

Delft University of Technology

Automated Abstraction of Discrete-Event Simulation Models using State-Trace Data

Tekinay, C.

DOI
10.4233/uuid:e4d3be75-c184-4f24-a127-6d8af9b30550
Publication date
2022
Document Version
Final published version
Citation (APA)
Tekinay, C. (2022). Automated Abstraction of Discrete-Event Simulation Models using State-Trace Data.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:e4d3be75-c184-4f24-
a127-6d8af9b30550

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:e4d3be75-c184-4f24-a127-6d8af9b30550
https://doi.org/10.4233/uuid:e4d3be75-c184-4f24-a127-6d8af9b30550
https://doi.org/10.4233/uuid:e4d3be75-c184-4f24-a127-6d8af9b30550

AUTOMATED ABSTRACTION
of DISCRETE-EVENT

SIMULATION MODELS
using STATE-TRACE DATA

Ç A Ğ R I T E K İ N A Y

Automated Abstraction of Discrete-Event

Simulation Models using State-Trace Data

Çağrı Tekinay

158962 Tekinay BNW.indd 1158962 Tekinay BNW.indd 1 09-05-2022 15:4409-05-2022 15:44

Cover Suzan Doornwaard | www.elephantpath.net
Printing Ridderprint | www.ridderprint.nl
ISBN 978-94-6458-300-7

Copyright © 2022 by Çağrı Tekinay | cagritekinay@gmail.com
No part of the material protected by this copyright notice may be reproduced or utilized
in any form or by any means, electronic or mechanical, including photocopying, record-
ing or by any information storage and retrieval system, without written permission from
the author.

158962 Tekinay BNW.indd 2158962 Tekinay BNW.indd 2 09-05-2022 15:4409-05-2022 15:44

Automated Abstraction of Discrete-Event

Simulation Models using State-Trace Data

Proefschrift

Ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus, Prof.dr.ir. T.H.J.J. van der Hagen,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op vrijdag 17 juni 2022 om 10:00 uur

door

Çağrı TEKİNAY

Master of Science in Information Systems

Middle East Technical University, Ankara, Turkije

geboren te Malatya, Turkije

158962 Tekinay BNW.indd 3158962 Tekinay BNW.indd 3 09-05-2022 15:4409-05-2022 15:44

Dit proefschrijf is goedgekeurd door de promotor:

Prof. dr. ir. A. Verbraeck

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. ir. A. Verbraeck Technische Universiteit Delft, promotor

Onafhankelijke leden:

Prof. dr. M.E. Warnier Technische Universiteit Delft

Prof. dr. ir. J.H. Kwakkel Technische Universiteit Delft

Dr. Y. Huang Technische Universiteit Delft

Prof. dr. H.L.M. Vangheluwe Universiteit Antwerpen, België

Prof. dr. S.J.E Taylor Brunel University London, UK

Dr. G. Yücel Boğaziçi University, Turkije

158962 Tekinay BNW.indd 4158962 Tekinay BNW.indd 4 09-05-2022 15:4409-05-2022 15:44

Canım aileme…

158962 Tekinay BNW.indd 5158962 Tekinay BNW.indd 5 09-05-2022 15:4409-05-2022 15:44

158962 Tekinay BNW.indd 6158962 Tekinay BNW.indd 6 09-05-2022 15:4409-05-2022 15:44

Contents

1	 INTRODUCTION 2	

1.1	 SIMULATION AND SIMULATION MODELS 2	

1.2	 LARGE-SCALE COMPLEX SIMULATION MODELS 4	
1.3	 LARGE-SCALE COMPLEX SIMULATION MODELS: MAIN CHALLENGES 5	

1.3.1	 Problem of Scale 5	

1.3.2	 Problem of Complexity 6	
1.3.3	 Problem of Performance vs. Accuracy 9	
1.3.4	 Problem of Data 10	

1.4	 RESEARCH OBJECTIVE AND RESEARCH QUESTIONS 11	

1.5	 RESEARCH METHODOLOGY 12	
1.6	 RESEARCH INSTRUMENTS 13	
1.7	 THESIS OUTLINE 13	

2	 BACKGROUND AND KEY CONCEPTS 18	

2.1	 INTRODUCTION TO SYSTEMS AND SYSTEMS THEORY 18	
2.1.1	 Dynamic Systems 20	
2.1.2	 Complexity and Hierarchy 21	

2.1.3	 Levels of Systems Knowledge 22	
2.2	 MODELING AND SIMULATION: FUNDAMENTAL CONCEPTS 24	

2.2.1	 Levels of Systems Specification 26	

2.2.2	 Morphism, Homomorphism and Model Abstraction 29	
2.2.3	 Multi-level Morphic Model Pairs 31	
2.2.4	 Basic Modeling Formalisms 31	

2.3	 TEMPORAL DATA MINING: AN OVERVIEW 40	

2.3.1	 Temporal Data Mining: Definition and Data Types 42	
2.3.2	 Characteristics of State-Trace Data 44	
2.3.3	 Temporal Data Mining Tasks 45	
2.3.4	 Temporal Data Mining in Discrete Event Simulations 47	

2.4	 SUMMARY AND OUTLOOK 49

158962 Tekinay BNW.indd 7158962 Tekinay BNW.indd 7 09-05-2022 15:4409-05-2022 15:44

3	 TEMPORAL DATA MINING-BASED METHOD FOR AUTOMATED

DISCRETE-EVENT MODEL ABSTRACTION 52	

3.1	 INTRODUCTION 52	
3.1.1	 Formalization of Discrete-event State-Traces 53	

3.1.2	 Frequent Episode Mining 55	
3.1.3	 Markov Chains 59	
3.1.4	 An Exploratory Case-study: M/M/1 Queueing System 60	

3.2	 THE TEMPORAL DATA MINING-BASED METHOD FOR DEVS MODEL ABSTRACTION 62	

3.2.1	 Generation of Discrete-event Simulation Model State-Traces 63	
3.2.2	 Application of the Temporal Data Mining Tasks to the State-Trace Data 81	
3.2.3	 Simulation of the Discrete-time Markov Chain 89	

3.2.4	 Validation of the Markov Chain Results 90	
3.3	 CONCLUSIONS 97	

4	 AUTOMATED DISCRETE-EVENT MODEL ABSTRACTION:

APPLICATION TO LARGER SCALE MODELS 102	

4.1	 BATTLEFIELD CASE STUDY 102	
4.1.1	 Scenario Description 103	
4.1.2	 Battlefield Conceptual Model 106	
4.1.3	 Modeling the Battlefield case in the DEVS Formalism 111	

4.2	 APPLICATION OF THE TEMPORAL DATA MINING-BASED MODEL ABSTRACTION

METHOD TO THE BATTLEFIELD DEVS MODEL 116	
4.2.1	 Generation of DEVS Model State-Traces 116	

4.2.2	 Application of the Temporal Data Mining Tasks to the State-Trace Data 123	
4.2.3	 Simulation of the Discrete-time Markov Chain 126	
4.2.4	 Validation of the Markov Chain Results 127	

4.3	 CONCLUSIONS 130	

5	 AUTOMATED DISCRETE-EVENT MODEL ABSTRACTION:

APPLICATION TO LARGE-SCALE MODELS 132	

5.1	 SHORT-MERGE CASE STUDY 132	

5.2	 APPLICATION OF THE TEMPORAL DATA MINING-BASED MODEL ABSTRACTION

METHOD TO THE SHORT-MERGE MODEL 135	
5.2.1	 Generation of Discrete-event Model State-Trace Data 135	
5.2.2	 Application of the Temporal Data Mining Tasks to the State-Trace Data 146	

158962 Tekinay BNW.indd 8158962 Tekinay BNW.indd 8 09-05-2022 15:4409-05-2022 15:44

5.2.3	 Simulation of the Discrete-time Markov Chains 149	

5.2.4	 Validation of the Markov Chain Results 149	
5.2.5	 Mining towards a single vehicle model 156	

5.3	 CONCLUSIONS 157	

6	 CONCLUSION 162	

6.1	 RESEARCH FINDINGS 165	
6.2	 MAIN CONTRIBUTIONS 184	
6.3	 DIRECTIONS FOR FUTURE RESEARCH 185	

APPENDICES 187	

APPENDIX A 188	
APPENDIX B 192	

APPENDIX C 198	

SUMMARY 206	

SAMENVATTING 212	

REFERENCES 220	

ACKNOWLEDGEMENTS 240	

ABOUT THE AUTHOR 246	

158962 Tekinay BNW.indd 9158962 Tekinay BNW.indd 9 09-05-2022 15:4409-05-2022 15:44

158962 Tekinay BNW.indd 10158962 Tekinay BNW.indd 10 09-05-2022 15:4409-05-2022 15:44

List of Abbreviations

DESS Differential Equation System Specification

DEVS Discrete-Event System Specification

DSDEVS Dynamic Structure Discrete-Event System Specification

DSOL Distributed Simulation Object Library

DTSS Discrete Time System Specification

EMMA Episodes Mining using Memory Anchor

FEM Frequent Episode Mining

FIFO First In First Out

FIMA Frequent Itemset Mining using Memory Anchor

GSPS General System Problem Solver

GTU Generalized Traffic Unit

I/O Input/Output

KPI Key Performance Indicator

LMRS Lane change Model with Relaxation and Synchronization

M&S Modeling and Simulation

maxwin Maximum Window Bound

minsup Minimum Support Threshold

MRM Multiresolution Modeling

PBL Project Bound List

RNG Random Number Generator

SPM Sequential Pattern Mining

TKE Top-K Episode Mining

V&V Validation and Verification

158962 Tekinay BNW.indd 11158962 Tekinay BNW.indd 11 09-05-2022 15:4409-05-2022 15:44

158962 Tekinay BNW.indd 12158962 Tekinay BNW.indd 12 09-05-2022 15:4409-05-2022 15:44

CHAPTER 1

Introduction

158962 Tekinay BNW.indd 13158962 Tekinay BNW.indd 13 09-05-2022 15:4409-05-2022 15:44

2 – Chapter 1

1 Introduction

As a consequence of increased globalization and the ever-growing demand for faster,

more reliable, and cheaper services, the systems we encounter and interact with in our

daily lives have grown tremendously in size and complexity. It is no longer an unthinkable

scenario that while we are on our way to work in our self-driving cars, we manage to

secure the best flight deal out of hundreds of available options, using the help of intelli-

gent virtual assistants on our latest technology phones which were delivered from their

factories to our doors within days after their public release. All of these actions, however,

rely on the proper operations of large-scale complex systems.

Large-scale complex systems are characterized by a large number of interconnected com-

ponents and their diverse interactions (Filip & Leiviskä, 2009; Šiljak, 1978). Typical ex-

amples of these systems include global supply chains, transportation and logistics net-

works, modern manufacturing systems, and power grids. As the demand for the devel-

opment and optimization of large-scale systems is growing (Arthur et al., 1999), so is the

need for better techniques to understand their underlying dynamic behavior, and to pre-

dict and manage their long-term performance. However, because of their scale and com-

plexity, it is often too difficult and expensive to experiment with large-scale complex

systems directly. Therefore, models are needed that can capture the complexity of these

type of systems under study but are more practical to work with (Banks, 1998). A useful

and powerful method for experimentation that can analyze and evaluate large-scale com-

plex systems is simulation (Law, 2015; Shannon, 1975).

1.1 Simulation and Simulation Models

Simulation is the imitation of the operation of a real-world system or a conceptual system

by means of executing and experimenting with a model of that system (Banks et al.,

158962 Tekinay BNW.indd 14158962 Tekinay BNW.indd 14 09-05-2022 15:4409-05-2022 15:44

3

2010). In computer simulation1, the system of interest is first abstracted into a non-soft-

ware specific conceptual model, which is subsequently transformed into a computer-execut-

able simulation model (Robinson, 2008). Before experimenting with a simulation model,

the suitability and the accuracy of a conceptual model built to represent a real-world

system need to be validated, and the correctness of the transformation from that concep-

tual model to a computerized simulation model needs to be verified. Once the verification

and validation are completed, the simulation model is subjected to a rigorous set of ex-

periments to generate data for further analysis (Kleijnen, 2015).

A simulation model can be viewed as a collection of objects and their interrelations. Ob-

jects are characterized by one or more attributes and the values assigned to these attributes

(Kiviat, 1967, 1969; Nance, 1981). The enumeration of all attribute values of an object

at a particular instant represent the state of that object (Nance, 1981). Simulation models

can be classified along three dimensions: dynamic (i.e., time-variant) vs. static (i.e., time-

invariant), discrete (i.e., state changes happen instantaneously at discrete points in time) vs.

continuous (state changes happen continuously with reference to time), and deterministic

(i.e., non-random, non-probabilistic) vs. stochastic (i.e., random, probabilistic) simulation

models (Banks & Carson, 1984; Law, 2015). In dynamic models where the behavior of a

system over time (i.e., its dynamic behavior) is of interest, time is the indexing attribute2

of an object or of the object’s state. In such cases, the execution of the simulation model

traces a conceptual history of the system’s dynamic behavior in the form of time-ordered

state changes (Nance, 1981). In discrete-event simulation models, the state of the model

remains constant over intervals of time, and the values of the attributes only change at

predetermined event times. An event represents a change in the object’s state. In contrast,

continuous simulation models allow the state of the model to change continuously over

time. Such simulation models are considered deterministic if the output of a simulation

model is always reproducible; that is, a known input or starting value fully predicts the

1 The term “simulation” will be subsequently used in the dissertation to refer to “computer simulation”.

2 An indexing attribute is an attribute of an object that enables state transitions to be ordered.

1

158962 Tekinay BNW.indd 15158962 Tekinay BNW.indd 15 09-05-2022 15:4409-05-2022 15:44

4 – Chapter 1

sequence of state changes and the output (Banks et al., 2010). On the other hand, they

are stochastic if random number generators are used to generate the output values and to

determine the sequence of the state changes. In this dissertation, we are mainly focusing

on dynamic, discrete-event simulation models with both deterministic and stochastic

characteristics.

By using simulation models, system changes can be tested prior to their real-life imple-

mentation, without committing real resources or taking actual risks. For example, gov-

ernments can evaluate the effects of potential new policies on different societal variables

without disrupting ongoing operations; investors can analyze the performance and pay-

off characteristics of various market strategies without taking financial risks, and

healthcare professionals can study and replicate clinical situations without risking lives.

In some cases, simulation may be the only feasible tool for testing new strategies or de-

signs as conducting experiments in the actual environment is near impossible (Shannon,

1976). Moreover, as simulations use an artificial clock to manage time, long-term scenar-

ios can be run to replicate a real-life system’s dynamic behavior in much shorter time

spans (i.e., time compression), whereas scenarios that are naturally completed within mil-

liseconds in wall-clock time can be slowed-down to simulation-seconds (i.e., time expan-

sion). As such, simulation allows analysts to observe the behavioral transitions and study

the chain of events leading to particular short and long-term phenomena. Especially this

ability to mimic behavior over time distinguishes dynamic simulation models from

(static) mathematical models. In the case of large-scale complex systems, simulation tech-

niques are applied to study the dynamic behavior and improve the design of, among

other things, modern manufacturing systems (Negahban & Smith, 2014), healthcare sys-

tems (Zhang, 2018), and energy systems (Keirstead et al., 2012; Negahban & Smith, 2014;

Sola et al., 2020).

1.2 Large-scale Complex Simulation Models

One of the “grand challenges to tackle” (Nicol in Page et al., 1999, pp. 1509-1510) is the

significant growth in the scale and complexity of simulation models over the years. The

scale of a simulation model can be defined as the number of objects in the model and how

much of the real world is represented, and the complexity of a simulation model can be defined

158962 Tekinay BNW.indd 16158962 Tekinay BNW.indd 16 09-05-2022 15:4409-05-2022 15:44

5

as the product of the number of states per object – also referred to as resolution – and the

number of objects in the simulation model (Zeigler et al., 2000). With the increased ca-

pabilities of computer technology, we have been able to run simulation models that are

larger in scale and higher in complexity (Davis & Bigelow, 1998; Zeigler et al., 2000).

While these advances have allowed for more accurate representations of real-world sys-

tems, the ever-increasing scale and complexity of simulation models may eventually result

in models that become too complex themselves to work with (Astrup et al., 2008; Chwif

et al., 2000; Darema, 2004; Henriksen, 2008; Saysel & Barlas, 2006; Taylor et al., 2015) –

giving rise to what we refer as large-scale complex simulation models. These models raise im-

portant new questions and challenges for the modeling and simulation (M&S) commu-

nity (Arthur et al., 1999; Chwif et al., 2000; Robinson, 2001), including how models of

such large scale and complexity can be expressed, modeled more efficiently, and vali-

dated, and what tools and techniques can be used for this. In what follows, we outline

the main challenges of large-scale complex simulation models as well as existing attempts

to address these challenges.

1.3 Large-scale Complex Simulation Models: Main Challenges

Following Nicol (Page et al., 1999, pp. 1509-1510), the main challenges of large-scale

complex simulation models can be classified as the problem of scale, the problem of complexity,

the problem of performance vs. accuracy, and the problem of data.

1.3.1 Problem of Scale

Because of their scale and complexity, large-scale complex simulation models require a

lot of time and resources to develop, maintain, and optimize (Longo, 2011; Wieland &

Pritchett, 2007). Increases in scale and complexity often result in an exponential growth

in the amount of computational power required to execute a simulation model (Page et

al., 1999). In the absence of sufficient computational power, large-scale complex simula-

tion models suffer from extremely long execution times. A strategy that was developed

to deal with the lengthy running times of these type of models is the use of parallel and

distributed simulations (see Banks et al., 2010; Carothers et al., 2017; Fujimoto, 2015;

Fujimoto, 2001; Nelson, 2016; Perumalla, 2006 for extended reviews and discussion of

parallel and distributed simulations). These types of simulations distribute the execution

1

158962 Tekinay BNW.indd 17158962 Tekinay BNW.indd 17 09-05-2022 15:4409-05-2022 15:44

6 – Chapter 1

of a single simulation model over multiple processors (Fujimoto, 2001), resulting in a

potentially significant speedup of the simulation execution compared to sequential and

centralized execution of simulation models. When parallel and distributed simulation was

introduced a few decades ago, the consensus was that it would provide a viable solution

to the increasing demand for computational power necessary to execute computationally

intensive large-scale complex simulation models (Sulistio et al., 2004). Although im-

proved computational power and advanced technologies and techniques (Buyya et al.,

2011; Fujimoto, 2015) to utilize such power indeed successfully address some of the

challenges of running large-scale complex simulation models (Page et al., 1999), these

solutions primarily offer a way to run these models more efficiently. However, they do

not tackle the problem of how large-scale complex simulation models can be modeled

more efficiently. In fact, there is consensus among scholars that increased computational

capacity paradoxically forms one of the factors for the proliferation of large-scale com-

plex simulation models (Chwif et al., 2000; Nelson, 2016; Page et al., 1999). Researchers

like Nicol (Page et al., 1999, pp. 1509-1510) and Hester and Collins (2012, p. 410) argue

that continuously increasing computing power available to us is “whetting our appetite”

for larger and larger models. However, the amount of computation required to execute

these larger models can be a bottleneck, as it increases vastly in relation to the scale of

large-scale complex simulation models. More importantly, the techniques to better de-

sign, control, and interpret such models lag behind (Carothers et al., 2017; Fujimoto,

2016; Henriksen, 2008; Page et al., 1999; Tolk, 2012). Hence, addressing the challenges

of running simulation models of large scale alone does not address the total set of issues

for large-scale complex simulation models.

1.3.2 Problem of Complexity

All simulation models are abstractions of a real-world or a conceptual system, but some

are more detailed than others (Davis & Tolk, 2007). When alternative implementations

of simulation models of a system have the same scale, their complexity can be a useful

metric to compare these models. Because the complexity of a simulation model depends

on the product of model scale, the resolution of objects, and interactions among them

(Davis & Bigelow, 1998; Zeigler et al., 2000). Therefore, the complexity of a simulation

model will increase when one or more of these three aspects increases. Large-scale

158962 Tekinay BNW.indd 18158962 Tekinay BNW.indd 18 09-05-2022 15:4409-05-2022 15:44

7

complex simulation models typically have high complexity as a result of all of these aspects

being inherently high. In this dissertation, we use the term complex to refer to high-complex-

ity.

There are several reasons why simulation model complexity is increasing, resulting in the

proliferation of large-scale complex simulation models. On the one hand, increasing

complexity may be the result of a lack of experience of the modeler or simply having the

possibility to include more. For instance, inexperienced modelers may feel insecure about

what to include in their models and therefore end up including as much detail as possible.

Moreover, as argued above, increasing available computing power removes constraints

on the maximum model scale and complexity and feeds the tendency to model more.

On the other hand, increasing complexity may be caused by interpretation difficulties,

such as a lack of understanding of the underlying real-world system, the inability to make

adequate abstractions of this system (i.e., conceptual model and simulation model), or

even the lack of clear simulation objectives (Chwif et al., 2000). For instance, when the

overall goal of the simulation study is unclear, modelers may have difficulty defining the

scope of the model and end up including more and more detail that the end user may be

interested in (Salt, 1993).

Large-scale complex simulation models raise new questions and bring along new chal-

lenges. In addition to the performance (i.e., computational cost of executing a simulation

model) and resource (e.g., time, money, expertise) issues that were addressed earlier in

the “problem of scale” subsection, these new challenges include a decrease in usability,

reusability, modifiability, and extensibility of the models (Balci et al., 2017) and an in-

creased difficulty in their validation and verification (V&V). Due to the underlying com-

plexity of large-scale complex simulation models, the success of V&V activities relies on

the use of multiple evaluation methods (Balci et al., 2000; Deslandres & Pierreval, 1991),

as well as effective, affordable (in terms of resources and computational costs), and

standardized software to tackle the increased number of tests, data processing work, and

computational complexity of the models to be evaluated (Arthur et al., 1999; Balci, 1994,

1997; Birta & Özmizrak, 1996; Wang et al., 2019). However, such automation software

and techniques and auxiliary selection mechanisms to pick and combine the correct set of

methods are currently largely lacking (Roungas et al., 2018), making it challenging to

1

158962 Tekinay BNW.indd 19158962 Tekinay BNW.indd 19 09-05-2022 15:4409-05-2022 15:44

8 – Chapter 1

implement V&V principles for large-scale complex simulation models. This highlights

the need for more research on methodologies for the validation and verification of large-

scale complex simulation models.

Several strategies have been proposed to address the problem of complexity of large-

scale complex simulation models. A strategy that deals with the complexity issues of

large-scale complex simulation models is the use of model abstraction. Based on the concept

of hierarchy originating from the field of systems theory (Anderson, 1972; Holland, 1996;

2000; Simon, 1991) and later adapted to the field of M&S, the idea of model abstraction

is that complex models consisting of many and diverse interacting objects can be simpli-

fied by decomposing them into less detailed, coarse-grained sub-models using the hier-

archical relationships among them (Fishwick, 1986; 1988; 1989; Zeigler et al., 2000). By

applying various model abstraction techniques (see for taxonomies of model abstraction

techniques; Frantz, 1995; Lee & Fishwick, 1996; Yilmaz & Ören, 2004), modelers are

able to generate models that are executable, valid (i.e., principal assumptions of the orig-

inal model are preserved but essential behavioral and structural elements are simplified)

and of lower resolution compared to the original higher resolution model (Zeigler, 2019).

In this way, the complexity of the original model can be reduced while its structure is

maintained. With the use of model abstraction, multiple models at different levels of

abstraction can be generated. Although the choice of an abstraction level is dependent

on the goals and requirements of the simulation study (Fishwick, 1988), models with

different levels of detail yield different types of insights about the same underlying sys-

tem. In the context of large-scale complex simulation models, it is often impossible to

fully capture the totality of the complex system in one model (Hofmann, 2004; Yilmaz

& Ören, 2004). In this case, building multiple models with different levels of abstraction

or resolution that collectively represent the underlying system allows for a better under-

standing of the behavior of this system. Multiresolution modeling (MRM) is an approach

to build a collection of models at different levels of abstraction to represent the same

system of interest (Davis & Bigelow, 1998; 2003; Davis & Tolk, 2007, Yilmaz et al., 2007).

A simple MRM architecture is composed of a high-resolution model (i.e., more-detailed,

fine-grained), a low-resolution model (i.e., less-detailed, coarse-grained), and a mapping

logic that connects these two models (Petty et al., 2012). MRM enables modelers to

158962 Tekinay BNW.indd 20158962 Tekinay BNW.indd 20 09-05-2022 15:4409-05-2022 15:44

9

gradually develop low-resolution simulation models from high-resolution ones by estab-

lishing conceptually and analytically correct and consistent hierarchies among them. The

importance of MRM in large-scale complex simulation models is well-recognized

(Hofmann, 2004; Zeigler, 2019). However, MRM currently still requires modelers to de-

sign lower resolution models manually. Given their complexity, this is not a feasible task

when dealing with large-scale complex simulation models (Yilmaz & Tolk, 2006). There-

fore, automation methods to facilitate model abstraction might be of added value.

Another strategy that aims to deal with both performance and complexity issues of such

models is the use of metamodels (Barton, 2015; Kleijnen, 1987). Providing “a model of a

model” (Kleijnen, 1987), a metamodel replaces an expensive simulation model with an-

other model that is generated by approximating the I/O function of the original one, e.g.

as a set of linear equations with interaction effects. A metamodel treats the simulation

model as a black box; that is, the simulation model’s I/O is observed, and the parameters

of the metamodel are estimated (Barton, 1992; Kleijnen, 1987). Metamodels are, there-

fore, simpler, computationally more efficient models than the original models (Kleijnen,

2015; Simpson et al., 2001) and can also be considered as one of the model abstraction

techniques (Frantz, 1995). However, a fundamental limitation of this black box approach

is that metamodels do not benefit from the time and state transition information that is

present in the underlying simulation model and describes the dynamic behavior of the

system (Nance, 1981). Therefore, metamodels cannot predict I/O relations well for set

of inputs (interventions) that have not been used in estimating metamodel’s parameters.

1.3.3 Problem of Performance vs. Accuracy

The problem of performance vs. accuracy emerges from both the problem of scale and

the problem of complexity described above. The choice of resolution for a simulation

model at a given scale can be understood as a trade-off between the level of accuracy of

a simulation model and the computational cost of its execution (i.e., its performance).

Understanding this trade-off requires insight into how the model scale and resolution

influence accuracy and performance (Tekinay et al., 2012). For instance, a simulation

model will perform better in terms of runtime when the number of simulation model

objects decreases. However, a decrease in resolution may result in a decrease in model

1

158962 Tekinay BNW.indd 21158962 Tekinay BNW.indd 21 09-05-2022 15:4409-05-2022 15:44

10 – Chapter 1

accuracy (Zeigler et al., 2000). Thus, modelers are forced to make a decision between

sacrificing the accuracy of the simulation model for better performance, potentially risk-

ing the validity of the simulation model consistent with the intended application of the

model (Schlesinger et al., 1979), or increasing the computational capacity and the associ-

ated costs in order to improve the complex model’s runtime.

In addition, Astrup et al. (2008) demonstrated that more complex models do not always

result in better predictions. In their study on the simulation of forest growth, the authors

compared the predictive ability of five simulation models with increasing complexity.

Their results revealed that both the simplest and the most complex models had the poor-

est predictive ability, whereas the model characterized by intermediate complexity

showed the best predictive ability. Hence, to achieve good predictive ability and perfor-

mance, it is essential to develop methods to generate parsimonious simulation models.

1.3.4 Problem of Data

A final issue associated with large-scale complex simulation models is the problem of

data. Over the years, the increase in the scale and complexity of simulation models has

led to an associated growth in the volumes of data generated by these models. A type of

data that is particularly affected by the increases in scale and complexity of simulation

models is the trace data. Trace data, or state-sequence data, is of interest for several M&S

purposes, including trace-driven input testing in the validation of dynamic simulation

models (Balci, 1994) and process modeling (van der Aalst, 2011; 2016). More im-

portantly, trace data allow modelers to observe the history of a (stochastic) simulation

model run in order to gain insight in how complex phenomena evolve over time

(Kemper & Tepper, 2007). However, when these trace data become huge in terms of

variety (i.e., the number of different data sources or model components to be sampled)

and length (i.e., the number of times for different sources or model components to be

sampled), they confine modelers’ ability to identify and utilize frequent behavioral pat-

terns for model abstraction (Kim et al., 2017; Tolk, 2015). Data mining (Atluri et al.,

2018; Gan et al., 2017) and machine learning methods (Pedrycz & Chen, 2014) have been

designed to ease the process of discovering frequent patterns in temporal data and di-

mension reduction, that is, conversion of data from a high dimensional space into a low

158962 Tekinay BNW.indd 22158962 Tekinay BNW.indd 22 09-05-2022 15:4409-05-2022 15:44

11

dimensional space (Hinton & Salakhutdinov, 2006). Although such methods have

proven to be useful for recognizing behavioral patterns within large volumes of trace

data (Chapela-Campa et al., 2019; Lu et al., 2019; Song et al., 2009; van der Aalst, 2011),

they have not yet been applied to automate dynamic simulation model abstraction. This

would require techniques that can not only identify important behavioral patterns in

state-trace data, but also generate lumped states at various abstraction levels to form

models at a lower level of resolution. Combined with the previously addressed challenges

of large-scale complex simulation models, this points to a missing link in existing meth-

ods of dealing efficiently with these type of simulation models.

1.4 Research Objective and Research Questions

As the scale and complexity of the systems that we interact with in our daily lives are

growing tremendously, the issue of how to efficiently and effectively study these systems

has been attracting more attention. Simulation models traditionally used to analyze and

evaluate complex systems have given rise to new challenges in the form of large-scale

complex simulation models. The previous sections have shown that existing modeling

methods and techniques lack the mechanisms to deal with the problems of scale, com-

plexity, accuracy vs. performance, and data that characterize large-scale complex simula-

tion models. We posit that there is a need for a method that can help reduce the com-

plexity of complex simulation models. In this research, we therefore aim to provide a

method that automates the abstraction of large-scale complex simulation models using

their state-trace data.

Research Objective: To investigate to what extent the abstraction of large-scale complex discrete-

event simulation models can be automated using their state-trace data.

In order to achieve this objective, the following research questions will need to be

answered:

Research Question 1: To what extent do existing methods allow for the abstraction of large-scale

discrete-event simulation models?

In the modeling and simulation literature, several model abstraction techniques exist

for large-scale and complex simulations. What are the shortcomings of conventional

1

158962 Tekinay BNW.indd 23158962 Tekinay BNW.indd 23 09-05-2022 15:4409-05-2022 15:44

12 – Chapter 1

methods for the abstraction of large-scale and complex simulations? What existing

methods in other fields can be adapted to address these shortcomings?

Research Question 2: How should state-trace data from large-scale complex discrete-event simula-

tion models be prepared to be used for the automated abstraction method?

What are the important characteristics of state-trace data that enable the abstraction

of large-scale complex discrete-event simulation models? And would any prepro-

cessing of the state-trace data be needed to help the automated abstraction process?

Research Question 3: What considerations and actions are needed for the automated abstraction

of the original model’s dynamic behavior using state-trace data?

What key characteristics of the original model are essential to be captured in the state-

trace data to represent its dynamic behavior accurately?

Research Question 4: How well does the abstracted model represent the behavior of the original

large-scale complex simulation model?

To evaluate the accuracy and the validity of the abstracted model, we will need to com-

pare key statistics and performance measures obtained from the original model and the

abstracted model using descriptive and inferential statistics. Because of our particular

focus on model abstraction, the original model is treated as the system of which we gen-

erate state-trace data. Therefore, we evaluate whether the abstracted model can answer

the same questions that the original system (i.e., the original model) could answer. This

type of validity relation (i.e., model-system comparison) is similar to generating a data

trace from a real-life system, evaluating the validity of the abstracted simulation model

against this real-life system.

1.5 Research Methodology

The research methodology refers to the selection of the appropriate method(s) to conduct

the research (Chen & Hirschheim, 2004). Various taxonomies have been proposed for

the classification of research methodologies (Alavi et al., 1989; Cash & Nunamaker, 1989,

1990, 1991; Galliers, 1991; Orlikowski & Baroudi, 1991). Among these taxonomies, quan-

titative vs. qualitative (Cash & Nunamaker, 1989) stands out as one of the most consistent

comparisons. The quantitative methods, such as formal methods for data analysis,

158962 Tekinay BNW.indd 24158962 Tekinay BNW.indd 24 09-05-2022 15:4409-05-2022 15:44

13

numerical methods like mathematical modeling, laboratory experiments are designed to

be used in natural sciences to study natural phenomena. In contrast, qualitative methods

like participant observations, interviews, among others, are more inclined towards social

sciences wherein people with their social and cultural contexts form a fundamental part

of the research (Howe, 2002). The research in this dissertation used simulation models

to generate data and data mining, pattern recognition, and statistical methods were used

to analyze the data. Therefore, the research is highly quantitative. Another categorization

of research methods is the deductive reasoning vs. inductive reasoning (Markus, 2007).

The underlying reasoning in this research is deductive, as the existing work in the litera-

ture has been studied, a hypothesis is proposed (in Section 1.4) and the hypothesis is

tested to find support for the proposed hypothesis.

1.6 Research Instruments

The choice of research instruments to be used in research is dependent on the research

objective, research questions, and research methodology (Creswell, 2009; Galliers, 1991).

For this study, we will perform a literature review to obtain systematic knowledge on M&S,

systems theory, and data mining in order to answer Research Question 1. To address

Research Question 2, we will use insights from existing literature to present the DEVS

formalism and its concepts of states and state-transitions, while case studies and simulation

experiments will be conducted to demonstrate considerations for the use of state-trace data

for the automated abstraction process. Research Question 3 will be informed by a liter-

ature review in the domain of data mining and M&S, and by data analysis and simulation

experiments using the case studies. Specifically, data mining techniques will be presented,

compared, and applied to the state-trace data to identify behavioral patterns at the desired

level of abstraction. Finally, data analysis in the form of descriptive and inferential statistics

will be used to address Research Question 4.

1.7 Thesis outline

In Chapter 2, we will provide an overview of the systems-theory-rooted foundation of

M&S and introduce some of the key terms and concepts used in systems studies and the

field of M&S. We will go over the theoretical frameworks that we use as the foundation

of our research in greater detail, as well as conduct a review of previous efforts on multi-

1

158962 Tekinay BNW.indd 25158962 Tekinay BNW.indd 25 09-05-2022 15:4409-05-2022 15:44

14 – Chapter 1

resolution simulation models. We will look into the relevant studies that have been done

in the data mining field, specifically in the area of temporal data mining. Following our

review of the existing literature, we will describe the tasks and data types in the data

mining field, focusing on temporal data mining, and present the rationale for combining

temporal data mining and discrete-event modeling. Chapter 2 will therefore provide an

answer to Research Question 1.

In Chapter 3, we will provide a detailed breakdown of our proposed method, emphasiz-

ing its strengths and introducing several theoretical and practical considerations in its

application. The chapter will begin by formally describing the key concepts and algo-

rithms used in our method. We then describe each step of the temporal data mining-

based method to automate the abstraction of discrete-event simulation models and ad-

dress considerations and actions for the modeler in the method's application. We will

demonstrate and validate the proposed method's practical application in a case study of

an exploratory M/M/1 queueing system throughout the chapter. Chapter 3 will provide

a first answer to Research Questions 2, 3, and 4 since the method that will be presented

in the chapter covers the characterization of the data, the automated model abstraction,

and validation of the results.

Each step of the proposed method will be covered in Chapter 4 using a battlefield case

from which an earlier version was introduced in (Tekinay et al., 2012), to demonstrate

how to apply the method introduced in Chapter 3 and tailor it step-by-step to a relatively

larger, more complex model with different model characteristics. First, we will provide a

high-level description of the battlefield model and present the details of the particular

scenario used in the case study. We will then present the conceptual model and describe

the behavioral characteristics of the model components. We will then follow the same

section structure in Chapter 3 and address all considerations and actions for the modeler.

Finally, we will provide the validation process results and present our conclusions, which

will extend the answers for Research Questions 2, 3 and 4.

Chapter 5 will apply our method to a microscopic traffic simulation model, which has a

relatively larger number of model components and a larger state space than the battlefield

model. We will begin the chapter with a high-level description of the traffic model before

delving into the specific scenario used in the case study. We will then present the

158962 Tekinay BNW.indd 26158962 Tekinay BNW.indd 26 09-05-2022 15:4409-05-2022 15:44

15

conceptual model's details and describe the characteristics of the model entities and the

road network. We will then address all considerations and actions for the modeler fol-

lowing the same section structure as in Chapters 3 and 4. Next, we will present model-

specific adjustments to the considerations and explain certain adjustments made to apply

the method to the traffic simulation case study, which will again extends the answers to

Research Questions 2, 3 and 4. Consequently, we will finish the chapter by presenting

our findings from the validation process and explaining our learnings from applying our

method to a large-scale complex discrete-event simulation model.

Finally, Chapter 6 will conclude the dissertation by summarizing our findings by reflect-

ing on the research objective and answering each research question based on our learn-

ings from the case studies in Chapters 3, 4, and 5. Finally, we will finalize the chapter by

discussing the relevance of our research and providing suggestions for future work.

1

158962 Tekinay BNW.indd 27158962 Tekinay BNW.indd 27 09-05-2022 15:4409-05-2022 15:44

158962 Tekinay BNW.indd 28158962 Tekinay BNW.indd 28 09-05-2022 15:4409-05-2022 15:44

CHAPTER 2

Background and Key Concepts

158962 Tekinay BNW.indd 29158962 Tekinay BNW.indd 29 09-05-2022 15:4409-05-2022 15:44

18 – Chapter 2

2 Background and Key Concepts

In the previous chapter, we outlined the research motivation, objective, and research

questions to set the scope of the research in this dissertation. In this chapter, we present

the fundamental concepts and existing work in systems studies and M&S relevant to this

research. In addition, we discuss how the field of data mining can contribute to the study

of large-scale complex simulation models. Many authors have elaborated on the strong

relationship between systems theory and M&S (Ören, 1971; Ören & Zeigler, 2012; Prae-

hofer, 1991; Wymore, 1967; Zeigler et al., 2000; Zeigler & Praehofer, 1989). After all, a

simulation model is a representation and abstraction of a real-world system to study that

system. In what follows, we first introduce some of the key concepts in systems theory,

including system complexity, system hierarchy, and levels of system knowledge. We then

proceed with a discussion of concepts from M&S, such as level of systems specification,

morphism, homomorphism, model abstraction, and modeling formalisms. Finally, we

will describe the tasks and the types of data in the data mining field, particularly in the

area of temporal data mining, and present the rationale for combining temporal data

mining and multiresolution discrete-event modeling as the foundation for our study.

2.1 Introduction to Systems and Systems Theory

A system can be viewed as an abstraction of (a portion of) the real world. In the systems

theory literature, a system is typically defined as a set of interacting, interrelated entities or

parts within an observable boundary (Ackoff & Emery, 1972; Boardman & Sauser, 2008;

Hitchins, 2008; Klir, 2001; von Bertalanffy, 1968). These parts can be characterized by

one or more variables or attributes, and the values assigned to these variables (Flood &

Carson, 1993). The enumeration of the values for a set of variables is called state (Klir &

Elias, 2012).

Systems theory further describes a system in terms of its structure, that is the inner con-

stitution of that system, and its behavior, that is the outer manifestation of the inner trans-

formations (Zeigler et al., 2000). The system structure, which corresponds to the white-

box system view in systems theory, is the collection of the system state, state transition

158962 Tekinay BNW.indd 30158962 Tekinay BNW.indd 30 09-05-2022 15:4409-05-2022 15:44

19

mechanism, and state-to-output mapping. The external behavior, which corresponds to

the black-box system view in systems theory, constitutes the output of the system based on

its inputs (Skyttner, 2006). Knowing the structure of a system allows one to gain insight

into the internal working or internal behavior of that system, as well as to deduce its

external behavior (Zeigler et al., 2000). A more unifying definition of system concept by

Wymore (1967) can be formally expressed by a 7-tuple, as shown in Definition 2.1.

Definition 2.1. Formal definition of a system (Wymore, 1967)

S = (T, X, Ω, Q, δ, Y, λ)
where

 T ⊂ R+
0, ∞ is the time base, a formalization of the independent var-

iable time t, where R+
0, ∞ is the positive reals including

0 and ∞
 X is the set of all admissible input values

 Ω = {ω: T → X} is the set of all admissible input segments

 Q is the set of state values

 δ = Ω × Q → Q is the transition function: how the state changes when (var-
ious) inputs are fed into the system, or when the system
is in a certain state

 Y is the output set: observable parameters

 λ = Q → Y is the output function; mapping of the system state to the
(resulting) output of the system

According to Gaines (1979), how a system is defined and distinguished from its environ-

ment is strongly influenced by the investigator’s perspective and goals. Specifically, the

investigator decides what parts and interactions among those parts need to be included

within the boundary of the system he or she is interested in (Meadows, 2009; Weinberg,

1975). Each of these included parts can be formally described as a system in itself, and

regarded as a subsystem within the system (Flood & Carson, 1993; Gaines, 1979).

2

158962 Tekinay BNW.indd 31158962 Tekinay BNW.indd 31 09-05-2022 15:4409-05-2022 15:44

20 – Chapter 2

2.1.1 Dynamic Systems

One of the main characteristics of the large-scale complex systems that are the focus of

this research is that they are dynamic. A dynamic system is a system whose state changes

over time, either at a stochastic or deterministic rate. Dynamic systems can be distin-

guished from static systems, whose state remains constant within the chosen observation

frame of that system (Liu, 2015). The state of a dynamic system at a given time t ≥ 0, as

well as the information of what variables constitute that state at t = 0, is indicated by one

or more state variables. The set of all possible values that those state variables can take

over time is called state space (Vangheluwe, 2008).

Dynamic systems can be categorized based on their time and state representations

(Wainer, 2009; Zeigler et al., 2000). A system is said to have a continuous time base (i.e., time

evolves continuously) when a real number represents the time. In contrast, the system

has a discrete time base (i.e., time advances in discrete portions) when an integer number

represents the time. Similarly, state variables are described as continuous if the values of

the state variables are from a continuous set represented as a real number, or discrete if

the values of the state variables are represented as a finite set. As such, a system can be

categorized into four classes (see Figure 2.1) based on the representation of its time base

and state variables (Wainer, 2009; Zeigler et al., 2000):

(I) Continuous variable dynamic systems: Systems that have both a continuous time base

and continuous state variable (Figure 2.1.a).

(II) Discrete-time dynamic systems: Systems that have a discrete time base but continuous

state variables (Figure 2.1.b).

(III) Discrete-event dynamic systems: Systems that have a continuous time base but discrete

state variables (Figure 2.1.c).

(IV) Discrete dynamic systems: Systems that have both a discrete time base and discrete

state variable (Figure 2.1.d).

158962 Tekinay BNW.indd 32158962 Tekinay BNW.indd 32 09-05-2022 15:4409-05-2022 15:44

21

Figure 2.1. System classification based on the representation of time base/state variables (Zeigler

et al., 2000)

2.1.2 Complexity and Hierarchy

Another key concept in systems theory and, in particular, the study of large-scale com-

plex systems is complexity. Complex systems are generally characterized by many levels

of ontological organization that can (not always) be divided or decomposed into smaller,

less complex parts or subsystems (Anderson, 1972; Holland, 2000; Simon, 1962). The

approach of systematically decomposing systems allows forming a hierarchy of systems

specifications, thereby increasing the level of resolution of analysis and the system

knowledge (Flood & Carson, 1993; Zeigler et al., 2000).

Typically, four types of hierarchy are distinguished in systems theory: order hierarchy,

inclusion hierarchy, control hierarchy, and level hierarchy (Lane, 2006). Order hierarchy is

2

158962 Tekinay BNW.indd 33158962 Tekinay BNW.indd 33 09-05-2022 15:4409-05-2022 15:44

22 – Chapter 2

equivalent to the process of ordering a set of parts based on the values of their variables,

for example, ordering sets based on their size or the number of elements in them. Inclusion

hierarchy refers to the recursive relation among the parts of an organization; for example,

the famous analogy of “Chinese boxes” (Simon, 1962) that is organized as a main box

enclosing a second box within, and a third box is enclosed within the second box, and

so on. The ontological claim of the inclusion hierarchy concept is that the container at

level m, which is the main box in Simon’s analogy, contains nothing but a certain number

of other entities at level m+1, the entities at level m+1 are only composed of entities at

level m+2, and so on. According to Simon, the interactions among the parts that exist at

the same hierarchical level in a complex system are near-decomposable, that is, a new de-

composition of entities at a new spatial and temporal (spatio-temporal) level m+1 is

achievable from the system specification of level m (Simon, 1962). Control hierarchy refers

to the ranking hierarchy within social organizations, for instance, the military ranks

among soldiers in an army. The higher-ranking entities are entitled to command lower-

ranking ones, and the lower-ranking entities are bound to obey the commands received

from the higher-ranking entities (Lane, 2006). Finally, in level hierarchy, different parts in

an ontological organization are postulated to exist at different spatio-temporal levels, and

the higher-level parts at a particular spatio-temporal level may be either fully or partly

composed of lower-level parts. In the case of the former, level hierarchy forms an inclu-

sion hierarchy. In the case of the latter, some of the properties of lower-level entities and

interactions change when forming a higher-level representation. Typical examples of

level hierarchy can be found in cells, organs, individuals, and species.

2.1.3 Levels of Systems Knowledge

Epistemology, or the theory of knowledge, is the study of the origin and scope of

knowledge and its justification. Forming a hierarchy of systems specifications through

the process of systematical decomposition enables accessing system knowledge from dis-

tinct epistemological levels. The General System Problem Solver (GSPS; Klir, 1985)

framework describes the systems knowledge that can be acquired from each epistemo-

logical level (see Table 2.1). Klir’s taxonomy of systems uses notions like investigator (or

observer), investigated object, environments and interactions (between the investigator and the ob-

ject) to describe each distinct levels of systems knowledge. In GSPS, the level of

158962 Tekinay BNW.indd 34158962 Tekinay BNW.indd 34 09-05-2022 15:4409-05-2022 15:44

23

knowledge accumulates when going up in the hierarchy as each level encapsulates all the

knowledge available in all of the lower level systems.

Table 2.1. Hierarchy of epistemological levels of systems knowledge (Klir & Elias, 2012)

Level 4,5, … Meta Systems Relations between relations one level below

Level 3 Structure Systems Relations between models one level below

Level 2 Generative Systems Models that generate data one level below

Level 1 Data Systems Observations and desired states one level below

Level 0 Source Systems Empirical data source

Level 0, also called source systems, is the lowest level in the hierarchy of epistemological

levels of systems. A source system is the source of empirical data and defined by a set of

variables (basic or supporting) deemed relevant by the investigator, a set of potential

states or values for those variables to obtain along their time-history, and their real-world

interpretations. Basic variables of source systems can be partitioned into input and output

variables, whereas the most common types of supporting variables are representing time,

quantity (i.e., various populations of individuals of the same kind), and space. The set of

aggregate states of all supporting variables forms a support set where changes in states of

basic variables occur.

Level 1, or data systems, supplements the source system with data. Data is obtained by

means of measurements or observation, or by the definition of desirable states, that is, the

time-history of all basic variables within the support set.

Level 2 possesses knowledge that allows us to define one support-invariant characteriza-

tion (e.g., time-invariant, space-invariant, etc.) of the relation among the basic variables

for boundary conditions. This characterization describes a process with which the states

of the basic variables (i.e., data) within a support set are generated. Therefore, this level

is referred to as generative systems.

Level 3, or structure systems, is a representation of an overall system in terms of its subsystems

that interact with each other in some way. An overall system is a system that represents

2

158962 Tekinay BNW.indd 35158962 Tekinay BNW.indd 35 09-05-2022 15:4409-05-2022 15:44

24 – Chapter 2

all of its associated lower level systems (source, data, and generative systems) based on

the same support set.

Level 4 and higher, also referred to as meta-systems, define systems that consist of a set of

systems defined at lower levels and a support-invariant meta-characterization. Meta-char-

acterization is used to describe changes in system traits at lower level systems.

The GSPS framework allows defining a system as a part of the universe where the system

and its observer coexist and interact for the purpose of dealing with fundamental system

problems (Cellier, 1991). In the GSPS framework context, there are three fundamental

system problems that involve moving between the levels of systems knowledge (Zeigler

et al., 2000):

(I) System analysis is the effort to understand the behavioral characteristics of an

existing or planned system. System analysis requires moving down the

hierarchy, for instance a simulation which generates data under specific

instructions fed by a model.

(II) System inference refers to the effort to infer system behavior through observation,

or system structure from system behavior. System inference requires a

transition from low-level system knowledge to a higher one, for instance from

data to a probabilistic state machine.

(III) System design is the problem related to the ambition of finding a good design for

a system that does not yet exist. Doing so requires moving up in the hierarchy

to be able to generate data and then analyze such data.

The GSPS framework provides a hierarchy of epistemological levels of systems and iden-

tifies the system traits that are essentially participating in the system definition change

(Skyttner, 2006). Although the framework is defined in the context of general systems

theory, some of its key concepts, like systems knowledge and representation, are essential

for simulation modeling (Zeigler et al., 2000).

2.2 Modeling and Simulation: Fundamental Concepts

The success of a simulation study is dependent on the understanding of fundamental

entities and relationships in a modeling and simulation (M&S) process (Shannon, 1998;

158962 Tekinay BNW.indd 36158962 Tekinay BNW.indd 36 09-05-2022 15:4409-05-2022 15:44

25

Zeigler et al., 2000). These fundamental concepts (see Figure 2.2) defined by the M&S

framework (Wainer, 2009; Zeigler et al., 2000) are as follows:

(I) Source system: The real or virtual environment in which we are interested in for

modeling purposes. A source system is the source of observable data or behavior

database, that is, time-indexed trajectories of variables gathered from

observation or experimenting with the (source) system (Klir, 1985).

(II) Experimental frame: The specification of the conditions under which the system

is observed or experimented with.

(III) Model: The set of instructions, equations, rules, or constraints for generating

input/output (I/O) behavior.

(IV) Simulator: A computation system capable of executing a model to generate its

behavior.

Figure 2.2. Basic entities in M&S and their relations (Zeigler et al., 2000)

In addition to these four basic entities in the M&S framework, there are two fundamental

relationships between the basic entities:

2

158962 Tekinay BNW.indd 37158962 Tekinay BNW.indd 37 09-05-2022 15:4409-05-2022 15:44

26 – Chapter 2

(I) Simulation relation, or model correctness, is between a simulator and a model. The

correctness of a simulator implies that the model’s output trajectory is faithfully

generated by the simulator given the models’ initial state and the input

trajectory.

(II) Modeling relation, or validity, refers to the relation between a model, a system and

an experimental frame. Model validity is the degree to which a model properly

represents its system counterpart under the conditions specified by the

experimental frame of interest (Zeigler et al., 2000).

In this thesis, we study the validity relation between the original model and the

abstracted model. As mentioned earlier in §1.4, we treat the original model as

the system of which we generate state-trace data because of our particular focus

on model abstraction. As a result, we investigate whether the abstracted model

properly represents the original system (i.e., the original model) to evaluate its

validity.

A simulation model is designed and specified to resemble its system counterpart in the

epistemological hierarchy, in terms of parts, structure, relations, and input-output behav-

ior, among others. The simulation model is a morphism of its system counterpart when

the elements of the model and the system are properly placed into correspondence.

Drawing a parallel between the levels system specifications and the levels of systems

knowledge is important to understand and tackle systems problems, and subsequently,

design and develop valid and coherent models. Such parallelism is presented by Zeigler

et al. (2000) with a particular emphasis on the M&S context.

2.2.1 Levels of Systems Specification

Zeigler et al. (2000) formulated a hierarchy of systems specification levels that is similar

to Klir’s (1985) hierarchy of epistemological levels, but with more emphasis on the M&S

context (see Table 2.2 for these levels and their correspondence to the levels of systems

knowledge). The main difference between the two frameworks is that the systems spec-

ification hierarchy employs the concept of dynamic systems and acknowledges that sim-

ulation deals with the time-varying behavior of systems. Similarly, Zeigler’s framework is

committed to the use of concepts like input/output ports and modularity to explain the

158962 Tekinay BNW.indd 38158962 Tekinay BNW.indd 38 09-05-2022 15:4409-05-2022 15:44

27

levels of systems specification, whereas Klir’s GSPS can include these terms but the

framework is not dedicated to use them (Zeigler et al., 2000).

Table 2.2. Levels of systems knowledge and systems specification (Zeigler et al., 2000)

Level Systems Knowledge Systems Specification Validity

3 Structure System Coupled Component Structural validity

2 Generative System State Transition Structural validity

1 Data System I/O Function

I/O Behavior

Predictive validity

Replicative validity

0 Source System Observation Frame

The observation frame corresponds to the source system at Level 0 in the systems

knowledge hierarchy (Klir & Elias, 2012). It provides instructions on which variables are

to be measured and how the behavior over time should be observed. A system in the

system specification hierarchy interacts with other systems via its input and output ports;

that is, it receives time-indexed input (input trajectories) through its input ports and gen-

erates time-indexed output (output trajectory) from its output ports.

The I/O behavior and I/O function correspond to the data system at Level 1. The collection

of all time-stamped I/O pairs gathered by observation is called I/O behavior of a system.

With the addition of the knowledge of an initial state, the I/O function indicates the

functional relationship between the input and output; that is, the combination of an input

trajectory and an initial state determines the unique output trajectory of a system.

The state transition of a system corresponds to the generative system at Level 2 in the

systems knowledge hierarchy of Klir. This level provides instructions on how a state

transition occurs in terms of input trajectory, current state, and the next (future) state so

that the correct output trajectory is generated. A sequence of states (i.e., all future states

q1, q2, …, qn resulting from a given initial state q0) that a system traces during its life-

cycle (q0, q1, q2, …, qn) is called a state trajectory.

2

158962 Tekinay BNW.indd 39158962 Tekinay BNW.indd 39 09-05-2022 15:4409-05-2022 15:44

28 – Chapter 2

The coupled component is the highest level in Zeigler’s framework3. A component in a model

corresponds to a part (or subsystem) in the system of interest. A coupled component is

composed of components and their interactions coupled using ports; that is, the output

port of a component is an input port of another component.

Additionally, Zeigler’s System Specification Hierarchy describes model validity in relation

to the levels of systems specification. The experimental frame is a critical entity in model

validation. In essence, validation is the process of testing a model’s validity by comparing

its output trajectory to the system’s output trajectory based on the input trajectories gen-

erated by the frame for both the source system and the model under test. For the model

to be considered valid, both output trajectories that are fed back into the experimental

frame must be similar within acceptable tolerance (Zeigler, 2019). Three types of validity

are distinguished:

(I) The replicative validity is the most basic form of validation at the I/O relation

level since it involves the comparison of observed data. Replicative validity of

a model is affirmed if the behavior of the model, i.e., I/O behavior, and the

system are a match within acceptable tolerance for all the experiments within

the experimental frame.

(II) The predictive validity of a model is affirmed if the model has replicative validity

and if it can generate (predict) future behavior given the past observations.

Predictive validity requires agreement at I/O function level between the system

and model.

(III) The structural validity is the strongest form of validity, and it requires agreement

at state transition or at coupled component level. Structural validity requires the

model to be capable of replicating the data observed from the system, and

mimic the state transition of the system step-by-step and component-by-

component.

3 The system specification hierarchy (Zeigler et al., 2000) does not specify a level of systems specification
matching Klir’s meta-systems.

158962 Tekinay BNW.indd 40158962 Tekinay BNW.indd 40 09-05-2022 15:4409-05-2022 15:44

29

2.2.2 Morphism, Homomorphism and Model Abstraction

The systems specification hierarchy framework provides a stratification for constructing

models that represent their system counterparts to the extent demanded by the intended

use of the models (Zeigler et al., 2000). A systems specification in the context of M&S is

the formal description of systems knowledge in the form of a (simulation) model speci-

fication. A simulation model is typically constructed at the generative systems or struc-

ture systems level, depending on the purpose of the simulation study. For instance, a

more complex simulation model with coupled structures is constructed at level 3. The

morphism relation between a simulation model and the original system implies that the

elements of the model and the system are properly placed into correspondence (Klir,

2001; Zeigler et al., 2000).

A particular type of morphism relation between a pair of systems specifications at the

state transition level is called homomorphism. A homomorphic relation (e.g., between a

model and its original system4) indicates contingency upon a function from relevant en-

tities of the original system onto the corresponding entities of the model system (i.e., the

model) under which the relation among entities is preserved (Klir, 2001). Within this

context, the onto function implies that the entity mapping (correspondence) is surjective;

that is, the model is a simplification of the original system. In this case, the simplified

model, or the lumped model, represents a part of a more complex base model with a certain

degree of accuracy. Homomorphism suggests that there is a predefined mapping be-

tween the states of the base and lumped models, which is preserved under transitions;

that is, for every base and corresponding lumped state, the respective next states to which

they transit also correspond. It is assumed that the states of the lumped model S’ and

base model S are correspondent (congruent) but not identical, and simulating these cor-

responding states until their respective next states are encountered is done with different

numbers of transitions (Zeigler, 2019). A specific case of this is illustrated in Figure 2.3,

where a multi-step (micro) transition between the states B and F in the base model S is

4 In M&S context, a model system can be the origin of another model system.

2

158962 Tekinay BNW.indd 41158962 Tekinay BNW.indd 41 09-05-2022 15:4409-05-2022 15:44

30 – Chapter 2

represented by one (macro) state transition between the states b and f in the lumped

model S’.

