research; and
finally, the conclusion.

Joy Brand
Delft, September 2024

Abstract

This study introduces an approach to optimizing large-scale embodied spiking neural networks (SNNs)
for simulating the brain in a closed-loop environment, crucial for validating theoretical neuroscience
hypotheses about the brain-body relationship. Accurately modeling this relationship at scale allows for
the simulation of neural plasticity, temporal dynamics, and spike timing. Traditional parameter tuning
methods are impractical for complex SNNs due to their non-differentiable nature and computational
challenges. To address these issues, we apply gradient descent optimization with forward propagation
through time, enhanced by surrogate gradient techniques, enabling efficient and scalable SNN tuning.
We demonstrate this approach with a proof-of-concept system comprising a three-layer leaky-integrate-
and-fire neural network with recurrent connections, integrated with a 2D musculoskeletal model using
Hill-type muscle representations. All components are fully differentiable, allowing for gradient calcula-
tions through the system. The results demonstrate that the weights are updated and the performance of
the embodied SNN increases as it learns to stabilize the arms angle to zero degrees. Together with the
improved motor control behavior, these results indicate that the optimization approach can handle the
non-linearities of the muscle model. Spike activity show representative spike firing frequencies during
the training process. The system operates within zero memory constraints and has an easily adjustable
and well structured software architecture enabling scalability of the system. These findings support gra-
dient descent optimization with forward propagation through time as a viable and scalable approach
for embodied SNNs in motor control simulations, paving the way for more extensive applications like
closed-loop cerebellum modeling.

11

contents

Preface i

Abstract ii
1 Introduction

2 Methodology 4

2.1 GradientDescentBased Learning o 4

22 BrainModel e e 4

2.2.1 Leaky Integrate-and-Fire NeuronModel 4

2.2.2 Surrogate gradient via SuperSpike formalism 0oL 5

2.3 Musculoskeletal system 5

231 Bodymodel 5

2.3.2 BRAXenvironment. 6

2.3.3 Activationdynamics L 6

2.3.4 Integration of stimulation signal in activation dynamics 7

2.3.5 Hill-type Muscle Model 7

2.4 Integration and Parameter Mapping of the Musculoskeletal System and SNN 8

241 Angle Reformulation 8

242 ForcetoTorque Conversion e 8

2.4.3 Determination of Muscle Length L. 8

244 Tendon-MuscleRatio 8

2.5 Implementing Optimization Strategies fortraining SNNs 10

2.5.1 Numerical Computing Library: JAX oo 10

2.5.2 Optax’s Stochastic Gradient Descent optimizer 10

2.5.3 Forward Propagation Through Time 10

26 FullmodelDesign e 11

27 Hardware e 12

3 Results 15

3.1 Validation gradient descent optimization in the embodied SNN 15

3.2 Learning behavior of theembodied SNN 16

3.3 Verifying firing frequencies L 17

3.4 Scalabilityofthesystem 18

3.5 Neural motor control across different muscle stuffiness’s 19

4 Discussion 22

5 Conclusion 25

References 26

A Steady state behavior and learning behavior of the SNN in isolation 31

11

Introduction

Motor control relies on the intricate interaction between the brain, muscles, skeleton, and surround-
ing environment [38]. Together they form a complex network to enable coordinated movements [38].
Understanding the underlying mechanisms of motor control is crucial for diagnosing neurological dis-
eases and developing therapies or interventions that restore or compensate for motor function [16].
We already have great insights into the individual mechanisms of motor control such as reflex arcs [34].
Nevertheless, aspects such as integration of sensory feedback, coordination, and higher-level regula-
tion of movements remain not fully understood [9, 21, 27]. This is due to technical limitations, ethical
constraints, and the high level of complexity [26, 30]. Computational models are useful to gain insight
into motor control [34]. By reverse engineering the behavior of biological processes, researchers can
provide precise control over experimental parameters and test hypotheses to complement where in
vivo and in vitro experiments fall short.

Computational models often focus on isolated neural circuits or specific muscle activations, aiming to
understand how individual components contribute to movement [4, 13]. Spiking neural networks (SNNs)
are commonly used in computational models to simulate the biological processes of the brain’s neural
circuits. SNNs closely mimic the biological neural spiking behavior by incorporating the event-based
nature of spikes and synaptic states [37]. It is particularly popular because of its low computational
cost.[15, 44] Another model of this type, the Hill model, mimics the dynamics of muscle contraction and
is considered relatively simple [32]. Even though it contains nonlinearities it is still effective in describing
muscle behavior in most applications [32]. Decoupled brain and muscle models offer valuable insights
into individual mechanisms of motor control. However, motor control is a dynamic process that relies on
continuous feedback between the brain, body, and environment [38]. Neglecting or overly simplifying
these relationships can paint a distorted picture of reality. To fully capture motor control, the brain and
muscles must be connected in a closed-loop environment, capable of scaling to encompass all systems
involved. In short, scalable embodied brain simulations are in demand.

As we model more components that are involved in motor control we increase the number of parame-
ters leading to a more complex system [34, 35]. In general, to create computational models, observed
behavior or experimental data are translated into mathematical equations or algorithms to replicate bio-
logical processes. In such models, parameters represent key variables —such as synaptic strengths in
neural networks— that determine the behavior and dynamics of the system. For example, the body ad-
justs its actions through regulation of the synaptic strength —a process known as synaptic plasticity—
to achieve a task [47]. Tuning of such parameters allows the model to produce realistic outputs that
match empirical observations. Parameter tuning can be done manually, i.e. iteratively running simu-
lations, then manually updating parameters based on the output. However, this approach becomes
infeasible when dealing with the large number of parameters in complex models [40]. This makes
automated parameter tuning essential.

Hence, the focus has shifted towards automated optimization techniques that in general adjust parame-
ters to optimize a predefined objective function to achieve a specific task or criterion [14, 15]. In the field

of computational neuroscience, tuning is commonly performed using zero-order algorithms [2]. These
algorithms rely on direct evaluation of the objective function without requiring gradient information, ad-
justing parameters iteratively by evaluating their performance at each step [8, 45, 46]. However, this
process is known to suffer from the curse of dimensionality; it only scales to small dimensional problems
and becomes computationally infeasible with many parameters, often requiring large-scale computing
resources [2]. On the other hand, derivative-based methods, known as a first-order algorithm, offer
more efficient and scalable approaches to parameter tuning. Derivative-based optimization allows to
adjust multiple parameters simultaneously, allowing to tune large numbers of parameters[2] in large-
scaled computational models.

To capture the underlying mechanisms of motor control, we need scalable embodied brain models
that allow gradient-based automatic parameter tuning, leading to the following requirements. These
models must incorporate a neural network that replicates neural spiking behavior, a musculoskeletal
body that replicates actual physical measurements of joints and muscles, and a virtual environment
that simulates the kinematics of the body allowing it to perform tasks and interact with external forces.
Additionally, a muscle model is required to simulate the nonlinear dynamics of muscle force generation
depending on the state of the body, muscle and neuronal input. Therefore muscle activation dynamics
and real-time sensory feedback must be included. Furthermore, parameter knowledge must be sys-
tematically gathered, with hyperparameter tuning employed to optimize broader model settings, and
a comprehensive gradient-based parameter tuning framework must be integrated for automated tun-
ing[15]. To ensure scalability, the model must be capable of simulating long periods and scaling up
while maintaining acceptable simulation speeds. Together, these all components must be differential
to allow gradient-based optimization and should enable a biologically plausible simulation of motor con-
trol within a closed-loop environment. In prior art, we find multiple works aiming to build an embodied
brain simulation although none meet all these model requirements [10, 34, 35, 40],

Gradient-driven optimization is already widely used in optimizing artificial neural networks (ANNs), but
of limited use in optimizing SNNs [29, 36]. Gradient-driven optimization in ANNs is particularly used
in the field of image processing and reinforcement learning [29]. Optimizing SNNs is primarily based
on biologically inspired learning rules, such as Spike-Timing-Dependent Plasticity (STDP), rather than
gradient-based methods [9, 21, 27]. Unlike ANNs that use continuous activation functions, SNNs con-
tain discrete spiking events, making the system non-differentiable [31, 54]. Gradient descent requires
the system to be differentiable due to its reliance on gradient calculations, which makes the discrete
nature of SNNs unsuitable. Therefore, methods such as surrogate gradients have been proposed
to approximate gradients, overcoming the non-differentiable nature of spiking neurons and enabling
gradient calculations through SNNs [31, 54]. Studies have shown that gradient descent effectively opti-
mizes both the micro-level dynamics, such as individual neuron spiking, and the macro-level behavior,
including task-level performance, in SNNs [15, 18, 24, 25].

Furthermore, SNNs incorporate temporal dynamics which play a role in information processing and
learning, requiring optimization techniques to account for temporal dependencies and delays in neu-
ral responses [1, 31]. To manage the temporal dynamics, backpropagation through time (BPTT) and
forward propagation through time (FPTT) are developed. Here, FPTT is considered as a combina-
tion of forward propagation with BPTT. BPTT involves "unrolling” the network through time, ensuring
accurate gradient calculations that capture long-term dependencies. However, this comes with high
memory consumption, as the entire sequence of gradients must be stored. In contrast, FPTT calcu-
lates gradients incrementally, requiring only the information from the current iteration, making it more
memory-efficient. However, this approach can lead to less accurate optimization outcomes, as it does
not retain the entire history of gradients. Recent work has shown FPTT outperforming BPTT in optimiz-
ing recurrent networks [20] and SNNs on various benchmark tasks, promising memory-friendly, online
training for long sequences [51].

Libraries exist that allow for automatic gradient calculation, including Theano, TensorFlow, PyTorch,
and JAX. Among these libraries, JAX offers the most flexibility in composing automatic gradients and
performs well across a wide range of hardware [42]. Additionally, a gradient processing and optimiza-
tion library named Optax is developed for JAX to optimize parametric models such as SNNs. Further-
more, BRAX is a library for rigid body simulation written in JAX. This physics engine is fully differentiable,
allowing users to take advantage of JAX’s automatic differentiation features and integration of Optax.

BRAX offers prepackaged environments while also supporting custom ones. However, despite its com-
patibility with JAX and Optax, BRAX faces limitations in simulating muscle dynamics, as it currently does
not support muscle actuators [11].

To conclude, gradient descent optimizations have been found viable in optimizing SNNs [15, 18, 24, 25].
However, gradient-based optimization encounters memory issues for simulation of long-sequences.
FPTT has the potential to address memory constraints, yet it remains under-researched in SNNs [20].
Current tools available allow investigating gradient-driven optimization of SNNs including body physical
dynamics, but lack mimicking muscle dynamics [11]. Thus, while the first steps toward gradient descent
optimization in SNNs have been made and available tools provide the possibility of simulating embod-
ied brain models to some extent, gradient descent optimization with FPTT has not been explored in
embodied brain simulation while promising to understand the underlying mechanisms of motor control.

The goal of the current study is to demonstrate gradient descent optimization through FPTT in em-
bodied SNNs. We approach this by developing an embodied brain model from scratch that retains all
required components while simplifying it to its fundamental form. SNN with Leaky Integrate-and-Fire
(LIF) neuron model is used and a customized musculoskeletal system replicating a two-dimensional
arm including one joint is created in BRAX. To incorporate the muscle dynamics, a self-defined Hill-type
muscle model is integrated into the full model. All components of the full model are differentiable to
enable gradient calculations. The libraries JAX and Optax are used to facilitate the construction of the
optimization framework in an easy and computationally efficient manner. We design this model based
on rodent measurements.

The current paper aspires to create a scalable and biological representative model to lay the ground-
work for a platform that allows researchers to test and validate the underlying mechanisms of motor
control within a gradient-driven optimized closed-loop environment. The term ‘scalable’ means that
the system must operate without memory constraints—implying no increased memory usage during
simulation—and must have a robust software architecture. In this work, “biologically representative”
refers to realistic firing frequencies, specifically between 0 and 100 Hz. This is determined by dividing
the number of spikes by the time in seconds. In addition, the muscle model must exhibit non-linear be-
havior including passive and active force generation. Next to assessing gradient descent optimization
via FPTT in the embodied SNN, the system is also examined based on its scalability and biological
representation.

This work makes the following contributions to science:

* Provide a full differentiable closed-loop embodied SNN model.

» Provide an optimization framework to automatically tune parameters within a zero memory con-
straint.

* Provide an optimization framework that can handles the non-linearity of the muscles.
» Provide a class-based structured architecture that enable adjusting and scalability of the system.

* Provide insights into the motor control behavior and its performance of optimized SNNs across
different muscle stiffnesses

The current paper is structured as follows. The methodology outlines the theories and methods used
to build the embodied SNN. This is followed by a detailed description of the full model design and the
rationale behind specific design choices. The results section first validates gradient descent optimiza-
tion in the complete system, then explores motor control behavior as the system learns. Where after it
verifies firing frequencies and evaluates system scalability, concluding with an analysis of motor control
performance across different muscle stiffnesses. Finally, the discussion addresses our findings, bio-
logical plausibility limitations, and recommendations for further research, which is summarized by the
conclusion.

