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Thesis committee: Emir Demirović, Maarten Flippo, Benedikt Ahrens

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The regular constraint offers good balance between expressiveness and cost. Despite potential exponential blow-
up, existing approaches use deterministic automata. Furthermore, the area of combining conflict-driven learning with
regular is unexplored. We combine learning with non-determinism, to produce an NFA-based propagator with ex-
planations, and compare its performance against decomposition of the constraint. Experimental results on Nonogram
instances indicate that our specialized propagator is significantly better than decomposing regular constraint.

1 Introduction
Constraint Programming is a powerful paradigm that can solve a wide variety of satisfaction and optimization problems. The
process is split into two parts: modelling and solving. During modelling, a variety of (global) constraints are used to define the
requirements of the problem, after which, those constraints help reduce the solution space for the solver.

It is prohibitively expensive to brute-force all possible solutions, and check whether each solution fits all given constraints.
Instead, constraints have associated propagators, which allow pruning the search space and finding solutions more effectively.
Implementing propagators in a solver involves leveraging properties specific to those constraints. Even so, some constraints
might themselves be very difficult (i.e. NP-hard) to propagate optimally, or might be too specific to be of general use.

The global extensive constraint regular balances well between expressiveness and computational cost [13]. It restricts an
array of variables to match a given regular expression. Many problems, or constraints within problems, can be expressed well
using regular expressions: rostering [13], shape placement [8], puzzles such as Nonograms [19; 5], and even other constraints
such as slide, stretch, pattern [2; 13]. For example, when creating a time table, it might be useful to specify that
after activity A, activity B must always follow. This can be represented using the regular expression ([ˆA]|AB)* (meaning:
”repeated any number of times: anything but an A, or an A followed by a B”).

Pesant first introduced a propagator for the regular constraint [13]. Since then, it has been optimized [9] or reimagined to
use different finite automata [3; 19] for better performance. Furthermore, the field of Constraint Programming has advanced,
unveiling the technique of Lazy Clause Generation (LCG) to combine expressiveness of global constraints with conflict learning
capability of SAT solvers [4]. Existing propagators using LCG have achieved multiple orders of magnitude better results for
the regular constraint [5].

However, state-of-the-art LCG-based approach for the regular constraint works by converting deterministic finite automa-
ton (DFA) into a multi-valued decision diagrams (MDD) [5]. They have developed a generic propagator for MDDs, which
allows for a variety of constraints to be implemented. It might be possible to construct a better LCG propagator, by lever-
aging specific properties unique to the regular constraint. For example, regular expressions might result in exponentially
sized equivalent DFAs/MDDs [7], which suggests that using a non-deterministic finite automaton (NFA) representation could
lead to improved performance [3]. Furthermore, a specific propagator could incorporate previous improvements to the original
propagator for the regular constraint [13].

Feydy’s and Stuckey’s paper on lazy clause generation states that ”learning for decomposed globals is stronger” [4], compared
to using specialized propagators. They argue that decomposition into simpler constraints enables better learning, allowing to
recoup the lost improvements of a more specialized approach of a specific propagator. While this has been demonstrated for
some constraints [16], it remains untested in research for the regular constraint.

In this paper, we extend the DFA-based Pesant’s algorithm [13] together with lazy clause generation, producing the first NFA
propagator with explanations for conflict learning. We challenge the notion that learning is stronger for decomposed constraints,
by comparing the performance of our specialized implementation against a decomposition of the regular constraint [6].

Our experiments show that our NFA-based propagator is an order of magnitude faster than decomposition, by both imple-
menting best possible propagation (domain consistency), and by generating smaller explanations.

The rest of the paper is organized as follows: Section 2 explains and formalizes finite domain constraint programming in
more detail, as well as the regular constraint and its propagator. Section 3 recounts and compares existing state-of-the-
art approaches for the constraint. In Section 4 we define the NFA-based propagator and consider alternative approaches. In
Section 5, we show experimental results of running our propagator, and comparing it against decomposition. Section 6 describes
the steps taken in order to ensure our research is reproducible. Finally, in Section 7, we conclude and discuss remaining open
areas for study.

2 Preliminaries
2.1 Constraint Programming
We aim to use Constraint Programming to solve finite domain (FD) Constraint Satisfaction Problems (CSPs), which consist of:

• Sequence of variables X = x1, x2, . . . , xN ;

• A finite domain of each variable D(xi) ∈ Z;

• Set of constraints C, where each constraint C(X) takes a subsequence of variables X ⊆ X .



CSPs can encode a large variety of problems, which can then be solved in a general manner, without building algorithms for
those problems specifically. Each variable in a CSP represents a decision from a finite number of choices. The constraints C
then represent the relations between variables. FD solver then either finds a value for each variable, such that all constraints are
satisfied, or return ”no result”, indicating that solution does not exist.

Each constraint C(X) has its respective propagator f , which restricts the domains of variables in X , such that inconsistent
values are removed from domains. Propagator f never increases the size of any of the domains, as only inconsistent values
are ever removed. Formally, a propagator f is defined as a monotonically decreasing function f(D), that returns an updated
domain, while still preserving solutions for the CSP. That is, if CSP (C,X ,D) has a solution, then (C,X , f(D)) must also have
one. For a given constraint, a propagator is considered domain consistent (or that it achieves generalized arc consistency) if
after it maps the domains D(X) of variables X , there are no values in any of the domains that could be removed, yet there be
an assignment to the variables that satisfies the constraint.