Figure 2.3. Homomorphism relation between the corresponding states and the state transitions
of the base model S and the lumped model S'; based on Zeigler et al. (2000)

The notion of a homomorphism implies an error-free relation between the base/lumped

model states, and achieving it ensures that the I/O behavior of the homomorphic models

remains the same. That is, the values and the timings of the state transitions and the

output trajectory of the base model within the same experimental frame are preserved in

the lumped model. In Figure 2.3, this would imply that the total time delay of transitions

B-C-D-E-F would be equal to the single time delay b-f. However, an entirely error-free

model abstraction is not always possible in the real world (e.g., due to model complexity,

stochasticity, time, and other resource limitations) and an error is introduced into the

lumped model when an exact homomorphism is not achieved (Zeigler, 2019). A modeler

may develop a lumped model that represents the entities in the base model quite accu-

rately but not at a hundred percent. This type of morphism that has some error is called

an approximate morphism. It should be noted that the concept of validity is not absolute;

that is, a lumped model may still be valid if the error introduced by the approximate

morphism is within an acceptable tolerance for goodness-of-fit.

158962 Tekinay BNW.indd 42158962 Tekinay BNW.indd 42 09-05-2022 15:4409-05-2022 15:44

31

2.2.3 Multi-level Morphic Model Pairs

As discussed earlier, it is often impossible to fully capture the totality of large-scale com-

plex systems in one simulation model (Hofmann, 2004; Yilmaz & Ören, 2004). In such

cases, multiresolution modeling (MRM) can be used to build a family of models with

different levels of abstraction or resolution that collectively represent the underlying sys-

tem (Davis & Bigelow, 1998; 2003; Davis & Tolk, 2007). Applying the concept of

base/lumped model pairs to MRM, a lumped model is further simplified by constructing

another lumped model of the original lumped model. In this newly formed morphic

(base/lumped) model pair, the original lumped model is the base model. This approach

to form multi-level morphic models by performing first order approximation in a recur-

sive manner allows forming a hierarchy of models with varying state trajectories which,

as a whole, provide a more complete description of a system than a single model descrip-

tion (Zeigler, 2019).

2.2.4 Basic Modeling Formalisms

A simulation model is designed and developed under certain constraints. A part of these

constraints are imposed by the morphism relation between the system specification and

the systems knowledge described in §2.2, and a part of them imposed by the non-func-

tional requirements for the model; e.g., usability, reusability, modifiability, and extensi-

bility (Balci et al., 2017). A systems specification needs to be expressed in a certain sys-

tems specification formalism – also referred to as a modeling formalism. A modeling for-

malism is a shorthand means of specifying a system, which implicitly sets constraints on

the parts of the dynamic system (Zeigler et al., 2000). In other words, a modeling for-

malism consists of sets, relations on sets, and axioms on relations for expressing (simu-

lation) models of dynamic systems. As discussed earlier in §2.2.1, dynamic systems are

delineated with discrete or continuous time, and the state of the systems is specified using

variables on a discrete or continuous domain (Wainer, 2009; Zeigler et al., 2000). Three

basic modeling formalisms are developed to specify types of dynamic systems. The three

formalisms are:

(I) Discrete Time System Specification (DTSS) represents systems over a discrete time

base. It assumes a stepwise execution (Zeigler et al., 2000). At a particular

2

158962 Tekinay BNW.indd 43158962 Tekinay BNW.indd 43 09-05-2022 15:4409-05-2022 15:44

32 – Chapter 2

instant, the model is in a particular state, and it defines what the state at the

next instant will be. If the state at time t is q(t) and the input at time t is x(t),

then the state at time t+1 is q(t +1) = δ(q(t),x(t)) where δ is the state transition

function. Difference equations are an example of DTSS.

(II) Differential Equation System Specification (DESS) is a formalism that represents

systems with continuous state over a continuous time base. DESS does not

specify a next state directly through a state transition function. Instead, it

specifies the rate of change of the state variables qi through a derivative function

f. Meaning that at any particular instant, given a state q and an input value x, the

rate of change of the state can be obtained, i.e., "#$
"%

= f(q1(t), q2(t), . . . , qn(t), x(t)),

i = 1..n, and can thus compute the state at any instant in the future using

integration methods. Differential equations are an example of DESS.

(III) Discrete Event System Specification (DEVS) represents systems as piecewise

constant state trajectories over a continuous time base. The state trajectories

are produced by state transition functions δint and δext that are activated by

internal or external events.

The time base types for these three formalisms were addressed earlier in Figure 2.1.

2.2.4.1 DEVS Formalism

In this research, DEVS is chosen as the underlying modeling formalism. Our reasoning

can be grouped into five categories:

(I) Large-scale complex systems can have components that are so diverse that they

cannot all be expressed in a single formalism. Instead, multiple formalisms may

be needed to model different system components; hence the concept of multi-

formalism modeling (Vangheluwe & de Lara, 2002). In multi-formalism modeling,

each system component can be modeled using the most suitable formalism;

however, at the same time, a single formalism is identified into which each

modeled component can be symbolically transformed (Vangheluwe & de Lara,

2002). The formalism space and existing behavior-preserving homomorphic

relations between formalisms are shown in a formalism transformation graph;

158962 Tekinay BNW.indd 44158962 Tekinay BNW.indd 44 09-05-2022 15:4409-05-2022 15:44

33

see Figure 2.4. The DEVS formalism is the common denominator modeling

formalism for the simulation of large-scale complex simulation models

(Vangheluwe & de Lara, 2002; Vangheluwe, 2000).

(II) The DEVS formalism provides the building blocks for other modeling

formalisms to be developed (e.g., Hierarchical DEVS (Zeigler et al., 2000),

Fuzzy-DEVS (Kwon et al., 1996), Parallel-DEVS (Chow & Zeigler, 1994),

Port-based DEVS5 (Zeigler et al., 2000), Stochastic DEVS (Castro et al., 2010),

Cell-DEVS (Wainer, 2002; Wainer & Giambiasi, 2001; 2002), and Markov

DEVS (Seo et al., 2018)).

(III) The DEVS formalism supports hierarchical, modular and component-based

construction of models (Wainer, 2009; Zeigler et al., 2000).

(IV) Conventional discrete event modeling approaches (e.g., activity cycle diagrams

(Poole & Szymankiewicz, 1977), event graphs (Schruben, 1983), block diagrams

(Schriber, 1989), process networks (Pritsker, 1979) mainly focus on the

concepts of activity, event or process, and de-emphasize the concept of state. On

the other hand, the DEVS formalism originates from the systems theory

background and puts a particular emphasis on the notion of state (Praehofer &

Pree, 1993).

(V) Different world views can be expressed as subclasses of DEVS:

a. the process-interaction world view describes the lifecycle of each entity

through in the system,

b. the activity scanning world view describes the conditions that will trigger

state changes (Vangheluwe, 2000; Zeigler et al., 2019), and

c. the event-scheduling world view describes the effect of each event on the

state and on the future behavior of the system (typically the external

5 Referred to as Classic DEVS with Ports (Zeigler et al., 2000, p. 84)

2

158962 Tekinay BNW.indd 45158962 Tekinay BNW.indd 45 09-05-2022 15:4409-05-2022 15:44

34 – Chapter 2

events are not part of this view). The case study models in Chapter 3

and 5 use the event-scheduling world-view. However, as discussed by

Seck and Verbraeck (2009), the event-scheduling world view is harder

to formulize than DEVS Formalism, which has a sound mathematical

formalization for hierarchical models (see Definition 2.3 below).

Furthermore, according to Vangheluwe and de Lara (2002), the

underlying features of the event-scheduling worldview can be

completely expressed using DEVS concepts (see Figure 2.4).

Therefore, we will use the concepts from the DEVS formalism (e.g.,

time advance, memorlyless property) also to describe the model

characteristics in Chapter 3 and 5 that have been implemented using

an event-scheduling world view.

Figure 2.4. Formalism Transformation Graph (adjusted from Vangheluwe, 2008). The arrows
indicate an existing homomorphic relationship between formalisms

158962 Tekinay BNW.indd 46158962 Tekinay BNW.indd 46 09-05-2022 15:4409-05-2022 15:44

35

DEVS is a general modeling formalism that allows the formal representation of systems

whose I/O behavior is described by a sequence of events. The DEVS formalism allows

describing systems as a composition of atomic and coupled components. Atomic models

are expressed in the basic DEVS formalism, whereas coupled models are expressed in

the coupled DEVS formalism containing components and coupling information (Zeigler

et al., 2000).

An atomic DEVS model is a description of the autonomous behavior of a discrete event

system represented as a sequence of deterministic transitions between sequential states

over time (Vangheluwe, 2000). Additionally, it formally describes the mechanism to react

to external inputs (events) and to generate output (events). A basic DEVS formalism for

atomic DEVS models is a structure M as described in Definition 2.2.

Definition 2.2. Formal definition of an atomic DEVS model (Zeigler et al., 2000)

M = < X, Y, S, ta, δext, δint, λ >

where

 X is the set of input events

 Y is the set of output events

 S is the set of possible states, where s0 ∈ S is the initial state

 ta: S → 𝕋𝕋∞	 is the time advance function that is used to determine the
lifespan of a state. 𝕋𝕋 is the time base, 𝕋𝕋∞ = [0, ∞] is
the set of non-negative real numbers plus infinity

 δext : Q × X → S is the external state transition function, where Q =
{(s,e)|s∈ S, 0≤e≤ta(s)} is the total state set

e is the elapse time since the last state transition

 δint : S → S is the internal state transition function that defines how a
state of the system changes internally (when the
elapsed time e reaches the lifetime of the state)

 λ: S→Y is the output function that maps the current state on the
output of the atomic model

2

158962 Tekinay BNW.indd 47158962 Tekinay BNW.indd 47 09-05-2022 15:4409-05-2022 15:44

36 – Chapter 2

This formalism is an extension of the system description of Wymore (1967) mentioned

earlier in Definition 2.1, where the major changes are the addition of the ta function to

make the duration of state changes more explicit, and the differentiation between δint and

δext. The basic DEVS formalism contains information about the state transition of a sys-

tem as it corresponds to systems knowledge at the generative level and systems specifi-

cation at state transition level (§2.1.3 and §2.2.1). For simplicity, the confluent state tran-

sition function δcon(s, x) will be discussed after the basic state transition mechanism is

described.

At any given time, a DEVS model is in some state, s∈ S. Each possible state s has an

associated time advance calculated by the time advance function ta(s). In the absence of

an external event, an atomic DEVS model will stay in a state s for a ta(s) units of time. A

state transition occurs by an external state transition function δext (s,e,x) or an internal state

transition function δint(s). When the calculated time advance expires, i.e., when the elapsed

time e = ta(s), the system outputs the value λ(s), and transitions to a new state δint(s). This

is called an internal transition. Alternatively, an external event x ∈ X might occur before

the consumption of the ta(s), i.e., e < ta(s). In that case, the model transitions to a new

state given by the external state transition function δext (s,e,x). This is called an external

transition. In the case an external event arrives at the exact time of an internal event, then

the confluent state transition function δcon(s, x) determines the next state; either an internal

transition followed by an external transition or an external transition followed by an in-

ternal transition, or something completely different.

A coupled DEVS formalism corresponds to structure systems in the systems knowledge

hierarchy where a set of systems and their interrelations are specified (§ 2.1.3 and § 2.2.1).

DEVS models are closed under coupling; that is, the hierarchical DEVS models can al-

ways be expressed as an equivalent atomic model (Vangheluwe, 2000). In other words, a

hierarchical DEVS model theoretically behaves like, and has exactly the same character-

istics as an atomic model (which does not mean that we know or can always define that

atomic model). Therefore, in hierarchical model composition, a component in a hierar-

chical model can also be another hierarchical model, since this model has (and is indis-

tinguishable from) an equivalent atomic model. This allows for an infinite hierarchy of

158962 Tekinay BNW.indd 48158962 Tekinay BNW.indd 48 09-05-2022 15:4409-05-2022 15:44

37

hierarchical models, where on each level, atomic sub-models and hierarchical sub-models

can co-exist.

The formal definition for a coupled DEVS model as a structure N is described in Defi-

nition 2.3.

Definition 2.3. Formal definition of a coupled DEVS model (based on Zeigler et al., 2000)

N = < X, Y, D, {Mi}, {Ii}, {Zij} select >

where

 X is the set of input events of the coupled model

 Y is the set of output events of the coupled model

 D is the set of component indexes of the coupled model

 {Mi} is a set of components defined as

Mi = < Xi, Yi, Si, δint,i ,δext,i, λi, tai >, ∀i ∈ D

 {Ii} for each i ∈ D, Ii is the set of components which are influenced by
component i, and Ii ⊆D ∪{N}, i ∉ Ii

 {Zi,j } for each j ∈ Ii, Zi,j is the output-to-input translation function, where

.
𝑋𝑋 → 𝑋𝑋1			if	𝑖𝑖 = 𝑁𝑁	and	𝑗𝑗 ∈ 𝐷𝐷
𝑌𝑌1 → 𝑌𝑌			if	𝑖𝑖 ∈ 𝐷𝐷	and	𝑗𝑗 = 𝑁𝑁
𝑌𝑌1 → 𝑋𝑋=			if	𝑖𝑖 ∈ 𝐷𝐷	and	𝑗𝑗 ∈ 𝐷𝐷

 select 2D → D is the tie-breaking function which defines how to select
the event from the set of simultaneous events. In other words,
when multiple (atomic) models have to change their state at the
same time, Select determines the order in which the (atomic)
models are allowed to change their state one by one.

In the port-based definition of DEVS (Wainer, 2009; Zeigler et al., 2000), model com-

ponents are modeled to have a set of input and output ports. The message-based com-

munication structure of the port-based DEVS formalism guarantees the modularity

among the model components through their input and output ports. Ports also enable

2

158962 Tekinay BNW.indd 49158962 Tekinay BNW.indd 49 09-05-2022 15:4409-05-2022 15:44

38 – Chapter 2

setting up the coupling relationship between model components. The classic DEVS

atomic model with the port specification is specified in Definition 2.4:

Definition 2.4. Specification of a port-based DEVS atomic model (based on Zeigler et al.,
2000)

M = < X, Y, S, δext, δint, δcon, λ, ta >

where

 X = {(p,v)| p ∈ IPorts, v ∈ Xp} is the set of input values and ports

 Y = {(p,v)| p ∈ OPorts, v ∈ Yp} is the set of output values and ports

 S is the set of sequential states

 δext: Q×Xb−→S is the external state transition function, where
Q = {(s,e)|s∈S,0≤e≤ta(s)} is the set of total
states, e is the elapsed time since last state
transition

 δint: S→S is the internal state transition function

 δcon: S×Xb→S is the confluent state transition function

 λ: S→Yb is the output function

 ta: S → 𝕋𝕋∞ is the time advance function which is used to
determine the lifespan of a state, where 𝕋𝕋
is the time base and 𝕋𝕋∞ = [0, ∞] is the set
of non-negative real numbers plus infinity

In the above port-based atomic DEVS model description, the superscript b indicates that

the input and output values can be a bag6 of values rather than a single one. Therefore,

Xb indicates a set of bags over elements in X where δext(s,e,x) = s. The set of total states

6 A bag is a set with possible multiple occurrences of its elements.

158962 Tekinay BNW.indd 50158962 Tekinay BNW.indd 50 09-05-2022 15:4409-05-2022 15:44

39

(S) that a model has is the Cartesian product of sets (s) belonging to each state variable.

This means S = s1×s2×. . . ×sn, where n ∈ ℕ.

Similarly, a DEVS coupled model can be described using a port specification, as provided

in Definition 2.5.

Definition 2.5. Specification of a port-based DEVS hierarchical model (based on Zeigler et al.,
2000)

M = < X, Y, D, {M d ∈	D}, EIC, EOC, IC, select >

where

 X = {(p,v)| p ∈ IPorts, v ∈ Xp} is the set of (external) input ports and values

 Y = {(p,v)| p ∈ OPorts, v ∈ Yp} is the set of (external) output ports and val-
ues

 D is the set of component names

 {Md ∈	D} is the set of components, each of which can
be either an atomic model or a coupled
model

 EIC ⊆	X × ∪ Xd ∈	D is a set of external input couplings that con-
nects external inputs to components in-
puts, where Xd ∈	D is the set of inputs of
Md ∈	D

 EOC⊆∪Yd ∈	D × Y is a set of external output couplings that con-
nects component outputs with external
outputs, where Yd ∈	D is the set of outputs
of Md ∈	D

 IC ⊆	∪Yd ∈	D ×∪Yd’ ∈	D Ù d ¹ d’ is a set of internal couplings that connect
component outputs to component in-
puts

 select 2D → D is the tie-breaking function which
defines how to select the event from the
set of simultaneous events.

2

158962 Tekinay BNW.indd 51158962 Tekinay BNW.indd 51 09-05-2022 15:4409-05-2022 15:44

40 – Chapter 2

The hierarchical specification for DEVS is important from a complexity point of view

(hierarchical modeling) and therefore specifically important for large-scale complex sys-

tems models.

2.3 Temporal Data Mining: An Overview

As argued in §1.3.4, one of the challenges related to large-scale complex simulation mod-

els are the growth in the volumes of data generated by their executions, particularly state-

trace data, or state-sequence data. Data mining is the process of discovering knowledge,

such as patterns, associations, trends, anomalies, and significant structures, from such

large and complex data sets using a combination of techniques from different fields such

as statistics, machine learning, pattern recognition, database, and high-performance com-

puting technologies (Fayyad et al., 1996a; Hand et al., 2001; Laxman & Sastry, 2006).

Typical data mining tasks include preprocessing, clustering, segmentation, classification, regression,

and association rule mining (Dunham, 2002; Han et al., 2012; Hand et al., 2001).

(I) Preprocessing the data mainly includes the tasks of data cleaning (i.e., removal of

outliers, erroneous, missing, or irrelevant data), data integration (i.e., combining

data from multiple sources into one), data transformation (i.e., conversion of

data values to a format required by the tools and algorithms; for example,

quantization of the continuous data points or conversion of numerical values

to categorical ones (Mörchen, 2006b), and normalization (i.e., adjusting

different data values to a common scale without distorting the differences in

ranges of values).

(II) Clustering7 is the process of identifying intrinsic regions or classes (referred to as

clusters) embedded in a given data set based on similarity measure, such as

distance (i.e., the distance of small intra-clusters vs. the distance of large inter-

clusters) or density (i.e., dense cluster regions separated by comparably sparser

regions; Mörchen, 2006b). K-means (MacQueen, 1967) and DBSCAN (Ester

7 Also referred to as unsupervised classification (Rui & Wunsch, 2005).

158962 Tekinay BNW.indd 52158962 Tekinay BNW.indd 52 09-05-2022 15:4409-05-2022 15:44

41

et al., 1996) are two of the widely used clustering algorithms (see Benabdellah

et al., 2019; Berkhin, 2006; Rui & Wunsch, 2005 for a collection of data

clustering methods).

(III) Segmentation is the task of partitioning a large data set into smaller portions or

segments (Shani et al., 2011). The major difference between segmentation and

clustering is that segmentation uses borders, or cut points, to split the whole

data set into smaller segments, whereas clustering aims to identify borders

within a given data without the goal to assign all points to clusters (Gionis &

Mannila, 2003; Lovric et al., 2014). For example, clustering algorithms can label

data points as noise in a given data set and do not assign them to any of the

segments (Berkhin, 2006). Segmentation techniques are commonly used in

discovering meaningful boundaries within long sequences of univariate data

(see Keogh et al. (2004) for a comprehensive review of such segmentation

methods) and multivariate data (Mäntyjärvi et al., 2001; Mörchen, 2006b;

Siskind, 1999).

(IV) Classification is the task of assigning data items within a given input data set into

predefined classes or target categories according to a classification model

learned from training data (Hand et al., 2001). In classification, the input data

set is divided into two parts: a training set, which is used in the generation of

the classification model, and a validation set, which is used to measure the

accuracy of the classifier. A classifier is an algorithm, or a mathematical function,

which is implemented for the classification task (see Witten & Frank, 2002 for

a collection of classification methods). Classification can be seen as a particular

version of regression, where the predictor variables are discrete and with no

implicit ordering, instead of being numerical (Mörchen, 2006b). A recent

literature review of text classification algorithms can be found in Li et al. (2022).

(V) Regression is the task of predicting a range of sub-variables (i.e., response

variables) from the numerical values of known variables (i.e., predictor

variables) using explicit variable dependencies (Hastie et al., 2009). Regression

methods are also useful to replace missing values in a data set. Linear (Yan &

2

158962 Tekinay BNW.indd 53158962 Tekinay BNW.indd 53 09-05-2022 15:4409-05-2022 15:44

42 – Chapter 2

Su, 2009) and non-linear methods (Goodarzi et al., 2009; Seber & Wild, 2003)

are two of the widely known forms of regression.

(VI) Association rule mining aims to discover correlations, frequent patterns,

associations or causal structures among data items within various types of

databases such as transactional, relational, and other types of data repositories

(Huang et al., 2000). Typically, association rules are calculated for itemsets (i.e.,

discrete set of items) and are used to express the co-occurrence of data items

in these itemsets. An itemset is considered as frequent if all subsets of an itemset

are frequent (Mörchen, 2006b). A particular subfield of association rule mining

that deals with the discovery of frequent patterns within large itemset databases

(e.g., customer transaction database) is called frequent itemset mining (Agrawal

& Srikant, 1994). Apriori (Agrawal & Srikant, 1994) is the best-known

association rule mining algorithm (see Zhao & Bhowmick (2003) for a survey

of association rule mining algorithms).

Extensive overviews on the methods and applications of data mining are available (Fay-

yad et al., 1996a, 1996b; Han et al., 2012; Hand et al., 2001; Kantardzic, 2011; Mannila,

1997).

2.3.1 Temporal Data Mining: Definition and Data Types

Temporal data mining is an extension of data mining with a particular focus on the dis-

covery of knowledge from data with temporal aspects (Fu, 2011; Grossmann & Rinderle-

Ma, 2015; Laxman & Sastry, 2006; Mitsa, 2010). Temporal data is typically represented

as sequences of observations (generally numerical or categorical values) at discrete points

in time (Mamoulis, 2009). In cases where time is not uniformly sampled, there is usually

some lower bound for the granularity (i.e., finest level of detail) of time which is referred

to as time points (Mörchen, 2007).

Temporal data mining methods are designed to analyze mainly four types of temporal

data, each of which consists of numerical or categorical values, and can be represented

as univariate or multivariate (Fu, 2011; Grossmann & Rinderle-Ma, 2015; Laxman &

Sastry, 2006; Lin et al., 2002; Mitsa, 2010; Mörchen, 2007). A time series is a series of data

points indexed by equidistant points in time (Laxman & Sastry, 2006; Mörchen, 2007).

158962 Tekinay BNW.indd 54158962 Tekinay BNW.indd 54 09-05-2022 15:4409-05-2022 15:44

43

Time series are univariate if they contain only one time-dependent variable (i.e., consisting

of a single series), or multivariate if they have more than one time-dependent variable (i.e.,

consisting of multiple series). A time series is numerical if the values at each time point

is represented with numerical values (e.g., stock ticks, EEG, temperature), or categorical if

the values of each time point is a category (e.g., timed-event logs).

The second type of temporal data is a sequence, also referred to as event sequences

(Mamoulis, 2009) or transactions. A sequence is a series of timed events ordered by quali-

tative temporal concepts, such as position like before or after (Allen, 1983; Das et al., 1998;

Mannila et al., 1997; Mörchen, 2006b), instead of an explicit equidistant time indexing as

it is the case in time-series. In other words, if an item appears before another one in such

transactional data, it only indicates that the former has occurred before the latter (without

guaranteeing any equidistant time separation between them or between any other suc-

cessive events). Examples of sequence data could be a text, gene or protein sequences,

or a list of moves during a chess game. In some cases, some of these items can be deemed

meaningful when they repeatedly occur together in a given sequence data. When identi-

fied, these set of items can be used to describe the behavior and actions of users or

systems, and predict future items. An event sequence is a special type of sequence data,

consists of events ordered by non-equidistant points in time. If an event sequence only

consists of non-simultaneous events, it is referred to as simple event sequence. On the other

hand, an event sequence with simultaneous events is referred to as complex event sequence.

An episode can be described as a sequence of events, where each event has an associated

time of occurrence (Mannila et al., 1997). A frequent episode, in this context, can be

described as an episode appearing at least at a user-defined frequency threshold in an

event sequence data set (Mannila et al., 1997).

The third type of temporal data is an interval time series, which is a set of time intervals

recorded at each time point instead of a single value; e.g., a yearly record of the highest

and lowest temperature in Amsterdam for each day, or the daily range of sea level at

various locations (Mörchen, 2006a; Villafane et al., 1999).

Lastly, an itemset sequence is a time-ordered sequence of a non-empty set of (unordered)

items (Agrawal & Srikant, 1995). An example of an itemset sequence can be a customer

transaction database, where each transaction is an ordered collection of purchased items

2

158962 Tekinay BNW.indd 55158962 Tekinay BNW.indd 55 09-05-2022 15:4409-05-2022 15:44

44 – Chapter 2

by a customer at each visit. The process of exploring the relationships between purchased

products that frequently appear together, also known as market basket analysis, is a typical

example of frequent pattern mining (Han et al., 2012).

2.3.2 Characteristics of State-Trace Data

In our research, the input data for the temporal data mining tasks are the state-trace

outputs generated from the execution of large-scale complex DEVS models. State-trace

data obtained from such models can have the characteristics of a sequence or multivariate

time series consisting of categorical variables, numerical variables, or both.

Definition 2.6. A state-trace of a discrete-event simulation model is a time sequence of state-trace records

(recorded instants), where each state-trace record within the same state-trace data set is a homogenous

(i.e., each state-trace record in the state-trace data has the same number variable values) and has a total

order (i.e., the model variable values from with the same index create a column and all values in a single

column represents the same model variable).

A state-trace data set can have variables with all categorical, all numerical, or hybrid var-

iables columns. Depending on the goals and the objectives of the simulation study and

the preferences of the modeler, input variables, output variables (e.g., run statistics) of

the simulation model and the time (e.g., elapsed, absolute, simulation) can be included as

an individual column in the state-trace data. The changes between two consecutive state-

trace records describe the system state changes at a rate (i.e., at every event occurrence

or at a fixed-increment of time) imposed by the modeler. As a result, the size of a state-

trace data set is a combination of (a) the number of rows determined by the run length

and logging rate, and (b) the number of columns determined by the number of state

variables, input and output variables, time, and any additional data required by the mod-

eler.

DEVS simulators are event-driven at simulation time. Generally, the simulation time

jumps to the occurrence of the next event using the ta function or until the next external

event, assuming that there is no change in the system between two consecutive events

(Zeigler et al., 2000). This approach is called next-event time progression. As a result, state-

trace records are generated only at the time an event occurs, and time is, therefore, non-

uniformly sampled. In that case, either the time of event occurrences or the elapsed time

158962 Tekinay BNW.indd 56158962 Tekinay BNW.indd 56 09-05-2022 15:4409-05-2022 15:44

45

between events has to be part of the state-trace data in order to preserve the temporality

of the data. Alternatively, a fixed-increment time progression approach can be employed, in

which time is sliced into uniform (equal) timeframes and the state of the system is rep-

resented by the convolution of events happening in each timeframe. With the fixed-time

progression approach, successive state-trace records will be the same if no event occurs

in between, and state changes will not be recorded when multiple events take place be-

tween updates of the state trace records. In this research, we will show the results for

both approaches.

As mentioned earlier in §2.2.4.1, DEVS model components (both atomic and coupled)

have state variables that, as a collection S, indicate the state of the system at any point in

time.

2.3.3 Temporal Data Mining Tasks

The mining tasks that we described earlier in §2.3 can be applied on temporal data, most

of which are direct extensions of the corresponding mining tasks on general types of data

(Mamoulis, 2009). In addition, there are several mining algorithms that are specific to

temporal data (Fournier-Viger et al., 2017; Gan et al., 2019; Han et al., 2012; Laxman &

Sastry, 2006; Mitsa, 2010; Roddick et al., 2001). The two major ones are sequential pattern

mining (SPM; Mabroukeh & Ezeife, 2010; Pei et al., 2001) from sequential databases, and

frequent episode mining (FEM; Mannila et al., 1997) from long temporal data (e.g., event)

sequences.

SPM deals with the discovery of sequential patterns, or subsequences, ordered by a tem-

poral concept such as time or position within a given sequential dataset (Laxman &

Sastry, 2006). Such patterns can be differentiated from the other possible patterns in the

data based on various criteria such as their occurrence frequency and length (Fournier-

Viger et al., 2017; Gan et al., 2019). Two types of data that are often used in SPM are

time-series (numerical and categorical) and sequences. Numerous algorithms have been

developed to identify sequential patterns in sequence datasets (Fournier-Viger et al.,

2017; Gan et al., 2019; Mabroukeh & Ezeife, 2010). Although these various algorithms

generally produce the same output if the input parameters are the same, they utilize dif-

ferent strategies and data structures to discover sequential patterns (Fournier-Viger et al.,

2

158962 Tekinay BNW.indd 57158962 Tekinay BNW.indd 57 09-05-2022 15:4409-05-2022 15:44

46 – Chapter 2

2017; Gan et al., 2019). SPM algorithms can be distinguished on the basis of four char-

acteristics: (a) whether they use depth-first search (i.e., patterns are considered by exploring

a node branch as far as possible before backtracking and expanding other nodes) or

breadth-first search (i.e., patterns are considered in ascending order of length), (b) whether

they use a horizontal (level-wise) or vertical (i.e., on the basis of itemsets) database rep-

resentation, (c) how they determine the next patterns to be explored, and (d) how they

determine the minimum support (i.e., a user-defined frequency threshold) criteria (Four-

nier-Viger et al., 2017).

The goal of FEM is to discover frequent episodes from single long temporal data (or

event) sequences or to discover episode rules between events describing which event (or

a sequence of events) often appears before another event within a user-defined time

frame (Huang & Chang, 2008). The particular interest in discovering patterns from a

single sequence rather than a set of sequences is the main difference between SPM and

FEM (Fournier-Viger et al., 2017; Gan et al., 2019). Based on the categorization of Man-

nila et al. (1997), episodes can be parallel (i.e., the set of events occurring within a window

of time, but not in a particular order) or serial (i.e., a list of events occurring in total order

within a window of time) or composite (i.e. a combination of serial and parallel episodes).

An episode is considered frequent if it appears above a user-defined frequency threshold

called minimum support threshold or minsup. However, choosing the minsup value is a diffi-

cult and time-consuming task, because of the fact that setting a high or a low minsup

value is a trade-off between long execution times and insufficient candidate pattern set

generation to successfully unearth important information, and determining an “enough

but not too many” candidate set is done via trial and error in traditional FEM algorithms

(Fournier-Viger et al., 2020).

The WINEPI and MINEPI algorithms were the first algorithms for FEM (Mannila et

al., 1997). The WINEPI algorithm (Mannila et al., 1997) mines all frequent episodes

(parallel or serial) using a breadth-first search and placing a sliding window over the input

sequence. The algorithm counts the frequencies of nodes of increasing length (up to the

user-defined window size) until the window reaches the end of the input sequence. An-

other window-based frequency algorithm is MINEPI (Mannila et al., 1997), which also utilizes

a breadth-first search approach but only counts the minimal occurrences of episodes.

158962 Tekinay BNW.indd 58158962 Tekinay BNW.indd 58 09-05-2022 15:4409-05-2022 15:44

47

However, the apriori-like candidate generation characteristic of window-based frequency

algorithms has the limitation of missing some of the frequent episodes with longer length

as they do not hold an anti-monotonic property and the requirement to keep the candi-

date patterns in memory because of the breadth-first search is costly (Ao et al., 2015).

Another shortcoming of window-based frequency algorithms is that some occurrences

of episodes may be counted more than once due to their support count mechanism

(Fournier-Viger et al., 2020). A commonly used user-defined input parameter for win-

dow-based frequency algorithms is called maximum window bound or maxwin. Given a large

data set, mining frequent episodes above a given minsup might yield results that span

across too many intervals. To mitigate that, users can thus use the maxwin parameter to

mine only the episodes that are less than or equal to the maxwin interval (Huang &

Chang, 2008).

To address these limitations of window-based frequency algorithms, two new depth-first

search based algorithms MINEPI+ and EMMA (Episodes Mining using Memory An-

chor) were proposed (Huang & Chang, 2008). Specifically, the EMMA algorithm was

shown to outperform MINEPI and MINEPI+ (Huang & Chang, 2008) as the algorithm

utilizes both depth-first search and memory anchors to further reduce the search space

in pattern generation and to accelerate the mining task. In recent years, several other

studies have been published in the field of FEM to tackle problems, such as finding top-

k episodes in an event sequence (Fournier-Viger et al., 2020), mining episodes on dy-

namic event streams (Patnaik et al., 2012), online frequent episode mining (Ao et al.,

2015), and high-utility episode mining (Fournier-Viger et al., 2017; Gan et al., 2019; Lin

et al., 2017; Truong-Chi & Fournier-Viger, 2019; Wu et al., 2013), which focuses on

providing other domain-specific metrics to select frequent episodes instead of the minsup

parameter used in traditional FEM algorithms.

2.3.4 Temporal Data Mining in Discrete Event Simulations

Following the above discussion of data mining concepts and techniques, there are several

reasons why data mining, and specifically temporal data mining, may form an essential

contribution to the study of large-scale complex simulation models.

2

158962 Tekinay BNW.indd 59158962 Tekinay BNW.indd 59 09-05-2022 15:4409-05-2022 15:44

48 – Chapter 2

Firstly, as discussed in the previous chapter, the manual abstraction of large-scale com-

plex simulation models at the structure level is a near-impossible endeavor due to the

vast and diverse number of objects and the relations between them, and currently, no

strategy exists yet to automate this process. An alternative approach to model the ab-

straction of large-scale complex simulation models is to simplify the dynamic behavior

that is encapsulated in the state-trace data of these models. However, state-trace data

obtained from these simulation models are extensive in terms of volume and variety,

which confines modelers’ ability to identify and utilize frequent patterns for model ab-

straction. Temporal data mining tasks, such as sequential pattern mining and frequent

episode mining, can offer a set of tools to automate this model abstraction process at the

transformation level, theoretically corresponding to the generative system level in Klir’s

(1985) system knowledge framework and the state transition level in Zeigler’s System

Specification (Zeigler et al., 2000).

Secondly, as discussed in §2.2.4, it is often impossible to fully capture the totality of large-

scale complex systems in a single simulation model (Hofmann, 2004; Yilmaz & Ören,

2004). A family of models with different levels of abstraction, or resolution, can yield

different types of insight into the dynamic behavior of large-scale complex systems, to

provide better support for users with different roles or perspectives. Unfortunately, the

previously mentioned shortcomings for the manual abstraction of large-scale complex

simulation models remains in the existing multiresolution modeling techniques (Yilmaz

& Tolk, 2006). Most temporal mining algorithms have various user-defined parameters,

including window size and the maximum time duration, which can be used to predeter-

mine the minimum size of the frequent patterns to be detected by the algorithms. Such

parameters can serve as a “resolution slider” to increase (not beyond the resolution of

the state variables in the base model) or decrease (not beyond the minimum threshold to

sustain the model validity) the resolution of the model. In addition, modelers can apply

temporal data mining tasks only on a select set of state-traces (e.g., those that belong to

certain atomic or coupled models that are contextually linked) from the complete state-

trace data. This would help modelers to decrease the resolution of a specific portion of

the model (similar to the concept of “zooming out”) and preserve the details for the

remainder (of the model).

158962 Tekinay BNW.indd 60158962 Tekinay BNW.indd 60 09-05-2022 15:4409-05-2022 15:44

49

To our knowledge, no studies to date have applied temporal data mining techniques on

state-trace data collected from large-scale complex discrete-event models to build homo-

morphic lumped models. However, the general idea of inferring model structure from

data has previously been explored in the field of process mining. Process mining has

been applied with promising results in a wide range of domains, including healthcare,

information and communication technology, manufacturing, education, and logistics

(Garcia et al., 2019). Process mining provides techniques to discover, monitor, and en-

hance business processes based on event logs. The purpose of process discovery in pro-

cess mining is to extract knowledge from event logs with the goal of generating a process

model, which is usually a Petri net model (van der Aalst, 2011, 2016). A Petri net (Dennis,

2011; Narahari, 1999; Petri & Reisig, 2008) is a directed bipartite graph with transitions

and places connected with directed arcs. For instance, Lugaresi & Matta (2021) propose

a process mining-based method for generating and tuning both Petri net and simulation

models from the event logs of manufacturing systems. In (Lugaresi & Matta, 2022), they

also investigated the applicability of Digital Twins approach for online model generation

of discrete-event simulation models from event logs. Digital Twins is a rapidly growing

field (Liu et al., 2021). We believe that Digital Twins as an application area could benefit

from the concept of state-trace mining, and help to create and test new techniques for

state-trace mining.

2.4 Summary and Outlook

In this chapter, the fundamental concepts and the existing work in systems theory, mod-

eling and simulation (with a particular focus on discrete event simulation), and temporal

data mining were introduced. Furthermore, we described the characteristics of the state-

trace data generated from the execution of large-scale complex DEVS models. Finally,

we discussed why temporal data mining tasks on state-trace data can be a useful tool for

the automation of DEVS model abstraction and the generation of multiresolution mod-

els. However, as we will discuss, the application of temporal data mining procedures in

discrete event simulations introduces several unique theoretical and practical issues. In

the next chapter, we propose a method based on temporal data mining for DEVS model

abstraction that addresses these specific issues and considerations.

2

158962 Tekinay BNW.indd 61158962 Tekinay BNW.indd 61 09-05-2022 15:4409-05-2022 15:44

158962 Tekinay BNW.indd 62158962 Tekinay BNW.indd 62 09-05-2022 15:4409-05-2022 15:44

CHAPTER 3

Temporal Data Mining-based
Method for Automated Discrete-

event Model Abstraction

158962 Tekinay BNW.indd 63158962 Tekinay BNW.indd 63 09-05-2022 15:4409-05-2022 15:44

52 – Chapter 3

3 Temporal Data Mining-based Method for Automated

Discrete-event Model Abstraction

As we have established in the previous chapters, conventional methods for model ab-

straction at the structure level (Zeigler et al., 2000) are not suitable for large-scale com-

plex simulation models. Instead, abstraction at the transformation level, using the state-

trace data which encapsulate the model’s dynamic behavior, may be a more viable alter-

native approach for abstracting such models. Given its ability to automate the detection

of frequent temporal patterns in large data, temporal data mining may provide useful and

versatile tools for this process. In this chapter, we integrate these ideas and present a

novel temporal data mining-based method for DEVS model abstraction using state-trace

data. DEVS (Zeigler et al., 2000) is the universal common modeling formalism for the

simulation of large-scale complex simulation models (Vangheluwe & de Lara, 2002). In

what follows, we will provide a detailed description of our proposed method, specifically

for the field of simulation. We will highlight the strengths of this novel approach and

introduce several theoretical and practical considerations in its application. We will for-

mally describe the key concepts and algorithms used in our method, and present step-

by-step guidelines for its application.

3.1 Introduction

Our proposed method integrates the fields of temporal data mining and modeling and

simulation. In essence, the goal of our method is to automate the process of model ab-

straction in dynamic DEVS. More specifically, it aims to generate a simplified (lumped)

homomorphic DEVS model from a larger-scale, more complex simulation model (base

model). This is achieved by utilizing the state-trace data of the base model and by em-

ploying temporal data mining tasks to automatically detect frequent temporal patterns.

These frequent temporal patterns, in turn, will become the aggregated states of the

lumped model. Subsequently, the lumped model will be formally described using Markov

Modeling (i.e., Markov Chain), which is one of the commonly used techniques to de-

scribe probabilistic/stochastic models (Mor et al., 2020). In addition, its concepts of

states and state transitions are fully compatible with DEVS description of discrete event

158962 Tekinay BNW.indd 64158962 Tekinay BNW.indd 64 09-05-2022 15:4409-05-2022 15:44

53

systems, making it a useful tool to address challenges resulting from large-scale complex

simulation models (Seo et al., 2018; Zeigler et al., 2018). The Markov Chain will then be

simulated to generate output in the form of new state-trace data. Finally, the state-trace

data of the lumped Markov Chain will be validated against the state-trace data of the base

model. The rationale for the above choices will be elaborated in the course of this chap-

ter.

3.1.1 Formalization of Discrete-event State-Traces

Recall from Chapter 2 that the DEVS formalism allows describing systems as a compo-

sition of atomic (behavioral) and coupled (structural) models. Atomic models are expressed

in the basic DEVS formalism and atomic model components can be coupled to build

more complex coupled models. These coupled models are expressed in the coupled

DEVS formalism and can be used as components of larger coupled models, allowing a

hierarchical model description (Zeigler et al., 2000).

The basic DEVS formalism contains information about the state transition of a system

as it corresponds to systems knowledge at the generative level and systems specification

at the state transition level (§2.1.3 and §2.2.1). Therefore, the behavior of an atomic

DEVS model can be described as a set of sequences of timed events, i.e., a sequence of

deterministic transitions between sequential states over time at the generative level

(Vangheluwe, 2000).

The state of a component (atomic or coupled) remains constant over intervals of time.

A state 𝑠𝑠1 is passive when its lifetime is infinite (i.e., 𝑡𝑡𝑡𝑡(𝑠𝑠1) = 	∞), and active when its life-

time is a finite positive number. If 𝑆𝑆E is a subset of active states and 𝑆𝑆F a subset of passive

states, 𝑆𝑆E ∩ 𝑆𝑆F = 	∅. The values of the component states only change at predetermined

event times. An event represents a change in the state. A transition function in DEVS is

decomposed into two sub-functions – the internal transition function that specifies the

state changes caused by internal events and the external transition function that specifies

the state changes due to external events (see §2.2.4.1 for more details). The total states

(𝑠𝑠, 𝑒𝑒)	of a model can be defined as:

𝑇𝑇𝑆𝑆 = {(𝑠𝑠, 𝑒𝑒)|𝑠𝑠 ∈ 𝑆𝑆, 0 ≤ 𝑡𝑡𝑡𝑡1(𝑠𝑠1)}

3

158962 Tekinay BNW.indd 65158962 Tekinay BNW.indd 65 09-05-2022 15:4409-05-2022 15:44

54 – Chapter 3

where e is the elapsed time in state 𝑠𝑠 (Zeigler et al., 2000). This concept of total states is

crucial as it enables one to specify a future state on the basis of the elapsed time in the

current state (Giambiasi & Frydman, 2014).

Because DEVS models are closed under coupling, any DEVS model, whether atomic or

coupled, can be flattened with an equivalent atomic DEVS model (Vangheluwe, 2000).

This means that even more complex models like large-scale complex simulation models

(i.e., structural models) can be fully specified by a simpler atomic (i.e., behavioral) DEVS

model.

Consider a coupled DEVS component N = < X, Y, D, {Mi}, {Ii}, {Zi,j}, select >, where

∀i∈D, Mi is an atomic component defined as Mi = < Xi, Yi, Si, δint,i, δext,i, λi, tai > (see

§2.2.4.1 for more details). For any atomic component Mi, a state change is triggered by

the DEVS simulator executing internal state transitions δint,i (si) and external state transi-

tions δext,i (si, ei, xi). State transitions of the coupled DEVS model N are driven by state

transitions of its atomic components Mi. Therefore, the coupled DEVS model N is

equivalent to an atomic DEVS model M = < X, Y, S, δint, δext, λ, ta > (Vangheluwe, 2000).

The resultant set of sequential states of M (equivalent to the coupled DEVS model N) is

the product of all the total state sets of all the components

S = (…, (si, ei), …) ∈ S = ×i∈DQi

where Qi = {(si ,ei) | si ∈ Si, 0 ≤ ei ≤ tai(si) } and ta: S → RR,STS

For the coupled model, an internal state transition to the sequential state δint,i* (si*) is trig-

gered from an internal state transition of the selected imminent component i*

(Vangheluwe, 2000), which transforms the different parts of the total state as follows:

δint (s) = (…, (s'i, e'i), …) , where

(s'i, e'i) = (δint,i (si), 0) , for i = i*

= (δext,i (si,ei + ta(s), Zi*,i (λi* (si*))), 0) , for i ∈ Ii*

= (si,ei + ta(s)) , otherwise

where ta(s) = min{tai(si) − ei | i ∈ D}

158962 Tekinay BNW.indd 66158962 Tekinay BNW.indd 66 09-05-2022 15:4409-05-2022 15:44

55

The external transition function transforms the different parts of the total state as fol-

lows:

 δext (s, e, x) = (…, (s'i, e'i), …), where

(s'i, e'i) = (δext,i (si,ei + e, ZN,i (xi)), 0) , for i ∈ IN

 = (si, ei + e) , otherwise.

The key element in the closure procedure is the selection of the most imminent event

from all scheduled events belonging to all components forming the coupled model. In

case a number of imminent events are scheduled simultaneously, the select function is

used as a tie-breaker. The closure under coupling property is important for our research

because it enables us to define the state-trace of a coupled model where all events are

ordered sequentially with respect to the time base of the model.

As defined earlier in Definition 2.6, a state-trace of a discrete-event simulation model is

a time sequence of state-trace records (recorded instants), where each state-trace record

within the same state-trace data is a homogenous (i.e., each state-trace record in the state-

trace data has the same number of variable values) and has a total ordering (i.e., the model

variable values from with the same index create a column and all values in a single column

represents the same model variable). Depending on the goals and the objectives of the

simulation study and the preferences of the modeler, input variables, output variables

(e.g., run statistics) of the simulation model and the time (e.g., elapsed, absolute, simula-

tion) can be included in a state-trace record.

3.1.2 Frequent Episode Mining

In §2.3.3 and §2.3.4, we described how temporal data mining may provide an essential

contribution to the study of large-scale complex simulation models and we discussed the

importance of finding frequent behavioral patterns in large temporal data (e.g., state-

trace data) to facilitate the process of model abstraction. The state transition mechanism

and the time advance structure of DEVS characterization of a discrete event systems are

fully compatible with the concepts of states and state transitions in Markov Modeling

(Zeigler et al., 2019). In DEVS, the next state can be determined solely by knowing the

current state and the elapsed time since the last state transition. Therefore, the dynamic

3

158962 Tekinay BNW.indd 67158962 Tekinay BNW.indd 67 09-05-2022 15:4409-05-2022 15:44

56 – Chapter 3

behavior of a DEVS model encapsulated in state-trace data can be simplified by (a) iden-

tifying all successive state-trace record pairs (i.e., serial episodes of length two) corre-

sponding to the system of interest’s state-transitions by the frequent episode mining al-

gorithm and (b) calculating the state transition probabilities for these identified pairs. In

our method, we employ the EMMA (Huang & Chang, 2008) frequent episode mining

algorithm to discover all serial8 state-trace record pairs from the state-trace data and their

frequency information (also see §2.3.3 for more details on the EMMA algorithm). In all

our case studies, we used the Java implementation of the EMMA algorithm provided

within the SPMF open-source data mining library (Fournier-Viger et al., 2014; 2016). We

chose the SPMF library because it provides source code that is widely used in the data

mining field, well-documented, and modular (i.e., that can be easily integrated and ex-

tended). In addition, the version of the EMMA algorithm implemented in the SPMF

library9 contains all the optimization methods described in (Huang & Chang, 2008).

Although several frequent episode mining algorithms (see §2.3.3) can be used for our

purpose to find serial episodes, we chose EMMA as it is one of the most efficient FEM

algorithms (Fournier-Viger et al., 2020; Huang & Chang, 2008). Specifically, Huang and

Chang (2008) have shown that EMMA outperforms other well-known traditional FEM

algorithms, such as MINEPI and MINEPI+. Moreover, as we show in Appendix A.1, a

comparison of these three algorithms on our case study data confirms that, at the time

of this research, EMMA is the fastest in finding all unique state-trace records and con-

secutive state-trace record pairs from state-trace data of various length (5,000; 10,000;

25,000 and 50,000 state-trace records).

In Fournier-Viger et al. (2020), researchers have proposed a new algorithm named TKE

to find top-k frequent episodes. Because this algorithm is so new, it was outside the scope

of the current research to test it on our data set. However, the study’s findings on

8 We acknowledge that the EMMA algorithm is also capable of discovering partially-ordered parallel episodes.
However, the focus of our research is to identify serial episodes from state-trace data as described in §3.1.1.
Therefore, we will limit the algorithm’s discovery set by adjusting its minsup and maxwin parameters and, for the
rest of the dissertation, the term episode will be used to refer serial episodes.

9 Specifically, we used SPMF release version 2.41, which was the latest release of the library at the time being.

158962 Tekinay BNW.indd 68158962 Tekinay BNW.indd 68 09-05-2022 15:4409-05-2022 15:44

57

benchmark datasets suggest that the algorithm may be a valuable alternative to EMMA

when the user lacks sufficient background information about a dataset to correctly set

the optimal minsup threshold. Future studies should compare the performance of EMMA

with the new TKE algorithm on state-trace data.

The EMMA algorithm consists of 3-stages. At stage 1, the algorithm aims to mine all

frequent serial episodes to construct frequent serial episodes. This is to (a) avoid checking

items more than one time, (b) encoding each frequent itemsets with a unique ID, such

as time or order to construct them into an encoded horizontal database (c) mining the

frequent serial episodes in the encoded horizontal database; we refer to Huang and

Chang (2008) for more details. Algorithm 3.1.2.1 describes in detail stage 1 of EMMA;

the application of the frequent itemset mining using memory anchor (FIMA) algorithm.

Algorithm 3.1.2.1. EMMA stage 1: FIMA (Huang & Chang, 2008)

Procedure of FIMA (temporal data TDB, minsup)

1: Scan TDB, find frequent 1-item F1;

2: Remove nonfrequent items and transform TDB into indexed data-
base IndexDB; meanwhile maintain the locations of all F1 in the flat da-
taset;

3: for each fi in F1 do

4: Output fi and its TidList;

5: fimajoin(fi, fi.LocationList);

Subprocedure of fimajoin(Pattern, LocationList)

6: LFI = local frequent items in the projected location list of FP (i.e.,
FP. PList);

7: for each lfj in LFI do

8: Output FP ∪ lfj and its TidList;

9: fimajoin(Pattern ∪ lfj , lfj.LocationList);

3

158962 Tekinay BNW.indd 69158962 Tekinay BNW.indd 69 09-05-2022 15:4409-05-2022 15:44

58 – Chapter 3

At stage 1, the goal of the EMMA algorithm is to utilize the frequent itemsets mining

algorithm FIMA to eliminate the unnecessary generation of candidate items. The FIMA

algorithm achieves this by validating local frequent items and subsequently, reducing the

computation. The recursive call of the sub-procedure fimajoin stops when no further fre-

quent itemsets can be generated. Stage 2 and stage 3 of the EMMA algorithm are de-

scribed in Algorithm 3.1.2.2.

Algorithm 3.1.2.2. EMMA stage 2 and 3 (Huang & Chang, 2008)

Procedure of emmaassociate (temporal data TDB, minsup, maxwin)

1: Call FIMA(TDB, minsup) to find all frequent items FP1 and their Tid-
Lists;

2: Associate each item with a unique ID to construct an encoded data-
base EDB;

3: for each fidi in frequent IDs FPI do

4: Output fidi;

5: if (ExtCount(fidi.boundlist) ≥ minsup * |TBD|)

6: emmajoin(fidi, fidi.boundlist);

Procedure of emmajoin(Episode, boundlist)

7: LFP = local frequent IDs in the projected bound list of Episode (i.e.,
Episode.PBL);

8: for each lfi in LFP do

9: Output Episode · lfi ;

10: tempBoundlist = temporalJoin(boundlist, fi.boundlist);

11: if (ExtCount(tempBoundlist) ≥ minsup * |TBD|)

12: emmajoin(Episode · lfi,tempBoundlist);

The second stage of the EMMA algorithm aims to associate each frequent item with a

unique identifier. These associations are stored in the encoded database EDB. Once the

frequent itemsets are generated for the given minsup, the EMMA algorithm starts

158962 Tekinay BNW.indd 70158962 Tekinay BNW.indd 70 09-05-2022 15:4409-05-2022 15:44

59

associating each frequent itemset with a unique ID and constructs an encoded horizontal

database (Huang & Chang, 2008). At stage 3, the main task is to mine frequent episodes

that are limited by maxwin parameter to define the projected bound list (PBL) for an

episode. The PBL allows detecting the frequent IDs by counting the number of bounds

that an ID occurs (Huang & Chang, 2008, p.106).

3.1.3 Markov Chains

A stochastic process X = {𝑋𝑋U : n ≥ 0} on a discrete (i.e., finite or countable) set of all

possible sequential states, or state space, S is a Markov Chain (Serfozo, 2009) if, ∀ i, j ∈ S

and n ≥ 0,

P{𝑋𝑋USW = 𝑗𝑗	|𝑋𝑋U = 𝑖𝑖, 𝑋𝑋UXW = 𝑖𝑖UXW,… ,𝑋𝑋R = 𝑖𝑖R} = 𝑃𝑃{𝑋𝑋USW = 𝑗𝑗|𝑋𝑋U = 𝑖𝑖} (3.1)

P{𝑋𝑋USW = 𝑗𝑗|	𝑋𝑋U = 𝑖𝑖} = 𝑃𝑃1[(3.2)

A Markov Chain is a discrete-time Markov Chain if the state transitions happen at dis-

crete times n ∈ ℕ = {0, 1, 2, . . .} (Sorensen & Gianola, 2007). X0 is denoting the initial

state. The value of Xn is the state of the process at time n (e.g., if Xn=i, the process is said

to be in state i at time n). 𝜋𝜋R is the initial distribution of the Markov Chain at t0. 𝜋𝜋R can

be interpreted as a row vector, also referred to as initial distribution vector, whose ith entry

𝜋𝜋R(𝑖𝑖) can be denoted as the probability ℙ{𝑋𝑋R = 𝑖𝑖} that the chain starts in state i.

Condition (3.1), called the Markov property, says that, at any time n, the next state 𝑋𝑋USWis

conditionally independent of the past states 𝑋𝑋R,… , 𝑋𝑋UXW and just dependent on the pre-

sent state 𝑋𝑋U. This memoryless property of Markov Chain states is akin to the discrete-

event model states in DEVS and forms the backbone of our temporal data mining-based

method to abstract discrete-event simulation models.

Condition (3.1) also indicates that the Markov Chain is time-homogenous, that is the transi-

tion probabilities are independent of the time parameter n, but rather constant over time

(Serfozo, 2009). Pij is the probability that the Markov chain transition from state i to state

j. These transition probabilities represented in an N ×	N matrix P = (Pij) is the transition

matrix of the Markov Chain. A transition matrix is a right stochastic matrix. That is, given

3

158962 Tekinay BNW.indd 71158962 Tekinay BNW.indd 71 09-05-2022 15:4409-05-2022 15:44

60 – Chapter 3

a sequence (e.g., state-trace data) with finite state space S with cardinality S, the transition

matrix P can be represented as

0 < Pij < 1, and ∀𝑖𝑖	we have,

_ 𝑃𝑃1[
`

abW|	a∈`
= 	c 𝑃𝑃	(𝑋𝑋USW

`
abW = 𝑘𝑘|𝑋𝑋U = 𝑖𝑖) = 1																				 (3.3)

Given a state i, the next state must be one of the possible states and the sum of all prob-

ability values in each row must be 1.

3.1.4 An Exploratory Case-study: M/M/1 Queueing System

Queueing theory is the mathematical study of formation, function, and congestion of

waiting lines, or queues (Shortle et al., 2018). In queueing theory, a queueing model is

constructed to design and evaluate the performance of a queueing system based on sev-

eral measures, such as the server utilization, the length of waiting lines, and the delays –

or waiting times – of entities. Discrete event simulations are heavily used in the analysis

of queueing systems. This section introduces a simple single-server queueing system (see

Figure 3.1); similar to the example that can be found in L’Ecuyer et al. (2003), Lang et al.

(2015), and (Law, 2015).

Figure 3.1. A single server queueing system; IAT stands for inter-arrival time; FIFO is the first-
in-first-out queue ordering

158962 Tekinay BNW.indd 72158962 Tekinay BNW.indd 72 09-05-2022 15:4409-05-2022 15:44

61

Represented in Kendall’s Notation (Kendall, 1953), an M/M/1 queue10 is a specific case

of an M/M/c multi-server queue, where the number of servers c = 1, the arrivals of the

entities is determined by a Poisson process with rate λ (so the interarrival time IAT is

Exponentially distributed with parameter 1/λ), and the service times are distributed ac-

cording to an exponential distribution with rate µ (so having an average service time ST

of 1/µ) (Bhat, 2015). The flowchart given in Figure 3.2 visually represents the sequence

of steps that an entity, such as a customer takes. The entity interarrival times A1, A2, …

and the service (or delay) times S1, S2, … of each successive entity are iid random varia-

bles. If a new entity arrives and the server is idle (i.e., the queue is empty and the queue

length is 0), then the entity seizes the server and delays for the duration of service time.

The server is released once the entity seizing it has been served (for the duration of the

service time) and can be seized by the next entity in the queue in a first-in, first-out

(FIFO) manner. If a new entity arrives and the server is in state busy, this new entity joins

the end of the single queue. The server goes back to the state idle if the queue becomes

empty (i.e., the queue length is 0) after completing a service for an entity. Note that the

queue length is the number of entities in the queue waiting to be served and the capacity

of the system at a given time is the queue length + 1 entity in the server.

A number of world views can be used to express a conceptual model (Fishman, 1973).

In this case study, we modeled the above described single-server queueing system based

on the event-scheduling world view (see §2.2.4.1). We used the open-source DSOL (Dis-

tributed Simulation Object Library) simulation engine to implement the queueing system

and to generate the state traces for the model (Jacobs, 2005). Using commercial software

was considered for this purpose, but rejected because it might be that certain internal

state variables would be unknown or inaccessible to create a full state trace. An open-

source simulation engine allows us to get access to the full state vector at any point in

time, and to output the state at events or sample the full state at regular intervals.