Methodology

This study trained a SNN of LIF neurons connected to a musculoskeletal system, consisting of a vertical
arm connected to a hinge joint operating in a two-dimensional plane with the flexor and extensor mus-
cles connected on opposite sides of the arm, using gradient descent optimization. The libraries JAX,
Optax, and BRAX were utilized for numerical computing and automatic differentiation, gradient process-
ing and optimization, and simulation of the physics of our body, respectively. The aim of this study is to
develop a differentiable, scalable, and biologically representative closed-loop simulation that provides
a simplified embodied brain model for investigating gradient descent optimization through FPTT. The
parameters and measurements of the model are based on rodent models. This section describes the
architecture of our system and the choices made during this study.

2.1. Gradient Descent Based Learning

Gradient descent is used as an optimization technique to strengthen or weaken neural connections
based on their contribution to error reduction, emulating the biological process of synaptic plasticity.
The process begins with an initial set of parameters and a predefined loss function, which measures
the error—the difference between the model’s output and the actual target values. Using the gradient
of the loss function, the algorithm determines the direction and magnitude of changes needed to reduce
the error. It adjusts the model parameters in the opposite direction of the gradient, “descending” along
the slope of the loss function. This process is performed iteratively, refining the parameters to find a
minimum and, in turn, optimizing the model’s performance [39]. This update rule can be mathematically
represented as:

6t+1 = 0,5 - T]VQL(Qt; Xy, yi) (21)

where 6, represents the parameters at iteration ¢, is the learning rate, and V Lé;; x;, y;) is the gradient
of the loss function L with respect to 6;, computed using a single training example (x;, y;).

2.2. Brain Model
2.2.1. Leaky Integrate-and-Fire Neuron Model

A leaky integrate-and-fire (LIF) model is implemented for the simulation of neurons due to its biological
representation of neuronal behavior and computational efficiency [37]. The LIF model mimics the elec-
trical characteristics of a neuron, where the membrane potential integrates incoming synaptic inputs
over time. When the membrane potential reaches a certain threshold, the neuron fires (a spike) and
its potential is reset. The “leaky” aspect of the model represents the natural decay of the membrane
potential due to passive ion flow, mimicking the neuron’s tendency to return to its resting state. The
LIF model consists of two main components: an equation describing the evolution of the membrane
potential U(t), and a mechanism to generate spikes.

The continuous-time linear differential equations describing the evolution of the membrane potential

2.3. Musculoskeletal system 5

U (t) and synaptic current I(t) are:

Tmemd%it) =-U(t) + RI(t) (2.2)
dl
7'syn% = _I(t) + Isyn_in (23)

where Tmem is the membrane time constant, R is the membrane resistance, sy, is the synaptic time
constant, and Isyn in is the input synaptic current.

To make Equations 2.2 and 2.3 suitable for iterative computation, they are discretized using the expo-
nential Euler method. The update rule for the membrane potential U and I is given by:

Ut+1 - (1 - St) . (BUt + ItAt) (24)
It+1 =al; + Isyn_in (25)

. . . _ At —At . .
where At is the discrete time step, 8 = ¢~ ™em and a = e ™, including Tmem @ Membrane time constant
and 7syn a synaptic time constant.

The LIF model describes action potentials as events, ignoring the shape of the action potential. If the
membrane potential exceeds the threshold criterion, a spike is generated:

St = H(U; — vin) (2.6)

where H is the Heaviside step function and vy, is the threshold voltage for a spike. After a spike, the
membrane potential is reset to zero.

2.2.2. Surrogate gradient via SuperSpike formalism

The Heaviside step function used in Equation 2.6 introduces non-differentiability (discontinuous func-
tion) into the spiking mechanism. To address this, surrogate gradients are implemented using the
SuperSpike formalism, inspired by the work of Zenke and Ganguli [54]. Surrogate gradients approx-
imate the gradient of the Heaviside step function, making it a continuous and differentiable function,
essential for gradient descent optimization.

The Heaviside function H(z) is defined as:

Hz)= {0 Tr=0 2.7)
1, otherwise

Equation 2.7 is approximated as:

dH 1

dr T (Jx] +1)2
This approximation ensures that the Heaviside function is a continuous function, enabling the gradient
calculations required for gradient descent optimization.

(2.8)

2.3. Musculoskeletal system

The musculoskeletal system contains two components; the body and the muscle model. The muscle
model is divided into the activation dynamics and contraction dynamics of the muscle. The contraction
dynamics are modeled as a Hill-type model [48, 52] (Figure 2.2A.). The body is simulated within a BRAX
environment which is discussed in section 2.3.2. Since BRAX does not support muscle actuators, we
developed our own differentiable muscle model and integrated it with BRAX, allowing us to leverage
the benefits of the differentiable physics engine. Section 2.3.3 and 2.3.5 describes the muscle model
and section 2.4 the integration of it in the full model.

2.3.1. Body model

The body consists of a vertical arm connected to a hinge joint that is actuated by two muscles (Figure
2.1). This model operates in a two-dimensional plane, with the hinge joint allowing a range of motion
—%77, %77]. Two muscles, each attached to the opposite sides of the vertical arm representing a flexor
and an extensor. The muscles are structurally identical but mirrored across the y-plane, with their
position and length determined by the connection points on the arm (con1) and the ground (con?2).

2.3. Musculoskeletal system 6

\Fgravityl

conl
&
/

s]'Hl,

W

Figure 2.1: lllustration of the body model showing the muscle connections. The arm is depicted in black, forming an angle 6
with the ground, and has a range of motion between [—%m 17]. The arm’s movement is influenced by the force of gravity
(Fgravity), which acts downward. The muscles are shown in red, with connection points on the arm (con1) and the ground
(con2). The lengths of the lines extending from the connection points (I..»1 and l.,n2) are used, along with the angle 6, to

calculate the muscle length (1,,).

2.3.2. BRAX environment

An environment in BRAX is created to simulate the dynamics of our body discussed in section 2.3.1.
BRAX is used as physics engine because it is written in JAX, allowing to make use of the automatic
differentiation and gradient processing via JAX, essential for gradient descent optimization [11]. The
body, or in other words, the skeleton is described in a xml file that contains all the measurements and
connections of the model. The joint of the arm is modeled as a torque actuator, since BRAX does not
support muscle actuators. Here the joint properties such as the range of motion, damping, armature
(inertia) and gain and gravity are specified (see Table 2.1 for specifications). These parameters are
tuned based on the time that the arm falls down when there is no torque applied. This is approximately
1.5 seconds. The simulation environment in BRAX includes an action space, observation space, and a
starting state. Each time step, the body takes an action after which the state of the system is obtained.
The observation space consists of the joint’s angle and angular velocity. The starting state of the arm is
at an angle of 0 and there is a reset state implemented to set the state to a randomly determined angle
within the predefined range with uniform random noise added for stochasticity. In addition, a maximum
angle is defined. If the arm exceeds this angle before the maximum number of timesteps is reached,
the epoch terminates.

2.3.3. Activation dynamics

The activation dynamics of a muscle is modeled using first-order differential equations to describe the
relationship between neural activation and muscle force generation (Fig. 2.2B). The activation and
deactivation time of the muscle differs, therefore there are two time constants specified 7,.; and 7gcqc-
For modelling the muscle activation the equation is used:

act’ (2.9)

Tdeact ’

stim — T for stim < a

{stim — gt for stim > a
a =

where a is the muscle activation level, stim is the stimulation signal reflecting the neural input received
from the SNN, 7,.: is the activation time constant and 74.,.: is the deactivation time constant that
represents the speed of the muscle’s response to the neural input.

To make Equation 2.9 suitable for iterative computation, they are discretized, to enable gradient com-
putation. This results in the muscle activation update rule:

_ tpulse dt

apyr = stimy - (1 — (1 —ag - e 7aet)+ (1 — stimy) - ag - € Tdeact) (2.10)

where ¢, is the duration of the activation in ms.

2.3. Musculoskeletal system 7

2.3.4. Integration of stimulation signal in activation dynamics

The spikes that the SNN executes are converted into a square step signal with a duration based on
the time it takes for the system to reach 95% of maximum activation level (Fig. 2.2B). We call this
squared signal the stimulation signal (stim). This is implemented to capture the exponential growth
of the muscle’s activation level in addition to the first-order activation dynamics. Modeling activation
dynamics using only a first-order approach results in a linear increase towards the activation level,
missing the activation path of the muscle.

The stimulation signal is produced by the use of some kind of a counter ¢, and the use of the Su-
perSpike formalism method described in in section 2.2.2. The stimulation time is the counter which is
increased by dt;;,, upon receiving a spike from the SNN, and decreased by 1 if no spike is received:

tstim,t+1 = tstim,,t + (S -]-) 1+ 8- dtstim (211)

where ¢4, :+1 i the stimulation time for the next time step, S the spike [0,1] received from the SNN
and dt;,, duration of the stimulation of the muscle per single spike. This function is clipped between
[-1, dtsim] every time step to ensure the stimulation time do not become infinite. The stimulation
counter (t4.m) is used as input in the Heavyside step function (Equation 2.7) which generate a unit
step. This unit step is the stimulation signal (stim) and is approximated (such as Equation 2.8) to
provide a continuous function to enable gradient calculations:

dstim N 1

=~ 2.12
dtstim (|tstim| + 1)2 ()

This approach accounts for multiple spikes and captures the activation behavior of the muscle in a
more biologically plausible manner compared to using first-order activation dynamics alone.

2.3.5. Hill-type Muscle Model

The contraction dynamics of the muscle are modeled by a Hill-type model (Figure 2.2A.). The Hill model
was chosen to keep the computational cost low and to avoid unnecessary complexity, while still accu-
rately representing muscle behavior at the macroscopic level [32]. The focus was not on the specific
characteristics of the muscle model but rather on utilizing a simplified Hill-type model that simulates
force-length and force-velocity relationships using differentiable functions. Instead of traditional if-else
statements commonly found in most Hill-type models, we designed custom functions that aligns with
the general behavior of Hill-type models, ensuring gradient calculation throught the Muscle model.

The contraction dynamics of the muscle is described by the Hill-type model. The Hill-type model as-
sumes that, at each instant, the total force produced by the skeletal muscle, results from the contribution
of a passive elastic element (PE), representing the rigidity of the structures physically in parallel with
the muscle fiber, and an active Hill active contraction element (CE) (Fig. 2.2A.) [48, 52].

The total force is expressed by:
Fy=CE+ PE (2.13)

where F) is the total force, C'E is the force produced by the contractive element, and PFE is the force
produced by the passive element. The CFE and PE are functions of icg and vog normalized with
respect to 12, and v%,, resulting in Iox and ¢ . Note that the Iox and 9¢r and [pg and 7p are the
same, ZCE and 9¢g are only used in the equations for clearance.

The CE depends on the maximum force produced by the muscle, activation level, force-length and
force-velocity relationship:
CE = Fazfifval(t) (2.14)

where the f, and f; are calculated by the equations:

e tlor) 2.15
fi= o5z (2.15)
_ -1 o
j, = —tan” (10%ck) (2.16)

1.5+1

2.4. Integration and Parameter Mapping of the Musculoskeletal System and SNN 8

where the force-length relationship is a Gaussian function. The force of PE is given by a half parabolic
function: R
0, for ZCE <1

- - 217
125, foricp >1 ()

PE=F,..- {
To enable gradient computation, the derivative of Equation 2.17 is approximated via the Spike formalism
method described in section 2.2.2. This results in:

dPE _ [P

— map f ——————— 2.18
llce — 1| +1 ()

dlor
The resulting behaviour of the force-length and velocity-length relationship is shown in Figure 2.2C and
D respectively. This muscle model is differentiable and non-linear.

2.4. Integration and Parameter Mapping of the Musculoskeletal Sys-

tem and SNN

2.4.1. Angle Reformulation

To translate the integer values from the body model simulated using BRAX into currents for the SNN,
the angle 6 is reformulated using a RelLU function and a normalization method. In each simulation
time step, BRAX updates the angle 6, producing an integer that can range from —oo to co. Since LIF
neurons are not been stimulated by negative currents, these negative values are converted to positive
values using a ReLU function. Additionally, the output values are normalized to correspond to spike
frequencies between 10-100 Hz. The normalization parameters are determined prior to the simulation.
This implementation, although simple, ensures that the neurons spike in a biological realistic manner
and enables real-time interaction between the musculoskeletal model and the SNN.

2.4.2. Force to Torque Conversion

To connect the muscle model with BRAX a conversion from force to torque is implemented because
the muscle model generates muscle force, but BRAX only supports torque actuators. This conversion
is based on the geometric configuration of the muscle and joint, where the torque 7 is calculated as:

S22 2
7 = oot - sin (c051 < cont o "1)) Fu (2.19)
m " beonl

Here, l.,n1 and I..,2 are the lengths of the connection points to the muscle, [, is the length of the
muscle, and F, is the muscle force. See Figure 2.1 for illustration.

2.4.3. Determination of Muscle Length

The executed force by the muscle is dependent on the length of the muscle. Although the muscle itself
is "imaginary” and not directly simulated in BRAX, its current length can be derived from the geometric
configuration of the muscle and joint. This is achieved using the law of cosines. The muscle length [,,,
is calculated based on the joint angle and the distances between the muscle’s attachment points. The
equation used is:

i =) Bons 2oy — 2eant - Leons cos(0) (2.20)

where l.,,1 and I.,,2 are the lengths from the joint to the muscle attachment points, and 4 is the joint
angle.

