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2 – Chapter 1 

1 Introduction  

As a consequence of increased globalization and the ever-growing demand for faster, 

more reliable, and cheaper services, the systems we encounter and interact with in our 

daily lives have grown tremendously in size and complexity. It is no longer an unthinkable 

scenario that while we are on our way to work in our self-driving cars, we manage to 

secure the best flight deal out of hundreds of available options, using the help of intelli-

gent virtual assistants on our latest technology phones which were delivered from their 

factories to our doors within days after their public release. All of these actions, however, 

rely on the proper operations of large-scale complex systems. 

Large-scale complex systems are characterized by a large number of interconnected com-

ponents and their diverse interactions (Filip & Leiviskä, 2009; Šiljak, 1978). Typical ex-

amples of these systems include global supply chains, transportation and logistics net-

works, modern manufacturing systems, and power grids. As the demand for the devel-

opment and optimization of large-scale systems is growing (Arthur et al., 1999), so is the 

need for better techniques to understand their underlying dynamic behavior, and to pre-

dict and manage their long-term performance. However, because of their scale and com-

plexity, it is often too difficult and expensive to experiment with large-scale complex 

systems directly. Therefore, models are needed that can capture the complexity of these 

type of systems under study but are more practical to work with (Banks, 1998). A useful 

and powerful method for experimentation that can analyze and evaluate large-scale com-

plex systems is simulation (Law, 2015; Shannon, 1975). 

1.1 Simulation and Simulation Models 

Simulation is the imitation of the operation of a real-world system or a conceptual system 

by means of executing and experimenting with a model of that system (Banks et al., 
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2010). In computer simulation1, the system of interest is first abstracted into a non-soft-

ware specific conceptual model, which is subsequently transformed into a computer-execut-

able simulation model (Robinson, 2008). Before experimenting with a simulation model, 

the suitability and the accuracy of a conceptual model built to represent a real-world 

system need to be validated, and the correctness of the transformation from that concep-

tual model to a computerized simulation model needs to be verified. Once the verification 

and validation are completed, the simulation model is subjected to a rigorous set of ex-

periments to generate data for further analysis (Kleijnen, 2015). 

A simulation model can be viewed as a collection of objects and their interrelations. Ob-

jects are characterized by one or more attributes and the values assigned to these attributes 

(Kiviat, 1967, 1969; Nance, 1981). The enumeration of all attribute values of an object 

at a particular instant represent the state of that object (Nance, 1981). Simulation models 

can be classified along three dimensions: dynamic (i.e., time-variant) vs. static (i.e., time-

invariant), discrete (i.e., state changes happen instantaneously at discrete points in time) vs. 

continuous (state changes happen continuously with reference to time), and deterministic 

(i.e., non-random, non-probabilistic) vs. stochastic (i.e., random, probabilistic) simulation 

models (Banks & Carson, 1984; Law, 2015). In dynamic models where the behavior of a 

system over time (i.e., its dynamic behavior) is of interest, time is the indexing attribute2 

of an object or of the object’s state. In such cases, the execution of the simulation model 

traces a conceptual history of the system’s dynamic behavior in the form of time-ordered 

state changes (Nance, 1981). In discrete-event simulation models, the state of the model 

remains constant over intervals of time, and the values of the attributes only change at 

predetermined event times. An event represents a change in the object’s state. In contrast, 

continuous simulation models allow the state of the model to change continuously over 

time. Such simulation models are considered deterministic if the output of a simulation 

model is always reproducible; that is, a known input or starting value fully predicts the 

                                                        

 

1 The term “simulation” will be subsequently used in the dissertation to refer to “computer simulation”. 

2 An indexing attribute is an attribute of an object that enables state transitions to be ordered. 

 

1
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4 – Chapter 1 

sequence of state changes and the output (Banks et al., 2010). On the other hand, they 

are stochastic if random number generators are used to generate the output values and to 

determine the sequence of the state changes. In this dissertation, we are mainly focusing 

on dynamic, discrete-event simulation models with both deterministic and stochastic 

characteristics. 

By using simulation models, system changes can be tested prior to their real-life imple-

mentation, without committing real resources or taking actual risks. For example, gov-

ernments can evaluate the effects of potential new policies on different societal variables 

without disrupting ongoing operations; investors can analyze the performance and pay-

off characteristics of various market strategies without taking financial risks, and 

healthcare professionals can study and replicate clinical situations without risking lives. 

In some cases, simulation may be the only feasible tool for testing new strategies or de-

signs as conducting experiments in the actual environment is near impossible (Shannon, 

1976). Moreover, as simulations use an artificial clock to manage time, long-term scenar-

ios can be run to replicate a real-life system’s dynamic behavior in much shorter time 

spans (i.e., time compression), whereas scenarios that are naturally completed within mil-

liseconds in wall-clock time can be slowed-down to simulation-seconds (i.e., time expan-

sion). As such, simulation allows analysts to observe the behavioral transitions and study 

the chain of events leading to particular short and long-term phenomena. Especially this 

ability to mimic behavior over time distinguishes dynamic simulation models from 

(static) mathematical models. In the case of large-scale complex systems, simulation tech-

niques are applied to study the dynamic behavior and improve the design of, among 

other things, modern manufacturing systems (Negahban & Smith, 2014), healthcare sys-

tems (Zhang, 2018), and energy systems (Keirstead et al., 2012; Negahban & Smith, 2014; 

Sola et al., 2020). 

1.2 Large-scale Complex Simulation Models 

One of the “grand challenges to tackle” (Nicol in Page et al., 1999, pp. 1509-1510) is the 

significant growth in the scale and complexity of simulation models over the years. The 

scale of a simulation model can be defined as the number of objects in the model and how 

much of the real world is represented, and the complexity of a simulation model can be defined 
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as the product of the number of states per object – also referred to as resolution – and the 

number of objects in the simulation model (Zeigler et al., 2000). With the increased ca-

pabilities of computer technology, we have been able to run simulation models that are 

larger in scale and higher in complexity (Davis & Bigelow, 1998; Zeigler et al., 2000). 

While these advances have allowed for more accurate representations of real-world sys-

tems, the ever-increasing scale and complexity of simulation models may eventually result 

in models that become too complex themselves to work with (Astrup et al., 2008; Chwif 

et al., 2000; Darema, 2004; Henriksen, 2008; Saysel & Barlas, 2006; Taylor et al., 2015) – 

giving rise to what we refer as large-scale complex simulation models. These models raise im-

portant new questions and challenges for the modeling and simulation (M&S) commu-

nity (Arthur et al., 1999; Chwif et al., 2000; Robinson, 2001), including how models of 

such large scale and complexity can be expressed, modeled more efficiently, and vali-

dated, and what tools and techniques can be used for this. In what follows, we outline 

the main challenges of large-scale complex simulation models as well as existing attempts 

to address these challenges. 

1.3 Large-scale Complex Simulation Models: Main Challenges 

Following Nicol (Page et al., 1999, pp. 1509-1510), the main challenges of large-scale 

complex simulation models can be classified as the problem of scale, the problem of complexity, 

the problem of performance vs. accuracy, and the problem of data.  

1.3.1 Problem of Scale 

Because of their scale and complexity, large-scale complex simulation models require a 

lot of time and resources to develop, maintain, and optimize (Longo, 2011; Wieland & 

Pritchett, 2007). Increases in scale and complexity often result in an exponential growth 

in the amount of computational power required to execute a simulation model (Page et 

al., 1999). In the absence of sufficient computational power, large-scale complex simula-

tion models suffer from extremely long execution times. A strategy that was developed 

to deal with the lengthy running times of these type of models is the use of parallel and 

distributed simulations (see Banks et al., 2010; Carothers et al., 2017; Fujimoto, 2015; 

Fujimoto, 2001; Nelson, 2016; Perumalla, 2006 for extended reviews and discussion of 

parallel and distributed simulations). These types of simulations distribute the execution 

1
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6 – Chapter 1 

of a single simulation model over multiple processors (Fujimoto, 2001), resulting in a 

potentially significant speedup of the simulation execution compared to sequential and 

centralized execution of simulation models. When parallel and distributed simulation was 

introduced a few decades ago, the consensus was that it would provide a viable solution 

to the increasing demand for computational power necessary to execute computationally 

intensive large-scale complex simulation models (Sulistio et al., 2004). Although im-

proved computational power and advanced technologies and techniques (Buyya et al., 

2011; Fujimoto, 2015) to utilize such power indeed successfully address some of the 

challenges of running large-scale complex simulation models (Page et al., 1999), these 

solutions primarily offer a way to run these models more efficiently. However, they do 

not tackle the problem of how large-scale complex simulation models can be modeled 

more efficiently. In fact, there is consensus among scholars that increased computational 

capacity paradoxically forms one of the factors for the proliferation of large-scale com-

plex simulation models (Chwif et al., 2000; Nelson, 2016; Page et al., 1999). Researchers 

like Nicol (Page et al., 1999, pp. 1509-1510) and Hester and Collins (2012, p. 410) argue 

that continuously increasing computing power available to us is “whetting our appetite” 

for larger and larger models. However, the amount of computation required to execute 

these larger models can be a bottleneck, as it increases vastly in relation to the scale of 

large-scale complex simulation models. More importantly, the techniques to better de-

sign, control, and interpret such models lag behind (Carothers et al., 2017; Fujimoto, 

2016; Henriksen, 2008; Page et al., 1999; Tolk, 2012). Hence, addressing the challenges 

of running simulation models of large scale alone does not address the total set of issues 

for large-scale complex simulation models.  

1.3.2 Problem of Complexity 

All simulation models are abstractions of a real-world or a conceptual system, but some 

are more detailed than others (Davis & Tolk, 2007). When alternative implementations 

of simulation models of a system have the same scale, their complexity can be a useful 

metric to compare these models. Because the complexity of a simulation model depends 

on the product of model scale, the resolution of objects, and interactions among them 

(Davis & Bigelow, 1998; Zeigler et al., 2000). Therefore, the complexity of a simulation 

model will increase when one or more of these three aspects increases. Large-scale 
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complex simulation models typically have high complexity as a result of all of these aspects 

being inherently high. In this dissertation, we use the term complex to refer to high-complex-

ity.  

There are several reasons why simulation model complexity is increasing, resulting in the 

proliferation of large-scale complex simulation models. On the one hand, increasing 

complexity may be the result of a lack of experience of the modeler or simply having the 

possibility to include more. For instance, inexperienced modelers may feel insecure about 

what to include in their models and therefore end up including as much detail as possible. 

Moreover, as argued above, increasing available computing power removes constraints 

on the maximum model scale and complexity and feeds the tendency to model more. 

On the other hand, increasing complexity may be caused by interpretation difficulties, 

such as a lack of understanding of the underlying real-world system, the inability to make 

adequate abstractions of this system (i.e., conceptual model and simulation model), or 

even the lack of clear simulation objectives (Chwif et al., 2000). For instance, when the 

overall goal of the simulation study is unclear, modelers may have difficulty defining the 

scope of the model and end up including more and more detail that the end user may be 

interested in (Salt, 1993).  

Large-scale complex simulation models raise new questions and bring along new chal-

lenges. In addition to the performance (i.e., computational cost of executing a simulation 

model) and  resource (e.g., time, money, expertise) issues that were addressed earlier in 

the “problem of scale” subsection, these new challenges include a decrease in usability, 

reusability, modifiability, and extensibility of the models (Balci et al., 2017) and an in-

creased difficulty in their validation and verification (V&V). Due to the underlying com-

plexity of large-scale complex simulation models, the success of V&V activities relies on 

the use of multiple evaluation methods (Balci et al., 2000; Deslandres & Pierreval, 1991), 

as well as effective, affordable (in terms of resources and computational costs), and 

standardized software to tackle the increased number of tests, data processing work, and 

computational complexity of the models to be evaluated (Arthur et al., 1999; Balci, 1994, 

1997; Birta & Özmizrak, 1996; Wang et al., 2019). However, such automation software 

and techniques and auxiliary selection mechanisms to pick and combine the correct set of 

methods are currently largely lacking (Roungas et al., 2018), making it challenging to 

1
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8 – Chapter 1 

implement V&V principles for large-scale complex simulation models. This highlights 

the need for more research on methodologies for the validation and verification of large-

scale complex simulation models.  

Several strategies have been proposed to address the problem of complexity of large-

scale complex simulation models. A strategy that deals with the complexity issues of 

large-scale complex simulation models is the use of model abstraction. Based on the concept 

of hierarchy originating from the field of systems theory (Anderson, 1972; Holland, 1996; 

2000; Simon, 1991) and later adapted to the field of M&S, the idea of model abstraction 

is that complex models consisting of many and diverse interacting objects can be simpli-

fied by decomposing them into less detailed, coarse-grained sub-models using the hier-

archical relationships among them (Fishwick, 1986; 1988; 1989; Zeigler et al., 2000). By 

applying various model abstraction techniques (see for taxonomies of model abstraction 

techniques; Frantz, 1995; Lee & Fishwick, 1996; Yilmaz & Ören, 2004), modelers are 

able to generate models that are executable, valid (i.e., principal assumptions of the orig-

inal model are preserved but essential behavioral and structural elements are simplified) 

and of lower resolution compared to the original higher resolution model (Zeigler, 2019). 

In this way, the complexity of the original model can be reduced while its structure is 

maintained. With the use of model abstraction, multiple models at different levels of 

abstraction can be generated. Although the choice of an abstraction level is dependent 

on the goals and requirements of the simulation study (Fishwick, 1988), models with 

different levels of detail yield different types of insights about the same underlying sys-

tem. In the context of large-scale complex simulation models, it is often impossible to 

fully capture the totality of the complex system in one model (Hofmann, 2004; Yilmaz 

& Ören, 2004). In this case, building multiple models with different levels of abstraction 

or resolution that collectively represent the underlying system allows for a better under-

standing of the behavior of this system. Multiresolution modeling (MRM) is an approach 

to build a collection of models at different levels of abstraction to represent the same 

system of interest (Davis & Bigelow, 1998; 2003; Davis & Tolk, 2007, Yilmaz et al., 2007). 

A simple MRM architecture is composed of a high-resolution model (i.e., more-detailed, 

fine-grained), a low-resolution model (i.e., less-detailed, coarse-grained), and a mapping 

logic that connects these two models (Petty et al., 2012). MRM enables modelers to 
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gradually develop low-resolution simulation models from high-resolution ones by estab-

lishing conceptually and analytically correct and consistent hierarchies among them. The 

importance of MRM in large-scale complex simulation models is well-recognized 

(Hofmann, 2004; Zeigler, 2019). However, MRM currently still requires modelers to de-

sign lower resolution models manually. Given their complexity, this is not a feasible task 

when dealing with large-scale complex simulation models (Yilmaz & Tolk, 2006). There-

fore, automation methods to facilitate model abstraction might be of added value.  

Another strategy that aims to deal with both performance and complexity issues of such 

models is the use of metamodels (Barton, 2015; Kleijnen, 1987). Providing “a model of a 

model” (Kleijnen, 1987), a metamodel replaces an expensive simulation model with an-

other model that is generated by approximating the I/O function of the original one, e.g. 

as a set of linear equations with interaction effects. A metamodel treats the simulation 

model as a black box; that is, the simulation model’s I/O is observed, and the parameters 

of the metamodel are estimated (Barton, 1992; Kleijnen, 1987). Metamodels are, there-

fore, simpler, computationally more efficient models than the original models (Kleijnen, 

2015; Simpson et al., 2001) and can also be considered as one of the model abstraction 

techniques (Frantz, 1995). However, a fundamental limitation of this black box approach 

is that metamodels do not benefit from the time and state transition information that is 

present in the underlying simulation model and describes the dynamic behavior of the 

system (Nance, 1981). Therefore, metamodels cannot predict I/O relations well for set 

of inputs (interventions) that have not been used in estimating metamodel’s parameters. 

1.3.3 Problem of Performance vs. Accuracy 

The problem of performance vs. accuracy emerges from both the problem of scale and 

the problem of complexity described above. The choice of resolution for a simulation 

model at a given scale can be understood as a trade-off between the level of accuracy of 

a simulation model and the computational cost of its execution (i.e., its performance). 

Understanding this trade-off requires insight into how the model scale and resolution 

influence accuracy and performance (Tekinay et al., 2012). For instance, a simulation 

model will perform better in terms of runtime when the number of simulation model 

objects decreases. However, a decrease in resolution may result in a decrease in model 

1
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accuracy (Zeigler et al., 2000). Thus, modelers are forced to make a decision between 

sacrificing the accuracy of the simulation model for better performance, potentially risk-

ing the validity of the simulation model consistent with the intended application of the 

model (Schlesinger et al., 1979), or increasing the computational capacity and the associ-

ated costs in order to improve the complex model’s runtime.  

In addition, Astrup et al. (2008) demonstrated that more complex models do not always 

result in better predictions. In their study on the simulation of forest growth, the authors 

compared the predictive ability of five simulation models with increasing complexity. 

Their results revealed that both the simplest and the most complex models had the poor-

est predictive ability, whereas the model characterized by intermediate complexity 

showed the best predictive ability. Hence, to achieve good predictive ability and perfor-

mance, it is essential to develop methods to generate parsimonious simulation models.  

1.3.4 Problem of Data 

A final issue associated with large-scale complex simulation models is the problem of 

data. Over the years, the increase in the scale and complexity of simulation models has 

led to an associated growth in the volumes of data generated by these models. A type of 

data that is particularly affected by the increases in scale and complexity of simulation 

models is the trace data. Trace data, or state-sequence data, is of interest for several M&S 

purposes, including trace-driven input testing in the validation of dynamic simulation 

models (Balci, 1994) and process modeling (van der Aalst, 2011; 2016). More im-

portantly, trace data allow modelers to observe the history of a (stochastic) simulation 

model run in order to gain insight in how complex phenomena evolve over time 

(Kemper & Tepper, 2007). However, when these trace data become huge in terms of 

variety (i.e., the number of different data sources or model components to be sampled) 

and length (i.e., the number of times for different sources or model components to be 

sampled), they confine modelers’ ability to identify and utilize frequent behavioral pat-

terns for model abstraction (Kim et al., 2017; Tolk, 2015). Data mining (Atluri et al., 

2018; Gan et al., 2017) and machine learning methods (Pedrycz & Chen, 2014) have been 

designed to ease the process of discovering frequent patterns in temporal data and di-

mension reduction, that is, conversion of data from a high dimensional space into a low 
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dimensional space (Hinton & Salakhutdinov, 2006). Although such methods have 

proven to be useful for recognizing behavioral patterns within large volumes of trace 

data (Chapela-Campa et al., 2019; Lu et al., 2019; Song et al., 2009; van der Aalst, 2011), 

they have not yet been applied to automate dynamic simulation model abstraction. This 

would require techniques that can not only identify important behavioral patterns in 

state-trace data, but also generate lumped states at various abstraction levels to form 

models at a lower level of resolution. Combined with the previously addressed challenges 

of large-scale complex simulation models, this points to a missing link in existing meth-

ods of dealing efficiently with these type of simulation models.  

1.4 Research Objective and Research Questions 

As the scale and complexity of the systems that we interact with in our daily lives are 

growing tremendously, the issue of how to efficiently and effectively study these systems 

has been attracting more attention. Simulation models traditionally used to analyze and 

evaluate complex systems have given rise to new challenges in the form of large-scale 

complex simulation models. The previous sections have shown that existing modeling 

methods and techniques lack the mechanisms to deal with the problems of scale, com-

plexity, accuracy vs. performance, and data that characterize large-scale complex simula-

tion models. We posit that there is a need for a method that can help reduce the com-

plexity of complex simulation models. In this research, we therefore aim to provide a 

method that automates the abstraction of large-scale complex simulation models using 

their state-trace data.  

Research Objective: To investigate to what extent the abstraction of large-scale complex discrete-

event simulation models can be automated using their state-trace data.  

In order to achieve this objective, the following research questions will need to be 

answered: 

Research Question 1:  To what extent do existing methods allow for the abstraction of large-scale 

discrete-event simulation models? 

In the modeling and simulation literature, several model abstraction techniques exist 

for large-scale and complex simulations. What are the shortcomings of conventional 

1

158962 Tekinay BNW.indd   23158962 Tekinay BNW.indd   23 09-05-2022   15:4409-05-2022   15:44



12 – Chapter 1 

methods for the abstraction of large-scale and complex simulations? What existing 

methods in other fields can be adapted to address these shortcomings?  

Research Question 2: How should state-trace data from large-scale complex discrete-event simula-

tion models be prepared to be used for the automated abstraction method? 

What are the important characteristics of state-trace data that enable the abstraction 

of large-scale complex discrete-event simulation models? And would any prepro-

cessing of the state-trace data be needed to help the automated abstraction process? 

Research Question 3: What considerations and actions are needed for the automated abstraction 

of the original model’s dynamic behavior using state-trace data? 

What key characteristics of the original model are essential to be captured in the state-

trace data to represent its dynamic behavior accurately?  

Research Question 4: How well does the abstracted model represent the behavior of the original 

large-scale complex simulation model? 

To evaluate the accuracy and the validity of the abstracted model, we will need to com-

pare key statistics and performance measures obtained from the original model and the 

abstracted model using descriptive and inferential statistics. Because of our particular 

focus on model abstraction, the original model is treated as the system of which we gen-

erate state-trace data. Therefore, we evaluate whether the abstracted model can answer 

the same questions that the original system (i.e., the original model) could answer. This 

type of validity relation (i.e., model-system comparison) is similar to generating a data 

trace from a real-life system, evaluating the validity of the abstracted simulation model 

against this real-life system. 

1.5 Research Methodology 

The research methodology refers to the selection of the appropriate method(s) to conduct 

the research (Chen & Hirschheim, 2004). Various taxonomies have been proposed for 

the classification of research methodologies (Alavi et al., 1989; Cash & Nunamaker, 1989, 

1990, 1991; Galliers, 1991; Orlikowski & Baroudi, 1991). Among these taxonomies, quan-

titative vs. qualitative (Cash & Nunamaker, 1989) stands out as one of the most consistent 

comparisons. The quantitative methods, such as formal methods for data analysis, 
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numerical methods like mathematical modeling, laboratory experiments are designed to 

be used in natural sciences to study natural phenomena. In contrast, qualitative methods 

like participant observations, interviews, among others, are more inclined towards social 

sciences wherein people with their social and cultural contexts form a fundamental part 

of the research (Howe, 2002). The research in this dissertation used simulation models 

to generate data and data mining, pattern recognition, and statistical methods were used 

to analyze the data. Therefore, the research is highly quantitative. Another categorization 

of research methods is the deductive reasoning vs. inductive reasoning (Markus, 2007). 

The underlying reasoning in this research is deductive, as the existing work in the litera-

ture has been studied, a hypothesis is proposed (in Section 1.4) and the hypothesis is 

tested to find support for the proposed hypothesis.  

1.6 Research Instruments 

The choice of research instruments to be used in research is dependent on the research 

objective, research questions, and research methodology (Creswell, 2009; Galliers, 1991). 

For this study, we will perform a literature review to obtain systematic knowledge on M&S, 

systems theory, and data mining in order to answer Research Question 1. To address 

Research Question 2, we will use insights from existing literature to present the DEVS 

formalism and its concepts of states and state-transitions, while case studies and simulation 

experiments will be conducted to demonstrate considerations for the use of state-trace data 

for the automated abstraction process. Research Question 3 will be informed by a liter-

ature review in the domain of data mining and M&S, and by data analysis and simulation 

experiments using the case studies. Specifically, data mining techniques will be presented, 

compared, and applied to the state-trace data to identify behavioral patterns at the desired 

level of abstraction. Finally, data analysis in the form of descriptive and inferential statistics 

will be used to address Research Question 4.  

1.7 Thesis outline 

In Chapter 2, we will provide an overview of the systems-theory-rooted foundation of 

M&S and introduce some of the key terms and concepts used in systems studies and the 

field of M&S. We will go over the theoretical frameworks that we use as the foundation 

of our research in greater detail, as well as conduct a review of previous efforts on multi-

1
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resolution simulation models. We will look into the relevant studies that have been done 

in the data mining field, specifically in the area of temporal data mining. Following our 

review of the existing literature, we will describe the tasks and data types in the data 

mining field, focusing on temporal data mining, and present the rationale for combining 

temporal data mining and discrete-event modeling. Chapter 2 will therefore provide an 

answer to Research Question 1. 

In Chapter 3, we will provide a detailed breakdown of our proposed method, emphasiz-

ing its strengths and introducing several theoretical and practical considerations in its 

application. The chapter will begin by formally describing the key concepts and algo-

rithms used in our method. We then describe each step of the temporal data mining-

based method to automate the abstraction of discrete-event simulation models and ad-

dress considerations and actions for the modeler in the method's application. We will 

demonstrate and validate the proposed method's practical application in a case study of 

an exploratory M/M/1 queueing system throughout the chapter. Chapter 3 will provide 

a first answer to Research Questions 2, 3, and 4 since the method that will be presented 

in the chapter covers the characterization of the data, the automated model abstraction, 

and validation of the results. 

Each step of the proposed method will be covered in Chapter 4 using a battlefield case 

from which an earlier version was introduced in (Tekinay et al., 2012), to demonstrate 

how to apply the method introduced in Chapter 3 and tailor it step-by-step to a relatively 

larger, more complex model with different model characteristics. First, we will provide a 

high-level description of the battlefield model and present the details of the particular 

scenario used in the case study. We will then present the conceptual model and describe 

the behavioral characteristics of the model components. We will then follow the same 

section structure in Chapter 3 and address all considerations and actions for the modeler. 

Finally, we will provide the validation process results and present our conclusions, which 

will extend the answers for Research Questions 2, 3 and 4. 

Chapter 5 will apply our method to a microscopic traffic simulation model, which has a 

relatively larger number of model components and a larger state space than the battlefield 

model. We will begin the chapter with a high-level description of the traffic model before 

delving into the specific scenario used in the case study. We will then present the 
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conceptual model's details and describe the characteristics of the model entities and the 

road network. We will then address all considerations and actions for the modeler fol-

lowing the same section structure as in Chapters 3 and 4. Next, we will present model-

specific adjustments to the considerations and explain certain adjustments made to apply 

the method to the traffic simulation case study, which will again extends the answers to 

Research Questions 2, 3 and 4. Consequently, we will finish the chapter by presenting 

our findings from the validation process and explaining our learnings from applying our 

method to a large-scale complex discrete-event simulation model. 

Finally, Chapter 6 will conclude the dissertation by summarizing our findings by reflect-

ing on the research objective and answering each research question based on our learn-

ings from the case studies in Chapters 3, 4, and 5. Finally, we will finalize the chapter by 

discussing the relevance of our research and providing suggestions for future work. 

 

 

1
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2 Background and Key Concepts 

In the previous chapter, we outlined the research motivation, objective, and research 

questions to set the scope of the research in this dissertation. In this chapter, we present 

the fundamental concepts and existing work in systems studies and M&S relevant to this 

research. In addition, we discuss how the field of data mining can contribute to the study 

of large-scale complex simulation models. Many authors have elaborated on the strong 

relationship between systems theory and M&S (Ören, 1971; Ören & Zeigler, 2012; Prae-

hofer, 1991; Wymore, 1967; Zeigler et al., 2000; Zeigler & Praehofer, 1989). After all, a 

simulation model is a representation and abstraction of a real-world system to study that 

system. In what follows, we first introduce some of the key concepts in systems theory, 

including system complexity, system hierarchy, and levels of system knowledge. We then 

proceed with a discussion of concepts from M&S, such as level of systems specification, 

morphism, homomorphism, model abstraction, and modeling formalisms. Finally, we 

will describe the tasks and the types of data in the data mining field, particularly in the 

area of temporal data mining, and present the rationale for combining temporal data 

mining and multiresolution discrete-event modeling as the foundation for our study.  

2.1 Introduction to Systems and Systems Theory 

A system can be viewed as an abstraction of (a portion of) the real world. In the systems 

theory literature, a system is typically defined as a set of interacting, interrelated entities or 

parts within an observable boundary (Ackoff & Emery, 1972; Boardman & Sauser, 2008; 

Hitchins, 2008; Klir, 2001; von Bertalanffy, 1968). These parts can be characterized by 

one or more variables or attributes, and the values assigned to these variables (Flood & 

Carson, 1993). The enumeration of the values for a set of variables is called state (Klir & 

Elias, 2012). 

Systems theory further describes a system in terms of its structure, that is the inner con-

stitution of that system, and its behavior, that is the outer manifestation of the inner trans-

formations (Zeigler et al., 2000). The system structure, which corresponds to the white-

box system view in systems theory, is the collection of the system state, state transition 
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mechanism, and state-to-output mapping. The external behavior, which corresponds to 

the black-box system view in systems theory, constitutes the output of the system based on 

its inputs (Skyttner, 2006). Knowing the structure of a system allows one to gain insight 

into the internal working or internal behavior of that system, as well as to deduce its 

external behavior (Zeigler et al., 2000). A more unifying definition of system concept by 

Wymore (1967) can be formally expressed by a 7-tuple, as shown in Definition 2.1. 

 

Definition 2.1. Formal definition of a system (Wymore, 1967) 

S = (T, X, Ω, Q, δ, Y, λ) 
where 

 T ⊂ R+
0, ∞ is the time base, a formalization of the independent var-

iable time t, where R+
0, ∞ is the positive reals including 

0 and ∞ 
 X is the set of all admissible input values  

 Ω = {ω:  T → X} is the set of all admissible input segments  

 Q is the set of state values  

 δ = Ω  × Q → Q is the transition function: how the state changes when (var-
ious) inputs are fed into the system, or when the system 
is in a certain state  

 Y is the output set: observable parameters  

 λ = Q → Y is the output function; mapping of the system state to the 
(resulting) output of the system 

 

According to Gaines (1979), how a system is defined and distinguished from its environ-

ment is strongly influenced by the investigator’s perspective and goals. Specifically, the 

investigator decides what parts and interactions among those parts need to be included 

within the boundary of the system he or she is interested in (Meadows, 2009; Weinberg, 

1975). Each of these included parts can be formally described as a system in itself, and 

regarded as a subsystem within the system (Flood & Carson, 1993; Gaines, 1979).  

2
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2.1.1 Dynamic Systems 

One of the main characteristics of the large-scale complex systems that are the focus of 

this research is that they are dynamic. A dynamic system is a system whose state changes 

over time, either at a stochastic or deterministic rate. Dynamic systems can be distin-

guished from static systems, whose state remains constant within the chosen observation 

frame of that system (Liu, 2015). The state of a dynamic system at a given time t ≥ 0, as 

well as the information of what variables constitute that state at t = 0, is indicated by one 

or more state variables. The set of all possible values that those state variables can take 

over time is called state space (Vangheluwe, 2008).  

Dynamic systems can be categorized based on their time and state representations 

(Wainer, 2009; Zeigler et al., 2000). A system is said to have a continuous time base (i.e., time 

evolves continuously) when a real number represents the time. In contrast, the system 

has a discrete time base (i.e., time advances in discrete portions) when an integer number 

represents the time. Similarly, state variables are described as continuous if the values of 

the state variables are from a continuous set represented as a real number, or discrete if 

the values of the state variables are represented as a finite set. As such, a system can be 

categorized into four classes (see Figure 2.1) based on the representation of its time base 

and state variables (Wainer, 2009; Zeigler et al., 2000):  

(I) Continuous variable dynamic systems: Systems that have both a continuous time base 

and continuous state variable (Figure 2.1.a).  

(II) Discrete-time dynamic systems: Systems that have a discrete time base but continuous 

state variables (Figure 2.1.b). 

(III) Discrete-event dynamic systems: Systems that have a continuous time base but discrete 

state variables (Figure 2.1.c). 

(IV) Discrete dynamic systems: Systems that have both a discrete time base and discrete 

state variable (Figure 2.1.d). 
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Figure 2.1. System classification based on the representation of time base/state variables (Zeigler 

et al., 2000) 

 

2.1.2 Complexity and Hierarchy 

Another key concept in systems theory and, in particular, the study of large-scale com-

plex systems is complexity. Complex systems are generally characterized by many levels 

of ontological organization that can (not always) be divided or decomposed into smaller, 

less complex parts or subsystems (Anderson, 1972; Holland, 2000; Simon, 1962). The 

approach of systematically decomposing systems allows forming a hierarchy of systems 

specifications, thereby increasing the level of resolution of analysis and the system 

knowledge (Flood & Carson, 1993; Zeigler et al., 2000). 

Typically, four types of hierarchy are distinguished in systems theory: order hierarchy, 

inclusion hierarchy, control hierarchy, and level hierarchy (Lane, 2006). Order hierarchy is 

2
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equivalent to the process of ordering a set of parts based on the values of their variables, 

for example, ordering sets based on their size or the number of elements in them. Inclusion 

hierarchy refers to the recursive relation among the parts of an organization; for example, 

the famous analogy of “Chinese boxes” (Simon, 1962) that is organized as a main box 

enclosing a second box within, and a third box is enclosed within the second box, and 

so on. The ontological claim of the inclusion hierarchy concept is that the container at 

level m, which is the main box in Simon’s analogy, contains nothing but a certain number 

of other entities at level m+1, the entities at level m+1 are only composed of entities at 

level m+2, and so on. According to Simon, the interactions among the parts that exist at 

the same hierarchical level in a complex system are near-decomposable, that is, a new de-

composition of entities at a new spatial and temporal (spatio-temporal) level m+1 is 

achievable from the system specification of level m (Simon, 1962). Control hierarchy refers 

to the ranking hierarchy within social organizations, for instance, the military ranks 

among soldiers in an army. The higher-ranking entities are entitled to command lower-

ranking ones, and the lower-ranking entities are bound to obey the commands received 

from the higher-ranking entities (Lane, 2006). Finally, in level hierarchy, different parts in 

an ontological organization are postulated to exist at different spatio-temporal levels, and 

the higher-level parts at a particular spatio-temporal level may be either fully or partly 

composed of lower-level parts. In the case of the former, level hierarchy forms an inclu-

sion hierarchy. In the case of the latter, some of the properties of lower-level entities and 

interactions change when forming a higher-level representation. Typical examples of 

level hierarchy can be found in cells, organs, individuals, and species.   

2.1.3 Levels of Systems Knowledge 

Epistemology, or the theory of knowledge, is the study of the origin and scope of 

knowledge and its justification. Forming a hierarchy of systems specifications through 

the process of systematical decomposition enables accessing system knowledge from dis-

tinct epistemological levels. The General System Problem Solver (GSPS; Klir, 1985) 

framework describes the systems knowledge that can be acquired from each epistemo-

logical level (see Table 2.1). Klir’s taxonomy of systems uses notions like investigator (or 

observer), investigated object, environments and interactions (between the investigator and the ob-

ject) to describe each distinct levels of systems knowledge. In GSPS, the level of 
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knowledge accumulates when going up in the hierarchy as each level encapsulates all the 

knowledge available in all of the lower level systems.  

 
Table 2.1. Hierarchy of epistemological levels of systems knowledge (Klir & Elias, 2012) 

Level 4,5, …   Meta Systems Relations between relations one level below 

Level 3            Structure Systems Relations between models one level below 

Level 2            Generative Systems Models that generate data one level below 

Level 1            Data Systems Observations and desired states one level below 

Level 0            Source Systems Empirical data source 

 

Level 0, also called source systems, is the lowest level in the hierarchy of epistemological 

levels of systems. A source system is the source of empirical data and defined by a set of 

variables (basic or supporting) deemed relevant by the investigator, a set of potential 

states or values for those variables to obtain along their time-history, and their real-world 

interpretations. Basic variables of source systems can be partitioned into input and output 

variables, whereas the most common types of supporting variables are representing time, 

quantity (i.e., various populations of individuals of the same kind), and space. The set of 

aggregate states of all supporting variables forms a support set where changes in states of 

basic variables occur.  

Level 1, or data systems, supplements the source system with data. Data is obtained by 

means of measurements or observation, or by the definition of desirable states, that is, the 

time-history of all basic variables within the support set.  

Level 2 possesses knowledge that allows us to define one support-invariant characteriza-

tion (e.g., time-invariant, space-invariant, etc.) of the relation among the basic variables 

for boundary conditions. This characterization describes a process with which the states 

of the basic variables (i.e., data) within a support set are generated. Therefore, this level 

is referred to as generative systems.  

Level 3, or structure systems, is a representation of an overall system in terms of its subsystems 

that interact with each other in some way. An overall system is a system that represents 

2
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all of its associated lower level systems (source, data, and generative systems) based on 

the same support set.  

Level 4 and higher, also referred to as meta-systems, define systems that consist of a set of 

systems defined at lower levels and a support-invariant meta-characterization. Meta-char-

acterization is used to describe changes in system traits at lower level systems.  

The GSPS framework allows defining a system as a part of the universe where the system 

and its observer coexist and interact for the purpose of dealing with fundamental system 

problems (Cellier, 1991). In the GSPS framework context, there are three fundamental 

system problems that involve moving between the levels of systems knowledge (Zeigler 

et al., 2000):  

(I) System analysis is the effort to understand the behavioral characteristics of an 

existing or planned system. System analysis requires moving down the 

hierarchy, for instance a simulation which generates data under specific 

instructions fed by a model.   

(II) System inference refers to the effort to infer system behavior through observation, 

or system structure from system behavior. System inference requires a 

transition from low-level system knowledge to a higher one, for instance from 

data to a probabilistic state machine.  

(III) System design is the problem related to the ambition of finding a good design for 

a system that does not yet exist. Doing so requires moving up in the hierarchy 

to be able to generate data and then analyze such data. 

The GSPS framework provides a hierarchy of epistemological levels of systems and iden-

tifies the system traits that are essentially participating in the system definition change 

(Skyttner, 2006). Although the framework is defined in the context of general systems 

theory, some of its key concepts, like systems knowledge and representation, are essential 

for simulation modeling (Zeigler et al., 2000).  

2.2 Modeling and Simulation: Fundamental Concepts 

The success of a simulation study is dependent on the understanding of fundamental 

entities and relationships in a modeling and simulation (M&S) process (Shannon, 1998; 
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Zeigler et al., 2000). These fundamental concepts (see Figure 2.2) defined by the M&S 

framework (Wainer, 2009; Zeigler et al., 2000) are as follows:   

(I) Source system: The real or virtual environment in which we are interested in for 

modeling purposes. A source system is the source of observable data or behavior 

database, that is, time-indexed trajectories of variables gathered from 

observation or experimenting with the (source) system (Klir, 1985).  

(II) Experimental frame: The specification of the conditions under which the system 

is observed or experimented with.  

(III) Model: The set of instructions, equations, rules, or constraints for generating 

input/output (I/O) behavior.  

(IV) Simulator: A computation system capable of executing a model to generate its 

behavior. 

 

 

Figure 2.2. Basic entities in M&S and their relations (Zeigler et al., 2000) 

 

In addition to these four basic entities in the M&S framework, there are two fundamental 

relationships between the basic entities:  

2
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(I) Simulation relation, or model correctness, is between a simulator and a model. The 

correctness of a simulator implies that the model’s output trajectory is faithfully 

generated by the simulator given the models’ initial state and the input 

trajectory.  

(II) Modeling relation, or validity, refers to the relation between a model, a system and 

an experimental frame. Model validity is the degree to which a model properly 

represents its system counterpart under the conditions specified by the 

experimental frame of interest (Zeigler et al., 2000).  