Algorithm 1 Depth-first search algorithm for solving Constraint Satisfaction Problems, taken from [15]

Require: CSP P = (C,X ,D)
Ensure: true, iff (C,X ,D) has a solution; false otherwise.

P ′ := propagate(P) ▷ Apply all propagators f of each constraint C(X) ∈ C
if ∃x ∈ X ′ : |D′(x)| = 0 then ▷ Empty domain means a constradiction is reached

return false
else if ∃x ∈ X ′ : |D′(x)| > 1 then

Q1,Q2, . . . ,Qk := divide(P ′)
for i ∈ 1, 2, . . . , k do

if solve(Qi) then
return true

end if
end for
return false

else
return true

end if

FD solvers generally use depth-first search (example shown in Algorithm 1). It applies propagators on variable do-
mains until a fixed-point is reached, i.e. the domains are not shrunk any more. An empty domain means that no value
can be assigned to a variable, thus the CSP is inconsistent. Otherwise, a divide-and-conquer approach is used, divid-
ing the CSP into smaller sub-problems. This is usually accomplished by introducing a new constraint, limiting one of
the variables’ domain. For example, a variable x might have a domain {7, 11, 13}, which would be split into three
sub-problems: D1(x) = {7},D2(x) = {11},D3(x) = {13}. These splits can be done by introducing new constraints,
[[x = 7]], [[x = 11]], [[x = 13]] respectively. A solution is found once all domains have been reduced to only a single value.
The previous solutions can be excluded using additional constraints, to find more solutions by rerunning the algorithm.

During the search, solvers inevitably run into inconsistent sub-problems, and have to backtrack. However, such backtracks
are prone to making the same general type of deductions and conflicts, especially if the decisions leading to the conflict have
been made far up the call stack. Conflict learning can help prevent repeating the same deductions in the search tree. Whenever
a conflict occurs, the implication graph of Boolean clauses can be used to infer which domain splits (or decisions) lead to the
current conflict, and a negation of those decisions (called nogood) can be added as a constraint. This approach is currently only
viable for SAT solvers, which solve Boolean satisfiability problem: given a set a Boolean clauses, find an assignment to the
variables such that all clauses evaluate to true. Traditional FD solvers cannot use conflict learning, and expressing CSPs using
Boolean clauses might result in very large encodings.

Lazy clause generation (LCG) [4] can be used to bridge the gap between SAT solvers and FD solvers. In addition to storing
set representation of variable domains D, clausal representation is also used. For each variable xi and each value vj ∈ D(xi),
Boolean variables [[xi = vj ]] and [[xi ≤ vj ]] are stored, with negations of these variables meaning [[xi ̸= vj ]] and [[xi > vj ]]
respectively. Both set representation and clausal representation are kept consistent with each other, by using additional set
of constraints. LCG generates these clauses lazily, as otherwise the clausal representation of the domains may be too large.
By combining the two approaches, LCG can achieve the best of both worlds: expressive and small finite domain constraints;
and optimizations for SAT solvers, such as conflict learning. In order to combine the two approaches, propagators for global
constraints must be modified to also include explanations for their propagations.

Formally, an explanation can be defined as a 2-tuple (X, y), representing implication x1 ∧ x2 ∧ . . . ∧ xk → y:

• Antecedent: a set of Boolean literals X;

• Consequent: Boolean literal y.



For example, explanation
[[x1 = 4]] ∧ ¬[[x5 ≤ 7]] ∧ [[x2 ≤ 3]] → ¬[[x4 = 6]]

means that the propagator deduced the following: if x1 = 4, x5 > 7 and x2 ≤ 3, then x4 ̸= 6. Explanations can be compared
in strength - in general, we look for the smallest possible explanation. For instance,

¬[[x5 ≤ 7]] ∧ [[x2 ≤ 3]] → ¬[[x4 = 6]]

is a strictly smaller explanation - it implies the aforementioned explanation, and thus is considered stronger.
For any propagation, it is always possible to generate a trivial explanation, where the antecedent is the entire current domain

D (appropriately encoded using Boolean literals), and the consequent is derived from the values removed from the domain.
However, these explanations cannot be effectively reused, as the domain D will be different in a different part of the search tree.
As such, the main goal when incorporating global constraints into the LCG approach is to generate small explanations, which
can be reused many times, allowing the solver to more effectively skip over parts of the search tree which would eventually be
discarded by the constraint anyway.

2.2 regular constraint
The regular(X,R) constraint works over a fixed-length array of n variables X = ⟨x1, x2, . . . , xn⟩, and applies a regular
expression R. The regular expression is processed to create a propagator for the solver.

Regular expressions are formed from a set of characters (representing possible values in variable domains), and various
operators: R1 ∪R2, R

∗, R1 ∥R2. The regular expression is first converted into a finite automaton.
Finite automaton M is defined as as a 5-tuple (Q,Σ, δ, q0, F ):
• Q is a finite set of states.
• Σ is an alphabet, composed of values (”letters”) in the domains D(X).
• δ(q, σ) is the transition function, taking a state q ∈ Q and a value σ ∈ Σ.
• q0 is the initial state of the automaton.
• F is the set of accepting states.

The transition function can be either δ : Q×Σ → Q or δ : Q×Σ → P(Q), mapping to either a single state, or to a set of states.
The respective automaton is either a Deterministic Finite Automaton (DFA), or a Non-deterministic Finite Automaton (NFA).
NFAs can be converted to DFAs using subset construction [14], possibly leading to exponentially more states in the resulting
DFA compared to the input NFA. On the other hand, all DFAs are trivially also NFAs. Finite automata can be represented using
a directed multigraph (a graph where there may be multiple edges between two vertices). Figure 1 shows an example of both
an NFA and a DFA, represented as multigraphs. States are represented as nodes, and transition function δ as edges. The initial
state is indicated using an arrow pointing to one of nodes, and accepting states are shown using double circles for nodes.