2.4.4. Tendon-Muscle Ratio

The tendon is not modeled in the Hill-type muscle model, even though its stiffness affects muscle
behavior. To account for this, a tendon-muscle ratio is implemented. This ratio adjusts the relative
lengths and stiffness of the muscle and tendon, simulating their relationship. In this model, the tendon
is modeled as stiff, while the muscle retains its elastic elements based on the Hill-type model. Increasing
the tendon-muscle ratio lengthens the tendon, resulting in a stiffer overall muscle-tendon unit, illustrated
in Figure 2.2E. This increased stiffness affects force and torque generation, altering the dynamics of
muscle contractions and their impact on movement.

2.4. Integration and Parameter Mapping of the Musculoskeletal System and SNN

A. CE

SE

1"1
B ® 1.00 - C

= Neuronal spike ®1.00 PE muscle force
== Stimulation CE muscle force
=~ Muscle activation level = Total muscle force

= Total muscle force

o
<
a
-
«

0.50

activation level
force (normalised)
force (normalised)
-
o

0.25 0.25 0.5
0.00 0.00 0.0
0 200 400 600 800 00 05 10 15 20 -1.0 -05 0.0 05 10
timesteps (dt = 0.25 ms) muscle length relative to resting length (normalised) muscle velocity relative to resting state (normalised)
E - Muscle Stiffness +
. < >
Tendon-Muscle Ratio: 0 75 O 85
0.0001 1 —_ Output torque
| £ 0.0000
—0.0001
0.10 A —— Extensor: total muscle force
—— Flexor: total muscle force
I I Z 0.054
0.00 A

0.10 A —— Extensor: CE muscle force
(\ M M u Flexor: CE muscle force
I I I Z 0.05 A | \ -~-~- Extensor: PE muscle force
\ l “\() \\ \§ ‘ k , ‘k Flexor: PE muscle force
0004 .) S AN W G k.J JIN I

—— Extensor: activation level
—— Flexor: activation level

g
o

activation level
o
w

0.0
0 :] I— | I— 1 N— {1 — 1 In— 11— 1/ — | I— | E— 1i—
c1 11— 1 — | — 1 I — 11— | — 11— 1 — —— Neuronal spikes
2
VI 5 o] —— input: sinus
e
-2 T T T T T T
0 1000 2000 3000 4000 5000

timesteps (dt = 1.25 ms)

Figure 2.2: Overview muscle dynamics. A) Hill-type muscle model containing the contractile element (CE), whose length is

indicated as .., the passive parallel element (PE) connected in parallel which has the same length as the CE element and the

elastic element (SE) connected in series whose length is indicated as ls.. The resulting force indicated as f,; and the total
length of the muscle as [,,,. B) Activation dynamics of the muscle in response to a neuronal spike. The green line represents

the neuronal spike, the dashed line shows the duration of stimulation, and the purple line indicates the muscle activation level.
The muscle activation rises quickly to its peak following the spike and stimulation, then gradually decays back to baseline over

800 timesteps (200 milliseconds). C) Force-length relationship of the Hill-type model, illustrates the normalized total muscle
force (orange), passive elastic (PE) muscle force (yellow), and contractile element (CE) muscle force (blue dashed) as

functions of muscle length relative to resting length. D) Force-velocity of the Hill-type model shows the normalized total muscle
force as a function of muscle velocity relative to the resting state, demonstrating how force decreases with increasing velocity.
E) Various stiffnesses of the muscle effecting the force and torque output. The muscle is stimulated by the input of a sinoisodal

(VI), converted to spikes in the (V), activation level of the muscle (IV), passive and active force produced by the muscle (lll),
total muscle force (II) and the output torque based on the both forces (I). Both, the extensor and flexor muscle is simulated
whereby the muscle length of them changes according to the angle of the sinusoidal. The stiffness of the muscle is based on
the ratio between tendon and muscle (presented at the top of the graph), by increasing this ratio, the stiffness of the muscle

increases and thereby the force and torque output.

2.5. Implementing Optimization Strategies for training SNNs 10

2.5. Implementing Optimization Strategies for training SNNs
Gradient descent optimization requires gradient calculations to optimize the system. This section de-
scribes the strategies used in our optimization framework to ensure a scalability as the current study
desires. The use of JAX, Stochastic Gradient Descent (SGD), and Forward Propagation Through Time
(FPTT) is described in the current section.

2.5.1. Numerical Computing Library: JAX

JAX s a high-performance numerical computing library that enables automatic differentiation (autograd)
and Just-in-Time (JIT) compilation for Python functions. The main reasons for using JAX in the current
study are its ability to handle complex data structures effortlessly and its performance improvements for
large-scale computations [17]. JAX’s ability to handle pytrees simplifies the management and manip-
ulation of nested data structures commonly encountered in advanced models like SNNs. Additionally,
JAX’s autograd is based on two fundamental concepts: the Jacobian-Vector Product (JVP) and the
Vector-dacobian Product (VJP), which directly compute the desired products, avoiding unnecessary
computations. This allows for the automatic, effortless, and computationally efficient computation of
gradients required in gradient descent optimization [17].

2.5.2. Optax's Stochastic Gradient Descent optimizer

Optax, a library for gradient-based optimization in JAX, is used to automatically update the weights of
the SNN [5]. One of the optimizers that Optax provide is Stochastic Gradient Descent (SGD). SGD is
a variation of the standard gradient descent optimization algorithm. Unlike standard gradient descent,
which uses the entire dataset to compute gradients, SGD updates parameters only a single data point,
allowing for faster iterations [39]. SGD also includes support for momentum, and Nesterov acceleration,
as these are standard practice when using stochastic gradient descent to train neural networks. The
SGD including momentum and Nesterov acceleration returns an update p of the form:

4= —n(g + p) (2.21)

where 7 is the learning rate, g is gradient of the loss function, 1. is the momentum parameter. Momentum
and Nesterov acceleration is applied in the current work to accelerate convergence.

2.5.3. Forward Propagation Through Time

Forward Propagation Through Time calculates the gradients necessary for adjusting the weights in gra-
dient descent optimization. FPTT was considered for implementation because of its memory efficient
characteristic [51]. FPTT is formulated based on the system’s state and parameters, this is described
as X1 = F(X,0) in a continuous system. To simulate this, the equation is discretized to:

F(X,0) = X + At - f(X,0) (2.22)

where At is the time step duration, and f(X, 6) represents the state transition function. Here we for-
mulate FPTT as explicit integration of the sensitivity matrix, the update rule is given by:

0Xii1\ OF(X.0) OF(X,6) 0x,
<ae >_ 9 lyex, | OX |y_x, \ 08 (2:23)

OF(X,0)
where =~

dF(X 0) <8Xt >

represents the direct and indirect effect of the parameters on the state transition, while

captures the effect propagated through the state. This approach explicitly takes into
account the full system sensitivity, capturing how changes in parameters affect the state over time.

The term # <‘9Xf> involves a matrix-matrix multiplication, which is computationally expensive. To
optimize this, the Jacobian-Matrix Product (JMP) is expressed as a series of Jacobian-Vector Products:

OF(X) /ox: \\" .
=t = 0F(X) |D; 2.24
<< 0X <89 _ 8()[‘]9:9 ()
OF(X) /16X T . . .
where (5% < 5o >) is the transpose of the matrix product between the Jacobian of F' and the

sensitivity matrix with i the i-th element of the transposed product, D! is a vector that represents the

2.6. Full model Design 1

!) Every 20 timesteps I
. 0SS .
! Loss = 6?2 |
I Y i
: Update W.
: —'I Optimizer | :
| ' '
T T e——————— J _____________________ 1
| : Input layer Reservoir n=200 |Output layer | Muscle Activation 1
C n=2 Wi n=2 |
! : Angle 7 v S a :
[| Reformulation — - |
I 0-100 Hz | !
B . 1
I ! |
o - 1
I | !

e — e — = — e — e — e —e e dt=0.25ms | i

BRAX - physics engine Hill-type model
F Force-Length Force-Velocity
0 gravityl F o
T Force to Torque m \‘\
conversion \/ \\
\0 \

Figure 2.3: Technical Overview of the closed-loop model: The system contains a SNN consisting of an; input layer, a reservair,
and an output layer that feeds neural spikes S into the muscle activation dynamics which provides the activation level a that is
used as input for the Hill-type muscle model; simulating force-length and force-velocity properties resulting in the muscle force
F,, that is converted to torque 7 using basic geometric principles which controls the arm in the BRAX environment of which the
state of the angle 6 is reformulated to an ampere that generates spikes in the range of 0 and 100 Hz, used as input for the SNN
- closing the loop. The system operates with two different time steps; the muscle model and the body simulation in BRAX run at
a timestep of 1.25 ms and the SNN and muscle activation dynamics at 0.25 ms, looping five times through the subsystems per
timestep of 1.25 ms. The optimization loop contains the loss function, optimizer and calculated gradients by FPTT. Every 20
timesteps the weight matrix W; is updated based on the loss function using gradient descent optimization. This overview
clearly illustrates the subsystems and their connections, forming the complete closed-loop system containing the fundamental
components of an embodied brain model.

i-th column of the sensitivity matrix transposed, and 9F (X) [D] | is the Jacobian-vector product
6=6

evaluated at the parameter 6.

The conversion of JVP to Jacobian-Matrix Product is achieved using jax.vmap and jax.tree.map in
combination with jax.tree.transpose. Using this JMP circumvents full Jacobian calculation in the inter-
mediate steps, speeding up both compile times and runtime. As JVP extent over matrices and vectors
to general linear spaces, this also allows us to more easily define the system state as a series of JAX
PyTrees.

2.6. Full model Design

The full loop system is presented in Figure 2.3, with its corresponding parameters listed in Table 2.1 and
the optimization procedure used in Algorithm 1. This section outlines the design choices made in the
current work leading to the development of the closed-loop embodied brain model in its fundamental
form.

The SNN is modeled based on a LIF model (see section 2.2.1) in a multilayer feedforward reservoir
architecture. The network comprises an input layer (n=2), a reservoir layer (n=200) and an output layer
(n=2) to control the two muscles. Recurrent connections are included in the second layer to enable
temporal processing and signal modulation, which are essential for generating diverse output signals
[6]. All the initial weights in the SNN are uniformly random distributed between a defined range and the
recurrent weights are additionally masked to introduce sparsity. Moreover, the synaptic connections of
the LIF cells are modelled based on the biophysical characteristics of AMPA receptors as these play

2.7. Hardware 12

a major role in excitatory neurotransmissions in motor control (Table 2.1) [7, 50]. Furthermore, the
number of neurons in each population is determined by balancing the need to minimize computational
costs with the requirement to maintain a stable and controllable system.

The SNN and activation dynamics have been chosen to be simulated with a dt of 0.25 ms, while the mus-
cle model and BRAX run at a dt of 1.25 ms (the SNN loops five times for each muscle-BRAX timestep).
This approach captures the necessary detail of neural activity with smaller time steps, while the longer
timesteps for the mechanical components reduce computational load. This creates an computational
efficient and accurate simulation of the components.

For every 20 timesteps (dt = 1.25 ms) the trainable weights are updated based on the loss function and
the calculated gradients (see Figure 2.3 and Algorithm 1). We have selected the weights between the
reservoir and output layer as trainable weights, while the other weight remains fixed. This approach was
chosen because updating weights across multiple layers would complicate the system with numerous
potential solutions, requiring additional constraints to maintain stability. This is not included in our
design requirements and do not directly contribute to the goal. Therefore, to enhance stability and
minimize computational costs, we concentrated on a single weight update point. To avoid exploding
gradients, the loss gradient and differential matrix are reset every 20 timesteps. To speed up the
optimization loop, the @jax.jit decorator is used to JIT compile functions that are repeatedly used in the
simulation, including the step functions of the LIF model, the muscle model, and the update functions.

The experimental setup used to investigate gradient descent optimization via FPTT is as follows. The
muscles are initialized at a zero degrees angle with the muscle-tendon ratio of 0.75. This ratio was
selected to give the SNN greater control over the arm compared to the passive forces at maximum
angles, while still accounting for the influence of passive muscle forces in the simulation. The system
is tasked with stabilizing the arm to a zero-degree angle, using the following loss function:

Loss = 62 (2.25)

The system has an initialization period of 20 timesteps, after which the arm’s angle is reset randomly
within the ranges of (-0.6, -0.4) or (0.4, 0.6) rad and a velocity in the range of (-0.01, 0.1) rad/s.

2.7. Hardware

The simulations and computations for the present study were conducted on a MacBook Air (13-inch,
Early 2015). This machine is equipped with a 2.2 GHz Dual-Core Intel Core i7 processor, 8 GB of 1600
MHz DDR3 memory, and an integrated Intel HD Graphics 6000 GPU with 1536 MB of shared VRAM
(GPU is not used for simulation). The primary storage device is a Macintosh HD, which served as the
startup disk. While this hardware setup is modest compared to modern high-performance computing
systems, it was sufficient to perform the necessary simulations and optimizations for this research.