10 M stands for Markovian or memoryless.

3

158962 Tekinay BNW.indd 73158962 Tekinay BNW.indd 73 09-05-2022 15:4409-05-2022 15:44

62 – Chapter 3

Figure 3.2. Flowchart of the M/M/1 queuing simulation (Jacobs & Verbraeck, 2006)

Although an M/M/1 queueing system is an over-simplification of the complex systems

of real interest (i.e., large-scale complex systems), they are highly similar in terms of how

our method is applied. Furthermore, the theoretical model of an M/M/1 queue is well-

established in the literature. Therefore, the analytical results of our lumped model can be

validated against an M/M/1 discrete event simulation model, and against the analytical

values that are well known. In the following subsections, we will provide more infor-

mation on our M/M/1 model specific implementation and the simulation details.

3.2 The Temporal Data Mining-based Method for DEVS Model Ab-

straction

In what follows, we present the steps of our temporal data mining-based method for

discrete-event simulation model abstraction and address several considerations and ac-

tions for modelers. These can be grouped into four main categories:

(I) Considerations and actions regarding the generation of state-trace data (see

§3.2.1)

158962 Tekinay BNW.indd 74158962 Tekinay BNW.indd 74 09-05-2022 15:4409-05-2022 15:44

63

(II) Considerations and actions regarding the application of the temporal data

mining tasks to the state-trace data and the generation of the transition

probability matrix P of the discrete-time Markov Chain (see §3.2.2)

(III) Considerations and actions regarding the generation and the simulation of the

discrete-time Markov Chain (see §3.2.3)

(IV) Considerations and actions regarding the validation of the Markov Chain results

(see §3.2.4)

3.2.1 Generation of Discrete-event Simulation Model State-Traces

The first step of our method is the generation of state-trace data from the execution of

a base model. The role of state-trace data in our method is twofold: first, state-trace data

are used to calculate the state transition probabilities. These probabilities represented in

a (sparse) matrix format form the transition matrix P of the Markov Chain. Second, state-

trace data can be used to validate the resulting Markov Chain model against the base

model. For these two purposes, any generated model state-traces will have to be split

into two subsets: (1) a training set that will be mined by the frequent episodes mining

algorithm to detect frequent state transitions and construct a transition probability matrix

for the Markov Chain, and (2) a validation set that will be used to compare outputs (e.g.,

key performance indicators [KPIs]) estimated by the Markov Chain to those generated

from the original model in order to evaluate the accuracy of our model abstraction.

Before executing the model, the modeler needs to consider several factors. As will be

shown in the next subsections, the following considerations are important: representation

of time (see §3.2.1.1), the type of model (stochastic vs. deterministic) (see §3.2.1.2), the type of simu-

lation (terminating vs. non-terminating) (see §3.2.1.3), the inclusion of input and output variables (see

§3.2.1.4 and §3.2.1.5), and the complete model state-trace vs. partial model state-trace (see §3.2.1.6).

3.2.1.1 Representation of Time

One of the considerations of the modeler when generating state-trace data is the repre-

sentation of time in the state-trace data. The final decision of the modeler should be

guided by the following two questions:

3

158962 Tekinay BNW.indd 75158962 Tekinay BNW.indd 75 09-05-2022 15:4409-05-2022 15:44

64 – Chapter 3

1. How can the simulation time be embedded in the state-trace data?

2. In what format (elapsed, absolute, or fixed-rate) and with what type of variables

(categorical, numerical, hybrid) should the time in the state-trace data be

represented?

How the simulation time can be embedded in the state-trace data is dependent on the

time advance mechanism ta of the discrete-event simulation (base model). When working

with discrete event simulations, the two possible time advance mechanisms that can be

implemented are the next-event time advance (progression) and fixed-increment time advance (Law,

2015):

(I) Next-event time advance: If next-event time advance mechanism is chosen as the

time advance strategy, the internal clock of the simulation is advanced when an

event occurs. Thus, state-trace records can be generated at the time of event

occurrences and the simulation time can be stored as a variable (column) in the

state-trace record. The type of non-uniform time sampling of state-trace data is

useful to preserve the information on the event-time progression of the

simulated system.

(II) Fixed-increment time advance: In discrete-time simulations (DTSS), there is a fixed

time-step size ∆𝑡𝑡 that is the uniform increment at which the simulation clock is

advanced (Law, 2015). In discrete-event simulations, a fixed time-step

mechanism can be implemented by scheduling dummy events at every ∆𝑡𝑡 time

unit (Law, 2015). This type of time advance mechanism allows modelers to

generate a new state-trace record at fixed time intervals, and to store the

simulation time as a part of the state-trace record. State-trace data sampled with

equidistant time indexing have the characteristics of time-series data (see 2.3.1 for

temporal data types). For this sampling strategy, ∆𝑡𝑡 is the natural selector of the

sampling rate. An increase in the size of the fixed time-step ∆𝑡𝑡 (i.e., a decrease

in the sampling rate) results in a lower level of quantization, hence, a reduction

in the state-trace length (i.e., lesser state-trace records or rows). This reduction

in the state-trace length can positively affect the run-time required for the

frequent episode mining algorithm to complete its task. On the other hand, if

158962 Tekinay BNW.indd 76158962 Tekinay BNW.indd 76 09-05-2022 15:4409-05-2022 15:44

65

the elapsed times of the events in reality are always less than the ∆𝑡𝑡, the lumped

model might not express the behavior of the base model with sufficient

precision. Finding the optimal ∆𝑡𝑡 can be a difficult and an application-specific

problem, often requiring specific domain and model knowledge.

The considerations regarding the representation of time relate to the format (elapsed

time or absolute simulation time) and the variable types (categorical, numerical, hybrid)

of the time information. This decision may be guided by the dependency of the base

model’s state-transitions to the absolute time (e.g., systems that are busier on certain

times of the day; or a service that is always triggered at 17:00; or a certain output that is

triggered just before the end of the simulation run) or elapsed time (e.g., how much fuel

has been added to a fuel tank given the pump is filling the tank with a constant rate) and

by the limitations of the temporal data mining tool or the techniques (e.g., working with

an algorithm that requires input that to be numerical). In some cases, the format depend-

ency is on a derivative of the absolute simulation time, such as the time-of-day, the day

of the week, the day in the year, or the month of the year. These values can be obtained

with modulo functions from the absolute simulation time, and as such are easy to add to

the state trace.

When the base model has a fixed-increment time advance mechanism, the modeler may

exclude time entirely from the state-trace data. This is because the elapsed time or fixed

sampling rate for such models would remain constant during the entire simulation run

and, therefore, in the state-trace data. Furthermore, recording the absolute time for such

models with a fixed-increment time advance mechanism would result in state-trace data

with a time column with monotonously increasing values. Such representation of time in

the data may negatively affect the performance of the frequent episode mining algorithm

(we will elaborate more on the implications of variables with monotonously increasing

or decreasing values on the performance of the mining algorithms in §3.2.2.1). In such

cases, the time of the state changes can always be retrieved in later stages of the method

using the time of the initial state and the sampling rate. Once the modeler chooses to

capture the time information in the state-trace data, a new variable (column) can be added

to the state-trace to capture the time in the chosen format and with the chosen data type.

3

158962 Tekinay BNW.indd 77158962 Tekinay BNW.indd 77 09-05-2022 15:4409-05-2022 15:44

66 – Chapter 3

3.2.1.1 Case Study Application

In order to practically generate the state-trace data from the simulation of the M/M/1

model, we implemented a TraceWriter class, which generates the state-trace data in a

csv format in which all rows representing the state-trace records are homogenous, that

is, each row has the same number of base model variable values (i.e., the values of state

variables, input/output variables, time variable). Furthermore, the model variable values

from all rows with the same index create a column and all values in a single column

represent the same model variable. To demonstrate the differences of state-trace data

generated from a model with “next-event” and “fixed-increment” time advance mech-

anisms, this section will provide examples of M/M/1 model traces sampled with both.

However, the results evaluated in §3.2.4 are obtained from the execution of the M/M/1

model with the next-event time advance mechanism.

In Table 3.1, the first ten state-trace records from an M/M/1 state-trace data are shown.

The example state-trace data are sampled from an M/M/1 model with a next-event time

advance mechanism. The first and second columns have the states of the En-

coded_server_status (idle = 1, busy = 2) and the Encoded_queue_length {10 = 0, 11 =

1, 12 = 2, 13 = 3, …, n+10 = n}11.

Table 3.1. A sequence-based state-trace data set based on next-event time advance
M/M/1 simulation model state-trace (next-event based, no time information)

Encoded_server_status Encoded_queue_length
1 10
2 10
2 11
2 12
2 13
2 12
2 13
2 14
2 15

11 The decision to have the coded values for these two variables in the example state-trace data is for the
readability of the example, that is, each variable has a non-overlapping data range. Note that the coded queue-
length values were not used in the estimation of the performance measure “average queue length” (see §3.2.4).

158962 Tekinay BNW.indd 78158962 Tekinay BNW.indd 78 09-05-2022 15:4409-05-2022 15:44

67

2 14
… …

Table 3.2 illustrates a portion of a state-trace data containing elapsed time as an addi-

tional information next to the uncoded versions of state variables Server_status (idle =

0, busy = 1) and Queue_Length (0, 1, 2, 3, …, n). Alternatively, the state-trace data

could be populated with the absolute time instead of the elapsed time. Because the

state-trace data is generated from the M/M/1 model with the next-event time advance

mechanism, the state-variable values at each row would be exactly the same.

Table 3.2. A next-event time advance mechanism-based state-trace data set with elapsed time

M/M/1 simulation model state-trace (next-event based, elapsed time)

Server_status Queue_Length Elapsed_time

0 0 0.00

1 0 1.234

1 1 0.739

1 2 1.374

1 3 0.982

1 4 0.003

1 3 4.484

1 4 0.375

1 5 4.060

1 4 2.405

… … …

On the other hand, the state-trace data shown in Table 3.3 is sampled with an M/M/1

model using a fixed-time increment mechanism. The sampling rate – 10 time-unit – is

included in the data as a separate (the third) column. It can be seen from the

Queue_Length variable that generating state-trace data from the M/M/1 model using

the fixed-time increment mechanism with a relatively larger sampling rate may not be

ideal to capture every change in the queue length. On the other hand, a state-trace

data generated with a much smaller sampling rate (e.g., 1 time-unit) may result in cap-

turing the same state more than once in the data.

3

158962 Tekinay BNW.indd 79158962 Tekinay BNW.indd 79 09-05-2022 15:4409-05-2022 15:44

68 – Chapter 3

Table 3.3. A fixed-increment time advance mechanism-based state-trace data with absolute
simulation time column (sampled with a rate of 10 time-unit)

M/M/1 simulation model state-trace (fixed-time increment based, absolute simulation time)

Server_status Queue_Length Absolute_simulation_time

0 0 0

1 0 10

1 1 20

1 0 30

0 0 40

0 0 50

0 0 60

1 3 70

1 2 80

0 0 90

… … …

3.2.1.2 Stochastic vs. Deterministic Models

If a simulation model is deterministic (i.e., the model has no random variable), the be-

havior of the system over time for a given initial state and particular input set would trace

the same state transition history and generate the exact same outcome. Therefore, for a

deterministic model, a single run of the model would suffice to obtain a state-trace that

is representative of the model’s behavior under the selected initial state and the set of

input parameters. However, large-scale complex models are typically stochastic as the

large-scale complex systems being modeled contains inherent uncertain properties.

These uncertainties are implemented in large-scale complex models as random variables,

whose values follow a probabilistic distribution (Serfozo, 2009). To accurately estimate

the associated variability, the modeler should use replication to obtain independent and

identically distributed observations. In our method, one of the goals of the modeler is to

158962 Tekinay BNW.indd 80158962 Tekinay BNW.indd 80 09-05-2022 15:4409-05-2022 15:44

69

use replication to generate statistically independent (i.e., using different seeds values) and

sufficiently long state-trace data from the base model (see §3.2.1.3 for more discussion).

Sufficiently long state-trace data are achieved by increasing the run length of the simula-

tion, while statistical independence across runs is achieved by increasing the number of

repetitions with different Random Number Generator (RNG) seed values (Law, 2015)12.

Recall that we use state-trace data generated from the base model to identify frequent

behavioral patterns (i.e., successive state-transition pairs) using a frequent episode mining

algorithm and form the transition matrix of the Markov Chain. A Markov Chain’s ability

to correctly estimate the behavior of the original model depends on the quality of the

transition probability matrix. Statistically independent and sufficiently long state-trace

data generated with different seeds help estimate the probability mass function (for dis-

crete random variables) more accurately. What constitutes a sufficiently long run length

and number of repetitions depends on the model under study as well as the desired level

of precision (i.e., margin of error). In the case study presented in this chapter, we will

examine the performance of our method in terms of its ability to accurately estimate the

original model’s KPI’s under a range of run lengths and repetitions.

3.2.1.2 Case Study Application

To determine the minimum number of repetitions and run length required to achieve

this level of precision, we perform two sets of preliminary analyses. We measure the

performance of the M/M/1 queueing system (with λ = 0.10 and μ = 0.12) based on the

output estimates of three performance measures: server utilization ρ, average waiting

time wQ, and average queue length LQ. To assess the performance of our proposed

method in terms of its ability to accurately estimate these three KPIs, we compare the

output estimates obtained from the Markov Chain to those from the base model.

12 Note that the individual data points (i.e., state-trace records) within a particular state-trace data generated
from a simulation run are not iid. However, the different RNG seed value for each run ensures the independ-
ence across runs.

3

158962 Tekinay BNW.indd 81158962 Tekinay BNW.indd 81 09-05-2022 15:4409-05-2022 15:44

70 – Chapter 3

In the first set of preliminary analyses, we examine the effect of increasing the number

of repetitions (while keeping the state-trace length of each independent run constant)

on the Markov Chain’s accuracy. Recall that we split the runs of the base model into two

equal non-overlapping subsets for training and validation purposes. The total number

of runs will therefore always be twice the number needed for the validation tests. We

start with an experiment containing a total of 10 runs (20 in total for training and valida-

tion) of the base model and gradually increase the runs {20, 50, 100, 200, 500} to achieve

the desired level of precision, i.e., a margin of error of the Markov Chain generated KPI

of <1%. To ensure independence across runs, we assign a different seed value to each

run. Note that the length of each state-trace data generated from each independent

run for a fixed run-length is a random variable, depending on the observed values for

the interarrival and service-time random variables. In order to have a fixed length of

state-trace data from each independent run, the modeler should implement an addi-

tional limiting logic that either (a) stops the data collection when the state-trace data

reach to a pre-determined length or (b) postprocess each state-traces to remove the

records above the length threshold. In this set of analyses, each run has a run-length of

one million-time units and once the data generation is finished, all the state-traces data

collected from those runs are postprocessed to a fixed length of 50,000 state-trace rec-

ords.

In the second set of preliminary analyses, we examine the effects of increasing the

length of state-traces (while keeping the number of repetitions constant) on the perfor-

mance and the precision of the Markov Chain. Similar to the first set of experiments, we

gradually increase the state-trace lengths (1,000; 2,000; 5,000; 10,000; 20,000 and

50,000 state-trace records). In each experiment, the number of repetitions is set to a

fixed value which is determined by the outcome of the first set of experiments (see

§3.2.4 for more details).

For each individual experiment within the two sets of preliminary analyses, we calculate

the performance indicators and their margins of error. By doing so, we will illustrate how

much precision we will gain by increasing the run lengths and number of replications.

158962 Tekinay BNW.indd 82158962 Tekinay BNW.indd 82 09-05-2022 15:4409-05-2022 15:44

71

3.2.1.3 Terminating vs. Non-terminating Simulations

Shannon (1998) defines simulation as a twofold process: designing a model of a real-life

system and conducting experiments with this model to gain knowledge about this system.

Once the model has been developed, verified, and validated13, the next steps for a simu-

lation study are the experimental design and experimentation (i.e., the execution of the simu-

lation experiment; Shannon, 1998). In the experimental design step, the goal is to design

an experiment that will successfully provide answers to the questions about the system

and to determine how each test run is executed. In the experimentation stage, the focus

is on the execution of the simulation experiments and the generation of desired data and

statistics for analysis. There are several considerations for the experimentation stage, in-

cluding the decision on the length of a simulation run (i.e., sample size), the identification

of the starting conditions of the model, and the decision to include or exclude a warm-

up time. These considerations are largely determined by the type of the simulation, which

can be terminating or non-terminating.

In a terminating simulation, the simulation starts at a defined initial state or time and ends

when a defined terminating event is received or a time is reached. When experimenting

with terminating simulations, the modeler must to decide on (a) the initial-state of the

simulation, (b) the terminating condition which defines the run-length of a single simu-

lation run, and (c) the number of replications (Hoad et al., 2010). The terminating con-

dition influences the maximum length of the state-trace data that can be generated from

a simulation run. Obtaining sufficiently large state-trace data may not always be possible

due to the terminating condition. To achieve that, the modeler must often make many

replications with the same initial distribution with each replication having a different

Pseudo-RNG seed value (Kleijnen, 2017; Law, 2015).

In a non-terminating simulation, also referred to as steady-state simulation, there is no end-state

or an end-time and the simulation could theoretically continue indefinitely (Shannon,

13 Note that validation and sometimes verification are also special types of experiments with this model, from
which we can also learn about the system.

3

158962 Tekinay BNW.indd 83158962 Tekinay BNW.indd 83 09-05-2022 15:4409-05-2022 15:44

72 – Chapter 3

1998). This gives the modeler the ability to choose between making a single long run and

making many independent runs. Whitt (1991) shows that both options are usually as

efficient as long as the independent replications are sufficiently long enough to obtain

good enough estimates. However, it is still considered to be important to make inde-

pendent runs with different RNG seed values to overcome a possible dependency on a

selected seed.

Another important task of the modeler is to determine the warm-up period. The behav-

ior of the transient period is different from the steady-state period in a non-terminating

simulation. When studying the stochastic behavior of non-terminating systems, we are

typically only interested in the steady-state behavior of the system in a non-terminating sim-

ulation (Kleijnen, 1984). However, there will be a difference between the estimator's ex-

pected value and the value it is estimating when there is no warm-up period to comfort-

ably pass the transient period before collecting data for analysis or a realistic initial con-

dition (Schruben et al., 1983; Whitt, 1991). This difference is known as the initialization

bias, or start-up problem (Law, 2015). Several methods have been proposed to mitigate the

initialization bias in steady state discrete event simulation (refer to Mahajan & Ingalls,

2004 for an array of references).

To reduce the effects of initialization bias in our proposed method, the modelers could

choose (1) to collect state-trace data from the original model for both transient and

steady-state period, use the data to generate two Markov Chains for both transient and

steady-state period, but only perform data analysis for the steady-state period Markov

Chain; or (2) not to simulate the transient period and, instead, introduce a single admis-

sible initial state, which then becomes the initial state of the steady-state period Markov

Chain. This initial state is used in all replications as the starting condition; thus, it is rec-

orded as the first state-trace record in all the state-traces data. Although eliminating the

simulation of the transient period might bias the final estimator, we can assume that the

effect of the bias becomes negligible with large sample size (Kleijnen, 1984).

158962 Tekinay BNW.indd 84158962 Tekinay BNW.indd 84 09-05-2022 15:4409-05-2022 15:44

73

3.2.1.3 Case Study Application

The type of simulation implemented for the M/M/1 case study is a non-terminating sim-

ulation. There is no external event that determines the 'ending' of the simulation and

state-trace records are generated at each event occurrences until the simulation is

halted by scheduling a special “terminating” event at time unit 1,000,000-. We deter-

mined that this run length is sufficient to generate at least 50,000 state-trace records,

which is determined as the sufficient data length for the desired level of precision; mar-

gin of error of <1% (see §3.2.4 for more details on the calculation of margin of error for

the M/M/1 case study).

Furthermore, we concluded that each independent run – out of 50 repetitions – will

begin with the initial state P0: empty-and-idle and we do not use a warm-up period. The

reason to exclude the warm-up period from the simulation experiment is twofold: First,

the initial state P0 is realistic and the system has a reasonable chance to be in this par-

ticular state. Second, there are no entities in the system that would not have a 'history'

for statistics calculations when we start in the empty-and-idle state.

We will demonstrate the process of generating state-trace data from terminating simu-

lations using a battlefield case study in Chapter 4.

3.2.1.4 Inclusion of Input Data

When experimenting with a simulation model, one of the goals is to understand the ef-

fects of changes in the input data to the output of the simulation, such as the perfor-

mance measures (Maria, 1997). Unless the simulation model being used does not receive

any external input and the simulation experiment is designed to have all runs with the

same set of input, the desired analysis for the simulation study may require running the

simulation model with different set of inputs and these different set of input variable

values may need to be included in the state-trace data. In our method, the inclusion of

input variable values in the state-trace data for a particular run is done by adding the

variables as columns in the data.

3

158962 Tekinay BNW.indd 85158962 Tekinay BNW.indd 85 09-05-2022 15:4409-05-2022 15:44

74 – Chapter 3

The state-transitions simulated by the state-walk of a Markov Chain are dependent on

the input set (in addition to the RNG seed value used as explained earlier in §3.2.1.2). In

other words, the transition probabilities in a transition matrix P calculated from a collec-

tion of state-traces in a training set generated from the base model using a specific set of

input values can be different from state-traces in the same training set generated using a

different set of input values. This is also true for the traces in the validation set, which

will be used to validate the output of the Markov Chain. Therefore, the further separation

of the validation and training data into subgroups per input set provides modeler the

ability to simulate the Markov Chain using a transition matrix calculated from a single

input data-origin training data (i.e., the collection of state-traces generated from the simula-

tion of the base model with the same input data and reserved as training data) and validate

the output of the Markov Chain with the corresponding same single input data-origin valida-

tion data (i.e., the collection of state-traces generated from the simulation of the base

model with the same input data as the training data, but reserved as validation data).

The subcategorization of state-trace data into training and validation sets per input data

may be done manually by organizing the training and validation sets based after their

generation, or can be automated by introducing an additional identifier variable included

in the state-trace data as a separate column (in addition to the input variables) so that our

method may later identify the input set used for each run. Note that the identifier column

value will remain constant throughout a run and each state-trace data generated from the

execution of the base model with the same input set contains the same identifier value.

When the base model is simulated with a new set of inputs, then a new identifier value

is generated (e.g., by using an integer variable as the identifier and incrementing the value

by 1) and a lookup text file that contains the map of identifiers and their corresponding

input set is updated. Note that the necessity to separate state-trace data set into subcate-

gories of validation and training sets per input data comes with the necessity to introduce

an additional logic to choose the best fitting Markov Chain when the modeler wishes to

simulate the Markov Chain with an input data that was not among the set of input data

previously used to execute the base model while generating the state-traces. An approach

might be that when quantizing the input variables, the modeler could use the quantized

value and trained the model for all combinations of all quantized values. When linearity

158962 Tekinay BNW.indd 86158962 Tekinay BNW.indd 86 09-05-2022 15:4409-05-2022 15:44

75

can be assumed, the modeler may run the model with the value above and below, and

then interpolate the output values from both (sets) of runs with the Markov model.

3.2.1.4 Case Study Application

The M/M/1 model we use for our case study has a single set of input data. The input

variables and the values of the M/M/1 model are given in Table 3.4 below:

Table 3.4. The input variables and the values of the M/M/1 model

Input variable Value

Average arrival rate λ 0.10

Average rate of service µ 0.12

Number of servers c 1

Because the model has a fixed (single) set of input values and there is no external input,

the inclusion of the identifier variable and the input values to state-trace data as col-

umns, which remain constant for all state-traces, will not affect the variability of the ep-

isodes discovered by the EMMA algorithm. Therefore, we exclude the input data from

the state-traces generated from the execution of the M/M/1 model.

3.2.1.5 Inclusion of Output Data

Depending on both the preferences of the modeler and the goals, requirements and the

type of analysis needed for the simulation study, output variables can be included in the

state-trace data. In a simulation model, the modeler can calculate and report different

types of run statistics (e.g., tally, time-persistent) to estimate the output performance of

the model. A tally or tally statistic computes and represents the min, max, mean, variance

and standard deviation values of the observations. Time-persistent statistics are time average

statistics and often used for computing the time averages or time-dependent perfor-

mance indicators. In our method, one way to include the output data of a simulation

3

158962 Tekinay BNW.indd 87158962 Tekinay BNW.indd 87 09-05-2022 15:4409-05-2022 15:44

76 – Chapter 3

model in the state-trace data is to directly incorporate the transient values of these run

statistics as columns.

On the other hand, the modeler may prefer to include the raw state variable values of

the base model (e.g., the queue length and duration) in the state-trace data to instead of

the run statistics. Note that the decision to add run statistics or individual variable values

of the base model when generating the state-trace data will also determine the content

of the state-trace data reproduced by the Markov Chain. Therefore, although the strategy

to include individual variable values requires the modeler to (a) ensure that all state-vari-

ables needed for the run statistics calculations are included in the state-trace and to (b)

implement the code needed to perform the calculation of the run-statistics as an addi-

tional step, the extra information in the state-trace data can be useful for the debugging

of the Markov Chain model.

3.2.1.5 Case Study Application

Based on the input values presented in §3.2.1.4, the theoretical calculations of several

mean measures of the M/M/1 model are given below:

In this M/M/1 case study, we are particularly interested in the estimation of the following

three KPIs: server utilization ρ, average waiting time wQ and average queue length LQ.

The DSOL implementation of the M/M/1 base model does the capturing of these three

KPIs as shown in Figure 3.3. The lines 373-376 are the run statistics. In line 374, the

SimTally class is instantiated and the tally object (dN) is subscribed to

Seize.DELAY_TIME events fired by the queue. The line 375 defines a sim-persistent

statistic (qN) that is subscribed to Seize.QUEUE_LENGTH_EVENT events fired by the

queue. Finally, the line 376 introduces a Utilization object computing and representing

the utilization of a station (i.e., the server), which is also a time-persistent statistic. To

calculate the mean of these three performance measures, we call the getSampleMean()

method at the end of each run.

158962 Tekinay BNW.indd 88158962 Tekinay BNW.indd 88 09-05-2022 15:4409-05-2022 15:44

77

Figure 3.3. Model performance metrics directly embedded in the state-trace data

For this case study, we choose to individually trace the values of several key variables

and include them as individual columns in the state-trace data, instead of including the

run statistics directly. Table 3.5 shows an example of a portion of a state-trace data

containing these key individual variable values.

Table 3.5. A portion of a raw-state trace data with the final data columns

Server_sta-
tus

Queue_length Elapsed_time Time_in_queue Num_of_obser-
vations

0 0 0.000 -1.00014 0

1 0 1.235 0.000 1

1 1 0.739 -1.000 0

1 0 1.374 1.374 1

1 1 0.982 -1.000 0

1 0 0.003 0.003 1

0 0 4.484 -1.000 0

1 0 0.375 0.000 1

1 1 4.060 -1.000 0

1 2 2.405 -1.000 0

… … … … …

1 4 0.837 -1.000 0

14 The state -1.000 for the Time_in_queue variable means that there is no entity waiting in the queue.

3

158962 Tekinay BNW.indd 89158962 Tekinay BNW.indd 89 09-05-2022 15:4409-05-2022 15:44

78 – Chapter 3

Recall from earlier that the inclusion of the individual state-variables instead of the run-

statistics means that we need to calculate each KPIs using the state-variable values ob-

tained from the Markov Chain-generated state-traces. Below table shows the equations

we use for the calculation of each KPI (left-side of the table) and the steps to be taken

to calculate these KPIs using the state-trace data.

Table 3.6. Calculation details of the three KPIs

𝜌𝜌 =
∫ 𝜌𝜌i	𝑑𝑑𝑑𝑑
k
R
𝑇𝑇

𝜌𝜌 = 	
∑ 𝜏𝜏1	𝜌𝜌1U
1bW

𝑇𝑇 	𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	𝑇𝑇 =_𝜏𝜏1

U

1bW

To calculate the average server utilization:

for each interval (between events, or be-

tween observations), determine the utiliza-

tion of the server ρi ∈ {0, 1}. Multiply by

time interval τi , sum the values and divide

the sum by total simulation time T (the sum

of all interval lengths).

For event based, all τ values are different; for

observation based, they are the same.

𝐿𝐿r = 	
∫ 𝐿𝐿r,i	𝑑𝑑𝑑𝑑
k
R
𝑇𝑇

𝐿𝐿r = 	
∑ 𝜏𝜏1	𝐿𝐿r,1U
1bW

𝑇𝑇 	𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	𝑇𝑇 =_𝜏𝜏1

U

1bW

To calculate the average queue length: for

each interval (between events, or between

observations), determine the queue length

of the server LQ,i ∈ {0, 20}. Multiply by time

interval τi , sum the values and divide the

sum by total simulation time T (the sum of

all interval lengths).

𝑤𝑤r =	
∑ 𝑤𝑤r,1s
1bW

𝑁𝑁
To calculate the average waiting time in the

queue, sum the individual waiting times in

the queue and divide by total number of en-

tities N that have left the queue. This is a bit

less straightforward to calculate than the

other two KPIs (see the section below).

158962 Tekinay BNW.indd 90158962 Tekinay BNW.indd 90 09-05-2022 15:4409-05-2022 15:44

79

Note that not all events we register in the state-trace are events where an entity leaves

the queue. This means that we have to indicate non-leaving events in the state-trace

data for our method to identify. In our case-study model, we coded the non-leaving

events as -1. When we have a total of E events, we calculate the average waiting time

as follows:

𝑤𝑤r =	
∑ 𝑤𝑤r,t	|	𝑤𝑤r,t 	≥ 0v
tbW

∑ 1	|	𝑤𝑤r,t 	≥ 0v
tbW

In other words, we only sum the registered waiting times for values that are not -1, and

divide by the count of waiting times that are not -1. Unfortunately, the above formula is

a problem when the system is studied using observations rather than events, since mul-

tiple entities can leave the queue in one interval. Therefore, we implemented the fol-

lowing:

• store the sum (or average) of the waiting times wS,i for all entities that left the

queue during interval i, and a value of NaN or -1 in case no entities left the

queue during the interval;

• store the number of entities ni that left the queue during interval i, where the

intervals are numbered from 1 to N.

We then calculate the average waiting time as follows:

𝑤𝑤r =	
∑ 𝑤𝑤`,1	|	𝑤𝑤`,1 	≥ 0s
1bW
∑ 𝑛𝑛1	|	𝑤𝑤`,1 	≥ 0s
1bW

Meaning that, we only sum the registered waiting times for values that are not -1, and

divide by the total count of waiting times that are not -1, where the count is increased

by 2 or more in case multiple entities left in the same interval.

3

158962 Tekinay BNW.indd 91158962 Tekinay BNW.indd 91 09-05-2022 15:4409-05-2022 15:44

80 – Chapter 3

3.2.1.6 Complete vs. Partial Model State-Trace Data

If a source system is defined as a set of input and output variables and a collection of

observable and unobservable states (Klir, 1985), the effort of modeling large-scale com-

plex simulation models is to specify a generative or a structure system with a number of

states selected from the source system including the input and output variables; see Fig-

ure 3.4.a. Some of these states will be directly observable, but the power of using simu-

lation modeling is that we can also infer the values of the states that are not directly

observable, and include these state variables in our model as well. Therefore, another

important consideration of the modeler in our method is the decision to generate a com-

plete-model state-trace using all state variables of the original large-scale complex simu-

lation model, or a partial-model state-trace data set by making a sub-selection of the states

in the model; see Figure 3.4.b. Generating a partial-model state-trace data can be seen as

a similar process to the iterative process of modeling a large-scale complex simulation

model from a source system. The decision of a complete or a partial model state-trace is

driven by the goals, requirements and limitations defined by the stakeholders (i.e., mod-

eler, model users) and resources (i.e., computational resources, time).

Figure 3.4. From System to Markov Chain progression

158962 Tekinay BNW.indd 92158962 Tekinay BNW.indd 92 09-05-2022 15:4509-05-2022 15:45

81

A state-trace is considered as a complete-model state-trace if it contains the complete set of

variables that describes the state of all individual atomic components and, as a collection,

the state of the system at a particular instant. Meanwhile, it is a partial-model state-trace

when:

• the state-trace data have a (selected) subset of state variables of all atomic

components of the base model, or

• the state-trace data have the complete set of state variables of a (selected) subset

of atomic components of the base model, or

• the state-trace data have a (selected) subset of state variables of a (selected) subset of

atomic components of the base model.

Although generating a complete-model state-trace is a more straightforward process, the

size and variety of data may make working with the state-trace of large-scale complex

discrete-event simulations impractical. On the other hand, the process of generating a

partial state-trace data set is not a straightforward task that requires modelers to correctly

identify subset of atomic components and the subset of state variables to be included in

the state-trace data in order to generate valid Markov Chains.

3.2.1.6 Case Study Application

The M/M/1 model is a simple model with only 2 state variables. Therefore, the state-

trace data generated from the simulation of the M/M/1 model and used in the temporal

data mining step are complete-model traces.

We will demonstrate the process of making selections out of a large sample of variables

with many intricate relationships with larger models in Chapters 4 and 5.

3.2.2 Application of the Temporal Data Mining Tasks to the State-Trace Data

The next step of our method is the application of frequent episode mining to the training

data to construct a transition matrix for the discrete-time first-order Markov Chain. In

3

158962 Tekinay BNW.indd 93158962 Tekinay BNW.indd 93 09-05-2022 15:4509-05-2022 15:45

82 – Chapter 3

Appendix A.1, we explained why the EMMA algorithm is the best suited for the frequent

episode mining task for our proposed method. In the following sections, we describe the

considerations and actions regarding the preprocessing of the state-trace data, the application of

the EMMA algorithm to identify all frequent episodes (i.e., all the possible state-transition

pairs) from the preprocessed state-trace data and calculate their occurrence frequencies,

and finally the construction of the transition matrix using the transition probabilities for all

state-trace record pairs.

3.2.2.1 Preprocessing of the State-Trace Data

Data preprocessing involves the tasks of data cleaning (i.e., detecting and correcting/re-

moving erroneous data and outliers, dealing with missing data), data integration (i.e.,

combining data from multiple sources into one), and data transformation (i.e., conver-

sion, recoding, quantization, approximation or normalization of data values; (i.e.,

conversion, recoding, quantization, approximation or normalization of data values;

Mörchen, 2006b). Preprocessing tasks can be applied to a single state variable, to multiple

state variables measured in the same units, to a single or multiple state-trace records, and to a complete

state-trace data set. This is a highly application dependent step; that is, the selection of type

of preprocessing tasks and the particular algorithms to perform these tasks are deter-

mined by several factors, including the input file format prescribed by the chosen tem-

poral data mining algorithm, the preferences of the modeler, and the specific goals and

requirements of the model abstraction study.

In our proposed method, the type of preprocessing techniques to be used are determined

by the input file format of the EMMA algorithm, as well as the preferences and the

requirements of the modeler for the model abstraction task. The SPMF implementation

(Fournier-Viger et al., 2014; 2016) of the EMMA algorithm is designed to find episodes

with at least minsup times occurrence from a given event sequence. The input of the

algorithm is a text file containing an event sequence, in which each row is an item set and

an optional the timestamp of the item set, separated by the character "|". If the event

sequence has no timestamp, the corresponding Boolean parameter “self_increment” can

be set to true. In that case, the timestamp information of each row is processed as a

158962 Tekinay BNW.indd 94158962 Tekinay BNW.indd 94 09-05-2022 15:4509-05-2022 15:45

83

sequence number incrementing by 1. This is useful when the input data is a state-trace

data, which is sequential and the time is embedded in the item set as a separate entry.

The SPMF implementation of the EMMA algorithm specifies that items in an item set

are separated by a single space and represented by positive integers. Therefore, any

nonpositive noninteger value (e.g., negative floating point, negative integer, non-numer-

ical data) in the state-trace data belonging to a variable should be recoded to a positive

integer. It is important that the recoding method applied to a particular variable should

be applied to all variables measuring the same unit (e.g., all variables that measure tem-

perature). Another approach to deal with the issue of having nonpositive noninteger

values in the state-trace data is to encode every unique row (state-trace record) to a

nonnegative integer value. This way, the data can be represented in the format usable by

the EMMA algorithm and the encoded values can be decoded back to their original value

format after the episode mining step. The dimensionality of the state-trace data, and

therefore, the size will be reduced as a result of encoding state-trace records with a large

number of data columns to a single positive integer value. Note that in case the modeler

chooses the encoding strategy to deal with nonpositive noninteger values in the state-

trace data, the quantization of continuous data should be done before the encoding of

the state-trace data.

In a state-trace data set, a state variable or a system state can have categorical (binary,

nominal or ordinal) or numerical values (continuous or discrete). Although many real-

world phenomena are represented as continuous (e.g., speed, temperature, distance),

continuous variables, also referred as continuous features (Dougherty et al., 1995), pos-

sess several challenges when mining frequent episodes from the input data. One reason

is that floating point variables, by nature, consist of an infinite set of values. It can be the

case that the same value instances never appear twice in the state set, while the density

of certain value ranges can differ tremendously. This is also true stochastic values, where

the densities of the values are important, but each run would generate different actual

floating-point values, according to these densities. Another reason is that some continu-

ous variables take values that are monotonously increasing or decreasing by design and

no values will repeat itself during a run (e.g., distance covered by a driving vehicle during

the time of observation). Inclusion of such variables with as many different numbers of

3

158962 Tekinay BNW.indd 95158962 Tekinay BNW.indd 95 09-05-2022 15:4509-05-2022 15:45

84 – Chapter 3

states as the number of state-trace records in the data (each value occurring only once)

will undermine the ability of the frequent episode mining algorithms. The above points

lead to the necessity to account for value ranges rather than points for non-categorial

variables, as well as categorial variables with a large number of categories.

Quantization15 is the process of converting or partitioning continuous data into a smaller,

finite number of discrete values or categories. There are numerous quantization methods

described in the literature. Liu et al. (2002) propose a hierarchical framework for quanti-

zation that guides the selection of the most suitable technique within overarching split-

ting and merging approaches, and supervised and unsupervised methods. A commonly

used quantization method is the binning. The goal of binning is to quantize non-categor-

ical variables or categorical variables with a large number of categories into a user-speci-

fied number of bins (Liu et al., 2002). This can be done by either dividing the value range

of a non-categorical variable into a given k number of intervals (bins) with equal coverage

of value ranges, also known as equal-width binning, or by placing equal number values in k

number of bins, known as equal-frequency binning. Equal-frequency bins can be created

using quantiles, i.e., values that split data into equal intervals (Field, 2013). Commonly

used quantiles, or q-quantiles, are 2-quantiles or median, 4-quantiles or quartiles, 10-quantiles

or deciles, and 100-quantiles or percentiles.

In the following case study application section, we will demonstrate the quantization of

variables using various binning strategies.

3.2.2.1 Case Study Application

Following the completion of the considerations listed in §3.2.1 and generating the final

version of the state-trace data (see Table 3.5), the next step of our proposed method is

to identify the variables that require preprocessing. In this section, we will demonstrate

15 Although data mining and machine learning literature use the term discretization and quantization interchange-
ably, we reserve the term discretization to refer only to the transformation of the continuous time variable to
a discrete one, whereas quantization is aimed at the transformation of the continuous state variables.

158962 Tekinay BNW.indd 96158962 Tekinay BNW.indd 96 09-05-2022 15:4509-05-2022 15:45

85

how we applied quantization, specifically binning-based methods, to the values of three

variables in the state-trace data: Queue_length, Elapsed_time, and Time_in_queue.

For the quantization of these three variables, we chose binning as the strategy. In order

to choose the suitable binning strategy for each variable, we investigated the type of

numerical values these variables take and the statistical distribution of these values. In

the Elapsed_time and Time_in_queue case, variables take floating point numbers and

have right-skewed (positive skewness) distributions; that is, the peak of the histogram is

on the left side and it has a long right tail. The drawback of using equal-width binning
with these types of variables is that we can end up splitting the data into irregular bins

with some bins containing very small numbers of values. Therefore, we chose a quantile-

based binning algorithm by (Rawashdeh, 2020) to quantize both Elapsed_time and

Time_in_queue variables. Among the most commonly used q-quantiles, we picked dec-

iles over quartiles to have a high enough number of bins for sufficient precision, and we

picked deciles over percentiles to not undermine the ability of the frequent episode

mining algorithm EMMA due to over population of bins. Hence, both variables were

quantized in 10 bins, each containing 10% of the Elapsed_time and Time_in_queue

scores. Note that it is important that the modeler omits any non-numeric or non-mean-

ingful values from the input before quantizing the variable. In this example, when the

queue is empty and therefore there is no waiting time, -1.000 is used as a fixed value

for the Time_in_queue variable.

For the quantization of Queue_length variable, we used a different binning strategy.

Unlike the Elapsed_time and Time_in_queue variables, Queue_length is an integer var-

iable where the frequencies are large for values that are close to zero; e.g., queue length

0 has a much higher frequency than 1, and 1 is more frequent than 2, etc. In such cases,

quantile-based or equal frequency binning is not ideal as the high frequency values

would occupy more than one bin. For that reason, we use a custom strategy to quantize

this variable, in which we set a minimum threshold of 5% of scores per bin. That is,

frequent values (>5% of scores) are assigned their own bin, and infrequent values (<5%

of scores) are grouped together until each bin contains at least 5% of the data.

In Chapter 4 and 5, we will demonstrate the effect of different levels of quantization to

the performance and the accuracy of a Markov Chain using simulation models with rel-

atively larger number of model components and a larger state space than the M/M/1

model.

3

158962 Tekinay BNW.indd 97158962 Tekinay BNW.indd 97 09-05-2022 15:4509-05-2022 15:45

86 – Chapter 3

3.2.2.2 Application of the EMMA Algorithm to Preprocessed State-Trace Data

After the preprocessing of the base model's state-traces, the next step in our method is

to apply the EMMA algorithm to the preprocessed training data set to obtain state-tran-

sition probabilities and construct the corresponding Markov Chain transition matrix. In

§3.1.3, we established that the memoryless property of Markov Chain states is akin to

the discrete-event model states, and the state-transition probabilities represented in ma-

trix format is the transition matrix of a valid stochastic discrete-time Markov Chain.

Therefore, we set the maxwin input parameter to 2 and the minsup input parameter to 1

(see Appendix A.2 for the complete EMMA algorithm input parameter list) for the

EMMA algorithm to discover: (a) all unique episodes with length 1 (i.e., unique state-

trace records or unique states) appearing in the state-trace data at least one time, and (b)

all unique episodes with length 2 (i.e., successive state-trace record pairs, or state transi-

tions) with a minimum frequency of 1.

A Markov Chain simulation (see §3.2.3) requires three main elements: the state space S,

an initial distribution vector 𝜋𝜋R, and a transition matrix P = (Pij). The Markov Chain’s

state space S of the Markov Chain is equivalent to the set of all unique states discovered

by the EMMA algorithm. Similarly, using the frequency information obtained during the

episode mining stage, we can construct a transition matrix P of the discrete-time Markov

Chain using the state-transition probabilities P(ij) obtained from the full training dataset.

Although a transition matrix of a Markov Chain is an N×N square matrix, Reichel et al.

(2015) argue that when implementing Markov Chains, it is often computationally more

advantageous to represent transition matrices as sparse matrices due to the high number

of transitions that are considered impossible for the model to reach. In the following

case study application section, we will show the sparsity of Markov Chains' transition

matrices for the M/M/1 model.

158962 Tekinay BNW.indd 98158962 Tekinay BNW.indd 98 09-05-2022 15:4509-05-2022 15:45

87

3.2.2.2 Case Study Application

To perform the experiments required for preliminary analysis in the case study applica-

tion section of §3.2.4, we designed two preliminary analysis data sets containing twelve

transition matrices and their corresponding state sets (i.e., set of all unique states):

• Preliminary analysis data set1 consists of state-trace data with increasing num-

ber of repetitions (10, 20, 50, 100, 200, 500) and fixed state-trace length of

50,000 state-trace records per simulation run

• Preliminary analysis data set2 consists of state-trace data with increasing

length (1,000; 2,000; 5,000; 10,000; 20,000 and 50,000) and fixed number of

100 repetitions

The Table 3.7 shows the effect of increasing number of repetition and trace length to

the number of unique states (N) identified by the EMMA algorithm (for the given pa-

rameters of minsup =1 and maxwin = 2). Even though the data points are limited, the

results suggest that with an increase in sample size (e.g., due to the increased number

of repetitions or increased trace lengths) the number of unique states discovered by the

EMMA algorithm increases. Given the number of unique states, the size of the resulting

right stochastic transition matrices can be calculated as (N×N).

Table 3.7. Transition matrix dimensions and the number of unique states discovered per
data set

Preliminary analysis data set 1

(fixed length of 50,000 state-trace records)

Preliminary analysis data set 2

(fixed number of 100 repetitions)

Repetitions Unique states (N) Trace length Unique states (N)

10 966 1,000 892

20 991 2,000 930

50 1,012 5,000 961

100 1,029 10,000 985

200 1,046 20,000 1,004

500 1,063 50,000 1,029

The experiments also revealed that the generated transition matrixes from the experi-

ments are sparse (i.e., containing many zeros) because (a) we are only interested in the

3

158962 Tekinay BNW.indd 99158962 Tekinay BNW.indd 99 09-05-2022 15:4509-05-2022 15:45

88 – Chapter 3

transition probabilities of successive states, and (b) the state-trace data generated from

the M/M/1 model with the next-event time advance mechanism does not contain self-

transitioning states, resulting in the probability values of zero in the diagonals of the

transition matrices. For instance, the N×N transition matrix generated from the data

with 10 repetitions and 50,000 state-trace records (per simulation run) contains 35,873

non-zero probabilities out of 933,156 (i.e., 966×966) probability values in an N×N tran-

sition matrix, which is only 3.84%. Similarly, only 5.43% of the 1,129,969 (1,063×1,063)

probability values are non-zero in the data with 500 repetitions and 50,000 state-trace

records (per simulation run). Figure 3.5 depicts a portion of the 966×966 transition ma-

trix's heatmap, which only contains state-transitions between the first 50 states. Higher

transition probabilities are represented in the heatmap by darker shades. The figure

shows that many transition probabilities are 0 (in white color), as expected.

Figure 3.5. A portion of the 966×966 transition matrix's heatmap containing only the tran-
sitions between the first 50 states

158962 Tekinay BNW.indd 100158962 Tekinay BNW.indd 100 09-05-2022 15:4509-05-2022 15:45

89

3.2.3 Simulation of the Discrete-time Markov Chain

Following the generation of a discrete-time Markov Chain’s transition matrix P, the next

step in our method is to simulate the discrete-time Markov Chain to generate state-trace

data for the final validation step. A Markov Chain generates a stochastic path by per-

forming state walks when simulated. Appendix B contains an implementation of a ge-

neric state walk algorithm (see Table B.3) and more details on the implementation of the

Markov Chain implementation used in the case studies. If the base simulation is non-

terminating, the modeler should terminate the data generation from the Markov Chain

once the desired number of state-trace records have been generated (for more infor-

mation, see §3.2.4, “Preliminary analyses: Selection of minimum state-trace length”). On

the other hand, if the base model is terminating, the Markov Chain simulation should

automatically terminate once it reaches its end-state after n consecutive independent tri-

als, or state walks. The geometric distribution represents a Markov Chain’s probability

of getting the first occurrence of a particular state, such as the end-state (see §5.2.4 for a

more in-depth discussion on the geometric distribution).

The number of runs required to generate sufficient state-trace data from a Markov Chain

simulation is determined by the number of runs used in previous experiments with the

base model to generate the validation set. The modeler should use different random

number generator seed values for each run to obtain iid data.

3.2.3 Case Study Application

As explained in the previous case study application section and further described in

§3.2.4, we designed twelve preliminary experiments with varying run lengths and rep-

etitions. Because the M/M/1 simulation is non-terminating, we set the artificial trace-

length, which is the run-length (e.g., 1,000; 2,000; 5,000; 10,000; 20,000; and 50,000)

required by the particular experiment when simulating the Markov Chains. MATLAB is

used to implement the Markov Chain that was used in the simulation experiments for

the M/M/1 case study. Appendix B.2 contains details of the MATLAB implementation.

3

158962 Tekinay BNW.indd 101158962 Tekinay BNW.indd 101 09-05-2022 15:4509-05-2022 15:45

90 – Chapter 3

3.2.4 Validation of the Markov Chain Results

An important step in any simulation study is to ensure the simulation model’s validity by

investigating and confirming that the simulated model is a sufficiently accurate represen-

tation of the system of interest (Robinson, 1997). Within the context of our proposed

method, it is to test whether our model-of-a-model represents the original model accu-

rately enough for the purpose we have in mind. Once a simulation model is implemented

and simulation experiments are performed to generate data, the next step for the modeler

is to ensure the simulation model’s operational validity. Operational (results) validation

is the process of determining to what extent the model-generated output behavior is

similar to either the system output behavior or another model output behavior (Sargent,

2013). Therefore, the fourth step of our method is to use operational validation tech-

niques to compare the Markov Chain generated data to the validation set.

3.2.4.1 Comparison of Estiamates Using Statistical Techniques and Criteria

Various operational validation approaches and techniques are described in the literature

(see Balci, 1994; Roungas et al., 2018; Sargent, 2013 for a list of references), which range

from more objective or mathematical/statistical procedures (e.g., hypothesis tests or con-

fidence intervals) to more subjective approaches. Generally, a combination of techniques

is used to evaluate the simulation model’s validity. Within the statistical approaches, hy-

pothesis tests can be used to objectively compare statistical properties (e.g., frequencies,

means, distributions, variance) of the simulation model and the original system or an-

other model to determine whether the simulation model’s output has an acceptable ac-

curacy for its intended usage. In our method, such statistical properties including model

related performance measures can be obtained from state-traces. For instance, frequency

distributions of state-transitions for the original model and from the Markov Chain

model can be compared using the chi-square (𝜒𝜒2) test (Anderson & Goodman, 1957). In

this case, the modeler would test the null-hypothesis that there is no difference between

the state-transition frequency distributions from the Markov state-traces and the original

model generated test set. The chi-square test (Pearson, 1900; Plackett, 1983) uses a cross-

tabulation to present the two distributions and to compare how well the observed cell

counts (i.e., frequencies) fit with the cell counts that would be expected if the

158962 Tekinay BNW.indd 102158962 Tekinay BNW.indd 102 09-05-2022 15:4509-05-2022 15:45

91

distributions were equal to each other (i.e., if the null hypothesis were true). Similarly,

model related performance measures of the original model and the Markov Chain model

can be compared using the Student’s t-test to assess how different the mean values on

these measures are between the two models. The t-score is a ratio between the difference

between two groups (i.e., validation set generated from the original model and the data

generated from the Markov Chain) and the difference within the groups. The larger the t-

score, the more difference there is between groups. The smaller the t-score, the more

similarity there is between groups, in our case the model outputs. Regardless of the sta-

tistical technique chosen, the calculated test statistic (e.g. chi-square statistic or t-score)

and degrees of freedom from the test are then compared to a critical value to calculate

the p-value. If the p-value is larger than the alpha level chosen (e.g., .05 or 5%), any ob-

served difference is assumed to be explained by sampling variability rather than a true

difference. On the other hand, if the p-value is smaller than the chosen alpha level, the

probability of finding the given test value due to chance or random sampling variability

if the null-hypothesis were true is considered so small that we reject the null-hypothesis.

However, it is important to note that significance testing based on the p-value is sensitive

to sample size (Sullivan & Feinn, 2012). With a large enough sample, unless the difference

between the two distributions is very close to zero, a statistical test will almost always

demonstrate a significant difference, even when the alpha is set at a more conservative

level (e.g., .01 or .001), a phenomenon sometimes labeled “the large sample size fallacy”

(Lantz, 2013). Yet, significant differences are in such cases often extremely small and not

necessarily meaningful. For this reason, it is critical to not solely rely on the p-value (Lin

et al., 2013), but also evaluate the effect size, which describes the magnitude of the dif-

ference (Sullivan & Feinn, 2012). For the chi-square test, one can use the Cramer’s V

measure for effect size (Sullivan & Feinn, 2012).

An alternative approach to the statistical hypothesis testing, or an additional approach in

some cases, is to compare two probability distributions using the non-parametric two-

sample Kolmogorov Smirnov test ("Kolmogorov–Smirnov Test," 2008) or to use other

measures such as distance or divergence (see Cha & Srihari, 2002 and references therin).

In our method, the two probability distributions (i.e., the probability distribution of the

test set of the original model and the Markov Chain) are discrete probability distributions.

3

158962 Tekinay BNW.indd 103158962 Tekinay BNW.indd 103 09-05-2022 15:4509-05-2022 15:45

92 – Chapter 3

Therefore, it is important that the similarity or dissimilarity measures selected by the

modeler should be applicable to discrete distributions, such as Bhattacharyya distance

(Kailath, 1967) or the Earth Mover’s distance (Rubner et al., 2000) as the statistical dis-

tance measures, or Kullback-Leibler divergence (Kullback & Leibler, 1951) as a diver-

gence measure to calculate the similarity/dissimilarity between two datasets.

Although the above methods of statistical inference and distributional similarity metrics

are preferable for evaluating operational validity as they allow for decisions on the basis

of established and commonly used criteria, in practice it may not always be feasible to

use these approaches (e.g., due to limitations of the data or the sensitivity of statistical

tests to sample sizes limiting the interpretation of results) to determine whether the

model (or the model of a model) is a satisfactory valid model for the model’s intended

purpose or application. In such cases, visualization of the simulation output can provide

an additional perspective to understand the output visually and intuitively (Lin et al.,

2013; Sargent, 2013). Within the context of our research, the modeler can compare the

output estimations of the performance measures obtained from the validation set and

the Markov Chain side-by-side by plotting the confidence intervals, or compare the fre-

quency distributions using a histogram.

Where possible, the modeler should combine the outcomes of multiple measures to

judge the operational validity.

3.2.4 Case Study Application

At the validation step, our main goal is to compare the state-trace data generated by

the Markov Chain and the validation set obtained from the original M/M/1 model. Be-

fore we statistically compare the output estimates from both models, recall from

§3.2.1.2 that we wish to obtain estimates with a precision of <1% margin of error. To

achieve this level of precision, we need to determine the minimum number of repeti-

tions and state-trace length. We run our Markov Chain with increasing numbers of rep-

etitions (first set of preliminary analyses) and increasing length of state-trace data (sec-

ond set of preliminary analyses), and evaluate the margin of error obtained in each ex-

periment.

158962 Tekinay BNW.indd 104158962 Tekinay BNW.indd 104 09-05-2022 15:4509-05-2022 15:45

93

Preliminary analyses: Selection of minimum number of repetitions

Table 3.8 shows the mean performance measures and their margins of errors [MOE] for

the first set of preliminary analyses. As becomes clear from this table, with larger num-

bers of repetitions, the margin of error becomes smaller and the level of precision of

our estimate increases. For the KPI server utilization, a high level of precision (i.e., below

1%) is already achieved with as few as 10 repetitions. For the average waiting time and

average queue length measures, the margin of error becomes smaller than 1% from

100 repetitions and higher (note that the actual threshold of 1% is somewhere between

50 and 100 repetitions). Based on these findings, we select 10016 as the number of rep-

etitions to be used for our validation step.

Table 3.8. Descriptive statistics for key performance measures obtained from the Markov
Chain with different number of repetitions and fixed length of 50,000 state-trace records

 Server utilization Average waiting time Average queue length

Repetitions M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%)

10 0.88 (0.00) 0.00 (0.37) 42.91 (0.54) 1.06 (2.46) 4.31 (0.06) 0.11 (2.59)

20 0.88 (0.00) 0.00 (0.23) 43.38 (0.33) 0.66 (1.51) 4.34 (0.04) 0.08 (1.74)

50 0.88 (0.00) 0.00 (0.19) 42.71 (0.26) 0.51 (1.20) 4.28 (0.03) 0.06 (1.34)

100 0.88 (0.00) 0.00 (0.11) 43.25 (0.17) 0.33 (0.76) 4.33 (0.02) 0.04 (0.83)

200 0.88 (0.00) 0.00 (0.09) 43.44 (0.13) 0.25 (0.57) 4.35 (0.01) 0.03 (0.62)

500 0.88 (0.00) 0.00 (0.05) 43.64 (0.07) 0.14 (0.33) 4.37 (0.01) 0.02 (0.36)

Preliminary analyses: Selection of minimum state-trace length

Table 3.9 shows the mean performance measures and their margins of errors for the

second set of preliminary analyses. This table shows that with longer traces containing

a higher number of state-trace records, the margin of error becomes smaller and the

level of precision of our estimate increases. For the KPI server utilization, a high level of

precision (i.e., below 1%) is already achieved with a state-trace as short as 1,000 records.

16 Note that 100 repetitions mean both the training and validation sets have 50 state-traces in each because we
decided to split the complete set of state traces equally.

3

158962 Tekinay BNW.indd 105158962 Tekinay BNW.indd 105 09-05-2022 15:4509-05-2022 15:45

94 – Chapter 3

 For the average waiting time and average queue length measures, the margin of error

reaches <1% from 50,000 state-trace records and higher (note that the actual threshold

of 1% is somewhere between 20,000 and 50,000 state-trace records). Based on these

findings, we select 50,000 as the state-trace length to be used for our validation step,

in conjunction with the 100 repetitions selected in the first set of preliminary analyses.