In common usage, NFAs may also permit ε (meaning no character) transitions. Such ε-NFAs can be converted to ε-free
NFAs without creating any additional states, by adding transitions where needed. As such, in this work, NFAs refer to ε-free
NFAs.

Example 1. Consider the regular expression R = {0, 1}∗ ∥ ((0 ∥ 1) ∪ (1 ∥ 0)) ∥ {0, 1}. Using commonly used PCRE-style,
it would be expressed as [01]*(01|10)[01]. It can be converted into an NFA, shown in Figure 1a. It reads any number of
0s or 1s, then reads either 10, or 01, and finally reads a 0 or 1 again before terminating. Non-determinism is used to decide
whether to go from q0 to q1/q2, after reading a 0 or a 1 respectively. It can also be converted to a DFA, as shown in Figure 1b.
Since non-determinism cannot be used, the DFA remembers the three last inputs it received, choosing 000 or 111 after the first
input. This example also highlights how DFAs might be exponentially bigger than corresponding NFAs. Consider R ∥ {0, 1}k
(k repetitions of {0, 1} concatenated on the right). The resulting NFA would have k + 5 states, while the DFA would have
2k+3 + 1 states.

Pesant [13] first introduced a domain consistent propagation algorithm for regular(X,R) constraint. It takes advantage
of the restricted length of input string |X|, as inputs to global constraints are fixed-length arrays of variables. Given a DFA
M = (Q,Σ, δ, q0, F ), it constructs a layered multigraph G, with |V | = |Q| · (|X| + 1) total number of nodes, arranging
them into |X| + 1 layers, where i-th layer represents the states the string can be in after traversing i letters. Edges are formed
exclusively from i-th layer to (i + 1)-th layer. For each qa, qb ∈ Q, σ ∈ Σ, such that δ(qa, σ) = qb, there is an edge labelled
with σ from node q(a,i) (node in layer i, for state qa) to node q(b,i+1) (node in layer i + 1, for state qb). It then performs a
two-phase (forward and backward) filtering step, removing nodes or edges which cannot be reached from the starting state in
layer 0, or cannot reach any of the accepting states in layer |X|+ 1.

Example 2. Consider the following instance: regular(⟨x1, x2, x3, x4, x5⟩,R), where R is same regular expression as in
Example 1. The regular expression is converted to a DFA (as show in Figure 1b). Then the resulting multigraph that Pesant’s
algorithm [13] produces is shown in Figure 2.

During propagation, the algorithm removes edges corresponding to eliminated values, then recursively updates the graph so
that edges which are no longer on any path from initial state to an accepting state are ”killed”. If all edges corresponding to a
value in a domain are removed, the propagation algorithm removes that value from the domain.
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Figure 1: Finite automata, corresponding to regular expression {0, 1}∗ ∥ ((0 ∥ 1) ∪ (1 ∥ 0)) ∥ {0, 1}.

Example 3. Consider again the layered multigraph shown in Figure 2. Suppose that domain of x2 was updated to {0}, and
x3 to {1}. Figure 3 shows the updated graph. Blue edges and nodes are removed by Pesant’s propagation algorithm. The
propagation would deduce that x4 = 0. Pesant’s algorithm does not create explanations for the deductions, however, we can
explore what type of explanations are possible for this example. A trivial explanation would be:

[[x2 = 0]] ∧ [[x3 = 1]] → [[x4 = 0]]

However, a smaller (and indeed the smallest) explanation exists:

[[x3 = 1]] → [[x4 = 0]]

3 Related Work
Lazy clause generation was initially introduced by Ohrimenko et al. [12], then later reengineered by Feydy and Stuckey [4]. It
introduced a novel approach of using SAT solver techniques, such as using nogoods, conflict-driven search [10], and combining
them with finite domain solvers. Thus, general purpose constraints (whose SAT encodings might be excessively large) could be
used in conjunction with advanced SAT optimizations. The combination can be achieved by extending the constraints to also
include explanations for their propagators.

Pesant [13] initially introduced a domain consistency algorithm for regular constraint exclusively for DFAs, using it to
solve rostering problems. Multiple improvements and observations about it have been made since.

Makeeva and Szymanek [9] improve upon Pesant’s algorithm by optimizing ”characteristics such as incrementality, efficient
backtracking, and memory usage”. Zhen et al. [19] reworks Pesant’s algorithm to use bit-vectors, by requiring input DFA to be
a single-transition DFA, such that if there exists an edge from qa to qb using σ ∈ Σ, there must not be any other edges from
qa to qb. Any DFA can be converted into polynomially-sized single-transition DFA, by duplicating nodes which have multiple
edges coming into them.

Lagerkvist [7] raised the issue that converting a regular expression into a DFA might result in using exponentially more
space, and suggested that Pesant’s algorithm [13] can be adapted for NFAs instead. Cheng et al. [3] tests this hypothesis by
implementing Pesant’s algorithm for NFAs and multi-valued decision diagrams (MDDs). In their experiments, they observe
that NFAs can perform better when the corresponding DFA/MDD would be significantly bigger.