In this thesis, we study the validity relation between the original model and the 

abstracted model. As mentioned earlier in §1.4, we treat the original model as 

the system of which we generate state-trace data because of our particular focus 

on model abstraction. As a result, we investigate whether the abstracted model 

properly represents the original system (i.e., the original model) to evaluate its 

validity.  

A simulation model is designed and specified to resemble its system counterpart in the 

epistemological hierarchy, in terms of parts, structure, relations, and input-output behav-

ior, among others. The simulation model is a morphism of its system counterpart when 

the elements of the model and the system are properly placed into correspondence. 

Drawing a parallel between the levels system specifications and the levels of systems 

knowledge is important to understand and tackle systems problems, and subsequently, 

design and develop valid and coherent models. Such parallelism is presented by Zeigler 

et al. (2000) with a particular emphasis on the M&S context.  

2.2.1 Levels of Systems Specification 

Zeigler et al. (2000) formulated a hierarchy of systems specification levels that is similar 

to Klir’s (1985) hierarchy of epistemological levels, but with more emphasis on the M&S 

context (see Table 2.2 for these levels and their correspondence to the levels of systems 

knowledge). The main difference between the two frameworks is that the systems spec-

ification hierarchy employs the concept of dynamic systems and acknowledges that sim-

ulation deals with the time-varying behavior of systems. Similarly, Zeigler’s framework is 

committed to the use of concepts like input/output ports and modularity to explain the 
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levels of systems specification, whereas Klir’s GSPS can include these terms but the 

framework is not dedicated to use them (Zeigler et al., 2000).  

 
Table 2.2. Levels of systems knowledge and systems specification (Zeigler et al., 2000) 

Level Systems Knowledge Systems Specification Validity 

3 Structure System Coupled Component Structural validity 

2 Generative System State Transition Structural validity 

1 Data System I/O Function 

I/O Behavior 

Predictive validity 

Replicative validity 

0 Source System Observation Frame  

 

The observation frame corresponds to the source system at Level 0 in the systems 

knowledge hierarchy (Klir & Elias, 2012). It provides instructions on which variables are 

to be measured and how the behavior over time should be observed. A system in the 

system specification hierarchy interacts with other systems via its input and output ports; 

that is, it receives time-indexed input (input trajectories) through its input ports and gen-

erates time-indexed output (output trajectory) from its output ports.  

The I/O behavior and I/O function correspond to the data system at Level 1. The collection 

of all time-stamped I/O pairs gathered by observation is called I/O behavior of a system. 

With the addition of the knowledge of an initial state, the I/O function indicates the 

functional relationship between the input and output; that is, the combination of an input 

trajectory and an initial state determines the unique output trajectory of a system.  

The state transition of a system corresponds to the generative system at Level 2 in the 

systems knowledge hierarchy of Klir. This level provides instructions on how a state 

transition occurs in terms of input trajectory, current state, and the next (future) state so 

that the correct output trajectory is generated. A sequence of states (i.e., all future states 

q1, q2, …, qn resulting from a given initial state q0) that a system traces during its life-

cycle (q0, q1, q2, …, qn) is called a state trajectory.  

2
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The coupled component is the highest level in Zeigler’s framework3. A component in a model 

corresponds to a part (or subsystem) in the system of interest. A coupled component is 

composed of components and their interactions coupled using ports; that is, the output 

port of a component is an input port of another component.  

Additionally, Zeigler’s System Specification Hierarchy describes model validity in relation 

to the levels of systems specification. The experimental frame is a critical entity in model 

validation. In essence, validation is the process of testing a model’s validity by comparing 

its output trajectory to the system’s output trajectory based on the input trajectories gen-

erated by the frame for both the source system and the model under test. For the model 

to be considered valid, both output trajectories that are fed back into the experimental 

frame must be similar within acceptable tolerance (Zeigler, 2019). Three types of validity 

are distinguished:   

(I) The replicative validity is the most basic form of validation at the I/O relation 

level since it involves the comparison of observed data. Replicative validity of 

a model is affirmed if the behavior of the model, i.e., I/O behavior, and the 

system are a match within acceptable tolerance for all the experiments within 

the experimental frame.   

(II) The predictive validity of a model is affirmed if the model has replicative validity 

and if it can generate (predict) future behavior given the past observations. 

Predictive validity requires agreement at I/O function level between the system 

and model. 

(III) The structural validity is the strongest form of validity, and it requires agreement 

at state transition or at coupled component level. Structural validity requires the 

model to be capable of replicating the data observed from the system, and 

mimic the state transition of the system step-by-step and component-by-

component.  

                                                        

 

3 The system specification hierarchy (Zeigler et al., 2000) does not specify a level of systems specification 
matching Klir’s meta-systems.  
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2.2.2 Morphism, Homomorphism and Model Abstraction 

The systems specification hierarchy framework provides a stratification for constructing 

models that represent their system counterparts to the extent demanded by the intended 

use of the models (Zeigler et al., 2000). A systems specification in the context of M&S is 

the formal description of systems knowledge in the form of a (simulation) model speci-

fication. A simulation model is typically constructed at the generative systems or struc-

ture systems level, depending on the purpose of the simulation study. For instance, a 

more complex simulation model with coupled structures is constructed at level 3. The 

morphism relation between a simulation model and the original system implies that the 

elements of the model and the system are properly placed into correspondence (Klir, 

2001; Zeigler et al., 2000).  

A particular type of morphism relation between a pair of systems specifications at the 

state transition level is called homomorphism. A homomorphic relation (e.g., between a 

model and its original system4) indicates contingency upon a function from relevant en-

tities of the original system onto the corresponding entities of the model system (i.e., the 

model) under which the relation among entities is preserved (Klir, 2001). Within this 

context, the onto function implies that the entity mapping (correspondence) is surjective; 

that is, the model is a simplification of the original system. In this case, the simplified 

model, or the lumped model, represents a part of a more complex base model with a certain 

degree of accuracy. Homomorphism suggests that there is a predefined mapping be-

tween the states of the base and lumped models, which is preserved under transitions; 

that is, for every base and corresponding lumped state, the respective next states to which 

they transit also correspond. It is assumed that the states of the lumped model S’ and 

base model S are correspondent (congruent) but not identical, and simulating these cor-

responding states until their respective next states are encountered is done with different 

numbers of transitions (Zeigler, 2019). A specific case of this is illustrated in Figure 2.3, 

where a multi-step (micro) transition between the states B and F in the base model S is 

                                                        

 

4 In M&S context, a model system can be the origin of another model system. 

2
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represented by one (macro) state transition between the states b and f in the lumped 

model S’.  

 

 

Figure 2.3. Homomorphism relation between the corresponding states and the state transitions 
of the base model S and the lumped model S'; based on Zeigler et al. (2000) 

 

The notion of a homomorphism implies an error-free relation between the base/lumped 

model states, and achieving it ensures that the I/O behavior of the homomorphic models 

remains the same. That is, the values and the timings of the state transitions and the 

output trajectory of the base model within the same experimental frame are preserved in 

the lumped model. In Figure 2.3, this would imply that the total time delay of transitions 

B-C-D-E-F would be equal to the single time delay b-f. However, an entirely error-free 

model abstraction is not always possible in the real world (e.g., due to model complexity, 

stochasticity, time, and other resource limitations) and an error is introduced into the 

lumped model when an exact homomorphism is not achieved (Zeigler, 2019). A modeler 

may develop a lumped model that represents the entities in the base model quite accu-

rately but not at a hundred percent. This type of morphism that has some error is called 

an approximate morphism. It should be noted that the concept of validity is not absolute; 

that is, a lumped model may still be valid if the error introduced by the approximate 

morphism is within an acceptable tolerance for goodness-of-fit.  
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2.2.3 Multi-level Morphic Model Pairs 

As discussed earlier, it is often impossible to fully capture the totality of large-scale com-

plex systems in one simulation model (Hofmann, 2004; Yilmaz & Ören, 2004). In such 

cases, multiresolution modeling (MRM) can be used to build a family of models with 

different levels of abstraction or resolution that collectively represent the underlying sys-

tem (Davis & Bigelow, 1998; 2003; Davis & Tolk, 2007). Applying the concept of 

base/lumped model pairs to MRM, a lumped model is further simplified by constructing 

another lumped model of the original lumped model. In this newly formed morphic 

(base/lumped) model pair, the original lumped model is the base model. This approach 

to form multi-level morphic models by performing first order approximation in a recur-

sive manner allows forming a hierarchy of models with varying state trajectories which, 

as a whole, provide a more complete description of a system than a single model descrip-

tion (Zeigler, 2019). 

2.2.4 Basic Modeling Formalisms 

A simulation model is designed and developed under certain constraints. A part of these 

constraints are imposed by the morphism relation between the system specification and 

the systems knowledge described in §2.2, and a part of them imposed by the non-func-

tional requirements for the model; e.g., usability, reusability, modifiability, and extensi-

bility (Balci et al., 2017).  A systems specification needs to be expressed in a certain sys-

tems specification formalism – also referred to as a modeling formalism. A modeling for-

malism is a shorthand means of specifying a system, which implicitly sets constraints on 

the parts of the dynamic system (Zeigler et al., 2000). In other words, a modeling for-

malism consists of sets, relations on sets, and axioms on relations for expressing (simu-

lation) models of dynamic systems. As discussed earlier in §2.2.1, dynamic systems are 

delineated with discrete or continuous time, and the state of the systems is specified using 

variables on a discrete or continuous domain (Wainer, 2009; Zeigler et al., 2000). Three 

basic modeling formalisms are developed to specify types of dynamic systems. The three 

formalisms are: 

(I) Discrete Time System Specification (DTSS) represents systems over a discrete time 

base. It assumes a stepwise execution (Zeigler et al., 2000). At a particular 

2
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instant, the model is in a particular state, and it defines what the state at the 

next instant will be. If the state at time t is q(t) and the input at time t is x(t), 

then the state at time t+1 is q(t +1) = δ(q(t ),x(t)) where δ is the state transition 

function. Difference equations are an example of DTSS.  

(II) Differential Equation System Specification (DESS) is a formalism that represents 

systems with continuous state over a continuous time base. DESS does not 

specify a next state directly through a state transition function. Instead, it 

specifies the rate of change of the state variables qi through a derivative function 

f. Meaning that at any particular instant, given a state q and an input value x, the 

rate of change of the state can be obtained, i.e., "#$
"%

= f(q1(t), q2(t), . . . , qn(t), x(t)), 

i = 1..n, and can thus compute the state at any instant in the future using 

integration methods. Differential equations are an example of DESS. 

(III) Discrete Event System Specification (DEVS) represents systems as piecewise 

constant state trajectories over a continuous time base. The state trajectories 

are produced by state transition functions δint and δext that are activated by 

internal or external events.  

The time base types for these three formalisms were addressed earlier in Figure 2.1. 

2.2.4.1 DEVS Formalism 

In this research, DEVS is chosen as the underlying modeling formalism. Our reasoning 

can be grouped into five categories:  

(I) Large-scale complex systems can have components that are so diverse that they 

cannot all be expressed in a single formalism. Instead, multiple formalisms may 

be needed to model different system components; hence the concept of multi-

formalism modeling (Vangheluwe & de Lara, 2002). In multi-formalism modeling, 

each system component can be modeled using the most suitable formalism; 

however, at the same time, a single formalism is identified into which each 

modeled component can be symbolically transformed (Vangheluwe & de Lara, 

2002). The formalism space and existing behavior-preserving homomorphic 

relations between formalisms are shown in a formalism transformation graph; 
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see Figure 2.4. The DEVS formalism is the common denominator modeling 

formalism for the simulation of large-scale complex simulation models 

(Vangheluwe & de Lara, 2002; Vangheluwe, 2000).  

(II) The DEVS formalism provides the building blocks for other modeling 

formalisms to be developed (e.g., Hierarchical DEVS (Zeigler et al., 2000), 

Fuzzy-DEVS (Kwon et al., 1996), Parallel-DEVS (Chow & Zeigler, 1994), 

Port-based DEVS5 (Zeigler et al., 2000), Stochastic DEVS (Castro et al., 2010), 

Cell-DEVS (Wainer, 2002; Wainer & Giambiasi, 2001; 2002), and Markov 

DEVS (Seo et al., 2018)). 

(III) The DEVS formalism supports hierarchical, modular and component-based 

construction of models (Wainer, 2009; Zeigler et al., 2000). 

(IV) Conventional discrete event modeling approaches (e.g., activity cycle diagrams 

(Poole & Szymankiewicz, 1977), event graphs (Schruben, 1983), block diagrams 

(Schriber, 1989), process networks (Pritsker, 1979) mainly focus on the 

concepts of activity, event or process, and de-emphasize the concept of state. On 

the other hand, the DEVS formalism originates from the systems theory 

background and puts a particular emphasis on the notion of state (Praehofer & 

Pree, 1993). 

(V) Different world views can be expressed as subclasses of DEVS:  

a. the process-interaction world view describes the lifecycle of each entity 

through in the system,  

b. the activity scanning world view describes the conditions that will trigger 

state changes (Vangheluwe, 2000; Zeigler et al., 2019), and 

c. the event-scheduling world view describes the effect of each event on the 

state and on the future behavior of the system (typically the external 

                                                        

 

5 Referred to as Classic DEVS with Ports (Zeigler et al., 2000, p. 84)   

2
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events are not part of this view). The case study models in Chapter 3 

and 5 use the event-scheduling world-view. However, as discussed by 

Seck and Verbraeck (2009), the event-scheduling world view is harder 

to formulize than DEVS Formalism, which has a sound mathematical 

formalization for hierarchical models (see Definition 2.3 below). 

Furthermore, according to Vangheluwe and de Lara (2002), the 

underlying features of the event-scheduling worldview can be 

completely expressed using DEVS concepts (see Figure 2.4). 

Therefore, we will use the concepts from the DEVS formalism (e.g., 

time advance, memorlyless property) also to describe the model 

characteristics in Chapter 3 and 5 that have been implemented using 

an event-scheduling world view.  

 

 

Figure 2.4. Formalism Transformation Graph (adjusted from Vangheluwe, 2008). The arrows 
indicate an existing homomorphic relationship between formalisms 
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DEVS is a general modeling formalism that allows the formal representation of systems 

whose I/O behavior is described by a sequence of events. The DEVS formalism allows 

describing systems as a composition of atomic and coupled components. Atomic models 

are expressed in the basic DEVS formalism, whereas coupled models are expressed in 

the coupled DEVS formalism containing components and coupling information (Zeigler 

et al., 2000).  

An atomic DEVS model is a description of the autonomous behavior of a discrete event 

system represented as a sequence of deterministic transitions between sequential states 

over time (Vangheluwe, 2000). Additionally, it formally describes the mechanism to react 

to external inputs (events) and to generate output (events). A basic DEVS formalism for 

atomic DEVS models is a structure M as described in Definition 2.2. 

 

Definition 2.2. Formal definition of an atomic DEVS model (Zeigler et al., 2000) 

M = < X, Y, S, ta, δext, δint, λ > 

where 

 X is the set of input events 

 Y is the set of output events 

 S is the set of possible states, where s0 ∈ S is the initial state 

 ta:  S → 𝕋𝕋∞	 is the time advance function that is used to determine the 
lifespan of a state. 𝕋𝕋 is the time base, 𝕋𝕋∞ = [0, ∞] is 
the set of non-negative real numbers plus infinity 

 δext : Q × X → S is the external state transition function, where Q = 
{(s,e)|s∈ S, 0≤e≤ta(s)} is the total state set 

e is the elapse time since the last state transition 

 δint : S → S is the internal state transition function that defines how a 
state of the system changes internally (when the 
elapsed time e reaches the lifetime of the state) 

 λ: S→Y is the output function that maps the current state on the 
output of the atomic model 

 

2
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This formalism is an extension of the system description of Wymore (1967) mentioned 

earlier in Definition 2.1, where the major changes are the addition of the ta function to 

make the duration of state changes more explicit, and the differentiation between δint and 

δext. The basic DEVS formalism contains information about the state transition of a sys-

tem as it corresponds to systems knowledge at the generative level and systems specifi-

cation at state transition level (§2.1.3 and §2.2.1). For simplicity, the confluent state tran-

sition function δcon(s, x) will be discussed after the basic state transition mechanism is 

described.  

At any given time, a DEVS model is in some state, s∈ S. Each possible state s has an 

associated time advance calculated by the time advance function ta(s). In the absence of 

an external event, an atomic DEVS model will stay in a state s for a ta(s) units of time. A 

state transition occurs by an external state transition function δext (s,e,x) or an internal state 

transition function δint(s). When the calculated time advance expires, i.e., when the elapsed 

time e = ta(s), the system outputs the value λ(s), and transitions to a new state δint(s). This 

is called an internal transition. Alternatively, an external event x ∈ X might occur before 

the consumption of the ta(s), i.e., e < ta(s). In that case, the model transitions to a new 

state given by the external state transition function δext (s,e,x). This is called an external 

transition. In the case an external event arrives at the exact time of an internal event, then 

the confluent state transition function δcon(s, x) determines the next state; either an internal 

transition followed by an external transition or an external transition followed by an in-

ternal transition, or something completely different.  

A coupled DEVS formalism corresponds to structure systems in the systems knowledge 

hierarchy where a set of systems and their interrelations are specified (§ 2.1.3 and § 2.2.1). 

DEVS models are closed under coupling; that is, the hierarchical DEVS models can al-

ways be expressed as an equivalent atomic model (Vangheluwe, 2000). In other words, a 

hierarchical DEVS model theoretically behaves like, and has exactly the same character-

istics as an atomic model (which does not mean that we know or can always define that 

atomic model). Therefore, in hierarchical model composition, a component in a hierar-

chical model can also be another hierarchical model, since this model has (and is indis-

tinguishable from) an equivalent atomic model. This allows for an infinite hierarchy of 
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hierarchical models, where on each level, atomic sub-models and hierarchical sub-models 

can co-exist. 

The formal definition for a coupled DEVS model as a structure N is described in Defi-

nition 2.3.  

 

Definition 2.3. Formal definition of a coupled DEVS model (based on Zeigler et al., 2000) 

N = < X, Y, D, {Mi}, {Ii}, {Zij} select > 

where 

 X is the set of input events of the coupled model 

 Y is the set of output events of the coupled model 

 D is the set of component indexes of the coupled model  

 {Mi} is a set of components defined as 

Mi = < Xi, Yi, Si, δint,i ,δext,i, λi, tai >, ∀i ∈ D 

 {Ii} for each i ∈ D, Ii is the set of components which are influenced by 
component i, and Ii ⊆D ∪{N}, i ∉ Ii  

 {Zi,j } for each j ∈ Ii, Zi,j  is the output-to-input translation function, where 

.
𝑋𝑋 → 𝑋𝑋1			if	𝑖𝑖 = 𝑁𝑁	and	𝑗𝑗 ∈ 𝐷𝐷
𝑌𝑌1 → 𝑌𝑌			if	𝑖𝑖 ∈ 𝐷𝐷	and	𝑗𝑗 = 𝑁𝑁
𝑌𝑌1 → 𝑋𝑋=			if	𝑖𝑖 ∈ 𝐷𝐷	and	𝑗𝑗 ∈ 𝐷𝐷

 

 select 2D → D is the tie-breaking function which defines how to select 
the event from the set of simultaneous events. In other words, 
when multiple (atomic) models have to change their state at the 
same time, Select determines the order in which the (atomic) 
models are allowed to change their state one by one.  

 

In the port-based definition of DEVS (Wainer, 2009; Zeigler et al., 2000), model com-

ponents are modeled to have a set of input and output ports. The message-based com-

munication structure of the port-based DEVS formalism guarantees the modularity 

among the model components through their input and output ports. Ports also enable 

2
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setting up the coupling relationship between model components. The classic DEVS 

atomic model with the port specification is specified in Definition 2.4: 

 

Definition 2.4. Specification of a port-based DEVS atomic model (based on Zeigler et al., 
2000) 

M = < X, Y, S, δext, δint, δcon, λ, ta > 

where  

         X = {(p,v)| p ∈ IPorts, v ∈ Xp} is the set of input values and ports 

         Y = {(p,v)| p ∈ OPorts, v ∈ Yp} is the set of output values and ports 

         S is the set of sequential states 

         δext: Q×Xb−→S is the external state transition function, where 
Q = {(s,e)|s∈S,0≤e≤ta(s)} is the set of total 
states, e is the elapsed time since last state 
transition 

         δint: S→S  is the internal state transition function 

         δcon: S×Xb→S  is the confluent state transition function 

         λ: S→Yb  is the output function 

         ta:  S → 𝕋𝕋∞ is the time advance function which is used to 
determine the lifespan of a state, where 𝕋𝕋 
is the time base and 𝕋𝕋∞ = [0, ∞] is the set 
of non-negative real numbers plus infinity 

 

In the above port-based atomic DEVS model description, the superscript b indicates that 

the input and output values can be a bag6 of values rather than a single one. Therefore, 

Xb indicates a set of bags over elements in X where δext(s,e,x) = s. The set of total states 

                                                        

 

6 A bag is a set with possible multiple occurrences of its elements. 
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(S) that a model has is the Cartesian product of sets (s) belonging to each state variable. 

This means S = s1×s2×. . . ×sn, where n ∈ ℕ. 

Similarly, a DEVS coupled model can be described using a port specification, as provided 

in Definition 2.5. 

 

Definition 2.5. Specification of a port-based DEVS hierarchical model (based on Zeigler et al., 
2000) 

M = < X, Y, D, {M d ∈	D}, EIC, EOC, IC, select > 

where  

         X = {(p,v)| p ∈ IPorts, v  ∈ Xp} is the set of (external) input ports and values 

         Y = {(p,v)| p ∈ OPorts, v  ∈ Yp} is the set of (external) output ports and val-
ues 

         D is the set of component names 

         {Md ∈	D} is the set of components, each of which can 
be either an atomic model or a coupled 
model 

         EIC ⊆	X × ∪ Xd ∈	D  is a set of external input couplings that con-
nects external inputs to components in-
puts, where Xd ∈	D is the set of inputs of 
Md ∈	D  

         EOC⊆∪Yd ∈	D × Y is a set of external output couplings that con-
nects component outputs with external 
outputs, where Yd ∈	D is the set of outputs 
of Md ∈	D  

         IC ⊆	∪Yd ∈	D ×∪Yd’ ∈	D Ù d ¹ d’ is a set of internal couplings that connect 
component outputs to component in-
puts 

         select 2D → D is the tie-breaking function which 
defines how to select the event from the 
set of simultaneous events. 

 

2
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The hierarchical specification for DEVS is important from a complexity point of view 

(hierarchical modeling) and therefore specifically important for large-scale complex sys-

tems models. 

2.3 Temporal Data Mining: An Overview 

As argued in §1.3.4, one of the challenges related to large-scale complex simulation mod-

els are the growth in the volumes of data generated by their executions, particularly state-

trace data, or state-sequence data. Data mining is the process of discovering knowledge, 

such as patterns, associations, trends, anomalies, and significant structures, from such 

large and complex data sets using a combination of techniques from different fields such 

as statistics, machine learning, pattern recognition, database, and high-performance com-

puting technologies (Fayyad et al., 1996a; Hand et al., 2001; Laxman & Sastry, 2006). 

Typical data mining tasks include preprocessing, clustering, segmentation, classification, regression, 

and association rule mining (Dunham, 2002; Han et al., 2012; Hand et al., 2001). 

(I) Preprocessing the data mainly includes the tasks of data cleaning (i.e., removal of 

outliers, erroneous, missing, or irrelevant data), data integration (i.e., combining 

data from multiple sources into one), data transformation (i.e., conversion of 

data values to a format required by the tools and algorithms; for example, 

quantization of the continuous data points or conversion of numerical values 

to categorical ones (Mörchen, 2006b), and normalization (i.e., adjusting 

different data values to a common scale without distorting the differences in 

ranges of values).  

(II) Clustering7 is the process of identifying intrinsic regions or classes (referred to as 

clusters) embedded in a given data set based on similarity measure, such as 

distance (i.e., the distance of small intra-clusters vs. the distance of large inter-

clusters) or density (i.e., dense cluster regions separated by comparably sparser 

regions; Mörchen, 2006b). K-means (MacQueen, 1967) and DBSCAN (Ester 

                                                        

 

7 Also referred to as unsupervised classification (Rui & Wunsch, 2005). 
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et al., 1996) are two of the widely used clustering algorithms (see Benabdellah 

et al., 2019; Berkhin, 2006; Rui & Wunsch, 2005 for a collection of data 

clustering methods).  

(III) Segmentation is the task of partitioning a large data set into smaller portions or 

segments (Shani et al., 2011). The major difference between segmentation and 

clustering is that segmentation uses borders, or cut points, to split the whole 

data set into smaller segments, whereas clustering aims to identify borders 

within a given data without the goal to assign all points to clusters (Gionis & 

Mannila, 2003; Lovric et al., 2014). For example, clustering algorithms can label 

data points as noise in a given data set and do not assign them to any of the 

segments (Berkhin, 2006). Segmentation techniques are commonly used in 

discovering meaningful boundaries within long sequences of univariate data 

(see Keogh et al. (2004) for a comprehensive review of such segmentation 

methods) and multivariate data (Mäntyjärvi et al., 2001; Mörchen, 2006b; 

Siskind, 1999).  

(IV) Classification is the task of assigning data items within a given input data set into 

predefined classes or target categories according to a classification model 

learned from training data (Hand et al., 2001). In classification, the input data 

set is divided into two parts: a training set, which is used in the generation of 

the classification model, and a validation set, which is used to measure the 

accuracy of the classifier. A classifier is an algorithm, or a mathematical function, 

which is implemented for the classification task (see Witten & Frank, 2002 for 

a collection of classification methods). Classification can be seen as a particular 

version of regression, where the predictor variables are discrete and with no 

implicit ordering, instead of being numerical (Mörchen, 2006b). A recent 

literature review of text classification algorithms can be found in Li et al. (2022). 

(V) Regression is the task of predicting a range of sub-variables (i.e., response 

variables) from the numerical values of known variables (i.e., predictor 

variables) using explicit variable dependencies (Hastie et al., 2009). Regression 

methods are also useful to replace missing values in a data set. Linear (Yan & 

2
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Su, 2009) and non-linear  methods (Goodarzi et al., 2009; Seber & Wild, 2003) 

are two of the widely known forms of regression.   

(VI) Association rule mining aims to discover correlations, frequent patterns, 

associations or causal structures among data items within various types of 

databases such as transactional, relational, and other types of data repositories 

(Huang et al., 2000). Typically, association rules are calculated for itemsets (i.e., 

discrete set of items) and are used to express the co-occurrence of data items 

in these itemsets. An itemset is considered as frequent if all subsets of an itemset 

are frequent (Mörchen, 2006b). A particular subfield of association rule mining 

that deals with the discovery of frequent patterns within large itemset databases 

(e.g., customer transaction database) is called frequent itemset mining (Agrawal 

& Srikant, 1994). Apriori (Agrawal & Srikant, 1994) is the best-known 

association rule mining algorithm (see Zhao & Bhowmick (2003) for a survey 

of association rule mining algorithms).  

Extensive overviews on the methods and applications of data mining are available (Fay-

yad et al., 1996a, 1996b; Han et al., 2012; Hand et al., 2001; Kantardzic, 2011; Mannila, 

1997). 

2.3.1 Temporal Data Mining: Definition and Data Types 

Temporal data mining is an extension of data mining with a particular focus on the dis-

covery of knowledge from data with temporal aspects (Fu, 2011; Grossmann & Rinderle-

Ma, 2015; Laxman & Sastry, 2006; Mitsa, 2010). Temporal data is typically represented 

as sequences of observations (generally numerical or categorical values) at discrete points 

in time (Mamoulis, 2009). In cases where time is not uniformly sampled, there is usually 

some lower bound for the granularity (i.e., finest level of detail) of time which is referred 

to as time points (Mörchen, 2007).  

Temporal data mining methods are designed to analyze mainly four types of temporal 

data, each of which consists of numerical or categorical values, and can be represented 

as univariate or multivariate (Fu, 2011; Grossmann & Rinderle-Ma, 2015; Laxman & 

Sastry, 2006; Lin et al., 2002; Mitsa, 2010; Mörchen, 2007). A time series is a series of data 

points indexed by equidistant points in time (Laxman & Sastry, 2006; Mörchen, 2007). 
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Time series are univariate if they contain only one time-dependent variable (i.e., consisting 

of a single series), or multivariate if they have more than one time-dependent variable (i.e., 

consisting of multiple series). A time series is numerical if the values at each time point 

is represented with numerical values (e.g., stock ticks, EEG, temperature), or categorical if 

the values of each time point is a category (e.g., timed-event logs).  

The second type of temporal data is a sequence, also referred to as event sequences 

(Mamoulis, 2009) or transactions. A sequence is a series of timed events ordered by quali-

tative temporal concepts, such as position like before or after (Allen, 1983; Das et al., 1998; 

Mannila et al., 1997; Mörchen, 2006b), instead of an explicit equidistant time indexing as 

it is the case in time-series. In other words, if an item appears before another one in such 

transactional data, it only indicates that the former has occurred before the latter (without 

guaranteeing any equidistant time separation between them or between any other suc-

cessive events). Examples of sequence data could be a text, gene or protein sequences, 

or a list of moves during a chess game. In some cases, some of these items can be deemed 

meaningful when they repeatedly occur together in a given sequence data. When identi-

fied, these set of items can be used to describe the behavior and actions of users or 

systems, and predict future items. An event sequence is a special type of sequence data, 

consists of events ordered by non-equidistant points in time. If an event sequence only 

consists of non-simultaneous events, it is referred to as simple event sequence. On the other 

hand, an event sequence with simultaneous events is referred to as complex event sequence. 

An episode can be described as a sequence of events, where each event has an associated 

time of occurrence (Mannila et al., 1997). A frequent episode, in this context, can be 

described as an episode appearing at least at a user-defined frequency threshold in an 

event sequence data set (Mannila et al., 1997).  

The third type of temporal data is an interval time series, which is a set of time intervals 

recorded at each time point instead of a single value; e.g., a yearly record of the highest 

and lowest temperature in Amsterdam for each day, or the daily range of sea level at 

various locations (Mörchen, 2006a; Villafane et al., 1999).  

Lastly, an itemset sequence is a time-ordered sequence of a non-empty set of (unordered) 

items (Agrawal & Srikant, 1995). An example of an itemset sequence can be a customer 

transaction database, where each transaction is an ordered collection of purchased items 

2
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by a customer at each visit. The process of exploring the relationships between purchased 

products that frequently appear together, also known as market basket analysis, is a typical 

example of frequent pattern mining (Han et al., 2012). 

2.3.2 Characteristics of State-Trace Data 

In our research, the input data for the temporal data mining tasks are the state-trace 

outputs generated from the execution of large-scale complex DEVS models. State-trace 

data obtained from such models can have the characteristics of a sequence or multivariate 

time series consisting of categorical variables, numerical variables, or both.  

Definition 2.6. A state-trace of a discrete-event simulation model is a time sequence of state-trace records 

(recorded instants), where each state-trace record within the same state-trace data set is a homogenous 

(i.e., each state-trace record in the state-trace data has the same number variable values) and has a total 

order (i.e., the model variable values from with the same index create a column and all values in a single 

column represents the same model variable).  

A state-trace data set can have variables with all categorical, all numerical, or hybrid var-

iables columns. Depending on the goals and the objectives of the simulation study and 

the preferences of the modeler, input variables, output variables (e.g., run statistics) of 

the simulation model and the time (e.g., elapsed, absolute, simulation) can be included as 

an individual column in the state-trace data. The changes between two consecutive state-

trace records describe the system state changes at a rate (i.e., at every event occurrence 

or at a fixed-increment of time) imposed by the modeler. As a result, the size of a state-

trace data set is a combination of (a) the number of rows determined by the run length 

and logging rate, and (b) the number of columns determined by the number of state 

variables, input and output variables, time, and any additional data required by the mod-

eler. 

DEVS simulators are event-driven at simulation time. Generally, the simulation time 

jumps to the occurrence of the next event using the ta function or until the next external 

event, assuming that there is no change in the system between two consecutive events 

(Zeigler et al., 2000). This approach is called next-event time progression. As a result, state-

trace records are generated only at the time an event occurs, and time is, therefore, non-

uniformly sampled. In that case, either the time of event occurrences or the elapsed time 
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between events has to be part of the state-trace data in order to preserve the temporality 

of the data. Alternatively, a fixed-increment time progression approach can be employed, in 

which time is sliced into uniform (equal) timeframes and the state of the system is rep-

resented by the convolution of events happening in each timeframe. With the fixed-time 

progression approach, successive state-trace records will be the same if no event occurs 

in between, and state changes will not be recorded when multiple events take place be-

tween updates of the state trace records. In this research, we will show the results for 

both approaches.  

As mentioned earlier in §2.2.4.1, DEVS model components (both atomic and coupled) 

have state variables that, as a collection S, indicate the state of the system at any point in 

time. 

2.3.3 Temporal Data Mining Tasks 

The mining tasks that we described earlier in §2.3 can be applied on temporal data, most 

of which are direct extensions of the corresponding mining tasks on general types of data 

(Mamoulis, 2009). In addition, there are several mining algorithms that are specific to 

temporal data (Fournier-Viger et al., 2017; Gan et al., 2019; Han et al., 2012; Laxman & 

Sastry, 2006; Mitsa, 2010; Roddick et al., 2001). The two major ones are sequential pattern 

mining (SPM; Mabroukeh & Ezeife, 2010; Pei et al., 2001) from sequential databases, and 

frequent episode mining (FEM; Mannila et al., 1997) from long temporal data (e.g., event) 

sequences.  

SPM deals with the discovery of sequential patterns, or subsequences, ordered by a tem-

poral concept such as time or position within a given sequential dataset (Laxman & 

Sastry, 2006). Such patterns can be differentiated from the other possible patterns in the 

data based on various criteria such as their occurrence frequency and length (Fournier-

Viger et al., 2017; Gan et al., 2019). Two types of data that are often used in SPM are 

time-series (numerical and categorical) and sequences. Numerous algorithms have been 

developed to identify sequential patterns in sequence datasets (Fournier-Viger et al., 

2017; Gan et al., 2019; Mabroukeh & Ezeife, 2010). Although these various algorithms 

generally produce the same output if the input parameters are the same, they utilize dif-

ferent strategies and data structures to discover sequential patterns (Fournier-Viger et al., 

2
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2017; Gan et al., 2019). SPM algorithms can be distinguished on the basis of four char-

acteristics: (a) whether they use depth-first search (i.e., patterns are considered by exploring 

a node branch as far as possible before backtracking and expanding other nodes) or 

breadth-first search (i.e., patterns are considered in ascending order of length), (b) whether 

they use a horizontal (level-wise) or vertical (i.e., on the basis of itemsets) database rep-

resentation, (c) how they determine the next patterns to be explored, and (d) how they 

determine the minimum support (i.e., a user-defined frequency threshold) criteria (Four-

nier-Viger et al., 2017). 

The goal of FEM is to discover frequent episodes from single long temporal data (or 

event) sequences or to discover episode rules between events describing which event (or 

a sequence of events) often appears before another event within a user-defined time 

frame (Huang & Chang, 2008). The particular interest in discovering patterns from a 

single sequence rather than a set of sequences is the main difference between SPM and 

FEM (Fournier-Viger et al., 2017; Gan et al., 2019). Based on the categorization of Man-

nila et al. (1997), episodes can be parallel (i.e., the set of events occurring within a window 

of time, but not in a particular order) or serial (i.e., a list of events occurring in total order 

within a window of time) or composite (i.e. a combination of serial and parallel episodes). 

An episode is considered frequent if it appears above a user-defined frequency threshold 

called minimum support threshold or minsup. However, choosing the minsup value is a diffi-

cult and time-consuming task, because of the fact that setting a high or a low minsup 

value is a trade-off between long execution times and insufficient candidate pattern set 

generation to successfully unearth important information, and determining an “enough 

but not too many” candidate set is done via trial and error in traditional FEM algorithms 

(Fournier-Viger et al., 2020). 

The WINEPI and MINEPI algorithms were the first algorithms for FEM (Mannila et 

al., 1997). The WINEPI algorithm (Mannila et al., 1997) mines all frequent episodes 

(parallel or serial) using a breadth-first search and placing a sliding window over the input 

sequence. The algorithm counts the frequencies of nodes of increasing length (up to the 

user-defined window size) until the window reaches the end of the input sequence. An-

other window-based frequency algorithm is MINEPI (Mannila et al., 1997), which also utilizes 

a breadth-first search approach but only counts the minimal occurrences of episodes. 
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However, the apriori-like candidate generation characteristic of window-based frequency 

algorithms has the limitation of missing some of the frequent episodes with longer length 

as they do not hold an anti-monotonic property and the requirement to keep the candi-

date patterns in memory because of the breadth-first search is costly (Ao et al., 2015). 

Another shortcoming of window-based frequency algorithms is that some occurrences 

of episodes may be counted more than once due to their support count mechanism 

(Fournier-Viger et al., 2020). A commonly used user-defined input parameter for win-

dow-based frequency algorithms is called maximum window bound or maxwin. Given a large 

data set, mining frequent episodes above a given minsup might yield results that span 

across too many intervals. To mitigate that, users can thus use the maxwin parameter to 

mine only the episodes that are less than or equal to the maxwin interval (Huang & 

Chang, 2008).  

To address these limitations of window-based frequency algorithms, two new depth-first 

search based algorithms MINEPI+ and EMMA (Episodes Mining using Memory An-

chor) were proposed (Huang & Chang, 2008). Specifically, the EMMA algorithm was 

shown to outperform MINEPI and MINEPI+ (Huang & Chang, 2008) as the algorithm 

utilizes both depth-first search and memory anchors to further reduce the search space 

in pattern generation and to accelerate the mining task. In recent years, several other 

studies have been published in the field of FEM to tackle problems, such as finding top-

k episodes in an event sequence (Fournier-Viger et al., 2020), mining episodes on dy-

namic event streams (Patnaik et al., 2012), online frequent episode mining (Ao et al., 

2015), and high-utility episode mining (Fournier-Viger et al., 2017; Gan et al., 2019; Lin 

et al., 2017; Truong-Chi & Fournier-Viger, 2019; Wu et al., 2013), which focuses on 

providing other domain-specific metrics to select frequent episodes instead of the minsup 

parameter used in traditional FEM algorithms.  

2.3.4 Temporal Data Mining in Discrete Event Simulations 

Following the above discussion of data mining concepts and techniques, there are several 

reasons why data mining, and specifically temporal data mining, may form an essential 

contribution to the study of large-scale complex simulation models.  

2
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Firstly, as discussed in the previous chapter, the manual abstraction of large-scale com-

plex simulation models at the structure level is a near-impossible endeavor due to the 

vast and diverse number of objects and the relations between them, and currently, no 

strategy exists yet to automate this process. An alternative approach to model the ab-

straction of large-scale complex simulation models is to simplify the dynamic behavior 

that is encapsulated in the state-trace data of these models. However, state-trace data 

obtained from these simulation models are extensive in terms of volume and variety, 

which confines modelers’ ability to identify and utilize frequent patterns for model ab-

straction. Temporal data mining tasks, such as sequential pattern mining and frequent 

episode mining, can offer a set of tools to automate this model abstraction process at the 

transformation level, theoretically corresponding to the generative system level in Klir’s 

(1985) system knowledge framework and the state transition level in Zeigler’s  System 

Specification (Zeigler et al., 2000).  