Table 3.9. Descriptive statistics for key performance measures obtained from the Markov
Chain with varying state-trace lengths and fixed number of 100 repetitions

 Server utilization Average waiting time Average queue length

Length M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%)

1,000 0.88 (0.00) 0.01 (0.84) 43.06 (0.86) 1.68 (3.90) 4.31 (0.11) 0.22 (5.20)

2,000 0.88 (0.00) 0.00 (0.49) 42.90 (0.66) 1.29 (3.01) 4.31 (0.08) 0.15 (3.52)

5,000 0.88 (0.00) 0.00 (0.36) 43.51 (0.55) 1.07 (2.46) 4.28 (0.06) 0.12 (2.73)

10,000 0.88 (0.00) 0.00 (0.24) 43.34 (0.35) 0.69 (1.58) 4.36 (0.04) 0.07 (1.69)

20,000 0.88 (0.00) 0.00 (0.17) 43.16 (0.24) 0.48 (1.11) 4.33 (0.03) 0.05 (1.17)

50,000 0.88 (0.00) 0.00 (0.11) 43.25 (0.17) 0.33 (0.76) 4.33 (0.02) 0.04 (0.83)

Validation

Now that we have selected the number of repetitions and state-trace length that pro-

vides our desired level of precision, we can validate our results using inferential statis-

tics. Table 3.10 presents results of the Student’s t-test to test the null hypothesis H0:

MM/M/1 = MMarkovChain for each of the three performance measures. For all three perfor-

mance measures, Student’s t-test with α = 0.05 was non-significant, indicating that there

were no significant differences between the mean performance measures calculated

from the Markov Chain and those calculated from the M/M/1 model.

Table 3.10. Student’s t-test results for comparing mean performance measures obtained from
M/M/1 model and Markov Chain for 100 repetitions and 50,000 state-trace length

 M/M/1 model Markov Chain

 M SE M SE ΔM t(df), p

Server utilization

Average waiting time

Average queue length

0.88

43.64

4.37

0.00

0.30

0.03

 0.88

43.25

4.33

0.00

0.17

0.02

0.00

0.39

0.04

1.27(198), p = .207

1.14(155.32), p = .256

1.13(163.22), p = .261

158962 Tekinay BNW.indd 106158962 Tekinay BNW.indd 106 09-05-2022 15:4509-05-2022 15:45

95

To further validate our Markov Chain output, we compare the distributions of perfor-

mance measure scores obtained from the Markov Chain and the M/M/1 validation set.

Figure 3.6 shows the box and whisker charts for each KPI. We see that for the chosen

number of repetitions (100) and state-trace length (50,000) and for each of the three

KPIs, the box plots of the M/M/1 and Markov Chain overlap, indicating high similarity

between the two distributions of scores. Likewise, both median lines lie within the over-

lap of the two boxes. It’s noteworthy that the whiskers and boxes of the Markov Chain

are consistently shorter than those of the M/M/1 validation set. This indicates that the

data from the Markov Chain is less scattered and more consistently hovers around the

median.

Figure 3.6. Box and whisker plots for 100 repetitions with the state-trace length of 50,000
state-trace records per repetition

Another test that we can perform to validate our Markov Chain results is the chi-square

test to compare the frequency distributions of the state transitions obtained from the

M/M/1 model and the Markov Chain. To do so, we use state-trace data containing the

variables shown in Table 3.5 in Case Study Application §3.2.1.5. The histogram in Figure

3.7 shows the frequencies of state-transitions side-by-side for the M/M/1 model and the

Markov Chain.

3

158962 Tekinay BNW.indd 107158962 Tekinay BNW.indd 107 09-05-2022 15:4509-05-2022 15:45

96 – Chapter 3

Figure 3.7. The frequency distributions of the state transitions of M/M/1 model and
Markov Chain for 100 repetitions with 50,000 state-trace length

As can be seen from this histogram that the distribution has a very long right tail with

low frequencies due to low probabilities of transitions happening for the higher queue

lengths. In fact, the probability that the M/M/1 system has 21 entities or less (i.e., there

are 20 or less entities in the queue and 1 entity is in the server) is

(1 - PN) = (1 - aN) / (1 - aN+1) where a = λ/μ

(1 - PN) = (1 - 0.8521) / (1 - 0.8522) = 0.9671 / 0.97120 = 0.99492.

The probability that the M/M/1 system has 22 or more entities = PN = 1 - 0.99492 =

0.00508. Because their low probability (less than a percent), there is a much smaller

chance that they occur during a simulation run. This could result in those rare state-

transitions occurring in the Markov Chain-generated state-trace data (because of their

presence in the training data), but not in the validation set (or the other way around).

The consequence of this situation is that there may be a lot of cell frequencies in the

two-way cross-tab that are small (or zero) relative to the expected counts in the chi-

square test, which will inflate the chi-square value. We limit our queue length to 20 by

excluding transitions beyond 230230 to overcome this shortcoming. The histogram in

Figure 3.8 shows the frequency distributions after the recoding.

158962 Tekinay BNW.indd 108158962 Tekinay BNW.indd 108 09-05-2022 15:4509-05-2022 15:45

97

Figure 3.8. The frequency distributions of the recoded state transitions of M/M/1 model
and Markov Chain for 100 repetitions with 50,000 state-trace length

Chi-square test results for the recoded dataset suggest that there is a significant differ-

ence between the two frequency distributions, 𝜒𝜒2(41, N = 9,681,935) = 375.11, p < .001

with an effect size Cramer’s V = .006. The significant test result is likely to be influenced

by the large sample size (9,681,935); however, the effect size shows that the difference

is negligible.

3.3 Conclusions

In this chapter, we presented a novel temporal data mining-based method for discrete-

event simulation model abstraction using state-trace data. We started the chapter with

the formal description of the key concepts of a state-trace and a state-trace record. We

explained the EMMA (Episode Mining using Memory Anchor) algorithm and high-

lighted the reasons why the EMMA algorithm is one of the best suited frequent episode

mining algorithms for our method. We provided a formal definition of Markov Chains

and Markov Chains related concepts, such as the transition probability matrix and the

3

158962 Tekinay BNW.indd 109158962 Tekinay BNW.indd 109 09-05-2022 15:4509-05-2022 15:45

98 – Chapter 3

initial distribution vector. We explained the Markov property and emphasized why the

memoryless property of Markov Chain states is akin to the discrete-event model states

(Seo et al., 2018; Zeigler et al., 2018) and forms the backbone of our temporal data min-

ing-based method to abstract discrete-event models.

We then presented the step-by-step approach of our temporal data mining-based

method, in which we addressed several considerations and actions for the modeler.

Within this detailed breakdown of our method, we created subcategories to further illus-

trate the factors that affect (a) the content of raw state-trace data, (b) the type of tech-

niques and algorithms to use for preprocessing raw data for the frequent episode mining

step, (c) the parameters and processes to generate and simulate the Markov Chain, and

(d) the algorithms and techniques to validate the Markov Chain generated results against

the original model generated validation set. Figure 3.9 summarizes all steps and consid-

erations of our method.

To demonstrate and validate our proposed method, we presented an M/M/1 queueing

system case study. The results of our case study, and specifically the validation process,

show that we are able to obtain Markov Chain estimations of the three performance

measures with a precision of <1% and that these estimates do not significantly differ

from the original model’s validation set. In addition, the probability distributions of the

state-transitions obtained from the Markov Chain-generated state-trace data and from

the validation set are highly similar. Although the 𝜒𝜒2-test – likely affected by the large

sample size – indicated a significant difference between the two distributions, the

Cramer’s V effect size and graphical visualizations suggested that the magnitude of this

difference is very small.

In sum, this chapter provides a first demonstration that our method can automate the

process of model abstraction of discrete event simulation models by applying frequent

episode mining techniques to state-trace data to generate a Markov Chain, and that this

Markov Chain is capable of adequately estimating the stochastic behavior of the original

model. In the next chapter, we will apply our method to a larger and more complex

DEVS model.

158962 Tekinay BNW.indd 110158962 Tekinay BNW.indd 110 09-05-2022 15:4509-05-2022 15:45

99

Fi
gu

re
 3

.9
. A

ut
om

at
ed

 D
E

V
S

m
od

el
 a

bs
tra

ct
io

n
m

et
ho

d
an

d
or

ga
ni

za
tio

n
of

 th
e

co
ns

id
er

at
io

ns
 a

nd
 a

ct
io

ns
 in

 C
ha

pt
er

 3

3

158962 Tekinay BNW.indd 111158962 Tekinay BNW.indd 111 09-05-2022 15:4509-05-2022 15:45

158962 Tekinay BNW.indd 112158962 Tekinay BNW.indd 112 09-05-2022 15:4509-05-2022 15:45

CHAPTER 4

Automated Discrete-event Model
Abstraction: Application to

Larger-Scale Models

This case study used in this chapter is largely based on:

Tekinay, C., Seck, M. D., & Verbraeck, A. (2012). Exploring multi-level model dynamics:

performance and accuracy (WIP), 2012 Symposium on Theory of Modeling and Simulation

Proceedings, Article 20, 1-6. https://dl.acm.org/doi/10.5555/2346616.2346636

158962 Tekinay BNW.indd 113158962 Tekinay BNW.indd 113 09-05-2022 15:4509-05-2022 15:45

102 – Chapter 4

4 Automated Discrete-event Model Abstraction: Application to

Larger Scale Models

In Chapter 3, we demonstrated the application of the automated model abstraction

method on an M/M/1 queueing model. This chapter aims to illustrate how to apply the

method introduced in §3.2 to a relatively larger, more complex model with different

model characteristics, and extend the method where needed.

4.1 Battlefield Case Study

Operational challenges of the U.S. Military have been one of the core case studies of

multi-resolution modeling (Davis & Bigelow, 1998; 2003; Petty et al., 2012). As Zeigler

(2019) reconfirms, some of the primary reasons for using military case studies are the

pioneering efforts of Davis and Bigelow, advocating the use of a family of models at

multiple levels of abstractions when executing Department of Defense (DoD) simulation

projects. A typical defense-related MRM scenario investigates the operational differences

between the low-level (i.e., high-resolution) military combat units such as individual tanks

and the aggregated high-level (i.e., low-resolution) combat units (e.g., battalions or tank

platoons), when conducting tactical movements in a battlefield. The battlefield case study

model, which is defined in Dynamic Structure Discrete-event System specification

(DSDEVS; Zeigler et al., 2000, p. 235), explores a similar military scenario; a tank platoon

maneuvers through a mountainous terrain to reach a tactical end station. An earlier ver-

sion of the Battlefield DEVS17 model was first introduced in (Tekinay et al., 2012). How-

ever, the model used in this dissertation contains several structural and behavioral

changes to make the model better serve the further development of the automated model

abstraction method.

In what follows, we provide the conceptual design of the battlefield model.

17 Although the Battlefield DEVS model has a cell-based implementation, it is not implemented using the Cell-
DEVS Formalism.

158962 Tekinay BNW.indd 114158962 Tekinay BNW.indd 114 09-05-2022 15:4509-05-2022 15:45

 103

4.1.1 Scenario Description

The battlefield system modeled in this case study consists of a terrain with hills and pas-

sages between hills, and a tank platoon. A tank platoon is a military unit that consists of

a team of 4 battle tanks, organized into two equal sections, A and B, with two tanks in

each (Department of the Army, 2019). One of the main ideas behind forming a tank

platoon is to eliminate, or at least reduce, the vulnerabilities of a single tank when facing

enemy forces or moving through unfavorable terrain (Department of the Army, 2019).

The scenario simulated in this case study aims to assess the mission performance metrics

of each platoon section, such as the average speed of a section or the total number of

moves per section during a night mission with limited communication and visibility. The

platoon’s mission begins at the base camp located northwest of the terrain. The mission

is completed when both sections reach an end-station in the southeast, only after suc-

cessfully passing through three intermediate checkpoints within the hilly terrain (see Fig-

ure 4.1.a and 4.1.b). The terrain has an area of 10,000,000 m2 and the lowest and the

highest elevation is 144 meters and 375 meters, respectively.

Figure 4.1.a. The hilly terrain used in the Battlefield case study

4

158962 Tekinay BNW.indd 115158962 Tekinay BNW.indd 115 09-05-2022 15:4509-05-2022 15:45

104 – Chapter 4

Figure 4.1.b. Base camp, check points and end station locations on the terrain

Both sections have equal roles and responsibilities18, but the battle tanks in Section A

and Section B have different technical specifications19. Section A consists of lighter tanks

weighing 60 tons and a higher top-speed of 13.9 m/s, whereas the heavy armored Section

B tanks weigh 64 tons and can get up to 11.8 m/s. The weight difference allows Section

A to have quicker acceleration and both sections can climb slopes up to a maximum of

60%. The percentage, or percent grade of a slope can negatively or positively affect a section’s

speed. The percentage grade (%) of a slope is calculated by dividing the elevation change

18 This is different from the real-life military setup (Department of the Army, 2019), where one section is the
platoon leader and bears full responsibility for the mission’s success and failure and the specifications of the
tanks might be different.

19 The specifications of the tanks are loosely based on the specifications of an M1A2 Abrams Main Battle Tank
Retrieved February 11, 2022, from https://man.fas.org/dod-101/sys/land/m1.htm.

158962 Tekinay BNW.indd 116158962 Tekinay BNW.indd 116 09-05-2022 15:4509-05-2022 15:45

 105

(i.e., rise) by the horizontal distance covered (i.e., run), and then multiplying the result by

100.

Sections are only given the coordinates of the checkpoints and the end station and there

is no terrain reconnaissance information available to them. For the safety of the platoon

and the success of the mission, sections are given a mission briefing to reach the end

station as quickly as possible. However, due to the environmental and operational limi-

tations, as well as equipment constraints, choosing the shortest route may not always be

possible. These limitations and constraints are listed below20:

(I) Formation compliance: Sections should keep a minimum of 100 meters distance to

each other to have a certain level of freedom and a maximum of 1,000 meters

distance to provide some unity to maintain security and increase firepower.

(II) Limited communication: Sections can communicate with each other using radio.

However, radio communication is limited to exchanging instant coordinate updates

and checkpoint arrival messages between sections, and transferring additional

information, such as reconnaissance data, is not permitted.

(III) Reduced visibility: While moving across the terrain, each section simultaneously

conducts a route reconnaissance, or recon, to collect information about the

surrounding landscape. This 360° reconnaissance is crucial to detect and avoid

steeper slopes, which would otherwise cause the section to slow down.

However, the reduced visibility caused by darkness, dense woods, or restricted

terrain limits sections’ capability to survey an area with a radius of more than

100 meters.

(IV) Maximum allowed altitude: Sections are not allowed to climb higher than 200

meters altitude in order to avoid detection.

(V) Checkpoints: Sections must pass through three intermediate checkpoints before

arriving at the end station. The mission, however, requires both sections to have

20 It should be noted that this is a stylized case and therefore different from a real-life military setup.

4

158962 Tekinay BNW.indd 117158962 Tekinay BNW.indd 117 09-05-2022 15:4509-05-2022 15:45

106 – Chapter 4

arrived at a checkpoint before proceeding to the next checkpoint. If a section

arrives at a checkpoint and the other has not yet arrived, the first section waits

for the other section’s arrival. Only after the second section arrives and

transmits a checkpoint arrival message over the radio will the first section

resume movement.

Every 100 meters, the section that needs to update its route for the next 100 meters

would send a coordinate request to the other section over the radio, to which it would

receive an instant response. Then, in conjunction with the reconnaissance, determines

the route for the next 100 meters that do not violate the maximum section distance

within the formation and the maximum altitude requirements mentioned above. This

way, sections can plan their routes in 100-meter increments without stopping.

In what follows, we will describe the conceptual model of this Battlefield system through

a collection of assumptions and simplifications of the stylized system’s operation.

4.1.2 Battlefield Conceptual Model

The 10 million m2 hilly terrain is modeled using a heightmap with 100x100 meter patches

or cells. A heightmap is an image where each pixel’s color intensity corresponds to a

surface elevation value. The lowest intensity pixel represents the lowest elevation, while

the highest intensity pixel represents the highest elevation. An increase or a decrease of

1 in the pixel intensity equals an increase or a decrease of 10 meters in the elevation (i.e.,

rise). Each pixel of the heightmap represents a square cell in the 100x100 grid-based ter-

rain with a surface area of 1 hectare (ha) or 10,000 m2. Because of this pixel-to-area

projection, we make the necessary assumption that the elevation value derived from a

single pixel’s intensity corresponds to the average height of the related square cell area.

Each cell on the grid is assigned a (row, column) coordinate. For instance, the top left cell

has the coordinate (1,1) and the cell on its right is has the coordinate (1,2). The coordinate

of the cell at the bottom right corner of the grid-terrain is (100,100). The distance be-

tween two cells (i.e., run) is the 𝐿𝐿1 distance, or Manhattan distance, which is the sum of

the absolute differences between the cartesian coordinates of the virtual center of each

cell.

158962 Tekinay BNW.indd 118158962 Tekinay BNW.indd 118 09-05-2022 15:4509-05-2022 15:45

 107

One of the simplifications we made when modeling the tank platoon was to represent

platoon behavior at the section level rather than the individual tank level. As a result, the

platoon is modeled as two sections, and sections are modeled as a single military unit

instead of two individual battle tanks. Furthermore, recall that the tanks in Section A and

Section B have different technical specifications. Sections in our model are designed to

have the same specifications as the individual tanks of which they are composed. Another

simplification we implemented when modeling the sections was to limit their ability to

survey and, therefore, move only to four cardinal directions: north, east, south, and west.

As a result, reconnaissance data is limited to the neighbor cells that are orthogonally adjacent

to a sections’ host cell21, and it contains the average height of the four neighbor cells and

their occupancy statuses (i.e., whether any one of the orthogonally adjacent cells is occu-

pied by the other section at the moment of the reconnaissance). The decision to model

the terrain as a square grid of 100m-by-100m cells together with the simplifications on

the tank platoon’s dynamic representation and reconnaissance behavior allows for a

number of other simplifications:

(I) Sections moves only one cell at a time.

(II) Forbidding sections from sharing the same cell would automatically prevent

them from violating the formation compliance’s minimum distance rule.

When determining their route (i.e., the next cell to occupy), sections always prioritize the

neighbor cells in the direction of the directional vector (depicted as green-gray cells in

Figure 4.2.a and 4.2.b). We will use the term preferred cells for these prioritized neighbor

cells for the remainder of this chapter.

21 For the remainder of this chapter, the term “host cell” is used to refer a cell that is being (temporarily)
occupied by a section.

4

158962 Tekinay BNW.indd 119158962 Tekinay BNW.indd 119 09-05-2022 15:4509-05-2022 15:45

108 – Chapter 4

Figure 4.2. Preferred cells based on the directional vector of the section

To determine the directional vector of a section, the coordinate of host cell is subtracted

from the target (i.e., a checkpoint or the end station). In the model, the directional vector

is expressed as a cardinal or intercardinal direction for simplicity: north, east, south, west,

north-east, south-east, north-west, and south-west. For example, the directional vector

of the section in Figure 4.2.a is set as “east” and the directional vector of the section in

Figure 4.2.b is set as “south-east”. When a section’s directional vector points intercardi-

nal directions, the section considers checking the following four constraints before

choosing one of the preferred cells to occupy (e.g., south or east cell in the case of the

section in Figure 4.2.b):

(I) A preferred cell should not be occupied by another section.

(II) The movement of the section to a preferred cell should not cause a violation

of the “formation compliance” constraint.

(III) The movement of the section to a preferred cell should not cause a violation

of the “maximum allowed altitude” constraint.

(IV) The section should be able to climb up or down the percent grade of the slope

between the host cell and the preferred cell(s).

Whether preferred or not, neighbor cells that do not comply with the four constraints

listed above are removed from the reconnaissance data. When a section's directional vec-

tor points in a cardinal direction (e.g., "east" for the section in Figure 4.2.a) and the pre-

ferred cell in that direction is removed from the reconnaissance data, the section

158962 Tekinay BNW.indd 120158962 Tekinay BNW.indd 120 09-05-2022 15:4509-05-2022 15:45

 109

prioritizes cells that are not located in the opposite direction of the directional vector. In

Figure 4.2.a, for example, the section would initially prioritize the cells in the "south" and

"north" over the cell in the west. On the other hand, when a section's directional vector

points in an intercardinal direction (e.g., "south-east" for the section in Figure 4.2.b) and

both preferred cells – in the direction of the directional vector’s component vectors –

are removed from the reconnaissance data, the remaining cells in the reconnaissance data

would have the same priority. For instance, for the section Figure 4.2.b, the cells to the

"west " and "north" will have the same priority if the preferred cells in the “east” and

“south” of the section were removed.

If none of the preferred cells are eliminated and there are two preferred cells left to

consider as shown in Figure 4.2.b, then the section should choose the cell that allows it

to travel the fastest route. The check for the quickest route is done based on the percent

grade of the slope between the host cell and each preferred cell. Sections begin their

mission idle (the speed is 0 m/s) at their corresponding base-camp coordinates [(5,5),

(5,7)]. The initial moving speed of each section is drawn from a Triangular distribution.

For Section A, the triangular distribution is defined with a lower limit a = 5 m/s, upper

limit b = 10 m/s and mode c = 7.5 m/s. For Section B, it is a = 3 m/s, b = 7 m/s and c

= 5 m/s. To this value, we add noise drawn from a continuous uniform distribution

within a range of -1 and 1. A section’s moving speed is affected by the percent grade of

the slope and each section’s quantized speed values for various percent grades (see Figure

4.3) are given as an input to the model by design. For each recalculation of the section

speed, we add Gaussian noise with a variance 𝜎𝜎z{ of 1 to these quantized section speed

values to simulate the effects of imperfections in the terrain's surface and various obsta-

cles such as trees and rocks, as well as variations caused by the human (driver) factor on

the sections' speed. Sections have different speeds during a mission (different initial mov-

ing speeds and changes in their speed based on the steepness of the terrain). They are

designed to move from one cell to the next instantaneously at the time of their previously

scheduled movement.

4

158962 Tekinay BNW.indd 121158962 Tekinay BNW.indd 121 09-05-2022 15:4509-05-2022 15:45

110 – Chapter 4

Figure 4.3. Quantized section speeds for various percentage grades

If the percentage grades of the slopes of the two preferred cells are also the same, then

the sections employ a tie-breaker mechanism. The tie-breaker mechanism aids in the selec-

tion process by generating a random number 𝓊𝓊 from a uniform distribution 𝒰𝒰[R,W]. The

section makes its final decision based on the value (i.e., 𝓊𝓊 ≤ 0.5 or 𝓊𝓊 >0.5) of this num-

ber.

This sequential rule-based approach to select the next cell may result in a deadlock situ-

ation for a section, in which the section continues to move back and forth between the

same cells. Such a deadlock could be caused by a temporarily eliminated cell as a result

of being occupied by the other section at the time of the reconnaissance, or by the for-

mation compliance constraint, that is the maximum allowed L2 distance (or Euclidean

distance) between each section. In these cases, the deadlock may be broken after the

section repeats the same moves several times. However, such a deadlock may be caused

by a permanently eliminated cell (or cells) as a result of the maximum altitude constraint

or an extreme percentage grade of the slope. As a result, the impasse is permanent.

To deal with temporary deadlocks and avoid permanent ones, each section is allowed a

user-specified maximum number of the same moves. This number may differ for each

section. For instance, because the faster section is more likely to violate formation

158962 Tekinay BNW.indd 122158962 Tekinay BNW.indd 122 09-05-2022 15:4509-05-2022 15:45

 111

compliance constraint and may have higher number of repetitive moves. If the deadlock

persists after several repetitions, the neighbor cell that is causing the deadlock situation

is removed from the reconnaissance data to temporarily eliminate the repetition. Once

the problematic neighbor cell is removed from the reconnaissance data, the section

would (as per usual) choose the next best cell from the list of available neighbor cells.

This is referred to as a forced move. In rare cases, a section may not have any available

neighbor cells to select, after temporarily removing the problematic cell from the recon-

naissance data. Only in this case is it permissible for a section to disregard the maximum

altitude constraint and move to a cell with an average height (altitude) value greater than

the maximum altitude limit. When the section moves to a cell with a height less than the

user-defined maximum altitude limit, the constraint is re-imposed on it.

4.1.3 Modeling the Battlefield case in the DEVS Formalism

The conceptual model described in §4.1.2 is implemented in accordance with the guide-

lines provided by Seck and Verbraeck (2009) for implementing hierarchical DEVS mod-

els in DSOL. The model consists of two atomic components; cell and section as shown

in Figure 4.4.a and Figure 4.4.b, and two coupled components; terrain and platoon as

shown in 4.5.a and 4.5.b respectively.

Figure 4.4. Cell and Section atomic components

4

158962 Tekinay BNW.indd 123158962 Tekinay BNW.indd 123 09-05-2022 15:4509-05-2022 15:45

112 – Chapter 4

Figure 4.5.a. Terrain coupled model

Figure 4.5.b. Platoon coupled model

158962 Tekinay BNW.indd 124158962 Tekinay BNW.indd 124 09-05-2022 15:4509-05-2022 15:45

 113

The terrain coupled model shown in Figure 4.5.a is composed of cell-based atomic model

components22. Cell-to-cell couplings are statically added at the beginning of the simula-

tion between the corresponding I/O ports (see Table 4.1) of cell components, forming

a grid-based network of connected cell atomic model components. Cell components lo-

cated at the corners of the two-dimensional terrain have only two cell-to-cell couplings

because they only have two non-diagonal neighbor cells, while the cells at the edges of

the terrain have three cell-to-cell couplings, and all the other cells in the terrain have four

cell-to-cell couplings.

Table 4.1. I/O ports of the cell atomic DEVS models in the Battlefield model

Cell atomic model input ports Cell atomic model output ports

I/CE Input/Cell East O/CE Output/Cell East

I/CW Input/Cell West O/CW Output/Cell West

I/CN Input/Cell North O/CN Output/Cell North

I/CS Input/Cell South O/CS Output/Cell South

I/S Input/Occupying Section O/S Output/Occupying Section

Similarly, the platoon coupled component shown in Figure 4.5.b is modeled by statically

adding the section-to-section couplings between the corresponding I/O ports (see Table

4.2) of the two sections.

Table 4.2. I/O ports of the section atomic DEVS model in the Battlefield model

Section atomic model input ports Section atomic model output ports

I/S Input/Section O/S Output/Section

I/HC Input/Host Cell O/HC Output/Host Cell

22 We use the term “model component” referring to the atomic and coupled model in the hierarchical DEVS
formalism (Zeigler et al., 2000).

4

158962 Tekinay BNW.indd 125158962 Tekinay BNW.indd 125 09-05-2022 15:4509-05-2022 15:45

114 – Chapter 4

Unlike the static cell-to-cell and section-to-section couplings, section-to-cell couplings

are established dynamically (see Figure 4.6) according to the Dynamic Structure DEVS

specifications (Zeigler et al., 2000). The only exception to this is the initial couplings of

the sections to their corresponding pre-determined base-station cells, which are added at

a certain instance in beginning of the simulation. After the initial coupling is established

between a section and its base-station cell, and the section is ready to move (once it

completes its preparations), the internal coupling with the host cell is removed using the

removeInternalCoupling method (lines 1155-1157 in Figure 4.7) and a new internal coupling

is added to the new (host) cell using the addInternalCoupling method (lines 1159-1161 in

Figure 4.7). This is repeated until the section reaches its destination.

Figure 4.6. Dynamic coupling of a section to a cell via its I/O ports

158962 Tekinay BNW.indd 126158962 Tekinay BNW.indd 126 09-05-2022 15:4509-05-2022 15:45

 115

Figure 4.7. Dynamic coupling between a section and old and new host cells

For each atomic component the behavior is structured into several different phases

(Honig and Seck, 2012; Zeigler, 2000, p. 214). Each phase is identified by a name that

indicates the type of the activity of the component, and a lifetime that describes the

duration the entity remains in that particular phase. It should be noted that the phase

variables are ordinary state variables S of the atomic model according to the specification

in §2.2.4.1. Below, Table 4.3 lists these atomic components, their corresponding phases,

lifetime of each phase, and a concise description of each phase, which designates the

model component's activity.

Table 4.3. Phases of the atomic components in the Battlefield DEVS model

Type Phase Lifetime Description

Cell EMPTY + ∞ The cell is not occupied by
a section

 OCCUPIED + ∞ The cell is occupied by a
section

 UPDATE 0 (zero) Updating the orthogonally
adjacent cells with the sta-
tus info

Section INITIALIZATION tinit Initialization of the sec-
tions

 OCCUPY toccupy Occupying the (chosen)
next host cell and estab-
lishing the new couplings

 START_MOVING_AGAIN toccupy Moving back after both
sections arrived at a check-
point

 INVESTIGATE_CELL_STATUS 0 (zero) Investigating the status
(e.g., occupancyInfo,
height) of orthogonally ad-
jacent cells

4

158962 Tekinay BNW.indd 127158962 Tekinay BNW.indd 127 09-05-2022 15:4509-05-2022 15:45

116 – Chapter 4

 REQUEST_SECTION_COORDINA
TES

0 (zero) Requesting the coordinates
of the other section

 SEND_FORMATION_TO_SECTIO
NS

0 (zero) Sending the requested co-
ordinates to the other sec-
tions

 WAIT_SECTION_COORDINATES + ∞ Waiting for the coordi-
nates of the other section

 SELECT_CELL_TO_OCCUPY 0 (zero) Updating the current and
the next host cells (for dy-
namic coupling)

 DESTINATION_REACHED + ∞ Arriving at the end-station

Each atomic model component (cell and section) has phases with zero lifetime, for ex-

ample, Cell.UPDATE and Section. INVESTIGATE_CELL_STATUS. These phases

are used to request information from other atomic components or to update their infor-

mation stored at other atomic components via the corresponding I/O ports. For exam-

ple, in our model, a section conducts a reconnaissance and collect information about the

neighbor cells via its host cells. To do that, the section will first transition from

START_MOVING_AGAIN to INVESTIGATE_CELL_STATUS. Because the

INVESTIGATE_CELL_STATUS has a zero life-time, a message of type <Sec-

tionToCellMessage> is sent to the host cell via the corresponding output port O/HC

(Table 4.2) of the sections, to be received by the corresponding input port I/S (Table

4.1) of its host cell.

4.2 Application of the Temporal Data Mining-based Model Abstraction

Method to the Battlefield DEVS Model

In the following subsections, we illustrate step-by-step how we apply the method intro-

duced in §3.2 to the Battlefield DEVS model in the order presented in Chapter 3 (see

Figure 3.9).

4.2.1 Generation of DEVS Model State-Traces

Recall from §3.2.1 that we divided the considerations when generating state-traces from

a simulation model into six categories: representation of time (see §3.2.1.1), the type of model

158962 Tekinay BNW.indd 128158962 Tekinay BNW.indd 128 09-05-2022 15:4509-05-2022 15:45

 117

(stochastic vs. deterministic) (see §3.2.1.2), the type of simulation (terminating vs. non-terminating)

(see §3.2.1.3), the inclusion of input variables (see §3.2.1.4), the inclusion of output variables (see

§3.3.1.5), and the complete model state-trace vs. partial model state-trace (see §3.2.1.6).

4.2.1.1 Representation of Time

When generating the state-trace data for the Battlefield case study, the DEVS simulator

logs state-trace records at each event occurrence rather than recording at fixed time in-

tervals. The “fixed-increment” time advance mechanism is not suitable for the Battlefield

case study for two reasons: (a) We would like to include state-variables for multiple model

components in the state-trace data, with the goal of capturing every state transition that

these selected model components go through. These state transitions of the model com-

ponents are triggered by the internal and external events. In the Battlefield DEVS model,

the lifetimes of states (see Table 4.3) have significant variations. (b) Sections’ movements

are not synchronized. Section types A and B have different speed characteristics as well

as different initial moving speeds, and their speed is affected by the terrain (e.g., the

steepness of slopes) and by the added noise. As a result, using fixed time-steps to generate

state-traces may result in an inaccurate representation of the model behavior. Some tran-

sient states, for example, may be underrepresented in the data due to event skipping at

larger step sizes. At smaller step sizes, however, some of the states such as formation

requests or status updates, maybe be overrepresented. Therefore, an event-based repre-

sentation of time will provide a better representation of all states and all state changes

with the correct frequencies of occurrence.

Another important consideration regarding the inclusion of time is the decision of the

format of time (see §3.2.1.1). The time recorded in the state-trace data is the elapsed time.

The main reason behind choosing elapsed time over the monotonously increasing abso-

lute simulation time is to ensure that the ability of frequent episode mining algorithms to

find recurring patterns in data is not hindered by the continuously increasing absolute

time.

4

158962 Tekinay BNW.indd 129158962 Tekinay BNW.indd 129 09-05-2022 15:4509-05-2022 15:45

118 – Chapter 4

4.2.1.2 Stochastic vs. Deterministic DEVS Models

The Battlefield DEVS model is a stochastic model with multiple random variables. These

random variables have their own probability distributions. For instance, the initial mov-

ing speed of Section A is drawn from a standard Triangular distribution, with a lower

limit a = 5 m/s, upper limit b = 10 m/s and mode c = 7.5 m/s.

To accurately estimate the stochastic behavior of the model and to collect a sufficient

amount of data, we ran the same scenario 100 times with a different RNG seed value per

run (see Table 4.4). Our aim was to equally split the data into two non-overlapping sets:

a training and a validation data set. After the split, the total number of state-trace records

in the training set is 32,610, whereas the total number of state-trace records in the vali-

dation set is 32,714.

Table 4.4. Random Number Generator seed value ranges for each dataset in the case study

Model Data set
name

of state
traces per
dataset

Seed value
range

Total state
trace records
(50 state traces)

Average
state trace
length

Battlefield
(base model)

Training 50 1-50 32,610 652.20

Validation 50 10,001-10,050 32,714 654.28

4.2.1.3 Terminating vs. Non-terminating Simulations

The Battlefield simulation is terminating. Each run terminates at a different run time (due

to the model’s stochasticity) when both sections arrive at their predefined end-station

coordinates SA(68,82), SB(68,84). Thus, the simulation runs and the state-traces generated

from these runs differ in length. In the validation stage in §4.2.4, we will investigate

whether the Markov Chains runs have sufficiently close run-lengths compared to the

base model’s using descriptive statistics.

158962 Tekinay BNW.indd 130158962 Tekinay BNW.indd 130 09-05-2022 15:4509-05-2022 15:45

 119

4.2.1.4 Inclusion of Input Data

The Battlefield DEVS model used in this case study has a single set of input data. Input

variables of the case study model and their values are given in Table 4.5 below:

Table 4.5. Some of the Input variables of the Battlefield model and their values

Input variable Value

Total number of sections 2

100x100 heightmap of the terrain Figure 4.1.a; 4.1.b

Section A – Initial coordinate (5,5)

Section B – Initial coordinate (5,7)

Section A – End-station coordinate (68,82)

Section B – End-station coordinate (68,84)

Total number of checkpoints 3

Section A - Checkpoint 1 coordinate (26,13)

Section B – Checkpoint 1 coordinate (26,15)

Section A – Checkpoint 2 coordinate (52,39)

Section B – Checkpoint 2 coordinate (52,41)

Section A – Checkpoint 3 coordinate (30,70)

Section B – Checkpoint 3 coordinate (30,72)

Elevation change per 1-pixel intensity 10 m

Section A & B – Discrete speed profiles Figure 4.3

Mersenne Twister seed range (for training data) 1 - 50

Mersenne Twister seed range (for validation data) 10,001 – 10,050

Total number of cells in a terrain 10,000

Single cell area 100 m2

Total terrain area 10,000 m2

The model has a single (fixed) set of input values and there is no external input. There-

fore, the inclusion of input variable values in the state-trace data (as columns) does not

affect the variability of the episodes discovered by the episode mining algorithm because

they remain constant. Therefore, the input data is excluded from the state-trace data.

4

158962 Tekinay BNW.indd 131158962 Tekinay BNW.indd 131 09-05-2022 15:4509-05-2022 15:45

120 – Chapter 4

4.2.1.5 Inclusion of Output Data

Based on the input values presented in the previous section, the theoretical calculations

of several performance indicators of the Battlefield model are given below in Table 4.6:

Table 4.6. Performance indicators of the battlefield model

Performance Indicator Description Example Values

Active mission time

Section A

Total time it takes for Section A to reach its pre-

determined end-station coordinate from the base

station. The duration of the mission calculation

excludes the waiting times at checkpoints

1,814.76 s

Active mission time

Section B

Total time it takes for Section B to reach its pre-

determined end-station coordinate from the base

station. The duration of the mission calculation

excludes the waiting times at checkpoints.

2,270.72 s

Total elevation

climbed Section A

The sum of the positive elevation values that a

section climbs during a mission.

626 m

Total elevation

climbed Section B

The sum of the positive elevation values that a

section climbs during a mission.

252 m

To estimate the performance indicators listed in above Table 4.6 using our method, the

state and contextual variables to be included in the state-trace data are given in Table 4.7.

Elapsed time is also part of the state-trace data used in the experiments (see §4.2.1.6 for

more details on the experiments). The active mission time of a section is the sum of all

elapsed times in the state-trace data, belonging to the movement of that particular sec-

tion. However, the elapsed times recorded in the state-trace are the elapsed times for all

events, that is moving and non-moving events (e.g., formation check and reconnais-

sance). As a result, we need contextual variables which would allow us to distinguish

between Section A and B’s moving and non-moving events. To solve that, the “move-

ment indicator” contextual variable is captured in the data to flag events that are related

to the sections’ movements (e.g., “1” = moving). When a section is idle at the time of an

event arrival, then the movement indicator variable value in the state trace-record is re-

ported as “0”; i.e., a non-moving event. Therefore, to calculate the active mission time

158962 Tekinay BNW.indd 132158962 Tekinay BNW.indd 132 09-05-2022 15:4509-05-2022 15:45

 121

of a section from the state-trace data, we sum elapse times of the “moving events” of

the particular section.

Table 4.7. The state and contextual variables included in the state-trace

VariableName_SectionId Description Example

Values

speed_A

elevation_A

speed_B

elevation_B

movementIndicator_A

movementIndicator_B

distanceToCheckPoints_A

distanceToCheckPoints_B

checkpointID_A

checkpointID_B

Speed of section A in m/s

Elevation of the host cells of Section A in m

Speed of section B in m/s

Elevation of the host cells of Section B in m

A contextual variable for Section A and B to identify

the moving events (1 = moving event, 0 = non-

moving event)

Euclidean distance to the next checkpoint (includ-

ing the end-station) in m.

Sequence ID of a check point starting from the

value 0 (e.g., 0, 1, 2). Check point ID > 2 indicates

that the next station is the end-station.

8.27

172

7.13

168

1

0

1,581

1,708

0

0

Similarly, to calculate the total elevation climbed of a section from the state-trace data, we

sum all positive differences between the two subsequent elevation values (i.e., En+1 – En,

where n is the sequence - or row - number) in the trace data.

4.2.1.6 Complete vs. Partial Model State-Trace Data

The battlefield simulation generates partial model state-trace data. A complete set of trace

data, which contains the state variables for all model components and possible additional

contextual variables would be impractical for the mining task due to its dimensions. For

instance, the terrain consists of a total of 10,000 cell atomic components. Reporting every

state variable for all 10,000 cells in the state-trace data at every event occurrence will have

a negative impact on the resulting data size, which is the cartesian product of the number

of cells and the number of state variables such as the occupancy statuses, elevations per

cell component. Instead, a more reasonable way to report the model’s state without

4

158962 Tekinay BNW.indd 133158962 Tekinay BNW.indd 133 09-05-2022 15:4509-05-2022 15:45

122 – Chapter 4

compromising the validity of the abstract model would be the partial reporting of the

variables that are essential to capture the dynamic behavior of the model. Recall from

§4.1.3 that only the host cells are part of the dynamic coupling and the host cells central-

ize the communication between the neighbor cells during the movement of sections.

Furthermore, for the calculation of the performance indicator total elevation climbed (for each

section) chosen for this case study, only the elevation data for host cells is essential to be

reported as a part of the state-trace data.

Although a partial model state-trace containing a subset of the variables listed in Table

4.7 may suffice to generate a Markov Chain model with a sufficiently accurate estimation

of base model’s KPIs, we cannot be certain about it without testing this assumption.

Therefore, we designed four experiments to assess the effects of (1) different number of

variables included in the state-trace data (experiments 1 and 2), and (2) different levels

of quantization of these fixed variables (experiments 3 and 4). For the first and second

experiments, we created two datasets, each containing the same amount of state-traces

(100) with an equal split of training (50) and validation (50) data (see Table 4.4). The

difference between the two datasets is the content of the state-traces in terms of the

variables included. In the first data set, we included speed, elevation and movement in-

dicator variables for each section along with the elapsed time (used for MC1, see Table

4.8). The second dataset (for MC2) includes all the aforementioned variables and addi-

tionally the variable types “distance to check points” and “check point id” for each sec-

tion (i.e., an additional 4 new columns). Although the inclusion of additional variables in

the state-trace data may result in an increase in the number of unique episodes identified

by the EMMA algorithm, a more precise account of the context provided by the addi-

tional variables for the state changes may improve the accuracy of Markov Chain. Be-

cause the battlefield is a terminating simulation, we hypothesize that the inclusion of

variable types “distance to check points” and “check point id” may be necessary for the

Markov Chain to accurately identify this terminating behavior. To observe the effects of

different level of quantization of a fixed set of variables in experiments 3 and 4, we cre-

ated two subsets of the MC2 data set with a lower and a higher level of binning. We

hypothesize that the increased level of quantization may be necessary to further improve

the accuracy of the MC2.

158962 Tekinay BNW.indd 134158962 Tekinay BNW.indd 134 09-05-2022 15:4509-05-2022 15:45

 123

4.2.2 Application of the Temporal Data Mining Tasks to the State-Trace Data

Below, we discuss the battlefield case-study specific data challenges and our decisions

regarding the selection and the application of the preprocessing methods.

4.2.2.1 Preprocessing of the State-Trace Data

After the completion of all runs, the next step in our method is the preparation of the

data for the episode mining algorithm. Figure 4.8 shows the frequency distributions of

the speed, elevation and distance to check point data for the training (Figure 4.8.a for

speed, Figure 4.8.c for elevation, and Figure 4.8.e for distance to check point) and the

validation sets (Figure 4.8.b for speed, Figure 4.8.d for elevation, and Figure 4.8.f for

distance to check point).

As previously mentioned in §4.2.1.6, for experiments 3 and 4, we created two subsets of

the MC2 data set with a lower and a higher level of binning. Among the variables in these

subsets, elapsed time, speed and distance to check point are continuous variables as they

take values from the set of non-negative real numbers ℝÇR = {𝓍𝓍 ∈ ℝ	|	𝓍𝓍 ≥ 0	}. Mean-

while, the elevation data of the host cells is defined as a discrete variable in the model

and it takes values from the set of non-negative natural numbers	ℕÇR = {𝓍𝓍 ∈ ℕ	|	𝓍𝓍 ≥

0	}. All four variables types are quantized using an equal-width binning based method.

For the lower resolution model, we chose bin widths 2, 20, 5, and 5 for the speed, eleva-

tion, elapsed time, and distance to check point variable types, respectively. Furthermore,

for the speed and distance to check point variables, behaviorally significant values of

waiting speed at checkpoints/end-stations (𝒱𝒱z	= 0 m/s) and distances to check-

points/end-stations (dS = 0 m) are captured as separate bins. For the higher resolution

model, we halved the bin width sizes. The values of the movement indicators and the

check point ids are represented in the data without being pre-processed. The movement

indicator variable takes value 0 or 1 to indicate the absence or presence of a movement

for a section. The check point indicator takes values from the range [0-2] and therefore

do not need to be quantized.

4

158962 Tekinay BNW.indd 135158962 Tekinay BNW.indd 135 09-05-2022 15:4509-05-2022 15:45

124 – Chapter 4

Figure 4.8. Frequency distributions of the speed, elevation and distance to check point varia-
bles for both the training and the validation sets

158962 Tekinay BNW.indd 136158962 Tekinay BNW.indd 136 09-05-2022 15:4509-05-2022 15:45

 125

The final step of the data preprocessing for this case study is to encode the rows of the

state-trace data. A single row of the tabular state-trace data corresponds to a state-trace

record, which is a combination of variable values from multiple atomic models; where

each variable is represented in a fixed column. Although the particular implementation

of the EMMA algorithm used for this case study can process multiple positive integer

values in a single row (each value separated by a single space), it assumes that these mul-

tiple values are sorted according to a total ordering (e.g., ascending) and with no repeti-

tion of the same value in the same row. This is because the SPMF implementation (Four-

nier-Viger et al., 2014; 2016) is intended to find frequent items (events) from a given

itemset (event set). However, these assumptions are not valid for the state-trace records.

A simple solution for this is to create a hash table that associates every unique state-trace

record (multi-dimensional value) to an incrementing positive integer (key). This process

generates two types of output: (a) State-traces that are compatible with the EMMA algo-

rithm input format, and (b) a hash table which will later be used to decode the values in

the Markov Chain generated state-traces back to the original (i.e., multi-value) format.

As a result, we will compare the four Markov Chains (MC1 – low resolution binning;

MC1 – high resolution binning; MC2 – low resolution binning; MC2 – high resolution

binning) based on the precision and the accuracy of their estimates for the base model’s

KPIs.

4.2.2.2 Application of the Frequent Episode Mining Algorithm to

Preprocessed State-Trace Data

Following the preprocessing of variables in the training and validation data sets (for all 4

experiments), the next step in our method is the application of the EMMA algorithm to

each experiment’s training data set. The maxwin parameter of the EMMA algorithm is set

to “2” so that the algorithm will identify (a) episodes with both window size “1”, which

corresponds to all unique states, or state-trace records, and (b) episodes with window

size “2”, which are the state-transitions, or two consecutive state-trace records. As ex-

plained earlier in §3.1.2, a higher maxwin value is not needed as the next state in DEVS

Formalism is only dependent on the current state, the external inputs via the Ports (in

this particular model), and nothing else. Furthermore, the minsup parameter is set to “1”

4

158962 Tekinay BNW.indd 137158962 Tekinay BNW.indd 137 09-05-2022 15:4509-05-2022 15:45

126 – Chapter 4

to include all frequencies of each unique state and state-transition across all 50 traces in

the all four training sets. Using the obtained frequencies, the transitioning probabilities

between all states are calculated and represented in the transition probability matrix that

will generate the Markov Chain. It is important to mention that the inclusion of states

with a frequency of 1 (minsup = 1) ensures the inclusion of essential but infrequent be-

havioral states (e.g., reaching the end station or the check point) in the Markov Chain’s

state set.

After the application of the EMMA algorithm to the training set from dataset 1 and 2,

the number of unique states identified for four Markov Chains are: 915 states for MC1

– low resolution binning; 1,590 states for MC – low resolution binning; 1,708 states for

MC1 – high resolution binning; 3151 states for MC2 – high resolution binning. Recall

from Table 4.4 that the total number of state-trace records across all state-traces (50) in

both dataset’s training sets is 32,610.

4.2.3 Simulation of the Discrete-time Markov Chain

After the calculation of the state-transition probabilities and the generation of the tran-

sition probability matrices for all four Markov Chains, the next step of our method is to

perform 50 runs with each Markov Chain and generate state-trace data from all four

chains for the validation process. Unlike the M/M/1 case study in Chapter 3, the battle-

field is a terminating simulation. To stop the generation of the state-trace data from the

Markov Chain when it reaches the final state, we implemented a mechanism to terminate

the simulation immediately after the arrival to the final state.

After all four Markov Chains completed their runs, we decoded the state-traces obtained

from the simulation of each model. For the decoding, we used the hash table generated

from the preprocessing of the data sets before the application of the EMMA algorithm.

We then dequantized the values of the four variable types (i.e., speed, elevation, distance

to checkpoints, and elapsed time) before the validation process by assigning the center

values of their corresponding quantization bins.

158962 Tekinay BNW.indd 138158962 Tekinay BNW.indd 138 09-05-2022 15:4509-05-2022 15:45

 127

4.2.4 Validation of the Markov Chain Results

Before comparing mean performance indicators obtained from the Markov Chain with

those from the battlefield base model, we must first determine which of the four Markov

Chains performs best in terms of precision. This can be assessed by calculating the mar-

gin of error of the estimates for each Markov Chain.

Table 4.8 presents the means M and the margin of error MOE generated from 50 runs

of the base model and the Markov Chain models MC1 and MC2 obtained with low- and

high-resolution binning. These data show that the margin of error for all KPIs is consid-

erably lower in the MC2 models with the additional checkpoint indicators as compared

to the MC1 models or the lower binning resolution. Specifically, in the lower resolution

model, the margin of error reduces with 26 to 31 percentage points to 2.45%-5.04%

across KPIs when the Markov Chain is trained with the additional checkpoint indicators.

In the higher resolution model, the margin of error is even further reduced to 1.46%-

4.59% across KPIs.

Table 4.8. Descriptive statistics for the performance indicators obtained from the Markov
Chains for the four experiments

 Active mission time Total elevation climbed

 Section 1 Section 2 Section 1 Section 2

 M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%)

Original quantization levels (low resolution binning)

Base
model

1,060.30
(3.34)

6.55
(0.62)

952.70
(3.40)

6.66
(0.70)

417.20
(7.38)

14.47
(3.47)

368.00
(9.27)

18.16
(4.94)

MC1 1,052.70
(154.60)

303.02
(28.79)

925.60
(135.90)

266.35
(28.78)

428.00
(77.34)

151.59
(35.42)

385.20
(70.88)

138.92
(36.06)

MC2 1,064.85
(14.57)

28.56
(2.68)

964.55
(12.07)

23.66
(2.45)

421.60
(8.55)

16.76
(3.97)

369.60
(9.50)

18.62
(5.04)

High resolution binning

Base
model

1,054.35
(3.13)

6.13
(0.58)

906.65
(3.89)

7.62
(0.84)

406.40
(8.01)

15.71
(3.87)

383.80
(10.31)

20.21
(5.26)

MC1 1,056.50
(189.21)

370.86
(35.10)

918.38
(162.93)

319.33
(34.77)

422.00
(84.61)

165.83
(39.30)

392.20
(79.74)

156.30
(39.85)

MC2 1060.30
(8.39)

16.45
(1.55)

912.98
(6.78)

13.29
(1.46)

402.40
(8.10)

15.87
(3.94)

397.20
(9.31)

18.24
(4.59)

Note. MC1 = Markov Chain with duration, speed, elevation, movement indicator; MC2 = Markov Chain with
duration, speed, elevation, movement indicator, checkpoint indicators; M(SE) = Mean (Standard Error); MOE
= Margin of Error.

4

158962 Tekinay BNW.indd 139158962 Tekinay BNW.indd 139 09-05-2022 15:4509-05-2022 15:45

128 – Chapter 4

These findings suggest that higher precision can be achieved by adding more infor-

mation, i.e., state or contextual variables, to the state-trace or by increasing the model’s

resolution, i.e., an increased level of binning for the quantization. It should be noted,

however, that increasing the model’s resolution alone may not always improve the accu-

racy of the base model’s representation if essential information is missing in the model.

This is illustrated in Table 4.9, which compares the number of state-trace records ob-

tained from the four different Markov Chain models. As can be seen from the spread

measures, the inclusion of the additional check point indicators (MC2) reduces the dis-

persion of the run lengths of the Markov Chain in both the low and the high-resolution

models. However, the higher resolution binning only improves the results of MC2, but

does not result in a better estimation of the run length of MC1.

The battlefield model is a terminating simulation and the calculation of the selected per-

formance indicators requires the accumulation of the corresponding variable values over

time. Given that the accumulation of these values is sensitive to the terminating condi-

tion, the accurate estimation of the performance indicators by the Markov Chains are

highly dependent on identifying sufficiently close run-lengths as compared to the base

model. In the absence of the representation of time progression in the state-trace data, it

is not possible to reliably and accurately represent the base model’s behavior even if the

model resolution is increased. In fact, findings in Table 4.9 suggest that the additional

checkpoint indicators in MC2 are crucial for representing the base model’s terminating

behavior. Therefore, we will continue the validation with the higher resolution MC2.

Table 4.9. Number of state trace records generated in N=50 runs from different simulation
experiments

 Low resolution binning High resolution binning
 M SD Range M SD Range
Base model a, b 655.28 75.76 526-758 655.28 75.76 526-758

MC1 with elapsed time, speed,
elevation, movement indicator

640.02 659.40 7-2883 631.16 878.09 8-5305

MC2 with elapsed time, speed,
elevation, movement indicator,
checkpoint indicators

641.76 127.07 406-1103 656.64 93.55 458-905

Note. a Low and high resolution indicate the level of quantization used for the Markov Chains and therefore
do not apply to the base model. b Spread measures given for the base model belong to the validation set.

158962 Tekinay BNW.indd 140158962 Tekinay BNW.indd 140 09-05-2022 15:4509-05-2022 15:45

 129

Table 4.10 presents results of the Student’s t-test to test the null hypothesis H0: MBattlefield

= MMC2 for each of the four performance indicators obtained from model MC2 with

higher resolution binning. The findings indicate that there were no significant differences

between the mean performance measures calculated from the Battlefield base model and

the MC2 Markov Chain.

Table 4.10. Student’s t-test results for comparing mean performance measures obtained from
the Battlefield base model and MC2 with higher resolution binning (HR) for 50 repetitions

 Base model
(HR)

MC2
(HR)

 M SE M SE |D| t(df), p

Active mission time section 1

Active mission time section 2

Total elevation climbed section 1

Total elevation climbed section 2

1054.35

906.65

406.40

383.80

3.13

3.89

8.01

10.31

1060.30

912.98

402.40

397.20

8,39

6.78

8.10

9.31

5.95

6.33

4.00

13.40

-0.66(62.37), p = .509

-0.81(79.04), p = .421

-0.35(98), p = .726

-0.97(98), p = .337

Another test that we can conduct to validate our Markov Chain results is the two- sample

Kolmogorov-Smirnov test. Different from the Student’s t-test which we used to deter-

mine if the difference in means of the performance measures is statistically significant,

the two-sample Kolmogorov-Smirnov test evaluates the null hypothesis H0: the values

of a particular KPI obtained from the base model and the higher resolution MC2 come

from a population with the same distribution. The findings presented in Table 4.11 indi-

cate that for each four performance measures, we cannot reject the hypothesis that the

values for all four KPIs from the higher resolution MC2 and the base model come from

the different distributions.

Table 4.11. Two-sample Kolmogorov-Smirnov test results for comparing the distributions ob-
tained from the battlefield model and MC2 with high-resolution binning for 50 repetitions

 |D| df Kolmogorov-
Smirnov Z

p-value

Active mission time section 1

Active mission time section 2

Total elevation climbed section 1

Total elevation climbed section 1

0.24

0.24

0.14

0.18

50

50

50

50

1.20

1.20

0.70

0.90

.112

.112

.711

.393

4

158962 Tekinay BNW.indd 141158962 Tekinay BNW.indd 141 09-05-2022 15:4509-05-2022 15:45

130 – Chapter 4

4.3 Conclusions

In this chapter, we studied a battlefield model case to demonstrate the application of our

proposed method on a larger, more complex model than the M/M/1 case study model

in Chapter 3. The battlefield model is defined using the Dynamic Structure Discrete-

event Systems specification (DSDEVS). We provided the details on the implementation

of the dynamic coupling between two sections and between the host cells and the sec-

tions, and the messaging dynamics between the model components.

Our results show that for this more complex model, our method is able to obtain Markov

Chain models that provide estimates of performance indicators with an acceptable level

of precision that do not significantly deviate from and follow a similar distribution as the

original model’s performance measures, as indicated by the Student’s t-test and the two-

sample Kolmogorov-Smirnov test.

In sum, this chapter demonstrated that our method can generate valid abstractions of

relatively larger and more complex DEVS models and is capable of adequately estimating

their stochastic behavior. We also demonstrated that a higher precision can be achieved

by adding more information to the state-trace (e.g., state or contextual variables) or by

increasing the model’s resolution (e.g., level of binning for the quantization).

However, our result also suggested that increasing the model’s resolution alone will not

improve the accuracy of the base model’s representation when essential information is

missing in the model. Therefore, the modelers must identify and include those variables

that are essential for generating valid behavior of the Markov Chain that results in correct

estimates of the performance indicators. Examples are progress information over time

when elapsed time is used in the state trace records, and information about termination

conditions.

In the next chapter, we will apply our method to a microscopic traffic simulation model,

which has a relatively larger number of model components and a larger state space than

the Battlefield DEVS model.

158962 Tekinay BNW.indd 142158962 Tekinay BNW.indd 142 09-05-2022 15:4509-05-2022 15:45

		
CHAPTER 5

Automated Discrete-event Model
Abstraction: Application to

Large-Scale Models

158962 Tekinay BNW.indd 143158962 Tekinay BNW.indd 143 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 132

5 Automated Discrete-event Model Abstraction: Application to

Large-Scale Models

In the previous chapter, we demonstrated that our method can adequately estimate the

stochastic behavior of the Battlefield DEVS model. Although the Battlefield model is

larger and more complex than the M/M/1 model in Chapter 3, the number of model

components (i.e., tank platoon sections) contributing to the dynamic model behavior of

the Battlefield system was constant and only two, and the number of state-variables

needed to adequately estimate the performance indicators of interest was low. This chap-

ter will demonstrate the step-by-step application of our proposed method to a micro-

scopic traffic simulation model of a road network consisting of a two-lane highway with

an on-ramp. Different from the Battlefield case study in Chapter 4, the “short-merge”

case study model has a varying number of model components, where vehicles enter and

leave the model. The goal of this chapter is twofold: First, test whether our method can

be applied to simulation models with relatively larger number of model components and

a larger state space. Second, investigate the applicability of the method on a simulation

model with a varying number of model components.