Gange et al. [5] first incorporated explanations to the regular constraint. They extended Subbarayan’s [17] algorithm (which
creates explanations for binary decision diagrams) to explain propagations for MDDs as well. Their explanations are generated
iteratively, sacrificing minimality for faster explanation generation. They convert the regular expression into a MDD, allowing
using their propagator for regular constraint. Their algorithm is significantly faster than existing implementations. However,
it is not clear how much their propagator helps clause learning, compared to decomposition (which Feydy and Stuckey suggest
instead [4]).

Table 1 compares improvements to Pesant’s original domain consistency algorithm [13] for the regular constraint. Each
presented algorithm uses a different approach to improve upon Pesant’s pioneering work, and do not heavily reference each
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Figure 2: Layered multigraph resulting from Pesant’s algorithm [13]. Transparent nodes/edges are removed by the two-phase process.

Table 1: Comparison between state-of-the-art algorithms for the regular constraint, indicating relative improvement for large instances,
compared to Pesant’s algorithm.

Author(s) Time (rel.) Space (rel.) Approach

Pesant [13] 1 1 -
Makeeva and Szy-
manek [9]

×2 ×8 Improved backtracking, optimized redundant data

Gange et al. [5] ×1626 - Iterative MDD propagator with explanations and
learning

Cheng et al. [3] ×14 ×1337 Pesant’s algorithm adapted for NFAs
Zhen et al. [19] ×2.25 - Bit-vectors, single transition DFA

other. Overall, unsurprisingly, Gange et al. [5] learning-driven approach has the biggest improvement, as learning allows
to prevent duplicate propagations and thus cuts down on the search space significantly [12]. Most works do not measure
improvements to space usage, however, Gange et al. [5] shows how much improvement there can be in using NFAs instead of
DFAs or MDDs.

Gange et al. [5] work has the greatest runtime improvement, however, it is not clear whether using their propagator with
explanations is better compared to decomposing the regular constraint into simpler constraints. Lazy clause generation is
already known to be wildly successful in decreasing runtime for many problems, and that it sometimes benefits from using
decomposition of constraints [4; 16]. Thus, it is not clear whether how much of the runtime improvement can be attributed
to the propagator, as opposed to using LCG. Further, their technique of using MDDs is very general and applicable to many
constraints. It raises a question of whether using DFAs/NFAs, which represent the regular constraint more closely, would
allow the propagator to be more efficient, at the cost of generality (i.e. not being applicable to more constraints). Our research
objective seeks to answer these questions, by first constructing an NFA-based propagator with explanations, and then comparing
it against decomposition.

All presented approaches tackle improving the propagator for regular in a different manner, however, none of them combine
their efforts. Zhen et al. [19] work suggests that in some cases, it is sometimes possible to exploit the structure of a given
regular constraint instance. For instance, our earlier example produces a single-transition DFA (shown in Figure 1b) that fits
their model. Cheng et al. [3] also show that in some cases, the DFA might not be much larger than the corresponding NFA.
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Figure 3: Layered multigraph after setting x2 = 0, x3 = 1. Blue nodes/edges indicate that they are not part of any solution with the current
domain.

This suggests that it is possible to fine-tune the propagation strategy that the regular constraint employs, based on the given
regular expression and the resulting automata. We aim to investigate how can these various improvements be combined, or used
in different cases.

4 NFA-based propagator for the regular constraint with explanations
As mentioned in Section 3, Lagerkvist [7] shows that Pesant’s propagation algorithm [13] can easily be extended to work
with NFAs. We treat this extended algorithm as our baseline to build upon. Given a non-deterministic finite automaton1

M = (Q,Σ, δ, q0, F ), and variables X = ⟨x1, x2, . . . , xn⟩ with domains D(xi) ⊆ Σ, we construct a layered multigraph G
with |X| + 1 layers L = ⟨L0, L1, L2, . . . , Ln⟩. Each layer Li consists of |Q| nodes vi1, v

i
2, . . . v

i
|Q|, with edges connecting

adjacent layers corresponding to δ. That is, for each layer Li ∈ {L0, L1, . . . , Ln−1} (i.e. all but the last layer), consider all
transitions in the NFA: qa ∈ Q, σ ∈ Σ, s.t. δ(qa, σ) ⊆ Q. Then for each qb ∈ δ(qa, σ), we connect an edge from via to vi+1

b ,
labelled with σ. If the initial NFA contains 0 ≤ T ≤ |Σ| · |Q|2 transitions, then the resulting layered multigraph G = (L, E)
contains T · (|X|+ 1) edges.

An important optimization to the above construction, as observed by Pesant [13], is to only create the relevant nodes: those
that can reach the accepting nodes in the final layer, starting from the starting node. Thus, in practice, the construction of
the layered multigraph follows the two-phase construction algorithm. In phase one, only nodes and edges reachable from the
starting node, are created. In phase two, nodes and edges that cannot reach and accepting node in the final layer are deleted.

Explanations for the NFA propagator can be created using the same general principle as from Gange et al. [5]. Their
(non-incremental) explanation algorithm works on multi-valued decision diagrams (MDDs), which we adopt to work on non-
deterministic finite automata (NFAs). Three main changes must be made to their explanation algorithm:

1. Adopted to the layered multigraph (as opposed to traversing an MDD);

2. Support multiple final nodes, not just a single true node T ;

3. Support multiple edges labelled with the same value between two nodes.

1As discussed in Section 2, in this work we consider only ε-free NFAs. NFAs containing ε transitions can be converted to ε-free NFAs
without adding new states.



Items 1 and 3 are already innately supported by Gange et al. [5] explanation algorithm. Item 2 requires a minor modification:
instead of finding the set of nodes that can reach T , we find the set of nodes that can reach any of the accepting nodes. This
modification can be accomplished solely by changing the initial set and queue of the search.

