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A B S T R A C T

Storm water systems (SWSs) are essential infrastructure providing multiple services including environmental
protection and flood prevention. Typically, utility companies rely on computer simulators to properly design,
operate, and manage SWSs. However, multiple applications in SWSs are highly time-consuming. Researchers
have resorted to cheaper-to-run models, i.e. metamodels, as alternatives of computationally expensive models.
With the recent surge in artificial intelligence applications, machine learning has become a key approach
for metamodelling urban water networks. Specifically, deep learning methods, such as feed-forward neural
networks, have gained importance in this context. However, these methods require generating a sufficiently
large database of examples and training their internal parameters. Both processes defeat the purpose of using a
metamodel, i.e., saving time. To overcome this issue, this research focuses on the application of inductive biases
and transfer learning for creating SWS metamodels which require less data and retain high performance when
used elsewhere. In particular, this study proposes an auto-regressive graph neural network metamodel of the
Storm Water Management Model (SWMM) from the Environmental Protection Agency (EPA) for estimating
hydraulic heads. The results indicate that the proposed metamodel requires a smaller number of examples
to reach high accuracy and speed-up, in comparison to fully connected neural networks. Furthermore, the
metamodel shows transferability as it can be used to predict hydraulic heads with high accuracy on unseen
parts of the network. This work presents a novel approach that benefits both urban drainage practitioners
and water network modeling researchers. The proposed metamodel can help practitioners on the planning,
operation, and maintenance of their systems by offering an efficient metamodel of SWMM for computationally
intensive tasks like optimization and Monte Carlo analyses. Researchers can leverage the current metamodel’s
structure for developing new surrogate model architectures tailored to their specific needs or start paving the
way for more general foundation metamodels of urban drainage systems.
1. Introduction

Storm Water Systems (SWSs) are vital infrastructures that pro-
vide environmental protection and flood prevention (Larsen and Gujer,
1997; Chocat et al., 2007). Climate change is intensifying the water
cycle, affecting rainfall patterns, bringing more intense rainfall and
associated flooding in many regions (IPCC, 2021). Thus, proper design,
operation, and management of these infrastructures are of utmost
importance. To achieve this, water utilities often rely on computa-
tional models that abstract the physical functioning of the system,
enabling exploration of potential scenarios and adaptation alternatives.
However, some critical applications, such as (re)design optimizations,
real-time forecasts, and uncertainty analyses require computationally
fast models. To address this challenge, researchers have developed
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surrogate models, which provide an alternative approach for efficient
analysis and decision-making in SWSs.

Surrogate models are methods that approximate the response of
a computationally demanding model with a cheaper-to-run, yet suffi-
ciently accurate, version (Razavi et al., 2012). These surrogate mod-
els can be categorized in two groups: physically-based lower fidelity
(PBLF) models and response surface (RS) metamodels. PBLB models
involve employing coarser versions of the expensive model, exchanging
fidelity for computational speed. Examples in the context of SWSs in-
clude 1D simplifications (Bermúdez et al., 2018; Leitão et al., 2010) and
lumped systems (Dempsey et al., 1997; van der Werf et al., 2023). On
the other hand, RS metamodels are approximators that map the input
https://doi.org/10.1016/j.watres.2024.122396
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variables to the outputs generated by the original model. Examples of
response surface metamodels include function fitting (Schultz et al.,
2004; Mahmoodian et al., 2018) and supervised machine learning (ML)
algorithms (Palmitessa et al., 2022; Luo et al., 2023). Supervised ML
algorithms use input–output pairs for training, mirroring the operation
of response surface metamodels. This resemblance, combined with the
recent advancements in Deep Learning (DL), has made artificial neural
networks (ANNs) the most popular ML-based metamodels for water
networks (Garzón et al., 2022). In particular, multi-layer perceptrons
(MLPs) are the most widely used ANNs. Nevertheless, due to their fully
connected architecture, they require considerable amounts of training
data which exponentially grows as the complexity of the problem
increases. This is known as the curse of dimensionality (Keogh and
Mueen, 2017). This may defeat the primary purpose of metamodelling,
which aims to circumvent resource-intensive computations, especially
for complex case studies.

To address these issues, Garzón et al. (2022) proposed the in-
troduction of inductive biases in machine learning-based metamodels
for water networks. Inductive biases refer to the built-in assumptions
within a ML model that guide its learning process even before seeing
any data. For example, convolutional and recurrent layers are designed
to leverage the spatial and sequential nature of image and text data,
respectively (Lecun et al., 2015). These assumptions streamline the
resulting model architectures, allowing them to use fewer parameters
more efficiently and learn from fewer training examples. This property,
known as data efficiency (Adadi, 2021), is the quality of maximiz-
ing performance while reducing data requirements. In metamodelling
terms, this means that the ML metamodel requires less training ex-
amples to achieve the same (or higher) level of performance if the
inductive biases had not been considered. In turn, this translates to less
time needed for the development of the metamodel.

Furthermore, inductive biases nudge models towards leveraging
the underlying, often generalizable, structures in data. This promotes
adaptability and robustness across diverse input configurations, and
enables transfer learning to leverage knowledge across domains and
case studies (Vilalta et al., 2017). Transfer learning is a technique in
ML that uses training from one domain to improve performance in
a different domain. By pre-training the ML model on data from the
first domain, it requires less data from the second domain for fine-
tuning, i.e., re-training all or part of the ML model for the new case.
This means that a metamodel of a SWS can be re-used for a different
SWS without creating a new extensive training dataset. Transferability
enables DL models to address data scarcity (Wad et al., 2022), and even
achieving zero- or few-shot generalization—making accurate predic-
tions in unfamiliar domains based primarily on inherent knowledge and
assumptions (Pourpanah et al., 2023). A higher degree of transferability
would allow the metamodel to be used for different downstream tasks
or applications, in a similar fashion to a foundation model (Jung, 2023).

For SWS, we identified three relevant inductive biases: temporal,
physical, and graph-relational. The introduction of a temporal bias
can be achieved by incorporating inputs and outputs from preceding
time steps using an auto-regressive approach. For example, non-linear
auto-regressive with exogenous inputs (NARX) networks have proven
effective in forecasting stormwater surcharge dynamics (Schmid and
Leandro, 2023). To incorporate a physical bias, respecting pre-defined
physical laws is essential. One illustrative application involves con-
straining hydraulic head predictions within a range defined by mini-
mum and maximum water levels, as demonstrated by Palmitessa et al.
(2022). The relational bias introduces explicit relationships between
entities. Graphs provide a mathematical framework that represents
pairwise relations, such as nodes connected by pipes in a SWS. Graph
Neural Networks (GNNs) are a recently developed DL architecture
related to this inductive bias. GNNs can process data over graphs by
using an intrinsic structure of relations of a system as computational
graph. GNNs have shown permutation equivariance and stability to

changes in topology, which has made them powerful tools for learning s

2 
in physical networks (Gama et al., 2020). Instead of connecting all the
available features like fully connected ANNs, the inherit network acts as
a selector that focuses the parameters in the meaningful relationships
indicated by the graph. For a more comprehensive understanding of
GNNs and their applications, readers are referred to recent reviews and
seminal papers in the field (Bronstein et al., 2017; Zhou et al., 2018;
Gama et al., 2020).

However, while GNNs have gained popularity in various applica-
tions in the water sector (e.g. Kerimov et al., 2023; Xing and Sela, 2022;
Tsiami and Makropoulos, 2021), their utilization in urban drainage
systems is underdeveloped. The only existing application of this archi-
tecture is focused on database reconstruction (Belghaddar et al., 2021).
Despite the substantial potential of GNNs’ inductive bias in facilitating
the development, training, and out-of-the-domain transferability of
metamodels for SWSs, their development in this context is still not yet
investigated.

In this research, we address this gap by presenting the first meta-
model that uses a GNN to account for the natural relational bias
of the SWSs for the widely-used Storm Water Management Model
(SWMM) (Rossman, 2015) created by the Environmental Protection
Agency (EPA). The proposed metamodel reproduces the evolution of
the hydraulic heads across the entire network due to rainfall. Using
GNNs’ inductive bias, the metamodel can efficiently learn shared repre-
sentations from the training data, and generalize to unseen parts of the
SWS. Furthermore, the proposed metamodel strengthens the temporal
and physical biases by considering multiple time-steps in the input and
physical features such as node elevation, pipe diameter, and length. We
demonstrate the capabilities of our approach for a SWS model based
on Tuindorp, part of the city of Utrecht, The Netherlands. We compare
our method against an alternative metamodel based on a state-of-the-
art approach (Palmitessa et al., 2022), analyzing overall performance,
data efficiency, and transferability.

2. Methods

2.1. Data preparation

Data representation We represent the key attributes of the SWS mod-
eled by SWMM based on three inductive biases: topological (planar
graph  consisting of a set  of 𝑁 nodes and a set  of M pipes),
hysical (node elevations and pipe dimensions), and temporal (time
eries of runoff 𝐑 ∈ R𝑁×𝑇 and hydraulic heads 𝐇 ∈ R𝑁×𝑇 ). We use
he runoff calculated by SWMM instead of direct rainfall since the
erformance bottleneck lies on the hydraulic solver and not on the
ydrological calculation (Palmitessa et al., 2022).

We use an approach known as sequential supervised learning (Di-
tterich, 2002) in which the results of each simulation are divided
nto multiple consecutive windows. This way, the time series of the
imulations can be transformed into multiple pairs of input–output
raining examples. In this setting, a window of runoff and hydraulic
eads can be used as input for predicting the next window of hydraulic
eads. A window is defined as a fixed-size segment of the time series.
window considers 𝑝 timesteps in the past. Fig. 1(a) illustrates the

oncept of window.

ata balancing The simulations can have periods in which the SWS
s dry, e.g. start, end, and long periods between rain peaks; thus, the
ime series present two distinct regimes: flow and no-flow periods. We
efine flow conditions as having at least one node with a water level
igher than 1 mm throughout the window duration. The no-flow periods
re defined as the complement. As there could be more windows from
ne regime than the other, this inherent imbalance could significantly
mpact the metamodel’s learning process, biasing it towards predicting
he more prevalent behavior for all time steps. This is, predicting a
onstant value of zero depth or failing to learn the draining behavior.