5.1 Short-merge Case Study

The short-merge demo model was built as a part of the OpenTrafficSim23 project (Tam-

minga, 2019; van Lint et al., 2018; van Lint et al., 2016). The model is a microscopic

traffic simulation model designed to estimate traffic for a segment of a road network that

includes a two-lane highway with an on-ramp (see Figure 5.1). The model investigates

the individual vehicle interactions on the highway ramp using the LMRS (Lane change

Model with Relaxation and Synchronization) integrated lane change model (Schakel et

al., 2012; Schakel, 2015). Similar to the M/M/1 model discussed earlier in §3.2, the short-

23 OpenTrafficSim, developed at Delft University of Technology, is an open source (micro, macro, meta) traffic
simulation framework combining all traffic modes (e.g., cars, buses, pedestrians, airlines) in a single simulator.
More information can be found at https://www.opentrafficsim.org/.

158962 Tekinay BNW.indd 144158962 Tekinay BNW.indd 144 09-05-2022 15:4509-05-2022 15:45

133

merge simulation model describes an open system, with a total number of around 2,500

vehicles, also referred to as generalized traffic units or GTUs, generated at random in-

stances24 of the one-hour simulation run, flowing in and out of the simulated system

boundaries. The scenario used in this case study simulates vehicle traffic that only con-

sists of cars and trucks, depicted as blue and red rectangles respectively in the animation

(see Figure 5.1).

Figure 5.1. The road network and the vehicle traffic as shown in the short-merge animation

Road networks modeled using OpenTrafficSim models are implemented as directed

graphs, using nodes and links (Tamminga, 2019; van Lint et al., 2018; van Lint et al.,

2016). For example, the nodes of the short-merge model are A, B, C, D, E, F, and F2

(see Figure 5.2), whereas the links are AB, BC, CD, DE, FF2, and F2B (see italic green

texts in Figure 5.2).

24 Using a stream of pseudo random numbers generated using the Mersenne Twister PRNG with unique in-
crementing seed values for each simulation run.

5

158962 Tekinay BNW.indd 145158962 Tekinay BNW.indd 145 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 134

Figure 5.2. Short-merge model components

In the model, the origin/destination split in the network is defined as two routes: Route

A (nodes A, B, C, D and E) and Route F (nodes F, F2, B, C, D and E). Routes consists

of a list of Nodes. The road network of the short-merge model consists of a two-lane

highway (links AB, BC, CD, and DE) and the on-ramp (links FF2 and F2B). Finally, links

in the network can be further divided laterally to form lanes. This allows modeler to define

network demand and traffic flows at the lane level (e.g., link BC is divided into lanes

BC.FORWARD1, BC.FORWARD2 and BC.FORWARD3). The number of vehicles to

be randomly generated in the short-merge model is set for each lane of the highway (i.e.,

1,000 vehicles per lane per hour) and for the on-ramp (i.e., 500 vehicles per hour), sepa-

rately. The distribution of trucks and cars for a given network demand is also defined per

lane per route. This percentage is same for each lane and it is 30% trucks and 70% cars

of the total network demand per lane.

Except for the vehicle lengths l, accelerations 𝑎𝑎, and desired speed, most model param-

eters are the same between the passenger cars and trucks. In the model, car length lcar is

defined as 4 m and the truck length ltruck is set to 15m. The desired acceleration of the

cars 𝑎𝑎ÖEÜ is 1.25m/s2 and for the trucks 𝑎𝑎iÜáÖa is set to 0.8 m/s2. The desired speed

calculations for both cars and trucks are taken from work by Schakel et al. (2012): the

desired speed of a car is calculated based on the driver preference 𝛿𝛿ÖEÜ = 𝑁𝑁(𝑣𝑣"tz,ÖEÜ,

𝜎𝜎ÖEÜ)/𝑣𝑣ä1ã where 𝑁𝑁(𝑣𝑣"tz,ÖEÜ, 𝜎𝜎ÖEÜ) is Gaussian distribution with mean 𝑣𝑣"tz,ÖEÜ	= 123.7

158962 Tekinay BNW.indd 146158962 Tekinay BNW.indd 146 09-05-2022 15:4509-05-2022 15:45

135

km/h, and the standard deviation 𝜎𝜎ÖEÜ = 12.0 km/h. The speed limit for cars on route

A (i.e., two-lane highway) is 120 km/h and for trucks it is 90 km/h. The speed limit at

the entrance of the route F until the F2 node is 20 km/h for both cars and trucks. Once

the vehicles reached the node F2 (see Figure 5.2), then the speed limit for cars becomes

120 km/h and for trucks 90 km/h.

For trucks, the calculation of the desired speed is based on the driver preference for the

maximum vehicle speed, which is 𝑣𝑣ãE%,iÜáÖa = 	𝑁𝑁(𝑣𝑣"tz,iÜáÖa, 𝜎𝜎iÜáÖa) where

𝑁𝑁(𝑣𝑣"tz,iÜáÖa , 𝜎𝜎iÜáÖa) is Gaussian distribution with mean 𝑣𝑣"tz,ÖEÜ	= 85.0 km/h and the

standard deviation 𝜎𝜎iÜáÖa = 2.5 km/h. Other parameters of the models are maximum

deceleration is 𝑏𝑏 = 2.09 m/s2, stopping distance 𝑠𝑠R = 3m, maximum headway	𝑇𝑇ãE% =

1.2s, and minimum headway 	𝑇𝑇ã1U = 0.56s (see Schakel, 2015 for the complete list of

LMRS parameters).

It is important to note that the short-merge model implementation includes several ad-

ditional behavioral aspects such as observing traffic, lookahead and lookback for lane

determination, relaxation, and synchronization, which makes the behavior of each car

and truck, and the interactions between vehicles more complete. These additional behav-

ioral aspects, however, increase model complexity and causes model to run slow. This

makes the short-merge model a suitable candidate for our method.

5.2 Application of the Temporal Data Mining-based Model Abstraction

Method to the Short-Merge Model

In the following subsections, we will illustrate how we applied the method step-by-step

to the short-merge model in the same order as presented in Chapter 3.

5.2.1 Generation of Discrete-event Model State-Trace Data

Remember from §3.2.1 that there are six major factors to consider when generating state-

traces from a simulation model. Below, we will discuss the decisions for each short-merge

model consideration.

5

158962 Tekinay BNW.indd 147158962 Tekinay BNW.indd 147 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 136

5.2.1.1 Representation of Time

The model uses an event scheduling simulator implementation, which updates the states

of some of the model components at every event occurrence, for instance, the generation

of cars and recalculation of the vehicles’ states at a fixed interval τ of 0.5 seconds. In this

case study, we are interested in estimating the driving behavior of vehicles in the base

model and the effects of the merge to the state variables such as the vehicle speed, vehicle

acceleration, and traffic intensity over time. Therefore, it is essential for us to accurately

capture the order of changes in the vehicles’ states and exact times of these changes

throughout a run. Consequently, we choose an interval of 0.5 seconds (i.e., the fixed

interval that the simulator recalculates each vehicle’s state, where the vehicles do not

recalculate their new state at the same time) for the state-trace reporter to log new state-

trace records containing time, system states and several additional parameters (e.g., in-

put/output parameters and contextual variables) for each run. A smaller interval would

result in the repetition of the same vehicle states and a larger state-trace data set. Mean-

while, a larger interval may not contain essential updates in the vehicle states, the gener-

ation of new vehicles at Nodes A and F, the deletion of vehicles at Node E, and the

changes in the traffic intensity, which may affect the accuracy of the Markov Chain esti-

mates.

To report the state of the system that contains the simulation time information at a fixed

time-step of 0.5 seconds, we schedule (and reschedule) an event (i.e., a call of the "re-

portState" method) with a relative duration of 0.5 seconds in simulator’s event queue

until the total simulation duration. This way, the method call is executed by the simulator

at every (simulator time + relative duration). This is with the exception of the reporting of

the initial state of the system with the simulation time and other additional parameters,

which is reported at time 0. The reporting of the final state of the system with the simu-

lation time and other additional parameters is done at time 3,599.5s.

However, because the step-size is constant at 0.5 seconds, the inclusion of the fixed time

step size in the state-trace data as a separate column will not affect the variability of the

episodes discovered by the episode mining algorithm. Therefore, we excluded the simu-

lation time from the state-trace data. When calculating the mean performance indicators

158962 Tekinay BNW.indd 148158962 Tekinay BNW.indd 148 09-05-2022 15:4509-05-2022 15:45

137

from the Markov Chain generated state-trace data, we will assume that each row in the

data corresponds to a time progression of 0.5 seconds.

5.2.1.2 Stochastic vs. Deterministic Discrete-event Models

The short-merge model is stochastic. The model uses several random variables with their

own distributions; for example, to generate vehicles and for the lane changing behavior

(Schakel et al., 2012). The vehicles flow in to the road network with a randomly generated

initial speed at a rate defined by the network demand per lane per vehicle type. This is

implemented by creating a stream of generation times for vehicles using a pseudo-RNG.

The seed management for the RNG ensures that each run has a unique traffic pattern

while being fully reproducible. For the state-trace data generation, 100 runs were used

with each run having a different single incrementing seed value (e.g., [seed = 1, run = 1],

[seed = 2, run = 2], …, [seed = 100, run = 100]). This data is split into two equal-sized

non-overlapping training and validation sets. The training data will be used for the epi-

sode mining and the validation data will be used for the model validation stage (see Table

5.1).

Table 5.1. Seed value ranges of the RNG for each dataset in the case study

Model Data set # of state traces per dataset Seed value range

Short-merge
(base model)

Training 50 1-50

Validation 50 51-100

5.2.1.3 Terminating vs. Non-terminating Simulations

The short-merge simulation is non-terminating. The simulation has no external event

that determines the end of a run and it would run continuously in the absence of an

internal event scheduled at a predetermined absolute time to terminate the run. There-

fore, we scheduled a method call to be executed just before the simulation clock reaches

to the predetermined end time of the simulation (i.e., 3,600 seconds) to close the stream

and release the system resources associated with it.

5

158962 Tekinay BNW.indd 149158962 Tekinay BNW.indd 149 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 138

There is no warm-up period before starting the state-trace data collection25. Each simu-

lation run starts with the same initial condition of no-vehicle traffic on the network. Cars

and trucks are only generated at the start of route A and F, and a vehicle cannot have a

starting location other than these locations in the network.

Each state-trace record generated from the runs has the same number of state-trace rec-

ords, i.e., 7,200. Given that the simulation starts with the same initial condition, termi-

nates after the same predetermined run-length, and the reporting of each state-trace rec-

ord is done after every 0.5 seconds passed, each state-trace record generated from each

run contains the same number of 7,200 state-trace records, including the reporting of the

initial condition and other parameters at t = 0 and the reporting of the final state at t =

3,599.5.

It is important to note that, although the simulation is non-terminating, each vehicle

atomic model component is designed to exhibit a terminating behavior. That is, a vehicle

enters the system after being generated by the generator and leaves the system once it is

removed at the departure Node E. Therefore, the actual states belong to a vehicle are

reported only during the time they are active in the model. When the vehicles are inactive

either due to not being generated yet or already removed from the system, all state vari-

ables (with the exception of the state-variable active) are represented as “NA” in the data.

This ensures that all records have the same number of columns, consistent with the data

sets of chapters 3 and 4.

5.2.1.4 Inclusion of Input Data

The short-merge case study investigates a single scenario with a single (fixed) set of input

parameters and no external input. Some of these input parameters are related to the un-

derlying lane-change (LMRS) model and an overview of these input parameters can be

25 Although the inclusion of the warm-up period in the experiment should not change the application of the
proposed method, further research is needed to explore the accuracy of the method and the resulting Markov
Chain in terms of capturing the transient behavior – in this case, it is the build-up of the traffic – of the non-
terminating base model.

158962 Tekinay BNW.indd 150158962 Tekinay BNW.indd 150 09-05-2022 15:4509-05-2022 15:45

139

found in (Schakel et al., 2012). Other input parameters such as the lane demands, fraction

of passenger cars and trucks, and the length of a run and their values used in our exper-

iments are given in below Table 5.2.

Table 5.2. Input parameters of the short-merge model

Input parameter Value

Passenger car Fraction 70%

Truck Fraction 30%

Main road demand 2,000 per hour

On-ramp demand 500 per hour

Simulation duration 3,600 seconds

Given that the input parameters are fixed across all runs and the values remain constant

due to the lack of external inputs, the inclusion of input parameters in the state-trace data

will not affect the variability of the episodes discovered by the episode mining algorithm.

Therefore, the input parameters of the model are excluded from the state-trace data.

5.2.1.5 Inclusion of Output Data

The short-merge model estimates the key performance indicators (KPIs) shown in Table

5.3.

To estimate these performance indicators using the state-trace data, we include the key

variables (6) listed in Table 5.4 for each vehicle (2,500) as individual columns in the state-

trace data:

5

158962 Tekinay BNW.indd 151158962 Tekinay BNW.indd 151 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 140

Table 5.3. Key performance indicators of the short-merge model

Mean performance
indicator26

Description Example
Value27

avgSpeedACar_Mean The average speed of the cars that left the model
and started at the left side of the road network
(Route A)

24.53 km/h

avgSpeedFCar_Mean The average speed of the cars that left the model
and started at the bottom side of the road net-
work (Route F)

19.53 km/h

avgSpeedATruck_Mean The average speed of the trucks that left the
model and started at the left side of the road net-
work (Route A)

18.52 km/h

avgSpeedFTruck_Mean The average speed of the trucks that left the
model and started at the bottom side of the road
network (Route F)

17.04 km/h

modelTimeACar_Mean Average time in the system for cars that left the
model and started at the left side of the road net-
work (Route A)

133.65 s

modelTimeFCar_Mean Average time in the system for cars that left the
model and started at the bottom side of the road
network (Route F)

87.75 s

modelTimeATruck_Mean Average time in the system for trucks that left
the model and started at the left side of the road
network (Route A)

173.75 s

modelTimeFTruck_Mean Average time in the system for trucks that left
the model and started at the bottom side of the
road network (Route F)

99.47 s

26 The names of the mean performance indicators given in Table 5.3 are the names of the run statistics variables
used in the model.

27 The example values shown in Table 5.3 are from the state-trace data generated from simulation run #1.

158962 Tekinay BNW.indd 152158962 Tekinay BNW.indd 152 09-05-2022 15:4509-05-2022 15:45

141

Table 5.4. The subset of short-merge state variables included in the state-trace data, with an
example value for vehicle number 1

VariableName_VehicleId Description Example Value

active_1

carTruck_1

laneId_1

speed_1

acceleration_1

distanceHalfSec_1

0 = inactive, 1 = active

car or truck; car = 0; truck = 1

lane of the vehicle

speed in km/h

acceleration in m/s2

driven distance in current half second

1

1

AB.FORWARD2

64.00

0.14

12.52 m

Note that the performance indicators of the short-merge model are calculated per route

per vehicle type. Therefore, to estimate these indicators from the state-trace data, we

should first identify all vehicles with the same vehicle type and the same starting side of

the network using the carTruck and laneId variables, respectively. Additionally, the run

statistics are calculated only for vehicles that have exited the system. Therefore, to deter-

mine if a vehicle left the model before the end of a simulation, we use the vehicles’ active

variables. When a vehicle is generated, the variable is updated from 0 to 1, and it is reset

to 0 when it is removed at Node E. As a result, any vehicle that has an active variable

transition from 1 to 0 is assumed to have exited the boundaries of the modeled system,

and only those vehicles will be included in the statistics calculation. The initial laneId of a

vehicle is later retrieved from the state-trace data by looking at the first row where active

is 1.

The subsequent sub-sections will explain how we will estimate of the base model’s per-

formance indicators shown in Table 5.3 using the variables included in the state-trace

data generated by the Markov Chain. It should be noted that the same calculation meth-

ods could also be used on the initial state trace data set from the base model.

5

158962 Tekinay BNW.indd 153158962 Tekinay BNW.indd 153 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 142

5.2.1.5.1 Calculation of Average Time-in-system Using State-Trace Data

To calculate the average time-in-system from the state-trace data:

(I) For the passenger cars that have left the model and started at the left side of

the road network (Route A), store the sum of the time-in-system for all vehicles

with carTruck equals to 0 and laneId equals to AB.FORWARD1 or

AB.FORWARD2 that left the system boundaries (i.e., the active variable value

transitions from 1 to 0). Time-in-system for a single vehicle is calculated by

multiplying the number of rows where the active variable is 1 with the time

interval τ = 0.5s.

(II) To calculate the average time-in-system for all passanger cars generated at the

left side of the road network and left the system, we first sum their time-in-

system values. Then, we divide this sum by the count of Route A passenger

cars that have left the model.

(III) To calculate the average time-in-system for trucks, or for vehicles started at the

bottom of the road network that left the system, we adjust the conditions for

the carTruck and laneId values accordingly.

5.2.1.5.2 Calculation of Average Speed Using State-Trace Data

To calculate the average speed from the state-trace data:

(I) For the trucks that have left the model and started at the bottom side of the

road network (route F), the average speed of an individual truck is the sum of

its non-N/A distanceHalfSec (i.e., total distance traveled) values divided by the

time-in-system of that specific truck. In §5.2.1.6, we will elaborate on the

distinction between mining state-trace data at the atomic model (vehicle) level

and mining state-trace data at the system level.

(II) To calculate the average speed for all trucks that left the model and started at

the bottom side of the road network (route F), we first sum their individually

calculated average speed values. Then, we divide the sum by the count of Route

F trucks that left the model.

158962 Tekinay BNW.indd 154158962 Tekinay BNW.indd 154 09-05-2022 15:4509-05-2022 15:45

143

(III) To calculate the average speed for cars or for vehicles that started at the left

side of the road network that left the system, we adjust the conditions for the

carTruck and laneId values accordingly.

5.2.1.6 Complete vs. Partial Model State-Trace Data

For this case study, we use partial state-trace data containing a subset of the state varia-

bles available from the vehicle atomic model (see Appendix C for the complete list of

the variables, example values, and their descriptions). Our goal is to estimate the perfor-

mance indicators of interest given in Table 5.3 from the Markov Chain, which is gener-

ated by applying our method to the base model’s state-trace data resulting in an abstrac-

tion of the original short-merge model. We hypothesize that we may achieve a sufficiently

enough estimation of these mean performance indicators using the partial model state-

trace containing the variables listed in Table 5.4.

Recall from Chapter 3 and 4 that for M/M/1 and Battlefield case studies, we applied the

frequent episode mining algorithm to the state-trace data, where each state-trace record

is reported as a new row at each event occurrence or at fixed time intervals, and it repre-

sents the total state of the system at the reported instance. Therefore, we encoded each

unique row containing all the desired variables to a single positive integer value (see Fig-

ure 5.3.a). A particular advantage of the encoding of all data in a row is that the infor-

mation regarding the states of individual model components relative to the others in the

system is preserved. The number of atomic model components (i.e., 2,500 vehicles) in

the short-merge model, on the other hand, is significantly greater than in the M/M/1

and battlefield models, and a single row, having more than 17,000 columns, can take one

of 45 million unique values. Because of the large number of possible unique states, the

frequent episode mining algorithm with the input parameters of maxwin of 2 and a support

of 1 may generate a very large n for a n×n transition probability matrix, and thus a huge

Markov Chain.

5

158962 Tekinay BNW.indd 155158962 Tekinay BNW.indd 155 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 144

Figure 5.3. System state and model component state level episode mining

Instead of encoding state-trace records in each row to a single value representing the

system state, a state-trace record can be deconstructed into multiple state traces where

each trace represents the state-progression of individual (atomic or coupled) model com-

ponents (as shown in Figure 5.3.b). Then, the frequent episode mining algorithms can

be applied to these component-based traces to generate component-based Markov

Chains. However, mining at component level, or individual vehicle level, may omit con-

textual insight into how components interact with and affect each other, i.e., the behavior

of the system as a whole. We will elaborate more on this assumption in the §5.2.1.6.1.

To test our assumptions, we designed two experiments to assess the effects of (1) system

level abstraction using partial state using partial model state-trace without contextual var-

iables (ME1), and (2) component-level abstraction with the additional contextual varia-

bles included in the state-trace data (ME2). For both experiments, we created two da-

tasets, each containing the same amount of state-traces (100) with an equal split of train-

ing (50) and validation (50) data. For the first experiment (ME1), we used the partial

model state-trace containing the variables listed in Table 5.4. For the second experiment

(ME2), we introduced a set of contextual variables (as shown in Table 5.6), indicating the

number of vehicles per link and lane at every fixed time interval of 0.5 seconds.

158962 Tekinay BNW.indd 156158962 Tekinay BNW.indd 156 09-05-2022 15:4509-05-2022 15:45

145

5.2.1.6.1 Inclusion of the Traffic Intensity Contextual Variables for Experi-

ment ME2

In the short-merge model, the speed and acceleration of each vehicle is affected by the

behavior of other vehicles around them. Without the inclusion of the traffic information

in the component-level Markov Chains, a valid representation of the driving behavior of

vehicles, and thus, accurate estimation of the base model’s performance indicators from

the simulation of individual vehicle-based Markov Chains may not be possible. There-

fore, the traffic intensity contextual variables in Table 5.4 are included in the component-

level Markov Chain state-traces to re-capture the missing information of vehicle traffic

on each link and lane.

We hypothesize, based on the fact that there is a well-known correlation between the

overall intensity of the traffic on a stretch of road and the average speed of vehicles

(Wong et al., 2021), that the combination of these variables and the aforementioned state-

variables used in ME1 for each individual vehicle atomic component would suffice to

the relationship between (average) vehicle speed and traffic intensity and estimate the

mean performance indicators of the system.

Table 5.6. Contextual variable set for Experiment ME2- Number of vehicles per link per lane
at a certain time instance

Variable-
Name_laneId

Description Example
 Value

Value
range

nrVehiclesAB_d1

nrVehiclesAB_d2

nrVehiclesBC_d1

nrVehiclesBC_d2

nrVehiclesBC_d3

nrVehiclesCD_d1

nrVehiclesCD_d2

nrVehiclesDE_d1

nrVehiclesDE_d2

nrVehiclesF2B_d1

These contextual variables indicate the

number of cars on each link at that partic-

ular instance of time. For example, the first

variable nrVehicleAB_d1 indicates that the

number of vehicles on the first lane of the

link AB at that particular instance was 30.

Similarly, the second variable nrVehi-

clesAB_d2 indicates that the number of ve-

hicles on the second lane of the link AB at

a particular instance was 67.

30

67

1

3

0

1

0

21

27

1

[0-80]

[0-132]

[0-6]

[0-8]

[0-6]

[0-1]

[0-2]

[0-33]

[0-41]

[0-20]

5

158962 Tekinay BNW.indd 157158962 Tekinay BNW.indd 157 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 146

5.2.2 Application of the Temporal Data Mining Tasks to the State-Trace Data

In this section, we will examine the specific challenges for the short-merge state-traces

and our choices for the preprocessing of the state variables. Then, we will illustrate how

the frequent episode mining algorithm is used to calculate the transition probabilities

from the state-traces and build the Markov Chain's transition probability matrix.

5.2.2.1 Preprocessing of the State-Trace Data

Following the completion of state-trace generations, the next step in our method is the

preparation of the data for the episode mining algorithm. Among the variables listed in

Figure 5.4, the continuous variables speed, acceleration and distanceHalfSec are quantized us-

ing an equal-width binning based method. We chose the bin widths 10, 5, and 5 for the

speed, acceleration and distanceHalfSec variables, respectively. These bin-widths are

chosen based on the value ranges of the variables with the goal of reducing the effect of

over-population of candidate episodes with low frequency values.

The categorical variables active, carTruck and laneId are not quantized. The variables active

and carTruck have a limited number of possible states, that is, both variables are coded

with binary values 0 and 1, and the carTruck variable is additionally represented as NA

during to the inactive period of vehicles. The laneId categorical variable can takes twelve

different values (including the value “NA”). These values include the

“AB.FORWARD1”, “AB.FORWARD2”, “FF2.FORWARD1” values, which are previ-

ously mentioned in §5.2.1.5.1 and §5.1.2.5.2 and important to identify the generation

locations for the vehicles and accurately calculate the performance indicators in Table

5.3. Although the removal of lane information from the state-trace data would result in

losing the information on the lane changes, overtaking, and the relation between fast

driving and the "left lane", the KPI calculations can still be done.

For the ME2 experiment, we quantized the discrete traffic intensity contextual variables

as their value range could lead to a large number of unique episodes with low frequencies.

For the quantization of the traffic intensity contextual variables, we used equal-width

binning strategy based on the ranges obtained across all 50 runs (see Table 5.6 for the

range values). Given that each deconstructed component-level trace has the full set (10)

of traffic intensity contextual variables in addition to the state variables, we wanted to

158962 Tekinay BNW.indd 158158962 Tekinay BNW.indd 158 09-05-2022 15:4509-05-2022 15:45

147

limit the number of bins to less than ten (and adjusted the numbers according to each

variable’s value range) to limit the generation of candidate episodes with low frequencies.

As the final step of the preprocessing step for this short-merge case study, we encode

state-trace records containing the preprocessed variables for the frequent episode mining

algorithm. The training set generated for ME1 contains 50 state traces, each with 7,200

rows and 15,000 columns (i.e., 2,500 vehicles with 6 state variables, listed in Table 5.4).

Because we intend to perform system-state level episode mining on the ME1 training

set, the data is encoded horizontally at the state-trace record level. However, the encod-

ing process for the ME1 training set revealed already from the first eight state trace files

that 64,512 of 64,000 (i.e., 99.56%) state-trace records had a frequency of 1. Unfortu-

nately, a data set with such a low level of repetition (note that the data was already quan-

tized) would not be suitable for the frequent episode mining task since there are no fre-

quent episodes. The Markov Chain model would therefore, in essence, just replay one of

the 50 runs of the base model. As a result, we decided to exclude ME1 from further

analysis. An important lesson is that the more variables are included in the state trace

data set, the lower the chance to find frequent episodes. Case ME1 with 15,000 state

variables was a relatively extreme example, but it clearly illustrates this problem.

5.2.2.1.1 Subdividing the State-Trace for Experiment ME2

One more adjustment we make for Experiment ME2 before the application of the fre-

quent episode mining algorithm is subdividing the tabular state-trace data per vehicle as

shown in Figure 5.3.b. The data generated by the trace-reporter method in the short-

merge model contains the states of all vehicles in the same row (i.e., a system-level state-

trace record), horizontally sorted by the vehicle id. Because the strategy to test in Exper-

iment ME2 is to construct component-based, or vehicle-based, Markov Chains for each

individual vehicle in the system, the data must be represented in a format for the EMMA

algorithm containing only the states belonging to the same vehicle as an input for the

calculation of the transition probabilities, and eventually, to generate the transition prob-

ability matrices per vehicle.

Although the EMMA algorithm can process multiple positive integer values presented

in a single row, where each value is separated by a single space, it requires these multiple

5

158962 Tekinay BNW.indd 159158962 Tekinay BNW.indd 159 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 148

values to be sorted according to a total ordering (e.g., ascending) and with no repetition

of the same value in the same row (Huang & Chang, 2008). Therefore, we subdivided

each row in the state-trace data for each of the 2,500 vehicles, ordered sequentially based

on their gtuIds28. Based on section 5.2.1.6.1, we added the contextual variables for the

traffic intensity per link (Experiment ME2) to each of the 2,500 subdivided state trace

data sets, so each row contains the combined information of the state of a particular

vehicle and the values of the link-based or lane-based traffic intensity variables, encoded

as a single positive integer value. The final version of a fully-subdivided state-trace data

set contains 18 million rows per run (2,500 vehicles with 7,200 rows per vehicle). This

data is either stored in a single file with 18 million records, where each 2,500th record

contains data about the same vehicle, or in 2,500 separate vehicle files.

5.2.2.2 Application of the Frequent Episode Mining Algorithm to

Preprocessed State-Trace Data

Following the preprocessing of variables in the data set, the EMMA algorithm is applied

to the training data. The two input parameters of the algorithm minsup = 1 and maxwin =

2 are the same as the values used in Chapter 3 and 4.

For Experiment ME2, however, we introduced a “skip factor” variable with a value of

2,500 for the algorithm to process the data based on the changes explained in the previ-

ous section when all 18 million records are stored in a single file. Based on the combina-

tion of values of the new and the standard input parameters, the algorithm discovers

frequent episodes with the minimum support of 1 with window length 1 (i.e., vehicle

states + link-based or lane-based traffic intensity values) and window length 2 (i.e., two

consecutive rows of the same vehicle 0.5 seconds apart + link or lane traffic intensity

values 0.5 seconds apart), and outputs the transition probability matrices for each of the

2,500 vehicles.

28 In OpenTrafficSim, the term GTU stands for “generic traffic unit” and represents a person or a vehicle
identified with a unique “gtuId” number. In short-merge model, all vehicles are assigned an incremental gtuId
number from 1 to 2,500.

158962 Tekinay BNW.indd 160158962 Tekinay BNW.indd 160 09-05-2022 15:4509-05-2022 15:45

149

5.2.3 Simulation of the Discrete-time Markov Chains

For Experiment ME2, the frequent episode mining algorithm was applied to the training

set to discover frequent states, frequent state-transitions, and state-transition probabili-

ties for each of the 2,500 vehicles. After this, the next step in our method is to perform

random walks for 2,500 individual vehicle-based Markov Chains according to their tran-

sition probability matrices. To obtain state-trace data for the validation study, we per-

formed an experiment with 50 repetitions, where each repetition simulates all 2,500 ve-

hicle-based Markov Chains with the same pseudo-RNG seed value for each run and a

different seed for each repetition. The experiment generated a total of 125,000 state-trace

data sets (i.e., 50 runs × 2,500 state-traces). In the validation stage of our method, we

will calculate the aggregated mean performance measures using the results obtained from

all vehicle-based Markov Chains and compare the estimates of these performance

measures with the base model’s performance measures.

5.2.4 Validation of the Markov Chain Results

5.2.4.1 Validation of the results from experiments ME2

To validate the results of the Markov Chain (ME2), which is t models subdivided per

vehicle, we compare the performance of the base model and the Markov Chain on three

different measures: (a) the number and distribution of vehicles generated per route; (b)

average speed per route per vehicle type (KPI); and c) average time in the system per

route per vehicle type (KPI). Table 5.7 presents the descriptive statistics of these

measures for the base model and the Markov Chain over 50 runs. As this table shows,

the average numbers of vehicles contributing to the KPI calculation in the Markov Chain

(ME2) are lower than numbers of vehicles in the base model. This may be explained by

the difference between the arrival processes of the base model and the Markov Chain

(ME2). Given a sequence of 𝑛𝑛 interarrivals times 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛 for the arrival epochs S1,

S2, …, Sn, the arrival time of the nth epoch Sn for a given Xn is calculated by the joint

distribution of 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛 for all n>1, and specified as

 𝑆𝑆U = ∑ 𝑋𝑋1U
1bW (5.1)

5

158962 Tekinay BNW.indd 161158962 Tekinay BNW.indd 161 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 150

As indicated by the Central Limit Theorem, these sum of 𝑋𝑋1+𝑋𝑋2 + ⋯ + 𝑋𝑋𝑛𝑛 for a large n,

where the 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛	are drawn from any distribution with mean µ and standard

deviation σ, converges to a Normal distribution with mean nµ and standard deviation

𝜎𝜎√𝑛𝑛. The distribution, therefore, narrows when n gets larger as the mean µ scales by n

and the standard deviation scales by √𝑛𝑛. In the case where the average interarrival time

β, the arrival time of the given Xn (i.e., nth vehicle) is the sum of n independent drawings

from the Exponential distribution, with average interarrival time β is an Erlang distribu-

tion (Li & Li, 2019):

if	𝑋𝑋1	~	Exponential(𝛽𝛽), then	c 𝑋𝑋1	~	Erlang(𝑛𝑛, 𝛽𝛽)	
U
1bW 	 (5.2)

which has a mean of nβ and a standard deviation of β√𝑛𝑛, consistent with the Central

Limit Theorem. When the generators in the short-merge model generate a new vehicle

at every 2 seconds, the 1,000th vehicle is generated on average at time t = 2*1,000 = 2,000

seconds. The standard deviation is, therefore, 2√1000 = 63. This generates a small sigma

value: 95% of the arrival times will be between µ +/- 2.5 𝜎𝜎 = time interval [1,842-2,158].

In the Markov Chain, the interarrival times follows a memoryless geometrical distribu-

tion, where 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛 are iid Bernoulli variables. The geometric distribution repre-

sents the probability of getting the first occurrence of Xn after n consecutive independent

trials:

P (X = n) = (1 – p) n-1p n = 1,2,3 … (5.3)

where p is the success probability of each trial and the expected value of the distribution

is

E (X)= W
û
 (5.4)

For the generation of a vehicle at time t seconds, the Markov Chain requires 2t draws

(0.5 seconds sample rate x 2,000 state-trace records). Meaning that for a vehicle that is

expected be generated around 2,000 seconds, the geometric distribution should be cal-

culated for p = 1/4,000. The mean of the geometric distribution is 1/p, indicating that,

on average, the vehicle is generated at state transition 4,000, corresponding to t = 2,000.

158962 Tekinay BNW.indd 162158962 Tekinay BNW.indd 162 09-05-2022 15:4509-05-2022 15:45

151

The standard deviation of the Geometric distribution is üWXFF† , which is 3,999.5 for p =

1/4,000. This is a huge sigma value: based on the Exponential (continuous) analogue of

the geometric distribution, 95% of the arrival times would be between [0-6,000], which

is much higher than the base model’s [1,842-2,158] confidence interval. Using the Expo-

nential approximation of the Geometric distribution, we can calculate that there is a 16%

chance that a vehicle that should be generated at t = 2,000 will not be generated in the

runtime of the Markov Chain experiments. Especially for the vehicles with higher gtuIds

in Markov Chain (ME2), the spread of the geometric distribution will get significantly

larger than the Erlang distribution, with a long right tail (i.e., right-skewed) and the Mar-

kov Chain (ME2) will not generate vehicles where the calculated value is higher than

3,600 seconds (or 7,200 state transitions), since the run ends at t = 3,600 seconds. Despite

the lower absolute numbers of vehicles in the Markov Chain (ME2), the Route A to

Route F ratio of vehicles (in bold) is nearly identical between both models. Moreover,

within each route, the cars to trucks ratio – which was an input parameter of the base

model – was accurately reconstructed by the Markov Chain (ME2).

Table 5.7. Descriptive statistics for measures obtained from the short merge base model and
the Markov Chain for Experiment ME2
 Base model Markov Chain (ME2)
 M (SD) % or Range M (SD) % or Range

Number of generated vehicles used for KPI calculation per route per vehicle type

Route A Total
Route A Cars
Route A Trucks

1,908.76 (51.17)
1,621.44 (47.51)
287.32 (18.32)

79.80
84.95
15.05

1,201.06 (28.59)
1,025.54 (24.21)
175.52 (15.07)

79.93
85.39
14.61

Route F Total
Route A Cars
Route A Trucks

483.02 (22.15)
335.78 (18.67)
147.24 (12.23)

20.20
69.52
30.48

301.60 (16.36)
210.92 (14.04)
90.68 (10.73)

20.07
69.93
30.07

Average speed per route per vehicle type
Route A Cars
Route A Trucks

22.82 (2.69)
17.85 (2.39)

15.07-26.89
11.98-21.94

23.28 (0.24)
18.49 (0.40)

22.81-23.68
17.53-19.24

Route F Cars
Route F Trucks

19.18 (0.54)
17.72 (0.37)

18.15-20.35
16.71-18.44

18.14 (0.30)
16.75 (0.36)

17.36-18.79
16.01-17.63

Average time-in-system per route per vehicle type
Route A Cars
Route A Trucks

151.79 (30.13)
203.38 (44.05)

116.12-264.88
148.24-349.40

145.95 (3.56)
192.10 (10.32)

139.15-157.07
167.03-210.72

Route F Cars
Route F Trucks

91.88 (3.11)
101.54 (2.86)

86.02-99.21
97.02-110.64

91.59 (3.58)
100.57 (4.28)

85.80-99.48
92.98-110.79

5

158962 Tekinay BNW.indd 163158962 Tekinay BNW.indd 163 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 152

Table 5.8 presents results of the Student’s t-test to test the null hypothesis H0:

MShort_merge= MMC_ME2 for each of the eight performance measures obtained from the

ME2 runs. For the average speed KPI, the findings indicate that there were no significant

differences between both Route A mean speed measures calculated from the short merge

base model and the Markov Chain (ME2). However, for Route F, the car and truck mean

speeds generated from the Markov Chain (ME2) differed significantly from the mean

speeds obtained from the base model. This may be explained by the fact that route F

contains fewer vehicles, and therefore, less data to train the Markov Chain (ME2). Even

though the means are significantly different from each other, the magnitude of the dif-

ference is small, around 1 m/s.

For the average time-in-system KPI, all t-test were non-significant, indicating that the

mean times that vehicles travelled within the boundaries of the system did not differ

significantly between the base model and the Markov Chain (ME2).

Table 5.8. Student’s t-test results for comparing mean performance measures obtained from the
short merge model and the Markov Chain for 50 repetitions for Experiment ME2

 Base model Markov Chain (ME2)

 M SE M SE |D| t(df), p
Average speed per route per vehicle type

Route A Cars
Route A Trucks

22.82
17.85

0.38
0.34

23.28
18.49

0.03
0.06

0.46
0.63

-1.21(49.78), p = .232
-1.85(51.76), p = .070

Route F Cars
Route F Trucks

19.18
17.72

0.08
0.05

18.14
16.75

0.04
0.05

1.04
0.97

11.91(76.73), p <.001
13.37(98), p <.001

Average time-in-system per route per vehicle type
Route A Cars
Route A Trucks

151.79
203.38

4.26
6.23

145.95
192.10

0.50
1.46

5.84
11.28

1.36(50.37), p = .180
1.76(54.37), p = .083

Route F Cars
Route F Trucks

91.88
101.54

0.44
0.40

91.59
100.57

0.51
0.60

0.28
0.98

0.42(98), p = .675
1.34(85.47), p = .183

Using the two-sample Kolmogorov-Smirnov test, we also evaluated the null hypothesis

H0: the values of a particular KPI obtained from the base model and the Markov Chain

(ME2) come from a population with the same distribution. The findings presented in

Table 5.9 show that most of the Kolmogorov-Smirnov tests indicated significant

158962 Tekinay BNW.indd 164158962 Tekinay BNW.indd 164 09-05-2022 15:4509-05-2022 15:45

153

differences between the distributions of the base model and those of the Markov Chain

(ME2). Only for Route F cars’ average time in system, results suggest that the values

obtained from the base model and the Markov Chain (ME2) come from a population

with the same distribution. The finding that the distributions of the base model and Mar-

kov Chain (ME2) key performance measures differed can be explained by observing the

descriptive statistics presented in Table 5.7. For the Route A vehicles, the spread (as

indicated by the standard deviation and the range) of the Markov Chain (ME2) average

speed estimates appears consistently narrower compared to the spread of the base model

estimates. Given that Route A has fewer congestions in general than Route F, it is pos-

sible that the relatively rare samples of congested traffic were underrepresented in the

Markov Chain (ME2). This would result in a distribution more centered around the

mean. For Route F, descriptive statistics in Table 5.7 show that the base model and the

Markov Chain (ME2) estimates have a similar spread. The significant K-S test result for

speed could be driven by the small but statistically significant mean difference identified

in the t-test.

Table 5.9. Two-sample Kolmogorov-Smirnov test results for comparing distributions obtained
from the short merge base model and the Markov Chain for 50 repetitions for Experiment ME2

 |D| df Kolmogorov-Smirnov Z p-value
Average speed per route per vehicle type

Route A Cars
Route A Trucks

.44

.44
50
50

2.20
2.20

<.001
<.001

Route F Cars
Route F Trucks

.80

.84
50
50

4.00
4.20

<.001
<.001

Average time-in-system per route per vehicle type
Route A Cars
Route A Trucks

.44

.38
50
50

2.20
1.90

<.001
.002

Route F Cars
Route F Trucks

.16

.28
50
50

0.80
1.40

.544

.040

5.2.4.2 Tackling the issue of low vehicle numbers in Markov Chain (ME2)

To address the issue of the low number of vehicles in the Markov Chain (ME2), we

carried out an experiment ME3, where we adjusted the Markov Chain (ME2) by

5

158962 Tekinay BNW.indd 165158962 Tekinay BNW.indd 165 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 154

introducing a progressIndicator variable in the state-trace data, which operates as a mecha-

nism to link vehicles’ driving behaviour and network link capacities to the time progres-

sion of the simulation. We hypothesize that the inclusion of a progressIndicator variable

may be necessary to correctly distinguish between the active and inactive times of vehi-

cles over the course of a run. The continuous progressIndicator variable takes reel values

between 0 meter and 1,500 meters, and therefore, has a large value range. We used equal-

width binning strategy for the quantization of the values and chose bin-width size 10 to

try to limit the low frequency candidate episodes. We then repeated the experiment and

the validation steps with the adjusted Markov Chain (ME3) to test whether a better rep-

resentation of the number of vehicles resulted in improved the KPI estimates. Table 5.10

presents the descriptive statistics for the base model and the adjusted Markov Chain

(ME3) over 50 runs. As this table shows, compared to Markov Chain (ME2), the number

of vehicles in the adjusted Markov Chain (ME3) increased and became more similar to

the number of vehicles in the base model.

Table 5.10. Descriptive statistics for measures obtained from the short merge base model and
the adjusted Markov Chain with time progression variable for Experiment ME3
 Base Model Adjusted Markov Chain (ME3)

 M (SD) % or Range M (SD) % or Range

Number of generated vehicles used for KPI calculation per route per vehicle type

Route A Total
Route A Cars

Route A Trucks

1908.76 (51.17)
1621.44 (47.51)

287.32 (18.32)

79.80
84.95

15.05

1379.48 (178.79)
1177.00 (154.97)

202.48 (33.62)

79.76
85.32

14.68

Route F Total
Route F Cars

Route F Trucks

483.02 (22.15)
335.78 (18.67)

147.24 (12.23)

20.20
69.52

30.48

359.20 (48.16)
241.16 (27.53)

109.00 (17.51)

20.24
68.87

31.13

Average speed per route per vehicle type

Route A Cars

Route A Trucks
22.82 (2.69)

17.85 (2.39)

15.07-26.89

11.98-21.94

22.98 (1.09)

18.12 (0.81)

19.99-24.80

16.29-20.03

Route F Cars

Route F Trucks

19.18 (0.54)

17.72 (0.37)

18.15-20.35

16.71-18.44

18.48 (0.31)

16.95 (0.37)

17.75-19.31

16.23-17.88

Average time-in-system per route per vehicle type

Route A Cars

Route A Trucks
151.79 (30.13)

203.38 (44.05)

116.12-264.88

148.24-349.40

149.52 (13.02)

196.70 (17.94)

131.00-187.91

166.42-260.90

Route F Cars

Route F Trucks
91.88 (3.11)

101.54 (2.86)

86.02-99.21

97.02-110.64

94.21 (3.56)

104.57 (4.28)

86.49-107.48

95.87-114.30

158962 Tekinay BNW.indd 166158962 Tekinay BNW.indd 166 09-05-2022 15:4509-05-2022 15:45

155

Table 5.11 presents results of the Student’s t-test to test the null hypothesis H0:

MShort_merge= MMC_adjusted_ME3 for each of the eight performance measures obtained from

the Adjusted Markov Chain (ME3). For the average speed KPIs, the absolute mean dif-

ferences decreased compared to Markov Chain (ME2), although, the t-test for the Route

F estimates still appeared significant.

For the average time-in-system KPI, the absolute differences for Route A decreased, but

increased for Route F. This may be explained by the fact that the adjusted Markov Chain

(ME3) has more vehicles generated for Route F than the second Markov Chain (ME2).

Later vehicles in the Markov Chain (ME2) with smaller interarrival times (because of the

geometric distribution) are more likely to contribute to the mean calculation (as the ones

with larger interarrival values may not be generated due to the interarrival times larger

than 7,200 seconds). The increased number of later vehicles in the adjusted Markov

Chain (ME3) may also cause the introduction of higher time-in-system values for Route

F, resulting in 2.33 seconds and 3.03 seconds increase in the average time-in-system for

cars and trucks, respectively. However, it should be noted that the magnitude of these

differences in average times are relatively small, only 3%.

Table 5.11. Student’s t-test results for comparing mean performance measures obtained from
the short merge model and the adjusted Markov Chain with time progression variable for 50
repetitions for Experiment ME3

 Short merge base
model

Adjusted Markov
Chain (ME3)

 M SE M SE |D| t(df), p
Average speed per route per vehicle type

Route A Cars
Route A Trucks

22.82
17.85

0.38
0.34

22.98
18.12

0.15
0.11

0.16
0.27

-0.39(64.62), p = .695
-0.74(60.17), p = .459

Route F Cars
Route F Trucks

19.18
17.72

0.08
0.05

18.48
16.95

0.04
0.05

0.70
0.77

7.92(77.78), p <.001
10.42(98), p <.001

Average time-in-system per route per vehicle type

Route A Cars
Route A Trucks

151.79
203.38

4.26
6.23

149.52
196.70

1.84
2.54

2.27
6.67

0.49(66.68), p = .625
0.99(64.83), p = .325

Route F Cars
Route F Trucks

91.88
101.54

0.44
0.40

94.21
104.57

0.50
0.61

2.33
3.03

-3.49(98), p = .001
-4.16(85.44), p < .001

5

158962 Tekinay BNW.indd 167158962 Tekinay BNW.indd 167 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 156

The findings presented in Table 5.12 show that for the average speed KPI, the adjusted

Markov Chain (ME3) resulted in smaller absolute differences and Kolmogorov-Smirnov

Z values, which were no longer significant for Route A. Similarly, for Route A's time-in-

system, the adjusted Markov Chain estimates improved although they were still margin-

ally significant. However, for Route F, the K-S test indicated an increased difference

between the distributions of the base model and adjusted Markov Chain (ME3), com-

pared to the second experiment (ME2). The right shift in the cumulative distribution

function and the higher maximum value in the range for Route F’s time-in-system KPI

may be due to an increase in the number of later vehicles from a more congested time

of the adjusted Markov Chain (ME3).

Table 5.12. Two-sample Kolmogorov-Smirnov test results for comparing distributions obtained
from the short merge base model and the adjusted Markov Chain with time progression variable
for 50 repetitions for Experiment ME3.

 |D| df Kolmogorov-Smirnov Z p-value
Average speed per route per vehicle type

Route A Cars
Route A Trucks

.26

.30
50
50

1.30
1.50

.068

.022

Route F Cars
Route F Trucks

.62

.72
50
50

3.10
3.60

<.001
<.001

Average time-in-system per route per vehicle type
Route A Cars
Route A Trucks

.28

.28
50
50

1.40
1.40

.040

.040
Route F Cars
Route F Trucks

.36

.44
50
50

1.80
2.20

.003
<.001

5.2.5 Mining towards a single vehicle model

In experiment ME2 and ME3, we assumed vehicles with unique gtuIds as unique model

components, and therefore, having different behavior. Based on this assumption, we

deconstructed the state-trace data and performed episode mining at component-level,

resulting in 2,500 Markov Chain models, one for each vehicle. It can be argued that

vehicles in the model can be treated as instances of the a single ‘generic’ vehicle atomic

model component and the state space of this generic vehicle model is the complete set

158962 Tekinay BNW.indd 168158962 Tekinay BNW.indd 168 09-05-2022 15:4509-05-2022 15:45

157

of states observed in the training data set. In this line of reasoning, a generic vehicle

model’s driving behavior is imposed by the distribution of the demand (i.e., the demand

for truck and passenger car), the generation times, and the surrounding traffic. In Markov

Chain terms, this ‘generic’ vehicle component would have single ‘generic’ transition ma-

trix that would contain every observed state-transition in the training set and the calcu-

lated state-transition probabilities across all 50 runs. Using this ‘generic’ transition matrix

P, the complete state-space S and the initial distribution vector 𝜋𝜋R, a hypothesis would

be that an overarching Vehicle Markov Chain can be generated using our method and

the simulation of this overarching vehicle Markov Chain would generate sufficiently ac-

curately estimates of the base model’s KPIs.

However, the traffic simulated by an overarching Markov Chain generated by our

method may not be an accurate representation of the base model because the overarch-

ing model cannot guarantee consistency across the contextual variables of the generated

(and currently present) vehicles. Although this issue might be addressed by introducing

additional extensions to the Markov Chain implementation (e.g., including conditional

probabilities and increasing the maxwin parameter value of the EMMA algorithm to ex-

tend state-transition history, or implementing (or mining) a control logic to oversee traf-

fic and ensure behavioral consistency), we believe this would violate some of our funda-

mental assumptions, such as the memoryless property shared between Markov Chains

and DEVS models. Future studies may explore alternative methods for model abstrac-

tion in situations where a longer history of events may be required to adequately repre-

sent the base model’s behavior.

5.3 Conclusions

This chapter used the short-merge microscopic traffic simulation model as a case study

to show how our proposed method can be applied to a simulation model with a relatively

larger number of model components and a larger state space, and with a varying number

of model components. We began the chapter with a high-level description of the short-

merge model before delving into the specific scenario used in the case study. We then

presented the conceptual model's details and described the characteristics of various

5

158962 Tekinay BNW.indd 169158962 Tekinay BNW.indd 169 09-05-2022 15:4509-05-2022 15:45

 – Chapter 5 158

vehicle types (i.e., passenger cars and trucks) and the road network including an on-ramp

to explain the effect of the merge point to the lane capacities and driving behavior.

We then addressed all considerations and actions for the modeler following the same

section structure as in Chapter 3 and 4. For the larger case study presented in this chapter,

we chose to apply frequent episode mining to the data represented at vehicle level in

addition to mining at system level. This is because the state-trace records generated from

models with large numbers of individual model components are more likely to contain

high variability, limiting the identification of frequent episodes. Reducing the variability

by applying frequent episode mining at component level (in this case vehicle level) in-

stead of system level addresses this issue and allows for manageable model abstraction.

However, mining at component level omits insight into how individual components in-

teract with and affect each other, i.e., the behavior of the system as a whole. Therefore,

it is essential to include contextual variables with information on the relations among

model components, such as the link or lane traffic intensity variables providing the sur-

rounding traffic information as was done in Experiments ME2. With this information

included, Markov Chains based on individual model components are able to collectively

represent the overall system’s behavior.

The results show that our method is able to obtain Markov Chain estimates of perfor-

mance measures that do not significantly deviate from the base model’s performance

measures, as indicated by the t-test results. Furthermore, we demonstrated that the Mar-

kov Chain’s ability to estimate the distribution of the base model’s performance measures

can be improved by adding more information to the state-trace (e.g., time progression),

as shown by the Kolmogorov-Smirnov test.

However, the case study results also highlighted that a number of limitations of our

method needs to be addressed by the modeler when applied to an open system simula-

tion model with a large number of model components.

Firstly, the underlying memoryless geometric distribution used by the discrete-time Mar-

kov Chain, which determines the necessary number of state transitions for the first oc-

currence of a particular state does not provide a sufficient precision on the estimation of

the time-dependent behavior (e.g., the arrival of a particular vehicle) of the original

158962 Tekinay BNW.indd 170158962 Tekinay BNW.indd 170 09-05-2022 15:4509-05-2022 15:45

159

system if the essential temporal information is missing in the model. The difference be-

tween the base model’s Erlang distributed values and the Markov Chain’s geometrically

distributed and right-tailed estimates get larger when the number of entities entering the

system gets significantly larger over time, leading to an extremely large sum of state-

transition probabilities before the desired nth state occurs. We demonstrated that the in-

troduction of contextual variables to the data that provides the necessary temporal infor-

mation (e.g., time progression) can reduce this difference. However, the inclusion of ad-

ditional variables to the state-trace data may result in a larger transition probability matrix

and increased variability, and may result in a longer right-tail for larger models. The trade-

off between adding more information and the resulting tail should be explored.

Secondly, the case study results show that certain state-variable values with a particular

significance in the base model’s behavior are essential for an accurate representation of

the original system’s behavior and the modeler must identify and ensure that these values

are explicitly represented in the selected bins during the preprocessing step. The modeler

can use the model’s state-trace metadata (see Appendix C.1) which corresponds to the

source system in Klir’s GSPS (Klir, 1985) and select from a large number of variables

per vehicle or contextual variables, such as the traffic intensity variables used in ME2.

When generating state-trace data from an open system simulation, the inclusion of place-

holder values such as NA to represent the inactive periods of model components will

result in underfitting, especially when the run time (or the sampling period) of the simu-

lation is significantly longer than the active period of components. As a result, the Mar-

kov Chain will have significantly smaller state-transition probabilities to transition to the

actual (active) states of the model components.

Taken together, this chapter demonstrated that our method is not only capable of auto-

mating the abstraction of small models with limited components and interactions, but

can also be successfully applied to larger-scale and more complex simulation models with

much larger state-spaces and a varying number of model components to recreate model

behavior in abstracted models and estimate the performance indicators from these ab-

stracted models.

5

158962 Tekinay BNW.indd 171158962 Tekinay BNW.indd 171 09-05-2022 15:4509-05-2022 15:45

158962 Tekinay BNW.indd 172158962 Tekinay BNW.indd 172 09-05-2022 15:4509-05-2022 15:45

CHAPTER 6

Conclusion

158962 Tekinay BNW.indd 173158962 Tekinay BNW.indd 173 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 162

6 Conclusion

With the improved capabilities of computer technology, we have been able to run simu-

lation models that are larger in scale and higher in complexity (Davis & Bigelow, 1998;

Zeigler et al., 2000). While these advances have allowed for more accurate representa-

tions of increasingly large-scale and complex real-world systems, the growing scale and

complexity of simulation models may eventually result in models that become too com-

plex themselves to work with (Astrup et al., 2008; Chwif et al., 2000; Darema, 2004;

Henriksen, 2008; Saysel & Barlas, 2006) – giving rise to large-scale complex simulation

models. These types of models raise important new questions and challenges for the

modeling and simulation community (Arthur et al., 1999; Chwif et al., 2000; Page et al.,

1999; Robinson, 2001), including how models of such large scale and complexity can be

expressed, modeled more efficiently, validated, and what tools and techniques can be

used for this. As described in Chapter 1, the main challenges of large-scale complex sim-

ulation models can be classified as the problem of scale (related to the number of objects in

the model), the problem of complexity (related to a high resolution of objects and large num-

ber of object interactions), the problem of performance vs. accuracy (related to the trade-off

between the level of accuracy of a simulation model and the computational cost of its

execution), and the problem of data (related to the growth in variety and length of specifi-

cally state-trace data, limiting the ability to identify frequent behavioral patterns; Page et

al., 1999, pp. 1509-1510).

A strategy that aims to tackle the scale and complexity of large-scale complex simulation

models is the use of model abstraction (Barton, 2015; Kleijnen, 1987). As we have discussed

in this dissertation (and will reflect on when answering research question 1), conventional

modeling methods and techniques lack the mechanisms to efficiently and effectively deal

with the aforementioned problems and are limited in their ability to automate the process

of model abstraction. We therefore posit that there is a need for methods that can help

reduce the complexity of large-scale and complex simulation models.

In this dissertation, we aimed to investigate to what extent the abstraction of large-scale

complex simulation models, specifically discrete-event simulation models, can be auto-

mated using their state-trace data. In order to achieve this objective, we designed a novel

158962 Tekinay BNW.indd 174158962 Tekinay BNW.indd 174 09-05-2022 15:4509-05-2022 15:45

163

method that integrates the fields of modeling and simulation and temporal data mining

by applying frequent episode mining techniques on state-trace data to identify behavioral

patterns. In Chapter 3, we presented a detailed breakdown of our method and discussed

a range of considerations that are essential for generating a valid abstraction of the base

model (illustrated in Figure 6.1). We then demonstrated the practical application of our

novel method using three simulation case studies with increasing scale and complexity

and with different model characteristics (see Table 6.1 for a detailed breakdown of the

case studies). Specifically, we investigated the ability of our method to automate the ab-

straction of large-scale complex discrete-event simulation models in the form of Markov

Chains and to adequately estimate the original model’s performance indicators. In this

final chapter, we provide a discussion of our findings to answer the research questions,

reflect on the theoretical and practical contributions of our study, and provide directions

for future research.

6

158962 Tekinay BNW.indd 175158962 Tekinay BNW.indd 175 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 164

Fi
gu

re
 6

.1.
 A

ut
om

at
ed

 m
od

el
 a

bs
tra

ct
io

n
m

et
ho

d
an

d
th

e
or

ga
ni

za
tio

n
of

 th
e

co
ns

id
er

at
io

ns
 a

nd
 a

ct
io

ns

158962 Tekinay BNW.indd 176158962 Tekinay BNW.indd 176 09-05-2022 15:4509-05-2022 15:45

165

6.1 Research Findings

Research Question 1: To what extent do existing methods allow for the abstraction of large-scale

discrete-event simulation models?

As briefly mentioned in the previous section and explained in more detail in Chapter 1,

conventional model abstraction methods have shortcomings when dealing with large-

scale complex discrete-event simulations. One of the model abstraction strategies is met-

amodeling. Providing “a model of a model” (Kleijnen, 1987), a metamodel replaces an

expensive simulation model with another model that is generated by approximating the

I/O function of the original one, e.g., as a set of linear equations with interaction effects.

Metamodels are, therefore, simpler and computationally more efficient models than the

original models (Kleijnen, 2015; Simpson et al., 2001). However, a fundamental limita-

tion of this black box approach is that metamodels do not benefit from the time and

state transition information that is present in the underlying simulation model and that

describes the dynamic behavior of the system (Nance, 1981). Therefore, metamodels

cannot predict I/O relations well for the set of inputs (interventions) that have not been

used in estimating the metamodel’s parameters.