2.7. Hardware

13

Algorithm 1 Training SNN with FPTT

Require: B = {z;,y;}L ,, # Epochs E
Require: Trainable params, Simulation states, and Simulation params
Require: Optimizer and learning rate
Require: Initial number of simulation steps # Steps T’
Require: Number of optimization epochs # Epochs F
1: Initialize Fixed Weights W¢
2: Initialize Trainable Weights W,
3: foreache € F do

©ooNo O

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:

22:
23:
24:
25:
26:

Initialize Body state 6; by fsqrt
Initialize Neuron states u;, i;
Initialize Muscle states a;, 7, ;
Initialize the differential matrix D,
Initialize the derivative of the loss L
Reset L: L = Ly
Reset D: D = Dy
foreachi e T do
if i mod 20 == 0 then
Randomly reset state body angle 6; by f,cset
end if
if : mod 20 == 0 then
Reset L: L = L
Reset D: D = Dy
end if

Update i;, ui, ai, T i, 0i = f (fn(ei—h [wie1yii] || W), fanGiis [ai1, Tmio1]), fo (T, [91'—1]))

Update Loss gradient L: L(W;) = L(W;) 4+ V. 4(x;) - D
Update Differential matrix D: D =V, f(z;—1, Wyi—1) [D]

if 7 mod 20 == 19 then
Update W;: W, ;41 = Wi — n(vWL(Wt)‘W,:W, _+ pmy)
end if -
end for
Update Wi W1 = Wei — n(Vw LIW) |y, .+ pime)

0=0

27: end for

+Vw f(xic1, Wii—1)

2.7. Hardware 14

Component Parameters Initial States

Spiking neural network v, = 1.0 mV I = jnp.zeros(n) mA
Teyn = 5.0 Ms U = jnp.zeros(n) + le — 10 mV
Tmem = 20.0 ms Wi input = U(0.0,0.1)

W reservoir = U(—0.001,0.00125) > 0.90
W, = U(—0.005, 0.005)

Activation Dynamics tact = 10.0 ms a = 0.0 (dimensionless)
tgeact = 30.0 ms
dts = 25.0 ms
dtstim = 60.0 ms
Muscle Activation Dynamics Fj,.. = 0.1 N F,,=00N
Umaz = 0.2 M/s vy = 0.0 m/s
Body Model - BRAX larm = 0.0l m fstart = 0.0 rad, 0.0 rad/s
leons = 0.0l m freset = U(—0.6,—0.4), (0.4,0.6)) rad,
leon2 = 0.001 m U((— 155, T05) rad/s
joint_range = [— 5=, ;=] rad 7=0.0Nm

joint_damping = 5 - 107> Nm/rad/s
joint_armature = 5 - 1076 kg-m?
joint_gear = 1.0 (dimensionless)
Fyravity = 0.981m/s?

Table 2.1: Parameters and initial states for each component of the system. v,;,: threshold voltage (mV), 754, synaptic time
constant (ms), 7mem: Membrane time constant (ms), ¢q¢:: activation time constant (s), tgeqc:: deactivation time constant (s),
dts: timestep for activation dynamics (ms), Fi,qq: maximum muscle force (N), vpmqaq: maximum muscle velocity (m/s), lgrm:
length of arm (m), lcon1: Muscle connection point at the arm side (m), l.on2: Muscle connection point at the ground side (m),
joint_range: range of joint motion (rad), constraint_stif fness: constraint stiffness, constraint_limit_stif fness: constraint
limit stiffness, spring_mass_scale: spring mass scale, spring_inertia_scale: spring inertia scale, solver_maxls: solver max
line search, I: synapse current (mA), U: membrane voltage (mV), W .- fixed input weights, Wy ,.cservoir: fixed reservoir
weights, W;: initial trainable weights, a: initial activation state (dimensionless), F,,: initial muscle force (N), vy, : initial muscle
velocity (m/s), fstart: initial joint state (rad, rad/s), freset: reset joint state (rad, rad/s), 7: initial torque (Nm), joint_damping:
joint damping (Nm/rad/s), joint_armature: joint armature (kg-m?), joint_gear: joint gear (dimensionless).

Results

The goal of this study is to demonstrate gradient descent optimization through FPTT in embodied SNNs
in a biologically representative and scalable manner. The design of the system we use is discussed in
section 2.6. The current chapter first validates gradient descent optimization in the embodied SNN and
explores its learning behavior. Next, the firing frequencies are verified to ensure that the system is bio-
logically representative, as defined in this paper, with frequencies below 100 Hz. Scalability is assessed
through computational performance analysis and evaluation of the software architecture. Finally, we
examine the impact of muscle stiffness on motor control behavior and performance in optimized SNNs
across different angles. For information on the steady-state behavior of the SNN in isolation, gradient
descent validation via FPTT, and the learning behavior of the isolated SNN, see Appendix A.

3.1. Validation gradient descent optimization in the embodied SNN

The goal of this section is to demonstrate the effectiveness of the gradient descent optimization using
FPTT in training the embodied SNN to control the arm muscles and stabilize the arm angle at zero
degrees. Specifically, we aim to assess whether the SNN can learn to manage the non-linear dynam-
ics of the muscle model. We approach this by examining our optimization strategy across five initial
weight ranges; U(-0.005, 0.005), U(-0.05, 0.05), U(-0.5, 0.5), U(-1.0, 1.0), U(-0.1, 0.1), U(-2.0, 2.0) to
avoid reliance on a "lucky” initialization and to assess the robustness of the optimization technique. The
SNN was tasked to stabilize the arm at zero degrees for 100 iterations each with a maximum of 4000
timesteps. For each initial weight configuration, we tracked the loss and weight updates over iterations.
A successful learning process is indicated by updated weights and loss decreasing over the 100 iter-
ations. For each initial weight range, the loss should ideally converge to a small value, indicating the
arm is stabilized around zero degrees.

Figure 3.1A. shows fluctuating, not steadily decreasing, averaged loss of the last 2000 timesteps over
the iterations. This suggests that the degree of difficulty to solve the problem varies and affects the
system’s performance. Figure 3.1B. presents the weight update of a single weight per initial weight
range, indicating that the gradients are calculated through the system. To examine whether the gra-
dients are informative, meaning that the gradients result in better performance of the system aka the
system learns, the averaged loss over the first 10 iterations (3.1C.) and last 10 iterations (3.1D.) are
compared per initial weight range. The results show decreased average losses for the initial weight
ranges U(-0.005, 0.005), U(-0.05, 0.05), U(-0.5, 0.5), and U(-1.0, 1.0), while an increased average loss
is observed for U(-2.0, 2.0). This indicates that the SNN does not learn to stabilize the arm at zero
degrees within 100 iterations when initialized with weights in the range U(-2.0, 2.0), whereas it does
for the other configurations. Furthermore, the initial weight range U(-0.05, 0.05) presents the lowest
average loss over the last 10 iterations, indicating that this configuration results in the best performance
within the given iterations of training.

The results demonstrate that the gradient descent optimization is effective for training the embodied
SNN to stabilize the arm at zero degrees, successfully handling the non-linearity of the muscle model. In

15

3.2. Learning behavior of the embodied SNN 16

.
=
N

L

—— U(-0.005, 0.005) initial weights
U(-0.05, 0.05) initial weights

—— U(-0.5, 0.5) initial weights

—— U(-1.0, 1.0) initial weights

/\ W —— U(-2.0, 2.0) initial weights

/)/

1.0 1

0.8

0.6

0.4 1

average loss (last 2000 timesteps)

ARMURYS B AR

0.0 - !
T T T T T T
0 20 40 60 80 100
iterations
B C. D.
. o 0.021 0.889 0.909 0.881
49 0.843

0.020 2 0.804 S 203
S 0.8 A S
—_ - -
S g g
B 0.015 - = =

g 2 0.6 1 S 06

o

8 £ 8
%)o 0.010 @ @

2 0.010 4 2 044 3 041
= 2]
) 2 :

0.005 1 4 4

3 0.003 B 02 g 02
0.002 2 H
0.010 0.007
0.000 - 0.0 - 0.0 -
0.005 0.05 0.5 1.0 2.0 0.005 0.05 0.5 1.0 2.0 0.005 0.05 0.5 1.0 2.0
initial weight ranges initial weight ranges initial weight ranges

Figure 3.1: Learning analyses of the full loop system in which an arm learns to balance by controlling two muscles with 5
different initial weight ranges; U(-0.005, 0.005), U(-0.05, 0.05), U(-0.5, 0.5), U(-1.0, 1.0), U(-0.1, 0.1), U(-2.0, 2.0), each going
through the same training process under the same conditions (100 iterations consisting of 4000 timesteps). A) Average loss

per iteration of the last 2000 timesteps. B) Presents the A weight of the single weight that exhibit the greatest change between
iteration 1 and 2, reflecting the gradient calculations for all initial weights. C) Shows the average loss of the first 10 iterations
and D) of the last 10 iterations (of the last 2000 timesteps) per initial weight range. This shows that the gradients are informative
for all the initial weight ranges with exception of U(-2.0, 2.0). In summary, all weight ranges present to have a gradient, however
for initial weight range U(-2.0, 2.0) the gradient is not informative, for the other initial weight ranges; U(-0.005, 0.005), U(-0.05,
0.05), U(-0.5, 0.5), U(-1.0, 1.0), U(-0.1, 0.1), the gradients are informative, meaning the SNN is learns to balance the arm.

addition, the results indicate that the system is sensitive to the initial weight range, revealing a limitation
of our optimization approach in that it can optimize the embodied SNN only within a certain range of
initial weights. The initial weight range U(-2.0, 2.0) represent a more diverse set of initial conditions
compared to the smaller weight ranges which result in poor gradient information making it challenging to
optimize the embodied SNN. Overall, the results validates that the optimization strategy is robust across
arange of initial weights, with U(-0.05, 0.05) yielding the most effective learning outcome, underpinning
its suitability for training the embodied SNN in this context.

3.2. Learning behavior of the embodied SNN

This section demonstrates how the embodied SNN adapts its neural activity over training iterations to
stabilize the arm, illustrating changes in behavior as it learns. We compare the spike activity, torque
output, and arm angle at the beginning and end of the training process using the initial weight range U(-
0.05, 0.05), as it shows the best performance in previous results. Two iterations with similar initial angle
offsets, iteration 11 and 82 (3.2), are selected and divided into four phases to illustrate the progression
in learning to stabilize the arm.

3.3. Verifying firing frequencies 17

B. 1‘| 2. 3. | 4.
-

— torque |1
—— angle | g

—— pop3 spikes ° , e + — pop3 spikes

pop2 spikes
pop1 spikes

pop2 spikes
pop1 spikes

50

< 100 < 100

150 150

200

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
timesteps (dt = 1.25 ms) timesteps (dt = 1.25 ms)

Figure 3.2: Learning behavior of the SNN with initial weight range U(-0.05, 0.05) at A) iteration 11 and B) iteration 82,
simulated for 5 seconds (4000 timesteps with a time step of 1.25 ms). Each plot represents the SNN'’s activity across three
populations: population 1 (n=2, green), population 2 (n=200, blue), and population 3 (n=2, yellow). The neural activity
influences the torque output (blue line), which in turn controls the angle of the arm (red line). Both figures are divided into four
phases for analysing its behavior: Phase 1 represents the system’s initial response to the randomly set arm angle; Phase 2
occurs when the SNN stops spiking, assuming that the angle will reach zero with the given stimulation; Phase 3 begins when
the SNN detects that the angle has not reached zero and resumes spiking to correct it; and Phase 4 is the final phase where
the SNN ideally balances the arm around the zero-degree angle. Over time, the SNN adapts its spiking behavior to balance the
arm, as reflected in the changes in torque and angle stabilization between the two iterations.

Phase 1 represents the system’s initial response to the randomly set arm angle; Phase 2 occurs when
the SNN stops spiking, here the systems assumes that the angle will reach zero with the given stimula-
tion; Phase 3 begins when the SNN detects that the angle has not reached zero and resumes spiking
to reach a zero degrees angle; and Phase 4 is the final phase where the SNN ideally balances the arm
around the zero-degree angle.

Figure 3.2A. shows iteration 11 and 3.2B. iteration 82. The following observations can be made: Phase
1is longer for iteration 11 compared to iteration 82, indicating that iteration 82 converges more quickly to
zero degrees. Additionally, the angle achieved in phase 1 is closer to zero in iteration 82, demonstrating
better precision in arm control. The magnitude of the error after the initial response reflects the duration
of phase 2, which is shorter for iteration 11 compared to iteration 82. In phase 3, iteration 11 exhibits
high-frequency spiking over a short period, resulting in overshooting. In contrast, iteration 82 shows
low-frequency, controlled spiking that more precisely adjusts the angle, with minimal overshooting. In
phase 4, iteration 11 shows no activity, leading to an unbalanced arm, while iteration 82 maintains
stability around zero degrees, precisely adjusting the arm as needed.

The results demonstrate that the embodied SNN improves its control of the arm over training iterations,
as seen by more precise and stable behavior in iteration 82 compared to iteration 11. The SNN learns
to reduce spiking frequency and avoid overshooting, leading to better stabilization of the arm.

3.3. Verifying firing frequencies

This section examines whether the embodied SNN exhibits biologically representative firing frequen-
cies, specifically below 100 Hz. We use data from the training process with the initial weight range
U(-0.05, 0.05). The average and maximum spike frequencies are measured and compared against a
100 Hz threshold. The system is considered biologically representative if the firing frequencies remain
below this threshold.