Secondly, as discussed in §2.2.4, it is often impossible to fully capture the totality of large-

scale complex systems in a single simulation model (Hofmann, 2004; Yilmaz & Ören, 

2004). A family of models with different levels of abstraction, or resolution, can yield 

different types of insight into the dynamic behavior of large-scale complex systems, to 

provide better support for users with different roles or perspectives. Unfortunately, the 

previously mentioned shortcomings for the manual abstraction of large-scale complex 

simulation models remains in the existing multiresolution modeling techniques (Yilmaz 

& Tolk, 2006). Most temporal mining algorithms have various user-defined parameters, 

including window size and the maximum time duration, which can be used to predeter-

mine the minimum size of the frequent patterns to be detected by the algorithms. Such 

parameters can serve as a “resolution slider” to increase (not beyond the resolution of 

the state variables in the base model) or decrease (not beyond the minimum threshold to 

sustain the model validity) the resolution of the model. In addition, modelers can apply 

temporal data mining tasks only on a select set of state-traces (e.g., those that belong to 

certain atomic or coupled models that are contextually linked) from the complete state-

trace data. This would help modelers to decrease the resolution of a specific portion of 

the model (similar to the concept of “zooming out”) and preserve the details for the 

remainder (of the model).   
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To our knowledge, no studies to date have applied temporal data mining techniques on 

state-trace data collected from large-scale complex discrete-event models to build homo-

morphic lumped models. However, the general idea of inferring model structure from 

data has previously been explored in the field of process mining. Process mining has 

been applied with promising results in a wide range of domains, including healthcare, 

information and communication technology, manufacturing, education, and logistics 

(Garcia et al., 2019). Process mining provides techniques to discover, monitor, and en-

hance business processes based on event logs. The purpose of process discovery in pro-

cess mining is to extract knowledge from event logs with the goal of generating a process 

model, which is usually a Petri net model (van der Aalst, 2011, 2016). A Petri net (Dennis, 

2011; Narahari, 1999; Petri & Reisig, 2008) is a directed bipartite graph with transitions 

and places connected with directed arcs. For instance, Lugaresi & Matta (2021) propose 

a process mining-based method for generating and tuning both Petri net and simulation 

models from the event logs of manufacturing systems. In (Lugaresi & Matta, 2022), they 

also investigated the applicability of Digital Twins approach for online model generation 

of discrete-event simulation models from event logs. Digital Twins is a rapidly growing 

field (Liu et al., 2021). We believe that Digital Twins as an application area could benefit 

from the concept of state-trace mining, and help to create and test new techniques for 

state-trace mining. 

2.4 Summary and Outlook 

In this chapter, the fundamental concepts and the existing work in systems theory, mod-

eling and simulation (with a particular focus on discrete event simulation), and temporal 

data mining were introduced. Furthermore, we described the characteristics of the state-

trace data generated from the execution of large-scale complex DEVS models. Finally, 

we discussed why temporal data mining tasks on state-trace data can be a useful tool for 

the automation of DEVS model abstraction and the generation of multiresolution mod-

els. However, as we will discuss, the application of temporal data mining procedures in 

discrete event simulations introduces several unique theoretical and practical issues. In 

the next chapter, we propose a method based on temporal data mining for DEVS model 

abstraction that addresses these specific issues and considerations.  

2
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3 Temporal Data Mining-based Method for Automated 

Discrete-event Model Abstraction 

As we have established in the previous chapters, conventional methods for model ab-

straction at the structure level (Zeigler et al., 2000) are not suitable for large-scale com-

plex simulation models. Instead, abstraction at the transformation level, using the state-

trace data which encapsulate the model’s dynamic behavior, may be a more viable alter-

native approach for abstracting such models. Given its ability to automate the detection 

of frequent temporal patterns in large data, temporal data mining may provide useful and 

versatile tools for this process. In this chapter, we integrate these ideas and present a 

novel temporal data mining-based method for DEVS model abstraction using state-trace 

data. DEVS (Zeigler et al., 2000) is the universal common modeling formalism for the 

simulation of large-scale complex simulation models (Vangheluwe & de Lara, 2002). In 

what follows, we will provide a detailed description of our proposed method, specifically 

for the field of simulation. We will highlight the strengths of this novel approach and 

introduce several theoretical and practical considerations in its application. We will for-

mally describe the key concepts and algorithms used in our method, and present step-

by-step guidelines for its application.  

3.1 Introduction 

Our proposed method integrates the fields of temporal data mining and modeling and 

simulation. In essence, the goal of our method is to automate the process of model ab-

straction in dynamic DEVS. More specifically, it aims to generate a simplified (lumped) 

homomorphic DEVS model from a larger-scale, more complex simulation model (base 

model). This is achieved by utilizing the state-trace data of the base model and by em-

ploying temporal data mining tasks to automatically detect frequent temporal patterns. 

These frequent temporal patterns, in turn, will become the aggregated states of the 

lumped model. Subsequently, the lumped model will be formally described using Markov 

Modeling (i.e., Markov Chain), which is one of the commonly used techniques to de-

scribe probabilistic/stochastic models (Mor et al., 2020). In addition, its concepts of 

states and state transitions are fully compatible with DEVS description of discrete event 
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systems, making it a useful tool to address challenges resulting from large-scale complex 

simulation models (Seo et al., 2018; Zeigler et al., 2018). The Markov Chain will then be 

simulated to generate output in the form of new state-trace data. Finally, the state-trace 

data of the lumped Markov Chain will be validated against the state-trace data of the base 

model. The rationale for the above choices will be elaborated in the course of this chap-

ter. 

3.1.1 Formalization of Discrete-event State-Traces  

Recall from Chapter 2 that the DEVS formalism allows describing systems as a compo-

sition of atomic (behavioral) and coupled (structural) models. Atomic models are expressed 

in the basic DEVS formalism and atomic model components can be coupled to build 

more complex coupled models. These coupled models are expressed in the coupled 

DEVS formalism and can be used as components of larger coupled models, allowing a 

hierarchical model description (Zeigler et al., 2000).  

The basic DEVS formalism contains information about the state transition of a system 

as it corresponds to systems knowledge at the generative level and systems specification 

at the state transition level (§2.1.3 and §2.2.1). Therefore, the behavior of an atomic 

DEVS model can be described as a set of sequences of timed events, i.e., a sequence of 

deterministic transitions between sequential states over time at the generative level 

(Vangheluwe, 2000).  

The state of a component (atomic or coupled) remains constant over intervals of time. 

A state 𝑠𝑠1 is passive when its lifetime is infinite (i.e., 𝑡𝑡𝑡𝑡(𝑠𝑠1) = 	∞), and active when its life-

time is a finite positive number. If 𝑆𝑆E  is a subset of active states and 𝑆𝑆F  a subset of passive 

states, 𝑆𝑆E ∩ 𝑆𝑆F = 	∅. The values of the component states only change at predetermined 

event times. An event represents a change in the state. A transition function in DEVS is 

decomposed into two sub-functions – the internal transition function that specifies the 

state changes caused by internal events and the external transition function that specifies 

the state changes due to external events (see §2.2.4.1 for more details). The total states 

(𝑠𝑠, 𝑒𝑒)	of a model can be defined as:  

𝑇𝑇𝑆𝑆 = {(𝑠𝑠, 𝑒𝑒)|𝑠𝑠 ∈ 𝑆𝑆, 0 ≤ 𝑡𝑡𝑡𝑡1(𝑠𝑠1)} 

3
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where e is the elapsed time in state 𝑠𝑠 (Zeigler et al., 2000). This concept of total states is 

crucial as it enables one to specify a future state on the basis of the elapsed time in the 

current state (Giambiasi & Frydman, 2014).   

Because DEVS models are closed under coupling, any DEVS model, whether atomic or 

coupled, can be flattened with an equivalent atomic DEVS model (Vangheluwe, 2000). 

This means that even more complex models like large-scale complex simulation models 

(i.e., structural models) can be fully specified by a simpler atomic (i.e., behavioral) DEVS 

model.  

Consider a coupled DEVS component N = < X, Y, D, {Mi}, {Ii}, {Zi,j}, select >, where  

∀i∈D, Mi is an atomic component defined as Mi = < Xi, Yi, Si, δint,i, δext,i, λi, tai > (see 

§2.2.4.1 for more details). For any atomic component Mi, a state change is triggered by 

the DEVS simulator executing internal state transitions δint,i (si) and external state transi-

tions δext,i (si, ei, xi). State transitions of the coupled DEVS model N are driven by state 

transitions of its atomic components Mi. Therefore, the coupled DEVS model N is 

equivalent to an atomic DEVS model M = < X, Y, S, δint, δext, λ, ta > (Vangheluwe, 2000). 

The resultant set of sequential states of M (equivalent to the coupled DEVS model N) is 

the product of all the total state sets of all the components  

S   =  (…, (si, ei), …) ∈ S = ×i∈DQi 

where Qi  =  {(si ,ei) | si ∈ Si, 0 ≤ ei  ≤ tai(si) } and ta: S → RR,STS  

For the coupled model, an internal state transition to the sequential state δint,i* (si*) is trig-

gered from an internal state transition of the selected imminent component i* 

(Vangheluwe, 2000), which transforms the different parts of the total state as follows: 

δint (s)   =  ( …, (s'i, e'i), …)      , where 

(s'i, e'i)   = (δint,i (si), 0)        , for i = i* 

=  (δext,i (si,ei + ta(s), Zi*,i (λi* (si*))), 0)  , for i ∈ Ii* 

= (si,ei + ta(s))        , otherwise 

where ta(s) =  min{tai(si) − ei | i ∈ D} 
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The external transition function transforms the different parts of the total state as fol-

lows: 

  δext (s, e, x)  =  (…, (s'i, e'i), …), where 

(s'i, e'i)  =  (δext,i (si,ei + e, ZN,i (xi)), 0)   , for i ∈ IN 

      = (si, ei + e)       , otherwise. 

The key element in the closure procedure is the selection of the most imminent event 

from all scheduled events belonging to all components forming the coupled model. In 

case a number of imminent events are scheduled simultaneously, the select function is 

used as a tie-breaker. The closure under coupling property is important for our research 

because it enables us to define the state-trace of a coupled model where all events are 

ordered sequentially with respect to the time base of the model.  

As defined earlier in Definition 2.6, a state-trace of a discrete-event simulation model is 

a time sequence of state-trace records (recorded instants), where each state-trace record 

within the same state-trace data is a homogenous (i.e., each state-trace record in the state-

trace data has the same number of variable values) and has a total ordering (i.e., the model 

variable values from with the same index create a column and all values in a single column 

represents the same model variable). Depending on the goals and the objectives of the 

simulation study and the preferences of the modeler, input variables, output variables 

(e.g., run statistics) of the simulation model and the time (e.g., elapsed, absolute, simula-

tion) can be included in a state-trace record. 

3.1.2 Frequent Episode Mining 

In §2.3.3 and §2.3.4, we described how temporal data mining may provide an essential 

contribution to the study of large-scale complex simulation models and we discussed the 

importance of finding frequent behavioral patterns in large temporal data (e.g., state-

trace data) to facilitate the process of model abstraction. The state transition mechanism 

and the time advance structure of DEVS characterization of a discrete event systems are 

fully compatible with the concepts of states and state transitions in Markov Modeling 

(Zeigler et al., 2019). In DEVS, the next state can be determined solely by knowing the 

current state and the elapsed time since the last state transition. Therefore, the dynamic 

3
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behavior of a DEVS model encapsulated in state-trace data can be simplified by (a) iden-

tifying all successive state-trace record pairs (i.e., serial episodes of length two) corre-

sponding to the system of interest’s state-transitions by the frequent episode mining al-

gorithm and (b) calculating the state transition probabilities for these identified pairs. In 

our method, we employ the EMMA (Huang & Chang, 2008) frequent episode mining 

algorithm to discover all serial8 state-trace record pairs from the state-trace data and their 

frequency information (also see §2.3.3 for more details on the EMMA algorithm). In all 

our case studies, we used the Java implementation of the EMMA algorithm provided 

within the SPMF open-source data mining library (Fournier-Viger et al., 2014; 2016). We 

chose the SPMF library because it provides source code that is widely used in the data 

mining field, well-documented, and modular (i.e., that can be easily integrated and ex-

tended). In addition, the version of the EMMA algorithm implemented in the SPMF 

library9 contains all the optimization methods described in (Huang & Chang, 2008).  

Although several frequent episode mining algorithms (see §2.3.3) can be used for our 

purpose to find serial episodes, we chose EMMA as it is one of the most efficient FEM 

algorithms (Fournier-Viger et al., 2020; Huang & Chang, 2008). Specifically, Huang and 

Chang (2008) have shown that EMMA outperforms other well-known traditional FEM 

algorithms, such as MINEPI and MINEPI+. Moreover, as we show in Appendix A.1, a 

comparison of these three algorithms on our case study data confirms that, at the time 

of this research, EMMA is the fastest in finding all unique state-trace records and con-

secutive state-trace record pairs from state-trace data of various length (5,000; 10,000; 

25,000 and 50,000 state-trace records).  

In Fournier-Viger et al. (2020), researchers have proposed a new algorithm named TKE 

to find top-k frequent episodes. Because this algorithm is so new, it was outside the scope 

of the current research to test it on our data set. However, the study’s findings on 

                                                        

 

8 We acknowledge that the EMMA algorithm is also capable of discovering partially-ordered parallel episodes. 
However, the focus of our research is to identify serial episodes from state-trace data as described in §3.1.1. 
Therefore, we will limit the algorithm’s discovery set by adjusting its minsup and maxwin parameters and, for the 
rest of the dissertation, the term episode will be used to refer serial episodes. 

9 Specifically, we used SPMF release version 2.41, which was the latest release of the library at the time being.  
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benchmark datasets suggest that the algorithm may be a valuable alternative to EMMA 

when the user lacks sufficient background information about a dataset to correctly set 

the optimal minsup threshold. Future studies should compare the performance of EMMA 

with the new TKE algorithm on state-trace data.  

The EMMA algorithm consists of 3-stages. At stage 1, the algorithm aims to mine all 

frequent serial episodes to construct frequent serial episodes. This is to (a) avoid checking 

items more than one time, (b) encoding each frequent itemsets with a unique ID, such 

as time or order to construct them into an encoded horizontal database (c) mining the 

frequent serial episodes in the encoded horizontal database; we refer to Huang and 

Chang (2008) for more details. Algorithm 3.1.2.1 describes in detail stage 1 of EMMA; 

the application of the frequent itemset mining using memory anchor (FIMA) algorithm.  

 

Algorithm 3.1.2.1. EMMA stage 1: FIMA (Huang & Chang, 2008) 

Procedure of FIMA (temporal data TDB, minsup) 

1: Scan TDB, find frequent 1-item F1; 

2: Remove nonfrequent items and transform TDB into indexed data-
base IndexDB; meanwhile maintain the locations of all F1 in the flat da-
taset; 

3: for each fi in F1 do 

4:      Output fi and its TidList; 

5:      fimajoin(fi, fi.LocationList); 

Subprocedure of fimajoin(Pattern, LocationList) 

6: LFI = local frequent items in the projected location list of FP (i.e., 
FP. PList); 

7: for each lfj in LFI do 

8:      Output FP ∪ lfj and its TidList; 

9:      fimajoin(Pattern ∪ lfj , lfj.LocationList); 

 

3
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At stage 1, the goal of the EMMA algorithm is to utilize the frequent itemsets mining 

algorithm FIMA to eliminate the unnecessary generation of candidate items. The FIMA 

algorithm achieves this by validating local frequent items and subsequently, reducing the 

computation. The recursive call of the sub-procedure fimajoin stops when no further fre-

quent itemsets can be generated. Stage 2 and stage 3 of the EMMA algorithm are de-

scribed in Algorithm 3.1.2.2. 

 

Algorithm 3.1.2.2. EMMA stage 2 and 3 (Huang & Chang, 2008) 

Procedure of emmaassociate (temporal data TDB, minsup, maxwin) 

1: Call FIMA(TDB, minsup) to find all frequent items FP1 and their Tid-
Lists; 

2: Associate each item with a unique ID to construct an encoded data-
base EDB; 

3: for each fidi in frequent IDs FPI do  

4:     Output fidi;       

5:     if (ExtCount(fidi.boundlist ) ≥ minsup * |TBD|) 

6:         emmajoin(fidi, fidi.boundlist);  

Procedure of emmajoin(Episode, boundlist)  

7: LFP = local frequent IDs in the projected bound list of Episode (i.e., 
Episode.PBL); 

8: for each lfi in LFP do 

9:      Output Episode · lfi ; 

10:      tempBoundlist = temporalJoin(boundlist, fi.boundlist); 

11:      if (ExtCount(tempBoundlist) ≥ minsup * |TBD|) 

12:          emmajoin(Episode · lfi,tempBoundlist);  

 

The second stage of the EMMA algorithm aims to associate each frequent item with a 

unique identifier. These associations are stored in the encoded database EDB. Once the 

frequent itemsets are generated for the given minsup, the EMMA algorithm starts 
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associating each frequent itemset with a unique ID and constructs an encoded horizontal 

database (Huang & Chang, 2008). At stage 3, the main task is to mine frequent episodes 

that are limited by maxwin parameter to define the projected bound list (PBL) for an 

episode. The PBL allows detecting the frequent IDs by counting the number of bounds 

that an ID occurs (Huang & Chang, 2008, p.106).   

3.1.3 Markov Chains 

A stochastic process X = {𝑋𝑋U : n ≥ 0} on a discrete (i.e., finite or countable) set of all 

possible sequential states, or state space, S is a Markov Chain (Serfozo, 2009) if,  ∀ i, j ∈ S 

and n ≥ 0,  

P{𝑋𝑋USW = 𝑗𝑗	|𝑋𝑋U = 𝑖𝑖, 𝑋𝑋UXW = 𝑖𝑖UXW,… ,𝑋𝑋R = 𝑖𝑖R} = 𝑃𝑃{𝑋𝑋USW = 𝑗𝑗|𝑋𝑋U = 𝑖𝑖}  (3.1) 

P{𝑋𝑋USW = 𝑗𝑗|	𝑋𝑋U = 𝑖𝑖} = 𝑃𝑃1[                 (3.2) 

A Markov Chain is a discrete-time Markov Chain if the state transitions happen at dis-

crete times n ∈ ℕ = {0, 1, 2, . . .} (Sorensen & Gianola, 2007). X0 is denoting the initial 

state. The value of Xn is the state of the process at time n (e.g., if Xn=i, the process is said 

to be in state i at time n). 𝜋𝜋R is the initial distribution of the Markov Chain at t0. 𝜋𝜋R can 

be interpreted as a row vector, also referred to as initial distribution vector, whose ith entry 

𝜋𝜋R(𝑖𝑖) can be denoted as the probability ℙ{𝑋𝑋R = 𝑖𝑖} that the chain starts in state i.  

Condition (3.1), called the Markov property, says that, at any time n, the next state 𝑋𝑋USWis 

conditionally independent of the past states 𝑋𝑋R,… , 𝑋𝑋UXW  and just dependent on the pre-

sent state 𝑋𝑋U. This memoryless property of Markov Chain states is akin to the discrete-

event model states in DEVS and forms the backbone of our temporal data mining-based 

method to abstract discrete-event simulation models.  

Condition (3.1) also indicates that the Markov Chain is time-homogenous, that is the transi-

tion probabilities are independent of the time parameter n, but rather constant over time 

(Serfozo, 2009). Pij is the probability that the Markov chain transition from state i to state 

j. These transition probabilities represented in an N ×	N matrix P = (Pij) is the transition 

matrix of the Markov Chain. A transition matrix is a right stochastic matrix. That is, given 

3
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a sequence (e.g., state-trace data) with finite state space S with cardinality S, the transition 

matrix P can be represented as 

 

0 < Pij < 1, and ∀𝑖𝑖	we have, 

_ 𝑃𝑃1[
`

abW|	a∈`
= 	c 𝑃𝑃	(𝑋𝑋USW

`
abW = 𝑘𝑘|𝑋𝑋U = 𝑖𝑖) = 1																				    (3.3) 

Given a state i, the next state must be one of the possible states and the sum of all prob-

ability values in each row must be 1.  

3.1.4 An Exploratory Case-study: M/M/1 Queueing System 

Queueing theory is the mathematical study of formation, function, and congestion of 

waiting lines, or queues (Shortle et al., 2018). In queueing theory, a queueing model is 

constructed to design and evaluate the performance of a queueing system based on sev-

eral measures, such as the server utilization, the length of waiting lines, and the delays – 

or waiting times – of entities. Discrete event simulations are heavily used in the analysis 

of queueing systems. This section introduces a simple single-server queueing system (see 

Figure 3.1); similar to the example that can be found in L’Ecuyer et al. (2003), Lang et al. 

(2015), and (Law, 2015). 

 

 

Figure 3.1. A single server queueing system; IAT stands for inter-arrival time; FIFO is the first-
in-first-out queue ordering 
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Represented in Kendall’s Notation (Kendall, 1953), an M/M/1 queue10 is a specific case 

of an M/M/c multi-server queue, where the number of servers c = 1, the arrivals of the 

entities is determined by a Poisson process with rate λ (so the interarrival time IAT is 

Exponentially distributed with parameter 1/λ), and the service times are distributed ac-

cording to an exponential distribution with rate µ (so having an average service time ST 

of 1/µ) (Bhat, 2015). The flowchart given in Figure 3.2 visually represents the sequence 

of steps that an entity, such as a customer takes. The entity interarrival times A1, A2, … 

and the service (or delay) times S1, S2, … of each successive entity are iid random varia-

bles. If a new entity arrives and the server is idle (i.e., the queue is empty and the queue 

length is 0), then the entity seizes the server and delays for the duration of service time. 

The server is released once the entity seizing it has been served (for the duration of the 

service time) and can be seized by the next entity in the queue in a first-in, first-out 

(FIFO) manner. If a new entity arrives and the server is in state busy, this new entity joins 

the end of the single queue. The server goes back to the state idle if the queue becomes 

empty (i.e., the queue length is 0) after completing a service for an entity. Note that the 

queue length is the number of entities in the queue waiting to be served and the capacity 

of the system at a given time is the queue length + 1 entity in the server. 

A number of world views can be used to express a conceptual model (Fishman, 1973). 

In this case study, we modeled the above described single-server queueing system based 

on the event-scheduling world view (see §2.2.4.1). We used the open-source DSOL (Dis-

tributed Simulation Object Library) simulation engine to implement the queueing system 

and to generate the state traces for the model (Jacobs, 2005). Using commercial software 

was considered for this purpose, but rejected because it might be that certain internal 

state variables would be unknown or inaccessible to create a full state trace. An open-

source simulation engine allows us to get access to the full state vector at any point in 

time, and to output the state at events or sample the full state at regular intervals. 

 

                                                        

 

10 M stands for Markovian or memoryless. 

3
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Figure 3.2. Flowchart of the M/M/1 queuing simulation (Jacobs & Verbraeck, 2006) 

 

Although an M/M/1 queueing system is an over-simplification of the complex systems 

of real interest (i.e., large-scale complex systems), they are highly similar in terms of how 

our method is applied. Furthermore, the theoretical model of an M/M/1 queue is well-

established in the literature. Therefore, the analytical results of our lumped model can be 

validated against an M/M/1 discrete event simulation model, and against the analytical 

values that are well known. In the following subsections, we will provide more infor-

mation on our M/M/1 model specific implementation and the simulation details. 

3.2 The Temporal Data Mining-based Method for DEVS Model Ab-

straction 

In what follows, we present the steps of our temporal data mining-based method for 

discrete-event simulation model abstraction and address several considerations and ac-

tions for modelers. These can be grouped into four main categories:   

(I) Considerations and actions regarding the generation of state-trace data (see 

§3.2.1) 
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(II) Considerations and actions regarding the application of the temporal data 

mining tasks to the state-trace data and the generation of the transition 

probability matrix P of the discrete-time Markov Chain (see §3.2.2) 

(III) Considerations and actions regarding the generation and the simulation of the 

discrete-time Markov Chain (see §3.2.3) 

(IV) Considerations and actions regarding the validation of the Markov Chain results 

(see §3.2.4)  

3.2.1 Generation of Discrete-event Simulation Model State-Traces 

The first step of our method is the generation of state-trace data from the execution of 

a base model. The role of state-trace data in our method is twofold: first, state-trace data 

are used to calculate the state transition probabilities. These probabilities represented in 

a (sparse) matrix format form the transition matrix P of the Markov Chain. Second, state-

trace data can be used to validate the resulting Markov Chain model against the base 

model. For these two purposes, any generated model state-traces will have to be split 

into two subsets: (1) a training set that will be mined by the frequent episodes mining 

algorithm to detect frequent state transitions and construct a transition probability matrix 

for the Markov Chain, and (2) a validation set that will be used to compare outputs (e.g., 

key performance indicators [KPIs]) estimated by the Markov Chain to those generated 

from the original model in order to evaluate the accuracy of our model abstraction.   

Before executing the model, the modeler needs to consider several factors. As will be 

shown in the next subsections, the following considerations are important: representation 

of time (see §3.2.1.1), the type of model (stochastic vs. deterministic) (see §3.2.1.2), the type of simu-

lation (terminating vs. non-terminating) (see §3.2.1.3), the inclusion of input and output variables (see 

§3.2.1.4 and §3.2.1.5), and the complete model state-trace vs. partial model state-trace (see §3.2.1.6).   

3.2.1.1 Representation of Time 

One of the considerations of the modeler when generating state-trace data is the repre-

sentation of time in the state-trace data. The final decision of the modeler should be 

guided by the following two questions:  

3

158962 Tekinay BNW.indd   75158962 Tekinay BNW.indd   75 09-05-2022   15:4409-05-2022   15:44



64 – Chapter 3 

1. How can the simulation time be embedded in the state-trace data? 

2. In what format (elapsed, absolute, or fixed-rate) and with what type of variables 

(categorical, numerical, hybrid) should the time in the state-trace data be 

represented?    

How the simulation time can be embedded in the state-trace data is dependent on the 

time advance mechanism ta of the discrete-event simulation (base model). When working 

with discrete event simulations, the two possible time advance mechanisms that can be 

implemented are the next-event time advance (progression) and fixed-increment time advance (Law, 

2015): 

(I) Next-event time advance: If next-event time advance mechanism is chosen as the 

time advance strategy, the internal clock of the simulation is advanced when an 

event occurs. Thus, state-trace records can be generated at the time of event 

occurrences and the simulation time can be stored as a variable (column) in the 

state-trace record. The type of non-uniform time sampling of state-trace data is 

useful to preserve the information on the event-time progression of the 

simulated system.  

(II) Fixed-increment time advance: In discrete-time simulations (DTSS), there is a fixed 

time-step size ∆𝑡𝑡 that is the uniform increment at which the simulation clock is 

advanced (Law, 2015). In discrete-event simulations, a fixed time-step 

mechanism can be implemented by scheduling dummy events at every ∆𝑡𝑡 time 

unit (Law, 2015). This type of time advance mechanism allows modelers to 

generate a new state-trace record at fixed time intervals, and to store the 

simulation time as a part of the state-trace record. State-trace data sampled with 

equidistant time indexing have the characteristics of time-series data (see 2.3.1 for 

temporal data types). For this sampling strategy, ∆𝑡𝑡 is the natural selector of the 

sampling rate. An increase in the size of the fixed time-step ∆𝑡𝑡 (i.e., a decrease 

in the sampling rate) results in a lower level of quantization, hence, a reduction 

in the state-trace length (i.e., lesser state-trace records or rows). This reduction 

in the state-trace length can positively affect the run-time required for the 

frequent episode mining algorithm to complete its task. On the other hand, if 
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the elapsed times of the events in reality are always less than the ∆𝑡𝑡, the lumped 

model might not express the behavior of the base model with sufficient 

precision. Finding the optimal ∆𝑡𝑡 can be a difficult and an application-specific 

problem, often requiring specific domain and model knowledge.  

The considerations regarding the representation of time relate to the format (elapsed 

time or absolute simulation time) and the variable types (categorical, numerical, hybrid) 

of the time information. This decision may be guided by the dependency of the base 

model’s state-transitions to the absolute time (e.g., systems that are busier on certain 

times of the day; or a service that is always triggered at 17:00; or a certain output that is 

triggered just before the end of the simulation run) or elapsed time (e.g., how much fuel 

has been added to a fuel tank given the pump is filling the tank with a constant rate) and 

by the limitations of the temporal data mining tool or the techniques (e.g., working with 

an algorithm that requires input that to be numerical). In some cases, the format depend-

ency is on a derivative of the absolute simulation time, such as the time-of-day, the day 

of the week, the day in the year, or the month of the year. These values can be obtained 

with modulo functions from the absolute simulation time, and as such are easy to add to 

the state trace.  

When the base model has a fixed-increment time advance mechanism, the modeler may 

exclude time entirely from the state-trace data. This is because the elapsed time or fixed 

sampling rate for such models would remain constant during the entire simulation run 

and, therefore, in the state-trace data. Furthermore, recording the absolute time for such 

models with a fixed-increment time advance mechanism would result in state-trace data 

with a time column with monotonously increasing values. Such representation of time in 

the data may negatively affect the performance of the frequent episode mining algorithm 

(we will elaborate more on the implications of variables with monotonously increasing 

or decreasing values on the performance of the mining algorithms in §3.2.2.1). In such 

cases, the time of the state changes can always be retrieved in later stages of the method 

using the time of the initial state and the sampling rate. Once the modeler chooses to 

capture the time information in the state-trace data, a new variable (column) can be added 

to the state-trace to capture the time in the chosen format and with the chosen data type. 

 

3
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3.2.1.1 Case Study Application  

In order to practically generate the state-trace data from the simulation of the M/M/1 

model, we implemented a TraceWriter class, which generates the state-trace data in a 

csv format in which all rows representing the state-trace records are homogenous, that 

is, each row has the same number of base model variable values (i.e., the values of state 

variables, input/output variables, time variable). Furthermore, the model variable values 

from all rows with the same index create a column and all values in a single column 

represent the same model variable. To demonstrate the differences of state-trace data 

generated from a model with “next-event” and “fixed-increment” time advance mech-

anisms, this section will provide examples of M/M/1 model traces sampled with both. 

However, the results evaluated in §3.2.4 are obtained from the execution of the M/M/1 

model with the next-event time advance mechanism.  

In Table 3.1, the first ten state-trace records from an M/M/1 state-trace data are shown. 

The example state-trace data are sampled from an M/M/1 model with a next-event time 

advance mechanism. The first and second columns have the states of the En-

coded_server_status (idle = 1, busy = 2) and the Encoded_queue_length {10 = 0, 11 = 

1, 12 = 2, 13 = 3, …, n+10 = n}11.  

 

Table 3.1. A sequence-based state-trace data set based on next-event time advance 
M/M/1 simulation model state-trace (next-event based, no time information) 

Encoded_server_status Encoded_queue_length 
1 10 
2 10 
2 11 
2 12 
2 13 
2 12 
2 13 
2 14 
2 15 

                                                        

 

11 The decision to have the coded values for these two variables in the example state-trace data is for the 
readability of the example, that is, each variable has a non-overlapping data range. Note that the coded queue-
length values were not used in the estimation of the performance measure “average queue length” (see §3.2.4). 
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2 14 
… … 

 

Table 3.2 illustrates a portion of a state-trace data containing elapsed time as an addi-

tional information next to the uncoded versions of state variables Server_status (idle = 

0, busy = 1) and Queue_Length (0, 1, 2, 3, …, n). Alternatively, the state-trace data 

could be populated with the absolute time instead of the elapsed time. Because the 

state-trace data is generated from the M/M/1 model with the next-event time advance 

mechanism, the state-variable values at each row would be exactly the same.  

 

Table 3.2. A next-event time advance mechanism-based state-trace data set with elapsed time 

M/M/1 simulation model state-trace (next-event based, elapsed time) 

Server_status Queue_Length Elapsed_time 

0 0 0.00 

1 0 1.234 

1 1 0.739 

1 2 1.374 

1 3 0.982 

1 4 0.003 

1 3 4.484 

1 4 0.375 

1 5 4.060 

1 4 2.405 

… … … 

 

On the other hand, the state-trace data shown in Table 3.3 is sampled with an M/M/1 

model using a fixed-time increment mechanism. The sampling rate – 10 time-unit – is 

included in the data as a separate (the third) column. It can be seen from the 

Queue_Length variable that generating state-trace data from the M/M/1 model using 

the fixed-time increment mechanism with a relatively larger sampling rate may not be 

ideal to capture every change in the queue length. On the other hand, a state-trace 

data generated with a much smaller sampling rate (e.g., 1 time-unit) may result in cap-

turing the same state more than once in the data. 

3
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Table 3.3. A fixed-increment time advance mechanism-based state-trace data with absolute 
simulation time column (sampled with a rate of 10 time-unit) 

M/M/1 simulation model state-trace (fixed-time increment based, absolute simulation time) 

Server_status Queue_Length Absolute_simulation_time 

0 0 0 

1 0 10 

1 1 20 

1 0 30 

0 0 40 

0 0 50 

0 0 60 

1 3 70 

1 2 80 

0 0 90 

… … … 

  

 

3.2.1.2 Stochastic vs. Deterministic Models 

If a simulation model is deterministic (i.e., the model has no random variable), the be-

havior of the system over time for a given initial state and particular input set would trace 

the same state transition history and generate the exact same outcome. Therefore, for a 

deterministic model, a single run of the model would suffice to obtain a state-trace that 

is representative of the model’s behavior under the selected initial state and the set of 

input parameters. However, large-scale complex models are typically stochastic as the 

large-scale complex systems being modeled contains inherent uncertain properties. 

These uncertainties are implemented in large-scale complex models as random variables, 

whose values follow a probabilistic distribution  (Serfozo, 2009). To accurately estimate 

the associated variability, the modeler should use replication to obtain independent and 

identically distributed observations. In our method, one of the goals of the modeler is to 
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use replication to generate statistically independent (i.e., using different seeds values) and 

sufficiently long state-trace data from the base model (see §3.2.1.3 for more discussion).  

Sufficiently long state-trace data are achieved by increasing the run length of the simula-

tion, while statistical independence across runs is achieved by increasing the number of 

repetitions with different Random Number Generator (RNG) seed values (Law, 2015)12. 

Recall that we use state-trace data generated from the base model to identify frequent 

behavioral patterns (i.e., successive state-transition pairs) using a frequent episode mining 

algorithm and form the transition matrix of the Markov Chain. A Markov Chain’s ability 

to correctly estimate the behavior of the original model depends on the quality of the 

transition probability matrix. Statistically independent and sufficiently long state-trace 

data generated with different seeds help estimate the probability mass function (for dis-

crete random variables) more accurately. What constitutes a sufficiently long run length 

and number of repetitions depends on the model under study as well as the desired level 

of precision (i.e., margin of error). In the case study presented in this chapter, we will 

examine the performance of our method in terms of its ability to accurately estimate the 

original model’s KPI’s under a range of run lengths and repetitions.   

 

3.2.1.2 Case Study Application  

To determine the minimum number of repetitions and run length required to achieve 

this level of precision, we perform two sets of preliminary analyses. We measure the 

performance of the M/M/1 queueing system (with λ = 0.10 and μ = 0.12) based on the 

output estimates of three performance measures: server utilization ρ, average waiting 

time wQ, and average queue length LQ. To assess the performance of our proposed 

method in terms of its ability to accurately estimate these three KPIs, we compare the 

output estimates obtained from the Markov Chain to those from the base model.  

                                                        

 

12 Note that the individual data points (i.e., state-trace records) within a particular state-trace data generated 
from a simulation run are not iid. However, the different RNG seed value for each run ensures the independ-
ence across runs. 

3
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In the first set of preliminary analyses, we examine the effect of increasing the number 

of repetitions (while keeping the state-trace length of each independent run constant) 

on the Markov Chain’s accuracy. Recall that we split the runs of the base model into two 

equal non-overlapping subsets for training and validation purposes. The total number 

of runs will therefore always be twice the number needed for the validation tests. We 

start with an experiment containing a total of 10 runs (20 in total for training and valida-

tion) of the base model and gradually increase the runs {20, 50, 100, 200, 500} to achieve 

the desired level of precision, i.e., a margin of error of the Markov Chain generated KPI 

of <1%. To ensure independence across runs, we assign a different seed value to each 

run. Note that the length of each state-trace data generated from each independent 

run for a fixed run-length is a random variable, depending on the observed values for 

the interarrival and service-time random variables. In order to have a fixed length of 

state-trace data from each independent run, the modeler should implement an addi-

tional limiting logic that either (a) stops the data collection when the state-trace data 

reach to a pre-determined length or (b) postprocess each state-traces to remove the 

records above the length threshold. In this set of analyses, each run has a run-length of 

one million-time units and once the data generation is finished, all the state-traces data 

collected from those runs are postprocessed to a fixed length of 50,000 state-trace rec-

ords. 

In the second set of preliminary analyses, we examine the effects of increasing the 

length of state-traces (while keeping the number of repetitions constant) on the perfor-

mance and the precision of the Markov Chain. Similar to the first set of experiments, we 

gradually increase the state-trace lengths (1,000; 2,000; 5,000; 10,000; 20,000 and 

50,000 state-trace records). In each experiment, the number of repetitions is set to a 

fixed value which is determined by the outcome of the first set of experiments (see 

§3.2.4 for more details).   

For each individual experiment within the two sets of preliminary analyses, we calculate 

the performance indicators and their margins of error. By doing so, we will illustrate how 

much precision we will gain by increasing the run lengths and number of replications. 
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3.2.1.3 Terminating vs. Non-terminating Simulations 

Shannon (1998) defines simulation as a twofold process: designing a model of a real-life 

system and conducting experiments with this model to gain knowledge about this system.  

Once the model has been developed, verified, and validated13, the next steps for a simu-

lation study are the experimental design and experimentation (i.e., the execution of the simu-

lation experiment; Shannon, 1998). In the experimental design step, the goal is to design 

an experiment that will successfully provide answers to the questions about the system 

and to determine how each test run is executed. In the experimentation stage, the focus 

is on the execution of the simulation experiments and the generation of desired data and 

statistics for analysis. There are several considerations for the experimentation stage, in-

cluding the decision on the length of a simulation run (i.e., sample size), the identification 

of the starting conditions of the model, and the decision to include or exclude a warm-

up time. These considerations are largely determined by the type of the simulation, which 

can be terminating or non-terminating.  

In a terminating simulation, the simulation starts at a defined initial state or time and ends 

when a defined terminating event is received or a time is reached. When experimenting 

with terminating simulations, the modeler must to decide on (a) the initial-state of the 

simulation, (b) the terminating condition which defines the run-length of a single simu-

lation run, and (c) the number of replications (Hoad et al., 2010). The terminating con-

dition influences the maximum length of the state-trace data that can be generated from 

a simulation run. Obtaining sufficiently large state-trace data may not always be possible 

due to the terminating condition. To achieve that, the modeler must often make many 

replications with the same initial distribution with each replication having a different 

Pseudo-RNG seed value (Kleijnen, 2017; Law, 2015).  

In a non-terminating simulation, also referred to as steady-state simulation, there is no end-state 

or an end-time and the simulation could theoretically continue indefinitely (Shannon, 

                                                        

 

13 Note that validation and sometimes verification are also special types of experiments with this model, from 
which we can also learn about the system. 

3
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1998). This gives the modeler the ability to choose between making a single long run and 

making many independent runs. Whitt (1991) shows that both options are usually as 

efficient as long as the independent replications are sufficiently long enough to obtain 

good enough estimates. However, it is still considered to be important to make inde-

pendent runs with different RNG seed values to overcome a possible dependency on a 

selected seed.  