It is important to note that this approach requires always storing the original layered multigraph in memory. A distinction
must be drawn between deleted nodes/edges (which only happens during construction), and ”killed” nodes/edges. In order to
preserve the nodes/edges in memory, they are marked as ”killed” when the solver removes a value from a variable’s domain.

Our explanation algorithm is run each time the extended propagator removes a value v from domain D(x) of variable x. To
explain [[x ̸= v]], we assume the opposite ([[x = v]]) in the updated layered multigraph. This ensures that there are no more
viable paths from the start node to any of the accepting nodes.2 We then perform a breadth-first traversal, from the starting
node. For each edge that is currently killed, but adding it back to the layered multigraph would create a valid path, is added to
the explanation.

Algorithm 2 describes the procedure in detail. It follows the exact same idea as for MDD propagator: finding all nodes that
each accepting states in the given state of the multigraph (except treating as if [[x = v]] is true), then iterating through multigraph
again, in breadth-first order, ignoring the state of whether edges are living, and adding any edges that would make a connection
from the starting node to an accepting node, as explanations. The main difference from the explain and mark reacht
functions presented by Gange et al. [5], is that our equivalent of mark reacht is initialized with all accepting nodes, not just
one node T .

In our implementation, at the beginning of solution search, the given regular expression is converted to an NFA, then the
layered multigraph is constructed using the two-phase process. During search, it works in a non-incremental manner, starting
from the initial state each time the solver calls the propagator. It iterates over all variables, killing appropriate edges, and
recursively propagating the updates. After that, it iterates over all edges, and updates any variable values which no longer have
any corresponding living edges. Explanations are constructed eagerly, using Algorithm 2. Whenever the propagator updates a
variable xi, to remove a value σ from it’s domain D(xi), the algorithm is called on the updated layered multigraph, passing in
the propagated clause [[xi ̸= σ]].
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Figure 4: Layered multigraph for a NFA. Transparent edges/nodes are removed during initialization. Setting x2 = 0, x3 = 1 eliminates red
edges, which is propagated to remove the blue node and corresponding blue edge.

Example 4. Consider, the instance from Example 2 again: regular(⟨x1, x2, x3, x4, x5⟩,R), where
R = {0, 1}∗ ∥ ((0 ∥ 1) ∪ (1 ∥ 0)) ∥ {0, 1}. The regular expression R can then be converted to an NFA M , as depicted
in Figure 1a. We then construct a layered multigraph G with six layers, where each layer has five nodes. We add edges between
nodes of adjacent layers, corresponding to transitions in the NFA M . The resulting layered multigraph is depicted in Figure 4.

After setting x2 = 0, x3 = 1, the propagator deduces that x4 ̸= 1. Algorithm 2 is then called with [[x4 ̸= 1]] clause. It
assumes [[x4 = 1]] (while red edges are still removed), and finds that only the two right-most nodes (q3 and q4) can reach the
final layer. It then performs a breadth-first traversal, starting from left-most q0 node, checking if adding an edge would allow
reaching accepting states. Edge from q0 to q0, with value x2 = 0, is not added to the explanation, since adding it would not
create a path to any accepting states. Edge from q0 to q1, with value x3 = 0, is added, as adding it (and assuming [[x4 = 1]])
would create a path to the accepting state.

2It might not be immediately obvious for why that is the case. The propagator only removes values when they cannot be part of any
solution within the current domain D. As such, adding an assumption that a variable has that removed value results in an inconsistent domain.

Another way of viewing it is that the current domain is always a (trivial) valid explanation for any propagation: D → [[x ̸= v]]. Adding a
negation to the argument is the same as stating: (D → [[x ̸= v]]) ∧ [[x = v]], which immediately contradicts current domain D.



Algorithm 2 Creating explanations from the layered multigraph for NFA. Code based on MDD explanations by Gange et al. [5]

Require: Propagated clause [[xk ̸= σ]], Corresponding updated layered multigraph G = (L, E), as built from the NFA M .
Ensure: Set of variable and value pairs {(xa, σa), (xb, σb), . . . }, used to form explanation: [[xa ̸= σa]] ∧ [[xb ̸= σb]] ∧ . . . →
[[xk ̸= σ]]

reaches accepting := {vni | vni ∈ Ln, qi ∈ F} ▷ Initialize reaches accepting to nodes in the last layer,
▷ corresponding to the accepting states F in the NFA

queue := {e | e ∈ G.inbound(v), v ∈ reaches accepting} ▷ Queue storing inbound edges
while queue ̸= ∅ do ▷ Within current domain, find nodes which reach accepting

e := queue.pop()
if e.start ∈ reaches accepting then

continue
end if
if e.start layer = k ∧ e.value = σ then ▷ Treat [[xk = σ]] as true

reaches accepting ∪= {e.start}
queue ∪= G.inbound(e.start)

else if e.start layer = k ∧ e.value ̸= σ then ▷ Treat [[xk ̸= σ]] as false
continue

else if e.value ∈ D(xe.start layer) ∧ e.start ̸∈ reaches accepting then ▷ Only consider the current domain
reaches accepting ∪= {estart}
queue ∪= G.inbound(e.start)

end if
end while
explanation := ∅
queue := {v00} ▷ Traverse again, from starting node
while queue ̸= ∅ do

for v ∈ queue do
for e ∈ G.outbound(v) do

if e.start layer ̸= k ∧ e.end ∈ reaches accepting then
explanation ∪= {(e.start layer, e.value)} ▷ [[xk = σ]] ∧ e causes contradiction

end if
end for

end for
next queue = ∅ ▷ BFS traversal
for v ∈ queue do

for e ∈ G.outbound(v) do
if (e.start layer = k ∧ e.value = σ) ∨ (e.start layer ̸= k ∧ (e.start layer, e.value) ̸∈ explanation) then

next queue ∪= {e.end}
end if

end for
end for
queue := next queue

end while
return explanation

Examining Figure 3, we can observe that our algorithm would derive the same exact explanation for the layered multigraph
derived from a DFA. NFA-based approach allows us to generate similar explanations, while consuming less space/time due to
a smaller graph.