The majority of the firing frequencies measured are between 0 and 100 Hz (Figure 3.3). However, fre-
quencies above 100 Hz, with a maximum of 1200 Hz, are observed in populations 2 and 3 (highlighted
by red circles). These high frequencies indicate bursting activity. In the first 18 iterations, popula-
tion 3 exhibits low to near-zero spike frequencies, while population 2 shows frequencies above 100
Hz, indicating a near-zero output signal and no muscle control. These measurements do not reflect

3.4. Scalability of the system 18

1200 A . Popl average [—— S —————— x
« Popl maximum | Y :\
100 === = e e e]
10004 Pop2 average : e . . i
x Pop2 maximum : P o :
§ « Pop3 average i g 601 B R LY x e %, X " |
= 800 - ; | g " T
> « Pop3 maximum : S0 G i 2o L N : \'\,\
c —== Treshold 100 Hz | ¥ 201 ans o o ST o e e e T | :
g 600 - | 20 nw.v:&;,-,-'. e 2 :_:!:"“‘:s: ::.,; S e R = || \.\
o i 04 o | -
(7] / 1 T - - \
= 7 | 0 20 40 60 80 100 | \
a0 / | iteration | '\.
E 400 A // e e e 5 e e e e e e 4 \A\
= / .
- \
./i/ \
200 ; .
R e B o Fe o e e e g b e gt s
L UL L LT TR AT R LI adsssaiucscaseildasssiidoioncoscliosaclotoasyeyoatifaadli |
: [P 5, O e | AP '
0 20 40 60 80 100
iteration

Figure 3.3: Firing frequency of the full system with initial weight range U(-0.05, 0.05) per iteration (100 iterations of 4000
timesteps). The average and maximum spike frequency per neuron for each population are presented, along with the 100 Hz
threshold (red dotted line). The zoom-in view shows spike frequencies under 100 Hz in detail. While most neurons maintain
firing frequencies below 100 Hz, some iterations show neurons exceeding this threshold.

the system’s firing characteristics during active muscle control; therefore, the first 18 iterations are ex-
cluded from the analysis of whether the system maintains biologically representative firing frequencies
under 100 Hz.

Overall, the results show that the majority of firing frequencies are below 100 Hz, with a few outliers
indicating burst spikes. The cause of these bursts will be discussed in section 4; the discussion.

3.4. Scalability of the system

The goal of this section is to evaluate the scalability of the embodied SNN by analyzing its computational
performance and software architecture. We approach this by measuring the total compile time and
the runtime required to simulate 1 biological second for neuronal populations of 50, 100, 200, 500,
and 1000 neurons, for the full system, the system without the muscle model, and the system without
optimization. This analysis provides insights into the runtime behavior of the system as the SNN scales.
Additionally, memory usage is monitored over 200,000 timesteps to verify that it remains stable and
does not increase, ensuring the system is not constrained by memory issues. Furthermore, a simplified
overview and description of the software architecture are provided to assess whether the architecture
supports the addition of components and adjustments of parameters to change or scale the system.

The results exhibit (3.4A.) that both the total compile time and the time required to simulate 1 biological
second increase as the neuronal population grows. Additionally, the results indicate that the gradient
descent optimization technique contributes the most to the total compile time and runtime, while the
muscle model has only a minimal impact. Overall, the results suggest an exponential growth in both
compile time and runtime as the neuronal population increases.

The memory usage measurements show (3.4B.) memory usage starts at 1004.03 MB, and decreases
until it stabilizes at 134.47 MB after approximately 140,000 timesteps. This behavior is explained in the
section 4, the discussion. The results demonstrate that the memory does not increase, concluding the
system is not constrained by memory limitations.

Figure 3.4D. illustrates the software architecture, structured into two levels: the Simulation Loop (main)
file and the Params file. The Simulation Loop (main) file integrates high-level components through
classes like TrainableParams for synaptic weights, SimulationState for dynamic states of neurons, mus-
cles, and the BRAX environment, and SimulationParams for static configurations. It executes a single

3.5. Neural motor control across different muscle stuffiness's 19

simulation step function that updates all states in each timestep. This file builds on lower-level dynam-
ics defined in the Params file, which includes classes for LIF neuron states, single muscle activation
states, and muscle contraction states and their corresponding parameters and step functions. The
physical body configuration and characteristics are defined in a xml file, which the BRAX Environment
file uses to create a simulated setting supported by the BRAX simulator. The environment’s step func-
tion communicates changes back to the Simulation Loop. Here, in the main file the optimization is
handled using the Optax optimizer, JAX gradient processing features, and the support of the PyTree
functions from the Utility file.

To conclude this section, the system exhibits zero memory constraints and features a well-structured,
class-based software design, ensuring adaptability and scalability without changes to the core frame-
work. These results demonstrate the potential to scale up our embodied brain simulation.

3.5. Neural motor control across different muscle stuffiness's

The goal of this section is to gain knowledge of the system’s ability to control and stabilize the arm after
training while considering the non-linearities of the muscle model across different muscle stiffnesses.
We aim to observe distinct differences in motor control behavior and performance at varying stiffness
levels, demonstrating the impact of muscle properties on the SNN. Three SNNs with tendon-muscle
ratios of 0.0, 0.75, and 0.85, were trained under the same conditions for 100 iterations, each lasting 5
seconds (4000 timesteps). After training, the optimized weights were applied to non-learning versions
of the embodied SNN for each tendon-muscle ratio. These SNNs were then tasked to stabilize the
arm’s angle at zero degrees starting from six different initial angles: 30°, 20°, 10°, -10°, -20°, and -30°.
These angles were chosen because they fall within the range of offset angles used during training
process. To assess whether the embodied SNNs could compensate for the non-linear dynamics of the
muscle, their ability to stabilize the arm at zero degrees was observed (Figure 3.5A.). Performance
was quantified by calculating the sum of the loss over the first 1000 timesteps and 4000 timesteps
(Figure 3.5B.) for each initial angle and tendon-muscle ratio. The lower the sum of the loss, the better
the SNN’s performance at stabilizing the arm.

The results show that regardless of the initial angle, the SNN brings the arm closer to zero degrees.
Furthermore, it shows that the neural control behavior varies with different tendon-muscle ratios (Figure
3.5). Specifically, the tendon-muscle ratio of 0.0 tends to produce burst spikes in short bursts, followed
by moments of inactivity to control the arm. In contrast, ratios of 0.75 and 0.85 generate an initial burst
behavior in response to the offset angle, followed by single or few spikes to balance the angle around
its zero degree angle. This pattern reflects a more refined and controlled strategy, where the SNN
maintains stability with minimal activity. Despite the initial angle, the SNN consistently guides the arm
toward zero degrees, demonstrating its capability to handle the non-linearities of the muscle model
effectively.

This result indicates that while the tendon-muscle ratio of 0.75 exhibits the highest performance in the
short term (first 1000 timesteps), over the entire duration (4000 timesteps), the ratio of 0.0 performs
better (Figure 3.5B.). The long-term performance of the tendon-muscle ratio 0.0 suggests that its lower
stiffness, which results in minimal passive forces, making it easier for the SNN to maintain control over
an extended period. This implies that the SNN find it easier to manage less complex, more linear
dynamics compared to stiffer, more non-linear muscle behaviors over the long-term, while in the short
term, the difference in performance is less pronounced. To conclude, the results demonstrate that the
optimized embodied SNNs can control and stabilize the arm across different tendon-muscle ratios and
initial angles, accounting for the non-linearities of the muscle model.

3.5. Neural motor control across different muscle stuffiness's 20
A. B.
80 78 2 413
mm Full system S 400 { ™= Full system 96
70 4 W= Without muscle model 8 8 mm without muscle model
[Without gradient descent optimization S 350 1 mmm without gradient descent optimization
% 601 9
> 54 8 300 4
[=}
E 50 4 48 3
= 250 1
G 40 £ 200
£ =)
o
= 307 £ 1501
- o
2 204 17 18 2017 Y
16 16 v 100 A
12 E 7669
10 7 7 7 7 5 50
] 1514
= 4 75
o S oolez1 2 men : 3
50 100 200 500 1000 o 100 200 500 1000
C number of neurons in population 2 (n) number of neurons in population 2 (n)
1000 Jrtsnsseessssssssssdiossosssssnsansnnnctocssassssasanassssshesssnsnsarasassssedrassnnnsssesasssseshanancs WEory Uag8
----- Maximum memory usage: 1004.03 MB
800 T T Minimum memory usage: 134.47 MB
)
£
& 600 -
a
S
E 400
£
(V]
£
200 ~
0 T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000 200000
D timesteps (dt = 1.25 ms)
Utility Simulation loop (main) Params
PyTrees sum and matrix Slmullatlon statfes clz.ass, par:ms < LIF, actllvatlon,dmuscle anld bodyd
multiplication functions class, .sterf unctions an states class an params class an
optimization framework step functions
4
A 4
< . xml file
. D BRAX environment
BRAX simulator <
s »| BRAX start, reset and step function Bo.d)., measureme.nt.s and
> joint characteristics

Figure 3.4: Computational performance and software architecture of the embodied SNN for system scalability analysis. A,B)
Total compile time (s) (first iteration of 100 timesteps) and runtime to simulate one biological second (s) (averaged over 6
iterations) for various neuron population sizes in population 2. Blue bars represent the full system, red bars exclude the muscle
model, and green bars exclude gradient descent optimization. C) Memory usage during 50 iterations of 4000 timesteps. The
black line shows memory usage, with maximum (1004.03 MB) and minimum (134.47 MB) levels marked by red and green
dotted lines, respectively. D) Software architecture overview. The Params file defines classes and step functions for LIF neuron
dynamics, muscle activation, and contraction models, used in the Simulation Loop (main) file for managing neural populations,
muscle activations, and body-BRAX states. The BRAX environment manages the body defined in an XML file, which
customizes skeletal systems and joint characteristics. JAX and Optax libraries support the system. The results show stable
memory usage over time and a flexible software architecture that facilitates scaling by adding new components and adjusting

parameters without altering the core system.

3.5. Neural motor control across different muscle stuffiness's 21

A.

Tendon-Muscle ratio: 0.0 0.75 0.85
— torque
0.0001 - —— angle
30 deg £ 0.0000 WM— m: mc Lo B
~0.0001 r-1
0.0001 - L1
20 deg £ 0.0000 EW: ‘m-ML m[\—_ML Lo B
~0.0001 1 F-1
0.0001 - L1
10 deg % 0.0000 - ‘Wé W< ‘WM Y E
—0.0001 Pt
0.0001 - L1
10deg § owoo| I =T SIS O
~0.0001 r-1
0.0001 - L1
'20 degg 0.0000 + M b M Y E
~0.0001 r-1
0.0001 - |,
'30 deg % 0.0000 4]w % 1m_/___,—M 0 E
—0.0001 1 r-1
0 500 1000 0 500 1000 0 500 1000
B. timesteps (dt = 1.25 ms)
Tendon-Muscle ratio: 0.0 0.75 0.85
w))
8 100 {® e Loss perangle 8 100 A S 100 {® L
[== Performance average) [] o o
&= L F—
2 80 s 80 * 80+
. © el o 9]
First1000 € &/ € 60 o £ 60 twainadiaatanhad
timesteps = ° ° S B ey =
P 8 401 ® 8 40 ® 8 40 e 'y
(=4 c (=
© o © © o
E 20- E 20 ° E 201 [
£ z ¢ 2
g ol
30 20 -10 10 20 30 30 20 -10 10 20 30 30 20 -10 10 20 30
angle (degrees) angle (degrees) angle (degrees)
w))
4 2001 42004 2 2009 %
2 £ H
< 150 + 150 A ° + 150 4
(=] ° o [=]
All 4000 E E bemmmmmmm e —— £
: 2 100 2 100 Y w00 T TTTTT
tlmesteps E e = _e fé ‘8’ i °
c ° c c
£ 50 - ® 2 50 ° g so4 ° ®
2 g ? g
: o5 e
30 20 -10 10 20 30 30 20 -10 10 20 30 30 20 -10 10 20 30
angle (degrees) angle (degrees) angle (degrees)

Figure 3.5: Motor control behavior and corresponding performance of optimized embodied SNNs in stabilizing the arm across
different tendon-muscle ratios and angles. Embodied SNNs with the tendon-ratio 0.0, 0.75 and 0.85 are 100 iterations of 5
seconds (4000 timesteps) long trained, where after the optimized weights were applied to non-learning versions of the
embodied SNN for each tendon-muscle ratio and tasked to stabilize the arm’s angle at zero degrees starting from 30°, 20°, 10°,
-10°, -20°, and -30°. Each tendon-muscle ratio reflects a different level of stiffness, the higher the ratio, the stiffer the muscle. A)
Shows the motor controlling behavior of the three different tendon-muscle ratio’s with its torque output (blue) and arm angle
(red) over the first 1000 timesteps for the six initial angles. B) Quantifies the performance of the SNNs by calculating the sum of
the loss over the first 1000 timesteps (top row) and over all 4000 timesteps (bottom row) for each tendon-muscle ratio. Lower
loss values indicate better stabilization performance. The performance is compared for each initial angle and tendon-muscle
ratio, demonstrating the SNN'’s ability to handle the non-linearities of the muscle model.

