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Abstract 
This paper presents a 210nW BJT-based temperature sensor 

that achieves an inaccuracy of ±0.15°C (3σ) from −15°C to 

85°C. A dual-mode front-end (FE), which combines a bias 

circuit and a BJT core, halves the power needed to generate 

well-defined CTAT (VBE) and PTAT (ΔVBE) voltages. The use 

of a tracking ΔΣ ADC reduces FE signal swing and further 

reduces system power consumption. In a 180-nm BCD process, 

the prototype achieves a 15mK resolution in 50ms conversion 

time, translating into a state-of-the-art FoM of 2.3pJK2.  

Introduction 
To extend the battery life of portable devices, the demand for 

low power temperature sensors is increasing. Although sub-

1µW MOSFET/resistor-based temperature sensors have been 

reported, they require a 2-point trim to achieve good accuracy, 

which increases cost [1-2]. In this work, we propose a 210nW 

BJT-based temperature sensor that only requires a 1-point trim 

to achieve ±0.15°C (3σ) inaccuracy from −15°C to 85°C.  

Proposed Design 

The frontend (FE) of a BJT-based temperature sensor 

typically consists of a bias circuit and a BJT core that generate 

VBE and ΔVBE (Fig. 1(a)). Although minimizing IBIAS would 

reduce FE power, to ensure the linearity of ΔVBE, it should be 

much larger than the BJT’s saturation current Is (Fig. 1(b)). In 

this work, a single, reconfigurable dual-mode FE (DMFE) 

generates IBIAS, VBE, and ΔVBE, thus saving significant power 

(Fig. 2). During an initial pre-charge phase (ΦAFE = 1), it is 

configured as a bias circuit that generates PTAT currents IBIAS 

and pIBIAS (p = 7). These are then sampled by storing the gate 

voltages of MA,B on a capacitor CS (=5pF). During the 

conversion phase (ΦAFE = 0), the DMFE is configured as a BJT 

core, and the sampled currents are used to generate VBE and 

ΔVBE. Compared to the use of a separate bias circuit and BJT 

core, this approach nearly halves FE power dissipation, since 

the pre-charge phase is much shorter (2ms) than the total 

conversion time (50ms). Fig. 3(a) shows a detailed schematic 

of the DMFE. An accurate 1:7 current ratio is achieved by 

applying dynamic element matching (DEM) to 8 current 

sources MS1-8. RBIAS (10MΩ) sets IBIAS = 5nA at room 

temperature (RT) ensuring that IS related errors are less than 

0.04°C at 85 °C. Instead of using separate devices, the cascodes 

of the current sources are reused as DEM switches (Fig. 3(b)), 

thus halving the bias current errors due to MOSFET leakage. 

A bootstrapped sampling switch SW1 (M1-3 and two capacitors 

C1,2 = 1pF), is used to limit the leakage of the sampled charge 

in CS via the off-resistance and bulk connection of the main 

switch M1 (Fig. 3(c)).  

The output of the DMFE can be efficiently digitized by a 

charge-balancing ΔΣ modulator, which adjusts the gain K of a 

switched-capacitor (SC) DAC so that K×ΔVBE = VBE on 

average. In [3], a 2nd order zoom ADC is used, which combines 

a coarse SAR ADC and a fine ΔΣ modulator. However, its two-

step operation requires a complex and power-hungry digital 

controller. To reduce power, this work employs a tracking ΔΣ 

modulator [4]. As shown in Fig. 4, this consists of a correlated 

double sampling (CDS)-based 1st integrator (Fig. 5(a)), 

followed by a comparator and a digital loop filter (DLF), 

whose multi-bit output drives the DAC. Each half of the SC 

DAC is implemented by 19 unit caps (CDAC = 60fF), allowing 

K to be varied from 1 to 19 (Fig. 5(b)). In addition, half steps 

in K are realized by using different gain factors in the two 

halves of the DAC, i.e., by alternating between K1 = N and K2 

= N + 1, or K1 = N + 1 and K2 = N, thus realizing a 0.5ΔVBE 

differential DAC swing, while maintaining an average CM 

swing of zero. As shown in Fig. 6, this is 4x less than the swing 

in the zoom ADC of [3], allowing the SC integrator to be 

efficiently implemented as a current-reuse OTA (Fig. 5(c)). 

Moreover, the single-step operation of the tracking ΔΣ 

modulator lowers the complexity and power of the digital 

controller. Compared to the zoom ADC of [3], the number of 

sampling switches per unit cap is halved by creating the ΔVBE 

transitions needed to transfer charge to the integrator by re-

using the DEM switches in the DMFE to swap the bias currents 

of the BJTs. This halves bias current errors due to switch 

leakage. In addition, PMOS, rather than the usual NMOS, T-

switches are used (Fig. 5(b)), allowing their body and drain-

source leakages to be minimized by connecting them to VBEH_R, 

which is a replica of the largest VBE (VBEH = VBEL + ΔVBE) 

generated by QBR biased at IBIAS in the DMFE. 