To mitigate this issue, we employed a sampling technique, involving

electively training the metamodel on a subset of no-flow windows. The



A. Garzón et al.

h
a
d
I
s
c
t

D
t
a
t
a
a

a
p

p
b
T
M
l
f
a
a

2

p
(

Water Research 266 (2024) 122396 
Fig. 1. Summary of the process to generate a prediction for one future time step of hydraulic heads using the metamodel. Subsequent predictions are obtained by iteratively
repeating this process. The inputs are partial timeseries of runoff and hydraulic heads, and system information (topology, node elevation, pipe diameters, and lengths) in the SWMM
input file. The data is organized in windows and normalized before entering the artificial neural network. Using multi-layer perceptrons, 𝜙, the metamodel separately computes
the embedding of nodes and pipes which are fed to the graph layer that acts as processor. The output of this phase is then decoded by the processor, which returns the processed
embedding into physical values. These values are finally post-processed to obtain a new prediction of hydraulic heads. Having these values, the process repeats to determine the
entire time series.
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specific ratio of no-flow windows to flow windows was defined as a
yperparameter called balance ratio. By tuning this ratio, we aimed to
chieve a representative distribution of both classes within the training
ata that improves the metamodel’s performance in both regimes.
ncreasing the value of this hyperparameter causes that the metamodel
ees an increased amount of no-flow windows during training, which
an nudge it to better represent dry conditions but also increases its
raining time.

ata normalization Normalization is the re-scaling of each input fea-
ure. This is a common practice for training ANNs since the non-linear
ctivation functions are more sensitive at intervals close to zero. Also,
his prevents the ANN to give more importance to one variable over
nother based on dimensions (e.g., pipe length vs. diameter). Our
pproach to normalization was guided by two considerations.

First, we opted for min–max scaling (Mazziotta and Pareto, 2022)
s we attempt to retain the physical meaning of the data as much as
ossible. We scaled all variables to be between zero and one.

Second, vertical distances are normalized based on the maximum
ossible range in the development system; concretely, the distance
etween the lowest node invert and the highest superficial street level.
his approach, similar to group normalization (Wu and He, 2018) in
L, ensures that hydraulic head, invert elevation, and superficial street

evels are scaled using the same reference values. This consideration
acilitates physically meaningful algebraic operations and comparisons
mong these variables. Other variables were normalized independently
s the metamodel does not consider any comparison between them.

.2. Proposed metamodel

Taken as a whole, the metamodel receives normalized node and
ipe features (see Fig. 1(a)), and produces normalized hydraulic heads

see Fig. 1(b)). The metamodel operates step-by-step. At each time step a

3 
𝑡, it takes the inputs and generates a prediction for the subsequent time
step 𝑡 + 1. This prediction is then used to forecast the output at 𝑡 + 2,
and this iterative process continues for 𝑇 time steps determined by the
length of the simulation.

The metamodel follows an Encoder–Processor–Decoder structure as
seen in Fig. 1(c). This type of architecture is commonly used for ap-
proximating the solution of partial differential equations (Brandstetter
et al., 2022) like the underlying St. Venant equations in SWMM.

Multiple steps in the metamodel use an MLP, this is a function which
we define as 𝜙. This function can be described in the following recursive

ay
(𝐿)(⋅) = 𝜎𝐿(𝜣(𝐋) ⋅ 𝜙(𝐿−1)(⋅)) (1)

here the function 𝜙(𝐿) at layer 𝐿, multiplies the result of the previous
ayer, 𝜙(𝐿−1), with a matrix of trainable parameters 𝜣(𝐋) followed by the
se of a non-linear entry-wise function, 𝜎(𝐿) such as hyperbolic tangent,
igmoid, rectified linear unit, or variations of them.

The starting point of this recursive expression can be thought of
s an identity function that just receives the raw input information,
xpressed in mathematical notation:
(0)(⋅) = 𝑖𝑑(⋅) (2)

For brevity of notation, we omit writing the particular characteris-
ics of the MLPs, such as number of layers, type of non-linearity, and
imensions of the parameter matrices. These are all hyperparameters
hat vary based on the hyperparameter optimization.

.2.1. Inputs
In order to process the normalized information of the SWS, we

rganize the inputs to the metamodel into two matrices: node inputs

nd pipe inputs.
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At the node level, we define these inputs as a single matrix 𝐗 ∈
R𝑁×2(𝑝+1). This matrix concatenates the variables in the following man-
ner:

𝐗 = [𝐇𝑡−𝑝∶𝑡|𝐑𝑡−𝑝∶𝑡+1|𝐳] (3)

where 𝐇𝑡−𝑝∶𝑡 ∈ R𝑁×𝑝 is a matrix of 𝑝 previous time-steps of normalized
ydraulic heads. The matrix 𝐑𝑡−𝑝∶𝑡+1 ∈ R𝑁×(𝑝+1) contains 𝑝 previous
ime-steps plus one future time-step of normalized nodal runoff. Lastly,
he vector 𝐳 ∈ R𝑁×1 represents the normalized node elevation. This last
nput is static since the elevation of the nodes is a constant feature.

In an analogous way, we define the pipe inputs matrix 𝐄 ∈ R𝑀×2

which comprises two static features: normalized diameters Ø ∈ R𝑀 and
ormalized lengths 𝐥 ∈ R𝑀 as follows

= [Ø|𝐥] (4)

e considered only the pipe diameter and pipe length. We consider
hat other features are not as impactful as diameter and length, such as
ipe roughness, or can be derived from the given information, such as
ipe slope.

As the pipe features do not vary in time, matrix 𝐄 remains constant
cross the entire simulation.

.2.2. Encoders
The objective of this step is to create expanded representations

f the original information; this encoding step helps capture complex
elationships within the data that might not be apparent in the raw fea-
ures. Here, two distinct MLPs are employed to independently encode
he features of each node 𝑖 ∈  and each pipe (𝑖, 𝑗) ∈  , producing
wo separate non-linear representations. This process automatically
ngineers features, known as embeddings (Makarov et al., 2021). These
epresentations may have more elements and can be thought of as an
xpansion of the original information into a higher dimension.

The normalized physical data for each node 𝑖 ∈  is encoded to a
ode embedding 𝐗′

𝑖 ∈ R𝐹 of 𝐹 dimensions, as

′
𝑖 = 𝜙𝐗(𝐗𝑖) (5)

hese embeddings can be understood as weighted combinations of the
revious hydraulic heads which consider both the previous and current
unoff, and the invert elevation.

Similarly, the normalized diameters and lengths in each pipe (𝑖, 𝑗) ∈
are encoded into a 𝐹−dimensional pipe embedding 𝐄′

(𝑖,𝑗) ∈ R𝐹 using
he following equation
′
(𝑖,𝑗) = 𝜙𝐄(𝐄(𝑖,𝑗)) (6)

n both cases, the MLPs are shared among all nodes and all pipes,
espectively. This means that the same MLP, 𝜙𝐗, is applied to encode
he features of all nodes, and the same MLP, 𝜙𝐄, is used to encode the
eatures of all pipes.

.2.3. Processor
The processor receives both node and pipe embeddings and employs

GNN to compute a new node embedding 𝐗′′
𝑖 ∈ R𝑁×𝐹 .

The implemented GNN in this study follows the message passing
MP) framework (Bronstein et al., 2021), where each node is character-
zed by a set of features, known as node embeddings. These embeddings
re exchanged with neighboring nodes according to an update equa-
ion. This framework allows for the derivation of various architectures,
nd indeed, numerous variants have been proposed (Zhou et al., 2018).
n this application, we utilized the Graph Isomorphism Network with
dge Features (GINEConv) (Hu et al., 2019), which has been found
o be highly expressive and significantly improves generalization per-
ormance, particularly in transfer learning scenarios. The GINEConv
rchitecture incorporates both node and edge features in its update

quation, which is crucial for capturing the fundamental information 𝐡

4 
bout the pipes in our application. Specifically, the update equation
or GINEConv is given by:

′′
𝑖 = 𝜙𝐗′′

⎛

⎜

⎜

⎝

(1 + 𝜖) ⋅ 𝐗′
𝑖 +

∑

𝑗∈ (𝑖)
ReLU(𝐗′

𝑗 + 𝐄′
𝑗,𝑖)

⎞

⎟

⎟

⎠

(7)

here 𝐗′′
𝑖 represents the updated embedding for node 𝑖, 𝐗′

𝑖 is the
urrent embedding of node 𝑖, 𝐗′

𝑗 is the current embedding of node 𝑗,
nd 𝐄′

𝑗,𝑖 are the features of the edge between nodes 𝑗 and 𝑖. For each
eighboring node, its embedding is summed with the edge embedding
f the pipe connecting the two nodes. This sum is then passed through
Rectified Linear Unit (ReLU), which sets negative values to zero—
common non-linearity used in machine learning models (Agarap,

018). It is important to note that the sum operation between node and
ipe features requires that the hidden dimensions of both encodings to
e the same.

The key operation in this graph layer is the summation over the
ocal neighborhood of node 𝑖, denoted as  (𝑖). This set of nodes is
etermined by the topology of the SWS, making the operation agnostic
o any particular layout and only dependent on the known connections
f the SWS.

This equation computes a more expressive representation of each
ode by weighting the sum of the node’s own information with the
nformation from its neighboring nodes and pipes. Conceptually, the
rocessed embedding of node 𝑖 can be interpreted as the cumulative
ffect of its neighborhood  (𝑖) on its own state 𝐗′

𝑖 , analogous to water
olume flowing from one node to another with the use of non-linearity
ids in accounting for the direction of flow. However, it is important
o recognize that this analogy serves more as an interpretative aid than

factual explanation, as such physical interpretations are inherently
imited in most machine learning models.

.2.4. Decoder
The objective of this step is to convert the hidden embedding of

he processor into a value with physical dimensions which we consider
s a water depth candidate 𝑑∗(𝑡+1)𝑖 ∈ R at each node 𝑖. This value is
alculated according to the following equation
∗(𝑡+1)
𝑖 = 𝜙𝐝∗ (𝐗′′

𝑖 ) (8)

his equation indicates that each processed embedding 𝐗′′
𝑖 is decoded

sing a shared MLP. In brief, this step uses the high dimensional values
f the GNN embeddings to estimate a value of water depth at the next
ime step.