Discussion

The current paper demonstrated gradient descent optimization using FPTT in embodied SNNs to ad-
dress challenges related to scalable and biologically representative modeling. Computational models
for studying motor control often isolate subsystems, neglecting the relationship between body, brain,
and environment [27, 21, 9]. Capturing the full closed-loop dynamics of motor control requires large-
scale models with numerous parameters, which are difficult to tune due to memory constraints. This
study developed a simplified embodied brain model that retains essential motor control components
to demonstrate effective gradient descent optimization via FPTT. This approach aimed to create a
scalable and biologically representative framework to support optimization in large-scale simulations
to capture the underlying mechanisms of motor control. The results indicate that the system is fully
differentiable, enabling effective gradient-based optimization. As the embodied SNN learned, its per-
formance improved, and most neurons exhibit biologically realistic firing frequencies below 100 Hz. The
software’s zero memory constraints and modular, class-based structure demonstrates the scalability of
our model. Additionally, the SNN demonstrated varying motor control behavior across different muscle
stiffness levels, showing its capability to adapt to muscle properties and underscoring the significance
of incorporating muscle dynamics into brain models.

From the results, we identified three notable findings for further discussion: the limited performance
of gradient descent with an initial weight range of U(-2.0, 2.0), the occurrence of high firing rates, and
the observed decrease in memory usage over time. Gradient descent optimization was effective only
within the small ranges of initial weights. This can be explained using the concept of sparsity, a biolog-
ical phenomenon where only a small fraction of neurons are active at any given time [41]. In a network
with larger initial weights, too many neurons might be active simultaneously, leading to less distinct
and less informative gradients, resulting in poor optimization. Smaller weight ranges help maintain a
sparser, more biologically realistic activity pattern, leading to better gradient descent optimization [14,
22]. Bursts of firing rates above 100 Hz likely occur due to sudden input changes that produce large
gradient values. This behavior is observed when the arm is stabilized at zero degrees for a period,
resulting in no gradients. After such a period, a slight deviation from zero can then cause exploding
gradients, leading to large weight updates and burst activity. One solution is to implement a constant
baseline spiking input, which could mitigate this [6, 43]. Gradient clipping could also be applied, as
another solution to avoid exploding gradients [49]. In our work, normalizing the arm angle to always
stimulate the SNN, even at zero degrees, could be the simplest solution to avoid burst spikes. Although
burst activity may impact training and performance, it does not significantly affect the overall validity of
the results. The memory usage that decreases over time can be explained by Python’s garbage collec-
tion [12]. During the initial stages, memory usage is high due to JAX compiling numerous functions and
initializing various states and data structures required for the simulation. As the simulation progresses,
Python’s garbage collector removes unneeded temporary objects, resulting in stabilized memory us-
age that reflects the actual requirements of the ongoing process. Thus, the system’s eventual memory
usage is stable and not constrained by memory limitations.

Furthermore, we must critically evaluate our approach before considering gradient descent a viable

22

23

technique for embodied brain simulation in a broader context, as this study focuses on optimizing a sin-
gle task, tuning a single set of connections with a single SNN architecture. This work used a balancing
task with muscles calibrated to zero degrees, raising the question of whether the passive forces con-
tributed more to stabilization than the control of the SNN itself. Although the muscles exhibit passive
forces when stretched, the chosen muscle stiffness does not generate passive forces exceeding the
gravitational pull for the tested angles. This minimizes the influence of passive forces while keeping
them as part of the muscle system. Though it would be insightful to re-calibrate the muscles to a dif-
ferent angle and observe the SNN’s motor control when tasked with balancing the arm back to zero
degrees. Focusing on tuning a single set of connections with a single SNN architecture raises questions
about whether this optimization method can effectively optimize multiple connections or different SNN
architectures. However, several studies have demonstrated that gradient descent is a viable method
for optimizing SNNs [15, 18, 24, 25]. Adding to this, our study shows that gradient descent can handle
non-linearities of the muscle model, which is also supported by prior research [4, 19, 28]. Based on
both literature and our findings, we conclude that gradient descent optimization via FPTT is an effective
approach for parameter tuning in embodied SNNs.

The embodied brain model introduced in this study lacks biological plausibility in terms of propriocep-
tive feedback and error encoding. Our system provides proprioceptive feedback by normalizing the arm
angle. However, in biology, sensory feedback is obtained from muscle spindles and Golgi tendon or-
gans. Spindles respond to changes in muscle length and velocity, while Golgi tendon organs measure
changes in muscle tension [53]. To improve biological accuracy, muscle length and tension changes
should be used as inputs for the SNN, as suggested by [23]. The current model can be easily modified
to use the muscle length instead of the arm’s angle as input for the SNN to enhance biological realism.
In addition to that, the error used to optimize the embodied SNN in the current study is based on the
difference between the desired and actual arm angles, which implies position control. However, this ap-
proach is slightly too straightforward, and can be adjusted to enhance biological realism of the system.
As the exact mechanisms of motor control are not fully understood—motivating this study—there is
general consensus among theorists that the nervous system aims to minimize energy expenditure dur-
ing movement. [3]. This is not integrated into our system, which currently focuses solely on positional
error. To provide deeper insights into motor control mechanisms, incorporating an energy efficiency
constraint within the loss function for both spiking activity as well as muscle contraction would better
align with behavior found in biology.

Moreover, our embodied SNN model is constrained by its two-dimensional environment, lacking the
dynamics of real-world three-dimensional space. Simulating in 3D introduces additional challenges as
the model’'s complexity and range of motion increases, expanding the number of possible solutions and
necessitating proper parameter initialization and system constraints. However, to simulate a biological
representative model, the musculoskeletal model needs to be expanded to a 3D environment. To
extend the system to 3D, we need to include additional degrees of freedom for joint movements. In its
simplest form, this can be achieved by adding another hinge joint to the existing joint, rotated over the
other spatial plane, and attaching two muscles on the sides of the pole to actuate the arm. This setup
could represent a simplified hip joint connected to the bone. Adding the hinge joint can be done easily
in the XML file and adding the muscle pair in the simulation class int he main file. Additionally, the SNN
needs to be extended to control four muscles instead of two, which involves adding two populations
to the simulation class defined in the main file (see section 3.4). This approach is easy to implement
while allowing investigation of the effect of a 3D environment on the system’s behavior and gradient
descent optimization.

Despite the discussed limitations in biological realism, the model presented in this paper incorporates
various biologically plausible components for studying motor control. First of all, our embodied SNN
system captures the relation between body, muscle and environment as gravity is applied to the sys-
tem which lacks major computational motor control models [27, 21, 27]. Secondly, the conversion of
spikes to muscle activity through simulation of the activation dynamics incorporating the differences in
activation and deactivation dynamics. Compared with the integration of the squared stimulation time,
the activation dynamics are biological plausible mimicked compared to first-order dynamics as used in
comparable embodied brain models [34]. Additionally, the integrated Hill-type muscle model, combined
with a tendon-muscle ratio, enables simulation of non-linear muscle contraction dynamics including ad-
justable muscle stiffness [48]. Furthermore, the SNN utilizes LIF cells, which capture the event-based

24

nature of spikes and synaptic states [37].

Our method shows promise for enhancing the understanding of motor control and has potential applica-
tions in fields such as computational neuroscience. Since the systems show zero memory constraints
and well-structured, class-based software design, the system can be easily adjusted, extended or con-
nected with differentiable brain models. The components of the system can be used as building-blocks
to create your own embodied brain model to validate or test hypothesis in a controlled and applicable
environment. Additionally, existing brain models such as that of the cerebellum can be connected to
investigate open standing questions such as; how does the cerebellum contribute to motor learning
and adaptation, and what are the specific roles of synaptic plasticity and neural coding in this process
or how do disruptions in cerebellar circuits contribute to disorders like ataxia, and how can computa-
tional models help in understanding these dysfunctions? The embodied SNN model that the current
paper introduced together with the ability of optimizing parameters by gradient descent optimization
provides a valuable tool for exploration of the underlying mechanisms of motor control within a closed
loop environment.

For further research it is recommended to implement a constant stable spike activity to avoid burst
spikes and thereby biologically implausible firing frequencies. Secondly, it is advised to expand the
musculoskeletal system to 3D model to validate gradient descent optimization via FPTT within a three
dimensional embodied SNN. Furthermore, it is recommended to implement biological plausible propri-
oceptive feedback mechanism that is based on the change in muscle length and tension. Additionally,
it is recommended to adjust the loss function to account for the efficient nature of biology by imple-
menting energy constraints for spiking activity. The current study aimed to lay the groundwork for a
platform that allows researchers to test and validate the underlying mechanisms of motor control within
a gradient-driven optimized closed-loop environment and successfully made the first step towards it by
demonstrating gradient descent via FPPT for embodied SNN optimization. We aspire to set the next
step toward such a platform by extending and enhancing biological plausibility of our system.

Conclusion

This study presents a fully differentiable, closed-loop embodied Spiking Neural Network (SNN) model
that captures motor control behavior. We conclude that gradient descent optimization using Forward
Propagation Through Time (FPTT) is an effective approach for parameter tuning in embodied SNNs.
The optimization framework employed has zero memory constraints and can be easily scaled. The
study demonstrates different motor control behaviors across various muscle stiffness levels, highlight-
ing the importance of simulating the brain-body relationship when studying motor control. However,
the current model has certain limitations, including a lack of biologically representative proprioceptive
feedback and the absence of dynamics found in real-world three-dimensional spaces. Future work
should focus on enhancing biological realism and extending the system to a 3D environment to create
embodied brain simulation platforms that enable simulation, testing, and validation of the underlying
mechanisms of motor control.

25

(1]

(2]

3]

[4]

[3]

[6]

[7]
(8]

(9]

[10]

[11]

[12]

References

Guillaume Bellec et al. Long short-term memory and learning-to-learn in networks of spiking
neurons. arXiv:1803.09574 [cs, g-bio]. Dec. 2018. DOI: 10 . 48550/ arXiv . 1803.09574. URL:
http://arxiv.org/abs/1803.09574 (visited on 07/18/2024).

Mathieu Blondel and Vincent Roulet. The Elements of Differentiable Programming. en. arXiv:2403.

[cs]. Mar. 2024. URL: http://arxiv.org/abs/2403. 14606 (visited on 07/18/2024).

Hillel J. Chiel et al. “The Brain in Its Body: Motor Control and Sensing in a Biomechanical Context”.
In: The Journal of Neuroscience 29.41 (Oct. 2009), pp. 12807-12814. ISSN: 0270-6474. DOI:
10.1523/JNEUROSCI . 3338-09.2009. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2794418/ (visited on 09/27/2024).

Friedl De Groote and Antoine Falisse. “Perspective on musculoskeletal modelling and predictive
simulations of human movement to assess the neuromechanics of gait”. In: Proceedings of the
Royal Society B: Biological Sciences 288.1946 (), p. 20202432. ISSN: 0962-8452. DOI: 10.1098/
rspb.2020.2432. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935082/ (visited
on 09/27/2024).

DeepMind and Babuschkin, Igor and Baumli, Kate and Bell, Alison and Bhupatiraju. GitHub -
google-deepmind/optax: Optax is a gradient processing and optimization library for JAX. 2020.
URL: https://github.com/google-deepmind/optax (visited on 07/20/2024).

Vyacheslav Demin and Dmitry Nekhaev. “Recurrent Spiking Neural Network Learning Based on
a Competitive Maximization of Neuronal Activity”. English. In: Frontiers in Neuroinformatics 12
(Nov. 2018). Publisher: Frontiers. ISSN: 1662-5196. DOI: 10.3389/fninf . 2018 .00079. URL:
https://www.frontiersin. org/ journals/neuroinformatics/articles/10.3389/fninf .
2018.00079/full (visited on 09/23/2024).

A Destexhe et al. “Kinetic Models of Synaptic Transmission”. en. In: ().

Mikael Djurfeldt, Orjan Ekeberg, and Anders Lansner. “Large-scale modeling - a tool for con-
quering the complexity of the brain”. English. In: Frontiers in Neuroinformatics 2 (Apr. 2008).
Publisher: Frontiers. ISSN: 1662-5196. DOI: 10.3389/neuro.11.001.2008. URL: https://www.
frontiersin.org/journals/neuroinformatics/articles/10.3389/neuro.11.001.2008/
full (visited on 07/17/2024).

Benedikt Feldotto et al. “Deploying and Optimizing Embodied Simulations of Large-Scale Spiking
Neural Networks on HPC Infrastructure”. English. In: Frontiers in Neuroinformatics 16 (May 2022).
ISSN: 1662-5196. DOI: 10 . 3389/ fninf . 2022 . 884180. URL: https : //www . frontiersin .
org/ journals/neuroinformatics/articles/10.3389/fninf.2022.884180/full (visited on
07/21/2024).

Benedikt Feldotto et al. “Evaluating Muscle Synergies With EMG Data and Physics Simulation
in the Neurorobotics Platform”. English. In: Frontiers in Neurorobotics 16 (July 2022). Publisher:
Frontiers. ISSN: 1662-5218. DOI: 10.3389/fnbot .2022.856797. URL: https://www.frontier
sin.org/journals/neurorobotics/articles/10.3389/fnbot.2022.856797/full (visited on
09/16/2024).