4.1 Other possible approaches to propagator for regular constraint
The explanations created by our approach are minimal (i.e., no single part of the explanation can be removed while remaining
consistent), however, they are not minimally sized. Searching for a minimally sized explanation is NP-hard [17].

Algorithm 2 can be extended to allow for multiple initial nodes. This would allow us to reverse the entire multigraph, and
work on its symmetric, but equivalent, counterpart. In principle, it is possible to search for explanations by traversing the graph
from the opposite direction. While this could, in theory, find different explanations, we do not explore this approach, as the
input regular expression can be equivalently reversed, to produce the same effect.

Algorithm 2 works on general layered multigraphs, as long as edges only point to the next layer. As such, it also works for



layered multigraphs produced by DFAs (in fact, since every DFA is also an NFA, no modifications need to be made). DFAs can
be minimized [18] in polynomial time (unlike NFAs), and thus, for some problems, may even result in smaller sized layered
multigraphs.

The minimization idea could also be applied to the layered multigraph. Due to its structure, nodes cannot be visited twice,
allowing finding equivalent nodes more easily. However, additional considerations have to be made to account for the fact that
the path to a node also matters.

5 Experimental Setup and Results
The NFA propagator for regular was implemented using Rust, in a modified version of finite-domain lazy clause generation
constraint programming solver Pumpkin3.

All experiments were run on 4.6GHz Intel i7-11800H CPU, with 16GB of RAM, running Manjaro Linux. Each experiment
was run using MiniZinc [11] modelling language and the respective command-line tool. In our experiments, we compare three
approaches:

• NFA-based propagator with explanations, as described in Section 4.
• DFA-based propagator with explanations, as described in Section 4.1. The DFA is constructed using powerset construc-

tion [14], then minimized [18].
• Decomposition of regular constraint into atomic constraints. MiniZinc decomposes the predicate, converting the regular

expression into a DFA, which is then decomposed into atomic constraints.
For each instance and approach, the solver was given ten minutes, collecting relevant statistics using MiniZinc.

5.1 Nonograms
Nonograms, also called paint-by-numbers, are puzzles set in a n × m grid of squares, where each square may or may not be
filled (painted in). Each row and column contains a sequence of numbers, called a hint for that line, indicating the runs of filled
in squares, separated by non-zero empty squares. The puzzle is presented only as the empty grid and the hints, and the aim is
to fill in the grid such that the hints are respected, i.e., to retrieve the original grid.

1 1

1 3

1 1 1

1 1

1 2

5 0
2
1

2
2 2

(a) Initial puzzle state

1 1

1 3

1 1 1

1 1

1 2

5 0
2
1

2
2 2

(b) Corresponding solution

Figure 5: Example 5× 5 Nonogram puzzle

Figure 5 shows an example 5×5 Nonogram puzzle and its solution. Given the grid in sub-figure 5b, the hints are constructed
such that each contiguous run of black squares is represented by a number. For example, bottom row has two runs of black
squares, of length 1 and length 2, with a gap between them, so the hint is [1, 2].

Nonogram puzzles can be converted into CSP made solely of regular constraints. Given a n ×m Nonogram puzzle, with
n + m hints (for each row and column), the corresponding CSP instance can be made by creating n · m Boolean decision
variables (i.e. with domains {0, 1}), and n+m regular expressions over each line of variables. The regular expressions, when
converted, result in small NFAs, with O(n+m) states and transitions. They can also be converted into small DFAs of similar
size.

We generated random Nonogram puzzle instances, with each square having 50% probability of being filled in. This ratio of
black-to-white squares was chosen to increase likelihood that the generated Nonogram puzzles are non-trivial to solve [1]. The
performance of NFA propagator with explanations was compared against decomposition of regular4. Five instances were
generated for sizes 20× 20, 20× 25, 25× 25, 25× 30, 30× 30 and 30× 35, resulting in a total of 30 instances.

3Available at https://github.com/ConSol-Lab/Pumpkin. The version used for experiments is uploaded to Zenodo at https://github.com/
JulGvoz/Pumpkin/tree/f8edfbb55c5c8ebe83bb2356caaf2c6511f5844c.

4The script for generating Nonogram puzzle instances is available in Zenodo repository containing all code necessary for running the
experiments: https://github.com/JulGvoz/nfa-propagator-explanations/tree/227196987c770e9fe682fd581ceed04f93b80b64.

https://github.com/ConSol-Lab/Pumpkin
https://github.com/JulGvoz/Pumpkin/tree/f8edfbb55c5c8ebe83bb2356caaf2c6511f5844c
https://github.com/JulGvoz/Pumpkin/tree/f8edfbb55c5c8ebe83bb2356caaf2c6511f5844c
https://github.com/JulGvoz/nfa-propagator-explanations/tree/227196987c770e9fe682fd581ceed04f93b80b64


Figure 6: Logarithmic plot, comparing time-to-solve for NFA propagator vs decomposition for Nonograms. Red dashed threshold represents
ten minute cut-off mark.