Another model abstraction strategy is multiresolution modeling (MRM). In the con-

text of large-scale complex simulation models, it is often impossible to fully capture the

totality of the complex system in one abstraction (Hofmann, 2004; Yilmaz & Ören,

2004). In such cases, multiresolution modeling can be used to build a family of models

(base/lumped model pairs) with different levels of abstraction or resolution that collec-

tively represent the underlying system (Davis & Bigelow, 1998; 2003; Davis & Tolk,

2007). This approach to recursively forming model pairs allows creating a hierarchy of

models with varying state trajectories, which, as a whole, provide a more complete de-

scription of a system than a single model description (Zeigler, 2019). However, until now,

multiresolution modeling required modelers to design lower resolution models manually

as there was no strategy to automate this process. Due to the vast and diverse number

of model components and their interrelations, the manual abstraction of large-scale com-

plex simulation models at the structure level – as most conventional model abstraction

methods do – is a not a feasible task (Yilmaz & Tolk, 2006).

6

158962 Tekinay BNW.indd 177158962 Tekinay BNW.indd 177 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 166

A more viable alternative approach for large-scale complex simulation models may be

model abstraction at the transformation level, theoretically corresponding to the gen-

erative system level in Klir’s (1985) system knowledge framework and the state transition

level in Zeigler’s System Specification (Zeigler et al., 2000). Abstraction at the transfor-

mation level can be achieved using state-trace data that encapsulate the model's dynamic

behavior. State-trace data describe the sequential state-transitions of the model at discrete

points in time, allowing modelers to capture the history of a simulation run and gain

insight into how complex phenomena evolve over time (Kemper & Tepper, 2007). These

data can be expressed as event sequences or multivariate time series consisting of cate-

gorical variables, numerical variables, or both. As such, state-trace data can be used to

discover behavioral patterns relevant to the desired level of abstraction. Assuming a

morphism relation between a pair of system specifications at the state-transition level, a

correspondence relation (mapping) can be established between the base model’s state-

transitions (i.e., the more detailed system specification) and the lumped model’s state-

transitions (i.e., the simplified system specification), which uses these previously discov-

ered behavioral patterns as aggregated states.

However, traces of state-transitions obtained from the runs of large-scale complex sim-

ulation models can get extensive in terms of their volume (the length of the trace data

and the number of state variables to be sampled from different model components) and

variety (the number of unique states), as we have seen in Chapter 5 where the state trace

of a single simulation run of a moderately complex model had 18 million model state

records; an alternative representation had 17,500 data columns. This consequently con-

fines modelers’ ability to identify and utilize frequent patterns for model abstraction.

Data mining (Atluri et al., 2018; Gan et al., 2017) and machine learning methods (Pedrycz

& Chen, 2014) have been designed to ease the process of discovering frequent patterns

in temporal data (Hinton & Salakhutdinov, 2006). Although such methods have proven

to be useful for recognizing behavioral patterns within large volumes of trace data

(Chapela-Campa et al., 2019; Lu et al., 2019; Song et al., 2009; van der Aalst, 2011), they

have not yet been applied to automate the abstraction of large-scale complex discrete-

event simulation models. This would require techniques that not only identify important

158962 Tekinay BNW.indd 178158962 Tekinay BNW.indd 178 09-05-2022 15:4509-05-2022 15:45

167

behavioral patterns in state-trace data, but also generate aggregated states at various ab-

straction levels to construct models at a higher level of abstraction.

In sum, existing methods in the field of modeling and simulation use techniques that do

not allow for the automated abstraction of large-scale complex discrete-event simulation

models. An alternative approach to the existing methods that is explored in this thesis is

to simplify the dynamic behavior encapsulated in the state-trace data of these models.

To achieve this, tools and techniques from the temporal data mining field, specifically

frequent episode mining, may be employed to these state-trace data to automate the

model abstraction process at the transaction level. Therefore, integrating the fields of

modeling and simulation and temporal data mining may provide a promising direction

to deal with large-scale complex simulation models.

Research Question 2: How should state-trace data from large-scale complex discrete-event simula-

tions models be prepared to be used for the automated abstraction method?

In essence, the quality of the discovered behavioral patterns by the temporal data mining

techniques, and therefore, the success of our method to automate the generation of valid

model abstractions is highly dependent on the state-trace data generated by the base

models – the large-scale complex discrete-event simulation models. To our knowledge,

no studies to date have applied temporal data mining techniques to state-trace data col-

lected from large-scale complex discrete-event models to build valid lumped models.

Because of this gap in the literature, it was essential that we first provided a formal de-

scription of the key concept of state-trace data generated by discrete-event simulation

models (see §3.1.1). This helped to define our research's and our method’s capabilities

and properly position the method in the modeling and simulation and temporal data

mining literature.

As defined in §3.1.1, a state-trace of a discrete-event simulation model is a time sequence

of state-trace records (recorded instants), where each state-trace record within the same

state-trace data is a fixed-size ordered set of categorical, numerical, or hybrid variables

reported by the discrete event simulator at every event occurrence or at a fixed time-

increment during a simulation run. To practically generate the state-trace data from the

simulation runs of the case study models, we implemented a TraceWriter class that

6

158962 Tekinay BNW.indd 179158962 Tekinay BNW.indd 179 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 168

creates state-trace data in csv format. In the data, the rows representing the state-trace

records are homogenous; that is, each row has the same number of base model variable

values (i.e., the values of state variables, input/output variables, and time variable).

As we discussed in Chapter 3, there are several factors that the modeler needs to consider

before deciding on the content of the state-trace data and its generation from the simu-

lation of discrete-event simulation models. In this research, we have identified and elab-

orated on the following important considerations:

(I) Representation of time (§3.2.1.1): How the simulation time can be embedded

in the state-trace data is dependent on the time advance mechanism ta of the

discrete-event simulation (base model): we can distinguish next-event time advance

(progression) and fixed-increment time advance. The time advance mechanism of the

model defines the limits of how frequent, or infrequent, the time-dependent

behavior (i.e., time-dependent sampling of state-trace records in our method)

of the original model can be captured and how the time variable can be stored

in the data. Another important consideration regarding the representation of

time relates to the format (elapsed time or absolute simulation time) and the

variable types (categorical, numerical, hybrid) of the time information.

For example, the M/M/1 model used in the case study in Chapter 3 and the

battlefield model used in Chapter 4 both have a next-event time advance

mechanism. Therefore, each state-trace record is reported by the trace writer of

the model at each simulation event. The numerical time variable values in the

state-trace records are reported as elapsed time. The reason for the selection of

the elapsed time format is twofold. First, the representation of absolute

simulation time would result in monotonously increasing values in the state-

trace data. Inclusion of such variables with as many different values as the

number of state-trace records in the data (each value occurring only once) will

undermine the ability of the frequent episode mining algorithms to find

recurring patterns. Second, it represents the time advancement between

episodes with a window size of 2 discovered by the EMMA algorithm. This

correlates with the state transformation nature of discrete-event simulation

158962 Tekinay BNW.indd 180158962 Tekinay BNW.indd 180 09-05-2022 15:4509-05-2022 15:45

169

where δint : S→S at each event, where the time-to-next event (i.e., elapsed time)

is also determined purely by the state ta: S→T.

The short-merge case study model in Chapter 5, however, has a fixed-increment

time advance mechanism (where the increments for different vehicles are not

hapening at the same instant) and the trace writer of the model generated a new

state-trace record at every 0.5 seconds. On the other hand, because the step-

size is constant at 0.5 seconds, the inclusion of simulation time will not affect

the variability of the episodes discovered by the episode mining algorithm.

Therefore, we excluded the absolute simulation time from the state-trace data

in the three case studies. It should be noted that this exclusion of the absolution

of time from the state-trace data led to issues, such as the inability to relate

certain episodes to a time 'early' or 'late' in the simulation. To overcome such

issues, we later introduced progression in the form of contextual variables.

(II) Type of model (stochastic vs. deterministic) (§3.2.1.2): Large-scale complex

models are usually stochastic because large-scale complex systems exhibit

inherent uncertainty properties. Therefore, the essence of this consideration is

to identify a sufficient number of repetitions and the run-length needed to

obtain independent and identically distributed observations (samples) to

accurately estimate the associated variability. What constitutes a sufficient

number of repetitions and run-length will depend on the model under study

and the desired level of precision (i.e., the margin of error).

For the M/M/1 case study, we measured the effect of increased run-length and

repetition on the precision of the performance indicator estimates by

calculating the margin of error. Using a fixed state-trace length of 50,000 state-

trace records, we showed that a high level of precision (i.e., below 1%) was

already achieved with as few as 10 repetitions for the KPI server utilization.

However, for the average waiting time and average queue length measures, the

margin of error became smaller than 1% from 100 repetitions onward (note

that the actual threshold of 1% is somewhere between 50 and 100 repetitions).

In terms of run-length, when the number of repetitions was fixed at 100 runs,

a high level of precision (i.e., below 1%) was achieved with a state-trace as short

6

158962 Tekinay BNW.indd 181158962 Tekinay BNW.indd 181 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 170

as 1,000 records for the server utilization KPI, while for the average waiting

time and average queue length measures, this level of precision was achieved

from 50,000 state-trace records onward (note that the actual threshold of 1% is

somewhere between 20,000 and 50,000 state-trace records). Based on these

findings, we selected 50,000 as the state-trace length to be generated in

conjunction with 100 repetitions. For the battlefield case study in Chapter 4,

we used 50 repetitions to generate training data (and 50 repetition for generating

validation data). For the chosen number of repetitions (50), we achieved margin

of errors between 1.46%-4.59% across KPIs. Because the battlefield is a

terminating simulation model (see also consideration (c) below), increasing the

run-length is not possible. In this case, to improve the precision of the

estimates, the modeler can increase the number of data samples (i.e., state-trace

records) by increasing the number of repetitions with the same input set.

(III) Type of simulation (terminating vs. non-terminating) (§3.2.1.3): When

designing a simulation experiment, in addition to deciding on the length of a

simulation run (i.e., sample size), the modeler should identify the starting

conditions of the model, and decide whether to include or exclude a warm-up

time. These considerations are largely determined by the type of the simulation:

terminating or non-terminating. For a given fixed initial state, a stochastic

terminating simulation run generates state-trace data at varying lengths for each

repetition during a simulation experiment. Therefore, the modeler must ensure

that there are enough repetitions to compensate for (possible) shorter runs

when generating state-trace data from terminating simulations. As mentioned

in the previous consideration (b), for the battlefield case study in Chapter 4 we

used 50 repetitions to generate training data (and 50 repetition for generating

validation data). For the chosen number of repetitions, the total number of

state-trace records obtained from the simulations over 50 runs were nearly

identical, that is, 32,610 for the training set and 32,714 for the validation set.

When the base model is a non-terminating simulation, however, there are

additional considerations. Firstly, because non-terminating simulations have no

end-state or end-time and the simulation could theoretically continue

158962 Tekinay BNW.indd 182158962 Tekinay BNW.indd 182 09-05-2022 15:4509-05-2022 15:45

171

indefinitely, the modeler should decide between having fewer repetitions with

longer run lengths or more repetitions with shorter run lengths. For the M/M/1

model in Chapter 3, state-trace records were generated at each event occurrence

until the simulation was halted by scheduling a special “terminating” event at

1,000,000-time unit. We determined that this length is sufficient to generate at

least 50,000 state-trace records for a single run. Recall from the case study

application of §3.2.4 that both strategies (i.e., either keeping the run-length fixed

and increasing the number of repetitions or keeping the number of repetitions

fixed and increasing the run-length) provided the desired precision of less than

1% across all KPIs of the non-terminating M/M/1 model, as long as there were

enough independent repetitions and sufficiently long enough runs.

Secondly, when generating state-trace data from non-terminating models, the

modeler should choose one of the following strategies to reduce the effects of

initialization bias: (1) to collect state-trace data from the original model for both

the transient and the steady-state period and use the data to generate two

Markov Chains for the transient and the steady-state period, but only perform

data analysis on the steady-state period Markov Chain; or (2) not to simulate

the transient period and, instead, introduce a single admissible initial state which

then becomes the initial state of the steady-state period Markov Chain. Because

the main subject of our method is large-scale complex discrete-event simulation

models, the second option is often the more inexpensive strategy. Therefore,

we implemented the second strategy for both the non-terminating M/M/1

(Chapter 3) and the short-merge case study simulations (Chapter 5). For

example, for the M/M/1 case study, we introduced the initial state P0: empty-

and-idle.

(IV) Inclusion of input data (§3.2.1.4): The decision to include the base model's

input variables as individual columns in the state-trace data and, if so, which

variables to include is determined by whether the base model has external

inputs and whether the simulation experiment, which consists of multiple runs

to generate state-trace data, is performed with a single (fixed) set of input. When

the simulation experiment consists of a single (fixed) set of input and the model

6

158962 Tekinay BNW.indd 183158962 Tekinay BNW.indd 183 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 172

receives no external input, the exclusion of the input variables from the state-

trace data does not affect the Markov Chain estimations, as demonstrated by

all three case studies in this research.

(V) Inclusion of output data (§3.2.1.5): In our method, we presented two

strategies to include the output data of the base model: (1) the direct

incorporation of the transient values of the base model’s run statistics as

individual columns in the state-trace data, and (2) the inclusion of the state

variable values of the base model, which are required to calculate the key

performance indicators, directly in the state-trace data. The drawback of the

first strategy is that the inclusion of the ‘quantized’ transient values of the base

model’s run statistics in the state-trace data, and therefore, a part of the Markov

Chain state set, would result in a loss of sequential progression information.

This can lead to inconsistencies in the representation of KPI progression in

Markov Chain generated state-trace data. In the second strategy, once the

Markov Chain state-traces are generated, the performance indicators are

calculated by using the included model variables. We showed in all three case

studies that the Markov Chain’s KPIs can be sufficiently accurate as long as

the state-variables are accompanied by the necessary contextual variables (see

Table 6.1 for the list of variables included to calculate the KPIs for each case

study).

(VI) Complete model state-trace vs. partial model state-trace (§3.2.1.5): A state-

trace is considered as complete-model state-trace if it contains the complete set of

variables that describe the state of all individual atomic components and, as a

collection, the state of the system at a particular instant. Meanwhile, it is a partial-

model state-trace when:

• the state-trace data have a (selected) subset of state variables of all

atomic components of the base model, or

• the state-trace data have the complete set of state variables of a

(selected) subset of atomic components of the base model, or

158962 Tekinay BNW.indd 184158962 Tekinay BNW.indd 184 09-05-2022 15:4509-05-2022 15:45

173

• the state-trace data have a (selected) subset of state variables of a

(selected) subset of atomic components of the base model.

For the M/M/1 case study (Chapter 3), we generated a complete-model trace

data because of its simplicity with only two state-variables. For the battlefield and

short-merge case studies (Chapter 4 and 5, respectively), we generated partial

model state-trace data (see Table 6.1 for the content of the state-trace data for all

three case studies). For example, in the battlefield case study, we excluded the cell

atomic components from the state-trace data and only captured each section’s

host cell height values, which requires only two variable values compared to

10,000 cells. Furthermore, we excluded some of the variables in the base models

and only included the variables that are sufficient for the estimation of the se-

lected performance measures (see §4.2.1.6 for more details on the selection pro-

cess of these variables).

In addition to the above-mentioned considerations and actions, it is important to note

that calculating key performance indicators from the Markov Chain generated state-trace

data and from the base model’s validation set using the included model variables alone

may not always be possible. In such cases, contextual information that describes corre-

lations between the model variables and represents a particular behavior of the base

model should be captured and transformed to one or more variables in the trace data.

For example, in the M/M/1 case study (Chapter 3), we initially included the varia-

bles server_status, queue_length, and the elapsed time in the state-trace data to calculate the

key performance indicators “average waiting time,” “average server utilization” and “av-

erage queue length”. However, not all events in the state-trace data were events where

an entity leaves the queue (e.g., arrival of a new entity). To be able to accurately calculate

the average waiting time KPI, knowledge regarding leaving or non-leaving events is es-

sential. In order to differentiate the non-leaving events from the other registered events,

we therefore had to include the “leaving” behavior and information (separation of the

leaving and non-leaving events) in the state-trace data. We transformed and reported this

information in a new contextual variable called time_in_queue, which registers non-leaving

events as -1 (see §3.2.1.5).

6

158962 Tekinay BNW.indd 185158962 Tekinay BNW.indd 185 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 174

The case studies also highlighted that the inclusion of additional contextual variables

reduced the margin of error in the Markov Chain’s estimates and improved the accuracy

of the Markov Chain's representation of the base model. For instance, in the battlefield

case study (Chapter 4), we compared the margin of errors obtained from two Markov

Chains MC1 and MC2. The case study demonstrated that the addition of the contextual

variables distanceToCheckpoints and checkpointId to the state-traces in the training dataset of

MC2 reduced the margin of errors from 2.39%-5.04% (MC1) to 1.46%-4.59% (MC2)

across KPIs. Furthermore, the addition of these two contextual variables reduced the

dispersion of the run lengths of the Markov Chain and resulted in estimates of the run-

lengths closer to the base model. As discussed in §4.2.4, the accuracy of the Markov

Chain’s estimates for the base model’s KPIs (i.e., total elevation climbed and total active

mission time) depends on the correct sum of speed and elevation values obtained from

the Markov Chain generated state-trace data, thus, the lengths of these state-traces. Be-

cause the battlefield model is a terminating simulation, reliably and accurately estimating

the KPI values is therefore only possible if the Markov Chain accurately represents the

terminating behavior of the base model. We showed that adding the contextual variables

in MC2 helped to accurately estimate the KPIs.

Research Question 3: What considerations and actions are needed for the automated abstraction

of the original model’s dynamic behavior using state-trace data?

For the automated abstraction of the recurring patterns in the state trace data, a frequent

episode mining algorithm has to be selected for the task of discovering serial state-tran-

sitions and generating the transition probability matrix P of the discrete-time Markov

Chain. We compared several popular frequent episode mining algorithms and found that,

at the time of our research, EMMA is the fastest in finding all unique state-trace records

and consecutive state-trace record pairs from state-trace data of various lengths (5,000;

10,000; 25,000; and 50,000 state-trace records; see Appendix A.1). In all three case stud-

ies, EMMA was applied successfully.

We discussed several considerations regarding the application of the temporal data min-

ing tasks to the state-trace data:

158962 Tekinay BNW.indd 186158962 Tekinay BNW.indd 186 09-05-2022 15:4509-05-2022 15:45

175

(I) Preprocessing of the state-trace data (§3.2.2.1): After the generation of state-

traces from the simulation of the base model, the data must be preprocessed

before the application of the EMMA algorithm. The following are the

requirements for preprocessing data in our method, as well as the preprocessing

methods to be used to meet these requirements:

• EMMA input format requirements: To comply with the input format

of the EMMA algorithm, we created a hash table that associates each

unique state-trace record (value) with an increasing positive integer

value (key). This hash table will later be used to decode the hashed

values from the Markov Chain generated state-traces back to their

multi-variable value formats. This encoding and decoding of the

state-trace records is a lossless process, and therefore, does not affect

the model abstraction results.

• Quantization of high-variety data: Before the preprocessing and

encoding of each state-trace record (described above), state-trace

records consist of multiple model variables with categorical (binary,

nominal or ordinal) or numerical values (continuous or discrete). For

large-scale complex discrete-event simulations, the state-space

captured as the cartesian product of the number of variables and the

range of values can easily become extremely large and impractical to

work with because of the low frequencies of the observations,

resulting in a lack of frequent episodes. The variable types that

typically lead to high variety are continuous variables, variables with

monotonously increasing or decreasing values, and categorical

variables with a large number of discrete categories. To avoid this

issue of high variety, the data should be quantized before applying

the frequent episode mining algorithm. The choice of the

quantization strategy and the level of quantization depend on the

level of precision required by the model abstraction objective

(§3.2.2.1).

6

158962 Tekinay BNW.indd 187158962 Tekinay BNW.indd 187 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 176

For instance, in the M/M/1 case study (Chapter 3), we chose binning

as the strategy to quantize the following three variables: elapsed_time,

time_in_queue, and queue_length. Specifically, for the elapsed_time and

time_in_queue continuous variables, we used quantile-based binning

based on deciles (q = 10) to create 10 bins for each variable. This is

because both variables have right-skewed distributions and a strategy

such as equal-width binning would result in irregularly filled bins with

some bins containing a small numbers of values. Unlike the

elapsed_time and the time_in_queue variables, the queue_length variable

takes integer values where the frequencies are large for values that are

close to zero; e.g., the queue length 0 has a much higher frequency

than 1, and 1 is more frequent than 2, etc. As a result, using quantile-

based or equal-frequency based binning would lead high frequency

values to occupy more than one bin. Therefore, for the quantization

of the queue_length variable, we chose a custom binning strategy in

which we set a minimum threshold of 5% of scores per bin. This way,

frequent values (>5% of scores) are assigned to their own bin, and

infrequent values (<5% of scores) are grouped together until each

bin contains at least 5% of the data (see §3.2.2.1).

To investigate the effect of the level of quantization to the Markov

Chain’s accuracy, in Chapter 4’s battlefield case study, we compared

lower resolution Markov Chains to higher resolution Markov Chains

in which we increased the level of binning. Our findings indicate that

a higher resolution alone did not improve the accuracy of the Markov

Chain’s representation of the base model’s behavior. Only in

combination with contextual variables in the training data (i.e., MC2,

as discussed in research question 2), a higher resolution resulted in

improved estimates.

• System state-level vs. model component-level abstraction: State-trace

data generated from discrete-event simulations consist of state-trace

records, reported at a particular instant in time (e.g., at event

158962 Tekinay BNW.indd 188158962 Tekinay BNW.indd 188 09-05-2022 15:4509-05-2022 15:45

177

occurrences or at fixed time intervals) during the simulation.

Therefore, state-transitions of the base model are represented by

consecutive state-trace record pairs in the state-trace data. This,

however, changes when the state-trace data is subdivided during the

preprocessing stage to accommodate for model abstraction at

component-level – as illustrated by the short-merge case study in

Chapter 5.

Performing model abstraction at component-level using the state-

trace requires preprocessing the data to a format the EMMA

algorithm can process. To do so, component-based trace data are

generated by selecting the relevant columns for individual entities

(e.g., vehicle) and combining them with the contextual columns that

are the same across all entities (e.g., vehicles). This process creates

one data set per entity (e.g., 2,500 separate data sets for the short-

merge case study in Chapter 5).

(II) Application of the EMMA algorithm (§3.2.2.2): The end goal of the temporal

data mining step of our method is to obtain the state-transition probabilities

across all the state-traces in the training dataset. To compute these state-

transition probabilities, we use maxwin values of 1 and 2, and a minsup value of

1 for the EMMA algorithm to discover: (a) all individual states (i.e., state-trace

records) and their frequencies, and (b) all unique state-transitions (i.e.,

consecutive state-trace record pairs) and their frequencies. Then, using the

discovered states and state-trace records and their frequencies, we can calculate

the state-transition probabilities for the entire training dataset.

(III) Construction of the transition matrix (§3.2.2.2): After obtaining the

transition probabilities, the next step is to represent these probabilities in a

sparse matrix format in order to generate the discrete-time Markov Chain's

transition matrix P. We established in Chapter 3 that the memoryless property

of Markov Chain states is akin to the discrete-event model states, and the state-

transition probabilities represented in matrix format is the transition matrix of

a valid stochastic discrete-time Markov Chain. We showed using the case

6

158962 Tekinay BNW.indd 189158962 Tekinay BNW.indd 189 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 178

studies that the states and the state-transitions of the base model can be mapped

to valid Markov Chain states and transition matrices.

After the generation of the sparse transition matrices, the next step is to simulate the

Markov Chains by performing random walks. The number of repetitions to perform with

a Markov Chain to generate trace data is dependent on the number of repetitions per-

formed by the base model to generate the validation dataset. In the M/M/1 (Chapter 3)

and battlefield (Chapter 4) case studies where the modeled systems’ behavior was repre-

sented by a single Markov Chain, Markov Chains were simulated 100 and 50 times, re-

spectively. On the other hand, in the short-merge case study (Chapter 5), each Markov

Chain represented the behavior of a particular vehicle as the goal was to perform model

abstraction at component-level. Therefore, capturing the modeled system’s behavior re-

quired simulating all 2,500 Markov Chains 50 times; equal to the number of repetitions

used by the base model to generate the validation data.

When simulating each Markov Chain, the modeler should use different random number

generator seed values to obtain iid data. If the base simulation is non-terminating, the

modeler should terminate the data generation from the Markov Chain once a desired

number of state-trace records are generated (see the “Preliminary analyses: Selection of

minimum state-trace length” in §3.2.4 for more details). If the base model is a terminating

model, the accumulated probability of the Markov Chain transitioning to the modeled

system’s end-state should be 1 after n state-changes (and this n should be close to the

base model’s state-trace length (see Table 4.9 in §4.2.4 for a detail analysis).

A behavior we observed in both the M/M/1 (Chapter 3) and the short-merge (Chapter

5) case studies is that some Markov Chain runs terminated prematurely, before the de-

sired number of state-trace records were generated (i.e., 50,000 or 7,200). We discovered

that this is because some of the single system-level Markov Chain models of the M/M/1

simulation and vehicle-based Markov Chains of the short-merge simulation are not com-

plete graphs because of the data collection strategy. As mentioned earlier in Chapter 3

and discussed in the answer of the research question 2, the non-terminating simulations

have to be artificially terminated to stop the data generation. As a result, some of the

state-trace data generated from the runs inherited an artificial terminating state (could be

a different state for each of these runs) because the final state did not occur earlier in the

158962 Tekinay BNW.indd 190158962 Tekinay BNW.indd 190 09-05-2022 15:4509-05-2022 15:45

179

run. Consequently, some of the transitions in these right-stochastic transition matrices

will have the probability of 1, meaning that the previous states will always lead to these

artificial end states and the run will terminate. In some cases, the transition matrix might

have a chain of states transitioning to each other with the transition probability of 1.

There are multiple ways to deal with artificial terminating states in the transition matrix.

The first approach is to identify and delete all artificial terminating states until the graph

becomes a complete graph and recalculate the state-transition probabilities after the re-

moval of every artificial terminating state. However, this approach may result in the re-

moval of a large number of states from the transition matrix (due to the chaining as we

just mentioned). The second approach is to use a portion of the generated state-trace

data in the episode mining algorithm to generate the transition probability matrix. For

instance, the modeler may decide to use 80% of the total state-trace data for the training

and validation set. In this case, the modeler must ensure that the remaining data contain

enough samples to generate valid Markov Chains with a desired level of precision. To

avoid having an insufficient number of samples, the modeler can first perform longer

runs to generate more data and subsequently use a portion of the data generated from

these longer runs.

Research Question 4: How well does the abstracted model represent the behavior of the original

large-scale complex simulation model?

To evaluate the accuracy and the validity of the abstracted model, key statistics and per-

formance measures obtained from the original model’s validation set and the abstracted

model (Markov Chain) can be compared using descriptive (e.g., spread measures, histo-

grams, box and whisker plots) and inferential statistics (e.g., 𝜒𝜒2-test, Student’s t-test, two-

sample Kolmogorov-Smirnov test).

The results of the case studies, and specifically their validation process, demonstrated

that our method is able to obtain Markov Chain estimates of performance measures with

an acceptable level of precision that do not significantly deviate from and follow a similar

distribution as the original model’s validation set. In Chapter 3, with a relatively simpler

M/M/1 case study, we found that our Markov Chain’s estimates had a high level of

precision and were highly similar to the validation set’s estimates. In Chapter 4, with the

battlefield case study, we demonstrated that our method can generate valid abstractions

6

158962 Tekinay BNW.indd 191158962 Tekinay BNW.indd 191 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 180

of relatively larger and more complex discrete-event simulation models and can obtain

Markov Chain estimates of performance measures that do not significantly deviate from

the base model’s performance measures. Similarly, the findings from the short-merge

case study in Chapter 5 illustrated that our method is applicable to larger and more com-

plex short-merge discrete-event simulation models and can obtain Markov Chain esti-

mates of performance measures that are highly similar to the base model’s performance

measures.

As we addressed earlier in our discussion of research question 2, the presence of contex-

tual variables is crucial for the accurate representation of the base model’s behavior, and

for obtaining run-lengths that are sufficiently close to the base model’s run-length. In

fact, our case studies revealed that increasing the model’s resolution by increasing the

quantization levels of the variables (e.g., the number of bins) alone did not improve the

accuracy of the model in the absence of important contextual variables. Our findings in

section §4.2.4 showed that a higher resolution only improved the results of the model

that included contextual variables. A similar improvement in the Markov Chain’s accu-

racy was also observed in the case study in Chapter 5.

Although we employed inferential statistics for the validation of the estimates obtained

from the Markov Chains, it is of great importance for the modeler to not solely rely on

p-values to judge the accuracy of the base model’s representation (Lin et al., 2013) but

also evaluate descriptive statistics as well as the effect size which describes the magnitude

of the difference (Sullivan & Feinn, 2012). Moreover, it is important that the Markov

Chain’s estimates are considered within the context of the system of interest and the

goals of the model abstraction study. For instance, in the short-merge case study (Chap-

ter 5), the Student’s t-test results indicated that mean speeds for the car and truck gener-

ated from the Markov Chain differed significantly from the mean speeds obtained from

the base model for Route F; however, the absolute mean difference was minimal. Simi-

larly, the results of the 𝜒𝜒2-test in Chapter 3 illustrated that a large sample size may result

in flagging a significant difference between the two distributions (a known problem with

significance testing based on p-values; Sullivan & Feinn, 2012), even though the Cramer’s

V effect size and graphical visualizations suggested that the magnitude of this difference

was very small.

158962 Tekinay BNW.indd 192158962 Tekinay BNW.indd 192 09-05-2022 15:4509-05-2022 15:45

181

Table 6.1. Case study comparisons
 CH3: M/M/1

case study
CH4: Battlefield
case study

CH5: Short-merge
case study

System properties
System description
(§3.1.4)
(§4.1.2)
(§5.1)

Single-queue single-
server queueing sys-
tem; interarrival
times of entities and
service times are ran-
dom; entities enter
the queue unless the
queue is empty,
seized by the server,
delayed during the
time of service, and
leave the system
when released by the
server.

Battlefield system con-
sists of a terrain with
hills and passages be-
tween hills, and a tank
platoon consists of
two sections. The sec-
tions start their mis-
sion at time t=0 sec-
onds and pass through
three checkpoints. The
mission ends when
both sections arrive to
the end station.

A road network sys-
tem consists of a two-
lane main road (Route
A), a single-lane on-
ramp (Route F) merg-
ing onto the main
road. Vehicles (pas-
senger cars and
trucks) can enter and
leave the system at
any time through the
system boundaries.

System type
(§3.1.4)
(§4.1.2)
(§5.1)

Open discrete-event
system.

Closed discrete-event
system.

Open discrete-event
system.

Modeling Details
Modeling formalism
(§ 3.1.4)
(§ 4.1.3)
(§ 5.1).

Event-scheduling
world view

Coupled DEVS (mod-
eled using the Dy-
namic Structure DEVS

Event-scheduling
world view (micro-
scopic traffic flow
model)

Time advance
mechanism
(§ 3.2.1.1)
(§ 4.2.1.1)
(§ 5.2.1.1)

Next-event time ad-
vance

Next-event time ad-
vance

Fixed-increment time
advance (τ= 0.5 sec-
onds), but not syn-
chronized across
components

Stochastic /
Deterministic model
(§ 3.2.1.2)
(§ 4.2.1.2)
(§ 5.2.1.2)

Stochastic model; the
case study investi-
gated the effects of
increasing number of
repetitions with six
different number of
runs to generate iid
data (Table 3.12): 10,
20, 50, 100, 200, 500;
unique Mersenne
Twister seed used
for each repetition.

Stochastic model; total
of 100 repetitions to
generate iid data;
unique Mersenne
Twister seed used for
each repetition.

Stochastic model; to-
tal of 100 repetitions
to generate iid data;
unique Mersenne
Twister seed used for
each repetition.

6

158962 Tekinay BNW.indd 193158962 Tekinay BNW.indd 193 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 182

Terminating /Non-
terminating model
(§ 3.2.1.3)
(§ 4.2.1.3)
(§ 5.2.1.3)

Non-terminating; no
warm-up period; two
sets of experiments
with six experiments
in each set. For the
first experiment set,
the simulation run is
terminated once the
desired number
state-trace records
are reported.

Terminating; the simu-
lation ends when both
sections arrive to their
corresponding end sta-
tions; state-trace data
with varying length.

Non-terminating; a
method call is sched-
uled to be executed
before the simulation
clock reaches to the
predetermined end
time of the simulation
(i.e., 3,600 seconds).

Input data
(§ 3.2.1.4)
(§ 4.2.1.4)
(§ 5.2.1.4)

Average arrival rate λ
of 0.1 and average
rate of service µ of
0.118 (Table 3.1).
Single set of input
with no external in-
put.

Tank platoon section
trajectories and terrain
details (Table 4.5). Sin-
gle set of input with no
external input.

Vehicle trajectories
and lane demands
over a time-space re-
gion. Single set of in-
put with no external
input (Table 5.2).

Output data &
Key performance
indicators
(§ 3.2.1.5)
(§ 4.2.1.5)
(§ 5.2.1.5,
 5.2.1.5.1,
5.2.1.5.2)

As listed in Table
3.2:
(a) Average time in
system
(b) Average waiting
time in queue
(c) Average number
(of entity) in queue

As listed in Table 4.6:
(a) Active mission time
Section A
(b) Active mission time
Section B
(c) Total elevation
climbed Section A
(d) Total elevation
climbed Section B

A total of 8 key per-
formance indicators
as listed in Table 5.3:
(a) Average time-in-
system per route (A
or F) per vehicle type
(car or truck)
(b) Average speed per
route (A or F) per ve-
hicle type (car or
truck)

State-trace Properties
Complete /Partial
model state-trace
generation
(§ 3.2.1.6)
(§ 4.2.1.6)
(§ 5.2.1.6)

Complete model
state-trace data

Partial model state-
trace data

Partial model state-
trace data

State variables
included in the
trace data
(§ 3.2.1.5)
(§ 4.2.1.5)
(§ 5.2.1.5)

The state-trace data
used in M/M/1 case
study contains the
list of variables state
variables such as
server_status and
queue_length (Figure
3.5).

Two experiment sets
designed with two dif-
ferent datasets for the
case study (for MC1
and MC2). Both of
these datasets contain
the speed variable from
the Section atomic
model and elevation

Two different datasets
are used for the short-
merge case study.
These datasets con-
tain the state variables
listed in Table 5.4.

158962 Tekinay BNW.indd 194158962 Tekinay BNW.indd 194 09-05-2022 15:4509-05-2022 15:45

183

variable from the Cell
atomic model (Table
4.7).

Contextual
variables included
(§ 3.2.1.5)
(§ 4.2.1.6)
(§ 5.2.1.6.1,
§ 5.2.4.2)

The contextual varia-
bles in M/M/1
model are
time_in_queue and
num_of_observations,
which are essential
for the calculation of
the key performance
measures listed in
Table 3.5.

In the first dataset (for
MC1), we included the
contextual variable
called movementIndicator
for both sections, indi-
cating whether a re-
ported event is a
movement event or
not for the corre-
sponding section.
In the second dataset
(for MC2), we also in-
cluded two additional
variables dis-
tanceToCheckpoint and
checkPointID for each
section.

The datasets for Ex-
periment ME2 con-
tain the additional
traffic intensity con-
textual variables listed
in Table 5.6.

The dataset for Ex-
periment ME3 in-
cludes the traffic in-
tensity variables that
are also in the first set
as well as additional
progress indicator
variables for each ve-
hicle.

Average trace length
(§ 3.2.4)
(§ 4.2.1.2)
(§ 5.2.1.3)

Fixed; warm-up pe-
riod is represented in
the state-trace data
with an initial state;
the case study inves-
tigated the effects of
state-trace length us-
ing traces with six
different lengths (Ta-
ble 3.9).

Not-fixed; the length
of a state-trace gener-
ated from a single run
is dependent on the
terminating condition
(Table 4.4). The aver-
age state-trace length
in the training and vali-
dation datasets (50
repetitions) are 652.20
and 654.28 state-trace
records, respectively.

Fixed; 7,200 state-
trace records (rows)

Pre-processing & Frequent Episode Mining Step Details
Binning strategy
(§ 3.2.2.1)
(§ 4.2.2.1)
(§ 5.2.2.1)

Mixed binning strat-
egy: (a) quantile-
based binning (dec-
ile) is used for the
elapsed_time and
time_in_queue varia-
bles, and (b) custom
binning strategy with
a minimum thresh-
old of 5% of scores
per bin for the
queue_length variable.

Fixed-width binning Fixed-width binning

6

158962 Tekinay BNW.indd 195158962 Tekinay BNW.indd 195 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 184

In sum, the presented research showed that our novel method is capable of automating

the abstraction of large-scale and complex discrete-event simulation models with large

state-spaces. The findings throughout this dissertation demonstrated that the method is

able to generate valid Markov Chains from the state-trace data of the base model and the

calculated output performance indicators from these Markov Chains have sufficient pre-

cision and accuracy.

6.2 Main Contributions

In this dissertation, we presented a novel frequent episode mining-based method for the

automated abstraction of discrete-event simulation models using state-trace data. By pre-

senting how concepts from the modeling and simulation and temporal data mining fields

Frequent episode
mining algorithm /
Algorithm
parameters /
Mining strategy

EMMA Algorithm:
Minsup: 1
Maxwin: 2

Mining at system
state level; each
state-trace record
(i.e., each row) con-
taining the full set of
system states is en-
coded as a single
positive integer
value.

EMMA Algorithm:
Minsup: 1
Maxwin: 2

Mining at system state
level; each state-trace
record (i.e., each row)
containing state varia-
bles of both tank pla-
toon sections is en-
coded as a single posi-
tive integer value.

EMMA Algorithm
with the addition of
the skip-length varia-
ble:

Minsup: 1
Maxwin: 2
Skip-length: 2,500

Mining at individual-
component state level;
each state-trace record
containing 2,500 vehi-
cle states is subdi-
vided into 2,500 data
sets, converting the
state-trace data with
7,200 rows to
18,000,000 rows. The
EMMA algorithm,
then, applied to the
subdivided data using
a skip-length of 2,500.

Transition
probability matrix
details

Single transition
probability matrix
containing the state-
transition probabili-
ties for all minsup=1
system state.

Two transition proba-
bility matrices gener-
ated/used for the ex-
periments MC1 and
MC2.

For experiments ME2
and ME3, 2,500 tran-
sition probability ma-
trices generated.

158962 Tekinay BNW.indd 196158962 Tekinay BNW.indd 196 09-05-2022 15:4509-05-2022 15:45

185

can be integrated, we contributed to an advanced understanding of how large scale and

complex simulation models can be abstracted automatically, and what tools and tech-

niques can be used in this process. Importantly, our research introduced a formal de-

scription of discrete-event simulation generated state-trace data and state-trace records

which help to properly position our method in the modeling and simulation literature.

Moreover, by presenting the detailed steps of our method and describing a range of con-

siderations and actions that modelers may face through diverse case studies, we demon-

strated how state-trace data and temporal data mining techniques may best be used for

models with different characteristics. The findings in this dissertation are not only of

scientific interest; they may also be valuable to modeling and simulation experts and de-

cision makers aiming to understand and capture the underlying behavior of large-scale

complex systems or data analysts working with big data that has similar characteristics as

state-trace data.

6.3 Directions for Future Research

The findings reported in this dissertation should be interpreted in light of several limita-

tions. Firstly, the focus of this research, in terms of the models of interest, was limited

to discrete-event simulations models. Other types of models may be included in future

research to test the applicability of our method to a broader range of simulation models.

Agent-based models, for example, may be an interesting candidate because the time ad-

vance in most agent-based models uses equidistant intervals. The discrete-event short-

merge model (Chapter 5) uses a similar time advance mechanism, in which the states of

individual vehicles were recalculated at (equidistant) 0.5-second intervals. Future work

may also reveal new considerations and actions for generating state-trace data from

agent-based models, which could help identifying behavioral patterns of agents from the

state-trace data.

Secondly, we chose Markov Chains to represent the abstracted models in our method

because its memoryless property is similar to that of discrete-event model states. More-

over, the state-transition probabilities of the base model represented in matrix format

correspond to the transition matrix of a discrete-time Markov Chain. However, Markov

Chains may have shortcomings due to the effect of repetitive drawing of probabilities,

6

158962 Tekinay BNW.indd 197158962 Tekinay BNW.indd 197 09-05-2022 15:4509-05-2022 15:45

 – Chapter 6 186

where the average time to reach a certain state might be correct, but the standard devia-

tions differ very much from the underlying data. From the perspective of automated

model abstraction, generation of abstract models from state-trace data using richer mod-

eling formalisms such as port-based DEVS or Petri nets can be an interesting future

research direction.

Thirdly, for this research we compared the performance of some of the popular frequent

episode mining techniques and concluded that the EMMA algorithm was best suited for

our method. However, the field of data mining and machine learning is rapidly expanding

and new methods, tools, and techniques are introduced in a fast pace. It is therefore

important that future modelers working with our method reevaluate the available algo-

rithms and select the one most suitable for their objectives.

Finally, this dissertation demonstrated the application of our method in three discrete-

event simulation case studies. Future research can explore our method's usability to other

industries and actual, real-life problems, such as, global supply chains, modern manufac-

turing systems, and power grids.

158962 Tekinay BNW.indd 198158962 Tekinay BNW.indd 198 09-05-2022 15:4509-05-2022 15:45

APPENDICES

158962 Tekinay BNW.indd 199158962 Tekinay BNW.indd 199 09-05-2022 15:4509-05-2022 15:45

 – Appendix A 188

Appendix A

A.1. Comparison of Frequent Episode Mining Algorithms

This chapter provides further details regarding the performance comparison of three

popular frequent episode mining algorithms: MINEPI (Mannila et al., 1997), MINEPI+

(Huang & Chang, 2008), and EMMA (Huang & Chang, 2008). For this comparison

study, we employed the SPMF open-source data mining library's Java implementations

of the three aforementioned frequent episode mining algorithms: MINEPI, MINEPI+,

and EMMA (Fournier-Viger et al., 2014; 2016). The SPMF library version was 2.41,

which was the most recent version at the time the experiments were carried out. We

devised four experiments in which we compared the minimum, maximum, and average exe-

cution times of each algorithm and the total candidate generated from their execution against

each other and for increasing file lengths (i.e., the number of rows): 5,000; 10,000; 25,000;

50,000. The algorithms are given the same input parameters of minsup of 1 and maxwin

of 2 to discover all unique serial episodes with length 1 and length 2 that appears at least

one time in the input data. These input parameters are also the parameters used for the

episode mining task of our proposed automated model abstraction method and the dis-

covered episodes corresponds to the unique state-trace records and state-trace record

pairs – i.e., state-transitions – in the state-trace data. For the first three experiments where

the input file lengths are 5,000; 10,000; 25,000, we obtained the results for each algorithm

by running them 50 times. However, for the fourth experiment, where we used an input

file with a length of 50,000, we limited the total number of runs to 20 for practical reasons

(i.e., the average runtime of the MINEPI algorithm to generate results for the given input

data set was close to one hour).

The results of all four experiments are presented in the below four tables: Table A.1.1,

A.1.2, A.1.3, and A.1.4. In addition to the comparison experiment results, Table A.1.5

provides an overview of the hardware specifications of the system used in the experi-

ments. Experiments revealed that the EMMA algorithm is consistently the fastest at find-

ing all unique state-trace records and consecutive state-trace record pairs from state-trace

data of varying length: 5,000; 10,000; 25,000 and 50,000 state-trace records. The differ-

ences in the total number of candidates generated are due to the different methods used

158962 Tekinay BNW.indd 200158962 Tekinay BNW.indd 200 09-05-2022 15:4509-05-2022 15:45

189

by each algorithm to count episode frequencies as described in (Huang & Chang, 2008).

While the total number of generated candidate episodes varies by algorithm, the number

of frequent episodes identified by each algorithm is the same. For the first experiment

shown in Table A.1.1, the number of frequent episodes identified by each algorithm is

5,061.

Table A.1.1. Comparison of total mining times and total candidate generated for state-trace
length 5,000 across 50 runs

 Minimum execu-
tion time (ms)

Maximum exe-
cution time (ms)

Average execu-
tion time (ms)

Total candidate
generated

MINEPI 97,686 103,672 99,722 1,158,273

MINEPI+ 341 377 355 8,867,867

EMMA 215 235 219 5,431,526

Table A.1.2. Comparison of total mining times and total candidate generated for state-trace
length 10,000

 Minimum execu-
tion time (ms)

Maximum execu-
tion time (ms)

Average execu-
tion time (ms)

Total candidate
generated

MINEPI 271,888 302,065 282,520 1,606,119

MINEPI+ 1,023 1,084 1,050 17,261,845

EMMA 514 538 521 10,508,160

Table A.1.3. Comparison of total mining times and total candidate generated for state-trace
length 25,000

 Minimum exe-
cution time (ms)

Maximum execu-
tion time (ms)

Average execu-
tion time (ms)

Total candidate
generated

MINEPI 1,045,615 1,439,626 1,212,278 2,043,308

MINEPI+ 4,451 5,014 4,544 35,054,252

EMMA 1,854 1,905 1,879 21,151,472

*

158962 Tekinay BNW.indd 201158962 Tekinay BNW.indd 201 09-05-2022 15:4509-05-2022 15:45

 – Appendix A 190

Table A.1.4. Comparison of total mining times and total candidate generated for state-trace
length 50,000

 Minimum exe-
cution time (ms)

Maximum execu-
tion time (ms)

Average execu-
tion time (ms)

Total candidate
generated

MINEPI 2,773,234 3,474,219 3,229,606 2,348,132

MINEPI+ 14,619 15,761 14,781 53,749,181

EMMA 4,651 4,806 4,730 32,260,032

Table A.1.5. An overview of the hardware specification of the system used in the experiments
Type Specifications

Processor Name Intel Core i5

Processor Speed 3.1 GHz

Number of Processors 1

Total Number of Cores 2

L2 Cache (per Core) 256 KB

L3 Cache 4 MB

RAM Type LPDDR3

RAM Size 2x4 GB

RAM Speed 2,133 MHz

A.2. EMMA Algorithm Input Format

The SPMF implementation (Fournier-Viger et al., 2014; 2016) of the EMMA algorithm

has five input parameters:

(I) An input text file, which contains preprocessed state-trace data

(II) The output file, which will eventually contain identified episodes and their

frequency counts

(III) Minimum support threshold (or minsup)

(IV) Maximum time duration or maximum window length

(V) A Boolean parameter indicating that the input data is ordered and each row

contains a sequence number incrementing by 1 when it is set to “false”.

158962 Tekinay BNW.indd 202158962 Tekinay BNW.indd 202 09-05-2022 15:4509-05-2022 15:45

191

For a given input data set, the output of the SPMF implementation of the EMMA algo-

rithm consists of two pieces of information: (a) the set of frequent episodes with support

no less than the given minsup parameter and with length smaller than or equal to the

maxwin parameter, and (b) the frequencies of these episodes. To sequentially process all

state-traces in the training data set, we introduced two user-defined parameters to the

EMMA implementation: (a) rangeFrom (initialization parameter) and (b) rangeTo (condi-

tion parameter).

*

158962 Tekinay BNW.indd 203158962 Tekinay BNW.indd 203 09-05-2022 15:4509-05-2022 15:45

 – Appendix B 192

Appendix B

This chapter provides details regarding the JAVA implementation of the MarkovModel

Class used by the case studies in Chapter 4, and 5 and the MATLAB implementation of

the MarkovChain used by the M/M/1 case study in Chapter 329.

B.1. Markov Chain: Java Implementation Details

After obtaining the transition probabilities, the next step is to represent these probabili-

ties in a sparse matrix format in order to generate the discrete-time Markov Chain's tran-

sition matrix P. Therefore, as shown in line 1, one of the input parameters for the Mar-

kovModel constructor given in Table B.1 is a sparseMatrix of the particular Markov

Chain. The sparseMatrix generated by the end of the frequent episode mining phase of

our automated model abstraction method contains three columns (line 20-22 in Table

B.1 reads these three columns): state i, state j, transitionProbabilities Pij. An example sparse-

Matrix containing some example data belonging to is given in Table B.2.

Table B.1. MarkovModel constructor

1
2
3
4
5
6
7
8
9
10
11
12
13
14

public MarkovModel(String directory, String sparseMatrixFilename)
 {
 try (BufferedReader sparseMatrixFile = new BufferedReader(new FileReader(direc-
tory + sparseMatrixFilename)))
 {
 String line;
 String[] parts;
 int s = 0;
 int t = 0;
 double p = 0.0;
 int source = -1;
 List<Double> probList = new ArrayList<>();
 List<Integer> targetList = new ArrayList<>();
 do

29 It should be noted that source code and data will become available as open data, and that the final thesis will
contain the link to all data used in the research.

158962 Tekinay BNW.indd 204158962 Tekinay BNW.indd 204 09-05-2022 15:4509-05-2022 15:45

 193

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

 {
 line = sparseMatrixFile.readLine();
 if (line != null)
 {
 parts = line.split("\t");
 s = Integer.parseInt(parts[0]);
 t = Integer.parseInt(parts[1]);
 p = Double.parseDouble(parts[2]);
 }
 if (line == null || s != source)
 {
 if (source != -1 || line == null)
 {
 int[] targetArray = new int[targetList.size()];
 double[] probArray = new double[probList.size()];
 double cumProb = 0.0;
 for (int i = 0; i < probArray.length; i++)
 {
 targetArray[i] = targetList.get(i);
 cumProb += probList.get(i);
 probArray[i] = cumProb;
 }
 probArray[probArray.length - 1] = 1.0;
 this.targetMap.put(source, targetArray);
 this.probMap.put(source, probArray);
 probList.clear();
 targetList.clear();
 }
 source = s;
 }
 targetList.add(t);
 probList.add(p);
 }
 while (line != null);
 sparseMatrixFile.close();

 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

*

158962 Tekinay BNW.indd 205158962 Tekinay BNW.indd 205 09-05-2022 15:4509-05-2022 15:45

 – Appendix B 194

Table B.2. Example sparseMatrix with states and transition probabilities
State i State j Transition Probability Pij

1 2 0.680

1 4 0.020

1 4683910 0.020

1 6186116 0.020

1 1108859 0.020

1 2563306 0.040

1 261035 0.040

1 261033 0.080

2 1108859 0.010

2 261033 0.069

2 261035 0.079

2 2 0.663

2 4 0.020

2 579758 0.040

2 4683910 0.020

2 861729 0.079

2 8125670 0.010

2 6186116 0.010

4 4 0.727

4 7 0.273

7 7 0.769

7 12 0.077

7 4026157 0.154

12 16 1.000

16 16 0.875

16 23 0.125

23 23 0.882

After the Markov Chain is constructed using the transition matrix, the next step is to

simulate the Markov Chain. The Table B.3 shows the code snippet of the run method

that performs the (stochastic) state walks. The method takes a unique Mersenne Twister

pseudo-RNG seed value, a repetition count and the initial state of the Markov Chain.

158962 Tekinay BNW.indd 206158962 Tekinay BNW.indd 206 09-05-2022 15:4509-05-2022 15:45

 195

Table B.3. run method of the Markov Chain that executes the state walks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

public List<Integer> run (final long seed, final long maxCount, int initialState)
 {
 List<Integer> outputStateList = new ArrayList<>();
 StreamInterface stream = new MersenneTwister(seed);
 int state = initialState;
 int count = 0;
 double[] probs;
 double rand;
 int nr;
 while (true)
 {
 outputStateList.add(state);
 probs = this.probMap.get(state);

 if (probs == null)
 {
 int lastIndex = outputStateList.size()-1;
 outputStateList.remove(lastIndex);
 break;
 }

 rand = stream.nextDouble();
 if (probs[0] == 0 || count >= maxCount)
 break;

 nr = 0;
 while (probs[nr] < rand)
 nr++;
 state = this.targetMap.get(Army)[nr];

 count++;
 }
 return outputStateList;
 }

*

158962 Tekinay BNW.indd 207158962 Tekinay BNW.indd 207 09-05-2022 15:4509-05-2022 15:45

 – Appendix B 196

B.2. Markov Chain: MATLAB Implementation Details

The creation and the simulation of the discrete-time Markov Chain (dtmc) used by the

M/M/1 case study in chapter 3 is implemented in MATLAB. We used the dtmc object

that comes with the Econometrics Toolbox30 of MATLAB (version R2018b) to create

the discrete-time, finite-state, time-homogeneous Markov chain from given state transi-

tion matrix. To simulate the random state walks of a generated dtmc, we used the simulate

function which comes with the same Econometrics Toolbox. The simulate function re-

turns state-trace data for each run in the form of random state walks for the following

input parameters: 1) the discrete-time Markov Chain mc, 2) random state-walk length

numSteps, 3) the initial state 'X0' of 4) simulation x0. The Table B.4 shows the code snippet

of the MarkovChain.m function which was the main program to perform Markov Chain

experiments for the M/M/1 case study.

The MarkovChain function takes the transition matrix, initial pseudo-RNG seed value

(e.g., 5001 for the M/M/1 case study), number of repetitions (e.g., 100 runs), a list of

stateNames (i.e., unique episodes with maxwin of 1 identified by the EMMA algorithm),

and the number of steps (i.e., the length of the state walk – 50,000 for the M/M/1 case

study). It can be seen from the code snippet that the mc discrete-time Markov Chain is

created in line 10 and simulated using the simulate function in line 17. Finally, the output

of the simulate function, which is a Markov Chain state-trace, is written to text file after

each run (line 26).

30 The Econometrics Toolbox of MATLAB: https://www.mathworks.com/products/econometrics.html

158962 Tekinay BNW.indd 208158962 Tekinay BNW.indd 208 09-05-2022 15:4509-05-2022 15:45

 197

Table B.4. MarkovChain.m MATLAB implementation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

function MarkovChain(transitionMatrix, initialSeed, numOfRep, stateNames, num-
Steps)
 numStepIndex = 1;
 for seed = initialSeed:(initialSeed + (numOfRep-1))

 rng(seed ,'twister'); % For reproducibility
 %assigning TM to P. Note that TM should be loaded to the memory.
 P = transitionMatrix;

 %creation of the mc discrete-time Markov Chain
 mc = dtmc(P, 'StateNames', stateNames);

 %setting the number of states vector with [1 0 0 0 ... 0]
 x0 = zeros(1, mc.NumStates);
 x0(1,1) = 1;

 %simulating the mc discrete-time markov chain
 X = simulate(mc,numSteps(1,numStepIndex),'X0',x0);

 X = X(X~=0); %only non-zero states (sparse matrix)
 L = length(X); %Length of each run
 %Markov Chain state-trace file name
 X_MC_name = strcat('MC_StateTrace_', num2str(numStepIndex,'%03.f'),'.txt');

 %writing the content of the state-trace to the file
 fid = fopen(X_MC_name, 'wt');
 dlmwrite(X_MC_name, X,'precision', 6);
 fclose(fid);

 numStepIndex = numStepIndex + 1;
 end %end of for loop
end %end function MarkovChain.m

*

158962 Tekinay BNW.indd 209158962 Tekinay BNW.indd 209 09-05-2022 15:4509-05-2022 15:45

– Appendix C 198

Appendix C

C.1. Short-merge Case Study State-Trace Metadata

This chapter provides further details on the reportState method implementation in Java

that was used in Chapter 5’s short-merge case study model to capture the state-trace

metadata, and the content of this state-trace metadata with the model reported model

variables, example values, and their descriptions. A state-trace metadata corresponds to

the source system in Klir’s GSPS (Klir, 1985) and contains the time-indexed trajectories

of model variables such as state-variables, run-statistics, contextual variables, and simu-

lation time needed for the possible set of model abstraction experiments to be per-

formed. The modeler can use the proposed method to select a subset of the state-trace

metadata and perform the automated model abstraction.

To iteratively identify and include new model variables such as state-variables, run-sta-

tistics, contextual variables, and simulation time to the short-merge model's state-trace

data for each new model abstraction experiment (e.g., addition of new variables to im-

prove model accuracy) is not an optimal strategy given the time it takes for a single run

to generate state-trace data from the short-merge model and the desired number of rep-

etitions (100). Instead, we generated a state-trace metadata set that includes a larger set

of model variables that may be necessary for the possible set of model abstraction ex-

periments. Then, we selected a subset of the columns from this meta state-trace data in

order to perform the case study in Chapter 5. Table C.1 below lists this larger set of

model variables31 generated from the execution of the short-merge model. The table

shows the name of the variables, example values, and their descriptions.

31 The vehicle-related variables (i.e., twenty variables per vehicle) are listed only for 2 vehicles as they repeat for
all 2,500 vehicles.