C. Daniel Freeman et al. Brax — A Differentiable Physics Engine for Large Scale Rigid Body
Simulation. en. arXiv:2106.13281 [cs]. June 2021. URL: http://arxiv.org/abs/2106.13281
(visited on 09/16/2024).

Garbage collector design. en. URL: https: //devguide . python . org/ internals/ garbage -
collector/ (visited on 09/27/2024).

26

14606

https://doi.org/10.48550/arXiv.1803.09574
http://arxiv.org/abs/1803.09574
http://arxiv.org/abs/2403.14606
https://doi.org/10.1523/JNEUROSCI.3338-09.2009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794418/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794418/
https://doi.org/10.1098/rspb.2020.2432
https://doi.org/10.1098/rspb.2020.2432
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935082/
https://github.com/google-deepmind/optax
https://doi.org/10.3389/fninf.2018.00079
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00079/full
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2018.00079/full
https://doi.org/10.3389/neuro.11.001.2008
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/neuro.11.001.2008/full
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/neuro.11.001.2008/full
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/neuro.11.001.2008/full
https://doi.org/10.3389/fninf.2022.884180
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2022.884180/full
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2022.884180/full
https://doi.org/10.3389/fnbot.2022.856797
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2022.856797/full
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2022.856797/full
http://arxiv.org/abs/2106.13281
https://devguide.python.org/internals/garbage-collector/
https://devguide.python.org/internals/garbage-collector/

References 27

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Han Q et al. “Spinal cord maturation and locomotion in mice with an isolated cortex.” eng. In:
Neuroscience 253 (2013). Place: United States, pp. 235-44. ISSN: 1873-7544 (Electronic). DOI:
10.1016/j .neuroscience.2013.08.057. URL: https://pubmed.ncbi.nlm.nih.gov/24012835
/ (visited on 01/01/0012).

Torsten Hoefler et al. Sparsity in Deep Learning: Pruning and growth for efficient inference and
training in neural networks. en. arXiv:2102.00554 [cs]. Jan. 2021. URL: http://arxiv.org/abs/
2102.00554 (visited on 09/27/2024).

Dongsung Huh and Terrence J Sejnowski. “Gradient Descent for Spiking Neural Networks”. In:
Advances in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc., 2018. URL:
https://proceedings.neurips.cc/paper_files/paper/2018/hash/185e65bc40581880c4f2¢
82958de8cfe-Abstract.html (visited on 07/18/2024).

Masao Ito. “Control of mental activities by internal models in the cerebellum”. en. In: Nature
Reviews Neuroscience 9.4 (Apr. 2008). Number: 4 Publisher: Nature Publishing Group, pp. 304—
313. ISSN: 1471-0048. DOI: 10.1038/nrn2332. URL: https://www.nature.com/articles/
nrn2332 (visited on 12/13/2023).

James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson and Chris
Leary and Dougal Maclaurin and George Necula and Adam Paszke and Jake Vander{P}las
and Skye Wanderman-{M}ilne and Qiao Zhang. google/jax. original-date: 2018-10-25T21:25:02Z.
July 2024. URL: https://github.com/google/jax (visited on 07/21/2024).

llenna Simone Jones and Konrad Paul Kording. Efficient optimization of ODE neuron models
using gradient descent. en. arXiv:2407.04025 [g-bio]. July 2024. URL: http://arxiv.org/abs/
2407.04025 (visited on 07/17/2024).

Abdelhamid Kadiallah, David Franklin, and Etienne Burdet. “Generalization in Adaptation to Sta-
ble and Unstable Dynamics”. In: PloS one 7 (Oct. 2012), e45075. DOI: 10.1371/journal.pone.
0045075.

Anil Kag and Venkatesh Saligrama. “Training Recurrent Neural Networks via Forward Propaga-
tion Through Time”. en. In: Proceedings of the 38th International Conference on Machine Learn-
ing. ISSN: 2640-3498. PMLR, July 2021, pp. 5189-5200. URL: https: //proceedings . mlr .
press/v139/kag2la.html (visited on 07/20/2024).

Christian Keysers and David Perrett. “Demystifying social cognition: A Hebbian perspective”. In:
Trends in cognitive sciences 8 (Dec. 2004), pp. 501—7. DOI: 10.1016/j.tics.2004.09.005.

W. B. Levy and R. A. Baxter. “Energy efficient neural codes”. eng. In: Neural Computation 8.3
(Apr. 1996), pp. 531-543. ISSN: 0899-7667. DOI: 10.1162/neco.1996.8.3.531.

Si Li et al. “Coordinated Alpha and Gamma Control of Muscles and Spindles in Movement and
Posture”. English. In: Frontiers in Computational Neuroscience 9 (Oct. 2015). Publisher: Frontiers.
ISSN: 1662-5188. DOI: 10.3389/fncom.2015.00122. URL: https://www.frontiersin.org/j
ournals/computational-neuroscience/articles/10.3389/fncom.2015.00122/full (visited
on 09/27/2024).

Yang Li and Yi Zeng. Efficient and Accurate Conversion of Spiking Neural Network with Burst
Spikes. en. arXiv:2204.13271 [cs]. May 2022. URL: http://arxiv . org/abs /2204 . 13271
(visited on 09/16/2024).

Yang Li et al. “Directly training temporal Spiking Neural Network with sparse surrogate gradient”.
In: Neural Networks 179 (Nov. 2024), p. 106499. ISSN: 0893-6080. DOI: 10. 1016/ j . neunet .
2024.106499. URL: https://www.sciencedirect.com/science/article/pii/S089360802400
4234 (visited on 09/16/2024).

Henry Markram. “Seven challenges for neuroscience”. In: Functional Neurology 28.3 (2013),
pp. 145—-151. ISSN: 0393-5264. URL: https : //www . ncbi . nlm . nih . gov/pmc /articles/
PMC3812747/ (visited on 07/20/2024).

Henry Markram et al. “Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and
EPSPs”. In: Science (New York, N.Y.) 275 (Feb. 1997), pp. 213-5. DOI: 10.1126/science.275.
5297.213.

https://doi.org/10.1016/j.neuroscience.2013.08.057
https://pubmed.ncbi.nlm.nih.gov/24012835/
https://pubmed.ncbi.nlm.nih.gov/24012835/
http://arxiv.org/abs/2102.00554
http://arxiv.org/abs/2102.00554
https://proceedings.neurips.cc/paper_files/paper/2018/hash/185e65bc40581880c4f2c82958de8cfe-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/185e65bc40581880c4f2c82958de8cfe-Abstract.html
https://doi.org/10.1038/nrn2332
https://www.nature.com/articles/nrn2332
https://www.nature.com/articles/nrn2332
https://github.com/google/jax
http://arxiv.org/abs/2407.04025
http://arxiv.org/abs/2407.04025
https://doi.org/10.1371/journal.pone.0045075
https://doi.org/10.1371/journal.pone.0045075
https://proceedings.mlr.press/v139/kag21a.html
https://proceedings.mlr.press/v139/kag21a.html
https://doi.org/10.1016/j.tics.2004.09.005
https://doi.org/10.1162/neco.1996.8.3.531
https://doi.org/10.3389/fncom.2015.00122
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2015.00122/full
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2015.00122/full
http://arxiv.org/abs/2204.13271
https://doi.org/10.1016/j.neunet.2024.106499
https://doi.org/10.1016/j.neunet.2024.106499
https://www.sciencedirect.com/science/article/pii/S0893608024004234
https://www.sciencedirect.com/science/article/pii/S0893608024004234
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812747/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812747/
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1126/science.275.5297.213

References 28

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[39]

[36]

[37]

[38]

[39]

[40]

Ross H. Miller et al. “Muscle forces during running predicted by gradient-based and random
search static optimisation algorithms”. en. In: Computer Methods in Biomechanics and Biomedi-
cal Engineering 12.2 (Apr. 2009), pp. 217—225. ISSN: 1025-5842, 1476-8259. DOI: 10.1080/102
55840802430579. URL: http://www.tandfonline.com/doi/abs/10.1080/10255840802430579
(visited on 09/27/2024).

Niklas Muennighoff et al. Scaling Data-Constrained Language Models. arXiv:2305.16264 [cs].
Oct. 2023. DOI: 10.48550/arXiv.2305.16264. URL: http://arxiv.org/abs/2305. 16264
(visited on 07/18/2024).

Oliver Muller and Stefan Rotter. “Neurotechnology: Current Developments and Ethical Issues”.
In: Frontiers in Systems Neuroscience 11 (Dec. 2017), p. 93. ISSN: 1662-5137. DOI: 10.3389/
fnsys . 2017 .00093. URL: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC5733340/
(visited on 12/13/2023).

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate Gradient Learning in Spik-
ing Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Net-
works”. In: IEEE Signal Processing Magazine 36.6 (Nov. 2019). Conference Name: IEEE Signal
Processing Magazine, pp. 51-63. ISSN: 1558-0792. DOI: 10.1109/MSP.2019.2931595. URL:
https://ieeexplore.ieee.org/document/8891809 (visited on 07/18/2024).

Neural prostheses : replacing motor function after disease or disability. eng. New York : Oxford
University Press, 1992. ISBN: 9780195072167. URL: http://archive.org/details/neuralpr
ostheses0000unse_m3i7 (visited on 09/18/2024).

Tam Nguyen. What is a neural network? A computer scientist explains. en-EUROPE. Dec. 2020.
URL: http://theconversation. com/what-is-a-neural-network-a-computer-scientist-
explains-151897 (visited on 08/25/2024).

Javier Pérez Fernandez et al. “A biological-like controller using improved spiking neural networks”.
In: Neurocomputing 463 (Nov. 2021), pp. 237-250. ISSN: 0925-2312. DOI: 10.1016/j .neucom.
2021.08.005. URL: https://www.sciencedirect.com/science/article/pii/S092523122101
1899 (visited on 07/17/2024).

Shravan Tata Ramalingasetty et al. “A Whole-Body Musculoskeletal Model of the Mouse”. In:
IEEE access : practical innovations, open solutions 9 (2021), pp. 163861-163881. ISSN: 2169-
3536. DOI: 10.1109/access . 2021 .3133078. URL: https://www.ncbi.nlm.nih. gov/pmc/
articles/PMC8865483/ (visited on 09/27/2024).

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by
back-propagating errors”. en. In: Nature 323.6088 (Oct. 1986). Publisher: Nature Publishing
Group, pp. 533-536. ISSN: 1476-4687. DOI: 10.1038/323533a0. URL: https://www.nature.
com/articles/323533a0 (visited on 07/18/2024).

Sanaullah et al. “Exploring spiking neural networks: a comprehensive analysis of mathematical
models and applications”. In: Frontiers in Computational Neuroscience 17 (Aug. 2023), p. 1215824.
ISSN: 1662-5188. DOI: 10.3389/fncom.2023.1215824. URL: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC10483570/ (visited on 09/23/2024).

Andrew B. Schwartz. “Movement: How the Brain Communicates with the World”. In: Cell 164.6
(Mar. 2016), pp. 1122—-1135. ISSN: 0092-8674. DOI: 10. 1016/ j . cell.2016.02.038. URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818644/ (visited on 09/27/2024).

Sebastian Ruder. An overview of gradient descent optimization algorithms/optimizing-gradient-
descent/index.html on 19 January 2016. en. Jan. 2016. URL: https://ar5iv.labs.arxiv.org/
html/1609.04747 (visited on 07/18/2024).

Yusuke Shinji, Hirotsugu Okuno, and Yutaka Hirata. “Artificial cerebellum on FPGA: realistic real-
time cerebellar spiking neural network model capable of real-world adaptive motor control”. En-
glish. In: Frontiers in Neuroscience 18 (Apr. 2024). ISSN: 1662-453X. DOI: 10.3389/fnins.2024.
1220908. URL: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/
fnins.2024.1220908/full (visited on 09/16/2024).

https://doi.org/10.1080/10255840802430579
https://doi.org/10.1080/10255840802430579
http://www.tandfonline.com/doi/abs/10.1080/10255840802430579
https://doi.org/10.48550/arXiv.2305.16264
http://arxiv.org/abs/2305.16264
https://doi.org/10.3389/fnsys.2017.00093
https://doi.org/10.3389/fnsys.2017.00093
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733340/
https://doi.org/10.1109/MSP.2019.2931595
https://ieeexplore.ieee.org/document/8891809
http://archive.org/details/neuralprostheses0000unse_m3i7
http://archive.org/details/neuralprostheses0000unse_m3i7
http://theconversation.com/what-is-a-neural-network-a-computer-scientist-explains-151897
http://theconversation.com/what-is-a-neural-network-a-computer-scientist-explains-151897
https://doi.org/10.1016/j.neucom.2021.08.005
https://doi.org/10.1016/j.neucom.2021.08.005
https://www.sciencedirect.com/science/article/pii/S0925231221011899
https://www.sciencedirect.com/science/article/pii/S0925231221011899
https://doi.org/10.1109/access.2021.3133078
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865483/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865483/
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://doi.org/10.3389/fncom.2023.1215824
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483570/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483570/
https://doi.org/10.1016/j.cell.2016.02.038
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818644/
https://ar5iv.labs.arxiv.org/html/1609.04747
https://ar5iv.labs.arxiv.org/html/1609.04747
https://doi.org/10.3389/fnins.2024.1220908
https://doi.org/10.3389/fnins.2024.1220908
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1220908/full
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1220908/full

References 29

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Anton Spanne and Henrik Jorntell. “Questioning the role of sparse coding in the brain”. In: Trends
in Neurosciences 38.7 (July 2015), pp. 417-427. 1ISSN: 0166-2236. DOI: 10.1016/j .tins.2015.
05.005. URL: https://www.sciencedirect.com/science/article/pii/S0166223615001198
(visited on 09/27/2024).