.2.5. Post-processing
The candidate of water depth at each node is then post processed

o account for memory of previous solutions and simple physical con-
traints.

ated connection
The first post-processing step combines the candidate water depth

∗(𝑡+1)
𝑖 with the value of normalized water depth at time 𝑡. The latter is
btained by subtracting the normalized invert elevation of the nodes,
, from the normalized hydraulic head at time 𝑡, �̂�𝑡, as follows

̂𝑡 = �̂�𝑡 − 𝐳 (9)

Afterwards, this depth is weighted with the candidate water depth
∗(𝑡+1) according to the following equation

̂∗(𝑡+1) = 𝛼 ⋅ 𝐝∗(𝑡+1) + (1 − 𝛼) ⋅ �̂�𝑡 (10)

here 𝛼 is a trainable parameter that weights the contribution of the
ew candidate over the previous water depth in a similar fashion
o gated recurrent units (GRUs) (Chung et al., 2014). This structure
llows the metamodel to calibrate the memory of the system, i.e., the
elevance of a current state for the future state. Next, the elevation
∈ R𝑁×1 is added to obtain a candidate of hydraulic head prediction
∗(𝑡+1) ∈ R𝑁×1 using the following equation
∗(𝑡+1) ̂∗(𝑡+1)
= 𝐝 + 𝐳 (11)
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Physical constraints
Finally, the results are constrained to meet the physical restrictions

of minimum and maximum levels as done in Palmitessa et al. (2022).
The hydraulic heads are bounded to be higher or equal than the invert
elevation of the nodes 𝐳 and lower or equal than the superficial street
evel 𝐠 ∈ R𝑁×1. The former constraint avoids unfeasible values of water
epth, i.e., negative values. The latter constraint accounts for the water
eaching the street level and leaving the system through the manholes.
q. (12) mathematically represents these constraints as follows
𝑡+1 = min(𝐠,max(�̂�∗(𝑡+1), 𝐳)) (12)

.2.6. Auto-regression
This final prediction is used as input for the next time step; this way,

he metamodel can predict the entire time series for all nodes in an
uto-regressive fashion. The metamodel requires an initial state, which
s the condition of the system at the beginning of the simulation. For
implicity and computational efficiency, we can assume an initial state
f zero water depth and rainfall. Specifically, the matrix of hydraulic
eads 𝐇0−𝑝∶0 contains only the elevation of the nodes (this means, we
ssume depth = 0 for all nodes) and the matrix of runoff 𝐑0−𝑝∶0+1 is

equal to zero in its first 𝑝 columns. With the prediction at time 𝑡+ 1, it
s possible to define a new matrix 𝐇𝑡−𝑝+1∶𝑡+1 ∈ R𝑁×𝑝, by concatenating
he prediction as the last column in the new matrix and dropping the
irst column to maintain the dimensions. This process is then repeated

times, i.e., as many time steps as the simulation has.

.3. Benchmark metamodel

As benchmark for this study, we used an adapted version of the ML
etamodel for SWSs proposed by Palmitessa et al. (2022). We chose

his study based on its similarity to the task and approach addressed
n this paper. In that study, the metamodel was created as a surrogate
f MIKE 1D (DHI, 2017) using TensorFlow. We created a version of
hat metamodel for hydraulic heads of SWMM using Pytorch, for fairer
omparison against our proposed metamodels developed using this
ramework. The MLP-based metamodel estimates a candidate for the
ydraulic heads at the next time step �̂�∗(𝑡+1) ∈ R𝑁×1 as
∗(𝑡+1) = (𝜙1(𝑣𝑒𝑐(𝐇𝑡−𝑝∶𝑡)) + 𝜙2(𝑣𝑒𝑐(𝐇𝑡−𝑝∶𝑡|𝐑𝑡−𝑝∶𝑡+1)) (13)

where the first MLP 𝜙1 calculates a non-linear combination of the
vectorized (or flattened) matrix of normalized hydraulic heads 𝐇𝑡−𝑝∶𝑡.

his preliminary operation is required by the fully connected structure
f the MLP, which process all the nodes in the SWS concurrently. This
llows 𝜙2, the second MLP, to focus on transforming the vectorized
atrix of current hydraulic heads 𝐇𝑡−𝑝∶𝑡 and runoff 𝐑𝑡−𝑝∶𝑡+1 into the

difference (or residue) between time step 𝑡 and 𝑡 + 1. This is known as
a generalized residue connection (Chen and Xiu, 2021).

This candidate solution is then restricted to comply with feasible
levels using Eq. (12). Namely, setting all the hydraulic heads between
the node invert level and the street surface level. Similar to Sec-
tion 2.2.6, the process is auto-regressively repeated for each time-step
to obtain the output time series of hydraulic heads for all nodes.

2.4. Training strategy

2.4.1. Objective function
For this application, we minimized the sum of mean squared error

(MSE) over all training windows. In this case, the metamodel perfor-
mance for a window is summarized in a single value that considers
the quadratic error in hydraulic head over all the nodes for all the
considered time steps of each window. The total training loss is the
sum of all of the MSEs of the training windows. Since the metamodel

produces a time series for each node, Eq. (14) indicates that the loss w

5 
𝓁 ∈ R per window is an average of quadratic error of hydraulic head
ver all 𝑁 nodes and over 𝑇 time steps.

𝓁(𝐇, �̂�) = 𝑀𝑆𝐸(𝐇, �̂�) = 1
𝑁 ⋅ 𝑇

𝑇
∑

𝑖=1

𝑁
∑

𝑖=1
(𝐻 (𝑡)

𝑖 − �̂� (𝑡)
𝑖 )2 (14)

he MSE penalizes larger errors with more severity in comparison
o smaller errors. This characteristic is desired because it nudges the
etamodel to accurately predict high water depths.

.4.2. Performance metrics
Aside from the objective function, we assess the performance of the

etamodel based of two main aspects: overall accuracy and execution
peed. For quantifying accuracy, we considered two metrics: mean
bsolute error (MAE), shown in Eq. (15),

AE(𝐇, �̂�) = 1
𝑁 ⋅ 𝑇

𝑇
∑

𝑖=1

𝑁
∑

𝑖=1
|𝐻 (𝑡)

𝑖 − �̂� (𝑡)
𝑖 | (15)

nd Nash–Sutcliffe efficiency (NSE), shown in Eq. (16),

SE(𝐇, �̂�) = 1 −
∑𝑇

𝑖=1
∑𝑛

𝑖=1(𝐻
(𝑡)
𝑖 − �̂� (𝑡)

𝑖 )
∑𝑇

𝑖=1
∑𝑛

𝑖=1(𝐻
(𝑡)
𝑖 − �̄�)2

(16)

Both metrics are defined in terms of a double sum to consider the
values for all 𝑁 nodes and 𝑇 time steps. Furthermore, apart from
overall metrics, we separately calculated the metrics for flow and no-
flow conditions. For the execution speed, we calculated the speed-up
with respect to the original model, i.e., the amounts of times that
the metamodel time is shorter than the time SWMM takes to run a
simulation, shown in Eq. (17).

Speed-up(𝑘) =
𝑇 (𝑘)

SWMM

𝑇 (𝑘)
Metamodel

(17)

hich indicates that the speed-up for event 𝑘 is the ratio between the
xecution time from the original model 𝑇 (𝑘)

SWMM and the time taken by
he metamodel 𝑇 (𝑘)

Metamodel.

.4.3. Parameter optimization
For training the GNN- and MLP-based metamodels, we used the

ollowing settings. We chose AdamW (Loshchilov and Hutter, 2019) as
daptative gradient method because of its generalization performance.
e used a constant learning rate and trained for a fixed amount of

00 epochs saving the metamodel with the minimum validation loss.
n addition to these standard practices, we included a learning strategy
amed curriculum learning (Soviany et al., 2022; Bentivoglio et al.,
023). In principle, this strategy seeks to train the ML model with
rogressively harder examples, tasks, or objectives. In our case, the
raining dataset was divided into two datasets, one with short duration
indows and another with long duration windows. In our setting, the
etamodel is trained to predict short time series during the first half

f the training. This aims to prompt the metamodel to predict the
hort-term dynamics in the SWS. For the second half, the metamodel
s trained with the harder task of predicting longer time series. This
ask is more difficult because it requires the metamodel to generate
olutions that are not only accurate but also stable over time, thereby
inimizing error accumulation. During all the training, the validation

oss is calculated over longer time series of 50 steps. This length of
he validation windows was kept consistent regardless of the length of
he training windows. Even though 50 steps is shorter than the mean
uration of the SWMM simulations (between 360 and 4320 steps), it

as sufficient to promote stable metamodels.
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Table 1
Ranges of tested hyperparameters for the metamodels. The bold values are the chosen
hyperparameter for the GNN-based metamodel.

Group Name Description Ranges

Window

Balance ratio Ratio between no-flow
windows and flow
windows.

[0, 1, 2, 3, 4]

Steps behind Number of past time steps
that the model considers to
make a prediction.

[1, . . . , 9, . . . , 15]

Steps ahead
(Training)

Initial number of time
steps for the training
examples. [Short, Long]
window sizes used in the
curriculum learning.

[[2, 10], [2, 25],
[5, 25], [10, 50]]

Steps ahead
(Validation)

Number of future time
steps for the validation
examples.

50

Optimizer
Batch size Number of windows used

to train at each training
cycle.

[16, 32, 64]

Learning rate Coefficient that mediates
the update of the weights
in gradient descent.

[0.001, . . . ,
0.00194, . . . ,
0.006]

Weight decay Coefficient that penalizes
the magnitude of weights
and biases.

[0.01, 0.1, 1.0]

Metamodel
Num. hidden
layers

Number of intermediate
layers for each of the
MLPs in the model.

[0, 4, 8, 16, 32]

Non-linearity Non-linear activation
function between layers of
the model.

[ReLu, Tanh,
PreLU]

Hidden
dimensions

Size of the internal hidden
dimensions in the model.

[4, 8, 16, 32]

2.4.4. Hyperparameter optimization
Hyperparameter optimization requires training a multitude of meta-

models, each of them with a different combination of hyperparameters.
Each combination defines a window size, a unique metamodel, and
optimizer settings. Nevertheless, exploring all the possible combina-
tions is practically intractable due to its time consumption, which
defeats the purpose of creating a metamodel in the first place. The
number of configurations that can be drawn from this subset of possible
hyperparameters (shown in Table 1) can easily grow exponentially.

To tackle this issue, we considered three strategies to decrease the
number of simulations for finding suitable working metamodels.

1. Grouping the hyperparameters into three groups based on the
component they affect, i.e., window, metamodel, and optimizer.

2. Restricting the number of simulations to a manageable yet rep-
resentative number.

3. Using Bayesian search (Turner et al., 2020) for choosing the
hyperparameters that have higher probabilities of decreasing the
objective function during the search.