Another important task of the modeler is to determine the warm-up period. The behav-

ior of the transient period is different from the steady-state period in a non-terminating 

simulation. When studying the stochastic behavior of non-terminating systems, we are 

typically only interested in the steady-state behavior of the system in a non-terminating sim-

ulation (Kleijnen, 1984). However, there will be a difference between the estimator's ex-

pected value and the value it is estimating when there is no warm-up period to comfort-

ably pass the transient period before collecting data for analysis or a realistic initial con-

dition (Schruben et al., 1983; Whitt, 1991). This difference is known as the initialization 

bias, or start-up problem (Law, 2015). Several methods have been proposed to mitigate the 

initialization bias in steady state discrete event simulation (refer to Mahajan & Ingalls, 

2004 for an array of references). 

To reduce the effects of initialization bias in our proposed method, the modelers could 

choose (1) to collect state-trace data from the original model for both transient and 

steady-state period, use the data to generate two Markov Chains for both transient and 

steady-state period, but only perform data analysis for the steady-state period Markov 

Chain; or (2) not to simulate the transient period and, instead, introduce a single admis-

sible initial state, which then becomes the initial state of the steady-state period Markov 

Chain. This initial state is used in all replications as the starting condition; thus, it is rec-

orded as the first state-trace record in all the state-traces data. Although eliminating the 

simulation of the transient period might bias the final estimator, we can assume that the 

effect of the bias becomes negligible with large sample size (Kleijnen, 1984).  
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3.2.1.3 Case Study Application  

The type of simulation implemented for the M/M/1 case study is a non-terminating sim-

ulation. There is no external event that determines the 'ending' of the simulation and 

state-trace records are generated at each event occurrences until the simulation is 

halted by scheduling a special “terminating” event at time unit 1,000,000-. We deter-

mined that this run length is sufficient to generate at least 50,000 state-trace records, 

which is determined as the sufficient data length for the desired level of precision; mar-

gin of error of <1% (see §3.2.4 for more details on the calculation of margin of error for 

the M/M/1 case study).   

Furthermore, we concluded that each independent run – out of 50 repetitions – will 

begin with the initial state P0: empty-and-idle and we do not use a warm-up period. The 

reason to exclude the warm-up period from the simulation experiment is twofold: First, 

the initial state P0 is realistic and the system has a reasonable chance to be in this par-

ticular state. Second, there are no entities in the system that would not have a 'history' 

for statistics calculations when we start in the empty-and-idle state. 

We will demonstrate the process of generating state-trace data from terminating simu-

lations using a battlefield case study in Chapter 4. 

 

3.2.1.4 Inclusion of Input Data 

When experimenting with a simulation model, one of the goals is to understand the ef-

fects of changes in the input data to the output of the simulation, such as the perfor-

mance measures (Maria, 1997). Unless the simulation model being used does not receive 

any external input and the simulation experiment is designed to have all runs with the 

same set of input, the desired analysis for the simulation study may require running the 

simulation model with different set of inputs and these different set of input variable 

values may need to be included in the state-trace data. In our method, the inclusion of 

input variable values in the state-trace data for a particular run is done by adding the 

variables as columns in the data.  

3
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The state-transitions simulated by the state-walk of a Markov Chain are dependent on 

the input set (in addition to the RNG seed value used as explained earlier in §3.2.1.2). In 

other words, the transition probabilities in a transition matrix P calculated from a collec-

tion of state-traces in a training set generated from the base model using a specific set of 

input values can be different from state-traces in the same training set generated using a 

different set of input values. This is also true for the traces in the validation set, which 

will be used to validate the output of the Markov Chain. Therefore, the further separation 

of the validation and training data into subgroups per input set provides modeler the 

ability to simulate the Markov Chain using a transition matrix calculated from a single 

input data-origin training data (i.e., the collection of state-traces generated from the simula-

tion of the base model with the same input data and reserved as training data) and validate 

the output of the Markov Chain with the corresponding same single input data-origin valida-

tion data (i.e., the collection of state-traces generated from the simulation of the base 

model with the same input data as the training data, but reserved as validation data). 

The subcategorization of state-trace data into training and validation sets per input data 

may be done manually by organizing the training and validation sets based after their 

generation, or can be automated by introducing an additional identifier variable included 

in the state-trace data as a separate column (in addition to the input variables) so that our 

method may later identify the input set used for each run. Note that the identifier column 

value will remain constant throughout a run and each state-trace data generated from the 

execution of the base model with the same input set contains the same identifier value. 

When the base model is simulated with a new set of inputs, then a new identifier value 

is generated (e.g., by using an integer variable as the identifier and incrementing the value 

by 1) and a lookup text file that contains the map of identifiers and their corresponding 

input set is updated. Note that the necessity to separate state-trace data set into subcate-

gories of validation and training sets per input data comes with the necessity to introduce 

an additional logic to choose the best fitting Markov Chain when the modeler wishes to 

simulate the Markov Chain with an input data that was not among the set of input data 

previously used to execute the base model while generating the state-traces. An approach 

might be that when quantizing the input variables, the modeler could use the quantized 

value and trained the model for all combinations of all quantized values. When linearity 
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can be assumed, the modeler may run the model with the value above and below, and 

then interpolate the output values from both (sets) of runs with the Markov model. 

 

3.2.1.4 Case Study Application  

The M/M/1 model we use for our case study has a single set of input data. The input 

variables and the values of the M/M/1 model are given in Table 3.4 below: 

 
Table 3.4. The input variables and the values of the M/M/1 model 

Input variable Value 

Average arrival rate λ 0.10 

Average rate of service µ 0.12 

Number of servers c 1 

 

Because the model has a fixed (single) set of input values and there is no external input, 

the inclusion of the identifier variable and the input values to state-trace data as col-

umns, which remain constant for all state-traces, will not affect the variability of the ep-

isodes discovered by the EMMA algorithm. Therefore, we exclude the input data from 

the state-traces generated from the execution of the M/M/1 model. 

 

3.2.1.5 Inclusion of Output Data 

Depending on both the preferences of the modeler and the goals, requirements and the 

type of analysis needed for the simulation study, output variables can be included in the 

state-trace data. In a simulation model, the modeler can calculate and report different 

types of run statistics (e.g., tally, time-persistent) to estimate the output performance of 

the model. A tally or tally statistic computes and represents the min, max, mean, variance 

and standard deviation values of the observations. Time-persistent statistics are time average 

statistics and often used for computing the time averages or time-dependent perfor-

mance indicators. In our method, one way to include the output data of a simulation 

3
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model in the state-trace data is to directly incorporate the transient values of these run 

statistics as columns.  

On the other hand, the modeler may prefer to include the raw state variable values of 

the base model (e.g., the queue length and duration) in the state-trace data to instead of 

the run statistics. Note that the decision to add run statistics or individual variable values 

of the base model when generating the state-trace data will also determine the content 

of the state-trace data reproduced by the Markov Chain. Therefore, although the strategy 

to include individual variable values requires the modeler to (a) ensure that all state-vari-

ables needed for the run statistics calculations are included in the state-trace and to (b) 

implement the code needed to perform the calculation of the run-statistics as an addi-

tional step, the extra information in the state-trace data can be useful for the debugging 

of the Markov Chain model.  

 

3.2.1.5 Case Study Application  

Based on the input values presented in §3.2.1.4, the theoretical calculations of several 

mean measures of the M/M/1 model are given below:  

In this M/M/1 case study, we are particularly interested in the estimation of the following 

three KPIs: server utilization ρ, average waiting time wQ and average queue length LQ. 

The DSOL implementation of the M/M/1 base model does the capturing of these three 

KPIs as shown in Figure 3.3. The lines 373-376 are the run statistics. In line 374, the 

SimTally class is instantiated and the tally object (dN) is subscribed to 

Seize.DELAY_TIME events fired by the queue. The line 375 defines a sim-persistent 

statistic (qN) that is subscribed to Seize.QUEUE_LENGTH_EVENT events fired by the 

queue. Finally, the line 376 introduces a Utilization object computing and representing 

the utilization of a station (i.e., the server), which is also a time-persistent statistic. To 

calculate the mean of these three performance measures, we call the getSampleMean() 

method at the end of each run.  
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Figure 3.3. Model performance metrics directly embedded in the state-trace data 

 

For this case study, we choose to individually trace the values of several key variables 

and include them as individual columns in the state-trace data, instead of including the 

run statistics directly. Table 3.5 shows an example of a portion of a state-trace data 

containing these key individual variable values. 

  
Table 3.5. A portion of a raw-state trace data with the final data columns 

Server_sta-
tus 

Queue_length Elapsed_time Time_in_queue Num_of_obser-
vations 

0 0 0.000 -1.00014 0 

1 0 1.235 0.000 1 

1 1 0.739 -1.000 0 

1 0 1.374 1.374 1 

1 1 0.982 -1.000 0 

1 0 0.003 0.003 1 

0 0 4.484 -1.000 0 

1 0 0.375 0.000 1 

1 1 4.060 -1.000 0 

1 2 2.405 -1.000 0 

… … … … … 

1 4 0.837 -1.000 0 

 

                                                        

 

14 The state -1.000 for the Time_in_queue variable means that there is no entity waiting in the queue. 

3
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Recall from earlier that the inclusion of the individual state-variables instead of the run-

statistics means that we need to calculate each KPIs using the state-variable values ob-

tained from the Markov Chain-generated state-traces. Below table shows the equations 

we use for the calculation of each KPI (left-side of the table) and the steps to be taken 

to calculate these KPIs using the state-trace data.  

 

Table 3.6. Calculation details of the three KPIs 

𝜌𝜌 =
∫ 𝜌𝜌i	𝑑𝑑𝑑𝑑
k
R
𝑇𝑇  

 

𝜌𝜌 = 	
∑ 𝜏𝜏1	𝜌𝜌1U
1bW

𝑇𝑇 	𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	𝑇𝑇 =_𝜏𝜏1

U

1bW

 

To calculate the average server utilization: 

for each interval (between events, or be-

tween observations), determine the utiliza-

tion of the server ρi ∈ {0, 1}. Multiply by 

time interval τi , sum the values and divide 

the sum by total simulation time T (the sum 

of all interval lengths). 

For event based, all τ values are different; for 

observation based, they are the same.  

𝐿𝐿r = 	
∫ 𝐿𝐿r,i	𝑑𝑑𝑑𝑑
k
R
𝑇𝑇  

 

𝐿𝐿r = 	
∑ 𝜏𝜏1	𝐿𝐿r,1U
1bW

𝑇𝑇 	𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	𝑇𝑇 =_𝜏𝜏1

U

1bW

 

To calculate the average queue length: for 

each interval (between events, or between 

observations), determine the queue length 

of the server LQ,i ∈ {0, 20}. Multiply by time 

interval τi , sum the values and divide the 

sum by total simulation time T (the sum of 

all interval lengths). 

𝑤𝑤r =	
∑ 𝑤𝑤r,1s
1bW

𝑁𝑁  
To calculate the average waiting time in the 

queue, sum the individual waiting times in 

the queue and divide by total number of en-

tities N that have left the queue. This is a bit 

less straightforward to calculate than the 

other two KPIs (see the section below). 
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Note that not all events we register in the state-trace are events where an entity leaves 

the queue. This means that we have to indicate non-leaving events in the state-trace 

data for our method to identify. In our case-study model, we coded the non-leaving 

events as -1. When we have a total of E events, we calculate the average waiting time 

as follows: 

𝑤𝑤r =	
∑ 𝑤𝑤r,t	|	𝑤𝑤r,t 	≥ 0v
tbW

∑ 1	|	𝑤𝑤r,t 	≥ 0v
tbW

 

 

In other words, we only sum the registered waiting times for values that are not -1, and 

divide by the count of waiting times that are not -1. Unfortunately, the above formula is 

a problem when the system is studied using observations rather than events, since mul-

tiple entities can leave the queue in one interval. Therefore, we implemented the fol-

lowing: 

• store the sum (or average) of the waiting times wS,i for all entities that left the 

queue during interval i, and a value of NaN or -1 in case no entities left the 

queue during the interval; 

• store the number of entities ni that left the queue during interval i, where the 

intervals are numbered from 1 to N. 

We then calculate the average waiting time as follows: 

 

𝑤𝑤r =	
∑ 𝑤𝑤`,1	|	𝑤𝑤`,1 	≥ 0s
1bW
∑ 𝑛𝑛1	|	𝑤𝑤`,1 	≥ 0s
1bW

 

 

Meaning that, we only sum the registered waiting times for values that are not -1, and 

divide by the total count of waiting times that are not -1, where the count is increased 

by 2 or more in case multiple entities left in the same interval.  

 

 

3
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3.2.1.6 Complete vs. Partial Model State-Trace Data 

If a source system is defined as a set of input and output variables and a collection of 

observable and unobservable states (Klir, 1985), the effort of modeling large-scale com-

plex simulation models is to specify a generative or a structure system with a number of 

states selected from the source system including the input and output variables; see Fig-

ure 3.4.a. Some of these states will be directly observable, but the power of using simu-

lation modeling is that we can also infer the values of the states that are not directly 

observable, and include these state variables in our model as well. Therefore, another 

important consideration of the modeler in our method is the decision to generate a com-

plete-model state-trace using all state variables of the original large-scale complex simu-

lation model, or a partial-model state-trace data set by making a sub-selection of the states 

in the model; see Figure 3.4.b. Generating a partial-model state-trace data can be seen as 

a similar process to the iterative process of modeling a large-scale complex simulation 

model from a source system. The decision of a complete or a partial model state-trace is 

driven by the goals, requirements and limitations defined by the stakeholders (i.e., mod-

eler, model users) and resources (i.e., computational resources, time). 

 

 

Figure 3.4. From System to Markov Chain progression 
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A state-trace is considered as a complete-model state-trace if it contains the complete set of 

variables that describes the state of all individual atomic components and, as a collection, 

the state of the system at a particular instant. Meanwhile, it is a partial-model state-trace 

when:  

• the state-trace data have a (selected) subset of state variables of all atomic 

components of the base model, or 

• the state-trace data have the complete set of state variables of a (selected) subset 

of atomic components of the base model, or 

• the state-trace data have a (selected) subset of state variables of a (selected) subset of 

atomic components of the base model. 

Although generating a complete-model state-trace is a more straightforward process, the 

size and variety of data may make working with the state-trace of large-scale complex 

discrete-event simulations impractical. On the other hand, the process of generating a 

partial state-trace data set is not a straightforward task that requires modelers to correctly 

identify subset of atomic components and the subset of state variables to be included in 

the state-trace data in order to generate valid Markov Chains. 

 

3.2.1.6 Case Study Application  

The M/M/1 model is a simple model with only 2 state variables. Therefore, the state-

trace data generated from the simulation of the M/M/1 model and used in the temporal 

data mining step are complete-model traces.  

We will demonstrate the process of making selections out of a large sample of variables 

with many intricate relationships with larger models in Chapters 4 and 5. 

 

3.2.2 Application of the Temporal Data Mining Tasks to the State-Trace Data 

The next step of our method is the application of frequent episode mining to the training 

data to construct a transition matrix for the discrete-time first-order Markov Chain. In 

3
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Appendix A.1, we explained why the EMMA algorithm is the best suited for the frequent 

episode mining task for our proposed method. In the following sections, we describe the 

considerations and actions regarding the preprocessing of the state-trace data, the application of 

the EMMA algorithm to identify all frequent episodes (i.e., all the possible state-transition 

pairs) from the preprocessed state-trace data and calculate their occurrence frequencies, 

and finally the construction of the transition matrix using the transition probabilities for all 

state-trace record pairs. 

3.2.2.1 Preprocessing of the State-Trace Data 

Data preprocessing involves the tasks of data cleaning (i.e., detecting and correcting/re-

moving erroneous data and outliers, dealing with missing data), data integration (i.e., 

combining data from multiple sources into one), and data transformation (i.e., conver-

sion, recoding, quantization, approximation or normalization of data values; (i.e., 

conversion, recoding, quantization, approximation or normalization of data values; 

Mörchen, 2006b). Preprocessing tasks can be applied to a single state variable, to multiple 

state variables measured in the same units, to a single or multiple state-trace records, and to a complete 

state-trace data set. This is a highly application dependent step; that is, the selection of type 

of preprocessing tasks and the particular algorithms to perform these tasks are deter-

mined by several factors, including the input file format prescribed by the chosen tem-

poral data mining algorithm, the preferences of the modeler, and the specific goals and 

requirements of the model abstraction study.  

In our proposed method, the type of preprocessing techniques to be used are determined 

by the input file format of the EMMA algorithm, as well as the preferences and the 

requirements of the modeler for the model abstraction task. The SPMF implementation 

(Fournier-Viger et al., 2014; 2016) of the EMMA algorithm is designed to find episodes 

with at least minsup times occurrence from a given event sequence. The input of the 

algorithm is a text file containing an event sequence, in which each row is an item set and 

an optional the timestamp of the item set, separated by the character "|". If the event 

sequence has no timestamp, the corresponding Boolean parameter “self_increment” can 

be set to true. In that case, the timestamp information of each row is processed as a 
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sequence number incrementing by 1. This is useful when the input data is a state-trace 

data, which is sequential and the time is embedded in the item set as a separate entry.  

The SPMF implementation of the EMMA algorithm specifies that items in an item set 

are separated by a single space and represented by positive integers. Therefore, any 

nonpositive noninteger value (e.g., negative floating point, negative integer, non-numer-

ical data) in the state-trace data belonging to a variable should be recoded to a positive 

integer. It is important that the recoding method applied to a particular variable should 

be applied to all variables measuring the same unit (e.g., all variables that measure tem-

perature). Another approach to deal with the issue of having nonpositive noninteger 

values in the state-trace data is to encode every unique row (state-trace record) to a 

nonnegative integer value. This way, the data can be represented in the format usable by 

the EMMA algorithm and the encoded values can be decoded back to their original value 

format after the episode mining step. The dimensionality of the state-trace data, and 

therefore, the size will be reduced as a result of encoding state-trace records with a large 

number of data columns to a single positive integer value. Note that in case the modeler 

chooses the encoding strategy to deal with nonpositive noninteger values in the state-

trace data, the quantization of continuous data should be done before the encoding of 

the state-trace data. 

In a state-trace data set, a state variable or a system state can have categorical (binary, 

nominal or ordinal) or numerical values (continuous or discrete). Although many real-

world phenomena are represented as continuous (e.g., speed, temperature, distance), 

continuous variables, also referred as continuous features (Dougherty et al., 1995), pos-

sess several challenges when mining frequent episodes from the input data. One reason 

is that floating point variables, by nature, consist of an infinite set of values. It can be the 

case that the same value instances never appear twice in the state set, while the density 

of certain value ranges can differ tremendously. This is also true stochastic values, where 

the densities of the values are important, but each run would generate different actual 

floating-point values, according to these densities. Another reason is that some continu-

ous variables take values that are monotonously increasing or decreasing by design and 

no values will repeat itself during a run (e.g., distance covered by a driving vehicle during 

the time of observation). Inclusion of such variables with as many different numbers of 

3
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states as the number of state-trace records in the data (each value occurring only once) 

will undermine the ability of the frequent episode mining algorithms. The above points 

lead to the necessity to account for value ranges rather than points for non-categorial 

variables, as well as categorial variables with a large number of categories.  

Quantization15 is the process of converting or partitioning continuous data into a smaller, 

finite number of discrete values or categories. There are numerous quantization methods 

described in the literature. Liu et al. (2002) propose a hierarchical framework for quanti-

zation that guides the selection of the most suitable technique within overarching split-

ting and merging approaches, and supervised and unsupervised methods. A commonly 

used quantization method is the binning. The goal of binning is to quantize non-categor-

ical variables or categorical variables with a large number of categories into a user-speci-

fied number of bins (Liu et al., 2002). This can be done by either dividing the value range 

of a non-categorical variable into a given k number of intervals (bins) with equal coverage 

of value ranges, also known as equal-width binning, or by placing equal number values in k 

number of bins, known as equal-frequency binning. Equal-frequency bins can be created 

using quantiles, i.e., values that split data into equal intervals (Field, 2013). Commonly 

used quantiles, or q-quantiles, are 2-quantiles or median, 4-quantiles or quartiles, 10-quantiles 

or deciles, and 100-quantiles or percentiles. 

In the following case study application section, we will demonstrate the quantization of 

variables using various binning strategies. 

 

3.2.2.1 Case Study Application  

Following the completion of the considerations listed in §3.2.1 and generating the final 

version of the state-trace data (see Table 3.5), the next step of our proposed method is 

to identify the variables that require preprocessing. In this section, we will demonstrate 

                                                        

 

15 Although data mining and machine learning literature use the term discretization and quantization interchange-
ably, we reserve the term discretization to refer only to the transformation of the continuous time variable to 
a discrete one, whereas quantization is aimed at the transformation of the continuous state variables. 
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how we applied quantization, specifically binning-based methods, to the values of three 

variables in the state-trace data: Queue_length, Elapsed_time, and Time_in_queue.  

For the quantization of these three variables, we chose binning as the strategy. In order 

to choose the suitable binning strategy for each variable, we investigated the type of 

numerical values these variables take and the statistical distribution of these values.  In 

the Elapsed_time and Time_in_queue case, variables take floating point numbers and 

have right-skewed (positive skewness) distributions; that is, the peak of the histogram is 

on the left side and it has a long right tail. The drawback of using equal-width binning 
with these types of variables is that we can end up splitting the data into irregular bins 

with some bins containing very small numbers of values. Therefore, we chose a quantile-

based binning algorithm by (Rawashdeh, 2020) to quantize both Elapsed_time and 

Time_in_queue variables. Among the most commonly used q-quantiles, we picked dec-

iles over quartiles to have a high enough number of bins for sufficient precision, and we 

picked deciles over percentiles to not undermine the ability of the frequent episode 

mining algorithm EMMA due to over population of bins. Hence, both variables were 

quantized in 10 bins, each containing 10% of the Elapsed_time and Time_in_queue 

scores. Note that it is important that the modeler omits any non-numeric or non-mean-

ingful values from the input before quantizing the variable. In this example, when the 

queue is empty and therefore there is no waiting time, -1.000 is used as a fixed value 

for the Time_in_queue variable.  

For the quantization of Queue_length variable, we used a different binning strategy. 

Unlike the Elapsed_time and Time_in_queue variables, Queue_length is an integer var-

iable where the frequencies are large for values that are close to zero; e.g., queue length 

0 has a much higher frequency than 1, and 1 is more frequent than 2, etc. In such cases, 

quantile-based or equal frequency binning is not ideal as the high frequency values 

would occupy more than one bin. For that reason, we use a custom strategy to quantize 

this variable, in which we set a minimum threshold of 5% of scores per bin. That is, 

frequent values (>5% of scores) are assigned their own bin, and infrequent values (<5% 

of scores) are grouped together until each bin contains at least 5% of the data. 

In Chapter 4 and 5, we will demonstrate the effect of different levels of quantization to 

the performance and the accuracy of a Markov Chain using simulation models with rel-

atively larger number of model components and a larger state space than the M/M/1 

model.  

3
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3.2.2.2 Application of the EMMA Algorithm to Preprocessed State-Trace Data  

After the preprocessing of the base model's state-traces, the next step in our method is 

to apply the EMMA algorithm to the preprocessed training data set to obtain state-tran-

sition probabilities and construct the corresponding Markov Chain transition matrix. In 

§3.1.3, we established that the memoryless property of Markov Chain states is akin to 

the discrete-event model states, and the state-transition probabilities represented in ma-

trix format is the transition matrix of a valid stochastic discrete-time Markov Chain. 

Therefore, we set the maxwin input parameter to 2 and the minsup input parameter to 1 

(see Appendix A.2 for the complete EMMA algorithm input parameter list) for the 

EMMA algorithm to discover: (a) all unique episodes with length 1 (i.e., unique state-

trace records or unique states) appearing in the state-trace data at least one time, and (b) 

all unique episodes with length 2 (i.e., successive state-trace record pairs, or state transi-

tions) with a minimum frequency of 1.  

A Markov Chain simulation (see §3.2.3) requires three main elements: the state space S, 

an initial distribution vector 𝜋𝜋R, and a transition matrix P = (Pij). The Markov Chain’s 

state space S of the Markov Chain is equivalent to the set of all unique states discovered 

by the EMMA algorithm. Similarly, using the frequency information obtained during the 

episode mining stage, we can construct a transition matrix P of the discrete-time Markov 

Chain using the state-transition probabilities P(ij) obtained from the full training dataset. 

Although a transition matrix of a Markov Chain is an N×N square matrix, Reichel et al. 

(2015) argue that when implementing Markov Chains, it is often computationally more 

advantageous to represent transition matrices as sparse matrices due to the high number 

of transitions that are considered impossible for the model to reach. In the following 

case study application section, we will show the sparsity of Markov Chains' transition 

matrices for the M/M/1 model. 
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3.2.2.2 Case Study Application 

To perform the experiments required for preliminary analysis in the case study applica-

tion section of §3.2.4, we designed two preliminary analysis data sets containing twelve 

transition matrices and their corresponding state sets (i.e., set of all unique states): 

• Preliminary analysis data set1 consists of state-trace data with increasing num-

ber of repetitions (10, 20, 50, 100, 200, 500) and fixed state-trace length of 

50,000 state-trace records per simulation run 

• Preliminary analysis data set2 consists of state-trace data with increasing 

length (1,000; 2,000; 5,000; 10,000; 20,000 and 50,000) and fixed number of 

100 repetitions 

The Table 3.7 shows the effect of increasing number of repetition and trace length to 

the number of unique states (N) identified by the EMMA algorithm (for the given pa-

rameters of minsup =1 and maxwin = 2). Even though the data points are limited, the 

results suggest that with an increase in sample size (e.g., due to the increased number 

of repetitions or increased trace lengths) the number of unique states discovered by the 

EMMA algorithm increases. Given the number of unique states, the size of the resulting 

right stochastic transition matrices can be calculated as (N×N).  

 
Table 3.7. Transition matrix dimensions and the number of unique states discovered per 
data set   

Preliminary analysis data set 1 

(fixed length of 50,000 state-trace records) 

Preliminary analysis data set 2 

(fixed number of 100 repetitions) 

Repetitions Unique states (N) Trace length Unique states (N) 

10 966 1,000 892 

20 991 2,000 930 

50 1,012 5,000 961 

100 1,029 10,000 985 

200 1,046 20,000 1,004 

500 1,063 50,000 1,029 

 

The experiments also revealed that the generated transition matrixes from the experi-

ments are sparse (i.e., containing many zeros) because (a) we are only interested in the 

3
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transition probabilities of successive states, and (b) the state-trace data generated from 

the M/M/1 model with the next-event time advance mechanism does not contain self-

transitioning states, resulting in the probability values of zero in the diagonals of the 

transition matrices. For instance, the N×N transition matrix generated from the data 

with 10 repetitions and 50,000 state-trace records (per simulation run) contains 35,873 

non-zero probabilities out of 933,156 (i.e., 966×966) probability values in an N×N tran-

sition matrix, which is only 3.84%. Similarly, only 5.43% of the 1,129,969 (1,063×1,063) 

probability values are non-zero in the data with 500 repetitions and 50,000 state-trace 

records (per simulation run). Figure 3.5 depicts a portion of the 966×966 transition ma-

trix's heatmap, which only contains state-transitions between the first 50 states. Higher 

transition probabilities are represented in the heatmap by darker shades. The figure 

shows that many transition probabilities are 0 (in white color), as expected. 
 

 

Figure 3.5. A portion of the 966×966 transition matrix's heatmap containing only the tran-
sitions between the first 50 states 
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3.2.3 Simulation of the Discrete-time Markov Chain 

Following the generation of a discrete-time Markov Chain’s transition matrix P, the next 

step in our method is to simulate the discrete-time Markov Chain to generate state-trace 

data for the final validation step. A Markov Chain generates a stochastic path by per-

forming state walks when simulated. Appendix B contains an implementation of a ge-

neric state walk algorithm (see Table B.3) and more details on the implementation of the 

Markov Chain implementation used in the case studies. If the base simulation is non-

terminating, the modeler should terminate the data generation from the Markov Chain 

once the desired number of state-trace records have been generated (for more infor-

mation, see §3.2.4, “Preliminary analyses: Selection of minimum state-trace length”). On 

the other hand, if the base model is terminating, the Markov Chain simulation should 

automatically terminate once it reaches its end-state after n consecutive independent tri-

als, or state walks. The geometric distribution represents a Markov Chain’s probability 

of getting the first occurrence of a particular state, such as the end-state (see §5.2.4 for a 

more in-depth discussion on the geometric distribution).  

The number of runs required to generate sufficient state-trace data from a Markov Chain 

simulation is determined by the number of runs used in previous experiments with the 

base model to generate the validation set. The modeler should use different random 

number generator seed values for each run to obtain iid data. 

 

3.2.3 Case Study Application 

As explained in the previous case study application section and further described in 

§3.2.4, we designed twelve preliminary experiments with varying run lengths and rep-

etitions. Because the M/M/1 simulation is non-terminating, we set the artificial trace-

length, which is the run-length (e.g., 1,000; 2,000; 5,000; 10,000; 20,000; and 50,000) 

required by the particular experiment when simulating the Markov Chains. MATLAB is 

used to implement the Markov Chain that was used in the simulation experiments for 

the M/M/1 case study. Appendix B.2 contains details of the MATLAB implementation. 

 

3
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3.2.4 Validation of the Markov Chain Results 

An important step in any simulation study is to ensure the simulation model’s validity by 

investigating and confirming that the simulated model is a sufficiently accurate represen-

tation of the system of interest (Robinson, 1997). Within the context of our proposed 

method, it is to test whether our model-of-a-model represents the original model accu-

rately enough for the purpose we have in mind. Once a simulation model is implemented 

and simulation experiments are performed to generate data, the next step for the modeler 

is to ensure the simulation model’s operational validity. Operational (results) validation 

is the process of determining to what extent the model-generated output behavior is 

similar to either the system output behavior or another model output behavior (Sargent, 

2013). Therefore, the fourth step of our method is to use operational validation tech-

niques to compare the Markov Chain generated data to the validation set. 

3.2.4.1 Comparison of Estiamates Using Statistical Techniques and Criteria 

Various operational validation approaches and techniques are described in the literature 

(see Balci, 1994; Roungas et al., 2018; Sargent, 2013 for a list of references), which range 

from more objective or mathematical/statistical procedures (e.g., hypothesis tests or con-

fidence intervals) to more subjective approaches. Generally, a combination of techniques 

is used to evaluate the simulation model’s validity. Within the statistical approaches, hy-

pothesis tests can be used to objectively compare statistical properties (e.g., frequencies, 

means, distributions, variance) of the simulation model and the original system or an-

other model to determine whether the simulation model’s output has an acceptable ac-

curacy for its intended usage. In our method, such statistical properties including model 

related performance measures can be obtained from state-traces. For instance, frequency 

distributions of state-transitions for the original model and from the Markov Chain 

model can be compared using the chi-square (𝜒𝜒2) test (Anderson & Goodman, 1957). In 

this case, the modeler would test the null-hypothesis that there is no difference between 

the state-transition frequency distributions from the Markov state-traces and the original 

model generated test set. The chi-square test (Pearson, 1900; Plackett, 1983) uses a cross-

tabulation to present the two distributions and to compare how well the observed cell 

counts (i.e., frequencies) fit with the cell counts that would be expected if the 
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distributions were equal to each other (i.e., if the null hypothesis were true). Similarly, 

model related performance measures of the original model and the Markov Chain model 

can be compared using the Student’s t-test to assess how different the mean values on 

these measures are between the two models. The t-score is a ratio between the difference 

between two groups (i.e., validation set generated from the original model and the data 

generated from the Markov Chain) and the difference within the groups. The larger the t-

score, the more difference there is between groups. The smaller the t-score, the more 

similarity there is between groups, in our case the model outputs. Regardless of the sta-

tistical technique chosen, the calculated test statistic (e.g. chi-square statistic or t-score) 

and degrees of freedom from the test are then compared to a critical value to calculate 

the p-value. If the p-value is larger than the alpha level chosen (e.g., .05 or 5%), any ob-

served difference is assumed to be explained by sampling variability rather than a true 

difference. On the other hand, if the p-value is smaller than the chosen alpha level, the 

probability of finding the given test value due to chance or random sampling variability 

if the null-hypothesis were true is considered so small that we reject the null-hypothesis.  

However, it is important to note that significance testing based on the p-value is sensitive 

to sample size (Sullivan & Feinn, 2012). With a large enough sample, unless the difference 

between the two distributions is very close to zero, a statistical test will almost always 

demonstrate a significant difference, even when the alpha is set at a more conservative 

level (e.g., .01 or .001), a phenomenon sometimes labeled “the large sample size fallacy” 

(Lantz, 2013). Yet, significant differences are in such cases often extremely small and not 

necessarily meaningful. For this reason, it is critical to not solely rely on the p-value (Lin 

et al., 2013), but also evaluate the effect size, which describes the magnitude of the dif-

ference (Sullivan & Feinn, 2012). For the chi-square test, one can use the Cramer’s V 

measure for effect size (Sullivan & Feinn, 2012).  

An alternative approach to the statistical hypothesis testing, or an additional approach in 

some cases, is to compare two probability distributions using the non-parametric two-

sample Kolmogorov Smirnov test ("Kolmogorov–Smirnov Test," 2008) or to use other 

measures such as distance or divergence (see Cha & Srihari, 2002 and references therin). 

In our method, the two probability distributions (i.e., the probability distribution of the 

test set of the original model and the Markov Chain) are discrete probability distributions. 

3
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Therefore, it is important that the similarity or dissimilarity measures selected by the 

modeler should be applicable to discrete distributions, such as Bhattacharyya distance 

(Kailath, 1967) or the Earth Mover’s distance (Rubner et al., 2000) as the statistical dis-

tance measures, or Kullback-Leibler divergence (Kullback & Leibler, 1951) as a diver-

gence measure to calculate the similarity/dissimilarity between two datasets. 

Although the above methods of statistical inference and distributional similarity metrics 

are preferable for evaluating operational validity as they allow for decisions on the basis 

of established and commonly used criteria, in practice it may not always be feasible to 

use these approaches (e.g., due to limitations of the data or the sensitivity of statistical 

tests to sample sizes limiting the interpretation of results) to determine whether the 

model (or the model of a model) is a satisfactory valid model for the model’s intended 

purpose or application. In such cases, visualization of the simulation output can provide 

an additional perspective to understand the output visually and intuitively (Lin et al., 

2013; Sargent, 2013). Within the context of our research, the modeler can compare the 

output estimations of the performance measures obtained from the validation set and 

the Markov Chain side-by-side by plotting the confidence intervals, or compare the fre-

quency distributions using a histogram.  

Where possible, the modeler should combine the outcomes of multiple measures to 

judge the operational validity.  

 

3.2.4 Case Study Application  

At the validation step, our main goal is to compare the state-trace data generated by 

the Markov Chain and the validation set obtained from the original M/M/1 model. Be-

fore we statistically compare the output estimates from both models, recall from 

§3.2.1.2 that we wish to obtain estimates with a precision of <1% margin of error. To 

achieve this level of precision, we need to determine the minimum number of repeti-

tions and state-trace length. We run our Markov Chain with increasing numbers of rep-

etitions (first set of preliminary analyses) and increasing length of state-trace data (sec-

ond set of preliminary analyses), and evaluate the margin of error obtained in each ex-

periment.  
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Preliminary analyses: Selection of minimum number of repetitions 

Table 3.8 shows the mean performance measures and their margins of errors [MOE] for 

the first set of preliminary analyses. As becomes clear from this table, with larger num-

bers of repetitions, the margin of error becomes smaller and the level of precision of 

our estimate increases. For the KPI server utilization, a high level of precision (i.e., below 

1%) is already achieved with as few as 10 repetitions. For the average waiting time and 

average queue length measures, the margin of error becomes smaller than 1% from 

100 repetitions and higher (note that the actual threshold of 1% is somewhere between 

50 and 100 repetitions). Based on these findings, we select 10016 as the number of rep-

etitions to be used for our validation step.  

 

Table 3.8. Descriptive statistics for key performance measures obtained from the Markov 
Chain with different number of repetitions and fixed length of 50,000 state-trace records 

 Server utilization Average waiting time Average queue length 

Repetitions M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%) 

10 0.88 (0.00) 0.00 (0.37) 42.91 (0.54) 1.06 (2.46) 4.31 (0.06) 0.11 (2.59) 

20 0.88 (0.00) 0.00 (0.23) 43.38 (0.33) 0.66 (1.51) 4.34 (0.04) 0.08 (1.74) 

50 0.88 (0.00) 0.00 (0.19) 42.71 (0.26) 0.51 (1.20) 4.28 (0.03) 0.06 (1.34) 

100 0.88 (0.00) 0.00 (0.11) 43.25 (0.17) 0.33 (0.76) 4.33 (0.02) 0.04 (0.83) 

200 0.88 (0.00) 0.00 (0.09) 43.44 (0.13) 0.25 (0.57) 4.35 (0.01) 0.03 (0.62) 

500 0.88 (0.00) 0.00 (0.05) 43.64 (0.07) 0.14 (0.33) 4.37 (0.01) 0.02 (0.36) 

 

Preliminary analyses: Selection of minimum state-trace length 

Table 3.9 shows the mean performance measures and their margins of errors for the 

second set of preliminary analyses. This table shows that with longer traces containing 

a higher number of state-trace records, the margin of error becomes smaller and the 

level of precision of our estimate increases. For the KPI server utilization, a high level of 

precision (i.e., below 1%) is already achieved with a state-trace as short as 1,000 records. 

                                                        

 

16 Note that 100 repetitions mean both the training and validation sets have 50 state-traces in each because we 
decided to split the complete set of state traces equally. 
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 For the average waiting time and average queue length measures, the margin of error 

reaches <1% from 50,000 state-trace records and higher (note that the actual threshold 

of 1% is somewhere between 20,000 and 50,000 state-trace records). Based on these 

findings, we select 50,000 as the state-trace length to be used for our validation step, 

in conjunction with the 100 repetitions selected in the first set of preliminary analyses.  

 

Table 3.9. Descriptive statistics for key performance measures obtained from the Markov 
Chain with varying state-trace lengths and fixed number of 100 repetitions 

 Server utilization Average waiting time Average queue length 

Length M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%) 

1,000 0.88 (0.00) 0.01 (0.84) 43.06 (0.86) 1.68 (3.90) 4.31 (0.11) 0.22 (5.20) 

2,000 0.88 (0.00) 0.00 (0.49) 42.90 (0.66) 1.29 (3.01) 4.31 (0.08) 0.15 (3.52) 

5,000 0.88 (0.00) 0.00 (0.36) 43.51 (0.55) 1.07 (2.46) 4.28 (0.06) 0.12 (2.73) 

10,000 0.88 (0.00) 0.00 (0.24) 43.34 (0.35) 0.69 (1.58) 4.36 (0.04) 0.07 (1.69) 

20,000 0.88 (0.00) 0.00 (0.17) 43.16 (0.24) 0.48 (1.11) 4.33 (0.03) 0.05 (1.17) 

50,000 0.88 (0.00) 0.00 (0.11) 43.25 (0.17) 0.33 (0.76) 4.33 (0.02) 0.04 (0.83) 

 

Validation 

Now that we have selected the number of repetitions and state-trace length that pro-

vides our desired level of precision, we can validate our results using inferential statis-

tics. Table 3.10 presents results of the Student’s t-test to test the null hypothesis H0: 

MM/M/1 = MMarkovChain for each of the three performance measures. For all three perfor-

mance measures, Student’s t-test with α = 0.05 was non-significant, indicating that there 

were no significant differences between the mean performance measures calculated 

from the Markov Chain and those calculated from the M/M/1 model. 