Figure 6 compares the time taken for NFA propagator against decomposition. They were both on all 30 instances, until they
either found a solution, or ran out of time. For instances where both approaches finished in time (before ten minute cut-off),
NFA propagator finds a solution an order of magnitude (geometric mean of ×8.09) faster than decomposition of regular.
As the grid size is increased (e.g. from 25 × 25 to 25 × 30), the time taken for both approaches increases exponentially, i.e.
multiplied by a constant factor. DFA propagator is not visualized (results are shown in Table 2), as our implementation of
conversion from NFA to DFA is slow, and the conversion time dominates the result.

Table 2 shows these results in more detail. In some cases, NFA propagator runs into fewer conflicts, and reliably backtracks
less, compared to the decomposition. In majority of the instances, average learned clause length, i.e. number of variables in an
explanation, is smaller for NFA propagator.

It is likely that decomposition runs into more conflicts due to exploring search space which a domain consistent propagator
would have already discarded. Given the order-of-magnitude overall slowdown, this indicates that ”better” explanations (as
Feydy and Stuckey suggest [4]) do not compensate for worse propagations, at least for the regular constraint.

The results show that NFA-based propagator with our explanations is consistently superior compared to decomposition of
the regular constraint. Solvers with learning [5] are known to solve Nonogram puzzles quickly, however, it seems that it is
not merely learning that allows for finding solutions quickly, but learning with effective explanations. Effective (i.e. domain
consistent) propagation seems to be a stronger factor in Nonograms.

DFA propagator, given the exact same regular expression, results in exact same propagations and explanations as the NFA
propagator. In our implementation, DFAs are minimized using table-filling algorithm [18], while NFAs are not minimized at
all. For Nonograms, this results in smaller finite automata (NFA vs DFA), and smaller overall layered multigraphs. Overall,
as both NFA and DFA propagators behave the same (from the perspective of the solver), the metrics of conflict learning and
search, namely number of conflicts, average learned clause length, and average backtrack amount, all match. Our observations
indicate that the slowdown occurs due to the overhead of converting a given NFA to DFA, and further minimization of the DFA.



Table 2: Results of experiments run on generated Nonogram instances. Missing entries indicate that the solver ran out of time on the instance.

Instance NFA propagator Decomposition DFA propagator

Time (s) Conflicts

Average
Learned
Clause
Length

Average
Backtrack
Amount

Average
RegExpr

Size

Average
Finite

Automata
Size

Average
Layered

Multigraph
Size

Time (s) Conflicts

Average
Learned
Clause
Length

Average
Backtrack
Amount

Time (s) Conflicts

Average
Learned
Clause
Length

Average
Backtrack
Amount

Average
RegExpr

Size

Average
Finite

Automata
Size

Average
Layered

Multigraph
Size

20× 20, seed: 1 0.35 4 1.50 1 44.20 37.80 101.55 3.59 9291 3.39 13.80 8.35 4 1.50 1 44.20 16.40 95.95
20× 20, seed: 2 0.38 0 0 0 46 37.15 104.25 5.49 12122 8.17 15.57 8.55 0 0 0 46 16.07 98.33
20× 20, seed: 3 0.63 29 9.86 1.48 45.60 37.25 104.30 7.56 17503 13.37 10.26 8.59 29 9.86 1.48 45.60 16.12 98.42
20× 20, seed: 4 0.37 2 11 1.50 46 37.45 100.65 3.38 9532 4.10 16.11 8.78 2 11 1.50 46 16.23 94.88
20× 20, seed: 5 0.34 0 0 0 44.40 37.05 103.70 2.86 8906 3.04 15.86 8.49 0 0 0 44.40 16.02 97.72
20× 25, seed: 1 0.88 8 5.50 1.25 48.16 40.16 127.42 7.43 14009 9.37 19.15 140.07 8 5.50 1.25 48.16 17.58 120.78
20× 25, seed: 2 1.02 0 0 0 51.18 41.36 120.60 7.40 15489 7.98 15.93 135.50 0 0 0 51.18 18.18 114.56
20× 25, seed: 3 0.99 10 7.50 1.10 51.18 40.82 125.76 10.69 20013 13.28 13.77 135.93 10 7.50 1.10 51.18 17.91 119.44
20× 25, seed: 4 1.16 39 8.28 1.38 49.04 39.58 126.31 8.43 18316 11.06 14.67 145.71 39 8.28 1.38 49.04 17.29 119.38
20× 25, seed: 5 0.81 1 1 2 50.29 41.67 118.71 5.76 12884 5.42 16.15 134.29 1 1 2 50.29 18.33 112.82
25× 25, seed: 1 1.68 37 24.92 1.11 53.56 43.64 157.64 18.55 23102 12.77 19.43 324.76 37 24.92 1.11 53.56 19.32 149.96
25× 25, seed: 2 1.71 0 0 0 56.60 45.36 148.54 11.06 16434 5.54 21.68 322.82 0 0 0 56.60 20.18 141.72
25× 25, seed: 3 1.56 5 1.80 1.40 56.92 45.68 147.66 20.27 29105 15.64 13.88 299.84 5 1.80 1.40 56.92 20.34 141
25× 25, seed: 4 2.08 42 8.64 1.43 55.64 44.64 149.98 14.68 24227 13.11 14.93 327.66 42 8.64 1.43 55.64 19.82 142.80
25× 25, seed: 5 1.32 1 1 2 54.84 46.20 144 11.59 18864 6.44 17.67 342.36 1 1 2 54.84 20.60 137.60
25× 30, seed: 1 13.61 618 15.80 1.38 58.71 47.40 184.09 44.56 39874 26.82 17.20 – – – – – – –
25× 30, seed: 2 6.43 9 6 1.25 60.31 48.75 175.60 26.13 28310 16.46 21.87 – – – – – – –
25× 30, seed: 3 5.40 37 18.57 1.38 59.44 48.75 174.89 74.29 70109 27.93 14.86 – – – – – – –
25× 30, seed: 4 6.86 71 19.49 1.49 59.87 48.20 178.87 45.28 45949 21.94 16.62 – – – – – – –
25× 30, seed: 5 5.46 12 17.92 1.42 60.02 49.33 172.80 33.46 31846 17.00 21.61 – – – – – – –
30× 30, seed: 1 18.98 719 76.60 1.40 62.73 50.13 223 176.52 106420 90.64 13.48 – – – – – – –
30× 30, seed: 2 14.48 31 18 1.29 65.40 52.27 210.50 70.04 51006 32.03 19.97 – – – – – – –
30× 30, seed: 3 11.48 53 30.43 1.43 64.47 52.77 207.10 151.55 93506 37.07 15.38 – – – – – – –
30× 30, seed: 4 20.91 605 23.28 1.39 64.47 51.77 213.87 – 464850 65.71 7.54 – – – – – – –
30× 30, seed: 5 9.81 4 14 1 65.67 53.73 202.07 56.48 40856 21.62 22.05 – – – – – – –
30× 35, seed: 1 55.94 506 42.77 1.53 70.94 54.88 247.52 – 259860 115.88 8.40 – – – – – – –
30× 35, seed: 2 61.98 160 31.40 1.26 68.35 55.22 247.45 142.84 102092 33.56 17.56 – – – – – – –
30× 35, seed: 3 49.34 108 10.57 1.31 68.85 56.14 240.31 – 355322 73.05 9.00 – – – – – – –
30× 35, seed: 4 44.32 631 112.33 1.56 68.11 55.22 245.18 – 289486 81.22 8.92 – – – – – – –
30× 35, seed: 5 30.18 4 5.50 1 68.97 57.28 231.12 161.28 92555 38.26 19.32 – – – – – – –