For each configuration of hyperparameters, the metamodel is trained
sing the same training dataset, and then evaluated over the same
alidation dataset. For choosing suitable metamodels for the experi-
ents, we assessed the fitness of each simulation based on accuracy and

peed. In the cases of the window and metamodel calibration, the speed
bjective was the average speed-up in a simulation of representative
unning time (20 s). In the case of the optimizer calibration, the speed
ndicator is the total training time. The reason for this is that execution
ime can be regarded as independent from the optimizer settings.
herefore, the objective of this particular calibration is to reduce the
etamodel development time.

In the case of the MLP-based metamodel, we included the optimal
yperparameters found in Palmitessa et al. (2022), i.e., six hidden
ayers, each containing 100 neurons and employing a ReLU activation

unction.
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Table 2
Ranges of system variables. (*)The elevation range refers to the datum of the lowest
node invert level and the highest superficial street level. This range is used to normalize
the hydraulic heads, the elevations, and the street levels.

Network Pipe diameters [m] Pipe lengths [m] Elevation range* [m]

Development 0.24 to 1.35 2.84 to 84.9 −1.61 to 2.20
Transferability 0.18 to 1.05 3.99 to 84.5 −2.93 to 2.24

For both types of metamodels, GNN- and MLP-based, we trained
more than 100 metamodels for each of the groups of hyperparameters:
window, optimizer, and metamodel.

3. Case study

3.1. Storm water system description

For SWSs, we adapted part of the Tuindorp network, located in
the city of Utrecht, The Netherlands. This is a combined sewer system
which has been previously analyzed, and calibrated in Van Bijnen et al.
(2017). The Tuindorp sewer network is a looped system, driven by
gravity, constructed during the 1970s to drain a residential area of
57 ha. The catchment area includes various contributing zones with
diverse roof and pavement types. In this area, the gathered sewage is
first transported to the southern part of the catchment. From there,
it is pumped to a downstream catchment, which then conveys the
water to the Utrecht wastewater treatment plant. For this study, we
considered the system as a storm water sewer since the wet weather
flow is the relevant regime during urban pluvial flooding. The network
layout is shown in Fig. 2. We extracted two sub-networks from the
complete system, one for developing the metamodel, shown in blue
in Fig. 2, and other for testing its transferability, shown in orange.
The criterion for separating the systems was to minimize the number
of pipes that connect each sub-network to the rest of the system. The
gray area in the figure was not considered in the analysis because it
contains multiple components (i.e., pumps, storage tanks, and weirs)
whose implementation in the metamodel is beyond the scope of this
work. Table 2 shows the ranges of the components in the complete
system and its partitions.

3.2. Data collection and generation

We used a SWMM file based on an Infoworks model from Meijer
et al. (2018) to generate the database of extended simulations of
hydraulic heads. As inputs for the SWMM simulations, we considered
real rainfall and synthetic rainfall events. For the real rainfall input
time series, we used the radar rainfall dataset of 5-minute precipitation
depths at a 1-km grid from the Royal Netherlands Meteorological
Institute (KNMI, 2022) for the year 2014, which contained events of
extreme rainfall (Eden et al., 2018). We chose each time series such that
there was at least one entry higher than 10 mm and a subsequent period
of five hours without rain for registering the SWS behavior during
emptying. These time series were 24 h long on average but could vary
between 6 and 72 h (equivalent to 360 and 4320 min). For augmenting
the database, we created the synthetic rainfall time series using the
alternating blocks method (Chow et al., 1988) with variable parameters
that changed the intensity (up to 52 mm) and duration (between 20 and
180 min) of the events. Individual characteristics of these events such
as duration and intensity are summarized in the supplementary mate-
rial. For all the simulations, we considered rainfalls to be uniformly
distributed over the SWS. We used a routing step of one second and
a reporting step of one minute. In total, we used 160 rainfall events
(125 real, 35 synthetic) to run the simulations. We divided the dataset
into three subsets: training, validation, and testing. The training subset,
comprising up to 100 events (80 real, 20 synthetic), is used to calibrate
the metamodel’s internal parameters. In this dataset, the simulated
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Fig. 2. Layout of the drainage system in Tuindorp, Utrecht, The Netherlands. In blue, the subnetwork used for developing the metamodel. In orange, the subnetwork used for
transferability testing. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
time series can reach approximately 70% of no-flow windows, which
is accounted for with data balancing. The validation subset, consisting
of 30 events (15 real, 15 synthetic), assesses metamodel performance
without influencing the parameter updates. Lastly, the testing subset,
comprising 30 real events, are used to evaluate the metamodel’s final
performance.

4. Experimental setup

We established three experiments for testing each of the three
properties of interest in the GNN-metamodel: in-domain performance,
data efficiency, and transferability.

4.1. Experiment 1 — In-domain performance

The first experiment consists on testing the metamodel performance
on the same domain it was trained on. We estimated the MAE, NSE,
and speed-up metrics for the best GNN-based metamodel found after
hyperparameter optimization (see supplementary material). For com-
parison, we calculated the same metrics for the MLP-based metamodel.
These metrics give an indication of the overall performance of the
metamodel. Nevertheless, aggregated metrics do not reflect the details
of the metamodel fitness in space or time. Thus, we exemplify the
simulation of the hydraulic head time series during a rainfall event in
both the spatial and temporal domains.

4.2. Experiment 2 — Data efficiency

The experiment consisted on repeatedly training from scratch the
GNN-based metamodel and the MLP-based benchmark with gradually
increasing training sets in each repetition. We designed the experiment
in a progressive manner, in which the ML metamodels were sequen-
tially trained on increasingly larger datasets, from 1 to 100 events, with
each subsequent dataset incorporating all the data from the previous
ones. We used fixed hyperparameters for both metamodels to ensure
the observed effect was due to the change in the size of training dataset.

In this experiment, we do not consider speed-up as the metamodels’
speed-up is independent of the size of the training dataset. Given the
stochastic nature of the training, we repeated each training with 25
different random seeds.
7 
4.3. Experiment 3 — Transferability

In this experiment, we trained the metamodel on the development
subnetwork and tested the performance in the transferability subnet-
work, i.e., an unseen part of the SWS. For this experiment, we used the
metamodel with the lowest validation loss trained with the maximum
number of training events (100) in the development subnetwork. We
used the same normalization values from the development subnetwork
to normalize the features on the transferability subnetwork. This is
because the metamodel’s internal parameters were trained on the dis-
tribution of input values from the training set. We calculated the same
accuracy and speed metrics for the proposed metamodel in the new
domain. Since we did not perform additional training or fine-tuning,
this is a setting of zero-shot learning. In the case of the MLP-based
metamodel, its architecture prevents its use in this setting.

4.4. Technical specifications

For the hydrodynamic simulations, we used SWMM 5.1.015 using
dynamic wave as routing model. We used Python 3.10.2 (Van Rossum
and Drake, 2009), PyTorch (Paszke et al., 2019) and PyTorch geomet-
ric (Fey and Lenssen, 2019) to define and train the metamodels. We
used the supercomputer DelftBlue (Delft High Performance Computing
Centre, 2022) for training all the metamodels in hyperparameter opti-
mizations and experiments with multiple GPUs (NVIDIA Tesla V100S-
PCIE-32 GB). For performance testing in CPU, we employed a PC
with Intel(R) Core(TM) i7-8665U at 1.9 GHz CPU. Furthermore, we
automated and recorded each simulation for subsequent analysis with
the ML platform Weights and Biases (Biewald, 2020).

5. Results

5.1. Experiment 1 — In-domain performance

Table 3 summarizes the accuracy metrics over the test dataset. The
proposed metamodel has a value of 0.98 NSE overall, being 0.92 and
0.99 for flow and no-flow periods, respectively. In absolute terms, the
proposed metamodel has a mean absolute error of 5.43 cm and 0.17 cm
for flow and no-flow conditions, respectively. The results indicate that
the metamodel is overall highly accurate in relative and absolute terms.
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Table 3
Descriptive statistics of accuracy metrics for replicating SWMM hydraulic heads using the proposed and benchmark metamodels in the development domain for the test dataset.

NSE MAE [cm]

MLP GNN MLP GNN

No flow Flow Overall No flow Flow Overall No flow Flow Overall No flow Flow Overall

Mean 1.0 0.908 0.976 0.997 0.924 0.981 0.03 4.87 1.15 0.17 5.43 1.36
S.D 0.0 0.076 0.36 0.02 0.30 0.17 0.02 1.81 0.94 0.08 1.47 0.92
Max 1.0 0.979 0.999 1.00 0.977 0.998 0.08 10.24 4.01 0.45 9.78 3.98
Min 1.0 0.709 0.850 0.992 0.855 0.924 0.01 3.22 0.32 0.04 3.34 0.35
ig. 3. Performance comparison of metamodels against SWMM: Nash–Sutcliffe Efficiency (NSE) as a Color Map (left) and Time Series Comparison (right) for the two metamodels
uring the same rain event in different nodes of the network. The runoff (shown upside down) is the inflow to the node after the rainfall is transported in the respective
ubcatchment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
c
a
c
n
h
h
T
r

e
t
e
o
m

n comparison, the MLP-based metamodel had a marginally inferior
elative performance and a marginally superior absolute performance.
hese distinctions become negligible when accounting for the standard
eviation.

Fig. 3(a) shows the spatial distribution of NSE𝑖 for each node 𝑖 ∈ 
f the GNN-based metamodel for a test event. By analyzing the spatial
istribution, it can be seen that most of the nodes have a high value of
he metric (above 0.85), which indicates a favorable fitting.

By examining the spatial distribution of nodes, we identify two
ategories of nodes characterized by lower accuracy. The first category
onsists of various leaf nodes, particularly those experiencing a backwa-
er effect during high flow rates or those connected to pipes that have
ccumulated water from upstream ones. The second category includes
odes situated near the outflow points of the SWS. In these node
ypes, there are instances where the hydraulic head is predominantly
nfluenced by flow transport.

Figs. 3(b) and 3(c) show the comparison of time series of that event
n nodes with high and low NSE, respectively.
 h

8 
Fig. 3(b) presents the time series data from Node A, situated in the
enter of the SWS. This node is influenced both by the incoming runoff
nd flow from adjacent pipes. Despite the metamodel encountering
hallenges in capturing the water transport effects from neighboring
odes, the training process adapts the metamodel’s weights and be-
avior to establish the most accurate relationship between a node’s
ydraulic head and its adjacent neighborhood for most of the nodes.
he high fitness value indicates the metamodel’s capability to generally
eproduce the entire hydraulic head time series.

