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A 210nW BJT-based Temperature Sensor with an Inaccuracy of £0.15°C (36) from
—15°C to 85°C

Teruki Someya, Vincent van Hoek, Jan Angevare, Sining Pan, and Kofi Makinwa
Delft University of Technology, Delft, The Netherlands

Abstract

This paper presents a 210nW BJT-based temperature sensor
that achieves an inaccuracy of +0.15°C (36) from —15°C to
85°C. A dual-mode front-end (FE), which combines a bias
circuit and a BJT core, halves the power needed to generate
well-defined CTAT (Vge) and PTAT (AVsgg) voltages. The use
of a tracking AX ADC reduces FE signal swing and further
reduces system power consumption. In a 180-nm BCD process,
the prototype achieves a 15mK resolution in 50ms conversion
time, translating into a state-of-the-art FoM of 2.3pJK?2.

Introduction

To extend the battery life of portable devices, the demand for
low power temperature sensors is increasing. Although sub-
1uW MOSFET/resistor-based temperature sensors have been
reported, they require a 2-point trim to achieve good accuracy,
which increases cost [1-2]. In this work, we propose a 210nW
BJT-based temperature sensor that only requires a 1-point trim
to achieve +0.15°C (30) inaccuracy from —15°C to 85°C.

Proposed Design

The frontend (FE) of a BJT-based temperature sensor
typically consists of a bias circuit and a BJT core that generate
Vee and AVge (Fig. 1(a)). Although minimizing /gias would
reduce FE power, to ensure the linearity of AVgg, it should be
much larger than the BJT’s saturation current /s (Fig. 1(b)). In
this work, a single, reconfigurable dual-mode FE (DMFE)
generates Ipias, VBe, and AVgg, thus saving significant power
(Fig. 2). During an initial pre-charge phase (Pare = 1), it is
configured as a bias circuit that generates PTAT currents /gias
and plgias (p = 7). These are then sampled by storing the gate
voltages of Map on a capacitor Cs (=5pF). During the
conversion phase (@are = 0), the DMFE is configured as a BJT
core, and the sampled currents are used to generate Vgg and
AVge. Compared to the use of a separate bias circuit and BJT
core, this approach nearly halves FE power dissipation, since
the pre-charge phase is much shorter (2ms) than the total
conversion time (50ms). Fig. 3(a) shows a detailed schematic
of the DMFE. An accurate 1:7 current ratio is achieved by
applying dynamic element matching (DEM) to 8 current
sources Msi.s. Rpias (10MQ) sets Igias = SnA at room
temperature (RT) ensuring that /s related errors are less than
0.04°C at 85 °C. Instead of using separate devices, the cascodes
of the current sources are reused as DEM switches (Fig. 3(b)),
thus halving the bias current errors due to MOSFET leakage.
A bootstrapped sampling switch SW (M3 and two capacitors
C12 = 1pF), is used to limit the leakage of the sampled charge
in Cs via the off-resistance and bulk connection of the main
switch M (Fig. 3(c)).

The output of the DMFE can be efficiently digitized by a
charge-balancing AX modulator, which adjusts the gain K of a
switched-capacitor (SC) DAC so that KxAVgg = Ve on
average. In [3], a 2" order zoom ADC is used, which combines
a coarse SAR ADC and a fine AX modulator. However, its two-
step operation requires a complex and power-hungry digital
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controller. To reduce power, this work employs a tracking AX
modulator [4]. As shown in Fig. 4, this consists of a correlated
double sampling (CDS)-based 1% integrator (Fig. 5(a)),
followed by a comparator and a digital loop filter (DLF),
whose multi-bit output drives the DAC. Each half of the SC
DAC is implemented by 19 unit caps (Cpac = 60fF), allowing
K to be varied from 1 to 19 (Fig. 5(b)). In addition, half steps
in K are realized by using different gain factors in the two
halves of the DAC, i.e., by alternating between K; = N and K,
=N+1, or Ki=N+1 and K> =N, thus realizing a 0.5AVzE
differential DAC swing, while maintaining an average CM
swing of zero. As shown in Fig. 6, this is 4x less than the swing
in the zoom ADC of [3], allowing the SC integrator to be
efficiently implemented as a current-reuse OTA (Fig. 5(c)).
Moreover, the single-step operation of the tracking AX
modulator lowers the complexity and power of the digital
controller. Compared to the zoom ADC of [3], the number of
sampling switches per unit cap is halved by creating the AVgg
transitions needed to transfer charge to the integrator by re-
using the DEM switches in the DMFE to swap the bias currents
of the BJTs. This halves bias current errors due to switch
leakage. In addition, PMOS, rather than the usual NMOS, T-
switches are used (Fig. 5(b)), allowing their body and drain-
source leakages to be minimized by connecting them to Vaen g,
which is a replica of the largest Ve (Veen = VeeL+ AVae)
generated by Ogr biased at /gias in the DMFE.
Measurement Results

The prototype is fabricated in a 180-nm BCD process (Fig.
7) and occupies 0.058mm?. The digital controller and the DLF
are synthesized from standard digital cells. With a 1.25V
supply and a 5 kHz system clock, the sensor consumes 210nW
at room temperature, with 121nW/79nW/9nW consumed in the
analog core, the digital controller and loop filter, and the clock
generator, respectively. The line sensitivity is 0.07°C/V for
supply voltages ranging from 1.2V to 1.8V. The sensor
achieves a thermal-noise limited resolution of 15mK (RMS) in
a 50ms conversion time (Fig. 8), which translates into a state-
of-the-art FoM of 2.3pJK?. Measurements on 20 samples
packaged in ceramic DIL packages resulted in +0.4°C (30) and
+0.15°C (30) inaccuracy from —15°C to 85°C without/with 1-
point offset trimming, respectively (Figs 9). As expected, the
sensor’s characteristic becomes non-linear at high temperature
(>85°C), due to the increase in /s, while at low temperatures, it
exhibits more spread as both /gias and the OTA gain decrease.
Table I compares the performance of the proposed sensor with
those of other 1-point trimmed sub-pW temperature sensors.
This design simultaneously achieves the lowest power
consumption and the best accuracy.
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Fig. 3 Schematic of (a) DMFE, (b) cascode combined with DEM switch, and

(c) sample and hold circuit based on a passive bootstrap switch.

Fig. 4 Temperature sensor block diagram and timing
waveforms.
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