6 Responsible Research
Scientific process fundamentally works by building upon prior research. Reproducibility lies at the heart of this process - in the
goal of finding scientific truth, methods and results should be reproducible by other researchers.

In order to ensure full reproducibility of our experiments, we have published a reproducibility package of our work.5 This
includes: the source code of our propagator and all related software, as open source; the test set and results of all experiments;
detailed instructions on how to reproduce the exact paper as closely as possible. Our reproducibility package has been version
controlled from the beginning of our research.

Combined with the detailed explanation of our experimental setup in Section 5, this allows others to run the software on their
own machines, and reproduce the experiments in this work.

Failures to reproduce results often stem from hidden variables that were not included in the original studies. Even in the
event that our results cannot be reproduced from the description in the paper, additional details might allow to investigate the
reasons for non-reproducibility. We have taken great care to describe not only strictly necessary information of our setup, but
also details which might have impacted the experiments.

In light of transparency, we have also published the test set and results of all experiments that were run. Thanks to version
control software, all discarded experiment results (i.e. due to code changes and improvements) is also present. Combined with
the previous points, this allows our study to be reproduced near identically. Future research can built upon our results, and can
compare them with their own, same as we did with prior research.

7 Conclusions and Future Work
In this work, we have developed an NFA propagator for regular constraint, which produces explanations in order to facilitate
lazy clause generation and conflict learning. We combined existing concepts relating to the regular constraint: DFA-based
domain consistent propagator [13], extended to work with NFAs, together with explanations created using the core idea from
the MDD propagator [5]. We tested whether the overhead of domain consistent propagator for the constraint is better or worse
than decomposing the constraint. Our experimental results, comparing our NFA-based propagator to a standard decomposition
of the regular constraint, show that a specialized propagator is an order of magnitude faster. Our NFA-based propagator can
achieve domain consistent propagations and good explanations (equivalent to what DFA-based equivalent propagator would
create), without the overhead of DFA construction. Our approach to generating explanations is general, and works both on
NFAs and DFAs as inputs.

Future work involves optimizing the propagator to work incrementally, so that the layered multigraph structure does not need
to be updated each time from scratch in deeper layers. One key weakness of our explanation algorithm is that it requires the
entire initial layered multigraph, while also referring to its current state of living/dead edges. We believe that it is possible to
continue extending the ideas from the existing MDD propagator [5] to solve both these issues.

5Reproducibility package is available at https://github.com/JulGvoz/nfa-propagator-explanations/tree/
227196987c770e9fe682fd581ceed04f93b80b64.

https://github.com/JulGvoz/nfa-propagator-explanations/tree/227196987c770e9fe682fd581ceed04f93b80b64
https://github.com/JulGvoz/nfa-propagator-explanations/tree/227196987c770e9fe682fd581ceed04f93b80b64


A possible area for more research is to determine whether it is possible to combine the ideas from both NFA and DFA
approaches, in order to result in a better hybrid approach. For example, it may be possible to lessen the overhead of DFA
construction by working directly on the layered multigraph (made from NFA) instead of first converting the finite automaton,
then converting it into a layered multigraph.

Another area of implement is to find better decompositions of the regular constraint. If a specialized decomposition can be
made, which would match the quality of domain consistent propagations, this could allow to achieve good explanations without
the need of a dedicated propagator.
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