Nevertheless, certain nodes exhibit relatively low fitting values,
xemplified in Fig. 3(c). In this instance, Node B is linked to a node
hat has accumulated water from upstream nodes, resulting in a height-
ned hydraulic head. Consequently, using these values to calculate its
wn hydraulic heads leads to overprediction. Additional examples of
etamodel performance can be found in the supplementary materials.

The MLP-based metamodel displays high accuracy for some nodes;
owever, for other nodes, it consistently predicted zero water depth
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Fig. 4. Minimum validation loss as a function of number of events in training set for GNN and MLP-based metamodels.
Table 4
Descriptive statistics of speed-up of the proposed and the benchmark metamodels in development domain for the test dataset.

SWMM CPU time MLP (CPU) MLP (GPU) GNN (CPU) GNN (GPU)
[s] Speed-up Speed-up Speed-up Speed-up

Mean 23.16 11.96 35.04 3.69 17.39
S. D 12.93 3.73 9.54 1.22 4.72
Max 69.81 19.37 60.02 6.44 28.36
Min 9.41 4.04 17.71 1.49 10.73
as observed in Fig. 3(c). This behavior can be attributed to the com-
bination of two factors: the inherent tendency of the problem itself
towards zero-depth predictions and the lack of structural bias in the
MLP architecture.

First, as previously mentioned, the response exhibits two regimes:
flow and no-flow. These regimes may create competing objectives dur-
ing training, with the generation of a local optimum in the loss function
related to zero water depth prediction. While this tendency was ac-
counted for with data balancing (see Section 2.1), it may not be
sufficient at a local scale. Second, the fully connected structure of
the MLP causes each node to use features from all nodes without
accounting for the SWS topology. Without a direct connection, the
influence of neighboring nodes must be inferred by the training process.
However, this inference can be hindered by low data availability or
limited computational resources.

The combination of these two factors leads to a situation where,
despite both GNN- and MLP-based metamodels undergoing the same
training process, the training process for the MLP-based metamodel
can become trapped in a solution with multiple local minima in the
loss function. Consequently, this results in low-performing nodes dis-
playing unpredictable spatial patterns. The lack of graph inductive bias
would cause all nodes to have the same potential for predicting a
constant value. This is illustrated by the distribution of errors in the
supplementary materials.

Table 4 summarizes the results of speed-up. The proposed meta-
model is up to six times faster than SWMM when using CPU and up
to 28 times faster when using GPU. In comparison, the MLP-based
metamodel is up to 19 and 60 times faster than the original model.

5.2. Experiment 2 - Data efficiency

Fig. 4 shows the effect of increasing the training dataset on the
minimum validation loss for both the MLP-based and GNN-based meta-
models. The sizes of the datasets considered for this experiment were
9 
1, 3, 5, 10, 15, 20, 30, 40, 60, 80, and 100 events. This range remained
consistent for both metamodels.

Fig. 4 highlights the consistent difference in performances between
metamodels. This gap indicates that the GNN-based metamodel is more
data efficient than the MLP counterpart. Furthermore, it can be inter-
preted in two complementary ways. On one side, for a fixed number
of training events, the GNN-based metamodel consistently achieves
better minimum validation loss. Conversely, the GNN-based metamodel
requires less training events to reach a fixed level of performance.

From Fig. 4, we can also observe two additional patterns. First, as
expected, the minimum loss decreases with data availability. Second,
the variance of the MLP-based metamodel is higher than the GNN-based
metamodel. This indicates that the proposed metamodel is more robust
to training; that is, the GNN-based metamodel’s performance is less
influenced by the randomness of seed selection. Nevertheless, there is
always a spread of performances based on the random initialization of
parameters, this is a known phenomenon for ML models (Picard, 2021).
In practice, it is advisable to train multiple versions of a metamodel
with different random seeds. However, this can be a burden when
having a low computational budget.

5.3. Experiment 3 - Transferability performance

Table 5 summarizes the accuracy and speed metrics over the test
dataset in the new domain.

The results indicate that the overall goodness-of-fit remains high
with 0.968 NSE and 2.87 cm MAE without need for retraining or fine-
tuning. The statistics indicate only a small decrease in performance
in comparison to the performance on the development domain. The
sustained high performance can be attributed to the inherent similarity
between the two domains. The minor decrease in performance is ex-
pected, given that the metamodel was not specifically trained on this
configuration.

For a better picture of the functioning of the metamodel beyond
aggregated metrics, we show the results of the metamodel for the same
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Table 5
Descriptive statistics of accuracy metrics for replicating SWMM hydraulic heads using the proposed metamodel in the transfer domain for the test dataset.

Metric MAE [cm] NSE Speed up

Condition No-Flow Flow Overall No-Flow Flow Overall CPU GPU

Average 0.24 10.31 2.87 0.999 0.900 0.968 3.88 13.15
Stand. deviation 0.17 4.24 2.60 0.01 0.72 0.43 1.20 3.00
Maximum 0.70 22.39 12.05 1.00 0.988 0.999 6.90 20.73
Minimum 0.06 4.38 0.51 0.996 0.725 0.836 1.41 7.98
Fig. 5. Performance comparison of metamodels against the original model: Nash–Sutcliffe Efficiency (NSE) as a Color Map (left) and Time Series Comparison (right) for the
transferred metamodel during the same rain event in different nodes of the network. The runoff (shown upside down) is the inflow to the node after the rainfall is transported in
the respective subcatchment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
rain event from Section 5.1 in the test dataset. The distribution of NSE
values across the network, shown in Fig. 5(a), reveals that a majority
of nodes exhibit strong performance, with the exception of some leaf
nodes and those residing near the network’s outlet (lower right corner).
These nodes, which also demonstrated inferior performance in the
development network, highlight the transferability of the metamodel,
encompassing both its strengths and limitations.

Fig. 5 shows the hydraulic head time series for two different nodes
in the transferred system. From Fig. 5(b), it is possible to see a reason-
able fit between the two time series. With similar dynamic and orders
of magnitude.

While the metamodel generally demonstrates high performance,
Fig. 5(c) illustrates a time series representative of a node with sub-
optimal metamodel accuracy. This node is located in the proximity of
the network’s outlet. The metamodel exhibits no response throughout
the event, except for the peak discharge. These observations restate
the metamodel’s inability to fully replicate flow transport dynamics,
thereby restricting its performance in specific areas of the network.
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6. Discussion

6.1. Implications

6.1.1. Accuracy
The proposed metamodel demonstrates sufficient accuracy for di-

verse applications where similar models have achieved comparable
performance. This includes tasks like design optimization (Huang et al.,
2015; Zhang et al., 2019), and real-time flood prediction, as exempli-
fied by Chiang et al. (2010). Regardless, it is important to consider that
a metamodel is a second-level of abstraction, where each level inher-
ently introduces its own degree of error in representing the actual SWS.
For instance, calibration of the SWMM model introduces a similar error
in magnitude with respect to the observed data, e.g., 0.94 NSE (Zhang
et al., 2021)). Considering the similarity in magnitudes of the model
and metamodel’s errors, it is advised not to exclusively prioritize the
improvement of the metamodel’s accuracy when seeking to improve the
overall performance of the application in which the metamodel is used.
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In optimization applications, it is common to employ evolutionary algo-
rithms. These algorithms involve repeatedly running a hydrodynamic
model to assess the effectiveness of progressively improving system
proposals. In such scenarios, the metamodel may not require absolute
precision; instead, it could focus on comparing relative performance to
select one solution over another. Based on the application, different lev-
els of accuracy could be sufficient and it is the modeler’s responsibility
to indicate its adequacy based on the application at hand.

6.1.2. Speed
The speed performance achieved in this study may not appear

substantial compared to other approaches, particularly those designed
specifically for real-time applications. One of the main bottlenecks
of the current metamodel architectures is their auto-regressive func-
tioning, as the sequence is produced one step at a time. A potential
approach to enhance the speed of the metamodels is to predict multiple
steps ahead simultaneously by integrating recurrent neural network
(RNN) or one-dimensional convolutional neural network (1D CNN)
architectures. For even more sophisticated multi-step predictions, com-
bining graph and temporal convolutions, as demonstrated by Wu et al.
(2019), can leverage both structural and temporal relationships.

The fact that, despite its larger size, the MLP-based metamodel was
faster than the GNN counterpart can be attributed to the recent intro-
duction of graph-based methods in both software and hardware. These
components have not undergone equivalent levels of code optimization
as more established ANN approaches.

While computational efficiency is an important consideration, the
primary focus of this study was on investigating the use of inductive
biases to enhance data efficiency and transferability, rather than on
achieving maximal speed-ups. This study serves as a proof of concept,
and subsequent iterations can further explore more efficient software
implementations, other algorithmic structure or hardware enhance-
ments to gain higher speeds.

6.1.3. Spatial distribution of errors
The errors in prediction suggest that the metamodel is less effective

in estimating water levels at junctions impacted by flows from other
pipes, as opposed to direct flow inputs, indicating challenges in ac-
counting for flow transport. These errors in the spatial distribution can
be traced back to the structure of the GNN-metamodel, specifically two
key settings. First, the input features do not incorporate flow rates, and
as a result, the metamodel lacks training on this crucial information.
Consequently, the metamodel cannot adjust its internal parameters to
adequately capture all the intricacies of hydraulic dynamics. Second,
the GNN layer in the processor only takes into account the first-degree
neighbors, limiting the metamodel’s ability to learn interactions over
longer distances within the SWS’s topology.

As a result, the metamodel is most ideally suited for use in SWS
with moderate slopes, where backwater effects are minimal, and with
low average travel times to prevent substantial flow accumulation. An
example scenario is decentralized urban drainage systems where rain
and wastewater are managed locally.

For mitigating spatially distributed errors we recommend exploring
two promising avenues: targeted intervention and multi-scale process-
ing.

Targeted intervention strategically penalizes the loss function for
underperforming nodes. This guides the metamodel to prioritize im-
provement in specific areas. Multi-scale processing, in contrast, tack-
les errors on a broader scale. This approach can be implemented
in two ways: stacking multiple GNN layers or performing simulta-
neous computations on diverse graph resolutions (achieved through
skeletonization).