158962 Tekinay BNW.indd 210158962 Tekinay BNW.indd 210 09-05-2022 15:4509-05-2022 15:45

 199

Table C.1. State-trace metadata of the short-merge case study
Model variable Value Description
1. time
2. elapsedTime
3. nrVehiclesAB_d1
4. nrVehiclesAB_d2
5. nrVehiclesBC_d1
6. nrVehiclesBC_d2
7. nrVehiclesBC_d3
8. nrVehiclesCD_d1
9. nrVehiclesCD_d2
10. nrVehiclesDE_d1
11. nrVehiclesDE_d2
12. nrVehiclesF2B_d1
13. nrVehiclesAB
14. nrVehiclesBC
15. nrVehiclesCD
16. nrVehiclesDE
17. nrVehiclesF2B
18. avgSpeedACar_N
19. avgSpeedACar_Mean
20. avgSpeedACar_StDev
21. avgSpeedACar_Min
22. avgSpeedACar_Max
23. avgSpeedFCar_N
24. avgSpeedFCar_Mean
25. avgSpeedFCar_StDev
26. avgSpeedFCar_Min
27. avgSpeedFCar_Max
28. avgSpeedATruck_N
29. avgSpeedATruck_Mean
30. avgSpeedATruck_StDev
31. avgSpeedATruck_Min
32. avgSpeedATruck_Max
33. avgSpeedFTruck_N
34. avgSpeedFTruck_Mean
35. avgSpeedFTruck_StDev
36. avgSpeedFTruck_Min
37. avgSpeedFTruck_Max
38. modelTimeACar_N
39. modelTimeACar_Mean
40. modelTimeACar_StDev
41. modelTimeACar_Min
42. modelTimeACar_Max
43. modelTimeFCar_N
44. modelTimeFCar_Mean
45. modelTimeFCar_StDev
46. modelTimeFCar_Min
47. modelTimeFCar_Max
48. modelTimeATruck_N
49. modelTimeATruck_Mean
50. modelTimeATruck_StDev
51. modelTimeATruck_Min
52. modelTimeATruck_Max
53. modelTimeFTruck_N
54. modelTimeFTruck_Mean
55. modelTimeFTruck_StDev
56. modelTimeFTruck_Min
57. modelTimeFTruck_Max
58. nrVehiclesABForward1_nrVehicles
59. nrVehiclesABForward1_N
60. nrVehiclesABForward1_WeightedMean
61. nrVehiclesABForward1_WeightedStDev
62. nrVehiclesABForward1_Min
63. nrVehiclesABForward1_Max

3,599.5
0.5
30
67
1
3
0
1
0
21
27
1
97
4
1
48
1
1627
24.53
6.54
7.58
37.84
312
19.52
2.513
14.28
27.39
266
18.51
4.79
7.68
25.89
141
17.03
1.67
13.64
20.73
1627
133.64
55.91
77.73
387.68
312
87.74
10.73
61.56
118.10
266
173.75
61.91
113.31
381.53
141
99.47
9.79
80.93
122.99
30.0
7199
16.74
8.28
0.0
43.0

Absolute time
Delta time
Start glue option 1
|
| This contextual variable set indicates the
|number of cars on each lane. Through this
|value, average speed, acceleration and
| deceleration, as well as lane changes
| are influenced. The more cars, the lower
| the average speed, for instance.
|
End contextual variable set - option 1
Start contextual variable set - option 2
| Shorter version with #cars per link
| (all lanes combined)
| So #13 = #3 + #4 (97 = 30 + 67)
End contextual variable set - option 2
Start statistic #1
| Speed statistic of cars that left the
| model, for cars that started at the
| left side of the model.
End statistic #1
Start statistic #2
| Speed statistic of cars that left the
| model, for cars that started at the
| bottom side of the model.
End statistic #2
Start statistic #3
| Speed statistic of trucks that left the
| model, for trucks that started at the
| left side of the model.
End statistic #3
Start statistic #4
| Speed statistic of trucks that left the
| model, for trucks that started at the
| bottom side of the model.
End statistic #4
Start statistic #5
| Time-in-system of cars that left the
| model, for cars that started at the
| left side of the model.
End statistic #5
Start statistic #6
| Time-in-system of cars that left the
| model, for cars that started at the
| bottom side of the model.
End statistic #6
Start statistic #7
| Time-in-system of trucks that left the
| model, for trucks that started at the
| left side of the model.
End statistic #7
Start statistic #8
| Time-in-system of trucks that left the
| model, for trucks that started at the
| bottom side of the model.
End statistic #8
Start statistic #9
| Number of vehicles on AB lane 1
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #9

*

158962 Tekinay BNW.indd 211158962 Tekinay BNW.indd 211 09-05-2022 15:4509-05-2022 15:45

– Appendix C 200

64. nrVehiclesABForward2_nrVehicles
65. nrVehiclesABForward2_N
66. nrVehiclesABForward2_WeightedMean
67. nrVehiclesABForward2_WeightedStDev
68. nrVehiclesABForward2_Min
69. nrVehiclesABForward2_Max
70. nrVehiclesBCForward1_nrVehicles
71. nrVehiclesBCForward1_N
72. nrVehiclesBCForward1_WeightedMean
73. nrVehiclesBCForward1_WeightedStDev
74. nrVehiclesBCForward1_Min
75. nrVehiclesBCForward1_Max
76. nrVehiclesBCForward2_nrVehicles
77. nrVehiclesBCForward2_N
78. nrVehiclesBCForward2_WeightedMean
79. nrVehiclesBCForward2_WeightedStDev
80. nrVehiclesBCForward2_Min
81. nrVehiclesBCForward2_Max
82. nrVehiclesBCForward3_nrVehicles
83. nrVehiclesBCForward3_N
84. nrVehiclesBCForward3_WeightedMean
85. nrVehiclesBCForward3_WeightedStDev
86. nrVehiclesBCForward3_Min
87. nrVehiclesBCForward3_Max
88. nrVehiclesCDForward1_nrVehicles
89. nrVehiclesCDForward1_N
90. nrVehiclesCDForward1_WeightedMean
91. nrVehiclesCDForward1_WeightedStDev
92. nrVehiclesCDForward1_Min
93. nrVehiclesCDForward1_Max
94. nrVehiclesCDForward2_nrVehicles
95. nrVehiclesCDForward2_N
96. nrVehiclesCDForward2_WeightedMean
97. nrVehiclesCDForward2_WeightedStDev
98. nrVehiclesCDForward2_Min
99. nrVehiclesCDForward2_Max
100. nrVehiclesDEForward1_nrVehicles
101. nrVehiclesDEForward1_N
102. nrVehiclesDEForward1_WeightedMean
103. nrVehiclesDEForward1_WeightedStDev
104. nrVehiclesDEForward1_Min
105. nrVehiclesDEForward1_Max
106. nrVehiclesDEForward2_nrVehicles
107. nrVehiclesDEForward2_N
108. nrVehiclesDEForward2_WeightedMean
109. nrVehiclesDEForward2_WeightedStDev
110. nrVehiclesDEForward2_Min
111. nrVehiclesDEForward2_Max
112. nrVehiclesF2BForward1_nrVehicles
113. nrVehiclesF2BForward1_N
114. nrVehiclesF2BForward1_WeightedMean
115. nrVehiclesF2BForward1_WeightedStDev
116. nrVehiclesF2BForward1_Min
117. nrVehiclesF2BForward1_Max
118. gtuId
119. active_0
120. carTruck_0
121. laneId_0
122. lanePos_0
123. odometer_0
124. speed_0
125. acceleration_0
126. turnIndicator_0
127. brakingLights_0
128. distanceHalfSec_0
129. x_0
130. y_0
131. z_0

67.0
7199
32.35
20.40
0.0
87.0
1.0
7199
1.35
0.95
0.0
4.0
3.0
7199
2.04
1.10
0.0
5.0
0.0
7199
0.92
0.89
0.0
4.0
1.0
7199
0.17
0.37
0.0
1.0
0.0
7199
0.29
0.45
0.0
1.0
21.0
7199
14.51
4.15
0.0
25.0
27.0
7199
22.07
4.77
0.0
33.0
1.0
7199
2.75
1.69
0.0
9.0
0
0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Start statistic #10
| Number of vehicles on AB lane 2
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #10
Start statistic #11
| Number of vehicles on BC lane 1
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #11
Start statistic #12
| Number of vehicles on BC lane 2
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #12
Start statistic #13
| Number of vehicles on BC lane 3
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #13
Start statistic #14
| Number of vehicles on CD lane 1
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #14
Start statistic #15
| Number of vehicles on CD lane 2
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #15
Start statistic #16
| Number of vehicles on DE lane 1
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #16
Start statistic #17
| Number of vehicles on DE lane 2
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #17
Start statistic #18
| Number of vehicles on F2B lane 1
| nr = number at the moment,
| N = number of observations,
| mean, stdev, min, max are weighted stats
End statistic #18
GTU-based state generation start - Id# 0-2499
0 = inactive, 1 = active
car or truck; car = 0; truck = 1
lane of the reference point of the vehicle
position in meters from the start of the lane
odometer of vehicle in m (driven distance)
speed in m/s
acceleration in m/s2
turnindicator: 0 = off, 1 = left, 2 = right
braking lights off = 0, on = 1
driven distance in current half second
x position of vehicle
y position of vehicle
z position of vehicle

158962 Tekinay BNW.indd 212158962 Tekinay BNW.indd 212 09-05-2022 15:4509-05-2022 15:45

 201

132. dirZ_0
133. deltaX_0
134. deltaY_0
135. deltaZ_0
136. deltaLanePos_0
137. deltaOdometer_0
138. gtuId
139. active_1
140. carTruck_1
141. laneId_1
142. lanePos_1
143. odometer_1
144. speed_1
145. acceleration_1
146. turnIndicator_1
147. brakingLights_1
148. distanceHalfSec_1
149. x_1
150. y_1
151. z_1
152. dirZ_1
153. deltaX_1
154. deltaY_1
155. deltaZ_1
156. deltaLanePos_1
157. deltaOdometer_1
158. gtuId
159. active_2
160. carTruck_2
161. laneId_2
162. lanePos_2
163. odometer_2
164. speed_2
165. acceleration_2
166. turnIndicator_2
167. brakingLights_2
168. distanceHalfSec_2
169. x_2
170. y_2
171. z_2
172. dirZ_2
173. deltaX_2
174. deltaY_2
175. deltaZ_2
176. deltaLanePos_2
177. deltaOdometer_2

NA
NA
NA
NA
NA
NA
1
0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2
0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

z-rotation (orientation) of vehicle in rad.
deltaX position of vehicle
deltaY position of vehicle
deltaZ position of vehicle
deltalanePos on the lane of the vehicle
deltaOdometer of gtu (delta driven distance)
VEHICLE #1 STARTS HERE
| 20 fields for next vehicle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| END OF VEHICLE 1
VEHICLE #2 STARTS HERE
| 20 fields for next vehicle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| END OF VEHICLE 2

C.2. reportState Method Implementation

To generate the state-trace data shown in Table C.1, we implemented the reportState

method which is scheduled as a method call to be executed by the simulator at every 0.5

seconds delta time (line 97 in Table C.2). The complete code snippet of the reportState

method is given in Table C.2. In the code snippet, the lines 5-15 are responsible for the

reporting of the linkCapacity contextual variables discussed earlier in §5.2.3.1.2. The lines

17-35 reports the transient values of the run statistics for the short-merge model. The

lines 37-95 registers the state-variables for each vehicle until all 2,500 vehicle states are

*

158962 Tekinay BNW.indd 213158962 Tekinay BNW.indd 213 09-05-2022 15:4509-05-2022 15:45

– Appendix C 202

captured in the same row of the state-trace, separated by a tab character. Finally, the

reporter completes registering all model variables, moves to a new line and flushes the

writer (line 95 and 96) and schedules another method call to be executed at getSimula-

torTime()+relativeDuration, where the relativeDuration is 0.5 seconds.

Table C.2. The Java code snippet of the reportState method implemented in the short-merge
case study model
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

public void reportState() throws Exception
 {
 this.out.print(getSimulator().getSimulatorTime().si + "\t0.5");

 double[] ingested = new double[10];
 ingested[0] = this.nrVehiclesABForward1.ingest(this.net-
work.lanes.get("AB.FORWARD1").getGtuList().size());

 ingested[1] = this.nrVehiclesABForward2.ingest(this.net-
work.lanes.get("AB.FORWARD2").getGtuList().size());
 ingested[2] = this.nrVehiclesBCForward1.ingest(this.net-
work.lanes.get("BC.FORWARD1").getGtuList().size());
 ingested[3] = this.nrVehiclesBCForward2.ingest(this.net-
work.lanes.get("BC.FORWARD2").getGtuList().size());
 ingested[4] = this.nrVehiclesBCForward3.ingest(this.net-
work.lanes.get("BC.FORWARD3").getGtuList().size());
 ingested[5] = this.nrVehiclesCDForward1.ingest(this.net-
work.lanes.get("CD.FORWARD1").getGtuList().size());
 ingested[6] = this.nrVehiclesCDForward2.ingest(this.net-
work.lanes.get("CD.FORWARD2").getGtuList().size());
 ingested[7] = this.nrVehiclesDEForward1.ingest(this.net-
work.lanes.get("DE.FORWARD1").getGtuList().size());
 ingested[8] = this.nrVehiclesDEForward2.ingest(this.net-
work.lanes.get("DE.FORWARD2").getGtuList().size());
 ingested[9] =this.nrVehiclesF2BForward1.ingest(this.net-
work.lanes.get("F2B.FORWARD1").getGtuList().size());

 for (SimTally.TimeDoubleUnit tally : this.statTallyArray)
 {
 this.out.print("\t" + tally.getN());
 this.out.print("\t" + tally.getSampleMean());
 this.out.print("\t" + tally.getSampleStDev());
 this.out.print("\t" + tally.getMin());
 this.out.print("\t" + tally.getMax());
 }

158962 Tekinay BNW.indd 214158962 Tekinay BNW.indd 214 09-05-2022 15:4509-05-2022 15:45

 203

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

 int i = 0;
 for (SimPersistent.TimeDoubleUnit persistent : this.statPersistentArray)
 {
 this.out.print("\t" + ingested[i++]);
 this.out.print("\t" + persistent.getN());
 this.out.print("\t" + persistent.getWeightedSampleMean());
 this.out.print("\t" + persistent.getWeightedSampleStDev());
 this.out.print("\t" + persistent.getMin());
 this.out.print("\t" + persistent.getMax());
 }

 for (int gtuId = 0; gtuId < NUM_GTUS; gtuId++)
 {
 LaneBasedIndividualGtu gtu = (LaneBasedIndividualGtu) this.network.getGtuByIdMap().get(gtuId);
 this.out.print("\t" + gtuId);
 this.out.print("\t" + (gtu == null ? "0" : "1"));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.getGTUType().getId().equals("car") ? "0" : "1"));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.getReferencePosition().getLane().getFullId()));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.getReferencePosition().getPosition().si));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.getOdometer().si));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.getSpeed().si));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.getAcceleration().si));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.getTurnIndicatorStatus().ordinal()));
 this.out.print("\t" + (gtu == null ? "NA" : gtu.isBrakingLightsOn() ? "1" : "0"));

 this.out.print("\t" + (gtu == null ? "NA" : gtu.getOperationalPlan().getTotalLength().si));
 OrientedPoint3d pos = gtu == null ? null : gtu.getLocation();
 this.out.print("\t" + (gtu == null ? "NA" : pos.x));
 this.out.print("\t" + (gtu == null ? "NA" : pos.y));
 this.out.print("\t" + (gtu == null ? "NA" : pos.z));
 this.out.print("\t" + (gtu == null ? "NA": pos.getDirZ()));
 LastGtuRecord last = this.network.getLastGtu(gtuId);
 String dx = last != null ? String.valueOf(pos.x - last.x) : "NA";
 this.out.print("\t" + dx);
 String dy = last != null ? String.valueOf(pos.y - last.y) : "NA";
 this.out.print("\t" + dy);
 String dz = last != null ? String.valueOf(pos.z - last.z) : "NA";
 this.out.print("\t" + dz);
 String dLP = "NA";
 if (last != null)
 {
 try
 {
 if (last.firstLane.length() == 0)
 {
 last.firstLane = gtu.getReferencePosition().getLane().getFullId();

*

158962 Tekinay BNW.indd 215158962 Tekinay BNW.indd 215 09-05-2022 15:4509-05-2022 15:45

– Appendix C 204

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108

 }
 if (gtu.getReferencePosition().getLane().getFullId().equals(last.lastLane))
 {
 dLP = String.valueOf(gtu.getReferencePosition().getPosition().si - last.lastLaneX);
 }
 }
 catch (GtuException exception)
 {
 exception.printStackTrace();
 }
 }
 this.out.print("\t" + dLP);
 String dOdo = last != null ? String.valueOf(gtu.getOdometer().si - last.odo) : "NA";
 this.out.print("\t" + dOdo);
 if (gtu != null && last != null)
 {
 last.x = pos.x;
 last.y = pos.y;
 last.z = pos.z;
 last.lastLane = gtu.getReferencePosition().getLane().getFullId();
 last.lastLaneX = gtu.getReferencePosition().getPosition().si;
 last.odo = gtu.getOdometer().si;
 }
 }

 this.out.println();
 this.out.flush();
 getSimulator().scheduleEventRel(Duration.instantiateSI(0.5), this, this, "reportState", null);
 }

158962 Tekinay BNW.indd 216158962 Tekinay BNW.indd 216 09-05-2022 15:4509-05-2022 15:45

SUMMARY / SAMENVATTING

158962 Tekinay BNW.indd 217158962 Tekinay BNW.indd 217 09-05-2022 15:4509-05-2022 15:45

206 – Summary

Summary

Large-scale complex systems are characterized by a large number of interconnected var-

iables and a diverse set of interactions. As the demand for the development and optimi-

zation of large-scale systems is growing, so does the need for better techniques to under-

stand their underlying dynamic behavior and predict and manage their long-term perfor-

mance. With the increased capabilities of computer technology, we have been able to run

simulation models for these systems that are larger in scale and higher in complexity.

While these advancements have enabled more accurate representations of real-world sys-

tems, the ever-increasing scale and complexity of simulation models may eventually result

in models that are too complex to work with – giving rise to large-scale complex simulation

models.

Large-scale complex simulation models raise new questions and challenges for the mod-

eling and simulation community, including how models of such large scale and complex-

ity can be expressed and modeled more efficiently, how to ensure that their representa-

tions of the underlying systems' complex dynamic behavior are valid, and what tools and

techniques can be used to do so. Model abstraction is a strategy for dealing with the scale

and complexity of large-scale complex simulation models. However, traditional model

abstraction methods such as metamodeling and multiresolution modeling are limited in

their ability to automate the model abstraction process.

A more viable approach for automating the model abstraction and preserving the under-

lying dynamic behavior for large-scale complex simulation models, specifically discrete-

event simulation models, may be model abstraction at the transformation level (also re-

ferred to as generative system level or the state transition level). Abstraction at the trans-

formation level can be achieved using state-trace data that encapsulate the model's dy-

namic behavior. State-trace data describe the dynamic behavior of the model at discrete

points in time, allowing modelers to capture the state-transitions of the model over the

runtime. The state-trace data can be expressed as event sequences or multivariate time

series consisting of categorical variables, numerical variables, or both. As such, state-trace

data can be used to discover behavioral patterns relevant to the desired level of

158962 Tekinay BNW.indd 218158962 Tekinay BNW.indd 218 09-05-2022 15:4509-05-2022 15:45

207

abstraction. Assuming a morphism relation between a pair of system specifications at the

state-transition level, a valid correspondence relation (mapping) can be established be-

tween the base model’s (i.e., the more detailed system specification) and the lumped

model’s (i.e., the abstracted system specification) state-transitions, where the lumped

model uses these previously discovered behavioral patterns as aggregated states.

However, traces of state-transitions obtained from the runs of large-scale complex sim-

ulation models can get extensive in terms of their volume (the size of the trace data and

the number of state variables to be sampled from different model components) and va-

riety (the number of unique states). This consequently confines modelers’ ability to iden-

tify and utilize state trace patterns for model abstraction. Data mining and machine learn-

ing methods have been designed to ease the process of discovering frequent patterns in

temporal data. Although such methods have proven to be useful for recognizing behav-

ioral patterns within large volumes of data, they have not yet been applied to automate

the abstraction of large-scale complex discrete-event simulation models. This would re-

quire techniques that not only identify important behavioral patterns in state-trace data,

but also generate aggregated states at various abstraction levels to construct models at a

higher level of abstraction. Integrating the fields of modelling and simulation and tem-

poral data mining may provide a promising direction to deal with the automated abstrac-

tion of large-scale complex simulation models.

In this dissertation, we aim to investigate to what extent the abstraction of large-scale

complex simulation models, specifically the discrete-event simulation models expressed

in DEVS formalism, can be automated using their state-trace data. In order to achieve

this objective, we designed a method that integrates the fields of modeling and simulation

and temporal data mining by utilizing state-trace data and applying frequent episode min-

ing techniques to discover behavioral patterns. We demonstrated the practical applica-

tion of our method using three simulation case studies with increasing scale and com-

plexity and with different model characteristics.

In DEVS, the next state can be determined solely by knowing the current state and the

time elapsed (i.e., memoryless). Consequently, the dynamic behavior of a DEVS model

encapsulated in state-trace data can be simplified by applying frequent episode mining

algorithms to identify frequent state-trace record pairs corresponding to the model’s

*

158962 Tekinay BNW.indd 219158962 Tekinay BNW.indd 219 09-05-2022 15:4509-05-2022 15:45

208 – Summary

state-transitions. The resulting simplified model can subsequently be formally described

using Markov Chain. The memoryless property of Markov Chain states is akin to the

discrete-event model states in DEVS and the state-transition probabilities represented in

matrix format is the transition matrix of a valid stochastic discrete-time Markov Chain.

To determine the best performing frequent episode mining algorithm for the state-trace

data generated by the execution of discrete-event simulation models, we compared sev-

eral popular frequent episode mining algorithms, such as MINEPI, MINEPI+, and

EMMA. Experiment results (Appendix A) revealed that, at the time of our research,

EMMA is the fastest frequent episode mining algorithm in finding all unique state-trace

records and consecutive state-trace record pairs from state-trace data of varying lengths.

In Chapter 3, we first provided a formal description of discrete-event simulation gener-

ated state-trace data and state-trace record, which is essential for a unified understanding

of these concepts and to properly position our method in the modeling and simulation

literature. Subsequently, we presented a breakdown of our method and discussed a range

of considerations at each step that are essential for generating a valid abstraction of the

base model. In essence, the quality of the behavioral patterns discovered by the temporal

data mining techniques, and therefore, the success of our method to automate the gen-

eration of valid model abstractions, is highly dependent on the state-trace data generated

by the base models – the large-scale complex discrete-event simulation models. There-

fore, the first step of our proposed method is to addresses the considerations and actions

regarding the generation of state-trace data from the discrete-event simulations. We dis-

cussed that there are several factors the modeler needs to consider before deciding on

the content of the state-trace data and its generation from the simulation of discrete-

event simulation models: representation of time, type of model (stochastic vs. deterministic), type of

simulation (terminating vs. non-terminating), inclusion of input data, inclusion of output data, and

complete vs. partial model state-trace data. In Chapter 3, we closely followed the guidelines

provided for each consideration by our method and demonstrated the step-by-step gen-

eration of the data using a simple M/M/1 single-server queueing model. Similarly, we

generated state-trace data from the simulation of the battlefield model in Chapter 4 and

the traffic model in Chapter 5.

158962 Tekinay BNW.indd 220158962 Tekinay BNW.indd 220 09-05-2022 15:4509-05-2022 15:45

209

After the generation of state-trace data from the base model, the next step of our method

is the application of the frequent episode mining algorithm for the task of discovering

serial state-transitions and generating the transition probability matrix P of the discrete-

time Markov Chain. We identified several considerations regarding the application of the

temporal data mining tasks to the state-trace data such as the preprocessing of the state-trace

data, the application of the EMMA algorithm, and the construction of the transition matrix. For the

preprocessing of the state-trace data, we provided guidance to the modelers on several

important sub-considerations such as how to address the input format requirements of

the EMMA algorithm, how to apply different quantization techniques to deal with a large

range of values for state variables in the state trace, and how to format the state-trace

data when performing model abstraction at the system state level and at the model com-

ponent level. After preprocessing the state-trace data, the EMMA algorithm is applied to

construct the transition matrices represented as sparse matrices and generate the Markov

Chains. For the M/M/1 and battlefield case studies, we demonstrated the application of

EMMA algorithm and the generation of Markov Chains at system-state level. For the

larger and more complex traffic case study (in Chapter 5), we introduced a skip factor

variable to the EMMA algorithm by means of a preprocessing transformation to the

state-trace data to identify transition probabilities at model-component level, and thus,

construct unique transition matrices for each individual vehicle in the traffic system.

After obtaining the Markov Chain, the next step in our method is to design Markov

Chain simulation experiments with multiple runs (using unique Random Number Gen-

erator seeds for each run) and to generate state-trace data from these runs. We demon-

strated the difference between simulating the Markov Chain of terminating base models

and non-terminating base models. In a non-terminating Markov Chain (Chapters 3 and

5), similar to a non-terminating discrete-event simulation, an artificial end-condition

should be introduced to terminate the run of the Markov Chain model. However, for the

terminating battlefield model in Chapter 4, we demonstrated that the accuracy of the

represented terminating behavior of the base model can be problematic (i.e., models may

not converge towards the end state) in the absence of absolute time as a state variable in

the state-trace data. On the other hand, the representation of absolute simulation time

would introduce monotonously increasing values in the state-trace data, which will

*

158962 Tekinay BNW.indd 221158962 Tekinay BNW.indd 221 09-05-2022 15:4509-05-2022 15:45

210 – Summary

undermine the ability of the frequent episode mining algorithms to find recurring pat-

terns. To overcome this issue and accurately represent the terminating behavior, contex-

tual variables that provide the progression over time should be included, albeit without

adding monotonously increasing values to each state record.

Once the state-trace data are generated from the Markov Chain, the final step of our

proposed method is to evaluate the accuracy and validity of the abstracted Markov Chain.

To do so, the Markov Chain generated state-trace data is compared with an independent

state-trace validation set obtained from the base model. In this dissertation, key statistics

and performance measures obtained from the original model’s validation sets and the

abstracted Markov Chains-generated state-trace data were compared using descriptive

(e.g., spread measures, histograms, box and whisker plots) and inferential statistics (e.g.,

𝜒𝜒2-test, Student’s t-test, two-sample Kolmogorov-Smirnov). The results obtained from

the three case studies, and specifically their validation process, demonstrated that our

method is able to obtain Markov Chain estimates of performance measures with an ac-

ceptable level of precision that do not significantly deviate from and follow a similar

distribution as the original model’s validation set. We also argued that it is of great im-

portance for the modeler to not solely rely on p-values to judge the accuracy of the base

model’s representation but also evaluate descriptive statistics as well as the magnitude of

the difference, that is, Markov Chains’ estimates should be considered within the context

of the system of interest and the goals of the model abstraction study. For instance, in

the traffic case study (Chapter 5), the Student’s t-test results indicated that the car and

truck mean speeds generated from the Markov Chain differed significantly from the

mean speeds obtained from the base model for Route F; however, the absolute mean

difference was insignificantly small given the nature of the case study. Similarly, the re-

sults of the 𝜒𝜒2-test in Chapter 3 illustrated that a large sample size may result in a signif-

icant difference between the two distributions (a known problem with significance test-

ing based on p-values), even though the Cramer’s V effect size and graphical visualiza-

tions suggested that the magnitude of this difference was very small.

Finally, the results in this dissertation revealed that increasing the model’s resolution by

increasing the quantization levels of the variables (e.g., the number of bins) alone does

not improve the accuracy of the model in the absence of relevant contextual variables.

158962 Tekinay BNW.indd 222158962 Tekinay BNW.indd 222 09-05-2022 15:4509-05-2022 15:45

211

In fact, the results of the battlefield case study (Chapter 4) showed that the presence of

contextual variables is important for the accurate representation of the terminating be-

havior of the base model, and specifically, for obtaining run-lengths that are sufficiently

close to the base model’s run-length. Similarly, in the traffic case study (Chapter 5), our

validation study highlighted how essential the contextual variables are for the accuracy

of the Markov Chain when representing the stochastic behavior (e.g., the generation of

the traffic stream) of the base model. Experiments indicated that the average number of

vehicles generated (across all runs) by the Markov Chains with the additional contextual

variables got closer to the base model’s numbers than the Markov Chains without those

additional contextual variables.

In sum, the presented research showed that our novel method is capable of automating

the abstraction of large-scale and complex discrete-event simulation models with large

state-spaces. Although the process can be fully automated, some decisions, such as which

state variables and contextual variables to be included and what quantization levels to be

used, will benefit from support by modelers who understand the simulation model and

the context in which the model is to be used. The findings throughout this dissertation

demonstrated that the method is able to generate valid Markov Chains from the base

model’s state-trace data that adequately represent the dynamic behavior of the base

model and estimate its key performance measures with sufficient precision and accuracy.

Moreover, by presenting a sequence of clear steps and decisions for our method and

addressing a range of considerations that modelers may face, we demonstrated how state-

trace data and temporal data mining techniques may best be applied to automatically

abstract simulation models with different characteristics.

*

158962 Tekinay BNW.indd 223158962 Tekinay BNW.indd 223 09-05-2022 15:4509-05-2022 15:45

212 – Samenvatting

Samenvatting

Grootschalige complexe systemen worden gekenmerkt door een groot aantal variabelen

en hun diverse relaties en interacties. Naarmate de vraag naar de ontwikkeling en opti-

malisatie van grootschalige systemen toeneemt, groeit ook de behoefte aan betere tech-

nieken om het onderliggende dynamische gedrag en de langetermijnprestaties te kunnen

begrijpen, voorspellen en beïnvloeden. Vanwege hun omvang en complexiteit is het ech-

ter vaak te moeilijk of te duur om rechtstreeks met grootschalige complexe systemen te

experimenteren. Derhalve zijn modellen nodig die de complexiteit van deze systemen

kunnen afbeelden, maar die wel praktisch zijn om mee te werken. Een bruikbare en ef-

fectieve methode om grootschalige complexe systemen te kunnen analyseren en evalue-

ren is simulatie. Dankzij de toegenomen mogelijkheden van de computertechnologie zijn

we in staat om simulatiemodellen van steeds grotere schaal en hogere complexiteit te

ontwikkelen. Hoewel hierdoor veel vooruitgang is geboekt in het nauwkeurig represen-

teren van real-world systemen, kan de alsmaar groeiende schaal en complexiteit van zowel

de systemen als hun simulatiemodellen ertoe leiden dat uiteindelijk ook de simulatiemo-

dellen zelf te complex worden om mee te werken – resulterend in grootschalige complexe

simulatiemodellen.

Grootschalige complexe simulatiemodellen werpen nieuwe vragen en uitdagingen op

voor modelleurs en simulatiedeskundigen, zoals de vraag hoe modellen van een derge-

lijke grote schaal en complexiteit op een effectieve en efficiënte wijze kunnen worden

afgebeeld, hoe kan worden gewaarborgd dat de representatie van het complexe dynami-

sche gedrag van de onderliggende systemen valide is, en welke instrumenten en tech-

nieken hiervoor kunnen worden gebruikt. Een van de strategieën om met grootschalige

complexe simulatiemodellen om te gaan is het abstraheren van modellen (model abstrac-

tion). Traditionele modelabstractiemethoden (bijvoorbeeld metamodellering en multire-

solutiemodellering) zijn echter beperkt in hun mogelijkheden om het abstractieproces te

automatiseren, terwijl handmatige abstractie van grootschalige complexe simulatiemo-

dellen op structuurniveau – zoals de meeste conventionele modelabstractiemethoden

158962 Tekinay BNW.indd 224158962 Tekinay BNW.indd 224 09-05-2022 15:4509-05-2022 15:45

213

doen – vaak niet haalbaar is gezien het grote en diverse aantal modelcomponenten en

hun onderlinge relaties.

Een wellicht meer haalbare benadering voor het automatisch abstraheren van grootscha-

lige complexe simulatiemodellen, met name discrete-event simulatiemodellen, is modelab-

stractie op niveau van de transformaties (theoretisch overeenkomstig met het generatief

systeemniveau dat zich richt op de toestandsovergangen of state-transitions). Abstractie op

transformatieniveau kan worden gerealiseerd door gebruik te maken van state-trace data

die het dynamische gedrag van het model representeren. State-trace data beschrijven de

opeenvolgende toestandsovergangen van het model op discrete tijdstippen, waardoor

modelleurs de geschiedenis van een simulatierun kunnen vastleggen en inzicht krijgen in

hoe complexe verschijnselen zich in de tijd ontwikkelen. State-trace data kunnen worden

uitgedrukt als reeksen van gebeurtenissen (event sequences) of multivariate tijdreeksen be-

staande uit categorische variabelen, numerieke variabelen of een combinatie daarvan.

Zodoende kunnen state-trace data worden gebruikt om gedragspatronen te ontdekken die

relevant zijn voor het gewenste abstractieniveau. Uitgaande van een morfisme tussen

twee systeemspecificaties op het transformatieniveau, kan een valide relatie (mapping)

worden bepaald tussen de toestandsovergangen van het basismodel (d.w.z. de meer ge-

detailleerde systeemspecificatie) en die van het geclusterde model (d.w.z. de geabstra-

heerde systeemspecificatie), waarbij het geclusterde model deze eerder ontdekte gedrags-

patronen als geaggregeerde toestanden gebruikt.

Een beperking in het gebruik van state-trace data voor modelabstractie is dat state-trace data

die verkregen zijn uit de runs van grootschalige complexe simulatiemodellen, zeer om-

vangrijk kunnen worden in zowel volume (de omvang van de trace data en het aantal

toestandsvariabelen van verschillende modelcomponenten) als variëteit (het aantal

unieke toestanden). Dit maakt het lastig voor modelleurs om frequente patronen in deze

data te identificeren en te gebruiken voor modelabstractie. Datamining- en machine lear-

ning-methoden zijn ontworpen om het ontdekken van frequente patronen in temporele

datasets te vergemakkelijken. Hoewel dergelijke methoden nuttig zijn gebleken voor het

herkennen van patronen in grote hoeveelheden data, zijn ze tot op heden nog niet toe-

gepast voor het automatiseren van de abstractie van grootschalige complexe discrete-event

simulatiemodellen. Dit zou technieken vereisen die niet alleen belangrijke

*

158962 Tekinay BNW.indd 225158962 Tekinay BNW.indd 225 09-05-2022 15:4509-05-2022 15:45

214 – Samenvatting

gedragspatronen in state-trace data identificeren, maar ook de geaggregeerde toestanden

kunnen genereren om modellen op een hoger abstractieniveau te construeren. Het inte-

greren van concepten en technieken vanuit de simulatie en de temporele datamining kan

daarom een veelbelovende oplossingsrichting bieden voor het automatiseren van de ab-

stractie van grootschalige complexe simulatiemodellen.

In dit proefschrift onderzoeken we in hoeverre de abstractie van grootschalige complexe

simulatiemodellen, specifiek discrete-event simulatiemodellen beschreven volgens het

DEVS-formalisme, kan worden geautomatiseerd met behulp van hun state-trace data.

Hiertoe hebben we een methode ontwikkeld waarbij frequent episode mining-technieken

worden toepast op state-trace data met het doel gedragspatronen te ontdekken. We de-

monstreren de praktische toepasbaarheid van onze methode aan de hand van drie case-

studies met simulatiemodellen van toenemende omvang en complexiteit en met verschil-

lende eigenschappen.

Kenmerkend voor DEVS is dat toekomstige toestanden enkel afhangen van de huidige

toestand en de verstreken tijd (m.a.w., er is geen “geheugen” nodig). Dit betekent dat het

dynamisch gedrag van een DEVS-model, samengevat in de state-trace data, vereenvoudigd

kan worden door frequent episode mining-algoritmen toe te passen op opeenvolgende paren

van toestandsovergangen van het model. Het resulterende vereenvoudigde model kan

vervolgens formeel worden beschreven met een Markov Chain. De geheugenloze eigen-

schap van Markov Chain toestanden komt overeen met die van de discrete-event toestanden

in een DEVS-model. De matrix met overgangskansen van opeenvolgende toestanden

van een DEVS-model vormt de basis voor de overgangsmatrix van een stochastische

discrete-time Markov Chain.

Om te bepalen welk frequent episode mining algoritme het beste presteert voor het identifi-

ceren van frequente toestandsovergangen in de state-trace data van discrete-event simulatie-

modellen, hebben we verschillende populaire algoritmen vergeleken, waaronder

MINEPI, MINEPI+ en EMMA. Uit de resultaten van deze vergelijking (zie Appendix

A) blijkt dat het EMMA-algoritme ten tijde van het onderzoek het snelst was in het vin-

den van alle unieke state-trace records en opeenvolgende state-trace record-paren uit state-trace

datasets met verschillende omvang.

158962 Tekinay BNW.indd 226158962 Tekinay BNW.indd 226 09-05-2022 15:4509-05-2022 15:45

215

 In Hoofdstuk 3 hebben we eerst een formele beschrijving gepresenteerd van door dis-

crete-event simulatie gegenereerde state-trace data en state-trace records, daar dit essentieel is

voor een eenduidig begrip van deze concepten en voor het correct positioneren van onze

methode in de simulatieliteratuur. Vervolgens hebben we onze methode stap-voor-stap

uiteengezet en een reeks overwegingen besproken die essentieel zijn voor het genereren

van een valide abstractie van het basismodel.

In wezen is de kwaliteit van de gedragspatronen die worden ontdekt door toepassing van

de temporele dataminingtechnieken, en daarmee het succes van onze methode om het

abstraheren van grootschalige complexe simulatiemodellen te automatiseren, in hoge

mate afhankelijk van de state-trace data die door de basismodellen worden gegenereerd.

De eerste stap in onze methode is dan ook om een aantal overwegingen en keuzes te

bespreken met betrekking tot het genereren van state-trace data uit de discrete-event simula-

tie. Er zijn verschillende factoren waarmee de modelleur rekening moet houden voordat

hij/zij een beslissing neemt over de inhoud van de state-trace data en de manier waarop

deze worden gegenereerd. Belangrijke factoren en keuzes zijn de weergave van tijd, het

type model (stochastisch versus deterministisch), het type simulatie (eindigend versus

niet-eindigend), het meenemen van input data, het meenemen van output data, en het

abstraheren van de volledige state-trace data of van een subset. In Hoofdstuk 3 hebben we

de richtlijnen voor elk van deze overwegingen secuur beschreven en de abstractie van

een simulatiemodel op basis van de state-trace data gedemonstreerd aan de hand van een

eenvoudig M/M/1 single-server wachtrijmodel. Op eenzelfde wijze hebben we state-trace

data gegenereerd uit de simulatie van een militaire oefening in Hoofdstuk 4 en een ver-

keersmodel in Hoofdstuk 5.

De volgende stap in onze methode is de toepassing van het frequent episode mining-algo-

ritme op de uit het basismodel verkregen state-trace data om opeenvolgende toestands-

overgangen te identificeren en een overgangsmatrix P van de discrete-time Markov Chain

te genereren. Voor deze stap hebben we diverse aandachtspunten geïdentificeerd voor

de voorbewerking van de state-trace data, de toepassing van het EMMA-algoritme en de

constructie van de overgangsmatrix. Voor de voorbewerking van de state-trace data zijn

richtlijnen beschreven voor de eisen aan de invoer voor het EMMA-algoritme, het toe-

passen van verschillende kwantisatietechnieken wanneer de toestandsvariabelen een

*

158962 Tekinay BNW.indd 227158962 Tekinay BNW.indd 227 09-05-2022 15:4509-05-2022 15:45

216 – Samenvatting

groot waardenbereik hebben, en het afbeelden van de state-trace data voor het uitvoeren

van abstractie op systeemniveau versus abstractie op modelcomponentniveau. Na het

voorbewerken van de state-trace data kan het EMMA-algoritme worden toegepast om een

overgangsmatrix te genereren en een Markov Chain te construeren. De M/M/1 (Hoofd-

stuk 3) en militaire (Hoofdstuk 4) casestudies demonstreren de toepassing van het

EMMA-algoritme en het genereren van Markov Chains op systeemniveau. Voor het gro-

tere en complexere verkeersmodel (Hoofdstuk 5) hebben we via voorbewerking van de

state-trace data eerst een zogenaamde skip-factor in het EMMA-algoritme geïntroduceerd

om overgangskansen op modelcomponentniveau te kunnen identificeren, en zodoende

unieke overgangsmatrices te construeren voor elk afzonderlijk voertuig in het verkeers-

systeem.

Na het construeren van de Markov Chain is de volgende stap in de methode het ontwer-

pen van simulatie-experimenten met het Markov Chain model die bestaan uit meerdere

runs (gebruikmakend van unieke seeds voor de toevalsgetalgenerator voor iedere run),

en het genereren van state-trace data uit deze runs. In dit proefschrift hebben we het ver-

schil laten zien tussen het simuleren van Markov Chains van eindigende basismodellen

en niet-eindigende basismodellen. Voor een niet-eindigende Markov Chain (Hoofdstuk-

ken 3 en 5), vergelijkbaar met een niet-eindigende discrete-event simulatie, moet een

kunstmatige eindconditie worden geïntroduceerd om de run van de Markov Chain te

beëindigen. In Hoofdstuk 4, waar we onze methode demonstreren aan de hand van een

eindigend model voor een militaire oefening, hebben we laten zien dat de nauwkeurig-

heid van het terminerend gedrag van een basismodel problematisch kan zijn (d.w.z. dat

modellen mogelijk niet convergeren naar de eindtoestand) als absolute tijd niet wordt

meegenomen als toestandsvariabele in de state-trace data. Helaas zou het opnemen van

absolute simulatietijd monotoon oplopende waarden in de state-trace data introduceren,

wat het vermogen van het frequent episode mining-algoritme om terugkerende patronen te

vinden ondermijnt. Om dit probleem op te lossen en het eindigende gedrag nauwkeurig

te representeren, moeten contextuele variabelen worden opgenomen die de progressie in

tijd weergeven, echter zonder een reeks monotoon oplopende waarden voor elk state

record te introduceren.

158962 Tekinay BNW.indd 228158962 Tekinay BNW.indd 228 09-05-2022 15:4509-05-2022 15:45

217

Wanneer de state-trace data van de Markov Chain modelruns zijn verkregen, is de laatste

stap in de methode het evalueren van de nauwkeurigheid en validiteit van de geabstra-

heerde Markov Chain. Hiertoe worden state-trace data die gegenereerd zijn uit de Markov

Chain vergeleken met een onafhankelijke state-trace validatieset verkregen uit het basis-

model. In dit proefschrift hebben we statistieken en prestatie-indicatoren van beide mo-

dellen (de set afkomstig uit de geabstraheerde Markov Chain en de validatieset van het

basismodel) vergeleken aan de hand van beschrijvende statistische technieken (bijv.

spreidingsmaten, histogrammen, boxplots) en inferentiële statistische technieken (bijv.

χ2-test, Student's t-toets, Kolmogorov-Smirnov toets). De resultaten van de drie casestu-

dies, en specifiek hun validatieproces, toonden aan dat onze methode in staat is om met

een aanvaardbaar precisieniveau Markov Chain-schattingen van prestatie-indicatoren te

genereren die niet significant afwijken van, en een vergelijkbare verdeling volgen als, de

validatieset van het basismodel. Het onderzoek geeft aan dat het van groot belang is dat

de modelleur niet alleen op p-waarden vertrouwt om de nauwkeurigheid van het geab-

straheerde model te beoordelen, maar daarnaast ook beschrijvende statistieken en effect-

groottes evalueert om te beoordelen hoe betekenisvol eventuele afwijkingen zijn. Met

andere woorden, de schattingen van de Markov Chain moeten altijd worden beschouwd

binnen de context van het gesimuleerde systeem en de doelen van de abstractiestudie. In

het verkeersmodel (Hoofdstuk 5) lieten de resultaten van de t-toets bijvoorbeeld zien dat

de gemiddelde snelheden voor voertuigen op Route F verkregen uit de Markov Chain

significant verschilden van de gemiddelde snelheden verkregen uit het basismodel. Ech-

ter, het absolute gemiddelde verschil was onbeduidend klein. Evenzo illustreerden de

resultaten van de χ2-test in Hoofdstuk 3 hoe een grote steekproefomvang kan leiden tot

een significant verschil tussen de twee distributies (een bekend probleem met significan-

tietoetsen op basis van p-waarden), ondanks dat de Cramer's V-effectgrootte en grafische

visualisaties aangaven dat de omvang van dit verschil erg klein was.

Tenslotte lieten de bevindingen in dit proefschrift zien dat het verhogen van de resolutie

van het model door enkel een hoger kwantisatieniveau (bijvoorbeeld een groter aantal

bins) toe te passen niet resulteert in een verbeterde nauwkeurigheid wanneer relevante

contextuele variabelen in het model ontbreken. In de militaire casestudie (Hoofdstuk 4)

bleek dat de aanwezigheid van contextuele variabelen belangrijk is voor een accurate

*

158962 Tekinay BNW.indd 229158962 Tekinay BNW.indd 229 09-05-2022 15:4509-05-2022 15:45

218 – Samenvatting

representatie van het terminerend gedrag van het basismodel, in het bijzonder voor het

verkrijgen van runlengten die voldoende overeenkomen met de runlengten van het ba-

sismodel. Op eenzelfde wijze liet de verkeerscasestudie (Hoofdstuk 5) zien hoe essentieel

contextuele variabelen zijn voor het nauwkeurig abstraheren van stochastisch gedrag in

het basismodel (bijv. de generatie van de verkeersstroom). Experimenten toonden aan

dat schattingen van het aantal voertuigen gegenereerd door Markov Chains met extra

contextuele variabelen dichterbij die van het basismodel lagen dan schattingen van

Markov Chains zonder deze extra contextuele variabelen.

Samenvattend heeft het onderzoek gepresenteerd in dit proefschrift laten zien dat onze

nieuwe methode in staat is om de abstractie van grootschalige en complexe discrete-

event simulatiemodellen met grote toestandsruimten te automatiseren. Hoewel het pro-

ces volledig kan worden geautomatiseerd, zullen sommige beslissingen, zoals welke toe-

standsvariabelen en contextuele variabelen moeten worden opgenomen en welke kwanti-

satieniveaus moeten worden gebruikt, baat hebben bij ondersteuning door modelleurs

die het simulatiemodel en de context waarin het model moet worden gebruikt begrijpen.

De bevindingen in dit proefschrift hebben aangetoond dat de methode in staat is om uit

de state-trace data van het basismodel valide Markov Chains te genereren die het dyna-

misch gedrag van het basismodel adequaat weergeven en de belangrijkste prestatie-indi-

catoren van het basismodel met voldoende precisie en nauwkeurigheid schatten. Door

de methode te structureren volgens een helder stappenplan en een reeks overwegingen

te behandelen waarmee modelleurs te maken kunnen krijgen, hebben we bovendien aan-

getoond hoe state-trace data en temporele dataminingtechnieken het best kunnen worden

toegepast om simulatiemodellen met verschillende karakteristieken automatisch te ab-

straheren.

158962 Tekinay BNW.indd 230158962 Tekinay BNW.indd 230 09-05-2022 15:4509-05-2022 15:45

REFERENCES

158962 Tekinay BNW.indd 231158962 Tekinay BNW.indd 231 09-05-2022 15:4509-05-2022 15:45

220 – References

References

Ackoff, R. L., & Emery, F. E. (1972). On purposeful systems. Aldine-Atherton.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases.
In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th International Conference
on Very Large Data Bases (pp. 487–499).
https://dl.acm.org/doi/10.5555/645920.672836

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings of the Eleventh International
Conference on Data Engineering, 3–14. https://doi.org/10.1109/ICDE.1995.380415

Alavi, M., Carlson, P., & Brooke, G. (1989). The ecology of MIS Research: A twenty year status
review. In J. I. DeGross, J. C. Henderson, & B. R. Konsynski (Eds.), Proceedings of the
Tenth International Conference on Information Systems (pp. 363–375).
https://doi.org/10.1145/75034.75065

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communincations of the ACM,
26(11), 832–843. https://doi.org/10.1145/182.358434

Anderson, P. W. (1972). More is different. Science, 177(4047), 393.
https://doi.org/10.1126/science.177.4047.393

Anderson, T. W., & Goodman, L. A. (1957). Statistical Inference about Markov Chains. The
Annals of Mathematical Statistics, 28(1), 89-110.
https://doi.org/10.1214/aoms/1177707039

Ao, X., Luo, P., Li, C., Zhuang, F., & He, Q. (2015). Online frequent episode mining. 2015 Inter-
national Conference on Data Engineering, 891–902. IEEE.
https://doi.org/10.1109/ICDE.2015.7113342

Arthur, J., Sargent, R., Dabney, J., Law, A., & Morrison, J. D. (1999). Verification and validation:
What impact should project size and complexity have on attendant V&V activities and
supporting infrastructure? In P. A. Farrington, H. B. Nembhard, D. T. Sturrock, & G.
W. Evans (Eds.), 1999 Winter Simulation Conference Proceedings (pp. 148–155). IEEE.
https://doi.org/10.1109/WSC.1999.823064

Astrup, R., Coates, K. D., & Hall, E. (2008). Finding the appropriate level of complexity for a
simulation model: An example with a forest growth model. Forest Ecology and
Management, 256(10), 1659–1665. https://doi.org/10.1016/j.foreco.2008.07.016

Atluri, G., Karpatne, A., & Kumar, V. (2018). Spatio-temporal data mining: A survey of
problems and methods. ACM Computing Surveys, 51(4), 1–41.
https://doi.org/10.1145/3161602

Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a
simulation study. Annals of Operations Research, 53(1), 121–173.
https://doi.org/10.1007/BF02136828

158962 Tekinay BNW.indd 232158962 Tekinay BNW.indd 232 09-05-2022 15:4509-05-2022 15:45

221

Balci, O. (1997). Verification validation and accreditation of simulation models. In S.
Andradóttir, K. J. Healy, D. H. Withers, & B. L. Nelson (Eds.), 1997 Winter Simulation
Conference Proceedings (pp. 135–141). https://doi.org/10.1145/268437.268462

Balci, O., Ball, G. L., Morse, K. L., Page, E., Petty, M. D., Tolk, A., & Veautour, S. N. (2017).
Model reuse, composition, and adaptation. In R. Fujimoto, C. Bock, W. Chen, E. Page,
& J. H. Panchal (Eds.), Research challenges in modeling and simulation for engineering complex
systems (pp. 87–115). Springer. https://doi.org/10.1007/978-3-319-58544-4_6

Balci, O., Ormby, W. F., Carr, J. T., & Saadi, S. D. (2000). Planning for verification, validation,
and accreditation of modeling and simulation applications. In J. A. Joines, R. R.
Barton, K. Kang, & P. A. Fishwick (Eds.), 2000 Winter Simulation Conference Proceedings
(pp. 829–839). IEEE. https://doi.org/10.1109/WSC.2000.899881

Banks, J. (1998). Principles of simulation. In J. Banks (Ed.), Handbook of simulation (pp. 1–30).
John Wiley & Sons. https://doi.org/10.1002/9780470172445.ch1

Banks, J., & Carson, J. S. (1984). Discrete-event system simulation. Prentice-Hall.

Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. (2010). Discrete-event system simulation (5th ed.).
Pearson.

Barton, R. R. (1992). Metamodels for simulation input-output relations. In J. J. Swain, D.
Goldsman, R. C. Crain, & J. R. Wilson (Eds.), 1992 Winter Simulation Conference
Proceedings (pp. 289–299). https://doi.org/10.1145/167293.167352

Barton, R. R. (2015). Tutorial: Simulation metamodeling. In L. Yilmaz, W. K. V. Chan, I. Moon,
T. M. K. Roeder, C. Macal, & M. D. Rossetti (Eds.), 2015 Winter Simulation Conference
Proceedings (pp. 1765–1779). https://doi.org/10.1109/wsc.2015.7408294

Benabdellah, A. C., Benghabrit, A., & Bouhaddou, I. (2019). A survey of clustering algorithms
for an industrial context. Procedia Computer Science, 148, 291-302. Elsevier.
https://doi.org/10.1016/j.procs.2019.01.022

Berkhin, P. (2006). A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, & M.
Teboulle (Eds.), Grouping multidimensional data: Recent advances in clustering (pp. 25–71).
Springer. https://doi.org/10.1007/3-540-28349-8_2

Bhat, U. N. (2008). Simple Markovian queueing systems. In U. N. Bhat (Ed.), An introduction to
Queueing Theory (pp. 37–83). Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-
4725-4_4

Biller, B., & Gunes, C. (2010). Introduction to simulation input modeling. In B. Johansson, S.
Jain, J. Montoya-Torres, J. Hugan, & E. Yücesan (Eds.), 2010 Winter Simulation
Conference Proceedings (pp. 49–58). https://dl.acm.org/doi/10.5555/2433508.2433517

Birta, L. G., & Özmizrak, F. N. (1996). A knowledge-based approach for the validation of
simulation models: The foundation. ACM Transactions on Modeling and Computer
Simulation, 6(1), 76–98. https://doi.org/10.1145/229493.229511

Boardman, J., & Sauser, B. (2008). Systems Thinking: Coping with 21st century problems. CRC Press.

*

158962 Tekinay BNW.indd 233158962 Tekinay BNW.indd 233 09-05-2022 15:4509-05-2022 15:45

222 – References

Buyya, R., Broberg, J., & Goscinski, A. (2011). Cloud computing: Principles and paradigms. Wiley.
https://doi.org/10.1002/9780470940105

Carothers, C., Ferscha, A., Fujimoto, R., Jefferson, D., Loper, M., Marathe, M., Mosterman, P.,
Taylor, S. J. E., & Vakilzadian, H. (2017). Computational Challenges in Modeling and
Simulation. In R. Fujimoto, C. Bock, W. Chen, E. Page, & J. H. Panchal (Eds.),
Research challenges in modeling and simulation for engineering complex systems (pp. 45–74).
Springer. https://doi.org/10.1007/978-3-319-58544-4_4

Cash, J., & Nunamaker, J. (1989). The information systems research challenge, Vol I: Qualitative research
methods. Harvard Business School Press.

Cash, J., & Nunamaker, J. (1990). The information systems research challenge, Vol II: Qualitative research
methods. Harvard Business School Press.

Cash, J., & Nunamaker, J. (1991). The information systems research challenge, Vol III: Qualitative research
methods. Harvard Business School Press.

Castro, R., Kofman, E., & Wainer, G. (2010). A formal framework for stochastic discrete event
system specification modeling and simulation. SIMULATION, 86(10), 587–611.
https://doi.org/10.1177/0037549709104482

Cellier, F. E. (1991). General system problem solving paradigm for qualitative modeling. In P. A.
Fishwick & P. A. Luker (Eds.), Qualitative simulation modeling and analysis (pp. 51–71).
Springer. https://doi.org/10.1007/978-1-4613-9072-5_3

Cha, S., & Srihari, S. N. (2002). On measuring the distance between histograms. Pattern
Recognition, 35(6), 1355–1370. https://doi.org/10.1016/S0031-3203(01)00118-2

Chapela-Campa, D., Mucientes, M., & Lama, M. (2019). Mining frequent patterns in process
models. Information Sciences, 472, 235–257.

Chen, W., & Hirschheim, R. (2004). A paradigmatic and methodological examination of
information systems research from 1991 to 2001. Information Systems Journal, 14(3), 197–
235. https://doi.org/10.1111/j.1365-2575.2004.00173.x

Chow, A. C. H., & Zeigler, B. P. (1994). Parallel DEVS: A parallel, hierarchical, modular,
modeling formalism. In J. D. Tew, S. Manivannan, D. A. Sadowski, & A. F. Seila
(Eds.), 1994 Winter Simulation Conference Proceedings (pp. 716–722). IEEE.
https://doi.org/10.1109/WSC.1994.717419

Chwif, L., Barretto, M. R. P., & Paul, R. J. (2000). On simulation model complexity. In J. A.
Joines, R. R. Barton, K. Kang, & P. A. Fishwick (Eds.), 2000 Winter Simulation
Conference Proceedings (pp. 449–455). IEEE. https://doi.org/10.1109/WSC.2000.899751

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.).
Sage Publications.

Darema F. (2004) Dynamic data driven applications systems: A new paradigm for application
simulations and measurements. In M. Bubak, G. D. van Albada, P. M. A. Sloot, & J.
Dongarra (Eds.), Computational Science - ICCS 2004 4th International Conference (pp. 662–
669). Springer. https://doi.org/10.1007/978-3-540-24688-6_86

158962 Tekinay BNW.indd 234158962 Tekinay BNW.indd 234 09-05-2022 15:4509-05-2022 15:45

223

Das, G., Lin, K.-I., Mannila, H., Renganathan, G., & Smyth, P. (1998). Rule discovery from time
series. In R. Agrawal & P. Stolorz (Eds.), KDD'98: Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining (pp. 16–22).
https://dl.acm.org/doi/10.5555/3000292.3000296

Davis, P. K., & Bigelow, J. H. (1998). Experiments in multiresolution modeling (MRM). RAND.
https://www.rand.org/content/dam/rand/pubs/monograph_reports/2007/MR1004.
pdf

Davis, P. K., & Bigelow, J. H. (2003). Motivated metamodels: Synthesis of cause-effect reasoning and
statistical metamodeling. RAND.
https://www.rand.org/content/dam/rand/pubs/monograph_reports/2005/MR1570.
pdf

Davis, P. K., & Tolk, A. (2007). Observations on new developments in composability and multi-
resolution modeling. In S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew,
& R. R. Barton (Eds.), 2007 Winter Simulation Conference Proceedings (pp. 859–870).
https://dl.acm.org/doi/10.5555/1351542.1351697

Dennis, J. B. (2011). Petri Nets. In D. Padua (Ed.), Encyclopedia of parallel computing (pp. 1525–
1530). Springer. https://doi.org/10.1007/978-0-387-09766-4_134

Department of the Army. (2019). Tank Platoon (ATP 3-20.15). Army Techniques Publication.
https://armypubs.army.mil/ProductMaps/PubForm/Details.aspx?PUB_ID=1007320

Deslandres, V., & Pierreval, H. (1991). An expert system prototype assisting the statistical
validation of simulation models. SIMULATION, 56(2), 79–89.
https://doi.org/10.1177/003754979105600204

Dodge, Y. (2008). The conscise encyclopedia of statistics. Springer.

dos Santos Garcia, C., Meincheim, A., Faria Junior, E. R., Dallagassa, M. R., Sato, D. M. V.,
Carvalho, D. R., Santos, E. A. P., & Scalabrin, E. E. (2019). Process mining techniques
and applications – A systematic mapping study. Expert Systems with Applications, 133,
260–295. Elsevier. https://doi.org/10.1016/j.eswa.2019.05.003

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of
continuous features. In A. Prieditis & S. Russell (Eds.), Machine Learning Proceedings 1995
(pp. 194–202). Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-377-
6.50032-3

Dunham, M. H. (2002). Data mining: Introductory and advanced topics. Prentice Hall.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. In E. Simoudis, J. Han, & U. Fayyad
(Eds.), KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (pp. 226–231). https://dl.acm.org/doi/10.5555/3001460.3001507

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996a). From data mining to knowledge
discovery: An overview. AI Magazine, 17(3), 37–54.
https://doi.org/10.1609/aimag.v17i3.1230

*

158962 Tekinay BNW.indd 235158962 Tekinay BNW.indd 235 09-05-2022 15:4509-05-2022 15:45

224 – References

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996b). The KDD process for extracting useful
knowledge from volumes of data. Communications of the ACM, 39(11), 27–34.
https://doi.org/10.1145/240455.240464

Field, A. (2013). Discovering Statistics using IBM SPSS Statistics (5th ed.). Sage Publications.