 
Table 3.10. Student’s t-test results for comparing mean performance measures obtained from 
M/M/1 model and Markov Chain for 100 repetitions and 50,000 state-trace length 

 M/M/1 model  Markov Chain   

 M SE  M SE ΔM t(df), p 

Server utilization 

Average waiting time 

Average queue length 

0.88 

43.64 

4.37 

0.00 

0.30 

0.03 

 0.88 

43.25 

4.33 

0.00 

0.17 

0.02 

0.00 

0.39 

0.04 

1.27(198), p = .207 

1.14(155.32), p = .256 

1.13(163.22), p = .261 
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To further validate our Markov Chain output, we compare the distributions of perfor-

mance measure scores obtained from the Markov Chain and the M/M/1 validation set. 

Figure 3.6 shows the box and whisker charts for each KPI. We see that for the chosen 

number of repetitions (100) and state-trace length (50,000) and for each of the three 

KPIs, the box plots of the M/M/1 and Markov Chain overlap, indicating high similarity 

between the two distributions of scores. Likewise, both median lines lie within the over-

lap of the two boxes. It’s noteworthy that the whiskers and boxes of the Markov Chain 

are consistently shorter than those of the M/M/1 validation set. This indicates that the 

data from the Markov Chain is less scattered and more consistently hovers around the 

median. 

 

 
Figure 3.6. Box and whisker plots for 100 repetitions with the state-trace length of 50,000 
state-trace records per repetition 
 

Another test that we can perform to validate our Markov Chain results is the chi-square 

test to compare the frequency distributions of the state transitions obtained from the 

M/M/1 model and the Markov Chain. To do so, we use state-trace data containing the 

variables shown in Table 3.5 in Case Study Application §3.2.1.5. The histogram in Figure 

3.7 shows the frequencies of state-transitions side-by-side for the M/M/1 model and the 

Markov Chain.  

3
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Figure 3.7. The frequency distributions of the state transitions of M/M/1 model and 
Markov Chain for 100 repetitions with 50,000 state-trace length 

As can be seen from this histogram that the distribution has a very long right tail with 

low frequencies due to low probabilities of transitions happening for the higher queue 

lengths. In fact, the probability that the M/M/1 system has 21 entities or less (i.e., there 

are 20 or less entities in the queue and 1 entity is in the server) is 

(1 - PN) = (1 - aN) / (1 - aN+1) where a = λ/μ 

(1 - PN) = (1 - 0.8521) / (1 - 0.8522) = 0.9671 / 0.97120 = 0.99492.  

The probability that the M/M/1 system has 22 or more entities = PN = 1 - 0.99492 = 

0.00508. Because their low probability (less than a percent), there is a much smaller 

chance that they occur during a simulation run. This could result in those rare state-

transitions occurring in the Markov Chain-generated state-trace data (because of their 

presence in the training data), but not in the validation set (or the other way around). 

The consequence of this situation is that there may be a lot of cell frequencies in the 

two-way cross-tab that are small (or zero) relative to the expected counts in the chi-

square test, which will inflate the chi-square value. We limit our queue length to 20 by 

excluding transitions beyond 230230 to overcome this shortcoming. The histogram in 

Figure 3.8 shows the frequency distributions after the recoding. 
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Figure 3.8. The frequency distributions of the recoded state transitions of M/M/1 model 
and Markov Chain for 100 repetitions with 50,000 state-trace length 

Chi-square test results for the recoded dataset suggest that there is a significant differ-

ence between the two frequency distributions, 𝜒𝜒2(41, N = 9,681,935) = 375.11, p < .001 

with an effect size Cramer’s V = .006. The significant test result is likely to be influenced 

by the large sample size (9,681,935); however, the effect size shows that the difference 

is negligible.   

 

3.3 Conclusions 

In this chapter, we presented a novel temporal data mining-based method for discrete-

event simulation model abstraction using state-trace data. We started the chapter with 

the formal description of the key concepts of a state-trace and a state-trace record. We 

explained the EMMA (Episode Mining using Memory Anchor) algorithm and high-

lighted the reasons why the EMMA algorithm is one of the best suited frequent episode 

mining algorithms for our method. We provided a formal definition of Markov Chains 

and Markov Chains related concepts, such as the transition probability matrix and the 

3
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initial distribution vector. We explained the Markov property and emphasized why the 

memoryless property of Markov Chain states is akin to the discrete-event model states 

(Seo et al., 2018; Zeigler et al., 2018) and forms the backbone of our temporal data min-

ing-based method to abstract discrete-event models.  

We then presented the step-by-step approach of our temporal data mining-based 

method, in which we addressed several considerations and actions for the modeler. 

Within this detailed breakdown of our method, we created subcategories to further illus-

trate the factors that affect (a) the content of raw state-trace data, (b) the type of tech-

niques and algorithms to use for preprocessing raw data for the frequent episode mining 

step, (c) the parameters and processes to generate and simulate the Markov Chain, and 

(d) the algorithms and techniques to validate the Markov Chain generated results against 

the original model generated validation set. Figure 3.9 summarizes all steps and consid-

erations of our method.   

To demonstrate and validate our proposed method, we presented an M/M/1 queueing 

system case study. The results of our case study, and specifically the validation process, 

show that we are able to obtain Markov Chain estimations of the three performance 

measures with a precision of <1% and that these estimates do not significantly differ 

from the original model’s validation set. In addition, the probability distributions of the 

state-transitions obtained from the Markov Chain-generated state-trace data and from 

the validation set are highly similar. Although the 𝜒𝜒2-test – likely affected by the large 

sample size – indicated a significant difference between the two distributions, the 

Cramer’s V effect size and graphical visualizations suggested that the magnitude of this 

difference is very small. 

In sum, this chapter provides a first demonstration that our method can automate the 

process of model abstraction of discrete event simulation models by applying frequent 

episode mining techniques to state-trace data to generate a Markov Chain, and that this 

Markov Chain is capable of adequately estimating the stochastic behavior of the original 

model. In the next chapter, we will apply our method to a larger and more complex 

DEVS model. 
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CHAPTER 4 

Automated Discrete-event Model  
Abstraction: Application to 

Larger-Scale Models 
 

 

 

 

 

 

 

 

This case study used in this chapter is largely based on: 

Tekinay, C., Seck, M. D., & Verbraeck, A. (2012). Exploring multi-level model dynamics: 

performance and accuracy (WIP), 2012 Symposium on Theory of Modeling and Simulation 

Proceedings, Article 20, 1-6. https://dl.acm.org/doi/10.5555/2346616.2346636 
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4 Automated Discrete-event Model Abstraction: Application to 

Larger Scale Models 

In Chapter 3, we demonstrated the application of the automated model abstraction 

method on an M/M/1 queueing model. This chapter aims to illustrate how to apply the 

method introduced in §3.2 to a relatively larger, more complex model with different 

model characteristics, and extend the method where needed.  

4.1 Battlefield Case Study 

Operational challenges of the U.S. Military have been one of the core case studies of 

multi-resolution modeling (Davis & Bigelow, 1998; 2003; Petty et al., 2012). As Zeigler 

(2019) reconfirms, some of the primary reasons for using military case studies are the 

pioneering efforts of Davis and Bigelow, advocating the use of a family of models at 

multiple levels of abstractions when executing Department of Defense (DoD) simulation 

projects. A typical defense-related MRM scenario investigates the operational differences 

between the low-level (i.e., high-resolution) military combat units such as individual tanks 

and the aggregated high-level (i.e., low-resolution) combat units (e.g., battalions or tank 

platoons), when conducting tactical movements in a battlefield. The battlefield case study 

model, which is defined in Dynamic Structure Discrete-event System specification 

(DSDEVS; Zeigler et al., 2000, p. 235), explores a similar military scenario; a tank platoon 

maneuvers through a mountainous terrain to reach a tactical end station. An earlier ver-

sion of the Battlefield DEVS17 model was first introduced in (Tekinay et al., 2012). How-

ever, the model used in this dissertation contains several structural and behavioral 

changes to make the model better serve the further development of the automated model 

abstraction method.  

In what follows, we provide the conceptual design of the battlefield model.  

                                                        

 

17 Although the Battlefield DEVS model has a cell-based implementation, it is not implemented using the Cell-
DEVS Formalism. 
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4.1.1 Scenario Description 

The battlefield system modeled in this case study consists of a terrain with hills and pas-

sages between hills, and a tank platoon. A tank platoon is a military unit that consists of 

a team of 4 battle tanks, organized into two equal sections, A and B, with two tanks in 

each (Department of the Army, 2019). One of the main ideas behind forming a tank 

platoon is to eliminate, or at least reduce, the vulnerabilities of a single tank when facing 

enemy forces or moving through unfavorable terrain (Department of the Army, 2019).  

The scenario simulated in this case study aims to assess the mission performance metrics 

of each platoon section, such as the average speed of a section or the total number of 

moves per section during a night mission with limited communication and visibility. The 

platoon’s mission begins at the base camp located northwest of the terrain. The mission 

is completed when both sections reach an end-station in the southeast, only after suc-

cessfully passing through three intermediate checkpoints within the hilly terrain (see Fig-

ure 4.1.a and 4.1.b). The terrain has an area of 10,000,000 m2 and the lowest and the 

highest elevation is 144 meters and 375 meters, respectively.  

 

Figure 4.1.a. The hilly terrain used in the Battlefield case study 

4
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Figure 4.1.b. Base camp, check points and end station locations on the terrain 

 

Both sections have equal roles and responsibilities18, but the battle tanks in Section A 

and Section B have different technical specifications19. Section A consists of lighter tanks 

weighing 60 tons and a higher top-speed of 13.9 m/s, whereas the heavy armored Section 

B tanks weigh 64 tons and can get up to 11.8 m/s. The weight difference allows Section 

A to have quicker acceleration and both sections can climb slopes up to a maximum of 

60%. The percentage, or percent grade of a slope can negatively or positively affect a section’s 

speed. The percentage grade (%) of a slope is calculated by dividing the elevation change 

                                                        

 

18 This is different from the real-life military setup (Department of the Army, 2019), where one section is the 
platoon leader and bears full responsibility for the mission’s success and failure and the specifications of the 
tanks might be different. 

19 The specifications of the tanks are loosely based on the specifications of an M1A2 Abrams Main Battle Tank 
Retrieved February 11, 2022, from https://man.fas.org/dod-101/sys/land/m1.htm. 
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(i.e., rise) by the horizontal distance covered (i.e., run), and then multiplying the result by 

100.  

Sections are only given the coordinates of the checkpoints and the end station and there 

is no terrain reconnaissance information available to them. For the safety of the platoon 

and the success of the mission, sections are given a mission briefing to reach the end 

station as quickly as possible. However, due to the environmental and operational limi-

tations, as well as equipment constraints, choosing the shortest route may not always be 

possible. These limitations and constraints are listed below20: 

(I) Formation compliance: Sections should keep a minimum of 100 meters distance to 

each other to have a certain level of freedom and a maximum of 1,000 meters 

distance to provide some unity to maintain security and increase firepower.  

(II) Limited communication: Sections can communicate with each other using radio. 

However, radio communication is limited to exchanging instant coordinate updates 

and checkpoint arrival messages between sections, and transferring additional 

information, such as reconnaissance data, is not permitted.  

(III) Reduced visibility: While moving across the terrain, each section simultaneously 

conducts a route reconnaissance, or recon, to collect information about the 

surrounding landscape. This 360° reconnaissance is crucial to detect and avoid 

steeper slopes, which would otherwise cause the section to slow down. 

However, the reduced visibility caused by darkness, dense woods, or restricted 

terrain limits sections’ capability to survey an area with a radius of more than 

100 meters.  

(IV) Maximum allowed altitude: Sections are not allowed to climb higher than 200 

meters altitude in order to avoid detection.  

(V) Checkpoints: Sections must pass through three intermediate checkpoints before 

arriving at the end station. The mission, however, requires both sections to have 

                                                        

 

20 It should be noted that this is a stylized case and therefore different from a real-life military setup. 

4
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arrived at a checkpoint before proceeding to the next checkpoint. If a section 

arrives at a checkpoint and the other has not yet arrived, the first section waits 

for the other section’s arrival. Only after the second section arrives and 

transmits a checkpoint arrival message over the radio will the first section 

resume movement. 

Every 100 meters, the section that needs to update its route for the next 100 meters 

would send a coordinate request to the other section over the radio, to which it would 

receive an instant response. Then, in conjunction with the reconnaissance, determines 

the route for the next 100 meters that do not violate the maximum section distance 

within the formation and the maximum altitude requirements mentioned above. This 

way, sections can plan their routes in 100-meter increments without stopping.  

In what follows, we will describe the conceptual model of this Battlefield system through 

a collection of assumptions and simplifications of the stylized system’s operation.  

4.1.2 Battlefield Conceptual Model 

The 10 million m2 hilly terrain is modeled using a heightmap with 100x100 meter patches 

or cells. A heightmap is an image where each pixel’s color intensity corresponds to a 

surface elevation value. The lowest intensity pixel represents the lowest elevation, while 

the highest intensity pixel represents the highest elevation. An increase or a decrease of 

1 in the pixel intensity equals an increase or a decrease of 10 meters in the elevation (i.e., 

rise). Each pixel of the heightmap represents a square cell in the 100x100 grid-based ter-

rain with a surface area of 1 hectare (ha) or 10,000 m2. Because of this pixel-to-area 

projection, we make the necessary assumption that the elevation value derived from a 

single pixel’s intensity corresponds to the average height of the related square cell area.  

Each cell on the grid is assigned a (row, column) coordinate. For instance, the top left cell 

has the coordinate (1,1) and the cell on its right is has the coordinate (1,2). The coordinate 

of the cell at the bottom right corner of the grid-terrain is (100,100). The distance be-

tween two cells (i.e., run) is the 𝐿𝐿1 distance, or Manhattan distance, which is the sum of 

the absolute differences between the cartesian coordinates of the virtual center of each 

cell.  
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One of the simplifications we made when modeling the tank platoon was to represent 

platoon behavior at the section level rather than the individual tank level. As a result, the 

platoon is modeled as two sections, and sections are modeled as a single military unit 

instead of two individual battle tanks. Furthermore, recall that the tanks in Section A and 

Section B have different technical specifications. Sections in our model are designed to 

have the same specifications as the individual tanks of which they are composed. Another 

simplification we implemented when modeling the sections was to limit their ability to 

survey and, therefore, move only to four cardinal directions: north, east, south, and west. 

As a result, reconnaissance data is limited to the neighbor cells that are orthogonally adjacent 

to a sections’ host cell21, and it contains the average height of the four neighbor cells and 

their occupancy statuses (i.e., whether any one of the orthogonally adjacent cells is occu-

pied by the other section at the moment of the reconnaissance). The decision to model 

the terrain as a square grid of 100m-by-100m cells together with the simplifications on 

the tank platoon’s dynamic representation and reconnaissance behavior allows for a 

number of other simplifications:   

(I) Sections moves only one cell at a time.  

(II) Forbidding sections from sharing the same cell would automatically prevent 

them from violating the formation compliance’s minimum distance rule. 

When determining their route (i.e., the next cell to occupy), sections always prioritize the 

neighbor cells in the direction of the directional vector (depicted as green-gray cells in 

Figure 4.2.a and 4.2.b). We will use the term preferred cells for these prioritized neighbor 

cells for the remainder of this chapter. 

 

                                                        

 

21 For the remainder of this chapter, the term “host cell” is used to refer a cell that is being (temporarily) 
occupied by a section. 

4
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Figure 4.2. Preferred cells based on the directional vector of the section   

 

To determine the directional vector of a section, the coordinate of host cell is subtracted 

from the target (i.e., a checkpoint or the end station). In the model, the directional vector 

is expressed as a cardinal or intercardinal direction for simplicity: north, east, south, west, 

north-east, south-east, north-west, and south-west. For example, the directional vector 

of the section in Figure 4.2.a is set as “east” and the directional vector of the section in 

Figure 4.2.b is set as “south-east”. When a section’s directional vector points intercardi-

nal directions, the section considers checking the following four constraints before 

choosing one of the preferred cells to occupy (e.g., south or east cell in the case of the 

section in Figure 4.2.b): 

(I) A preferred cell should not be occupied by another section. 

(II) The movement of the section to a preferred cell should not cause a violation 

of the “formation compliance” constraint. 

(III) The movement of the section to a preferred cell should not cause a violation 

of the “maximum allowed altitude” constraint. 

(IV) The section should be able to climb up or down the percent grade of the slope 

between the host cell and the preferred cell(s).  

Whether preferred or not, neighbor cells that do not comply with the four constraints 

listed above are removed from the reconnaissance data. When a section's directional vec-

tor points in a cardinal direction (e.g., "east" for the section in Figure 4.2.a) and the pre-

ferred cell in that direction is removed from the reconnaissance data, the section 
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prioritizes cells that are not located in the opposite direction of the directional vector. In 

Figure 4.2.a, for example, the section would initially prioritize the cells in the "south" and 

"north" over the cell in the west. On the other hand, when a section's directional vector 

points in an intercardinal direction (e.g., "south-east" for the section in Figure 4.2.b) and 

both preferred cells – in the direction of the directional vector’s component vectors – 

are removed from the reconnaissance data, the remaining cells in the reconnaissance data 

would have the same priority. For instance, for the section Figure 4.2.b, the cells to the 

"west " and "north" will have the same priority if the preferred cells in the “east” and 

“south” of the section were removed. 

If none of the preferred cells are eliminated and there are two preferred cells left to 

consider as shown in Figure 4.2.b, then the section should choose the cell that allows it 

to travel the fastest route. The check for the quickest route is done based on the percent 

grade of the slope between the host cell and each preferred cell. Sections begin their 

mission idle (the speed is 0 m/s) at their corresponding base-camp coordinates [(5,5), 

(5,7)]. The initial moving speed of each section is drawn from a Triangular distribution. 

For Section A, the triangular distribution is defined with a lower limit a = 5 m/s, upper 

limit b = 10 m/s and mode c = 7.5 m/s. For Section B, it is a = 3 m/s, b = 7 m/s and c 

= 5 m/s. To this value, we add noise drawn from a continuous uniform distribution 

within a range of -1 and 1. A section’s moving speed is affected by the percent grade of 

the slope and each section’s quantized speed values for various percent grades (see Figure 

4.3) are given as an input to the model by design. For each recalculation of the section 

speed, we add Gaussian noise with a variance  𝜎𝜎z{ of 1 to these quantized section speed 

values to simulate the effects of imperfections in the terrain's surface and various obsta-

cles such as trees and rocks, as well as variations caused by the human (driver) factor on 

the sections' speed. Sections have different speeds during a mission (different initial mov-

ing speeds and changes in their speed based on the steepness of the terrain). They are 

designed to move from one cell to the next instantaneously at the time of their previously 

scheduled movement.  

4
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Figure 4.3. Quantized section speeds for various percentage grades 

 

If the percentage grades of the slopes of the two preferred cells are also the same, then 

the sections employ a tie-breaker mechanism. The tie-breaker mechanism aids in the selec-

tion process by generating a random number 𝓊𝓊 from a uniform distribution 𝒰𝒰[R,W]. The 

section makes its final decision based on the value (i.e., 𝓊𝓊 ≤ 0.5 or 𝓊𝓊 >0.5) of this num-

ber. 

This sequential rule-based approach to select the next cell may result in a deadlock situ-

ation for a section, in which the section continues to move back and forth between the 

same cells. Such a deadlock could be caused by a temporarily eliminated cell as a result 

of being occupied by the other section at the time of the reconnaissance, or by the for-

mation compliance constraint, that is the maximum allowed L2 distance (or Euclidean 

distance) between each section. In these cases, the deadlock may be broken after the 

section repeats the same moves several times. However, such a deadlock may be caused 

by a permanently eliminated cell (or cells) as a result of the maximum altitude constraint 

or an extreme percentage grade of the slope. As a result, the impasse is permanent.  

To deal with temporary deadlocks and avoid permanent ones, each section is allowed a 

user-specified maximum number of the same moves. This number may differ for each 

section. For instance, because the faster section is more likely to violate formation 
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compliance constraint and may have higher number of repetitive moves. If the deadlock 

persists after several repetitions, the neighbor cell that is causing the deadlock situation 

is removed from the reconnaissance data to temporarily eliminate the repetition. Once 

the problematic neighbor cell is removed from the reconnaissance data, the section 

would (as per usual) choose the next best cell from the list of available neighbor cells. 

This is referred to as a forced move. In rare cases, a section may not have any available 

neighbor cells to select, after temporarily removing the problematic cell from the recon-

naissance data. Only in this case is it permissible for a section to disregard the maximum 

altitude constraint and move to a cell with an average height (altitude) value greater than 

the maximum altitude limit. When the section moves to a cell with a height less than the 

user-defined maximum altitude limit, the constraint is re-imposed on it.  

4.1.3 Modeling the Battlefield case in the DEVS Formalism 

The conceptual model described in §4.1.2 is implemented in accordance with the guide-

lines provided by Seck and Verbraeck (2009) for implementing hierarchical DEVS mod-

els in DSOL. The model consists of two atomic components; cell and section as shown 

in Figure 4.4.a and Figure 4.4.b, and two coupled components; terrain and platoon as 

shown in 4.5.a and 4.5.b respectively.  

 

 

Figure 4.4. Cell and Section atomic components 

 

4
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Figure 4.5.a. Terrain coupled model 

 

 

 

 

Figure 4.5.b. Platoon coupled model 
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The terrain coupled model shown in Figure 4.5.a is composed of cell-based atomic model 

components22. Cell-to-cell couplings are statically added at the beginning of the simula-

tion between the corresponding I/O ports (see Table 4.1) of cell components, forming 

a grid-based network of connected cell atomic model components. Cell components lo-

cated at the corners of the two-dimensional terrain have only two cell-to-cell couplings 

because they only have two non-diagonal neighbor cells, while the cells at the edges of 

the terrain have three cell-to-cell couplings, and all the other cells in the terrain have four 

cell-to-cell couplings.  

 
Table 4.1. I/O ports of the cell atomic DEVS models in the Battlefield model 

Cell atomic model input ports Cell atomic model output ports 

I/CE Input/Cell East O/CE Output/Cell East 

I/CW  Input/Cell West O/CW Output/Cell West 

I/CN  Input/Cell North O/CN Output/Cell North 

I/CS  Input/Cell South O/CS Output/Cell South 

I/S Input/Occupying Section O/S Output/Occupying Section 

 

Similarly, the platoon coupled component shown in Figure 4.5.b is modeled by statically 

adding the section-to-section couplings between the corresponding I/O ports (see Table 

4.2) of the two sections.  

 
Table 4.2. I/O ports of the section atomic DEVS model in the Battlefield model 

Section atomic model input ports Section atomic model output ports 

I/S Input/Section O/S Output/Section 

I/HC Input/Host Cell O/HC Output/Host Cell 

  

                                                        

 

22 We use the term “model component” referring to the atomic and coupled model in the hierarchical DEVS 
formalism (Zeigler et al., 2000). 

4
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Unlike the static cell-to-cell and section-to-section couplings, section-to-cell couplings 

are established dynamically (see Figure 4.6) according to the Dynamic Structure DEVS 

specifications (Zeigler et al., 2000). The only exception to this is the initial couplings of 

the sections to their corresponding pre-determined base-station cells, which are added at 

a certain instance in beginning of the simulation. After the initial coupling is established 

between a section and its base-station cell, and the section is ready to move (once it 

completes its preparations), the internal coupling with the host cell is removed using the 

removeInternalCoupling method (lines 1155-1157 in Figure 4.7) and a new internal coupling 

is added to the new (host) cell using the addInternalCoupling method (lines 1159-1161 in 

Figure 4.7). This is repeated until the section reaches its destination.  

 

 

Figure 4.6. Dynamic coupling of a section to a cell via its I/O ports 

 

158962 Tekinay BNW.indd   126158962 Tekinay BNW.indd   126 09-05-2022   15:4509-05-2022   15:45



 115 

 

Figure 4.7. Dynamic coupling between a section and old and new host cells 

 

For each atomic component the behavior is structured into several different phases 

(Honig and Seck, 2012; Zeigler, 2000, p. 214). Each phase is identified by a name that 

indicates the type of the activity of the component, and a lifetime that describes the 

duration the entity remains in that particular phase. It should be noted that the phase 

variables are ordinary state variables S of the atomic model according to the specification 

in §2.2.4.1. Below, Table 4.3 lists these atomic components, their corresponding phases, 

lifetime of each phase, and a concise description of each phase, which designates the 

model component's activity.  

 
Table 4.3. Phases of the atomic components in the Battlefield DEVS model 

Type Phase Lifetime Description 

Cell EMPTY + ∞ The cell is not occupied by 
a section 

 OCCUPIED + ∞ The cell is occupied by a 
section 

 UPDATE 0 (zero) Updating the orthogonally 
adjacent cells with the sta-
tus info 

Section INITIALIZATION tinit Initialization of the sec-
tions 

 OCCUPY toccupy Occupying the (chosen) 
next host cell and estab-
lishing the new couplings 

 START_MOVING_AGAIN toccupy Moving back after both 
sections arrived at a check-
point 

 INVESTIGATE_CELL_STATUS 0 (zero) Investigating the status 
(e.g., occupancyInfo, 
height) of orthogonally ad-
jacent cells 

4
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 REQUEST_SECTION_COORDINA
TES 

0 (zero) Requesting the coordinates 
of the other section 

 SEND_FORMATION_TO_SECTIO
NS 

0 (zero) Sending the requested co-
ordinates to the other sec-
tions 

 WAIT_SECTION_COORDINATES + ∞ Waiting for the coordi-
nates of the other section 

 SELECT_CELL_TO_OCCUPY 0 (zero) Updating the current and 
the next host cells (for dy-
namic coupling) 

 DESTINATION_REACHED + ∞ Arriving at the end-station 

 

Each atomic model component (cell and section) has phases with zero lifetime, for ex-

ample, Cell.UPDATE and Section. INVESTIGATE_CELL_STATUS. These phases 

are used to request information from other atomic components or to update their infor-

mation stored at other atomic components via the corresponding I/O ports. For exam-

ple, in our model, a section conducts a reconnaissance and collect information about the 

neighbor cells via its host cells. To do that, the section will first transition from 

START_MOVING_AGAIN to INVESTIGATE_CELL_STATUS. Because the 

INVESTIGATE_CELL_STATUS has a zero life-time, a message of type <Sec-

tionToCellMessage> is sent to the host cell via the corresponding output port O/HC 

(Table 4.2) of the sections, to be received by the corresponding input port I/S (Table 

4.1) of its host cell.  

4.2 Application of the Temporal Data Mining-based Model Abstraction 

Method to the Battlefield DEVS Model 

In the following subsections, we illustrate step-by-step how we apply the method intro-

duced in §3.2 to the Battlefield DEVS model in the order presented in Chapter 3 (see 

Figure 3.9). 

4.2.1 Generation of DEVS Model State-Traces 

Recall from §3.2.1 that we divided the considerations when generating state-traces from 

a simulation model into six categories: representation of time (see §3.2.1.1), the type of model 
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(stochastic vs. deterministic) (see §3.2.1.2), the type of simulation (terminating vs. non-terminating) 

(see §3.2.1.3), the inclusion of input variables (see §3.2.1.4), the inclusion of output variables (see 

§3.3.1.5), and the complete model state-trace vs. partial model state-trace (see §3.2.1.6).   

4.2.1.1 Representation of Time 

When generating the state-trace data for the Battlefield case study, the DEVS simulator 

logs state-trace records at each event occurrence rather than recording at fixed time in-

tervals. The “fixed-increment” time advance mechanism is not suitable for the Battlefield 

case study for two reasons: (a) We would like to include state-variables for multiple model 

components in the state-trace data, with the goal of capturing every state transition that 

these selected model components go through. These state transitions of the model com-

ponents are triggered by the internal and external events. In the Battlefield DEVS model, 

the lifetimes of states (see Table 4.3) have significant variations. (b) Sections’ movements 

are not synchronized. Section types A and B have different speed characteristics as well 

as different initial moving speeds, and their speed is affected by the terrain (e.g., the 

steepness of slopes) and by the added noise. As a result, using fixed time-steps to generate 

state-traces may result in an inaccurate representation of the model behavior. Some tran-

sient states, for example, may be underrepresented in the data due to event skipping at 

larger step sizes. At smaller step sizes, however, some of the states such as formation 

requests or status updates, maybe be overrepresented. Therefore, an event-based repre-

sentation of time will provide a better representation of all states and all state changes 

with the correct frequencies of occurrence. 

Another important consideration regarding the inclusion of time is the decision of the 

format of time (see §3.2.1.1). The time recorded in the state-trace data is the elapsed time. 

The main reason behind choosing elapsed time over the monotonously increasing abso-

lute simulation time is to ensure that the ability of frequent episode mining algorithms to 

find recurring patterns in data is not hindered by the continuously increasing absolute 

time.  

 

 

4

158962 Tekinay BNW.indd   129158962 Tekinay BNW.indd   129 09-05-2022   15:4509-05-2022   15:45



118 – Chapter 4 

4.2.1.2 Stochastic vs. Deterministic DEVS Models 

The Battlefield DEVS model is a stochastic model with multiple random variables. These 

random variables have their own probability distributions. For instance, the initial mov-

ing speed of Section A is drawn from a standard Triangular distribution, with a lower 

limit a = 5 m/s, upper limit b = 10 m/s and mode c = 7.5 m/s.  

To accurately estimate the stochastic behavior of the model and to collect a sufficient 

amount of data, we ran the same scenario 100 times with a different RNG seed value per 

run (see Table 4.4). Our aim was to equally split the data into two non-overlapping sets: 

a training and a validation data set. After the split, the total number of state-trace records 

in the training set is 32,610, whereas the total number of state-trace records in the vali-

dation set is 32,714.  

 

Table 4.4. Random Number Generator seed value ranges for each dataset in the case study 

Model Data set 
name 

# of state 
traces per 
dataset 

Seed value 
range 

Total state 
trace records 
(50 state traces) 

Average 
state trace 
length 

Battlefield  
(base model) 

Training 50 1-50 32,610 652.20 

Validation  50 10,001-10,050 32,714 654.28 

 

4.2.1.3 Terminating vs. Non-terminating Simulations 

The Battlefield simulation is terminating. Each run terminates at a different run time (due 

to the model’s stochasticity) when both sections arrive at their predefined end-station 

coordinates SA(68,82), SB(68,84). Thus, the simulation runs and the state-traces generated 

from these runs differ in length. In the validation stage in §4.2.4, we will investigate 

whether the Markov Chains runs have sufficiently close run-lengths compared to the 

base model’s using descriptive statistics. 
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4.2.1.4 Inclusion of Input Data 

The Battlefield DEVS model used in this case study has a single set of input data. Input 

variables of the case study model and their values are given in Table 4.5 below: 

 

Table 4.5. Some of the Input variables of the Battlefield model and their values  

Input variable Value 

Total number of sections 2 

100x100 heightmap of the terrain Figure 4.1.a; 4.1.b 

Section A – Initial coordinate (5,5) 

Section B – Initial coordinate (5,7) 

Section A – End-station coordinate (68,82) 

Section B – End-station coordinate (68,84) 

Total number of checkpoints 3 

Section A - Checkpoint 1 coordinate (26,13) 

Section B – Checkpoint 1 coordinate (26,15) 

Section A – Checkpoint 2 coordinate (52,39) 

Section B – Checkpoint 2 coordinate (52,41) 

Section A – Checkpoint 3 coordinate (30,70) 

Section B – Checkpoint 3 coordinate (30,72) 

Elevation change per 1-pixel intensity 10 m 

Section A & B – Discrete speed profiles Figure 4.3 

Mersenne Twister seed range (for training data) 1 - 50 

Mersenne Twister seed range (for validation data) 10,001 – 10,050 

Total number of cells in a terrain 10,000 

Single cell area 100 m2 

Total terrain area 10,000 m2 

 

The model has a single (fixed) set of input values and there is no external input. There-

fore, the inclusion of input variable values in the state-trace data (as columns) does not 

affect the variability of the episodes discovered by the episode mining algorithm because 

they remain constant. Therefore, the input data is excluded from the state-trace data.  

 

4
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4.2.1.5 Inclusion of Output Data 

Based on the input values presented in the previous section, the theoretical calculations 

of several performance indicators of the Battlefield model are given below in Table 4.6:  

 
Table 4.6. Performance indicators of the battlefield model 

Performance Indicator Description Example Values 

Active mission time 

Section A 

Total time it takes for Section A to reach its pre-

determined end-station coordinate from the base 

station. The duration of the mission calculation 

excludes the waiting times at checkpoints 

1,814.76 s 

 

Active mission time 

Section B 

Total time it takes for Section B to reach its pre-

determined end-station coordinate from the base 

station. The duration of the mission calculation 

excludes the waiting times at checkpoints. 

2,270.72 s 

 

Total elevation 

climbed Section A 

The sum of the positive elevation values that a 

section climbs during a mission.  

626 m 

Total elevation 

climbed Section B 

The sum of the positive elevation values that a 

section climbs during a mission.  

252 m 

 

To estimate the performance indicators listed in above Table 4.6 using our method, the 

state and contextual variables to be included in the state-trace data are given in Table 4.7. 

Elapsed time is also part of the state-trace data used in the experiments (see §4.2.1.6 for 

more details on the experiments). The active mission time of a section is the sum of all 

elapsed times in the state-trace data, belonging to the movement of that particular sec-

tion. However, the elapsed times recorded in the state-trace are the elapsed times for all 

events, that is moving and non-moving events (e.g., formation check and reconnais-

sance). As a result, we need contextual variables which would allow us to distinguish 

between Section A and B’s moving and non-moving events. To solve that, the “move-

ment indicator” contextual variable is captured in the data to flag events that are related 

to the sections’ movements (e.g., “1” = moving). When a section is idle at the time of an 

event arrival, then the movement indicator variable value in the state trace-record is re-

ported as “0”; i.e., a non-moving event. Therefore, to calculate the active mission time 
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of a section from the state-trace data, we sum elapse times of the “moving events” of 

the particular section. 

 
Table 4.7. The state and contextual variables included in the state-trace 

VariableName_SectionId Description Example 

Values 

speed_A 

elevation_A 

speed_B 

elevation_B 

movementIndicator_A 

movementIndicator_B 

 

distanceToCheckPoints_A 

distanceToCheckPoints_B 

checkpointID_A 

checkpointID_B  

 

Speed of section A in m/s 

Elevation of the host cells of Section A in m  

Speed of section B in m/s 

Elevation of the host cells of Section B in m 

A contextual variable for Section A and B to identify 

the moving events (1 = moving event, 0 = non-

moving event) 

Euclidean distance to the next checkpoint (includ-

ing the end-station) in m.  

Sequence ID of a check point starting from the 

value 0 (e.g., 0, 1, 2). Check point ID > 2 indicates 

that the next station is the end-station.  

8.27 

172 

7.13 

168 

1 

0 

 

1,581 

1,708 

0 

0 

 

Similarly, to calculate the total elevation climbed of a section from the state-trace data, we 

sum all positive differences between the two subsequent elevation values (i.e., En+1 – En, 

where n is the sequence - or row - number) in the trace data.  

4.2.1.6 Complete vs. Partial Model State-Trace Data 

The battlefield simulation generates partial model state-trace data. A complete set of trace 

data, which contains the state variables for all model components and possible additional 

contextual variables would be impractical for the mining task due to its dimensions. For 

instance, the terrain consists of a total of 10,000 cell atomic components. Reporting every 

state variable for all 10,000 cells in the state-trace data at every event occurrence will have 

a negative impact on the resulting data size, which is the cartesian product of the number 

of cells and the number of state variables such as the occupancy statuses, elevations per 

cell component. Instead, a more reasonable way to report the model’s state without 

4
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compromising the validity of the abstract model would be the partial reporting of the 

variables that are essential to capture the dynamic behavior of the model. Recall from 

§4.1.3 that only the host cells are part of the dynamic coupling and the host cells central-

ize the communication between the neighbor cells during the movement of sections. 

Furthermore, for the calculation of the performance indicator total elevation climbed (for each 

section) chosen for this case study, only the elevation data for host cells is essential to be 

reported as a part of the state-trace data.  

Although a partial model state-trace containing a subset of the variables listed in Table 

4.7 may suffice to generate a Markov Chain model with a sufficiently accurate estimation 

of base model’s KPIs, we cannot be certain about it without testing this assumption. 

Therefore, we designed four experiments to assess the effects of (1) different number of 

variables included in the state-trace data (experiments 1 and 2), and (2) different levels 

of quantization of these fixed variables (experiments 3 and 4). For the first and second 

experiments, we created two datasets, each containing the same amount of state-traces 

(100) with an equal split of training (50) and validation (50) data (see Table 4.4). The 

difference between the two datasets is the content of the state-traces in terms of the 

variables included. In the first data set, we included speed, elevation and movement in-

dicator variables for each section along with the elapsed time (used for MC1, see Table 

4.8). The second dataset (for MC2) includes all the aforementioned variables and addi-

tionally the variable types “distance to check points” and “check point id” for each sec-

tion (i.e., an additional 4 new columns). Although the inclusion of additional variables in 

the state-trace data may result in an increase in the number of unique episodes identified 

by the EMMA algorithm, a more precise account of the context provided by the addi-

tional variables for the state changes may improve the accuracy of Markov Chain. Be-

cause the battlefield is a terminating simulation, we hypothesize that the inclusion of 

variable types “distance to check points” and “check point id” may be necessary for the 

Markov Chain to accurately identify this terminating behavior.  To observe the effects of 

different level of quantization of a fixed set of variables in experiments 3 and 4, we cre-

ated two subsets of the MC2 data set with a lower and a higher level of binning. We 

hypothesize that the increased level of quantization may be necessary to further improve 

the accuracy of the MC2. 
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4.2.2 Application of the Temporal Data Mining Tasks to the State-Trace Data 

Below, we discuss the battlefield case-study specific data challenges and our decisions 

regarding the selection and the application of the preprocessing methods.  

4.2.2.1 Preprocessing of the State-Trace Data 

After the completion of all runs, the next step in our method is the preparation of the 

data for the episode mining algorithm. Figure 4.8 shows the frequency distributions of 

the speed, elevation and distance to check point data for the training (Figure 4.8.a for 

speed, Figure 4.8.c for elevation, and Figure 4.8.e for distance to check point) and the 

validation sets (Figure 4.8.b for speed, Figure 4.8.d for elevation, and Figure 4.8.f for 

distance to check point).  

As previously mentioned in §4.2.1.6, for experiments 3 and 4, we created two subsets of 

the MC2 data set with a lower and a higher level of binning. Among the variables in these 

subsets, elapsed time, speed and distance to check point are continuous variables as they 

take values from the set of non-negative real numbers ℝÇR = {𝓍𝓍 ∈ ℝ	|	𝓍𝓍 ≥ 0	}.  Mean-

while, the elevation data of the host cells is defined as a discrete variable in the model 

and it takes values from the set of non-negative natural numbers	ℕÇR = {𝓍𝓍 ∈ ℕ	|	𝓍𝓍 ≥

0	}. All four variables types are quantized using an equal-width binning based method. 