Both methods empower the metamodel to capture information from
larger node neighborhoods, enabling a more comprehensive under-
standing of the network’s global structure. This becomes particularly
crucial for large networks where single-layer GNNs or solely fine-

grained analysis struggle to capture the full complexity.
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6.1.4. Data efficiency
The GNN-based metamodel consistently demonstrates superior per-

formance over the MLP-based metamodel, primarily attributable to
its graph inductive bias. This bias not only enhances performance
but also significantly reduces the number of trainable parameters.
While the fully connected structure of the MLP-based metamodel re-
quires 755,722 trainable parameters, the GNN-based metamodel re-
quires only 6,090, a 99.2% reduction. In practice, the more param-
eters an ML model has, the more data and computational resources
it requires for training (Al-Jarrah et al., 2015). Consequently, this
substantial reduction translates to lower computational costs and data
requirements.

6.1.5. Transferability
In terms of applications, the transferability of the metamodel ex-

pands the capabilities of previously mentioned applications. For in-
stance, design optimization, flood resilience and uncertainty analyses
would be unrestricted to a fixed network layout. Consequently, explo-
ration of alternatives such as expanding the network, re-routing parts
of it, or analyzing nearby systems would be possible. The ability of the
metamodels to transfer knowledge across different domains and tasks is
a crucial stepping stone towards the development of foundation models.

Overall, these results demonstrate the feasibility of creating a func-
tional GNN-based metamodel. The accuracy and speed of the proposed
metamodel makes it a candidate for use in applications that require
short execution times while maintaining high resolution at node level,
i.e., water depth at all the nodes.

6.2. Limitations

6.2.1. Case study
We treated the case study as an SWS when it actually is a combined

sewer system. Consequently, we did not account for the dry weather
flow. Despite this, this is an acceptable condition because the wet
weather flow accounts for the majority of the transported flow during a
rainfall event. Moreover, the methodology can be adapted to work with
dry weather flow by including a corresponding pattern in the SWMM
simulations and as an extra term added to the input runoff.

Another limitation regarding the case study is the consideration of
a single case study. This limits the findings as they can be conditioned
to particularities of the used SWS. Nevertheless, the selected SWS is
a complex looped system from a portion of a real city. In addition,
the case study was divided into two separate subnetworks in which the
metamodel showed high overall performance. We recommend further
testing of the metamodel in other SWSs with different characteristics,
e.g. size, slope, topology.

6.2.2. Method
The normalization ranges only considered the values of the develop-

ment subsystem, which may not represent a completely representative
range of values for other potential transferred case study. This dif-
ference can reduce the performance of the proposed metamodel in a
different case study with different distributions of variables. For this
study, both the development and training sub-networks came from the
same SWS; therefore, the distributions were similar. Future work can
be directed towards development of a metamodel with multiple case
studies and large normalization ranges to increase the transferability
capability of the metamodel.

In terms of metamodel comparison, we only considered an MLP-
based metamodel as benchmark and did not consider other alterna-
tives such as simplified models, e.g., comparison to some lumped or
physically-based low fidelity models. Therefore, the results in this paper
are pertinent to metamodels for SWSs that use ML. Consequently, the
proposed metamodel offers improvement in development and trans-
ferability of ML-based metamodels but there are simpler models that

exchange accuracy or resolution for speed in different ways. The water
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modelers’ task is to identify the specific type of metamodel that better
suits their needs.

The benchmark metamodel does not consider constant information,
i.e., node elevation, pipe length and diameter. This implies that the
benchmark metamodel is not receiving the same information as the
proposed metamodel, and the higher performance could be attributed
to this disparity in inputs. Nevertheless, the original metamodel from
which the benchmark is based on does not consider these pipe features
while it still achieves remarkable performance.Adequately considering
these features (or physically-based combinations of them, e.g. pipe
volumes) in the ML metamodels is an area for future development.

6.2.3. Metamodel
The proposed metamodel only predicts hydraulic heads in the nodes

and does not provide estimations for flow rates within the pipes. This
limitation restricts its utility for applications that specifically require
the prediction of flow rates, such as combined sewer overflow estima-
tion, sediment deposition assessment, and water quality evaluations,
among others. The inclusion of flow rates would not only extend the
scope of variables that the metamodel can predict but also expand the
type of available data for its training. Adding the flow rates would po-
tentially enhance the metamodel’s performance in predicting hydraulic
heads by better capturing the underlying physical principles of the
problem, particularly the hydrodynamics of flows in the SWS, which
were not considered in the current metamodel.

Similarly, the proposed metamodel does not calculate the flow rate
that leaves the system through the nodes. This limitation restricts
its utility for urban flooding applications that require the volume of
water that leaves the SWS and enters the streets. If the application
at hand requires the flow rate through the surcharged nodes as done
in Palmitessa et al. (2022), it is advisable to add this variable to the
metamodel and the loss function, and increase the training database
with more surcharging events.

Another limitation lies on assuming that the SWS starts as a dry
network, with zero depth in all nodes and no rain, leading to constant
initial conditions for training. While unrealistic for combined sewer
systems, it is a practical starting point for simulations. Wet weather
conditions’ irregularity and intensity outweigh the effect of regular dry
weather flow patterns. Extending the metamodel to include dry weather
flow could use known initial states or system inflow as starting points.

Finally, this study employed a simplified architecture for both the
MLP and GNN-based metamodel. There are multiple points of im-
provement that can be implemented and explored. The MLP-based
metamodel can be extended to use the static features in the SWS,
i.e., node elevation, pipe length and diameter. Furthermore, all of the
implemented MLPs in this study had a uniform number of hidden units
across metamodel. Further exploration of more complex internal MLPs
along with variations in the GNN, such as stacking graph layers or
using custom layers that combine node and edge embeddings in a more
physically-based manner, could lead to improved performance.

In terms of hyperparameter search, these optimal values are diffi-
cult to estimate a priori, and are obtained by sampling combinations
and testing their performance. Future studies on how to relate these
hyperparameters with the physical characteristics of the SWS can offer
guidance to metamodel developers.

7. Conclusions and recommendations

This research explored the use of inductive bias for creating a
machine learning metamodel of SWMM. The experiments in this study
tested the hypothesis that adding domain knowledge of the SWS to
the deep learning method would increase the data efficiency of the
metamodel; furthermore, it would allow transferability. We summarize

key take away messages from this study:

12 
• Metamodel performance: Based on the favorable values of fit
and speed-up in the test dataset, the results of this investigation
show that the proposed metamodel is both accurate and faster
than SWMM. Nevertheless, there were some nodes, leaf nodes
and close to the network outfalls, with low values of fitness.
The errors in these nodes are mainly related to the metamodel
architecture which struggles to replicate the internal dynam-
ics of the flow transport. We proposed different approaches for
improving both spatial accuracy and execution speed, such as
targeted intervention, multi-scale processing, and sequence-to-
sequence architecture. Since any metamodel only approximates
the response surface of the original model up to certain point, it
is the modeler’s task to adapt and tune it to the application at
hand.

• Data efficiency: The proposed metamodel is more data efficient
than the MLP-based counterpart. This means that it requires less
training examples for reaching certain accuracy; conversely, it can
reach a higher accuracy for the same number of training exam-
ples in comparison to a metamodel based on a fully connected
architecture. Thus, using inductive biases decreases the need for
training examples, which in turn decreases the development time
of the metamodel.

• Transferability: Unlike conventional metamodels that require
retraining for each modified configuration, our proposed meta-
model exhibits transferability to similar SWS layouts. This allows
it to adapt to changes in pipe sizes or network topology while
retaining high accuracy. This translates to significant time and
resource savings for engineers and urban planners.

Based on the work developed in this study, additional research
is needed on speed improvement, metamodel architecture, hyperpa-
rameter analysis, and transferability. In addition, we recommend de-
veloping alternatives or modifications for adding components such as
pumps, and predicting other relevant variables such as flow rates.
Finally, we recommend exploring the idea of transferability. This work
presents a novel approach that benefits both urban drainage prac-
titioners and water network modeling researchers. Practitioners can
efficiently create and transfer SWMM metamodels for computationally
intensive tasks like intervention optimization and Monte Carlo simula-
tions. Researchers can leverage the current metamodel’s structure for
developing new surrogate model architectures tailored to their specific
needs or start paving the way for more general foundation metamodels
of urban drainage systems.

CRediT authorship contribution statement

Alexander Garzón: Conceptualization, Data curation, Methodol-
ogy, Software, Formal analysis, Investigation, Visualization, Writing –
original draft, Writing – review & editing. Zoran Kapelan: Supervision,
Writing – review & editing. Jeroen Langeveld: Supervision, Writing
– review & editing. Riccardo Taormina: Conceptualization, Funding
acquisition, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The dataset containing all the SWMM simulations can be found
at https://doi.org/10.4121/fec1e3de-9586-4a61-b3a1-02382592e52c.
The code repository regarding this study is available at https://doi.
org/10.4121/989a0d3d-3b4d-47c7-8677-31c5975f9dec and https://
github.com/alextremo0205/SWMM_GNN_Repository_Paper_version.

https://doi.org/10.4121/fec1e3de-9586-4a61-b3a1-02382592e52c
https://doi.org/10.4121/989a0d3d-3b4d-47c7-8677-31c5975f9dec
https://doi.org/10.4121/989a0d3d-3b4d-47c7-8677-31c5975f9dec
https://doi.org/10.4121/989a0d3d-3b4d-47c7-8677-31c5975f9dec
https://github.com/alextremo0205/SWMM_GNN_Repository_Paper_version
https://github.com/alextremo0205/SWMM_GNN_Repository_Paper_version
https://github.com/alextremo0205/SWMM_GNN_Repository_Paper_version


A. Garzón et al. Water Research 266 (2024) 122396 
Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used Gemini in
order to improve the language and readability of the manuscript. After
using this tool, the authors reviewed and edited the content as needed
and take full responsibility for the content of the publication.

Acknowledgments

The authors would like to thank Dr. Job van der Werf for his support
on the conversion of the hydraulic model. We also thank Dr. Elvin Isufi
and Roberto Bentivoglio for useful discussions. This work is supported
by the TU Delft AI Labs programme.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.watres.2024.122396.

References

Adadi, A., 2021. A survey on data-efficient algorithms in big data era. J. Big Data 8
(1), http://dx.doi.org/10.1186/s40537-021-00419-9.

Agarap, A.F., 2018. Deep learning using Rectified Linear Units (ReLU). pp. 2–8, CoRR
abs/1803.0, (1) URL: http://arxiv.org/abs/1803.08375.

Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K., 2015. Efficient
machine learning for big data: A review. Big Data Res. 2 (3), 87–93. http://dx.doi.
org/10.1016/j.bdr.2015.04.001.

Belghaddar, Y., Chahinian, N., Seriai, A., Begdouri, A., Abdou, R., Delenne, C., 2021.
Graph convolutional networks: Application to database completion of wastew-
ater networks. Water (Switzerland) 13 (12), 1–19. http://dx.doi.org/10.3390/
w13121681.

Bentivoglio, R., Isufi, E., Jonkman, S.N., Taormina, R., 2023. Rapid spatio-Temporal
flood modelling via hydraulics-based graph neural networks. Hydrol. Earth Syst.
Sci. 27 (23), 4227–4246. http://dx.doi.org/10.5194/hess-27-4227-2023.

Bermúdez, M., Ntegeka, V., Wolfs, V., Willems, P., 2018. Development and comparison
of two fast surrogate models for urban pluvial flood simulations. Water Resour.
Manag. 32 (8), 2801–2815. http://dx.doi.org/10.1007/s11269-018-1959-8.

Biewald, L., 2020. Experiment tracking with weights and biases. URL: https://www.
wandb.com/.

Brandstetter, J., Worrall, D., Welling, M., 2022. Message passing neural PDE solvers.
pp. 1–27, CoRR abs/2202.0, URL: http://arxiv.org/abs/2202.03376.

Bronstein, M.M., Bruna, J., Cohen, T., Veli, P., 2021. Geometric deep learning grids,
groups, graphs, geodesics, and gauges.

Bronstein, M.M., Bruna, J., Lecun, Y., Szlam, A., Vandergheynst, P., 2017. Geometric
deep learning: Going beyond Euclidean data. IEEE Signal Process. Mag. 34 (4),
18–42. http://dx.doi.org/10.1109/MSP.2017.2693418.

Chen, Z., Xiu, D., 2021. On generalized residual network for deep learning of unknown
dynamical systems. J. Comput. Phys. 438, 110362. http://dx.doi.org/10.1016/j.jcp.
2021.110362.

Chiang, Y.-M., Chang, L.-C., Tsai, M.-J., Wang, Y.-F., Chang, F.-J., 2010. Dynamic
neural networks for real-time water level predictions of sewerage systems-covering
gauged and ungauged sites. Hydrol. Earth Syst. Sci. 14 (7), 1309–1319. http:
//dx.doi.org/10.5194/hess-14-1309-2010.

Chocat, B., Ashley, R., Marsalek, J., Matos, M.R., Rauch, W., Schilling, W., Urbonas, B.,
2007. Toward the sustainable management of urban storm-water. Indoor Built
Environ. 16 (3), 273–285. http://dx.doi.org/10.1177/1420326X07078854.

Chow, V.T., Maidment, D.R., Mays, L.W., 1988. Applied hydrology. In: McGraw-Hill
Series in Water Resources and Environmental Engineering TA - TT -. McGraw-Hill,
New York SE, LK - https://worldcat.org/title/16084171.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. pp. 1–9, URL: http://arxiv.org/
abs/1412.3555.

Delft High Performance Computing Centre, 2022. DelftBlue Supercomputer (Phase 1).
URL: https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1.

Dempsey, P., Eadon, A., Morris, G., 1997. Simpol: A simplified urban pollution
modelling tool. Water Sci. Technol. 36 (8–9), 83–88. http://dx.doi.org/10.1016/
S0273-1223(97)00615-X.

DHI, M., 2017. 1D-DHI Simulation Engine for 1D River and Urban Modelling-Reference
Manual. Danish Hydraulic Institute (DHI), Hørsholm, Denmark.

Dietterich, T.G., 2002. Machine learning for sequential data: A review. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 2396, pp. 15–30. http://dx.doi.org/10.1007/
3-540-70659-3_2.
13 
Eden, J.M., Kew, S.F., Bellprat, O., Lenderink, G., Manola, I., Omrani, H., van
Oldenborgh, G.J., 2018. Extreme precipitation in the Netherlands: An event
attribution case study. Weather Clim. Extremes 21 (November 2017), 90–101.
http://dx.doi.org/10.1016/j.wace.2018.07.003.

Fey, M., Lenssen, J.E., 2019. Fast graph representation learning with PyTorch
geometric, (1). pp. 1–9, CoRR abs/1903.0, URL: http://arxiv.org/abs/1903.02428.

Gama, F., Isufi, E., Leus, G., Ribeiro, A., 2020. Graphs, convolutions, and neural
networks: From graph filters to graph neural networks. IEEE Signal Process. Mag.
37 (6), 128–138. http://dx.doi.org/10.1109/MSP.2020.3016143.

Garzón, A., Kapelan, Z., Langeveld, J., Taormina, R., 2022. Machine learning-based sur-
rogate modelling for Urban Water Networks: Review and future research directions.
Water Resour. Res. http://dx.doi.org/10.1029/2021WR031808, e2021WR031808,
https://onlinelibrary.wiley.com/doi/full/10.1029/2021WR031808, https:
//onlinelibrary.wiley.com/doi/abs/10.1029/2021WR031808, https://agupubs.
onlinelibrary.wiley.com/doi/10.1029/2021WR031808.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V., Leskovec, J., 2019.
Strategies for pre-training graph neural networks. pp. 1–22, CoRR abs/1905.1, URL:
http://arxiv.org/abs/1905.12265.

Huang, C.-L., Hsu, N.-S., Wei, C.-C., Luo, W.-J., 2015. Optimal spatial design of capacity
and quantity of rainwater harvesting systems for urban flood mitigation. Water
(Switzerland) 7 (9), 5173–5202. http://dx.doi.org/10.3390/w7095173.

IPCC, 2021. Climate change widespread, rapid, and intensifying. URL: https://www.
ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/.

Jung, K.H., 2023. Uncover this tech term: Foundation model. Korean J. Radiol. 24 (10),
1038–1041. http://dx.doi.org/10.3348/kjr.2023.0790.

Keogh, E., Mueen, A., 2017. Curse of dimensionality. In: Encyclopedia of
Machine Learning and Data Mining. Springer, Boston, MA, pp. 314–315.
http://dx.doi.org/10.1007/978-1-4899-7687-1_192, URL: https://link.springer.
com/referenceworkentry/10.1007/978-1-4899-7687-1_192.

Kerimov, B., Bentivoglio, R., Garzón, A., Isufi, E., Tscheikner-Gratl, F., Steffel-
bauer, D.B., Taormina, R., 2023. Assessing the performances and transferability of
graph neural network metamodels for water distribution systems. J. Hydroinform.
jh2023031. http://dx.doi.org/10.2166/hydro.2023.031.

KNMI, 2022. Precipitation - 5 minute precipitation accumulations from climatological
gauge-adjusted radar dataset for The Netherlands (1 km) in KNMI HDF5 format.
URL: https://dataplatform.knmi.nl/dataset/rad-nl25-rac-mfbs-5min-2-0.

Larsen, T., Gujer, W., 1997. The concept of sustainable urban water management. Water
Sci. Technol..

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
http://dx.doi.org/10.1038/nature14539.

Leitão, J.P., Simões, N.E., Maksimović, C., Ferreira, F., Prodanović, D., Matos, J.S.,
Sá Marques, A., 2010. Real-time forecasting urban drainage models: Full or
simplified networks? Water Sci. Technol. 62 (9), 2106–2114. http://dx.doi.org/
10.2166/wst.2010.382.

Loshchilov, I., Hutter, F., 2019. Decoupled weight decay regularization. In: 7th
International Conference on Learning Representations. ICLR 2019.

Luo, X., Liu, P., Xia, Q., Cheng, Q., Liu, W., Mai, Y., Zhou, C., Zheng, Y., Wang, D.,
2023. Machine learning-based surrogate model assisting stochastic model predictive
control of urban drainage systems. J. Environ. Manag. 346 (August), 118974.
http://dx.doi.org/10.1016/j.jenvman.2023.118974.

Mahmoodian, M., Carbajal, J.P., Bellos, V., Leopold, U., Schutz, G., Clemens, F., 2018.
A hybrid surrogate modelling strategy for simplification of detailed urban drainage
simulators. Water Resour. Manag. 32 (15), 5241–5256. http://dx.doi.org/10.1007/
s11269-018-2157-4.

Makarov, I., Kiselev, D., Nikitinsky, N., Subelj, L., 2021. Survey on graph embeddings
and their applications to machine learning problems on graphs. PeerJ Comput. Sci.
7, 1–62. http://dx.doi.org/10.7717/peerj-cs.357.

Mazziotta, M., Pareto, A., 2022. Normalization methods for spatio-temporal analysis
of environmental performance: Revisiting the Min–Max method. Environmetrics 33
(5), 1–12. http://dx.doi.org/10.1002/env.2730.

Meijer, D., Bijnen, M.v., Langeveld, J., Korving, H., Post, J., Clemens, F., 2018. Identi-
fying critical elements in sewer networks using graph-theory. Water (Switzerland)
10 (2), http://dx.doi.org/10.3390/w10020136.

Palmitessa, R., Grum, M., Engsig-Karup, A.P., Löwe, R., 2022. Accelerating hydrody-
namic simulations of urban drainage systems with physics-guided machine learning.
Water Res. 223 (May), http://dx.doi.org/10.1016/j.watres.2022.118972.

Paszke, A., Lerer, A., Killeen, T., Antiga, L., Yang, E., Gross, S., Bradbury, J., Massa, F.,
Steiner, B., 2019. PyTorch : An imperative style , high-performance deep learning
library. NeurIPS, CoRR abs/1912.0, URL: https://arxiv.org/abs/1912.01703.

Picard, D., 2021. Torch.manual_seed(3407) is all you need: On the influence of random
seeds in deep learning architectures for computer vision, 3407. pp. 1–9, CoRR
abs/2109.0, URL: http://arxiv.org/abs/2109.08203.

Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C.P., Wang, X.Z., Wu, Q.M.,
2023. A review of generalized zero-shot learning methods. IEEE Trans. Pattern Anal.
Mach. Intell. 45 (4), 4051–4070. http://dx.doi.org/10.1109/TPAMI.2022.3191696.

Razavi, S., Tolson, B.A., Burn, D.H., 2012. Review of surrogate modeling in water
resources. Water Resour. Res. 48 (7), http://dx.doi.org/10.1029/2011WR011527.