Filip, F.-G., & Leiviskä, K. (2009). Large-scale complex systems. In S. Y. Nof (Ed.), Springer
Handbook of Automation (pp. 619–638). Springer. https://doi.org/10.1007/978-3-540-
78831-7_36

Fishman, G. S. (1973). Concepts and methods in discrete event digital simulation. Wiley.

Fishwick, P. A. (1986). Hierarchical reasoning: Simulating complex processes over multiple levels of abstraction
[Doctoral dissertation, University of Pennsylvania, US].

Fishwick, P. A. (1988). Role of process abstraction in simulation. IEEE Transactions on Systems,
Man, and Cybernetics, 18(1), 18–39. https://doi.org/10.1109/21.87052

Fishwick, P. A. (1989). Abstraction level traversal in hierarchical modeling. In B. P. Zeigler , M.
Elzas, & T. Oren (Eds.), Modelling and simulation methodology: Knowledge systems paradigms
(pp. 393–429). Elsevier.

Flood, R. L., & Carson, E. (1993). Dealing with complexity: An introduction to the theory and application of
systems science. Springer.

Fournier-Viger, P., Lin, J. C.-W., Truong-Chi, T., & Nkambou, R. (2019). A survey of high utility
itemset mining. In P. Fournier-Viger, J. C.-W. Lin, R. Nkambou, B. Vo, & V. S. Tseng
(Eds.), High-utility pattern mining: Theory, algorithms and applications (pp. 1–45). Springer.
https://doi.org/10.1007/978-3-030-04921-8_1

Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.-W., & Tseng, V. (2014).
SPMF: A java open-source pattern mining library. Journal of Machine Learning Research.
15(1). 3389–3393. https://dl.acm.org/doi/10.5555/2627435.2750353

Fournier-Viger, P., Lin, J. C.-W., Gomariz, A., Soltani, A., Deng, Z., & Lam, H. T. (2016). The
SPMF open-source data mining library version 2. In B. Berendt, B. Bringmann, É.
Fromont, G. Garriga, P. Miettinen, N. Tatti, & V. Tresp (Eds.), Machine Learning and
Knowledge Discovery in Databases European Conference ECML PKDD 2016, (pp. 36-40).
Springer. https://doi.org/10.1007/978-3-319-46131-1_8

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., & Koh, Y. S. (2017). A survey of sequential
pattern mining. Data Science and Pattern Recognition, 1 (1), 54-77.

Fournier-Viger, P., Yang, Y., Yang, P., Lin, J. C.-W., & Yun, U. (2020). TKE: Mining Top-K
frequent episodes. In H. Fujita, P. Fournier-Viger, M. Ali, & J. Sasaki (Eds.), IEA/AIE
2020: Trends in artifical intelligence theory and applications. Artificial Intelligence Practices. Vol.
12144 (pp. 832–845). Springer. https://doi.org/10.1007/978-3-030-55789-8_71

Frantz, F. K. (1995). A taxonomy of model abstraction techniques. In C. Alexopoulos & K.
Kang (Eds.), 1995 Winter Simulation Conference Proceedings (pp. 1413–1420).
https://doi.org/10.1145/224401.224834

158962 Tekinay BNW.indd 236158962 Tekinay BNW.indd 236 09-05-2022 15:4509-05-2022 15:45

225

Fu, T.C. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence,
24(1), 164-181. https://doi.org/10.1016/j.engappai.2010.09.007

Fujimoto, R. M. (2001). Parallel and distributed simulation systems. In B. A. Peters, J. S. Smith,
D. J. Medeiros, & M. W. Rohrer (Eds.), 2001 Winter Simulation Conference Proceedings (pp.
147–157). IEEE. https://doi.org/10.1109/WSC.2001.977259

Fujimoto, R. M. (2015). Parallel and distributed simulation. In L. Yilmaz, W. K. V. Chan, I.
Moon, T. M. K. Roeder, C. Macal, & M. D. Rossetti (Eds.), 2015 Winter Simulation
Conference Proceedings (pp. 45–59). https://dl.acm.org/doi/10.5555/2888619.2888624

Fujimoto, R. M. (2016). Research challenges in parallel and distributed simulation.
ACM Transactions on Modeling and Computer Simulation, 26(4), Article 22.
https://doi.org/10.1145/2866577

Gaines, B. R. (1979). General systems research: quo vadis? General Systems, 24, 1–9.

Galliers, R. (1991). Choosing appropriate information systems research approaches: A revised
taxonomy. In Nissen, H.-E., Klein, H. K. , & Hirschheim, R. (Eds.), Contemporary
approaches and emerging traditions (pp. 327–345). Elsevier.

Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., & Yu, P. S. (2019). A survey of parallel
sequential pattern mining. ACM Transactions on Knowledge Discovery from Data, 13(3), 1–
34. https://doi.org/10.1145/3314107

Giambiasi, N., & Frydman, C. (2014). Timed synchronizing sequences. DEVS’14: Proceedings of
the Symposium on Theory of Modeling & Simulation - DEVS Integrative, Article 21.
https://dl.acm.org/doi/10.5555/2665008.2665029

Gionis, A., & Mannila, H. (2003). Finding recurrent sources in sequences. Proceedings of the Seventh
Annual International Conference on Research in Computational Molecular Biology, 123–130.
https://doi.org/10.1145/640075.640091

Goodarzi, M., Freitas, M. P., & Jensen, R. (2009). Feature selection and linear/nonlinear
regression methods for the accurate prediction of glycogen synthase kinase-3β
inhibitory activities. Journal of Chemical Information and Modeling, 49(4), 824–832.
https://doi.org/10.1021/ci9000103

Grossmann, W., & Rinderle-Ma, S. (2015). Fundamentals of Business Intelligence. Springer.
https://doi.org/10.1007/978-3-662-46531-8

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Morgan
Kaufmann.

Hand, D. J., Smyth, P., & Mannila, H. (2001). Principles of data mining. MIT Press.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining,
inference, and prediction. Springer. https://doi.org/10.1007/978-0-387-84858-7

Henriksen, J. O. (2008). Taming the complexity dragon. Journal of Simulation, 2(1), 3–17.
https://doi.org/10.1057/palgrave.jos.4250029

*

158962 Tekinay BNW.indd 237158962 Tekinay BNW.indd 237 09-05-2022 15:4509-05-2022 15:45

226 – References

Hester, P. T., & Collins, A. (2012). Mathematical applications for combat modeling. In A. Tolk
(Ed.), Engineering principles of combat modeling and distributed simulation (pp. 385–412). Wiley.
https://doi.org/10.1002/9781118180310.ch18

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647

Hitchins, D. K. (2008). Systems engineering: A 21st century systems methodology. John Wiley & Sons.
https://doi.org/10.1002/9780470518762

Hoad, K., Robinson, S., & Davies, R. (2010). Automated selection of the number of replications
for a discrete-event simulation. Journal of the Operational Research Society, 61(11), 1632–
1644. https://doi.org/10.1057/jors.2009.121

Hofmann, M. A. (2004). Criteria for decomposing systems into components in modeling and
simulation: Lessons learned with military simulations. SIMULATION, 80(7-8), 357–
365. https://doi.org/10.1177/0037549704049876

Holland, J. H. (1996). Hidden order: How adaptation builds complexity. Addison Wesley Longman
Publishing.

Holland, J. H. (2000). Emergence: From chaos to order. Oxford University Press.

Honig, H. J., & Seck, M. (2012). ΦDEVS: phase based discrete event modeling. Proceedings of the
2012 Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium,
Article 39. https://dl.acm.org/doi/10.5555/2346616.2346655

Howe, C. (2002). How to Research, 2nd edition by Loraine Blaxter, Christina Hughes &
Malcolm Tight, Open University Press, Buckingham, 2001. Journal of Advanced Nursing,
37(1), 116–116. https://doi.org/10.1046/j.1365-2648.2002.2089f.x

Hu, X., Zeigler, B. P., & Mittal, S. (2005). Variable structure in DEVS component-based
modeling and simulation. SIMULATION, 81(2), 91–102.
https://doi.org/10.1177/0037549705052227

Huang, K.-Y., & Chang, C.-H. (2008). Efficient mining of frequent episodes from complex
sequences. Information Systems, 33(1), 96–114.
https://doi.org//10.1016/j.is.2007.07.003

Huang, L., Chen, H., Wang, X., & Chen, G. (2000). A fast algorithm for mining association rules.
Journal of Computer Science and Technology, 15(6), 619–624.
https://doi.org/10.1007/BF02948845

Jacobs, P. (2005). The DSOL simulation suite: Enabling multi-formalism simulation in a
distributed context [Doctoral dissertation, Delft University of Technology].
http://resolver.tudelft.nl/uuid:4c5586e2-85a8-4e02-9b50-7c6311ed1278

Jacobs, P., & Verbraeck, A. (2006). Mastering D-SOL: A Java based suite for simulation. Delft
University of Technology, Faculty of Technology, Policy and Management, Systems
Engineering Group, Delft. Retrieved from
https://simulation.tudelft.nl/files/tutorial/tutorial_1.6_20060828.pdf

158962 Tekinay BNW.indd 238158962 Tekinay BNW.indd 238 09-05-2022 15:4509-05-2022 15:45

227

Kailath, T. (1967). The divergence and Bhattacharyya distance measures in signal selection.
IEEE Transactions on Communication Technology, 15(1), 52–60.
https://doi.org/10.1109/TCOM.1967.1089532

Kantardzic, M. (2011). Data mining: Concepts, models, methods, and algorithms. John Wiley & Sons.

Keirstead, J., Jennings, M., & Sivakumar, A. (2012). A review of urban energy system models:
Approaches, challenges and opportunities. Renewable and Sustainable Energy Reviews,
16(6), 3847–3866. https://doi.org/10.1016/j.rser.2012.02.047

Kemper, P., & Tepper, C. (2007). Automated analysis of simulation traces - Separating progress
from repetitive behavior. Fourth International Conference on the Quantitative Evaluation of
Systems (QEST 2007), 101-110. https://doi.org/10.1109/QEST.2007.41

Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis
by the method of the imbedded Markov Chain. The Annals of Mathematical Statistics,
24(3), 338–354. https://doi.org/10.1214/aoms/1177728975

Keogh, E., Chu, S., Hart, D., & Pazzani, M. (2004). Segmenting time series: A survey and novel
approach, Data Mining in Time Series Databases, 57, 1–21.
https://doi.org/10.1142/9789812565402_0001

Kim, B. S., Kang, B. G., Choi, S. H., & Kim, T. G. (2017). Data modeling versus simulation
modeling in the big data era: Case study of a greenhouse control system.
SIMULATION, 93(7), 579–594. https://doi.org/10.1177/0037549717692866

Kiviat, P. J. (1967). Digital computer simulation: Modeling concepts. RAND.
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2006/RM537
8.pdf

Kiviat, P. J. (1969). Digital computer simulation: Computer programming languages. RAND.
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2006/RM588
3.pdf

Kleijnen, J. P. C. (1984). Statistical analysis of steady-state simulations: Survey of recent progress.
European Journal of Operational Research, 17(2), 150–162. https://doi.org/10.1016/0377-
2217(84)90229-7

Kleijnen, J. P. C. (1987). Statistical tools for simulation practitioners. Marcel Dekker.

Kleijnen, J. P. C. (2015). Design and analysis of simulation experiments (2nd ed.). Springer.
https://doi.org/10.1007/978-3-319-18087-8

Kleijnen, J. P. C. (2017). Design and analysis of simulation experiments: Tutorial. In A. Tolk, J.
Fowler, G. Shao, & E. Yücesan (Eds.), Advances in modeling and simulation: Seminal research
from 50 years of Winter Simulation Conferences (pp. 135–158). Springer.
https://doi.org/10.1007/978-3-319-64182-9_8

Klir, G. J. (1985). Architecture of systems problem solving. Springer. https://doi.org/10.1007/978-1-
4757-1168-4

Klir, G. J. (2001). Systems knowledge. In G. J. Klir (Ed.), Facets of systems science: Second edition (pp.
123–134). Springer. https://doi.org/10.1007/978-1-4615-1331-5_7

*

158962 Tekinay BNW.indd 239158962 Tekinay BNW.indd 239 09-05-2022 15:4509-05-2022 15:45

228 – References

Klir, G. J., & Elias, D. (2012). Architecture of systems problem solving. Springer.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2007). Data preprocessing for supervised
leaning. World Academy of Science, Engineering and Technology, International Journal of Computer
and Information Engineering, 1, 4091–4096. doi.org/10.5281/zenodo.1082415

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical
Statistics, 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694

Kwon, Y., Park, H., Jung, S., & Kim, T. (1996). Fuzzy-DEVS formalism: Concepts, realization
and applications. Proceedings of AIS, 227–234.

L’Ecuyer, P., Meliani, L., & Vaucher, J. (2003). SSJ: A framework for stochastic simulation in
Java. In E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes (Eds.), 2002 Winter
Simulation Conference Proceedings (pp. 234–242). IEEE.
https://doi.org/10.1109/WSC.2002.1172890

Lane, D. (2006). Hierarchy, complexity, society. In D. Pumain (Ed.), Hierarchy in natural and social
sciences (pp. 81-119). Springer. https://doi.org/10.1007/1-4020-4127-6_5

Lang, N. A., Jacobs, P. H., & Verbraeck, A. (2003). Distributed open simulation model
development with DSOL services. In A. Verbraeck, & V. Hlupic (Eds.), Simulation in
Industry - 15th European Simulation Symposium 2003 (pp. 210–218) SCS-European
Publising House.

Lantz, B. (2013). The large sample size fallacy. Scandinavian Journal of Caring Sciences, 27(2), 487–
492. https://doi.org/10.1111/j.1471-6712.2012.01052.x

Law, A. M. (2015). Simulation modeling and analysis (5th ed.). McGraw-Hill.

Laxman, S., & Sastry, P. S. (2006). A survey of temporal data mining. Sadhana, 31(2), 173–198.
https://doi.org/10.1007/BF02719780

Lee, K., & Fishwick, P. A. (1996). Dynamic model abstraction. In J. M. Charnes, D. M. Morrice,
D. T. Brunner, & J. J. Swain (Eds.), 1996 Winter Simulation Conference Proceedings (pp.
764–771). IEEE. https://doi.org/10.1145/256562.256806

Li, K.H., & Li, C.T. (2019). Linear combination of independent exponential random variables.
Methodology and Computing in Applied Probability, 21, 253–277.
https://doi.org/10.1007/s11009-018-9653-0

Li R., Liu M., Xu D., Gao J., Wu F., Zhu L. (2022). A Review of Machine Learning Algorithms
for Text Classification. In W. Lu, Y. Zhang, W. Wen, H. Yan, & C. Li (Eds.), Cyber
Security. 18th China Annual Conference, CNCERT 2021 (pp. 226–234). Springer.
https://doi.org/10.1007/978-981-16-9229-1_14

Lin, M., Lucas, H. C., & Shmueli, G. (2013). Research commentary—Too big to fail: Large sam-
ples and the p-value problem. Information Systems Research, 24(4), 906–917.
https://doi.org/10.1287/isre.2013.0480

Lin, W., Orgun, M. A., & Williams, G. J. (2002). An overview of temporal data mining. In S. J.
Simoff, G. J. Williams, & M. Hegland (Eds.), Proceedings, Australasian Data Mining
Workshop, ADM02 (pp. 83–89). University of Technology, Sydney.

158962 Tekinay BNW.indd 240158962 Tekinay BNW.indd 240 09-05-2022 15:4509-05-2022 15:45

229

Lin, Y.-F., Huang, C.-F., & Tseng, V. S. (2017). A novel methodology for stock investment using
high utility episode mining and genetic algorithm. Applied Soft Computing, 59, 303–315.
https://doi.org/10.1016/j.asoc.2017.05.032

Liu, D. (2015). Systems engineering: Design principles and models. CRC Press.
https://doi.org/10.1201/9781315273860

Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data
Mining and Knowledge Discovery, 6(4), 393–423.
https://doi.org/10.1023/A:1016304305535

Liu, M., Fang, S., Dong, H., & Xu, C. (2021). Review of digital twin about concepts,
technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346-361.
https://doi.org/10.1016/j.jmsy.2020.06.017

Longo, F. (2011). Advances of modeling and simulation in supply chain and industry.
SIMULATION, 87, 651–656. https://doi.org/10.1177/0037549711418033

Lovric, M., Milanović, M., & Stamenkovic, M. (2014). Algoritmic methods for segmentation of
time series: An overview. Journal of Contemporary Economic and Business Issues, 1(1), 31–53.
http://hdl.handle.net/10419/147468

Lu X., Tabatabaei S. A., Hoogendoorn M., Reijers H. A. (2019) Trace clustering on very large
event data in healthcare using frequent sequence patterns. In T. Hildebrandt, B. van
Dongen, M. Röglinger, & J. Mendling (Eds.), Business Process Management 17th
International Conference, BPM 2019 (pp. 198–215). https://doi.org/10.1007/978-3-030-
26619-6_14

Lugaresi, G., & Matta, A. (2020). Generation and tuning of discrete event simulation models for
manufacturing applications. In K. -H. Bae, B. Feng, S. Lazarova-Molnar, Z. Zheng, T.
Roeder, & R. Thiesing (Eds.), 2020 Winter Simulation Conference Proceedings (pp. 2707–
2718). IEEE. https://doi.org/10.1109/WSC48552.2020.9383870

Lugaresi, G., & Matta, A. (2021). Automated Digital Twins generation for manufacturing
systems: A case study. IFAC PapersOnLine, 54, 749–754.
https://doi.org/10.1016/j.ifacol.2021.08.087

Mabroukeh, N. R., & Ezeife, C. I. (2010). A taxonomy of sequential pattern mining algorithms.
ACM Computing Surveys, 43(1), Article 3. https://doi.org/10.1145/1824795.1824798

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 281–297.

Mahajan, P. S., & Ingalls, R. G. (2004). Evaluation of methods used to detect warm-up period in
steady state simulation. In R .G. Ingalls, M. D. Rossetti, J. S. Smith, & B. A. Peters
(Eds.), 2004 Winter Simulation Conference Proceedings (pp. 663–671).
https://doi.org/10.1109/WSC.2004.1371374

Mamoulis, N. (2009). Temporal data mining. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of
database systems, 2948–2952. https://doi.org/10.1007/978-0-387-39940-9_393

*

158962 Tekinay BNW.indd 241158962 Tekinay BNW.indd 241 09-05-2022 15:4509-05-2022 15:45

230 – References

Mannila, H. (1997). Methods and problems in data mining. In F.N. Afrati, P.G. Kolaitis (Eds.),
Proceedings of the 6th International Conference on Database Theory (pp. 41–55).
https://dl.acm.org/doi/10.5555/645502.656095

Mannila, H., Toivonen, H., & Inkeri Verkamo, A. (1997). Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1, 259–289.
https://doi.org/10.1023/A:1009748302351

Mäntyjärvi, J., Himberg, J., Korpipää, P., & Mannila, H. (2001). Extracting the context of a
mobile device user. IFAC Proceedings Volumes, 34(16), 387–392.
https://doi.org/10.1016/S1474-6670(17)41555-2

Maria, A. (1997). Introduction to modeling and simulation. In S. Andradóttir, K. J. Healy, D. H.
Withers, & B. L. Nelson (Eds.), 1997 Winter Simulation Conference Proceedings (pp. 7–13).
https://doi.org/10.1145/268437.268440

Markus, K. A. (2007). Philosophical foundations of quantitative research methodology. Structural
Equation Modeling: A Multidisciplinary Journal, 14(3), 527–533.
https://doi.org/10.1080/10705510701303848

Meadows, D. (2009). Thinking in systems. Earthscan.

Mitsa, T. (2010). Temporal data mining. Chapman & Hall/CRC.
https://doi.org/10.1201/9781420089776

Mor, B., Garhwal, S., & Kumar, A. (2020). A systematic review of hidden markov models and
their applications. Archives of Computational Methods in Engineering, 28, 1429–1448.
https://doi.org/10.1007/s11831-020-09422-4

Mörchen, F. (2006a). Algorithms for time series knowledge mining. Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 668–673.
https://doi.org/10.1145/1150402.1150485

Mörchen, F. (2006b). Time series knowledge mining [Doctoral dissertation, Philipps-University
Marburg, Marburg, Germany].

Mörchen, F. (2007). Unsupervised pattern mining from symbolic temporal data. SIGKDD
Explorations Newsletter, 9(1), 41–55. https://doi.org/10.1145/1294301.1294302

Nance, R. E. (1981). The time and state relationships in simulation modeling. Communications of the
ACM, 24(4), 173–179. https://doi.org/10.1145/358598.358601

Narahari, Y. (1999). Petri nets. Resonance, 4(8), 58–69. https://doi.org/10.1007/BF02837068

Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation:
Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241–261.
https://doi.org/10.1016/j.jmsy.2013.12.007

Nelson, B. L. (2016). ‘Some tactical problems in digital simulation’ for the next 10 years. Journal of
Simulation, 10(1), 2–11. https://doi.org/10.1057/jos.2015.22

158962 Tekinay BNW.indd 242158962 Tekinay BNW.indd 242 09-05-2022 15:4509-05-2022 15:45

231

Ören, T. I. (1971). GEST: general system theory implementor (a combined digital simulation language)
[Doctoral dissertation, The University of Arizona]. Retrieved from
http://hdl.handle.net/10150/290258

Ören, T. I., & Zeigler, B. P. (2012). System theoretic foundations of modeling and simulation: A
historic perspective and the legacy of A Wayne Wymore. SIMULATION, 88(9), 1033–
1046. https://doi.org/10.1177/0037549712450360

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in organizations:
Research approaches and assumptions. Information Systems Research, 2(1), 1–28.
https://doi.org/10.1287/isre.2.1.1

Page, E. H., Nicol, D. M., Balci, O., Fujimoto, R. M., Fishwick, P. A., Ecuyer, P. L., & Smith, R.
(1999). Panel: strategic directions in simulation research. In P. A. Farrington, H. B.
Nembhard, D. T. Sturrock, & G. W. Evans (Eds.), 1999 Winter Simulation Conference
Proceedings (pp. 1509–1520). IEEE. https://doi.org/10.1109/WSC.1999.816887

Patnaik, D., Laxman, S., Chandramouli, B., & Ramakrishnan, N. (2012). Efficient episode mining
of dynamic event streams. In M. J. Zaki, A. Siebes, J. X. Yu, B. Goethals, G. Webb, &
X. Wu (Eds.), Proceedings of the 12th International Conference on Data Mining (pp. 605-614).
IEEE.https://doi.org/10.1109/ICDM.2012.84

Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 50(302), 157–175.
https://doi.org/10.1080/14786440009463897

Pedrycz, W., & Chen, S.-M. (2014). Information granularity, big data, and computational intelligence.
Springer. https://dl.acm.org/doi/10.5555/2666121

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. (2001). PrefixSpan:
Mining Sequential Patterns by Prefix-Projected Growth. In D. C. Young (Ed.),
Proceedings 17th International Conference on Data Engineering (pp. 215-224). IEEE.
https://doi.org/10.1109/ICDE.2001.914830

Perumalla, K. (2006). Parallel and distributed simulation: traditional techniques and recent
advances. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, & R. M.
Fujimoto (Eds.), 2006 Winter Simulation Conference Proceedings (pp. 84–95). IEEE.
https://doi.org/10.1109/WSC.2006.323041

Petri, C. A., & Reisig, W. (2008). Petri net. Scholarpedia, 3, 6477.
http://www.scholarpedia.org/article/Petri_net

Petty, M. D., Franceschini, R. W., & Panagos, J. (2012). Multi-resolution combat modeling. In A.
Tolk (Ed.), Engineering principles of combat modeling and distributed simulation (pp. 607–640).
https://doi.org/10.1002/9781118180310.ch25

Plackett, R. L. (1983). Karl Pearson and the Chi-Squared Test. International Statistical Review/Revue
Internationale de Statistique, 51(1), 59–72. https://doi.org/10.2307/1402731

Poole, T. G., & Szymankiewicz, J. Z. (1977). Using simulation to solve problems. McGraw-Hill.

*

158962 Tekinay BNW.indd 243158962 Tekinay BNW.indd 243 09-05-2022 15:4509-05-2022 15:45

232 – References

Praehofer, H. (1991). System theoretic formalisms for combined discrete-continuous system
simulation. International Journal of General Systems, 19(3), 226–240.
https://doi.org/10.1080/03081079108935175

Praehofer, H., & Pree, D. (1993). Visual modeling of DEVS-based multiformalism systems based
on higraphs. In G. W. Evans, M. Mollaghasemi, E. C. Russel, & W. E. Biles (Eds.),
1993 Winter Simulation Conference Proceedings (pp. 595–603).

Pritsker, A. A. B. (1979). Modeling and analysis using Q-GERT networks (2nd ed.). Wiley.
https://doi.org/10.1057/jors.1978.232

Rawashdeh, M. (2020). Dividing values into equal sized groups. MATLAB Central File Exchange.
Retrieved September 10, 2020 from
https://www.mathworks.com/matlabcentral/fileexchange/41266-dividing-values-
into-equal-sized-groups

Reichel, K., Bahier, V., Midoux, C., Parisey, N., Jean-Pierre, M., & Stoeckel, S.
(2015). Interpretation and approximation tools for big, dense Markov chain transition
matrices in population genetics. Algorithms for Molecular Biology 10, Article 31.
https://doi.org/10.1186/s13015-015-0061-5

Robinson, S. (1997). Simulation model verification and validation: increasing the users'
confidence. In S. Andradóttir, K. J. Healy, D. H. Withers, & B. L. Nelson (Eds.), 1997
Winter Simulation Conference Proceedings (pp. 53–59).
https://doi.org/10.1145/268437.268448

Robinson, S. (2001). Modes of simulation practice in business and the military. In B. A. Peters,
J.S. Smith, D.J. Medeiros, & M.W. Rohrer (Eds.), 2001 Winter Simulation Conference
Proceedings (pp. 805–811). IEEE. https://doi.org/10.1109/WSC.2001.977370

Robinson, S. (2008). Conceptual modelling for simulation Part I: Definition and requirements.
Journal of the Operational Research Society, 59(3), 278–290.
https://doi.org/10.1057/palgrave.jors.2602368

Roddick, J. F., Hornsby, K., & Spiliopoulou, M. (2001). An updated bibliography of tem-
poral, spatial, and spatio-temporal data mining research. In J. F. Roddick & K.
Hornsby (Eds.), Temporal, Spatial, and Spatio-Temporal Data Mining First International
Workshop, TSDM 2000 (pp. 147–163). Springer. https://doi.org/10.1007/3-540-
45244-3_12

Roungas, B., Meijer, S., & Verbraeck, A. (2018). A framework for optimizing simulation model
validation & verification. International Journal On Advances In Systems and Measurements, 11,
137–152.

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover's distance as a metric for image
retrieval. International Journal of Computer Vision, 40(2), 99–121.
https://doi.org/10.1023/A:1026543900054

Rui, X., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural
Networks, 16(3), 645–678. https://doi.org/10.1109/TNN.2005.845141

158962 Tekinay BNW.indd 244158962 Tekinay BNW.indd 244 09-05-2022 15:4509-05-2022 15:45

233

Salt, J. D. (1993). Simulation should be easy and fun! In G. W. Evans, M. Mollaghasemi, E. C.
Russel, & W. E. Biles (Eds.), 1993 Winter Simulation Conference Proceedings (pp. 1–5).
IEEE. https://doi.org/10.1145/256563.256567

Sargent, R. G. (2013). Verification and validation of simulation models. Journal of Simulation, 7(1),
12–24. https://doi.org/10.1057/jos.2012.20

Saysel, A. K., & Barlas, Y. (2006). Model simplification and validation with indirect structure
validity tests. System Dynamics Review, 22(3), 241–262. https://doi.org/10.1002/sdr.345

Schakel, W. J., Knoop, V. L., & van Arem, B. (2012). Integrated lane change model with
relaxation and synchronization. Transportation Research Record, 2316(1), 47–57.
https://doi.org/10.3141/2316-06

Schakel, W. J. (2015). Development, simulation and evaluation of In-car advice on headway, speed and lane
[Doctoral dissertation, Delft University of Technology].
https://doi.org/10.4233/uuid:6dc90efe-6dca-4e0e-81c2-60774e30dd0e

Schlesinger, S., Crosbie, R. E., Gagne, R. E., Innis, G. S., Lalwani, C. S., & Loch, J. (1979).
Terminology for model credibility. SIMULATION, 32(3), 103–104.
https://doi.org/10.1177/003754977903200304

Schriber, T. J. (1989). Perspectives on simulation using GPSS. In C. Alexopoulos, & K. Kang,
(Eds.), 1995 Winter Simulation Conference Proceedings (pp. 451–456).
https://doi.org/10.1145/224401.224658

Schruben, L. (1983). Simulation modeling with event graphs. Communications of the ACM, 26(11),
957–963. https://doi.org/10.1145/182.358460

Schruben, L., Singh, H., & Tierney, L. (1983). Optimal tests for initialization bias in simulation
output. Operations Research, 31(6), 1167–1178. https://doi.org/10.1287/opre.31.6.1167

Seber, G. A. F., & Wild, C. J. (2003). Nonlinear regression. Wiley.

Seck, M., & Verbraeck, A. (2009). DEVS in DSOL: Adding DEVS operational semantics to a
generic event-scheduling simulation environment. 2009 Summer Computer Simulation
Conference Proceedings, 261–266. https://dl.acm.org/doi/10.5555/2349508.2349543

Seo, C., Zeigler, B. P., & Kim, D. (2018). DEVS markov modeling and simulation: formal
definition and implementation. In X. Hu, & F. Barros (Eds.), Proceedings of the 4th ACM
International Conference of Computing for Engineering and Sciences (pp. 1–12).
https://dl.acm.org/doi/10.5555/3213187.3213188

Serfozo, R. (2009). Basics of Applied Stochastic Processes. Springer. https://doi.org/10.1007/978-3-
540-89332-5_1

Shani, G., Gunawardana, A., & Meek, C. (2011). Unsupervised hierarchical probabilistic
segmentation of discrete events. Intelligent Data Analysis, 15(4), 483–501.
https://doi.org/10.3233/IDA-2011-0479

Shannon, R. E. (1975). Systems simulation: The art and science. Prentice-Hall.

*

158962 Tekinay BNW.indd 245158962 Tekinay BNW.indd 245 09-05-2022 15:4509-05-2022 15:45

234 – References

Shannon, R. E. (1976). Simulation modeling and methodology. In H. J. Highland, T. J. Schriber,
& R. G. Sargent (Eds.), Proceedings of the 76 Bicentennial Conference on Winter Simulation (pp.
9–15). https://dl.acm.org/doi/10.5555/800108.803506

Shannon, R. E. (1998). Introduction to the art and science of simulation. In D. J. Medeiros, E. F.
Watson, J. S. Carson, & M. S. Manivannan (Eds.), 1998 Winter Simulation Conference
Proceedings (pp. 7–14). https://dl.acm.org/doi/10.5555/293172.293175

Shortle, J., Thompson, J., Gross, D., & Harris, C. (2018). Fundamentals of Queueing Theory (5th ed.).
Wiley. https://doi.org/10.1002/9781119453765

Šiljak, D. D. (1978). Large-scale dynamic systems: stability and structure. North-Holland.

Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society,
106(6), 467–482.

Simon, H. A. (1991). The architecture of complexity. In G. J. Klir (Ed.), Facets of Systems Science
(pp. 457–476). Springer. https://doi.org/10.1007/978-1-4899-0718-9_31

Simpson, T., Poplinski, J. D., Koch, P., & Allen, J. (2001). Metamodels for computer-based
engineering design: Survey and recommendations. Engineering with Computers, 17, 129–
150. https://doi.org/10.1007/PL00007198

Siskind, J. M. (1999). Grounding the lexical semantics of verbs in visual perception using force
dynamics and event logic. Journal of Artificial Intelligence Research., 15(1), 31–90.
https://doi.org/10.1613/jair.790

Skyttner, L. (2006). General systems theory: Problems, perspectives, practice (2nd ed.). World Scientific.
https://doi.org/10.1142/5871

Sola, A., Corchero, C., Salom, J., & Sanmarti, M. (2020). Multi-domain urban-scale energy
modelling tools: A review. Sustainable Cities and Society, 54, 101872.
https://doi.org/10.1016/j.scs.2019.101872

Song, M., Günther, C. W., & van der Aalst, W. M. P. (2009). Trace clustering in process mining.
In D. Ardagna, M. Mecella, & J. Yang (Eds.), Business Process Management Workshops,
BPM 2008 International Workshops (pp. 109–120). Springer.
https://doi.org/10.1007/978-3-642-00328-8_11

Sorensen, D., & Gianola, D. (2007). Likelihood, Bayesian, and MCMC methods in quantitative genetics.
Springer. https://doi.org/10.1007/b98952

Sulistio, A., Yeo, C. S., & Buyya, R. (2004). A taxonomy of computer-based simulations and its
mapping to parallel and distributed systems simulation tools. Software: Practice and
Experience, 34(7), 653–673. https://doi.org/10.1002/spe.585

Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the p value is not enough. Journal
of Graduate Medical Education, 4(3), 279–282. https://doi.org/10.4300/jgme-d-12-
00156.1

Tamminga, G. (2019). A novel design of the transport infrastructure for traffic simulation models [Doctoral
dissertation, Delft University of Technology].
https://doi.org/10.4233/uuid:35d2e152-0cfe-439e-a276-da4a69b11acd

158962 Tekinay BNW.indd 246158962 Tekinay BNW.indd 246 09-05-2022 15:4509-05-2022 15:45

235

Taylor, S. J. E., Khan, A., Morse, K. L., Tolk, A., Yilmaz, L., Zander, J., & Mosterman, P. J.
(2015). Grand challenges for modeling and simulation: simulation everywhere—from
cyberinfrastructure to clouds to citizens. SIMULATION, 91(7), 648–665.
https://doi.org/10.1177/0037549715590594

Tekinay, C., Seck, M. D., Fumarola, M., & Verbraeck, A. (2010). A context-based multi-
perspective modeling and simulation framework. In B. Johansson, S. Jain, J. Montoya-
Torres, J. Hugan, & E. Yücesan (Eds.), 2010 Winter Simulation Conference Proceedings (pp.
479–489). IEEE. https://doi.org/10.1109/WSC.2010.5679137

Tekinay, C., Seck, M. D., & Verbraeck, A. (2012). Exploring multi-level model dynamics:
Performance and accuracy (WIP). 2012 Symposium on Theory of Modeling and Simulation
Proceedings, Article 20. https://dl.acm.org/doi/10.5555/2346616.2346636

Tolk, A. (2012). Engineering principles of combat modeling and distributed simulation. John Wiley & Sons.

Tolk, A. (2015). The next generation of modeling & simulation: integrating big data and deep
learning. In S. Mittal, I-C. Moon, & E. Syriani (Eds.), 2015 Summer Computer Simulation
Conference Proceedings (pp. 1–8). https://dl.acm.org/doi/10.5555/2874916.2874964

Truong-Chi, T., & Fournier-Viger, P. (2019). A survey of high utility sequential pattern mining.
In P. Fournier-Viger, J. C.-W. Lin, R. Nkambou, B. Vo, & V. S. Tseng (Eds.), High-
utility pattern mining: Theory, algorithms and applications (pp. 97–129). Springer.
https://doi.org/10.1007/978-3-030-04921-8_4

van der Aalst, W. M. P. (2011). Process mining: Discovery, conformance and enhancement of
business processes. Springer. https://doi.org/10.1007/978-3-642-19345-3

van der Aalst, W. M. P. (2016). Process Mining: Data Science in Action. Springer.
https://doi.org/10.1007/978-3-662-49851-4_1

van Lint, H., Calvert, S., Schakel, W., Wang, M., & Verbraeck, A. (2018). Exploring the effects of
perception errors and anticipation strategies on traffic accidents - A simulation study.
In D. N. Cassenti (Ed.), Advances in human factors in simulation and modeling (pp. 249–261).
Springer. https://doi.org/10.1007/978-3-319-60591-3_23

van Lint, H., Schakel, W., Tamminga, G., Knoppers, P., & Verbraeck, A. (2016). Getting the
human factor into traffic flow models: New open-source design to simulate next
generation of traffic operations. Transportation Research Record, 2561(1), 25–33.
https://doi.org/10.3141/2561-04

Vangheluwe, H. L. M. (2008). Foundations of modelling and simulation of complex systems. In
C. Ermel, R. Heckel, J. de Lara, T. Margaria, J. Padberg, & G. Taentzer (Eds.),
Proceedings of the Seventh International Workshop on Graph Transformation and Visual Modeling
Techniques (pp. 1–12). https://doi.org/10.14279/tuj.eceasst.10.162

Vangheluwe, H. L. M., & de Lara, J. (2002). Meta-models are models too. In E. Yücesan, C.-H.
Chen, J. L. Snowdon, & J. M. Chames (Eds.), 2002 Winter Simulation Conference
Proceedings (pp. 597–605). IEEE. https://doi.org/10.1109/WSC.2002.1172936

*

158962 Tekinay BNW.indd 247158962 Tekinay BNW.indd 247 09-05-2022 15:4509-05-2022 15:45

236 – References

Vangheluwe, H. L. M. (2000). DEVS as a common denominator for multi-formalism hybrid
systems modelling. IEEE International Symposium on Computer-Aided Control System Design
Conference Proceedings (pp. 129–134). IEEE.
https://doi.org/10.1109/CACSD.2000.900199

Villafane, R., Hua, K. A., Tran, D., & Maulik, B. (1999). Mining interval time series. In M.
Mohania & A. Min Tjoa (Eds.), DataWarehousing and Knowledge Discovery First International
Conference (pp. 318–330). Springer. https://doi.org/10.1007/3-540-48298-9_34

von Bertalanffy, L. (1968). General System Theory: Foundations, development, applications. G. Braziller.

Wainer, G. (2002). CD++: a toolkit to develop DEVS models. Software: Practice and Experience,
32(13), 1261–1306. https://doi.org/10.1002/spe.482

Wainer G., & Giambiasi N. (2001) Timed Cell-DEVS: Modeling and simulation of cell spaces. In
H. S. Sarjoughian & F. E. Cellier (Eds.), Discrete event modeling and simulation technologies
(pp. 187–214). Springer. https://doi.org/10.1007/978-1-4757-3554-3_10

Wainer, G. A., & Giambiasi, N. (2002). N-dimensional Cell-DEVS Models. Discrete Event Dynamic
Systems, 12(2), 135–157. https://doi.org/10.1023/a:1014536803451

Wang, Y., Li, J., Hongbo, S., Li, Y., Akhtar, F., & Imran, A. (2019). A survey on VV&A of large-
scale simulations. International Journal of Crowd Science, 3(1), 63–86.
https://doi.org/10.1108/IJCS-01-2019-0004

Weinberg, G. (1975). An introduction to general systems thinking. Wiley.

Whitt, W. (1991). The efficiency of one long run versus independent replications in steady-state
simulation. Management Science, 37(6), 645–666. https://doi.org/10.1287/mnsc.37.6.645

Wieland, F., & Pritchett, A. (2007). Looking into the future of air transportation modeling and
simulation: A grand challenge. SIMULATION, 83(5), 373–384.
https://doi.org/10.1177/0037549707078851

Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques
with Java implementations. ACM Special Interest Group on Management of Data (SIGMOD)
Record, 31(1), 76–77. https://doi.org/10.1145/507338.507355

Wong, W., Wong, S. C., & Liu, H. X. (2021) Network topological effects on the macroscopic
fundamental diagram. Transportmetrica B: Transport Dynamics, 9(1), 376-398,
https://doi.org/10.1080/21680566.2020.1865850

Wu, C.-W., Lin, Y.-F., Yu, P. S., & Tseng, V. S. (2013). Mining high utility episodes in complex
event sequences. In R. Ghani, T.E. Senator, P. Bradley, R. Parekh, & J. He (Eds.),
2013 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Proceedings (pp. 536–544). https://doi.org/10.1145/2487575.2487654

Wymore, W. (1967). A mathematical theory of systems engineering: The elements. Wiley.

Yan, X., & Su, X. G. (2009). Linear regression analysis: Theory and computing. World Scientific
Publishing. https://doi.org/10.1142/6986

158962 Tekinay BNW.indd 248158962 Tekinay BNW.indd 248 09-05-2022 15:4509-05-2022 15:45

237

Yilmaz, L., & Oren, T. I. (2004). Dynamic model updating in simulation with multimodels: A
taxonomy and a generic agent-based architecture. In A. G. Bruzzone & E. Williams
(Eds.), 2004 Summer Computer Simulation Conference Proceedings (pp. 3–8).
https://site.uottawa.ca/~oren/pubs/pubs-2004-04-SCSC-MM.pdf

Yilmaz, L., & Tolk, A. (2006). Engineering ab initio dynamic interoperability and composability
via agent-mediated introspective simulation. In L. F. Perrone, F. P. Wieland, J. Liu, B.
G. Lawson, D. M. Nicol, & R. M. Fujimoto (Eds.), 2006 Winter Simulation Conference
Proceedings (pp. 1075–1082). IEEE. https://doi.org/10.1109/wsc.2006.323197

Yilmaz, L., Lim, A., Bowen, S., & Oren, T. (2007). Requirements and design principles for
multisimulation with multiresolution, multistage multimodels. In S. G. Henderson, B.
Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, & R. R. Barton (Eds.), 2007 Winter Simulation
Conference Proceedings (pp. 823–832). IEEE.
https://doi.org/10.1109/WSC.2007.4419678

Zeigler, B. P. (2019). Chapter 2 - Simulation-based evaluation of morphisms for model library
organization. In L. Zhang, B. P. Zeigler, & Y. laili (Eds.), Model engineering for simulation
(pp. 25–42). Academic Press. https://doi.org/10.1016/B978-0-12-813543-3.00002-0

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation: integrating discrete
event and continuous complex dynamic systems (2nd ed.). Academic Press.

Zeigler, B. P., Muzy, A., & Kofman, E. (2019). Chapter 21 - DEVS Markov Modeling and
Simulation. In B. P. Zeigler, A. Muzy, & E. Kofman (Eds.), Theory of modeling and
simulation (3rd ed.) (pp. 567–599). Academic Press. https://doi.org/10.1016/B978-0-
12-813370-5.00032-8

Zeigler, B. P., & Praehofer, H. (1989). Systems theory challenges in the simulation of variable
structure and intelligent systems. In F. Pichler & R. Moreno-Diaz (Eds.), Computer
Aided Systems Theory — EUROCAST '89 (pp. 41–51). Springer.
https://doi.org/10.1007/3-540-52215-8_4

Zhang, X. (2018). Application of discrete event simulation in health care: a systematic
review. BMC Health Services Research, 18, Article 687. https://doi.org/10.1186/s12913-
018-3456-4

Zhao, Q., & Bhowmick, S. S. (2003). Sequential pattern mining: A survey. Technical Report No.
2003118. CAIS, Nanyang Technological University, Singapore. Retrieved from
https://cs.nju.edu.cn/zhouzh/zhouzh.files/course/dm/reading/reading04/zhao_tech
rep03.pdf

*

158962 Tekinay BNW.indd 249158962 Tekinay BNW.indd 249 09-05-2022 15:4509-05-2022 15:45

158962 Tekinay BNW.indd 250158962 Tekinay BNW.indd 250 09-05-2022 15:4509-05-2022 15:45

ACKNOWLEDGEMENTS

158962 Tekinay BNW.indd 251158962 Tekinay BNW.indd 251 09-05-2022 15:4509-05-2022 15:45

240 – Acknowledgements

Acknowledgements

It was Friday morning, August 28, 2009. I was sitting in my window seat, anxiously wait-

ing for my plane to take off. Part of me was excited about this trip, as it was the beginning

of an entirely new chapter for me. A dream scenario, if you will. I was going to do a

Ph.D. at TU Delft. Yet, I could not stop myself from feeling very nervous. The thought

of my first plane flight ever, taking me on my first trip abroad ever, where I would be

living on my own without friends and family for the first time ever, was racing my heart.

I reached out to my pocket, took out my headphones, and started playing the song that

I had on repeat for the past few days: Asfalt Dünya - Sakın. Then, I took a deep breath

and told myself that it would be alright. I would finish my Ph.D. in four years, come back

to Turkey, and continue from where I left. Little did I know that four years would be-

come twelve years, and that the Netherlands would become more than a temporary des-

tination. Although this “longer than planned” journey felt challenging many times, it also

brought me irreplaceable memories, inspiring collaborations, and amazing friends. I can-

not express how grateful I am to all of those I was lucky to meet along the way.

First and foremost, I would like to thank my promotor, Prof. Alexander Verbraeck,

for his invaluable guidance, continuous support, and patience during the past years. Al-

exander, your enthusiasm towards complex research challenges and your endless confi-

dence in me are the reasons I was able to push through and complete this dissertation

after all these years. Moreover, your high standards and expectations, but also the fact

that you allowed me to make and learn from my mistakes, helped me grow immensely

both on a personal and professional level and deliver a dissertation beyond what I could

imagine when I started. Thank you for believing in me, even when I did not believe in

myself.

I would also like to thank Dr. Mamadou Seck for his guidance and friendship during

his time at the Systems Engineering Department as my daily supervisor. Mamadou, thank

you for the inspiring discussions on potential research directions. The advice and guid-

ance you gave me at the early stages of this research were invaluable.

158962 Tekinay BNW.indd 252158962 Tekinay BNW.indd 252 09-05-2022 15:4509-05-2022 15:45

241

I would like to thank Prof. Hans Vangheluwe, Prof. Simon Taylor, Prof. Martijn

Warnier, Prof. Jan Kwakkel, Dr. Yilin Huang, and Dr. Gönenç Yücel for accepting

to be a part of my doctoral committee and reading the draft dissertation.

Many thanks to my former colleagues and friends that were present during my time at

the Systems Engineering section. Michele Fumarola and Yilin Huang, thank you for

the discussions and collaborations on simulation related research. Together with Evan-

gelos Pournaras, Jordan Janeiro, Kassidy Clark, Jan-Paul van Staalduinen, and

Shalini Kurapati, you made sure that I had plenty of opportunities to relax after work

hours. I will always remember our time together with a huge smile on my face. I would

like to thank Michel Oey, Martijn Warnier, Joseph Barjis, Rens Kortmann, Yakup

Koç, Deniz Çetinkaya and other colleagues of the Systems Engineering section for

discussing and helping me with aspects of my work on multiple occasions. Thank you all

for being such great colleagues and friends.

A special word for my dear paranymphs Çiğdem & Burak. Thank you for standing

beside me on the day of my defense, just like you have been standing by my side since

the start of this journey. I find it difficult to find the right words to express how deeply

I care about you both. I want you to know that you are like a sister and a brother to me

and I feel blessed to have you in my life.

To the Şamandıring family and the wonderful people I met through you: Argun, Berk,

Burak (& Rose), Çiğdem (& Thomas), Esin, Esra, Feyza, Güncem, Nazlı (& Mar-

tijn), Onur, Sine (& Daniel), and Taner. Thank you all for brightening up my life with

your amazing friendship, and my phone screen with your messages. Our trips and parties

are some of my best memories. Although I have not been much available in the past two

years, I will ensure that you will have enough of me for the rest of your lives. I cannot

wait to make new memories with you all. Argun, thank you for being such a wonderful

roomie during my time at Bosboom. I will always cherish the fun times we had to-

gether. Taner, you have literally been with me on this journey from day one. You have

been a big brother teaching me how to cook pasta, a friend showing me how to enjoy

the perks of life, and a mentor guiding me in my professional growth. Thank you for

being the great person you are.

*

158962 Tekinay BNW.indd 253158962 Tekinay BNW.indd 253 09-05-2022 15:4509-05-2022 15:45

242 – Acknowledgements

To the other amazing people that I have met over the years in the Netherlands: Sinan,

Noyan, Vanya, Onursal, Mert, Mülazım, Caner, Nalan, Naim Kenan, Özgür (&

Tessa), Gönenç, İlhan, Elvin (& Jaap) and many others whom I am not able to indi-

vidually mention here. Without you, my time in the Netherlands would not have been as

great. Thank you all for everything. Sinan, thank you for pushing me out of my comfort

zone and getting me back on two wheels. I will never forget our Amsterdam and Eind-

hoven Gran Fondo rides, as well as the two Limburgs Mooiste together with Argun.

Those are some of my greatest personal achievements. I am also confident that my lower

back will forever remind me of the first Limburgs Mooiste ride.

I would like to extend my thanks and appreciation to all my former colleagues and friends

at Quintiq. Thank you all for your friendships that made the office a welcoming place for

me. Special thanks to Lindsay, Dirk, Jelle, Arthur, Thomas, and Diederik for being

such generous colleagues and great friends. I really enjoyed all our conversations,

whether it was at the Den Bosch office or in London, Kuala Lumpur, Copenhagen, or

Dubai during a business trip. Dirk and Jelle, I will never forget our adventures in Lon-

don. Together with Arthur, you never failed to turn a regular evening into something

memorable, and I am looking forward to having more of those with you. Lindsay, work-

ing with you was never dull. I will miss all of our amusing conversations about totally

random topics, as well as your expert opinions on food, drinks, and travel.

To my dearest Oni family, Ayla, Barış, Burak, Ergin, Fatih, Gazi Çağrı, Handan,

Hüsmen, Ilgaz, Murat, Oktay, Salim, Semiha, Tahsin, Türker, and others whom I

am not able to individually thank here. You have been nothing but incredible friends for

more than two decades. I have always felt your sincere love and support at every step of

my life, starting from the time we were clueless teenagers in school uniforms up until

now. You have always been, and you will always be, very special to me, and I will always

put you up on a pedestal where you belong. Thank you for everything. Tahsin, your

memories will stay with me forever. Special thanks to the Tenezzül’s core members, Barış,

Ergin, Gazi Çağrı, Hüsmen, Oktay, and Türker for making me laugh every day for

the last two decades with their messages.

Uğur Ceylan, I truly appreciate you always making time for me when I am in Ankara.

You never seem bothered if we haven’t seen or spoken to each other in a long time and

158962 Tekinay BNW.indd 254158962 Tekinay BNW.indd 254 09-05-2022 15:4509-05-2022 15:45

243

always ensure we pick up from where we left. I hope to be a part of your life for many

years to come.

Muğla tayfası, Ilgaz & Hülya, Ahmet & Sema, and Samet & Derya. Thank you for

making my trips to Turkey something I eagerly anticipate. Ilgaz & Hülya, my sincere

thanks to you for making me feel like a member of your beautiful family, for spoiling me

with delicious food and endless hospitality, and for generously sharing your heartfelt

laughter and big hearts. I adore you and your lovely family.

To my family in the Netherlands, Gerrit, Sara, Elmer & Marjolein, and Ruben &

Sanne. You made me feel welcomed and loved from the first time we met. Gerrit and

Sara, I could not wish for better parents-in-law than you. You are amazing human beings

and your love radiates. Elmer & Marjolein, I have never felt so touched seeing my name

on a birthday calendar. It is a joy to be a bonus uncle to your beautiful daughters. Ruben

& Sanne, it is impossible not to admire how kind and generous you both are. Please

never change.

Suzanna, lief… Your love and support have been my anchor ever since you entered my

life, keeping my feet on the ground and my mind still when the waves of self-doubt came

crashing down. Your beautiful soul and intelligence have served as my lighthouse, guid-

ing me through the fog of social pressure and self-expectations, revealing to me the true

beauty in things. I am a massive fan of your smile welcoming me every morning, your

endless and unconditional love, your curiosity and enthusiasm for cultures and travel,

your incredible passion for food (both making and eating), your honesty and modesty,

your determination and resilience, and your kindness. I would not have completed this

dissertation without your support and your patience. For that, I will be forever grateful.

The past six years together have been nothing short of amazing, filled with incredible

moments and ever-growing love. I cannot wait to make more beautiful memories to-

gether and grow our love-moestuin even larger.

My beautiful family, this Ph.D. and everything else in my life are possible thanks to

you. Thank you for making me know and feel that I am truly and deeply loved and sup-

ported no matter what. Thank you for lighting my way at night and for making sure I

can always find my way home. Çağatay, en yakın dostum, ilk ve tek göz ağrım, sırdaşım

*

158962 Tekinay BNW.indd 255158962 Tekinay BNW.indd 255 09-05-2022 15:4509-05-2022 15:45

244 – Acknowledgements

ve yoldaşım, tanıdığım en komik ve koca yürekli ve hayattaki her şeyden çok daha değerli

kardeşim. Her ne kadar doktoramı yaptığım süre esnasında yakınımda olamasan, her bit-

kin ve yenilmiş hissettiğimde sana gelip teselli bulmak için sarılamamış ya da her mutlu

anımda yanına koşup seninle paylaşamamış ve birlikte havalara sıçrayıp kutlayamamış ol-

sam da varlığını, desteğini ve en önemlisi hiç tükenmeyen sevgini ne kadar uzaktan olursa

olsun her zaman hissettirdiğin için teşekkür ederim. Canım annem ve babam, Zahide ve

Kâtip, her ne kadar uzakta olursam olayım bana daima sevildiğimi ve güvende olduğumu

hissettirdiğiniz için sizlere çok teşekkür ederim. Sizlerin fedakârlıkları, tükenmeyen sabrı,

sınırsız sevgisi ve bitmeyen güveni olmadan bu doktorayı bitirmem ve bu satırları yaz-

mam mümkün olamazdı. Sizleri çok seviyorum!

Çağrı Tekinay

Delft, June 2022

158962 Tekinay BNW.indd 256158962 Tekinay BNW.indd 256 09-05-2022 15:4509-05-2022 15:45

158962 Tekinay BNW.indd 257158962 Tekinay BNW.indd 257 09-05-2022 15:4509-05-2022 15:45

246 – About the Author

About the Author

Çağrı Tekinay was born in 1984 in Malatya, Turkey. After graduating from Ankara

Ataturk Anatolian High School in 2002, he continued his higher education at Baskent

University, where he obtained his B.Sc. degree in Computer Engineering (2007). During

his studies, he co-founded the internationally recognized Baskent University Robotics

Society. In 2009, he obtained his M.Sc. degree in Information Systems from the Graduate

School of Informatics at Middle East Technical University.

After completing his studies, Çağrı started a Ph.D. project under the supervision of Prof.

dr. ir. Alexander Verbraeck and Dr. Mamadou D. Seck in the Systems Engineering Sec-

tion of the Technology, Policy and Management Faculty at Delft University of Technol-

ogy, the Netherlands. In his research, he introduced a novel approach that combines the

fields of modeling & simulation and temporal data mining to automate the abstraction

of discrete-event simulation models using state-trace data. During his time in Delft, he

served as president (2012) and treasurer (2011) for the Society for Modeling & Simulation

(SCS) Student Chapters.

Between 2014 and 2019, Çağrı worked as a Lead Solutions Consultant at Dassault Sys-

tèmes/DELMIA Quintiq. In this position, he coordinated teams of consultants and soft-

ware developers, collaborated with subject matter experts, led on-site and online analysis

workshops, and designed and implemented planning and optimization software solu-

tions for complex supply chain puzzles from various industries, including transportation

and logistics (e.g., Transport for London), emergency services (e.g., Falck UK & Den-

mark), and aviation (e.g., Dubai Airports). For instance, he led the software solution de-

sign and documentation for Dubai Airports, and coordinated international teams

throughout its implementation and delivery phases. As of April 2018, Dubai Interna-

tional Airport (DXB) uses their “Airport Operations and Ground Resources Planning

and Optimization Solution” to serve more than 90 million passengers each year. Çağrı

has obtained senior-level certificates for both technical and business solutions consul-

tancy and currently works as an independent solutions consultant.

158962 Tekinay BNW.indd 258158962 Tekinay BNW.indd 258 09-05-2022 15:4509-05-2022 15:45

158962 Tekinay BNW.indd 259158962 Tekinay BNW.indd 259 09-05-2022 15:4509-05-2022 15:45

158962 Tekinay BNW.indd 260158962 Tekinay BNW.indd 260 09-05-2022 15:4509-05-2022 15:45

Large-scale complex systems are characterized by
a large number of interconnected variables and a
diverse set of interactions. As the demand for the
development and optimization of large-scale sys-
tems is growing, so does the need for better tech-
niques to understand their underlying dynamic
behavior and predict and manage their long-term
performance. With the increased capabilities of
computer technology, we have been able to run
simulation models for these systems that are larger
in scale and higher in complexity. While these
advancements have enabled more accurate rep-
resentations of real-world systems, the ever-in-
creasing scale and complexity of simulation models
may eventually result in models that are too com-
plex to work with – giving rise to large-scale com-
plex simulation models.

In this dissertation, we aim to investigate to what
extent the abstraction of large-scale complex simu-
lation models, specifically discrete- event simula-
tion models expressed in the DEVS formalism, can
be automated using their state- trace data. In order
to achieve this objective, we designed a method
that integrates the fields of modeling and simula-
tion and temporal data mining by utilizing
state-trace data and applying frequent episode
mining techniques to discover behavioral patterns.

	cover_cagri final_front
	158962 Tekinay BNW_proef_DPR
	cover_cagri final_back