For the lower resolution model, we chose bin widths 2, 20, 5, and 5 for the speed, eleva-

tion, elapsed time, and distance to check point variable types, respectively. Furthermore, 

for the speed and distance to check point variables, behaviorally significant values of 

waiting speed at checkpoints/end-stations (𝒱𝒱z	= 0 m/s) and distances to check-

points/end-stations (dS = 0 m) are captured as separate bins. For the higher resolution 

model, we halved the bin width sizes. The values of the movement indicators and the 

check point ids are represented in the data without being pre-processed. The movement 

indicator variable takes value 0 or 1 to indicate the absence or presence of a movement 

for a section. The check point indicator takes values from the range [0-2] and therefore 

do not need to be quantized.  

 

4
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Figure 4.8. Frequency distributions of the speed, elevation and distance to check point varia-
bles for both the training and the validation sets 
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The final step of the data preprocessing for this case study is to encode the rows of the 

state-trace data. A single row of the tabular state-trace data corresponds to a state-trace 

record, which is a combination of variable values from multiple atomic models; where 

each variable is represented in a fixed column. Although the particular implementation 

of the EMMA algorithm used for this case study can process multiple positive integer 

values in a single row (each value separated by a single space), it assumes that these mul-

tiple values are sorted according to a total ordering (e.g., ascending) and with no repeti-

tion of the same value in the same row. This is because the SPMF implementation (Four-

nier-Viger et al., 2014; 2016) is intended to find frequent items (events) from a given 

itemset (event set). However, these assumptions are not valid for the state-trace records. 

A simple solution for this is to create a hash table that associates every unique state-trace 

record (multi-dimensional value) to an incrementing positive integer (key). This process 

generates two types of output: (a) State-traces that are compatible with the EMMA algo-

rithm input format, and (b) a hash table which will later be used to decode the values in 

the Markov Chain generated state-traces back to the original (i.e., multi-value) format.  

As a result, we will compare the four Markov Chains (MC1 – low resolution binning; 

MC1 – high resolution binning; MC2 – low resolution binning; MC2 – high resolution 

binning) based on the precision and the accuracy of their estimates for the base model’s 

KPIs.  

4.2.2.2 Application of the Frequent Episode Mining Algorithm to 

Preprocessed State-Trace Data 

Following the preprocessing of variables in the training and validation data sets (for all 4 

experiments), the next step in our method is the application of the EMMA algorithm to 

each experiment’s training data set. The maxwin parameter of the EMMA algorithm is set 

to “2” so that the algorithm will identify (a) episodes with both window size “1”, which 

corresponds to all unique states, or state-trace records, and (b) episodes with window 

size “2”, which are the state-transitions, or two consecutive state-trace records. As ex-

plained earlier in §3.1.2, a higher maxwin value is not needed as the next state in DEVS 

Formalism is only dependent on the current state, the external inputs via the Ports (in 

this particular model), and nothing else. Furthermore, the minsup parameter is set to “1” 

4
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to include all frequencies of each unique state and state-transition across all 50 traces in 

the all four training sets. Using the obtained frequencies, the transitioning probabilities 

between all states are calculated and represented in the transition probability matrix that 

will generate the Markov Chain. It is important to mention that the inclusion of states 

with a frequency of 1 (minsup = 1) ensures the inclusion of essential but infrequent be-

havioral states (e.g., reaching the end station or the check point) in the Markov Chain’s 

state set.  

After the application of the EMMA algorithm to the training set from dataset 1 and 2, 

the number of unique states identified for four Markov Chains are: 915 states for MC1 

– low resolution binning; 1,590 states for MC – low resolution binning; 1,708 states for 

MC1 – high resolution binning; 3151 states for MC2 – high resolution binning. Recall 

from Table 4.4 that the total number of state-trace records across all state-traces (50) in 

both dataset’s training sets is 32,610.  

4.2.3 Simulation of the Discrete-time Markov Chain 

After the calculation of the state-transition probabilities and the generation of the tran-

sition probability matrices for all four Markov Chains, the next step of our method is to 

perform 50 runs with each Markov Chain and generate state-trace data from all four 

chains for the validation process. Unlike the M/M/1 case study in Chapter 3, the battle-

field is a terminating simulation. To stop the generation of the state-trace data from the 

Markov Chain when it reaches the final state, we implemented a mechanism to terminate 

the simulation immediately after the arrival to the final state.  

After all four Markov Chains completed their runs, we decoded the state-traces obtained 

from the simulation of each model. For the decoding, we used the hash table generated 

from the preprocessing of the data sets before the application of the EMMA algorithm. 

We then dequantized the values of the four variable types (i.e., speed, elevation, distance 

to checkpoints, and elapsed time) before the validation process by assigning the center 

values of their corresponding quantization bins.  
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4.2.4 Validation of the Markov Chain Results 

Before comparing mean performance indicators obtained from the Markov Chain with 

those from the battlefield base model, we must first determine which of the four Markov 

Chains performs best in terms of precision. This can be assessed by calculating the mar-

gin of error of the estimates for each Markov Chain.  

Table 4.8 presents the means M and the margin of error MOE generated from 50 runs 

of the base model and the Markov Chain models MC1 and MC2 obtained with low- and 

high-resolution binning. These data show that the margin of error for all KPIs is consid-

erably lower in the MC2 models with the additional checkpoint indicators as compared 

to the MC1 models or the lower binning resolution. Specifically, in the lower resolution 

model, the margin of error reduces with 26 to 31 percentage points to 2.45%-5.04% 

across KPIs when the Markov Chain is trained with the additional checkpoint indicators. 

In the higher resolution model, the margin of error is even further reduced to 1.46%-

4.59% across KPIs. 

 
Table 4.8. Descriptive statistics for the performance indicators obtained from the Markov 
Chains for the four experiments 

 Active mission time Total elevation climbed 

 Section 1 Section 2 Section 1 Section 2 

 M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%) M (SE) MOE (%) 

Original quantization levels (low resolution binning) 

Base 
model 

1,060.30 
(3.34) 

6.55  
(0.62) 

952.70 
(3.40) 

6.66 
(0.70) 

417.20 
(7.38) 

14.47 
(3.47) 

368.00 
(9.27) 

18.16 
(4.94) 

MC1 1,052.70 
(154.60) 

303.02 
(28.79) 

925.60 
(135.90) 

266.35 
(28.78) 

428.00 
(77.34) 

151.59 
(35.42) 

385.20 
(70.88) 

138.92 
(36.06) 

MC2 1,064.85 
(14.57) 

28.56 
(2.68) 

964.55 
(12.07) 

23.66 
(2.45) 

421.60 
(8.55) 

16.76 
(3.97) 

369.60 
(9.50) 

18.62 
(5.04) 

High resolution binning 

Base 
model 

1,054.35 
(3.13) 

6.13  
(0.58) 

906.65 
(3.89) 

7.62 
(0.84) 

406.40 
(8.01) 

15.71 
(3.87) 

383.80 
(10.31) 

20.21 
(5.26) 

MC1 1,056.50 
(189.21) 

370.86 
(35.10) 

918.38 
(162.93) 

319.33 
(34.77) 

422.00 
(84.61) 

165.83 
(39.30) 

392.20 
(79.74) 

156.30 
(39.85) 

MC2 1060.30 
(8.39) 

16.45 
(1.55) 

912.98 
(6.78) 

13.29 
(1.46) 

402.40 
(8.10) 

15.87 
(3.94) 

397.20 
(9.31) 

18.24 
(4.59) 

Note. MC1 = Markov Chain with duration, speed, elevation, movement indicator; MC2 = Markov Chain with 
duration, speed, elevation, movement indicator, checkpoint indicators; M(SE) = Mean (Standard Error); MOE 
= Margin of Error.  

4
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These findings suggest that higher precision can be achieved by adding more infor-

mation, i.e., state or contextual variables, to the state-trace or by increasing the model’s 

resolution, i.e., an increased level of binning for the quantization. It should be noted, 

however, that increasing the model’s resolution alone may not always improve the accu-

racy of the base model’s representation if essential information is missing in the model. 

This is illustrated in Table 4.9, which compares the number of state-trace records ob-

tained from the four different Markov Chain models. As can be seen from the spread 

measures, the inclusion of the additional check point indicators (MC2) reduces the dis-

persion of the run lengths of the Markov Chain in both the low and the high-resolution 

models. However, the higher resolution binning only improves the results of MC2, but 

does not result in a better estimation of the run length of MC1.  

The battlefield model is a terminating simulation and the calculation of the selected per-

formance indicators requires the accumulation of the corresponding variable values over 

time. Given that the accumulation of these values is sensitive to the terminating condi-

tion, the accurate estimation of the performance indicators by the Markov Chains are 

highly dependent on identifying sufficiently close run-lengths as compared to the base 

model. In the absence of the representation of time progression in the state-trace data, it 

is not possible to reliably and accurately represent the base model’s behavior even if the 

model resolution is increased. In fact, findings in Table 4.9 suggest that the additional 

checkpoint indicators in MC2 are crucial for representing the base model’s terminating 

behavior. Therefore, we will continue the validation with the higher resolution MC2. 

 

Table 4.9. Number of state trace records generated in N=50 runs from different simulation 
experiments 

 Low resolution binning High resolution binning 
 M SD Range M SD Range 
Base model a, b 655.28 75.76 526-758 655.28 75.76 526-758 

MC1 with elapsed time, speed,  
elevation, movement indicator 

640.02 659.40 7-2883 631.16 878.09 8-5305 

MC2 with elapsed time, speed,  
elevation, movement indicator, 
checkpoint indicators 

641.76 127.07 406-1103 656.64 93.55 458-905 

Note. a Low and high resolution indicate the level of quantization used for the Markov Chains and therefore 
do not apply to the base model. b Spread measures given for the base model belong to the validation set.  
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Table 4.10 presents results of the Student’s t-test to test the null hypothesis H0: MBattlefield 

= MMC2 for each of the four performance indicators obtained from model MC2 with 

higher resolution binning. The findings indicate that there were no significant differences 

between the mean performance measures calculated from the Battlefield base model and 

the MC2 Markov Chain. 

 
Table 4.10. Student’s t-test results for comparing mean performance measures obtained from 
the Battlefield base model and MC2 with higher resolution binning (HR) for 50 repetitions 

 Base model 
(HR) 

MC2 
(HR) 

  

 M SE M SE |D| t(df), p 

Active mission time section 1 

Active mission time section 2 

Total elevation climbed section 1 

Total elevation climbed section 2 

1054.35 

906.65 

406.40 

383.80 

3.13 

3.89 

8.01 

10.31 

1060.30 

912.98 

402.40 

397.20 

8,39 

6.78 

8.10 

9.31 

5.95 

6.33 

4.00 

13.40 

-0.66(62.37), p = .509 

-0.81(79.04), p = .421 

-0.35(98), p = .726 

-0.97(98), p = .337 

 

Another test that we can conduct to validate our Markov Chain results is the two- sample 

Kolmogorov-Smirnov test. Different from the Student’s t-test which we used to deter-

mine if the difference in means of the performance measures is statistically significant, 

the two-sample Kolmogorov-Smirnov test evaluates the null hypothesis H0: the values 

of a particular KPI obtained from the base model and the higher resolution MC2 come 

from a population with the same distribution. The findings presented in Table 4.11 indi-

cate that for each four performance measures, we cannot reject the hypothesis that the 

values for all four KPIs from the higher resolution MC2 and the base model come from 

the different distributions. 

 
Table 4.11. Two-sample Kolmogorov-Smirnov test results for comparing the distributions ob-
tained from the battlefield model and MC2 with high-resolution binning for 50 repetitions 

 |D| df Kolmogorov-
Smirnov Z 

p-value 

Active mission time section 1 

Active mission time section 2 

Total elevation climbed section 1 

Total elevation climbed section 1 

0.24 

0.24  

0.14 

0.18 

50 

50 

50 

50 

1.20 

1.20 

0.70 

0.90 

.112 

.112 

.711 

.393 

4
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4.3 Conclusions 

In this chapter, we studied a battlefield model case to demonstrate the application of our 

proposed method on a larger, more complex model than the M/M/1 case study model 

in Chapter 3. The battlefield model is defined using the Dynamic Structure Discrete-

event Systems specification (DSDEVS). We provided the details on the implementation 

of the dynamic coupling between two sections and between the host cells and the sec-

tions, and the messaging dynamics between the model components.  

Our results show that for this more complex model, our method is able to obtain Markov 

Chain models that provide estimates of performance indicators with an acceptable level 

of precision that do not significantly deviate from and follow a similar distribution as the 

original model’s performance measures, as indicated by the Student’s t-test and the two-

sample Kolmogorov-Smirnov test.  

In sum, this chapter demonstrated that our method can generate valid abstractions of 

relatively larger and more complex DEVS models and is capable of adequately estimating 

their stochastic behavior. We also demonstrated that a higher precision can be achieved 

by adding more information to the state-trace (e.g., state or contextual variables) or by 

increasing the model’s resolution (e.g., level of binning for the quantization). 

However, our result also suggested that increasing the model’s resolution alone will not 

improve the accuracy of the base model’s representation when essential information is 

missing in the model. Therefore, the modelers must identify and include those variables 

that are essential for generating valid behavior of the Markov Chain that results in correct 

estimates of the performance indicators. Examples are progress information over time 

when elapsed time is used in the state trace records, and information about termination 

conditions.  

In the next chapter, we will apply our method to a microscopic traffic simulation model, 

which has a relatively larger number of model components and a larger state space than 

the Battlefield DEVS model. 
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5 Automated Discrete-event Model Abstraction: Application to 

Large-Scale Models 

In the previous chapter, we demonstrated that our method can adequately estimate the 

stochastic behavior of the Battlefield DEVS model. Although the Battlefield model is 

larger and more complex than the M/M/1 model in Chapter 3, the number of model 

components (i.e., tank platoon sections) contributing to the dynamic model behavior of 

the Battlefield system was constant and only two, and the number of state-variables 

needed to adequately estimate the performance indicators of interest was low. This chap-

ter will demonstrate the step-by-step application of our proposed method to a micro-

scopic traffic simulation model of a road network consisting of a two-lane highway with 

an on-ramp. Different from the Battlefield case study in Chapter 4, the “short-merge” 

case study model has a varying number of model components, where vehicles enter and 

leave the model. The goal of this chapter is twofold: First, test whether our method can 

be applied to simulation models with relatively larger number of model components and 

a larger state space. Second, investigate the applicability of the method on a simulation 

model with a varying number of model components.  

5.1 Short-merge Case Study 

The short-merge demo model was built as a part of the OpenTrafficSim23 project (Tam-

minga, 2019; van Lint et al., 2018; van Lint et al., 2016). The model is a microscopic 

traffic simulation model designed to estimate traffic for a segment of a road network that 

includes a two-lane highway with an on-ramp (see Figure 5.1). The model investigates 

the individual vehicle interactions on the highway ramp using the LMRS (Lane change 

Model with Relaxation and Synchronization) integrated lane change model (Schakel et 

al., 2012; Schakel, 2015). Similar to the M/M/1 model discussed earlier in §3.2, the short-

                                                        

 

23 OpenTrafficSim, developed at Delft University of Technology, is an open source (micro, macro, meta) traffic 
simulation framework combining all traffic modes (e.g., cars, buses, pedestrians, airlines) in a single simulator. 
More information can be found at https://www.opentrafficsim.org/.  
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merge simulation model describes an open system, with a total number of around 2,500 

vehicles, also referred to as generalized traffic units or GTUs, generated at random in-

stances24 of the one-hour simulation run, flowing in and out of the simulated system 

boundaries. The scenario used in this case study simulates vehicle traffic that only con-

sists of cars and trucks, depicted as blue and red rectangles respectively in the animation 

(see Figure 5.1).  

 

 

Figure 5.1. The road network and the vehicle traffic as shown in the short-merge animation 

 

Road networks modeled using OpenTrafficSim models are implemented as directed 

graphs, using nodes and links (Tamminga, 2019; van Lint et al., 2018; van Lint et al., 

2016). For example, the nodes of the short-merge model are A, B, C, D, E, F, and F2 

(see Figure 5.2), whereas the links are AB, BC, CD, DE, FF2, and F2B (see italic green 

texts in Figure 5.2).  

                                                        

 

24 Using a stream of pseudo random numbers generated using the Mersenne Twister PRNG with unique in-
crementing seed values for each simulation run. 

5
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Figure 5.2. Short-merge model components 

 

In the model, the origin/destination split in the network is defined as two routes: Route 

A (nodes A, B, C, D and E) and Route F (nodes F, F2, B, C, D and E). Routes consists 

of a list of Nodes. The road network of the short-merge model consists of a two-lane 

highway (links AB, BC, CD, and DE) and the on-ramp (links FF2 and F2B). Finally, links 

in the network can be further divided laterally to form lanes. This allows modeler to define 

network demand and traffic flows at the lane level (e.g., link BC is divided into lanes 

BC.FORWARD1, BC.FORWARD2 and BC.FORWARD3). The number of vehicles to 

be randomly generated in the short-merge model is set for each lane of the highway (i.e., 

1,000 vehicles per lane per hour) and for the on-ramp (i.e., 500 vehicles per hour), sepa-

rately. The distribution of trucks and cars for a given network demand is also defined per 

lane per route. This percentage is same for each lane and it is 30% trucks and 70% cars 

of the total network demand per lane.  

Except for the vehicle lengths l, accelerations 𝑎𝑎, and desired speed, most model param-

eters are the same between the passenger cars and trucks. In the model, car length lcar is 

defined as 4 m and the truck length ltruck is set to 15m. The desired acceleration of the 

cars  𝑎𝑎ÖEÜ is 1.25m/s2 and for the trucks 𝑎𝑎iÜáÖa is set to 0.8 m/s2. The desired speed 

calculations for both cars and trucks are taken from work by Schakel et al. (2012): the  

desired speed of a car is calculated based on the driver preference 𝛿𝛿ÖEÜ = 𝑁𝑁(𝑣𝑣"tz,ÖEÜ, 

𝜎𝜎ÖEÜ)/𝑣𝑣ä1ã where 𝑁𝑁(𝑣𝑣"tz,ÖEÜ, 𝜎𝜎ÖEÜ) is Gaussian distribution with mean 𝑣𝑣"tz,ÖEÜ	= 123.7 
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km/h, and the standard deviation 𝜎𝜎ÖEÜ = 12.0 km/h. The speed limit for cars on route 

A (i.e., two-lane highway) is 120 km/h and for trucks it is 90 km/h. The speed limit at 

the entrance of the route F until the F2 node is 20 km/h for both cars and trucks. Once 

the vehicles reached the node F2 (see Figure 5.2), then the speed limit for cars becomes 

120 km/h and for trucks 90 km/h. 

For trucks, the calculation of the desired speed is based on the driver preference for the 

maximum vehicle speed, which is 𝑣𝑣ãE%,iÜáÖa = 	𝑁𝑁(𝑣𝑣"tz,iÜáÖa, 𝜎𝜎iÜáÖa ) where 

𝑁𝑁(𝑣𝑣"tz,iÜáÖa , 𝜎𝜎iÜáÖa) is Gaussian distribution with mean 𝑣𝑣"tz,ÖEÜ	= 85.0 km/h and the 

standard deviation 𝜎𝜎iÜáÖa = 2.5 km/h. Other parameters of the models are maximum 

deceleration is 𝑏𝑏 = 2.09 m/s2, stopping distance 𝑠𝑠R = 3m, maximum headway	𝑇𝑇ãE%  = 

1.2s, and minimum headway 	𝑇𝑇ã1U  = 0.56s (see Schakel, 2015 for the complete list of 

LMRS parameters).  

It is important to note that the short-merge model implementation includes several ad-

ditional behavioral aspects such as observing traffic, lookahead and lookback for lane 

determination, relaxation, and synchronization, which makes the behavior of each car 

and truck, and the interactions between vehicles more complete. These additional behav-

ioral aspects, however, increase model complexity and causes model to run slow. This 

makes the short-merge model a suitable candidate for our method.  

5.2 Application of the Temporal Data Mining-based Model Abstraction 

Method to the Short-Merge Model 

In the following subsections, we will illustrate how we applied the method step-by-step 

to the short-merge model in the same order as presented in Chapter 3. 

5.2.1 Generation of Discrete-event Model State-Trace Data 

Remember from §3.2.1 that there are six major factors to consider when generating state-

traces from a simulation model. Below, we will discuss the decisions for each short-merge 

model consideration. 

 

 

5
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5.2.1.1 Representation of Time 

The model uses an event scheduling simulator implementation, which updates the states 

of some of the model components at every event occurrence, for instance, the generation 

of cars and recalculation of the vehicles’ states at a fixed interval τ of 0.5 seconds. In this 

case study, we are interested in estimating the driving behavior of vehicles in the base 

model and the effects of the merge to the state variables such as the vehicle speed, vehicle 

acceleration, and traffic intensity over time. Therefore, it is essential for us to accurately 

capture the order of changes in the vehicles’ states and exact times of these changes 

throughout a run. Consequently, we choose an interval of 0.5 seconds (i.e., the fixed 

interval that the simulator recalculates each vehicle’s state, where the vehicles do not 

recalculate their new state at the same time) for the state-trace reporter to log new state-

trace records containing time, system states and several additional parameters (e.g., in-

put/output parameters and contextual variables) for each run. A smaller interval would 

result in the repetition of the same vehicle states and a larger state-trace data set. Mean-

while, a larger interval may not contain essential updates in the vehicle states, the gener-

ation of new vehicles at Nodes A and F, the deletion of vehicles at Node E, and the 

changes in the traffic intensity, which may affect the accuracy of the Markov Chain esti-

mates.   

To report the state of the system that contains the simulation time information at a fixed 

time-step of 0.5 seconds, we schedule (and reschedule) an event (i.e., a call of the "re-

portState" method) with a relative duration of 0.5 seconds in simulator’s event queue 

until the total simulation duration. This way, the method call is executed by the simulator 

at every (simulator time + relative duration). This is with the exception of the reporting of 

the initial state of the system with the simulation time and other additional parameters, 

which is reported at time 0. The reporting of the final state of the system with the simu-

lation time and other additional parameters is done at time 3,599.5s.  

However, because the step-size is constant at 0.5 seconds, the inclusion of the fixed time 

step size in the state-trace data as a separate column will not affect the variability of the 

episodes discovered by the episode mining algorithm. Therefore, we excluded the simu-

lation time from the state-trace data. When calculating the mean performance indicators 
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from the Markov Chain generated state-trace data, we will assume that each row in the 

data corresponds to a time progression of 0.5 seconds.  

5.2.1.2 Stochastic vs. Deterministic Discrete-event Models 

The short-merge model is stochastic. The model uses several random variables with their 

own distributions; for example, to generate vehicles and for the lane changing behavior 

(Schakel et al., 2012). The vehicles flow in to the road network with a randomly generated 

initial speed at a rate defined by the network demand per lane per vehicle type. This is 

implemented by creating a stream of generation times for vehicles using a pseudo-RNG. 

The seed management for the RNG ensures that each run has a unique traffic pattern 

while being fully reproducible. For the state-trace data generation, 100 runs were used 

with each run having a different single incrementing seed value (e.g., [seed = 1, run = 1], 

[seed = 2, run = 2], …, [seed = 100, run = 100]). This data is split into two equal-sized 

non-overlapping training and validation sets. The training data will be used for the epi-

sode mining and the validation data will be used for the model validation stage (see Table 

5.1).  

 

Table 5.1. Seed value ranges of the RNG for each dataset in the case study 

Model Data set # of state traces per dataset Seed value range 

Short-merge  
(base model) 

Training 50 1-50 

Validation 50 51-100 

 

5.2.1.3 Terminating vs. Non-terminating Simulations  

The short-merge simulation is non-terminating. The simulation has no external event 

that determines the end of a run and it would run continuously in the absence of an 

internal event scheduled at a predetermined absolute time to terminate the run. There-

fore, we scheduled a method call to be executed just before the simulation clock reaches 

to the predetermined end time of the simulation (i.e., 3,600 seconds) to close the stream 

and release the system resources associated with it.  

5
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There is no warm-up period before starting the state-trace data collection25. Each simu-

lation run starts with the same initial condition of no-vehicle traffic on the network. Cars 

and trucks are only generated at the start of route A and F, and a vehicle cannot have a 

starting location other than these locations in the network. 

Each state-trace record generated from the runs has the same number of state-trace rec-

ords, i.e., 7,200. Given that the simulation starts with the same initial condition, termi-

nates after the same predetermined run-length, and the reporting of each state-trace rec-

ord is done after every 0.5 seconds passed, each state-trace record generated from each 

run contains the same number of 7,200 state-trace records, including the reporting of the 

initial condition and other parameters at t = 0 and the reporting of the final state at t = 

3,599.5.  

It is important to note that, although the simulation is non-terminating, each vehicle 

atomic model component is designed to exhibit a terminating behavior. That is, a vehicle 

enters the system after being generated by the generator and leaves the system once it is 

removed at the departure Node E. Therefore, the actual states belong to a vehicle are 

reported only during the time they are active in the model. When the vehicles are inactive 

either due to not being generated yet or already removed from the system, all state vari-

ables (with the exception of the state-variable active) are represented as “NA” in the data. 

This ensures that all records have the same number of columns, consistent with the data 

sets of chapters 3 and 4. 

5.2.1.4 Inclusion of Input Data 

The short-merge case study investigates a single scenario with a single (fixed) set of input 

parameters and no external input. Some of these input parameters are related to the un-

derlying lane-change (LMRS) model and an overview of these input parameters can be 

                                                        

 

25 Although the inclusion of the warm-up period in the experiment should not change the application of the 
proposed method, further research is needed to explore the accuracy of the method and the resulting Markov 
Chain in terms of capturing the transient behavior – in this case, it is the build-up of the traffic – of the non-
terminating base model.   
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found in (Schakel et al., 2012). Other input parameters such as the lane demands, fraction 

of passenger cars and trucks, and the length of a run and their values used in our exper-

iments are given in below Table 5.2.  

 

Table 5.2. Input parameters of the short-merge model 

Input parameter Value 

Passenger car Fraction 70% 

Truck Fraction 30%  

Main road demand 2,000 per hour 

On-ramp demand 500 per hour 

Simulation duration 3,600 seconds 

 

Given that the input parameters are fixed across all runs and the values remain constant 

due to the lack of external inputs, the inclusion of input parameters in the state-trace data 

will not affect the variability of the episodes discovered by the episode mining algorithm. 

Therefore, the input parameters of the model are excluded from the state-trace data.  

5.2.1.5 Inclusion of Output Data 

The short-merge model estimates the key performance indicators (KPIs) shown in Table 

5.3. 

To estimate these performance indicators using the state-trace data, we include the key 

variables (6) listed in Table 5.4 for each vehicle (2,500) as individual columns in the state-

trace data:  

 

 

 

 

 

5
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Table 5.3.  Key performance indicators of the short-merge model  

Mean performance  
indicator26 

Description Example 
Value27 

avgSpeedACar_Mean  The average speed of the cars that left the model 
and started at the left side of the road network 
(Route A) 

24.53 km/h 

avgSpeedFCar_Mean The average speed of the cars that left the model 
and started at the bottom side of the road net-
work (Route F) 

19.53 km/h 

avgSpeedATruck_Mean The average speed of the trucks that left the 
model and started at the left side of the road net-
work (Route A) 

18.52 km/h 

avgSpeedFTruck_Mean The average speed of the trucks that left the 
model and started at the bottom side of the road 
network (Route F) 

17.04 km/h 

modelTimeACar_Mean Average time in the system for cars that left the 
model and started at the left side of the road net-
work (Route A) 

133.65 s 

modelTimeFCar_Mean Average time in the system for cars that left the 
model and started at the bottom side of the road 
network (Route F) 

87.75 s 

modelTimeATruck_Mean Average time in the system for trucks that left 
the model and started at the left side of the road 
network (Route A) 

173.75 s 

modelTimeFTruck_Mean Average time in the system for trucks that left 
the model and started at the bottom side of the 
road network (Route F) 

99.47 s 

 

 

 

                                                        

 

26 The names of the mean performance indicators given in Table 5.3 are the names of the run statistics variables 
used in the model. 

27 The example values shown in Table 5.3 are from the state-trace data generated from simulation run #1. 
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Table 5.4.  The subset of short-merge state variables included in the state-trace data, with an 
example value for vehicle number 1 

VariableName_VehicleId Description Example Value 

active_1 

carTruck_1 

laneId_1 

speed_1 

acceleration_1 

distanceHalfSec_1 

0 = inactive, 1 = active 

car or truck; car = 0; truck = 1 

lane of the vehicle 

speed in km/h 

acceleration in m/s2 

driven distance in current half second 

1 

1 

AB.FORWARD2 

64.00 

0.14 

12.52 m 

 

Note that the performance indicators of the short-merge model are calculated per route 

per vehicle type. Therefore, to estimate these indicators from the state-trace data, we 

should first identify all vehicles with the same vehicle type and the same starting side of 

the network using the carTruck and laneId variables, respectively. Additionally, the run 

statistics are calculated only for vehicles that have exited the system. Therefore, to deter-

mine if a vehicle left the model before the end of a simulation, we use the vehicles’ active 

variables. When a vehicle is generated, the variable is updated from 0 to 1, and it is reset 

to 0 when it is removed at Node E. As a result, any vehicle that has an active variable 

transition from 1 to 0 is assumed to have exited the boundaries of the modeled system, 

and only those vehicles will be included in the statistics calculation. The initial laneId of a 

vehicle is later retrieved from the state-trace data by looking at the first row where active 

is 1.   

The subsequent sub-sections will explain how we will estimate of the base model’s per-

formance indicators shown in Table 5.3 using the variables included in the state-trace 

data generated by the Markov Chain. It should be noted that the same calculation meth-

ods could also be used on the initial state trace data set from the base model. 

 

 

 

5
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5.2.1.5.1 Calculation of Average Time-in-system Using State-Trace Data 

To calculate the average time-in-system from the state-trace data:  

(I) For the passenger cars that have left the model and started at the left side of 

the road network (Route A), store the sum of the time-in-system for all vehicles 

with carTruck equals to 0 and laneId equals to AB.FORWARD1 or 

AB.FORWARD2 that left the system boundaries (i.e., the active variable value 

transitions from 1 to 0). Time-in-system for a single vehicle is calculated by 

multiplying the number of rows where the active variable is 1 with the time 

interval τ = 0.5s.   

(II) To calculate the average time-in-system for all passanger cars generated at the 

left side of the road network and left the system, we first sum their time-in-

system values. Then, we divide this sum by the count of  Route A passenger 

cars that have left the model. 

(III) To calculate the average time-in-system for trucks, or for vehicles started at the 

bottom of the road network that left the system, we adjust the conditions for 

the carTruck and laneId values accordingly. 

5.2.1.5.2 Calculation of Average Speed Using State-Trace Data 

To calculate the average speed from the state-trace data: 

(I) For the trucks that have left the model and started at the bottom side of the 

road network (route F), the average speed of an individual truck is the sum of 

its non-N/A distanceHalfSec (i.e., total distance traveled) values divided by the 

time-in-system of that specific truck. In §5.2.1.6, we will elaborate on the 

distinction between mining state-trace data at the atomic model (vehicle) level 

and mining state-trace data at the system level. 

(II) To calculate the average speed for all trucks that left the model and started at 

the bottom side of the road network (route F), we first sum their individually 

calculated average speed values. Then, we divide the sum by the count of Route 

F trucks that left the model. 
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(III) To calculate the average speed for cars or for vehicles that started at the left 

side of the road network that left the system, we adjust the conditions for the 

carTruck and laneId values accordingly. 

5.2.1.6 Complete vs. Partial Model State-Trace Data 

For this case study, we use partial state-trace data containing a subset of the state varia-

bles available from the vehicle atomic model (see Appendix C for the complete list of 

the variables, example values, and their descriptions). Our goal is to estimate the perfor-

mance indicators of interest given in Table 5.3 from the Markov Chain, which is gener-

ated by applying our method to the base model’s state-trace data resulting in an abstrac-

tion of the original short-merge model. We hypothesize that we may achieve a sufficiently 

enough estimation of these mean performance indicators using the partial model state-

trace containing the variables listed in Table 5.4.  

Recall from Chapter 3 and 4 that for M/M/1 and Battlefield case studies, we applied the 

frequent episode mining algorithm to the state-trace data, where each state-trace record 

is reported as a new row at each event occurrence or at fixed time intervals, and it repre-

sents the total state of the system at the reported instance. Therefore, we encoded each 

unique row containing all the desired variables to a single positive integer value (see Fig-

ure 5.3.a). A particular advantage of the encoding of all data in a row is that the infor-

mation regarding the states of individual model components relative to the others in the 

system is preserved. The number of atomic model components (i.e., 2,500 vehicles) in 

the short-merge model, on the other hand, is significantly greater than in the M/M/1 

and battlefield models, and a single row, having more than 17,000 columns, can take one 

of 45 million unique values. Because of the large number of possible unique states, the 

frequent episode mining algorithm with the input parameters of maxwin of 2 and a support 

of 1 may generate a very large n for a n×n transition probability matrix, and thus a huge 

Markov Chain. 

5
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Figure 5.3. System state and model component state level episode mining 

 

Instead of encoding state-trace records in each row to a single value representing the 

system state, a state-trace record can be deconstructed into multiple state traces where 

each trace represents the state-progression of individual (atomic or coupled) model com-

ponents (as shown in Figure 5.3.b). Then, the frequent episode mining algorithms can 

be applied to these component-based traces to generate component-based Markov 

Chains. However, mining at component level, or individual vehicle level, may omit con-

textual insight into how components interact with and affect each other, i.e., the behavior 

of the system as a whole. We will elaborate more on this assumption in the §5.2.1.6.1. 

To test our assumptions, we designed two experiments to assess the effects of (1) system 

level abstraction using partial state using partial model state-trace without contextual var-

iables (ME1), and (2) component-level abstraction with the additional contextual varia-

bles included in the state-trace data (ME2). For both experiments, we created two da-

tasets, each containing the same amount of state-traces (100) with an equal split of train-

ing (50) and validation (50) data. For the first experiment (ME1), we used the partial 

model state-trace containing the variables listed in Table 5.4. For the second experiment 

(ME2), we introduced a set of contextual variables (as shown in Table 5.6), indicating the 

number of vehicles per link and lane at every fixed time interval of 0.5 seconds. 
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5.2.1.6.1 Inclusion of the Traffic Intensity Contextual Variables for Experi-

ment ME2 

In the short-merge model, the speed and acceleration of each vehicle is affected by the 

behavior of other vehicles around them. Without the inclusion of the traffic information 

in the component-level Markov Chains, a valid representation of the driving behavior of 

vehicles, and thus, accurate estimation of the base model’s performance indicators from 

the simulation of individual vehicle-based Markov Chains may not be possible. There-

fore, the traffic intensity contextual variables in Table 5.4 are included in the component-

level Markov Chain state-traces to re-capture the missing information of vehicle traffic 

on each link and lane.  

We hypothesize, based on the fact that there is a well-known correlation between the 

overall intensity of the traffic on a stretch of road and the average speed of vehicles 

(Wong et al., 2021), that the combination of these variables and the aforementioned state-

variables used in ME1 for each individual vehicle atomic component would suffice to 

the relationship between (average) vehicle speed and traffic intensity and estimate the 

mean performance indicators of the system.  

 

Table 5.6. Contextual variable set for Experiment ME2- Number of vehicles per link per lane 
at a certain time instance 

Variable-
Name_laneId 

Description Example 
 Value 

Value  
range  

nrVehiclesAB_d1 

nrVehiclesAB_d2 

nrVehiclesBC_d1 

nrVehiclesBC_d2 

nrVehiclesBC_d3 

nrVehiclesCD_d1 

nrVehiclesCD_d2 

nrVehiclesDE_d1 

nrVehiclesDE_d2 

nrVehiclesF2B_d1 

These contextual variables indicate the 

number of cars on each link at that partic-

ular instance of time. For example, the first 

variable nrVehicleAB_d1 indicates that the 

number of vehicles on the first lane of the 

link AB at that particular instance was 30. 

Similarly, the second variable nrVehi-

clesAB_d2 indicates that the number of ve-

hicles on the second lane of the link AB at 

a particular instance was 67.  

30 

67 

1 

3 

0 

1 

0 

21 

27 

1 

[0-80] 

[0-132] 

[0-6] 

[0-8] 

[0-6] 

[0-1] 

[0-2] 

[0-33] 

[0-41] 

[0-20] 
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5.2.2 Application of the Temporal Data Mining Tasks to the State-Trace Data 

In this section, we will examine the specific challenges for the short-merge state-traces 

and our choices for the preprocessing of the state variables. Then, we will illustrate how 

the frequent episode mining algorithm is used to calculate the transition probabilities 

from the state-traces and build the Markov Chain's transition probability matrix. 

5.2.2.1 Preprocessing of the State-Trace Data 

Following the completion of state-trace generations, the next step in our method is the 

preparation of the data for the episode mining algorithm. Among the variables listed in 

Figure 5.4, the continuous variables speed, acceleration and distanceHalfSec are quantized us-

ing an equal-width binning based method. We chose the bin widths 10, 5, and 5 for the 

speed, acceleration and distanceHalfSec variables, respectively. These bin-widths are 

chosen based on the value ranges of the variables with the goal of reducing the effect of 

over-population of candidate episodes with low frequency values.  

The categorical variables active, carTruck and laneId are not quantized. The variables active 

and carTruck have a limited number of possible states, that is, both variables are coded 

with binary values 0 and 1, and the carTruck variable is additionally represented as NA 

during to the inactive period of vehicles. The laneId categorical variable can takes twelve 

different values (including the value “NA”). These values include the 

“AB.FORWARD1”, “AB.FORWARD2”, “FF2.FORWARD1” values, which are previ-

ously mentioned in §5.2.1.5.1 and §5.1.2.5.2 and important to identify the generation 

locations for the vehicles and accurately calculate the performance indicators in Table 

5.3. Although the removal of lane information from the state-trace data would result in 

losing the information on the lane changes, overtaking, and the relation between fast 

driving and the "left lane", the KPI calculations can still be done.  

For the ME2 experiment, we quantized the discrete traffic intensity contextual variables 

as their value range could lead to a large number of unique episodes with low frequencies. 

For the quantization of the traffic intensity contextual variables, we used equal-width 

binning strategy based on the ranges obtained across all 50 runs (see Table 5.6 for the 

range values). Given that each deconstructed component-level trace has the full set (10) 

of traffic intensity contextual variables in addition to the state variables, we wanted to 
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limit the number of bins to less than ten (and adjusted the numbers according to each 

variable’s value range) to limit the generation of candidate episodes with low frequencies.  

As the final step of the preprocessing step for this short-merge case study, we encode 

state-trace records containing the preprocessed variables for the frequent episode mining 

algorithm. The training set generated for ME1 contains 50 state traces, each with 7,200 

rows and 15,000 columns (i.e., 2,500 vehicles with 6 state variables, listed in Table 5.4). 