Measurement Results 

The prototype is fabricated in a 180-nm BCD process (Fig. 

7) and occupies 0.058mm2. The digital controller and the DLF 

are synthesized from standard digital cells. With a 1.25V 

supply and a 5 kHz system clock, the sensor consumes 210nW 

at room temperature, with 121nW/79nW/9nW consumed in the 

analog core, the digital controller and loop filter, and the clock 

generator, respectively. The line sensitivity is 0.07°C/V for 

supply voltages ranging from 1.2V to 1.8V. The sensor 

achieves a thermal-noise limited resolution of 15mK (RMS) in 

a 50ms conversion time (Fig. 8), which translates into a state-

of-the-art FoM of 2.3pJK2. Measurements on 20 samples 

packaged in ceramic DIL packages resulted in ±0.4°C (3σ) and 

±0.15°C (3σ) inaccuracy from −15°C to 85°C without/with 1-

point offset trimming, respectively (Figs 9). As expected, the 

sensor’s characteristic becomes non-linear at high temperature 

(>85°C), due to the increase in IS, while at low temperatures, it 

exhibits more spread as both IBIAS and the OTA gain decrease. 

Table I compares the performance of the proposed sensor with 

those of other 1-point trimmed sub-μW temperature sensors. 

This design simultaneously achieves the lowest power 

consumption and the best accuracy.   
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(a)                                               (b) 

Fig. 9 Measured inaccuracy of 20 samples (a) without and (b) 

with 1-point offset calibration.  
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Fig. 8 Measured resolution 

vs. conversion time. 

0.01

0.1

0.01 0.1

R
e
s
o
lu

ti
o
n

 [
K

]

Conversion time [s]

∝

15mK at 

50ms

TABLE I 

Performance Summary and Comparison with the state-of-the-art 

This work
Zhang [5]

JSensor18

Xin [6]

SSCL18

Souri [3]

ISSCC14

Tang [7]

SSCL21

Sensor type BJT BJT Resistor DTMOS MOS

Process 180nm 180nm 65nm 160nm 55nm

Area [mm²] 0.058 0.18 0.06 0.085 0.0024

Fully integrated? Yes Yes Yes

External 

digital 

controller

External 

1MHz

reference

Power [nW]

(Supply VDD)

210

(1.25V)

720

(1.0V)

488

(1.0V)

600

(0.85V)

860

(0.8V)

Temp. Range 

[°C]
−15 to 85 0 to 100 0 to 100 −40 to 125 −40 to 85

Inaccuracy [°C]

(Trim. Point)

±0.4*1

(0)

±0.15*1

(1)

±0.2*1

(1)

−1.1/1.5*2

(1)

±1.0*1

(0)

±0.4*1

(1)

±0.8*1*3

(1)

R-IA [%] 0.8 0.3 0.4 2.6 1.3 0.5 1.3

Resolution [mK] 15 40 610 63 17

Conv. time [ms] 50 40 0.01 6 1

FoM*4 [pJ·K2] 2.3 46 1.8 14.1 0.26

PSS [ºC/V]

(VDD range)

0.07

(1.2 to 1.8V)
N/A N/A

0.45

(0.85 to 1.2V)

5.8

(0.8 – 1.3V)

*1 3σ inaccuracy

*2 Peak-to-peak inaccuracy
*3 Polynomial fitting is applied. 

*4 FoM = (Resolution)2×(Energy/conversion) 

Fig. 6 Swing of DAC gain. 
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Fig. 1 (a) Schematic of a conventional FE. (b) Simulated IBIAS vs. 
normalized temperature coefficient (TC) (@ −15°C) of ∆VBE. 
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Fig. 5 Schematic of (a) CDS-based integrator, (b) cells of DAC, and (c) current-reuse OTA. 

CINT

VINT

CINT

CDAC

K1CDAC

CDAC

K2CDAC

VOP
VIP

VIN

Φ1D

Φ2D

Φ1

Φ2

Φ2

Φ1

Φ1D

Φ2D

VBE2

VBE1

VON

DAC1

DAC2

Fig. 5(b) 

Fig. 5(c) 

VIN(P)

CDAC

VBE2(1)

SELDAC

VBEH_R

×19

SELDAC

SELDAC

SELDACB

Fig. 7 Die micrograph of the 

fabricated temperature sensor. 
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Fig. 3 Schematic of (a) DMFE, (b) cascode combined with DEM switch, and 

(c) sample and hold circuit based on a passive bootstrap switch. 
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