Rossman, L.A., 2015. Storm water management model. US EPA, Cincinnati, URL:
https://www.epa.gov/water-research/storm-water-management-model-swmm.

https://doi.org/10.1016/j.watres.2024.122396
http://dx.doi.org/10.1186/s40537-021-00419-9
http://arxiv.org/abs/1803.08375
http://dx.doi.org/10.1016/j.bdr.2015.04.001
http://dx.doi.org/10.1016/j.bdr.2015.04.001
http://dx.doi.org/10.1016/j.bdr.2015.04.001
http://dx.doi.org/10.3390/w13121681
http://dx.doi.org/10.3390/w13121681
http://dx.doi.org/10.3390/w13121681
http://dx.doi.org/10.5194/hess-27-4227-2023
http://dx.doi.org/10.1007/s11269-018-1959-8
https://www.wandb.com/
https://www.wandb.com/
https://www.wandb.com/
http://arxiv.org/abs/2202.03376
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb9
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb9
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb9
http://dx.doi.org/10.1109/MSP.2017.2693418
http://dx.doi.org/10.1016/j.jcp.2021.110362
http://dx.doi.org/10.1016/j.jcp.2021.110362
http://dx.doi.org/10.1016/j.jcp.2021.110362
http://dx.doi.org/10.5194/hess-14-1309-2010
http://dx.doi.org/10.5194/hess-14-1309-2010
http://dx.doi.org/10.5194/hess-14-1309-2010
http://dx.doi.org/10.1177/1420326X07078854
https://worldcat.org/title/16084171
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
http://dx.doi.org/10.1016/S0273-1223(97)00615-X
http://dx.doi.org/10.1016/S0273-1223(97)00615-X
http://dx.doi.org/10.1016/S0273-1223(97)00615-X
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb18
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb18
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb18
http://dx.doi.org/10.1007/3-540-70659-3_2
http://dx.doi.org/10.1007/3-540-70659-3_2
http://dx.doi.org/10.1007/3-540-70659-3_2
http://dx.doi.org/10.1016/j.wace.2018.07.003
http://arxiv.org/abs/1903.02428
http://dx.doi.org/10.1109/MSP.2020.3016143
http://dx.doi.org/10.1029/2021WR031808
https://onlinelibrary.wiley.com/doi/full/10.1029/2021WR031808
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021WR031808
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021WR031808
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021WR031808
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021WR031808
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021WR031808
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021WR031808
http://arxiv.org/abs/1905.12265
http://dx.doi.org/10.3390/w7095173
https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/
https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/
https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/
http://dx.doi.org/10.3348/kjr.2023.0790
http://dx.doi.org/10.1007/978-1-4899-7687-1_192
https://link.springer.com/referenceworkentry/10.1007/978-1-4899-7687-1_192
https://link.springer.com/referenceworkentry/10.1007/978-1-4899-7687-1_192
https://link.springer.com/referenceworkentry/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.2166/hydro.2023.031
https://dataplatform.knmi.nl/dataset/rad-nl25-rac-mfbs-5min-2-0
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb31
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb31
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb31
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.2166/wst.2010.382
http://dx.doi.org/10.2166/wst.2010.382
http://dx.doi.org/10.2166/wst.2010.382
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb34
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb34
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb34
http://dx.doi.org/10.1016/j.jenvman.2023.118974
http://dx.doi.org/10.1007/s11269-018-2157-4
http://dx.doi.org/10.1007/s11269-018-2157-4
http://dx.doi.org/10.1007/s11269-018-2157-4
http://dx.doi.org/10.7717/peerj-cs.357
http://dx.doi.org/10.1002/env.2730
http://dx.doi.org/10.3390/w10020136
http://dx.doi.org/10.1016/j.watres.2022.118972
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2109.08203
http://dx.doi.org/10.1109/TPAMI.2022.3191696
http://dx.doi.org/10.1029/2011WR011527
https://www.epa.gov/water-research/storm-water-management-model-swmm


A. Garzón et al. Water Research 266 (2024) 122396 
Schmid, F., Leandro, J., 2023. An ensemble data-driven approach for incorporating
uncertainty in the forecasting of stormwater sewer surcharge. Urban Water J. 00
(00), 1–17. http://dx.doi.org/10.1080/1573062X.2023.2240309.

Schultz, M.T., Small, M.J., Farrow, R.S., Fischbeck, P.S., 2004. State water pollution
control policy insights from a reduced-form model. J. Water Resour. Plan. Manag.
130 (2), 150–159. http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130:2(150),
URL: https://www.researchgate.net/publication/248880246_State_Water_Pollution_
Control_Policy_Insights_from_a_Reduced-Form_Model.

Soviany, P., Ionescu, R.T., Rota, P., Sebe, N., 2022. Curriculum learning: A survey.
Int. J. Comput. Vis. 130 (6), 1526–1565. http://dx.doi.org/10.1007/s11263-022-
01611-x.

Tsiami, L., Makropoulos, C., 2021. Cyber—physical attack detection in water dis-
tribution systems with temporal graph convolutional neural networks. Water
(Switzerland) 13 (9), http://dx.doi.org/10.3390/w13091247.

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., Guyon, I.,
2020. Bayesian optimization is superior to random search for machine learning
hyperparameter tuning: Analysis of the black-box optimization challenge 2020.
Proc. Mach. Learn. Res. 133, 3–26.

Van Bijnen, M., Korving, H., Langeveld, J., Clemens, F., 2017. Calibration of hydrody-
namic model-driven sewer maintenance. Struct. Infrastruct. Eng. 13 (9), 1167–1185.
http://dx.doi.org/10.1080/15732479.2016.1247287.

van der Werf, J.A., Kapelan, Z., Langeveld, J.G., 2023. Predictive heuristic control:
Inferring risks from heterogeneous nowcast accuracy. Water Sci. Technol. 87 (4),
1009–1028. http://dx.doi.org/10.2166/wst.2023.027.

Van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA.
14 
Vilalta, R., Giraud-Carrier, C., Brazdil, P., Soares, C., 2017. Inductive transfer. In:
Sammut, C., Webb, G.I. (Eds.), Encyclopedia of Machine Learning and Data Mining.
Springer US, Boston, MA, pp. 666–671. http://dx.doi.org/10.1007/978-1-4899-
7687-1_138.

Wad, T., Sun, Q., Pranata, S., Jayashree, K., Zhang, H., 2022. Equivariance and
invariance inductive bias for learning from insufficient data. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 13671 LNCS, pp. 241–258. http://dx.doi.org/
10.1007/978-3-031-20083-0_15.

Wu, Y., He, K., 2018. Group Normalization. In: European Conference on Computer
Vision. ECCV, (no. Figure 1), pp. 3–19, URL: https://research.fb.com/publications/
group-normalization/.

Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C., 2019. Graph wavenet for deep spatial-
temporal graph modeling. In: IJCAI International Joint Conference on Artificial
Intelligence, vol. 2019-Augus, pp. 1907–1913. http://dx.doi.org/10.24963/ijcai.
2019/264.

Xing, L., Sela, L., 2022. Graph Neural Networks for State Estimation in Water Distribu-
tion Systems: Application of Supervised and Semisupervised Learning. Journal of
Water Resources Planning and Management 148, 1–14. http://dx.doi.org/10.1061/
(ASCE)WR.1943-5452.0001550.

Zhang, W., Li, J., Chen, Y., Li, Y., 2019. A surrogate-based optimization design and
uncertainty analysis for urban flood mitigation. Water Resour. Manag. 33 (12),
4201–4214. http://dx.doi.org/10.1007/s11269-019-02355-z.

Zhang, Q., Zheng, F., Jia, Y., Savic, D., Kapelan, Z., 2021. Real-time foul sewer
hydraulic modelling driven by water consumption data from water distribution
systems. Water Res. 188, 116544. http://dx.doi.org/10.1016/j.watres.2020.116544.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2018. Graph
neural networks: a review of methods and applications. pp. 1–22.

http://dx.doi.org/10.1080/1573062X.2023.2240309
http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130:2(150)
https://www.researchgate.net/publication/248880246_State_Water_Pollution_Control_Policy_Insights_from_a_Reduced-Form_Model
https://www.researchgate.net/publication/248880246_State_Water_Pollution_Control_Policy_Insights_from_a_Reduced-Form_Model
https://www.researchgate.net/publication/248880246_State_Water_Pollution_Control_Policy_Insights_from_a_Reduced-Form_Model
http://dx.doi.org/10.1007/s11263-022-01611-x
http://dx.doi.org/10.1007/s11263-022-01611-x
http://dx.doi.org/10.1007/s11263-022-01611-x
http://dx.doi.org/10.3390/w13091247
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb50
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb50
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb50
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb50
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb50
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb50
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb50
http://dx.doi.org/10.1080/15732479.2016.1247287
http://dx.doi.org/10.2166/wst.2023.027
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb53
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb53
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb53
http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-3-031-20083-0_15
http://dx.doi.org/10.1007/978-3-031-20083-0_15
http://dx.doi.org/10.1007/978-3-031-20083-0_15
https://research.fb.com/publications/group-normalization/
https://research.fb.com/publications/group-normalization/
https://research.fb.com/publications/group-normalization/
http://dx.doi.org/10.24963/ijcai.2019/264
http://dx.doi.org/10.24963/ijcai.2019/264
http://dx.doi.org/10.24963/ijcai.2019/264
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001550
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001550
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001550
http://dx.doi.org/10.1007/s11269-019-02355-z
http://dx.doi.org/10.1016/j.watres.2020.116544
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb61
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb61
http://refhub.elsevier.com/S0043-1354(24)01295-8/sb61

	Transferable and data efficient metamodeling of storm water system nodal depths using auto-regressive graph neural networks
	Introduction
	Methods
	Data preparation
	Proposed metamodel
	Inputs
	Encoders
	Processor
	Decoder
	Post-processing
	Auto-regression

	Benchmark metamodel
	Training strategy
	Objective function
	Performance metrics
	Parameter optimization
	Hyperparameter optimization


	Case study
	Storm water system description
	Data collection and generation

	Experimental setup
	Experiment 1 — In-domain performance
	Experiment 2 — Data efficiency
	Experiment 3 — Transferability
	Technical specifications

	Results
	Experiment 1 — In-domain performance
	Experiment 2 - Data efficiency
	Experiment 3 - Transferability performance

	Discussion
	Implications
	Accuracy
	Speed
	Spatial distribution of errors
	Data efficiency
	Transferability

	Limitations
	Case study
	Method
	Metamodel


	Conclusions and Recommendations
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	Appendix A. Supplementary data
	References