Because we intend to perform system-state level episode mining on the ME1 training 

set, the data is encoded horizontally at the state-trace record level. However, the encod-

ing process for the ME1 training set revealed already from the first eight state trace files 

that 64,512 of 64,000 (i.e., 99.56%) state-trace records had a frequency of 1. Unfortu-

nately, a data set with such a low level of repetition (note that the data was already quan-

tized) would not be suitable for the frequent episode mining task since there are no fre-

quent episodes. The Markov Chain model would therefore, in essence, just replay one of 

the 50 runs of the base model. As a result, we decided to exclude ME1 from further 

analysis. An important lesson is that the more variables are included in the state trace 

data set, the lower the chance to find frequent episodes. Case ME1 with 15,000 state 

variables was a relatively extreme example, but it clearly illustrates this problem. 

5.2.2.1.1 Subdividing the State-Trace for Experiment ME2 

One more adjustment we make for Experiment ME2 before the application of the fre-

quent episode mining algorithm is subdividing the tabular state-trace data per vehicle as 

shown in Figure 5.3.b. The data generated by the trace-reporter method in the short-

merge model contains the states of all vehicles in the same row (i.e., a system-level state-

trace record), horizontally sorted by the vehicle id. Because the strategy to test in Exper-

iment ME2 is to construct component-based, or vehicle-based, Markov Chains for each 

individual vehicle in the system, the data must be represented in a format for the EMMA 

algorithm containing only the states belonging to the same vehicle as an input for the 

calculation of the transition probabilities, and eventually, to generate the transition prob-

ability matrices per vehicle.  

Although the EMMA algorithm can process multiple positive integer values presented 

in a single row, where each value is separated by a single space, it requires these multiple 

5
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values to be sorted according to a total ordering (e.g., ascending) and with no repetition 

of the same value in the same row (Huang & Chang, 2008). Therefore, we subdivided 

each row in the state-trace data for each of the 2,500 vehicles, ordered sequentially based 

on their gtuIds28. Based on section 5.2.1.6.1, we added the contextual variables for the 

traffic intensity per link (Experiment ME2) to each of the 2,500 subdivided state trace 

data sets, so each row contains the combined information of the state of a particular 

vehicle and the values of the link-based or lane-based traffic intensity variables, encoded 

as a single positive integer value. The final version of a fully-subdivided state-trace data 

set contains 18 million rows per run (2,500 vehicles with 7,200 rows per vehicle). This 

data is either stored in a single file with 18 million records, where each 2,500th record 

contains data about the same vehicle, or in 2,500 separate vehicle files. 

5.2.2.2 Application of the Frequent Episode Mining Algorithm to 

Preprocessed State-Trace Data 

Following the preprocessing of variables in the data set, the EMMA algorithm is applied 

to the training data. The two input parameters of the algorithm minsup = 1 and maxwin = 

2 are the same as the values used in Chapter 3 and 4.  

For Experiment ME2, however, we introduced a “skip factor” variable with a value of 

2,500 for the algorithm to process the data based on the changes explained in the previ-

ous section when all 18 million records are stored in a single file. Based on the combina-

tion of values of the new and the standard input parameters, the algorithm discovers 

frequent episodes with the minimum support of 1 with window length 1 (i.e., vehicle 

states + link-based or lane-based traffic intensity values) and window length 2 (i.e., two 

consecutive rows of the same vehicle 0.5 seconds apart + link or lane traffic intensity 

values 0.5 seconds apart), and outputs the transition probability matrices for each of the 

2,500 vehicles.  

                                                        

 

28 In OpenTrafficSim, the term GTU stands for “generic traffic unit” and represents a person or a vehicle 
identified with a unique “gtuId” number. In short-merge model, all vehicles are assigned an incremental gtuId 
number from 1 to 2,500.   
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5.2.3 Simulation of the Discrete-time Markov Chains 

For Experiment ME2, the frequent episode mining algorithm was applied to the training 

set to discover frequent states, frequent state-transitions, and state-transition probabili-

ties for each of the 2,500 vehicles. After this, the next step in our method is to perform 

random walks for 2,500 individual vehicle-based Markov Chains according to their tran-

sition probability matrices. To obtain state-trace data for the validation study, we per-

formed an experiment with 50 repetitions, where each repetition simulates all 2,500 ve-

hicle-based Markov Chains with the same pseudo-RNG seed value for each run and a 

different seed for each repetition. The experiment generated a total of 125,000 state-trace 

data sets (i.e., 50 runs × 2,500 state-traces). In the validation stage of our method, we 

will calculate the aggregated mean performance measures using the results obtained from 

all vehicle-based Markov Chains and compare the estimates of these performance 

measures with the base model’s performance measures. 

5.2.4 Validation of the Markov Chain Results 

5.2.4.1 Validation of the results from experiments ME2  

To validate the results of the Markov Chain (ME2), which is t models subdivided per 

vehicle, we compare the performance of the base model and the Markov Chain on three 

different measures: (a) the number and distribution of vehicles generated per route; (b) 

average speed per route per vehicle type (KPI); and c) average time in the system per 

route per vehicle type (KPI). Table 5.7 presents the descriptive statistics of these 

measures for the base model and the Markov Chain over 50 runs. As this table shows, 

the average numbers of vehicles contributing to the KPI calculation in the Markov Chain 

(ME2) are lower than numbers of vehicles in the base model. This may be explained by 

the difference between the arrival processes of the base model and the Markov Chain 

(ME2). Given a sequence of 𝑛𝑛 interarrivals times 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛 for the arrival epochs S1, 

S2, …, Sn, the arrival time of the nth epoch Sn for a given Xn is calculated by the joint 

distribution of 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛 for all n>1, and specified as 

                                             𝑆𝑆U = ∑ 𝑋𝑋1U
1bW      (5.1) 

5
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As indicated by the Central Limit Theorem, these sum of 𝑋𝑋1+𝑋𝑋2 + ⋯ + 𝑋𝑋𝑛𝑛 for a large n, 

where the 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛	are drawn from any distribution with mean µ and standard 

deviation σ, converges to a Normal distribution with mean nµ and standard deviation 

𝜎𝜎√𝑛𝑛. The distribution, therefore, narrows when n gets larger as the mean µ scales by n 

and the standard deviation scales by √𝑛𝑛. In the case where the average interarrival time 

β, the arrival time of the given Xn (i.e., nth vehicle) is the sum of n independent drawings 

from the Exponential distribution, with average interarrival time β is an Erlang distribu-

tion (Li & Li, 2019): 

if	𝑋𝑋1	~	Exponential(𝛽𝛽), then	c 𝑋𝑋1	~	Erlang(𝑛𝑛, 𝛽𝛽)	
U
1bW 	   (5.2) 

which has a mean of nβ and a standard deviation of β√𝑛𝑛, consistent with the Central 

Limit Theorem. When the generators in the short-merge model generate a new vehicle 

at every 2 seconds, the 1,000th vehicle is generated on average at time t = 2*1,000 = 2,000 

seconds. The standard deviation is, therefore, 2√1000 = 63. This generates a small sigma 

value: 95% of the arrival times will be between µ +/- 2.5 𝜎𝜎 = time interval [1,842-2,158]. 

In the Markov Chain, the interarrival times follows a memoryless geometrical distribu-

tion, where 𝑋𝑋1, 𝑋𝑋2, ⋯, 𝑋𝑋𝑛𝑛 are iid Bernoulli variables. The geometric distribution repre-

sents the probability of getting the first occurrence of Xn after n consecutive independent 

trials: 

P (X = n) = (1 – p) n-1p   n = 1,2,3 …     (5.3) 

where p is the success probability of each trial and the expected value of the distribution 

is 

E (X)= W
û
            (5.4) 

For the generation of a vehicle at time t seconds, the Markov Chain requires 2t draws 

(0.5 seconds sample rate x 2,000 state-trace records). Meaning that for a vehicle that is 

expected be generated around 2,000 seconds, the geometric distribution should be cal-

culated for p = 1/4,000. The mean of the geometric distribution is 1/p, indicating that, 

on average, the vehicle is generated at state transition 4,000, corresponding to t = 2,000. 
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The standard deviation of the Geometric distribution is üWXFF†  , which is 3,999.5 for p = 

1/4,000. This is a huge sigma value: based on the Exponential (continuous) analogue of 

the geometric distribution, 95% of the arrival times would be between [0-6,000], which 

is much higher than the base model’s [1,842-2,158] confidence interval. Using the Expo-

nential approximation of the Geometric distribution, we can calculate that there is a 16% 

chance that a vehicle that should be generated at t = 2,000 will not be generated in the 

runtime of the Markov Chain experiments. Especially for the vehicles with higher gtuIds 

in Markov Chain (ME2), the spread of the geometric distribution will get significantly 

larger than the Erlang distribution, with a long right tail (i.e., right-skewed) and the Mar-

kov Chain (ME2) will not generate vehicles where the calculated value is higher than 

3,600 seconds (or 7,200 state transitions), since the run ends at t = 3,600 seconds. Despite 

the lower absolute numbers of vehicles in the Markov Chain (ME2), the Route A to 

Route F ratio of vehicles (in bold) is nearly identical between both models. Moreover, 

within each route, the cars to trucks ratio – which was an input parameter of the base 

model – was accurately reconstructed by the Markov Chain (ME2). 

Table 5.7. Descriptive statistics for measures obtained from the short merge base model and 
the Markov Chain for Experiment ME2 
 Base model Markov Chain (ME2) 
 M (SD) % or Range M (SD) % or Range 

Number of generated vehicles used for KPI calculation per route per vehicle type 

Route A Total 
Route A Cars 
Route A Trucks 

1,908.76 (51.17) 
1,621.44 (47.51) 
287.32 (18.32) 

79.80 
84.95 
15.05 

1,201.06 (28.59) 
1,025.54 (24.21) 
175.52 (15.07) 

79.93 
85.39 
14.61 

Route F Total 
Route A Cars 
Route A Trucks 

483.02 (22.15) 
335.78 (18.67) 
147.24 (12.23) 

20.20 
69.52 
30.48 

301.60 (16.36) 
210.92 (14.04) 
90.68 (10.73) 

20.07 
69.93 
30.07 

Average speed per route per vehicle type 
Route A Cars 
Route A Trucks 

22.82 (2.69) 
17.85 (2.39) 

15.07-26.89 
11.98-21.94 

23.28 (0.24) 
18.49 (0.40) 

22.81-23.68 
17.53-19.24 

Route F Cars 
Route F Trucks 

19.18 (0.54) 
17.72 (0.37) 

18.15-20.35 
16.71-18.44 

18.14 (0.30) 
16.75 (0.36) 

17.36-18.79 
16.01-17.63 

Average time-in-system per route per vehicle type 
Route A Cars 
Route A Trucks 

151.79 (30.13) 
203.38 (44.05) 

116.12-264.88 
148.24-349.40 

145.95 (3.56) 
192.10 (10.32) 

139.15-157.07 
167.03-210.72 

Route F Cars 
Route F Trucks 

91.88 (3.11) 
101.54 (2.86) 

86.02-99.21 
97.02-110.64 

91.59 (3.58) 
100.57 (4.28) 

85.80-99.48 
92.98-110.79 

5
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Table 5.8 presents results of the Student’s t-test to test the null hypothesis H0: 

MShort_merge= MMC_ME2 for each of the eight performance measures obtained from the 

ME2 runs. For the average speed KPI, the findings indicate that there were no significant 

differences between both Route A mean speed measures calculated from the short merge 

base model and the Markov Chain (ME2). However, for Route F, the car and truck mean 

speeds generated from the Markov Chain (ME2) differed significantly from the mean 

speeds obtained from the base model. This may be explained by the fact that route F 

contains fewer vehicles, and therefore, less data to train the Markov Chain (ME2). Even 

though the means are significantly different from each other, the magnitude of the dif-

ference is small, around 1 m/s.  

For the average time-in-system KPI, all t-test were non-significant, indicating that the 

mean times that vehicles travelled within the boundaries of the system did not differ 

significantly between the base model and the Markov Chain (ME2).  

 

Table 5.8. Student’s t-test results for comparing mean performance measures obtained from the   
short merge model and the Markov Chain for 50 repetitions for Experiment ME2 

 Base model Markov Chain (ME2)   

 M SE M SE |D| t(df), p 
Average speed per route per vehicle type 

Route A Cars 
Route A Trucks 

22.82 
17.85 

0.38 
0.34 

23.28  
18.49 

0.03 
0.06 

0.46 
0.63 

-1.21(49.78), p = .232 
-1.85(51.76), p = .070 

Route F Cars 
Route F Trucks 

19.18 
17.72 

0.08 
0.05 

18.14 
16.75 

0.04 
0.05 

1.04 
0.97 

11.91(76.73), p <.001 
13.37(98), p <.001 

Average time-in-system per route per vehicle type 
Route A Cars 
Route A Trucks 

151.79 
203.38 

4.26 
6.23 

145.95 
192.10 

0.50 
1.46 

5.84 
11.28 

1.36(50.37), p = .180 
1.76(54.37), p = .083 

Route F Cars 
Route F Trucks 

91.88 
101.54 

0.44 
0.40 

91.59  
100.57 

0.51 
0.60 

0.28 
0.98 

0.42(98), p = .675 
1.34(85.47), p = .183 

 

Using the two-sample Kolmogorov-Smirnov test, we also evaluated the null hypothesis 

H0: the values of a particular KPI obtained from the base model and the Markov Chain 

(ME2) come from a population with the same distribution. The findings presented in 

Table 5.9 show that most of the Kolmogorov-Smirnov tests indicated significant 
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differences between the distributions of the base model and those of the Markov Chain 

(ME2). Only for Route F cars’ average time in system, results suggest that the values 

obtained from the base model and the Markov Chain (ME2) come from a population 

with the same distribution. The finding that the distributions of the base model and Mar-

kov Chain (ME2) key performance measures differed can be explained by observing the 

descriptive statistics presented in Table 5.7. For the Route A vehicles, the spread (as 

indicated by the standard deviation and the range) of the Markov Chain (ME2) average 

speed estimates appears consistently narrower compared to the spread of the base model 

estimates. Given that Route A has fewer congestions in general than Route F, it is pos-

sible that the relatively rare samples of congested traffic were underrepresented in the 

Markov Chain (ME2). This would result in a distribution more centered around the 

mean. For Route F, descriptive statistics in Table 5.7 show that the base model and the 

Markov Chain (ME2) estimates have a similar spread. The significant K-S test result for 

speed could be driven by the small but statistically significant mean difference identified 

in the t-test.    

 
Table 5.9. Two-sample Kolmogorov-Smirnov test results for comparing distributions obtained 
from the short merge base model and the Markov Chain for 50 repetitions for Experiment ME2  

 |D| df Kolmogorov-Smirnov Z p-value 
Average speed per route per vehicle type 

Route A Cars 
Route A Trucks 

.44 

.44 
50 
50 

2.20 
2.20 

<.001 
<.001 

Route F Cars 
Route F Trucks 

.80 

.84 
50 
50 

4.00 
4.20 

<.001 
<.001 

Average time-in-system per route per vehicle type 
Route A Cars 
Route A Trucks 

.44 

.38 
50 
50 

2.20 
1.90 

<.001 
.002 

Route F Cars 
Route F Trucks 

.16 

.28 
50 
50 

0.80 
1.40 

.544 

.040 

 

5.2.4.2 Tackling the issue of low vehicle numbers in Markov Chain (ME2) 

To address the issue of the low number of vehicles in the Markov Chain (ME2), we 

carried out an experiment ME3, where we adjusted the Markov Chain (ME2) by 

5
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introducing a progressIndicator variable in the state-trace data, which operates as a mecha-

nism to link vehicles’ driving behaviour and network link capacities to the time progres-

sion of the simulation. We hypothesize that the inclusion of a progressIndicator variable 

may be necessary to correctly distinguish between the active and inactive times of vehi-

cles over the course of a run. The continuous progressIndicator variable takes reel values 

between 0 meter and 1,500 meters, and therefore, has a large value range. We used equal-

width binning strategy for the quantization of the values and chose bin-width size 10 to 

try to limit the low frequency candidate episodes. We then repeated the experiment and 

the validation steps with the adjusted Markov Chain (ME3) to test whether a better rep-

resentation of the number of vehicles resulted in improved the KPI estimates. Table 5.10 

presents the descriptive statistics for the base model and the adjusted Markov Chain 

(ME3) over 50 runs. As this table shows, compared to Markov Chain (ME2), the number 

of vehicles in the adjusted Markov Chain (ME3) increased and became more similar to 

the number of vehicles in the base model.   

 
Table 5.10. Descriptive statistics for measures obtained from the short merge base model and 
the adjusted Markov Chain with time progression variable for Experiment ME3 
 Base Model Adjusted Markov Chain (ME3) 

 M (SD) % or Range M (SD) % or Range 

Number of generated vehicles used for KPI calculation per route per vehicle type 

Route A Total 
Route A Cars 

Route A Trucks 

1908.76 (51.17) 
1621.44 (47.51) 

287.32 (18.32) 

79.80 
84.95 

15.05 

1379.48 (178.79) 
1177.00 (154.97) 

202.48 (33.62) 

79.76 
85.32 

14.68 

Route F Total 
Route F Cars 

Route F Trucks 

483.02 (22.15) 
335.78 (18.67) 

147.24 (12.23) 

20.20 
69.52 

30.48 

359.20 (48.16) 
241.16 (27.53) 

109.00 (17.51) 

20.24 
68.87 

31.13 

Average speed per route per vehicle type 

Route A Cars 

Route A Trucks 
22.82 (2.69) 

17.85 (2.39) 

15.07-26.89 

11.98-21.94 

22.98 (1.09) 

18.12 (0.81) 

19.99-24.80 

16.29-20.03 

Route F Cars 

Route F Trucks 

19.18 (0.54) 

17.72 (0.37) 

18.15-20.35 

16.71-18.44 

18.48 (0.31) 

16.95 (0.37) 

17.75-19.31 

16.23-17.88 

Average time-in-system per route per vehicle type 

Route A Cars 

Route A Trucks 
151.79 (30.13) 

203.38 (44.05) 

116.12-264.88 

148.24-349.40 

149.52 (13.02) 

196.70 (17.94) 

131.00-187.91 

166.42-260.90 

Route F Cars 

Route F Trucks 
91.88 (3.11) 

101.54 (2.86) 

86.02-99.21 

97.02-110.64 

94.21 (3.56) 

104.57 (4.28) 

86.49-107.48 

95.87-114.30 
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Table 5.11 presents results of the Student’s t-test to test the null hypothesis H0: 

MShort_merge= MMC_adjusted_ME3 for each of the eight performance measures obtained from 

the Adjusted Markov Chain (ME3). For the average speed KPIs, the absolute mean dif-

ferences decreased compared to Markov Chain (ME2), although, the t-test for the Route 

F estimates still appeared significant.  

For the average time-in-system KPI, the absolute differences for Route A decreased, but 

increased for Route F. This may be explained by the fact that the adjusted Markov Chain 

(ME3) has more vehicles generated for Route F than the second Markov Chain (ME2). 

Later vehicles in the Markov Chain (ME2) with smaller interarrival times (because of the 

geometric distribution) are more likely to contribute to the mean calculation (as the ones 

with larger interarrival values may not be generated due to the interarrival times larger 

than 7,200 seconds). The increased number of later vehicles in the adjusted Markov 

Chain (ME3) may also cause the introduction of higher time-in-system values for Route 

F, resulting in 2.33 seconds and 3.03 seconds increase in the average time-in-system for 

cars and trucks, respectively.  However, it should be noted that the magnitude of these 

differences in average times are relatively small, only 3%.   

 

Table 5.11. Student’s t-test results for comparing mean performance measures obtained from 
the short merge model and the adjusted Markov Chain with time progression variable for 50 
repetitions for Experiment ME3 

 Short merge base 
model 

Adjusted Markov 
Chain (ME3) 

  

 M SE M SE |D| t(df), p 
Average speed per route per vehicle type 

Route A Cars 
Route A Trucks 

22.82 
17.85 

0.38 
0.34 

22.98 
18.12 

0.15 
0.11 

0.16 
0.27 

-0.39(64.62), p = .695 
-0.74(60.17), p = .459 

Route F Cars 
Route F Trucks 

19.18 
17.72 

0.08 
0.05 

18.48 
16.95 

0.04 
0.05 

0.70 
0.77 

7.92(77.78), p <.001 
10.42(98), p <.001 

Average time-in-system per route per vehicle type 

Route A Cars 
Route A Trucks 

151.79 
203.38 

4.26 
6.23 

149.52 
196.70 

1.84 
2.54 

2.27 
6.67 

0.49(66.68), p = .625 
0.99(64.83), p = .325 

Route F Cars 
Route F Trucks 

91.88 
101.54 

0.44 
0.40 

94.21 
104.57 

0.50 
0.61 

2.33 
3.03 

-3.49(98), p = .001 
-4.16(85.44), p < .001 
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The findings presented in Table 5.12 show that for the average speed KPI, the adjusted 

Markov Chain (ME3) resulted in smaller absolute differences and Kolmogorov-Smirnov 

Z values, which were no longer significant for Route A. Similarly, for Route A's time-in-

system, the adjusted Markov Chain estimates improved although they were still margin-

ally significant. However, for Route F, the K-S test indicated an increased difference 

between the distributions of the base model and adjusted Markov Chain (ME3), com-

pared to the second experiment (ME2). The right shift in the cumulative distribution 

function and the higher maximum value in the range for Route F’s time-in-system KPI 

may be due to an increase in the number of later vehicles from a more congested time 

of the adjusted Markov Chain (ME3).  

 

Table 5.12. Two-sample Kolmogorov-Smirnov test results for comparing distributions obtained 
from the short merge base model and the adjusted Markov Chain with time progression variable 
for 50 repetitions for Experiment ME3. 

 |D| df Kolmogorov-Smirnov Z p-value 
Average speed per route per vehicle type 

Route A Cars 
Route A Trucks 

.26 

.30 
50 
50 

1.30 
1.50 

.068 

.022 

Route F Cars 
Route F Trucks 

.62 

.72 
50 
50 

3.10 
3.60 

<.001 
<.001 

Average time-in-system per route per vehicle type 
Route A Cars 
Route A Trucks 

.28 

.28 
50 
50 

1.40 
1.40 

.040 

.040 
Route F Cars 
Route F Trucks 

.36 

.44 
50 
50 

1.80 
2.20 

.003 
<.001 

 

5.2.5 Mining towards a single vehicle model 

In experiment ME2 and ME3, we assumed vehicles with unique gtuIds as unique model 

components, and therefore, having different behavior. Based on this assumption, we 

deconstructed the state-trace data and performed episode mining at component-level, 

resulting in 2,500 Markov Chain models, one for each vehicle. It can be argued that 

vehicles in the model can be treated as instances of the a single ‘generic’ vehicle atomic 

model component and the state space of this generic vehicle model is the complete set 
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of states observed in the training data set. In this line of reasoning, a generic vehicle 

model’s driving behavior is imposed by the distribution of the demand (i.e., the demand 

for truck and passenger car), the generation times, and the surrounding traffic. In Markov 

Chain terms, this ‘generic’ vehicle component would have single ‘generic’ transition ma-

trix that would contain every observed state-transition in the training set and the calcu-

lated state-transition probabilities across all 50 runs. Using this ‘generic’ transition matrix 

P, the complete state-space S and the initial distribution vector 𝜋𝜋R, a hypothesis would 

be that an overarching Vehicle Markov Chain can be generated using our method and 

the simulation of this overarching vehicle Markov Chain would generate sufficiently ac-

curately estimates of the base model’s KPIs.  

However, the traffic simulated by an overarching Markov Chain generated by our 

method may not be an accurate representation of the base model because the overarch-

ing model cannot guarantee consistency across the contextual variables of the generated 

(and currently present) vehicles. Although this issue might be addressed by introducing 

additional extensions to the Markov Chain implementation (e.g., including conditional 

probabilities and increasing the maxwin parameter value of the EMMA algorithm to ex-

tend state-transition history, or implementing (or mining) a control logic to oversee traf-

fic and ensure behavioral consistency), we believe this would violate some of our funda-

mental assumptions, such as the memoryless property shared between Markov Chains 

and DEVS models. Future studies may explore alternative methods for model abstrac-

tion in situations where a longer history of events may be required to adequately repre-

sent the base model’s behavior. 

5.3 Conclusions 

This chapter used the short-merge microscopic traffic simulation model as a case study 

to show how our proposed method can be applied to a simulation model with a relatively 

larger number of model components and a larger state space, and with a varying number 

of model components. We began the chapter with a high-level description of the short-

merge model before delving into the specific scenario used in the case study. We then 

presented the conceptual model's details and described the characteristics of various 

5
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vehicle types (i.e., passenger cars and trucks) and the road network including an on-ramp 

to explain the effect of the merge point to the lane capacities and driving behavior.  

We then addressed all considerations and actions for the modeler following the same 

section structure as in Chapter 3 and 4. For the larger case study presented in this chapter, 

we chose to apply frequent episode mining to the data represented at vehicle level in 

addition to mining at system level. This is because the state-trace records generated from 

models with large numbers of individual model components are more likely to contain 

high variability, limiting the identification of frequent episodes. Reducing the variability 

by applying frequent episode mining at component level (in this case vehicle level) in-

stead of system level addresses this issue and allows for manageable model abstraction. 

However, mining at component level omits insight into how individual components in-

teract with and affect each other, i.e., the behavior of the system as a whole. Therefore, 

it is essential to include contextual variables with information on the relations among 

model components, such as the link or lane traffic intensity variables providing the sur-

rounding traffic information as was done in Experiments ME2. With this information 

included, Markov Chains based on individual model components are able to collectively 

represent the overall system’s behavior. 

The results show that our method is able to obtain Markov Chain estimates of perfor-

mance measures that do not significantly deviate from the base model’s performance 

measures, as indicated by the t-test results. Furthermore, we demonstrated that the Mar-

kov Chain’s ability to estimate the distribution of the base model’s performance measures 

can be improved by adding more information to the state-trace (e.g., time progression), 

as shown by the Kolmogorov-Smirnov test.  

However, the case study results also highlighted that a number of limitations of our 

method needs to be addressed by the modeler when applied to an open system simula-

tion model with a large number of model components.  

Firstly, the underlying memoryless geometric distribution used by the discrete-time Mar-

kov Chain, which determines the necessary number of state transitions for the first oc-

currence of a particular state does not provide a sufficient precision on the estimation of 

the time-dependent behavior (e.g., the arrival of a particular vehicle) of the original 
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system if the essential temporal information is missing in the model. The difference be-

tween the base model’s Erlang distributed values and the Markov Chain’s geometrically 

distributed and right-tailed estimates get larger when the number of entities entering the 

system gets significantly larger over time, leading to an extremely large sum of state-

transition probabilities before the desired nth state occurs. We demonstrated that the in-

troduction of contextual variables to the data that provides the necessary temporal infor-

mation (e.g., time progression) can reduce this difference. However, the inclusion of ad-

ditional variables to the state-trace data may result in a larger transition probability matrix 

and increased variability, and may result in a longer right-tail for larger models. The trade-

off between adding more information and the resulting tail should be explored. 

Secondly, the case study results show that certain state-variable values with a particular 

significance in the base model’s behavior are essential for an accurate representation of 

the original system’s behavior and the modeler must identify and ensure that these values 

are explicitly represented in the selected bins during the preprocessing step. The modeler 

can use the model’s state-trace metadata (see Appendix C.1) which corresponds to the 

source system in Klir’s GSPS (Klir, 1985) and select from a large number of variables 

per vehicle or contextual variables, such as the traffic intensity variables used in ME2. 

When generating state-trace data from an open system simulation, the inclusion of place-

holder values such as NA to represent the inactive periods of model components will 

result in underfitting, especially when the run time (or the sampling period) of the simu-

lation is significantly longer than the active period of components. As a result, the Mar-

kov Chain will have significantly smaller state-transition probabilities to transition to the 

actual (active) states of the model components.  

Taken together, this chapter demonstrated that our method is not only capable of auto-

mating the abstraction of small models with limited components and interactions, but 

can also be successfully applied to larger-scale and more complex simulation models with 

much larger state-spaces and a varying number of model components to recreate model 

behavior in abstracted models and estimate the performance indicators from these ab-

stracted models.

5
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6 Conclusion 

With the improved capabilities of computer technology, we have been able to run simu-

lation models that are larger in scale and higher in complexity (Davis & Bigelow, 1998; 

Zeigler et al., 2000). While these advances have allowed for more accurate representa-

tions of increasingly large-scale and complex real-world systems, the growing scale and 

complexity of simulation models may eventually result in models that become too com-

plex themselves to work with (Astrup et al., 2008; Chwif et al., 2000; Darema, 2004; 

Henriksen, 2008; Saysel & Barlas, 2006) – giving rise to large-scale complex simulation 

models. These types of models raise important new questions and challenges for the 

modeling and simulation community (Arthur et al., 1999; Chwif et al., 2000; Page et al., 

1999; Robinson, 2001), including how models of such large scale and complexity can be 

expressed, modeled more efficiently, validated, and what tools and techniques can be 

used for this. As described in Chapter 1, the main challenges of large-scale complex sim-

ulation models can be classified as the problem of scale (related to the number of objects in 

the model), the problem of complexity (related to a high resolution of objects and large num-

ber of object interactions), the problem of performance vs. accuracy (related to the trade-off 

between the level of accuracy of a simulation model and the computational cost of its 

execution), and the problem of data (related to the growth in variety and length of specifi-

cally state-trace data, limiting the ability to identify frequent behavioral patterns; Page et 

al., 1999, pp. 1509-1510).  

A strategy that aims to tackle the scale and complexity of large-scale complex simulation 

models is the use of model abstraction (Barton, 2015; Kleijnen, 1987). As we have discussed 

in this dissertation (and will reflect on when answering research question 1), conventional 

modeling methods and techniques lack the mechanisms to efficiently and effectively deal 

with the aforementioned problems and are limited in their ability to automate the process 

of model abstraction. We therefore posit that there is a need for methods that can help 

reduce the complexity of large-scale and complex simulation models. 

In this dissertation, we aimed to investigate to what extent the abstraction of large-scale 

complex simulation models, specifically discrete-event simulation models, can be auto-

mated using their state-trace data. In order to achieve this objective, we designed a novel 
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method that integrates the fields of modeling and simulation and temporal data mining 

by applying frequent episode mining techniques on state-trace data to identify behavioral 

patterns. In Chapter 3, we presented a detailed breakdown of our method and discussed 

a range of considerations that are essential for generating a valid abstraction of the base 

model (illustrated in Figure 6.1). We then demonstrated the practical application of our 

novel method using three simulation case studies with increasing scale and complexity 

and with different model characteristics (see Table 6.1 for a detailed breakdown of the 

case studies). Specifically, we investigated the ability of our method to automate the ab-

straction of large-scale complex discrete-event simulation models in the form of Markov 

Chains and to adequately estimate the original model’s performance indicators. In this 

final chapter, we provide a discussion of our findings to answer the research questions, 

reflect on the theoretical and practical contributions of our study, and provide directions 

for future research. 

6
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6.1 Research Findings 

Research Question 1:  To what extent do existing methods allow for the abstraction of large-scale 

discrete-event simulation models? 

As briefly mentioned in the previous section and explained in more detail in Chapter 1, 

conventional model abstraction methods have shortcomings when dealing with large-

scale complex discrete-event simulations. One of the model abstraction strategies is met-

amodeling. Providing “a model of a model” (Kleijnen, 1987), a metamodel replaces an 

expensive simulation model with another model that is generated by approximating the 

I/O function of the original one, e.g., as a set of linear equations with interaction effects. 

Metamodels are, therefore, simpler and computationally more efficient models than the 

original models (Kleijnen, 2015; Simpson et al., 2001). However, a fundamental limita-

tion of this black box approach is that metamodels do not benefit from the time and 

state transition information that is present in the underlying simulation model and that 

describes the dynamic behavior of the system (Nance, 1981). Therefore, metamodels 

cannot predict I/O relations well for the set of inputs (interventions) that have not been 

used in estimating the metamodel’s parameters. 

Another model abstraction strategy is multiresolution modeling (MRM). In the con-

text of large-scale complex simulation models, it is often impossible to fully capture the 

totality of the complex system in one abstraction (Hofmann, 2004; Yilmaz & Ören, 

2004). In such cases, multiresolution modeling can be used to build a family of models 

(base/lumped model pairs) with different levels of abstraction or resolution that collec-

tively represent the underlying system (Davis & Bigelow, 1998; 2003; Davis & Tolk, 

2007). This approach to recursively forming model pairs allows creating a hierarchy of 

models with varying state trajectories, which, as a whole, provide a more complete de-

scription of a system than a single model description (Zeigler, 2019). However, until now, 

multiresolution modeling required modelers to design lower resolution models manually 

as there was no strategy to automate this process. Due to the vast and diverse number 

of model components and their interrelations, the manual abstraction of large-scale com-

plex simulation models at the structure level – as most conventional model abstraction 

methods do – is a not a feasible task (Yilmaz & Tolk, 2006).  

6
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A more viable alternative approach for large-scale complex simulation models may be 

model abstraction at the transformation level, theoretically corresponding to the gen-

erative system level in Klir’s (1985) system knowledge framework and the state transition 

level in Zeigler’s System Specification (Zeigler et al., 2000). Abstraction at the transfor-

mation level can be achieved using state-trace data that encapsulate the model's dynamic 

behavior. State-trace data describe the sequential state-transitions of the model at discrete 

points in time, allowing modelers to capture the history of a simulation run and gain 

insight into how complex phenomena evolve over time (Kemper & Tepper, 2007). These 

data can be expressed as event sequences or multivariate time series consisting of cate-

gorical variables, numerical variables, or both. As such, state-trace data can be used to 

discover behavioral patterns relevant to the desired level of abstraction. Assuming a 

morphism relation between a pair of system specifications at the state-transition level, a 

correspondence relation (mapping) can be established between the base model’s state-

transitions (i.e., the more detailed system specification) and the lumped model’s state-

transitions (i.e., the simplified system specification), which uses these previously discov-

ered behavioral patterns as aggregated states.  

However, traces of state-transitions obtained from the runs of large-scale complex sim-

ulation models can get extensive in terms of their volume (the length of the trace data 

and the number of state variables to be sampled from different model components) and 

variety (the number of unique states), as we have seen in Chapter 5 where the state trace 

of a single simulation run of a moderately complex model had 18 million model state 

records; an alternative representation had 17,500 data columns. This consequently con-

fines modelers’ ability to identify and utilize frequent patterns for model abstraction. 

Data mining (Atluri et al., 2018; Gan et al., 2017) and machine learning methods (Pedrycz 

& Chen, 2014) have been designed to ease the process of discovering frequent patterns 

in temporal data (Hinton & Salakhutdinov, 2006). Although such methods have proven 

to be useful for recognizing behavioral patterns within large volumes of trace data 

(Chapela-Campa et al., 2019; Lu et al., 2019; Song et al., 2009; van der Aalst, 2011), they 

have not yet been applied to automate the abstraction of large-scale complex discrete-

event simulation models. This would require techniques that not only identify important 
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behavioral patterns in state-trace data, but also generate aggregated states at various ab-

straction levels to construct models at a higher level of abstraction.  

In sum, existing methods in the field of modeling and simulation use techniques that do 

not allow for the automated abstraction of large-scale complex discrete-event simulation 

models. An alternative approach to the existing methods that is explored in this thesis is 

to simplify the dynamic behavior encapsulated in the state-trace data of these models. 

To achieve this, tools and techniques from the temporal data mining field, specifically 

frequent episode mining, may be employed to these state-trace data to automate the 

model abstraction process at the transaction level. Therefore, integrating the fields of 

modeling and simulation and temporal data mining may provide a promising direction 

to deal with large-scale complex simulation models. 

Research Question 2: How should state-trace data from large-scale complex discrete-event simula-

tions models be prepared to be used for the automated abstraction method? 

In essence, the quality of the discovered behavioral patterns by the temporal data mining 

techniques, and therefore, the success of our method to automate the generation of valid 

model abstractions is highly dependent on the state-trace data generated by the base 

models – the large-scale complex discrete-event simulation models. To our knowledge, 

no studies to date have applied temporal data mining techniques to state-trace data col-

lected from large-scale complex discrete-event models to build valid lumped models. 

Because of this gap in the literature, it was essential that we first provided a formal de-

scription of the key concept of state-trace data generated by discrete-event simulation 

models (see §3.1.1). This helped to define our research's and our method’s capabilities 

and properly position the method in the modeling and simulation and temporal data 

mining literature. 

As defined in §3.1.1, a state-trace of a discrete-event simulation model is a time sequence 

of state-trace records (recorded instants), where each state-trace record within the same 

state-trace data is a fixed-size ordered set of categorical, numerical, or hybrid variables 

reported by the discrete event simulator at every event occurrence or at a fixed time-

increment during a simulation run. To practically generate the state-trace data from the 

simulation runs of the case study models, we implemented a TraceWriter class that 

6
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creates state-trace data in csv format. In the data, the rows representing the state-trace 

records are homogenous; that is, each row has the same number of base model variable 

values (i.e., the values of state variables, input/output variables, and time variable).  

As we discussed in Chapter 3, there are several factors that the modeler needs to consider 

before deciding on the content of the state-trace data and its generation from the simu-

lation of discrete-event simulation models. In this research, we have identified and elab-

orated on the following important considerations:  

(I) Representation of time (§3.2.1.1): How the simulation time can be embedded 

in the state-trace data is dependent on the time advance mechanism ta of the 

discrete-event simulation (base model): we can distinguish next-event time advance 

(progression) and fixed-increment time advance. The time advance mechanism of the 

model defines the limits of how frequent, or infrequent, the time-dependent 

behavior (i.e., time-dependent sampling of state-trace records in our method) 

of the original model can be captured and how the time variable can be stored 

in the data. Another important consideration regarding the representation of 

time relates to the format (elapsed time or absolute simulation time) and the 

variable types (categorical, numerical, hybrid) of the time information.  

For example, the M/M/1 model used in the case study in Chapter 3 and the 

battlefield model used in Chapter 4 both have a next-event time advance 

mechanism. Therefore, each state-trace record is reported by the trace writer of 

the model at each simulation event. The numerical time variable values in the 

state-trace records are reported as elapsed time. The reason for the selection of 

the elapsed time format is twofold. First, the representation of absolute 

simulation time would result in monotonously increasing values in the state-

trace data. Inclusion of such variables with as many different values as the 

number of state-trace records in the data (each value occurring only once) will 

undermine the ability of the frequent episode mining algorithms to find 

recurring patterns. Second, it represents the time advancement between 

episodes with a window size of 2 discovered by the EMMA algorithm. This 

correlates with the state transformation nature of discrete-event simulation 
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where δint : S→S at each event, where the time-to-next event (i.e., elapsed time) 

is also determined purely by the state ta: S→T.  

The short-merge case study model in Chapter 5, however, has a fixed-increment 

time advance mechanism (where the increments for different vehicles are not 

hapening at the same instant) and the trace writer of the model generated a new 

state-trace record at every 0.5 seconds. On the other hand, because the step-

size is constant at 0.5 seconds, the inclusion of simulation time will not affect 

the variability of the episodes discovered by the episode mining algorithm. 

Therefore, we excluded the absolute simulation time from the state-trace data 

in the three case studies. It should be noted that this exclusion of the absolution 

of time from the state-trace data led to issues, such as the inability to relate 

certain episodes to a time 'early' or 'late' in the simulation. To overcome such 

issues, we later introduced progression in the form of contextual variables.   