Thomas M. Summe and Siddharth Joshi. Slax: A Composable JAX Library for Rapid and Flexible
Prototyping of Spiking Neural Networks. en. Apr. 2024. URL: https://arxiv.org/abs/2404.
05807v1 (visited on 07/21/2024).

Clarence Tan, Marko éarlija, and Nikola Kasabov. “Spiking Neural Networks: Background, Recent
Development and the NeuCube Architecture”. en. In: Neural Processing Letters 52.2 (Oct. 2020),
pp. 1675—1701. ISSN: 1573-773X. DOI: 10.1007/s11063-020-10322-8. URL: https://doi.
org/10.1007/s11063-020-10322-8 (visited on 09/26/2024).

Hoyoung Tang et al. “Spike Counts Based Low Complexity SNN Architecture With Binary Synapse”.
In: IEEE Transactions on Biomedical Circuits and Systems 13.6 (Dec. 2019). Conference Name:
IEEE Transactions on Biomedical Circuits and Systems, pp. 1664—1677. ISSN: 1940-9990. DOI:
10.1109/TBCAS . 2019.2945406. URL: https://ieeexplore.ieee.org/abstract/document/
88592297casa_token=8YSQaviv31EAAAAA :L1dQhQUdNukNIy36JS1BMxPCcnCqNub9hZZk2ps21n5t
aLyDVMXTOVrOeunuMJ221kmDRbVyeg (visited on 09/27/2024).

W. Van Geit, E. De Schutter, and P. Achard. “Automated neuron model optimization techniques:
a review”. en. In: Biological Cybernetics 99.4 (Nov. 2008), pp. 241-251. ISSN: 1432-0770. DOI:
10.1007/s00422-008-0257-6. URL: https://doi.org/10.1007/s00422-008-0257-6 (visited
on 07/18/2024).

Werner Van Geit et al. “BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure
to Optimise Model Parameters in Neuroscience”. English. In: Frontiers in Neuroinformatics 10
(June 2016). Publisher: Frontiers. ISSN: 1662-5196. DOI: 10.3389/fninf . 2016.00017. URL:
https://www. frontiersin. org/ journals/neuroinformatics/articles/10.3389/fninf .
2016.00017/full (visited on 07/18/2024).

Wen TC et al. “Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Mo-
tor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.” eng. In: Frontiers in neural
circuits 12 (2018). Place: Switzerland, p. 28. ISSN: 1662-5110 (Electronic). DOI: 10.3389/fncir.
2018.00028. URL: https://pubmed.ncbi.nlm.nih.gov/29706871/.

Jack M. Winters. “Hill-Based Muscle Models: A Systems Engineering Perspective”. en. In: Mul-
tiple Muscle Systems: Biomechanics and Movement Organization. Ed. by Jack M. Winters and
Savio L-Y. Woo. New York, NY: Springer, 1990, pp. 69-93. ISBN: 9781461390305. DOI: 10.
1007/978-1-4613-9030-5_5. URL: https://doi.org/10.1007/978-1-4613-9030-5_5 (visited
on 07/08/2024).

Xinyi Wu et al. “Optimizing Recurrent Neural Networks: A Study on Gradient Normalization of
Weights for Enhanced Training Efficiency”. en. In: Applied Sciences 14.15 (Jan. 2024). Number:
15 Publisher: Multidisciplinary Digital Publishing Institute, p. 6578. ISSN: 2076-3417. DOI: 10.339
0/app14156578. URL: https://www.mdpi.com/2076-3417/14/15/6578 (visited on 09/27/2024).

Richard Naud and Liam Paninski Wulfram Gerstner Werner M. Kistler. 3.7 Synapses | Neuronal
Dynamics online book. URL: https : //neuronaldynamics . epfl.ch/online/Ch3.S1 . html
(visited on 06/28/2024).

Bojian Yin, Federico Corradi, and Sander M. Bohte. Accurate online training of dynamical spiking
neural networks through Forward Propagation Through Time. arXiv:2112.11231 [cs]. Nov. 2022.
DOI: 10.48550/arXiv.2112.11231. URL: http://arxiv.org/abs/2112.11231 (visited on
07/20/2024).

F. E. Zajac. “Muscle and tendon: properties, models, scaling, and application to biomechanics
and motor control”. eng. In: Critical Reviews in Biomedical Engineering 17.4 (1989), pp. 359—
411. ISSN: 0278-940X.

Niccold Zampieri and Joriene C. de Nooij. “Regulating muscle spindle and Golgi tendon organ
proprioceptor phenotypes”. In: Current opinion in physiology 19 (Feb. 2021), pp. 204-210. ISSN:
2468-8673. DOI: 10.1016/j . cophys.2020.11.001. URL: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC7769215/ (visited on 09/27/2024).

https://doi.org/10.1016/j.tins.2015.05.005
https://doi.org/10.1016/j.tins.2015.05.005
https://www.sciencedirect.com/science/article/pii/S0166223615001198
https://arxiv.org/abs/2404.05807v1
https://arxiv.org/abs/2404.05807v1
https://doi.org/10.1007/s11063-020-10322-8
https://doi.org/10.1007/s11063-020-10322-8
https://doi.org/10.1007/s11063-020-10322-8
https://doi.org/10.1109/TBCAS.2019.2945406
https://ieeexplore.ieee.org/abstract/document/8859229?casa_token=SYSQavfv31EAAAAA:L1dQhQUdNukNIy36JS1BMxPCcnCqNu59hZZk2ps21n5taLyDVMXTOVrOeunuMJ22lkmDRbVyeg
https://ieeexplore.ieee.org/abstract/document/8859229?casa_token=SYSQavfv31EAAAAA:L1dQhQUdNukNIy36JS1BMxPCcnCqNu59hZZk2ps21n5taLyDVMXTOVrOeunuMJ22lkmDRbVyeg
https://ieeexplore.ieee.org/abstract/document/8859229?casa_token=SYSQavfv31EAAAAA:L1dQhQUdNukNIy36JS1BMxPCcnCqNu59hZZk2ps21n5taLyDVMXTOVrOeunuMJ22lkmDRbVyeg
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.3389/fninf.2016.00017
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2016.00017/full
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2016.00017/full
https://doi.org/10.3389/fncir.2018.00028
https://doi.org/10.3389/fncir.2018.00028
https://pubmed.ncbi.nlm.nih.gov/29706871/
https://doi.org/10.1007/978-1-4613-9030-5_5
https://doi.org/10.1007/978-1-4613-9030-5_5
https://doi.org/10.1007/978-1-4613-9030-5_5
https://doi.org/10.3390/app14156578
https://doi.org/10.3390/app14156578
https://www.mdpi.com/2076-3417/14/15/6578
https://neuronaldynamics.epfl.ch/online/Ch3.S1.html
https://doi.org/10.48550/arXiv.2112.11231
http://arxiv.org/abs/2112.11231
https://doi.org/10.1016/j.cophys.2020.11.001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769215/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769215/

References 30

[54] Friedemann Zenke and Surya Ganguli. “SuperSpike: Supervised learning in multi-layer spiking
neural networks”. In: Neural Computation 30.6 (June 2018). arXiv:1705.11146 [cs, g-bio, stat],
pp. 1514-1541. ISSN: 0899-7667, 1530-888X. DOI: 10.1162/neco_a_01086. URL: http://
arxiv.org/abs/1705.11146 (visited on 07/10/2024).

https://doi.org/10.1162/neco_a_01086
http://arxiv.org/abs/1705.11146
http://arxiv.org/abs/1705.11146

Steady state behavior and learning
behavior of the SNN 1n 1solation

To understand the steady state behaviour of the system, we first simulated the isolated SNN responding
to a sine wave. When training the isolated SNN on a sinusoidal input, we find the following behaviour
(Fig. A.1A.). Population 1, 2, and 3 exhibit spike frequencies (aeraged over the number of neurons per
population) of 38, 17, and 36 Hz respectively. Population 1 present a spike activities that corresponds
to the periodic behavior of the sinusoidal; the spike frequency increase as the input signal increase
and decrease as the input signal decreases. Population 2 exhibits the greatest variation in spiking
patters. These neurons have irregular spiking patterns with denser bursts of activity corresponding to
specific phases of the sinusoidal input. The activity in population 1 results in both low and high spike
frequencies in population 2. Some neurons in population 2 do not spike at all, while others simultane-
ously spike across the entire time sequence. These dynamics appear in population 3, expressed by
relatively sparse spiking activity, with spikes occurring at specific intervals unlike the spiking patterns of
population 1. These results shows that the SNN within a non-learning isolated environment is capable
of generating a range of spiking patterns.

To validate our optimization approach with gradient descent, we trained the isolated SNN to replicate a
sine wave (a translation of the sinusoidal input). As there is only a single output, the SNN is simulated
with only a single output LIF (instead of two LIFs in the full system). Additionall, this LIF does not have
the ability to spike, making it a LI. In this way, we can directly take the voltage level of the neuron
as output signal of the SNN. The adjusted SNN is trained for 15 iterations each of a 2 seconds long
simulation (1600 timestep) starting with two different initial weight ranges. In Figure A.1B. the averaged
loss per iteration is shown of the simulation with initial weight ranges set at U(-0.1, 0.1) and U(-0.001,
0.001). For both ranges the averaged loss decrease over iterations. The initial weight range U(-0.001,
0.001) shows a smaller average loss at both iteration 1 and iteration 15, suggesting that this range
starts closer to the optimized weight values. The larger initial weight range U(-0.7, 0.1) requires more
iterations to achieve the same level of optimization as U(-0.001, 0.001). Figure A.1C. illustrates the
learning process of the isolated SNN with initial weight range U(-0.001, 0.001) by presenting the output
signal of iteration 1 and iteration 15. The output signal of the SNN match the target more closely in
iteration 15 in contrast to iteration 1. In Iteration 1, there is a noticeable delay between the output signal
and the target signal. By lteration 15, this delay is no longer evident, suggesting that the network has
learned to better align its output with the target signal. Thus, we both accuracy and temporal alignment
with the target signal improving as training progresses; this must happen through informative gradients.
This validates the ability of our optimization approach to train the SNN.

31

32

°
®

. —— pop3: avg spike frequency: 36.0 Hz/n B
o 11" 11 — pop2: avg spike frequency: 17.0 Hz/n
pike frequency: 38.0 Hz/n

= U(-0.1, 0.1) initial weights
—e— U(-0.001, 0.001) initial weights

average loss e
-

00 \"‘“-'—'—'—'—H—H

100 ° ° iterations ' ®
< C . lteration 15
target
> 1 —— output: membrane voltage
E° .
150
1
Iteration 1
> 1
200 E o
1

ERR EXIR
R ETTIITe

Vi i

- it:
B —— input: sinus o, input: sinus
€ o 1]
-2

] 200 400 600 800 1000 1200 1400 1600] 200 400 600
timesteps (dt = 1.25 ms) timesteps (dt = 1.25 ms)

Figure A.1: Isolated SNN behaviour in response to sinusoidal input signal. A) Spiking behavior of the isolated SNN in a
non-learning environment that shows spikes in population 1, 2 and 3 with an average spike frequency per neuron of 38.0, 17.0,
36.0 Hz respectively. B) Average loss across 15 iterations consisting of 1600 timesteps that is calculated by the error between

the target signal (two-third of the sinusoid input signal) and output signal of the SNN (the membrane voltage of population 3)
with initial weights randomly uniformly distributed between U(-0.001, 0.001)and U(-0.1, 0.1), showing decreased loss over
iterations for both initial weight ranges. C) Learning behavior of the isolated SNN at iteration 1 and 15 starting with weights

between U(-0.001, 0.001). Showing spike frequencies between 0 and 100 Hz and the SNN. Isolated SNN system shows
spiking behvior and learns.

	Preface
	Abstract
	Introduction
	Methodology
	Gradient Descent Based Learning
	Brain Model
	Leaky Integrate-and-Fire Neuron Model
	Surrogate gradient via SuperSpike formalism

	Musculoskeletal system
	Body model
	BRAX environment
	Activation dynamics
	Integration of stimulation signal in activation dynamics
	Hill-type Muscle Model

	Integration and Parameter Mapping of the Musculoskeletal System and SNN
	Angle Reformulation
	Force to Torque Conversion
	Determination of Muscle Length
	Tendon-Muscle Ratio

	Implementing Optimization Strategies for training SNNs
	Numerical Computing Library: JAX
	Optax's Stochastic Gradient Descent optimizer
	Forward Propagation Through Time

	Full model Design
	Hardware

	Results
	Validation gradient descent optimization in the embodied SNN
	Learning behavior of the embodied SNN
	Verifying firing frequencies
	Scalability of the system
	Neural motor control across different muscle stuffiness's

	Discussion
	Conclusion
	References
	Steady state behavior and learning behavior of the SNN in isolation