(II) Type of model (stochastic vs. deterministic) (§3.2.1.2): Large-scale complex 

models are usually stochastic because large-scale complex systems exhibit 

inherent uncertainty properties. Therefore, the essence of this consideration is 

to identify a sufficient number of repetitions and the run-length needed to 

obtain independent and identically distributed observations (samples) to 

accurately estimate the associated variability. What constitutes a sufficient 

number of repetitions and run-length will depend on the model under study 

and the desired level of precision (i.e., the margin of error). 

For the M/M/1 case study, we measured the effect of increased run-length and 

repetition on the precision of the performance indicator estimates by 

calculating the margin of error. Using a fixed state-trace length of 50,000 state-

trace records, we showed that a high level of precision (i.e., below 1%) was 

already achieved with as few as 10 repetitions for the KPI server utilization. 

However, for the average waiting time and average queue length measures, the 

margin of error became smaller than 1% from 100 repetitions onward (note 

that the actual threshold of 1% is somewhere between 50 and 100 repetitions). 

In terms of run-length, when the number of repetitions was fixed at 100 runs, 

a high level of precision (i.e., below 1%) was achieved with a state-trace as short 

6
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as 1,000 records for the server utilization KPI, while for the average waiting 

time and average queue length measures, this level of precision was achieved 

from 50,000 state-trace records onward (note that the actual threshold of 1% is 

somewhere between 20,000 and 50,000 state-trace records). Based on these 

findings, we selected 50,000 as the state-trace length to be generated in 

conjunction with 100 repetitions. For the battlefield case study in Chapter 4, 

we used 50 repetitions to generate training data (and 50 repetition for generating 

validation data). For the chosen number of repetitions (50), we achieved margin 

of errors between 1.46%-4.59% across KPIs. Because the battlefield is a 

terminating simulation model (see also consideration (c) below), increasing the 

run-length is not possible. In this case, to improve the precision of the 

estimates, the modeler can increase the number of data samples (i.e., state-trace 

records) by increasing the number of repetitions with the same input set. 

(III) Type of simulation (terminating vs. non-terminating) (§3.2.1.3): When 

designing a simulation experiment, in addition to deciding on the length of a 

simulation run (i.e., sample size), the modeler should identify the starting 

conditions of the model, and decide whether to include or exclude a warm-up 

time. These considerations are largely determined by the type of the simulation: 

terminating or non-terminating. For a given fixed initial state, a stochastic 

terminating simulation run generates state-trace data at varying lengths for each 

repetition during a simulation experiment. Therefore, the modeler must ensure 

that there are enough repetitions to compensate for (possible) shorter runs 

when generating state-trace data from terminating simulations. As mentioned 

in the previous consideration (b), for the battlefield case study in Chapter 4 we 

used 50 repetitions to generate training data (and 50 repetition for generating 

validation data). For the chosen number of repetitions, the total number of 

state-trace records obtained from the simulations over 50 runs were nearly 

identical, that is, 32,610 for the training set and 32,714 for the validation set.  

When the base model is a non-terminating simulation, however, there are 

additional considerations. Firstly, because non-terminating simulations have no 

end-state or end-time and the simulation could theoretically continue 
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indefinitely, the modeler should decide between having fewer repetitions with 

longer run lengths or more repetitions with shorter run lengths. For the M/M/1 

model in Chapter 3, state-trace records were generated at each event occurrence 

until the simulation was halted by scheduling a special “terminating” event at 

1,000,000-time unit. We determined that this length is sufficient to generate at 

least 50,000 state-trace records for a single run. Recall from the case study 

application of §3.2.4 that both strategies (i.e., either keeping the run-length fixed 

and increasing the number of repetitions or keeping the number of repetitions 

fixed and increasing the run-length) provided the desired precision of less than 

1% across all KPIs of the non-terminating M/M/1 model, as long as there were 

enough independent repetitions and sufficiently long enough runs.  

Secondly, when generating state-trace data from non-terminating models, the 

modeler should choose one of the following strategies to reduce the effects of 

initialization bias: (1) to collect state-trace data from the original model for both 

the transient and the steady-state period and use the data to generate two 

Markov Chains for the transient and the steady-state period, but only perform 

data analysis on the steady-state period Markov Chain; or (2) not to simulate 

the transient period and, instead, introduce a single admissible initial state which 

then becomes the initial state of the steady-state period Markov Chain. Because 

the main subject of our method is large-scale complex discrete-event simulation 

models, the second option is often the more inexpensive strategy. Therefore, 

we implemented the second strategy for both the non-terminating M/M/1 

(Chapter 3) and the short-merge case study simulations (Chapter 5). For 

example, for the M/M/1 case study, we introduced the initial state P0: empty-

and-idle.  

(IV) Inclusion of input data (§3.2.1.4):  The decision to include the base model's 

input variables as individual columns in the state-trace data and, if so, which 

variables to include is determined by whether the base model has external 

inputs and whether the simulation experiment, which consists of multiple runs 

to generate state-trace data, is performed with a single (fixed) set of input. When 

the simulation experiment consists of a single (fixed) set of input and the model 
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receives no external input, the exclusion of the input variables from the state-

trace data does not affect the Markov Chain estimations, as demonstrated by 

all three case studies in this research.  

(V) Inclusion of output data (§3.2.1.5): In our method, we presented two 

strategies to include the output data of the base model: (1) the direct 

incorporation of the transient values of the base model’s run statistics as 

individual columns in the state-trace data, and (2) the inclusion of the state 

variable values of the base model, which are required to calculate the key 

performance indicators, directly in the state-trace data. The drawback of the 

first strategy is that the inclusion of the ‘quantized’ transient values of the base 

model’s run statistics in the state-trace data, and therefore, a part of the Markov 

Chain state set, would result in a loss of sequential progression information. 

This can lead to inconsistencies in the representation of KPI progression in 

Markov Chain generated state-trace data. In the second strategy, once the 

Markov Chain state-traces are generated, the performance indicators are 

calculated by using the included model variables. We showed in all three case 

studies that the Markov Chain’s  KPIs can be sufficiently accurate as long as 

the state-variables are accompanied by the necessary contextual variables (see 

Table 6.1 for the list of variables included to calculate the KPIs for each case 

study).    

(VI) Complete model state-trace vs. partial model state-trace (§3.2.1.5): A state-

trace is considered as complete-model state-trace if it contains the complete set of 

variables that describe the state of all individual atomic components and, as a 

collection, the state of the system at a particular instant. Meanwhile, it is a partial-

model state-trace when:  

• the state-trace data have a (selected) subset of state variables of all 

atomic components of the base model, or 

• the state-trace data have the complete set of state variables of a 

(selected) subset of atomic components of the base model, or 
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• the state-trace data have a (selected) subset of state variables of a 

(selected) subset of atomic components of the base model. 

For the M/M/1 case study (Chapter 3), we generated a complete-model trace 

data because of its simplicity with only two state-variables. For the battlefield and 

short-merge case studies (Chapter 4 and 5, respectively), we generated partial 

model state-trace data (see Table 6.1 for the content of the state-trace data for all 

three case studies). For example, in the battlefield case study, we excluded the cell 

atomic components from the state-trace data and only captured each section’s 

host cell height values, which requires only two variable values compared to 

10,000 cells. Furthermore, we excluded some of the variables in the base models 

and only included the variables that are sufficient for the estimation of the se-

lected performance measures (see §4.2.1.6 for more details on the selection pro-

cess of these variables). 

In addition to the above-mentioned considerations and actions, it is important to note 

that calculating key performance indicators from the Markov Chain generated state-trace 

data and from the base model’s validation set using the included model variables alone 

may not always be possible. In such cases, contextual information that describes corre-

lations between the model variables and represents a particular behavior of the base 

model should be captured and transformed to one or more variables in the trace data. 

For example, in the M/M/1 case study (Chapter 3), we initially included the varia-

bles server_status, queue_length, and the elapsed time in the state-trace data to calculate the 

key performance indicators “average waiting time,” “average server utilization” and “av-

erage queue length”. However, not all events in the state-trace data were events where 

an entity leaves the queue (e.g., arrival of a new entity). To be able to accurately calculate 

the average waiting time KPI, knowledge regarding leaving or non-leaving events is es-

sential. In order to differentiate the non-leaving events from the other registered events, 

we therefore had to include the “leaving” behavior and information (separation of the 

leaving and non-leaving events) in the state-trace data. We transformed and reported this 

information in a new contextual variable called time_in_queue, which registers non-leaving 

events as -1 (see §3.2.1.5). 

6
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The case studies also highlighted that the inclusion of additional contextual variables 

reduced the margin of error in the Markov Chain’s estimates and improved the accuracy 

of the Markov Chain's representation of the base model. For instance, in the battlefield 

case study (Chapter 4), we compared the margin of errors obtained from two Markov 

Chains MC1 and MC2. The case study demonstrated that the addition of the contextual 

variables distanceToCheckpoints and checkpointId to the state-traces in the training dataset of 

MC2 reduced the margin of errors from 2.39%-5.04% (MC1) to 1.46%-4.59% (MC2) 

across KPIs. Furthermore, the addition of these two contextual variables reduced the 

dispersion of the run lengths of the Markov Chain and resulted in estimates of the run-

lengths closer to the base model. As discussed in §4.2.4, the accuracy of the Markov 

Chain’s estimates for the base model’s KPIs (i.e., total elevation climbed and total active 

mission time) depends on the correct sum of speed and elevation values obtained from 

the Markov Chain generated state-trace data, thus, the lengths of these state-traces. Be-

cause the battlefield model is a terminating simulation, reliably and accurately estimating 

the KPI values is therefore only possible if the Markov Chain accurately represents the 

terminating behavior of the base model. We showed that adding the contextual variables 

in MC2 helped to accurately estimate the KPIs.   

Research Question 3: What considerations and actions are needed for the automated abstraction 

of the original model’s dynamic behavior using state-trace data?  

For the automated abstraction of the recurring patterns in the state trace data, a frequent 

episode mining algorithm has to be selected for the task of discovering serial state-tran-

sitions and generating the transition probability matrix P of the discrete-time Markov 

Chain. We compared several popular frequent episode mining algorithms and found that, 

at the time of our research, EMMA is the fastest in finding all unique state-trace records 

and consecutive state-trace record pairs from state-trace data of various lengths (5,000; 

10,000; 25,000; and 50,000 state-trace records; see Appendix A.1). In all three case stud-

ies, EMMA was applied successfully. 

We discussed several considerations regarding the application of the temporal data min-

ing tasks to the state-trace data: 
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(I) Preprocessing of the state-trace data (§3.2.2.1): After the generation of state-

traces from the simulation of the base model, the data must be preprocessed 

before the application of the EMMA algorithm. The following are the 

requirements for preprocessing data in our method, as well as the preprocessing 

methods to be used to meet these requirements: 

• EMMA input format requirements: To comply with the input format 

of the EMMA algorithm, we created a hash table that associates each 

unique state-trace record (value) with an increasing positive integer 

value (key). This hash table will later be used to decode the hashed 

values from the Markov Chain generated state-traces back to their 

multi-variable value formats. This encoding and decoding of the 

state-trace records is a lossless process, and therefore, does not affect 

the model abstraction results. 

• Quantization of high-variety data: Before the preprocessing and 

encoding of each state-trace record (described above), state-trace 

records consist of multiple model variables with categorical (binary, 

nominal or ordinal) or numerical values (continuous or discrete). For 

large-scale complex discrete-event simulations, the state-space 

captured as the cartesian product of the number of variables and the 

range of values can easily become extremely large and impractical to 

work with because of the low frequencies of the observations, 

resulting in a lack of frequent episodes. The variable types that 

typically lead to high variety are continuous variables, variables with 

monotonously increasing or decreasing values, and categorical 

variables with a large number of discrete categories. To avoid this 

issue of high variety, the data should be quantized before applying 

the frequent episode mining algorithm. The choice of the 

quantization strategy and the level of quantization depend on the 

level of precision required by the model abstraction objective 

(§3.2.2.1).  

6
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For instance, in the M/M/1 case study (Chapter 3), we chose binning 

as the strategy to quantize the following three variables: elapsed_time, 

time_in_queue, and queue_length. Specifically, for the elapsed_time and 

time_in_queue continuous variables, we used quantile-based binning 

based on deciles (q = 10) to create 10 bins for each variable. This is 

because both variables have right-skewed distributions and a strategy 

such as equal-width binning would result in irregularly filled bins with 

some bins containing a small numbers of values. Unlike the 

elapsed_time and the time_in_queue variables, the queue_length variable 

takes integer values where the frequencies are large for values that are 

close to zero; e.g., the queue length 0 has a much higher frequency 

than 1, and 1 is more frequent than 2, etc. As a result, using quantile-

based or equal-frequency based binning would lead high frequency 

values to occupy more than one bin. Therefore, for the quantization 

of the queue_length variable, we chose a custom binning strategy in 

which we set a minimum threshold of 5% of scores per bin. This way, 

frequent values (>5% of scores) are assigned to their own bin, and 

infrequent values (<5% of scores) are grouped together until each 

bin contains at least 5% of the data (see §3.2.2.1).  

To investigate the effect of the level of quantization to the Markov 

Chain’s accuracy, in Chapter 4’s battlefield case study, we compared 

lower resolution Markov Chains to higher resolution Markov Chains 

in which we increased the level of binning. Our findings indicate that 

a higher resolution alone did not improve the accuracy of the Markov 

Chain’s representation of the base model’s behavior. Only in 

combination with contextual variables in the training data (i.e., MC2, 

as discussed in research question 2), a higher resolution resulted in 

improved estimates. 

• System state-level vs. model component-level abstraction: State-trace 

data generated from discrete-event simulations consist of state-trace 

records, reported at a particular instant in time (e.g., at event 
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occurrences or at fixed time intervals) during the simulation. 

Therefore, state-transitions of the base model are represented by 

consecutive state-trace record pairs in the state-trace data. This, 

however, changes when the state-trace data is subdivided during the 

preprocessing stage to accommodate for model abstraction at 

component-level – as illustrated by the short-merge case study in 

Chapter 5.  

Performing model abstraction at component-level using the state-

trace requires preprocessing the data to a format the EMMA 

algorithm can process. To do so, component-based trace data are 

generated by selecting the relevant columns for individual entities 

(e.g., vehicle) and combining them with the contextual columns that 

are the same across all entities (e.g., vehicles). This process creates 

one data set per entity (e.g., 2,500 separate data sets for the short-

merge case study in Chapter 5).    

(II) Application of the EMMA algorithm (§3.2.2.2): The end goal of the temporal 

data mining step of our method is to obtain the state-transition probabilities 

across all the state-traces in the training dataset. To compute these state-

transition probabilities, we use maxwin values of 1 and 2, and a minsup value of 

1 for the EMMA algorithm to discover: (a) all individual states (i.e., state-trace 

records) and their frequencies, and (b) all unique state-transitions (i.e., 

consecutive state-trace record pairs) and their frequencies. Then, using the 

discovered states and state-trace records and their frequencies, we can calculate 

the state-transition probabilities for the entire training dataset. 

(III) Construction of the transition matrix (§3.2.2.2): After obtaining the 

transition probabilities, the next step is to represent these probabilities in a 

sparse matrix format in order to generate the discrete-time Markov Chain's 

transition matrix P. We established in Chapter 3 that the memoryless property 

of Markov Chain states is akin to the discrete-event model states, and the state-

transition probabilities represented in matrix format is the transition matrix of 

a valid stochastic discrete-time Markov Chain. We showed using the case 
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studies that the states and the state-transitions of the base model can be mapped 

to valid Markov Chain states and transition matrices. 

After the generation of the sparse transition matrices, the next step is to simulate the 

Markov Chains by performing random walks. The number of repetitions to perform with 

a Markov Chain to generate trace data is dependent on the number of repetitions per-

formed by the base model to generate the validation dataset. In the M/M/1 (Chapter 3) 

and battlefield (Chapter 4) case studies where the modeled systems’ behavior was repre-

sented by a single Markov Chain, Markov Chains were simulated 100 and 50 times, re-

spectively. On the other hand, in the short-merge case study (Chapter 5), each Markov 

Chain represented the behavior of a particular vehicle as the goal was to perform model 

abstraction at component-level. Therefore, capturing the modeled system’s behavior re-

quired simulating all 2,500 Markov Chains 50 times; equal to the number of repetitions 

used by the base model to generate the validation data.  

When simulating each Markov Chain, the modeler should use different random number 

generator seed values to obtain iid data. If the base simulation is non-terminating, the 

modeler should terminate the data generation from the Markov Chain once a desired 

number of state-trace records are generated (see the “Preliminary analyses: Selection of 

minimum state-trace length” in §3.2.4 for more details). If the base model is a terminating 

model, the accumulated probability of the Markov Chain transitioning to the modeled 

system’s end-state should be 1 after n state-changes (and this n should be close to the 

base model’s state-trace length (see Table 4.9 in §4.2.4 for a detail analysis).  

A behavior we observed in both the M/M/1 (Chapter 3) and the short-merge (Chapter 

5) case studies is that some Markov Chain runs terminated prematurely, before the de-

sired number of state-trace records were generated (i.e., 50,000 or 7,200). We discovered 

that this is because some of the single system-level Markov Chain models of the M/M/1 

simulation and vehicle-based Markov Chains of the short-merge simulation are not com-

plete graphs because of the data collection strategy. As mentioned earlier in Chapter 3 

and discussed in the answer of the research question 2, the non-terminating simulations 

have to be artificially terminated to stop the data generation. As a result, some of the 

state-trace data generated from the runs inherited an artificial terminating state (could be 

a different state for each of these runs) because the final state did not occur earlier in the 
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run. Consequently, some of the transitions in these right-stochastic transition matrices 

will have the probability of 1, meaning that the previous states will always lead to these 

artificial end states and the run will terminate. In some cases, the transition matrix might 

have a chain of states transitioning to each other with the transition probability of 1. 

There are multiple ways to deal with artificial terminating states in the transition matrix. 

The first approach is to identify and delete all artificial terminating states until the graph 

becomes a complete graph and recalculate the state-transition probabilities after the re-

moval of every artificial terminating state. However, this approach may result in the re-

moval of a large number of states from the transition matrix (due to the chaining as we 

just mentioned). The second approach is to use a portion of the generated state-trace 

data in the episode mining algorithm to generate the transition probability matrix. For 

instance, the modeler may decide to use 80% of the total state-trace data for the training 

and validation set. In this case, the modeler must ensure that the remaining data contain 

enough samples to generate valid Markov Chains with a desired level of precision. To 

avoid having an insufficient number of samples, the modeler can first perform longer 

runs to generate more data and subsequently use a portion of the data generated from 

these longer runs.  

Research Question 4: How well does the abstracted model represent the behavior of the original 

large-scale complex simulation model? 

To evaluate the accuracy and the validity of the abstracted model, key statistics and per-

formance measures obtained from the original model’s validation set and the abstracted 

model (Markov Chain) can be compared using descriptive (e.g., spread measures, histo-

grams, box and whisker plots) and inferential statistics (e.g., 𝜒𝜒2-test, Student’s t-test, two-

sample Kolmogorov-Smirnov test).  

The results of the case studies, and specifically their validation process, demonstrated 

that our method is able to obtain Markov Chain estimates of performance measures with 

an acceptable level of precision that do not significantly deviate from and follow a similar 

distribution as the original model’s validation set. In Chapter 3, with a relatively simpler 

M/M/1 case study, we found that our Markov Chain’s estimates had a high level of 

precision and were highly similar to the validation set’s estimates. In Chapter 4, with the 

battlefield case study, we demonstrated that our method can generate valid abstractions 
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of relatively larger and more complex discrete-event simulation models and can obtain 

Markov Chain estimates of performance measures that do not significantly deviate from 

the base model’s performance measures. Similarly, the findings from the short-merge 

case study in Chapter 5 illustrated that our method is applicable to larger and more com-

plex short-merge discrete-event simulation models and can obtain Markov Chain esti-

mates of performance measures that are highly similar to the base model’s performance 

measures.  

As we addressed earlier in our discussion of research question 2, the presence of contex-

tual variables is crucial for the accurate representation of the base model’s behavior, and 

for obtaining run-lengths that are sufficiently close to the base model’s run-length. In 

fact, our case studies revealed that increasing the model’s resolution by increasing the 

quantization levels of the variables (e.g., the number of bins) alone did not improve the 

accuracy of the model in the absence of important contextual variables. Our findings in 

section §4.2.4 showed that a higher resolution only improved the results of the model 

that included contextual variables. A similar improvement in the Markov Chain’s accu-

racy was also observed in the case study in Chapter 5.  

Although we employed inferential statistics for the validation of the estimates obtained 

from the Markov Chains, it is of great importance for the modeler to not solely rely on 

p-values to judge the accuracy of the base model’s representation (Lin et al., 2013) but 

also evaluate descriptive statistics as well as the effect size which describes the magnitude 

of the difference (Sullivan & Feinn, 2012). Moreover, it is important that the Markov 

Chain’s estimates are considered within the context of the system of interest and the 

goals of the model abstraction study. For instance, in the short-merge case study (Chap-

ter 5), the Student’s t-test results indicated that mean speeds for the car and truck gener-

ated from the Markov Chain differed significantly from the mean speeds obtained from 

the base model for Route F; however, the absolute mean difference was minimal. Simi-

larly, the results of the 𝜒𝜒2-test in Chapter 3 illustrated that a large sample size may result 

in flagging a significant difference between the two distributions (a known problem with 

significance testing based on p-values; Sullivan & Feinn, 2012), even though the Cramer’s 

V effect size and graphical visualizations suggested that the magnitude of this difference 

was very small.  
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Table 6.1. Case study comparisons 
 CH3: M/M/1  

case study 
CH4: Battlefield  
case study 

CH5: Short-merge  
case study 

System properties 
System description 
(§3.1.4) 
(§4.1.2) 
(§5.1) 

Single-queue single-
server queueing sys-
tem; interarrival 
times of entities and 
service times are ran-
dom; entities enter 
the queue unless the 
queue is empty, 
seized by the server, 
delayed during the 
time of service, and 
leave the system 
when released by the 
server. 

Battlefield system con-
sists of a terrain with 
hills and passages be-
tween hills, and a tank 
platoon consists of 
two sections. The sec-
tions start their mis-
sion at time t=0 sec-
onds and pass through 
three checkpoints. The 
mission ends when 
both sections arrive to 
the end station. 

A road network sys-
tem consists of a two-
lane main road (Route 
A), a single-lane on-
ramp (Route F) merg-
ing onto the main 
road. Vehicles (pas-
senger cars and 
trucks) can enter and 
leave the system at 
any time through the 
system boundaries. 

System type 
(§3.1.4) 
(§4.1.2) 
(§5.1) 

Open discrete-event 
system. 

Closed discrete-event 
system. 

Open discrete-event 
system. 

Modeling Details 
Modeling formalism 
(§ 3.1.4) 
(§ 4.1.3) 
(§ 5.1). 

Event-scheduling 
world view  

Coupled DEVS (mod-
eled using the Dy-
namic Structure DEVS 

Event-scheduling 
world view (micro-
scopic traffic flow 
model)  

Time advance  
mechanism 
(§ 3.2.1.1) 
(§ 4.2.1.1) 
(§ 5.2.1.1) 

Next-event time ad-
vance 

Next-event time ad-
vance 

Fixed-increment time 
advance (τ= 0.5 sec-
onds), but not syn-
chronized across 
components  

Stochastic / 
Deterministic model 
(§ 3.2.1.2) 
(§ 4.2.1.2) 
(§ 5.2.1.2) 

Stochastic model; the 
case study investi-
gated the effects of 
increasing number of 
repetitions with six 
different number of 
runs to generate iid 
data (Table 3.12): 10, 
20, 50, 100, 200, 500; 
unique Mersenne 
Twister seed used 
for each repetition. 

Stochastic model; total 
of 100 repetitions to 
generate iid data; 
unique Mersenne 
Twister seed used for 
each repetition. 

Stochastic model; to-
tal of 100 repetitions 
to generate iid data; 
unique Mersenne 
Twister seed used for 
each repetition. 

6
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Terminating /Non-
terminating model 
(§ 3.2.1.3) 
(§ 4.2.1.3) 
(§ 5.2.1.3) 

Non-terminating; no 
warm-up period; two 
sets of experiments 
with six experiments 
in each set. For the 
first experiment set, 
the simulation run is 
terminated once the 
desired number 
state-trace records 
are reported. 

Terminating; the simu-
lation ends when both 
sections arrive to their 
corresponding end sta-
tions; state-trace data 
with varying length. 

Non-terminating; a 
method call is sched-
uled to be executed 
before the simulation 
clock reaches to the 
predetermined end 
time of the simulation 
(i.e., 3,600 seconds).  

Input data 
(§ 3.2.1.4) 
(§ 4.2.1.4) 
(§ 5.2.1.4) 

Average arrival rate λ 
of 0.1 and average 
rate of service µ of 
0.118 (Table 3.1). 
Single set of input 
with no external in-
put.  

Tank platoon section 
trajectories and terrain 
details (Table 4.5). Sin-
gle set of input with no 
external input. 

Vehicle trajectories 
and lane demands 
over a time-space re-
gion. Single set of in-
put with no external 
input (Table 5.2). 

Output data &  
Key performance  
indicators 
(§ 3.2.1.5)   
(§ 4.2.1.5)   
(§ 5.2.1.5, 
 5.2.1.5.1, 
5.2.1.5.2)   

As listed in Table 
3.2:  
(a) Average time in 
system 
(b) Average waiting 
time in queue 
(c) Average number 
(of entity) in queue 

As listed in Table 4.6:  
(a) Active mission time 
Section A 
(b) Active mission time 
Section B 
(c) Total elevation 
climbed Section A 
(d) Total elevation 
climbed Section B 

A total of 8 key per-
formance indicators 
as listed in Table 5.3: 
(a) Average time-in-
system per route (A 
or F) per vehicle type 
(car or truck) 
(b) Average speed per 
route (A or F) per ve-
hicle type (car or 
truck)  

State-trace Properties 
Complete /Partial 
model state-trace 
generation 
(§ 3.2.1.6)   
(§ 4.2.1.6)   
(§ 5.2.1.6)   

Complete model 
state-trace data  

Partial model state-
trace data 

Partial model state-
trace data 

State variables  
included in the  
trace data 
(§ 3.2.1.5) 
(§ 4.2.1.5)   
(§ 5.2.1.5)   
 
 

The state-trace data 
used in M/M/1 case 
study contains the 
list of variables state 
variables such as 
server_status and 
queue_length (Figure 
3.5). 

Two experiment sets 
designed with two dif-
ferent datasets for the 
case study (for MC1 
and MC2). Both of 
these datasets contain 
the speed variable from 
the Section atomic 
model and elevation 

Two different datasets 
are used for the short-
merge case study. 
These datasets con-
tain the state variables 
listed in Table 5.4. 
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variable from the Cell 
atomic model (Table 
4.7).  

Contextual  
variables included 
(§ 3.2.1.5) 
(§ 4.2.1.6)   
(§ 5.2.1.6.1, 
§ 5.2.4.2)   
 

The contextual varia-
bles in M/M/1 
model are 
time_in_queue and 
num_of_observations, 
which are essential 
for the calculation of 
the key performance 
measures listed in 
Table 3.5. 

In the first dataset (for 
MC1), we included the 
contextual variable 
called movementIndicator 
for both sections, indi-
cating whether a re-
ported event is a 
movement event or 
not for the corre-
sponding section.  
In the second dataset 
(for MC2), we also in-
cluded two additional 
variables dis-
tanceToCheckpoint and 
checkPointID for each 
section.  

The datasets for Ex-
periment ME2 con-
tain the additional 
traffic intensity con-
textual variables listed 
in Table 5.6. 
  
The dataset for Ex-
periment ME3 in-
cludes the traffic in-
tensity variables that 
are also in the first set 
as well as additional 
progress indicator 
variables for each ve-
hicle. 

Average trace length 
(§ 3.2.4) 
(§ 4.2.1.2)   
(§ 5.2.1.3)   

Fixed; warm-up pe-
riod is represented in 
the state-trace data 
with an initial state; 
the case study inves-
tigated the effects of 
state-trace length us-
ing traces with six 
different lengths (Ta-
ble 3.9).  

Not-fixed; the length 
of a state-trace gener-
ated from a single run 
is dependent on the 
terminating condition 
(Table 4.4). The aver-
age state-trace length 
in the training and vali-
dation datasets (50 
repetitions) are 652.20 
and 654.28 state-trace 
records, respectively. 

Fixed; 7,200 state-
trace records (rows) 

Pre-processing & Frequent Episode Mining Step Details 
Binning strategy 
(§ 3.2.2.1)   
(§ 4.2.2.1)   
(§ 5.2.2.1)   
 

Mixed binning strat-
egy: (a) quantile-
based binning (dec-
ile) is used for the 
elapsed_time and 
time_in_queue varia-
bles, and (b) custom 
binning strategy with 
a minimum thresh-
old of 5% of scores 
per bin for the 
queue_length variable. 

Fixed-width binning Fixed-width binning 

6
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In sum, the presented research showed that our novel method is capable of automating 

the abstraction of large-scale and complex discrete-event simulation models with large 

state-spaces. The findings throughout this dissertation demonstrated that the method is 

able to generate valid Markov Chains from the state-trace data of the base model and the 

calculated output performance indicators from these Markov Chains have sufficient pre-

cision and accuracy.  

6.2 Main Contributions  

In this dissertation, we presented a novel frequent episode mining-based method for the 

automated abstraction of discrete-event simulation models using state-trace data. By pre-

senting how concepts from the modeling and simulation and temporal data mining fields 

Frequent episode 
mining algorithm / 
Algorithm  
parameters / 
Mining strategy 
 

EMMA Algorithm: 
Minsup: 1 
Maxwin: 2 

Mining at system 
state level; each 
state-trace record 
(i.e., each row) con-
taining the full set of 
system states is en-
coded as a single 
positive integer 
value. 

EMMA Algorithm: 
Minsup: 1 
Maxwin: 2 

Mining at system state 
level; each state-trace 
record (i.e., each row) 
containing state varia-
bles of both tank pla-
toon sections is en-
coded as a single posi-
tive integer value. 

EMMA Algorithm 
with the addition of 
the skip-length varia-
ble:  

Minsup: 1 
Maxwin: 2 
Skip-length: 2,500 

Mining at individual-
component state level; 
each state-trace record 
containing 2,500 vehi-
cle states is subdi-
vided into 2,500 data 
sets, converting the 
state-trace data with 
7,200 rows to 
18,000,000 rows. The 
EMMA algorithm, 
then, applied to the 
subdivided data using 
a skip-length of 2,500. 

Transition  
probability matrix 
details 

Single transition 
probability matrix 
containing the state-
transition probabili-
ties for all minsup=1 
system state.  

Two transition proba-
bility matrices gener-
ated/used for the ex-
periments MC1 and 
MC2.  

For experiments ME2 
and ME3, 2,500 tran-
sition probability ma-
trices generated.  
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can be integrated, we contributed to an advanced understanding of how large scale and 

complex simulation models can be abstracted automatically, and what tools and tech-

niques can be used in this process. Importantly, our research introduced a formal de-

scription of discrete-event simulation generated state-trace data and state-trace records 

which help to properly position our method in the modeling and simulation literature. 

Moreover, by presenting the detailed steps of our method and describing a range of con-

siderations and actions that modelers may face through diverse case studies, we demon-

strated how state-trace data and temporal data mining techniques may best be used for 

models with different characteristics. The findings in this dissertation are not only of 

scientific interest; they may also be valuable to modeling and simulation experts and de-

cision makers aiming to understand and capture the underlying behavior of large-scale 

complex systems or data analysts working with big data that has similar characteristics as 

state-trace data.  

6.3 Directions for Future Research  

The findings reported in this dissertation should be interpreted in light of several limita-

tions. Firstly, the focus of this research, in terms of the models of interest, was limited 

to discrete-event simulations models. Other types of models may be included in future 

research to test the applicability of our method to a broader range of simulation models. 

Agent-based models, for example, may be an interesting candidate because the time ad-

vance in most agent-based models uses equidistant intervals. The discrete-event short-

merge model (Chapter 5) uses a similar time advance mechanism, in which the states of 

individual vehicles were recalculated at (equidistant) 0.5-second intervals. Future work 

may also reveal new considerations and actions for generating state-trace data from 

agent-based models, which could help identifying behavioral patterns of agents from the 

state-trace data. 

Secondly, we chose Markov Chains to represent the abstracted models in our method 

because its memoryless property is similar to that of discrete-event model states. More-

over, the state-transition probabilities of the base model represented in matrix format 

correspond to the transition matrix of a discrete-time Markov Chain. However, Markov 

Chains may have shortcomings due to the effect of repetitive drawing of probabilities, 

6
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where the average time to reach a certain state might be correct, but the standard devia-

tions differ very much from the underlying data. From the perspective of automated 

model abstraction, generation of abstract models from state-trace data using richer mod-

eling formalisms such as port-based DEVS or Petri nets can be an interesting future 

research direction. 

Thirdly, for this research we compared the performance of some of the popular frequent 

episode mining techniques and concluded that the EMMA algorithm was best suited for 

our method. However, the field of data mining and machine learning is rapidly expanding 

and new methods, tools, and techniques are introduced in a fast pace. It is therefore 

important that future modelers working with our method reevaluate the available algo-

rithms and select the one most suitable for their objectives.  

Finally, this dissertation demonstrated the application of our method in three discrete-

event simulation case studies. Future research can explore our method's usability to other 

industries and actual, real-life problems, such as, global supply chains, modern manufac-

turing systems, and power grids. 
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Appendix A 

A.1. Comparison of Frequent Episode Mining Algorithms 

This chapter provides further details regarding the performance comparison of three 

popular frequent episode mining algorithms: MINEPI (Mannila et al., 1997), MINEPI+ 

(Huang & Chang, 2008), and EMMA (Huang & Chang, 2008). For this comparison 

study, we employed the SPMF open-source data mining library's Java implementations 

of the three aforementioned frequent episode mining algorithms: MINEPI, MINEPI+, 

and EMMA (Fournier-Viger et al., 2014; 2016). The SPMF library version was 2.41, 

which was the most recent version at the time the experiments were carried out. We 

devised four experiments in which we compared the minimum, maximum, and average exe-

cution times of each algorithm and the total candidate generated from their execution against 

each other and for increasing file lengths (i.e., the number of rows): 5,000; 10,000; 25,000; 

50,000. The algorithms are given the same input parameters of minsup of 1 and maxwin 

of 2 to discover all unique serial episodes with length 1 and length 2 that appears at least 

one time in the input data. These input parameters are also the parameters used for the 

episode mining task of our proposed automated model abstraction method and the dis-

covered episodes corresponds to the unique state-trace records and state-trace record 

pairs – i.e., state-transitions – in the state-trace data. For the first three experiments where 

the input file lengths are 5,000; 10,000; 25,000, we obtained the results for each algorithm 

by running them 50 times. However, for the fourth experiment, where we used an input 

file with a length of 50,000, we limited the total number of runs to 20 for practical reasons 

(i.e., the average runtime of the MINEPI algorithm to generate results for the given input 

data set was close to one hour).  

The results of all four experiments are presented in the below four tables: Table A.1.1, 

A.1.2, A.1.3, and A.1.4. In addition to the comparison experiment results, Table A.1.5 

provides an overview of the hardware specifications of the system used in the experi-

ments. Experiments revealed that the EMMA algorithm is consistently the fastest at find-

ing all unique state-trace records and consecutive state-trace record pairs from state-trace 

data of varying length: 5,000; 10,000; 25,000 and 50,000 state-trace records. The differ-

ences in the total number of candidates generated are due to the different methods used 
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by each algorithm to count episode frequencies as described in (Huang & Chang, 2008). 

While the total number of generated candidate episodes varies by algorithm, the number 

of frequent episodes identified by each algorithm is the same. For the first experiment 

shown in Table A.1.1, the number of frequent episodes identified by each algorithm is 

5,061. 

 

Table A.1.1. Comparison of total mining times and total candidate generated for state-trace 
length 5,000 across 50 runs 

 Minimum execu-
tion time (ms) 

Maximum exe-
cution time (ms) 

Average execu-
tion time (ms) 

Total candidate 
generated 

MINEPI 97,686 103,672 99,722 1,158,273 

MINEPI+ 341 377 355 8,867,867 

EMMA 215 235 219 5,431,526 

 

Table A.1.2. Comparison of total mining times and total candidate generated for state-trace 
length 10,000 

 Minimum execu-
tion time (ms) 

Maximum execu-
tion time (ms) 

Average execu-
tion time (ms) 

Total candidate 
generated 

MINEPI 271,888 302,065 282,520 1,606,119 

MINEPI+ 1,023 1,084 1,050 17,261,845 

EMMA 514 538 521 10,508,160 

 

Table A.1.3. Comparison of total mining times and total candidate generated for state-trace 
length 25,000 

 Minimum exe-
cution time (ms) 

Maximum execu-
tion time (ms) 

Average execu-
tion time (ms) 

Total candidate 
generated 

MINEPI 1,045,615 1,439,626 1,212,278 2,043,308 

MINEPI+ 4,451 5,014 4,544 35,054,252 

EMMA 1,854 1,905 1,879 21,151,472 

 

 

 

 

 

*
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Table A.1.4. Comparison of total mining times and total candidate generated for state-trace 
length 50,000 

 Minimum exe-
cution time (ms)  

Maximum execu-
tion time (ms) 

Average execu-
tion time (ms) 

Total candidate 
generated 

MINEPI 2,773,234 3,474,219 3,229,606 2,348,132 

MINEPI+ 14,619 15,761 14,781 53,749,181 

EMMA 4,651 4,806 4,730 32,260,032 

 

Table A.1.5. An overview of the hardware specification of the system used in the experiments 
Type Specifications 

Processor Name Intel Core i5 

Processor Speed 3.1 GHz 

Number of Processors 1 

Total Number of Cores 2 

L2 Cache (per Core) 256 KB 

L3 Cache 4 MB 

RAM Type LPDDR3 

RAM Size 2x4 GB 

RAM Speed 2,133 MHz 

 

A.2. EMMA Algorithm Input Format 

The SPMF implementation (Fournier-Viger et al., 2014; 2016) of the EMMA algorithm 

has five input parameters:  

(I) An input text file, which contains preprocessed state-trace data  

(II) The output file, which will eventually contain identified episodes and their 

frequency counts 

(III) Minimum support threshold (or minsup)  

(IV) Maximum time duration or maximum window length  

(V) A Boolean parameter indicating that the input data is ordered and each row 

contains a sequence number incrementing by 1 when it is set to “false”.  
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For a given input data set, the output of the SPMF implementation of the EMMA algo-

rithm consists of two pieces of information: (a) the set of frequent episodes with support 

no less than the given minsup parameter and with length smaller than or equal to the 

maxwin parameter, and (b) the frequencies of these episodes. To sequentially process all 

state-traces in the training data set, we introduced two user-defined parameters to the 

EMMA implementation: (a) rangeFrom (initialization parameter) and (b) rangeTo (condi-

tion parameter).  

 

*
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Appendix B 

This chapter provides details regarding the JAVA implementation of the MarkovModel 

Class used by the case studies in Chapter 4, and 5 and the MATLAB implementation of 

the MarkovChain used by the M/M/1 case study in Chapter 329. 

B.1. Markov Chain: Java Implementation Details 

After obtaining the transition probabilities, the next step is to represent these probabili-

ties in a sparse matrix format in order to generate the discrete-time Markov Chain's tran-

sition matrix P. Therefore, as shown in line 1, one of the input parameters for the Mar-

kovModel constructor given in Table B.1 is a sparseMatrix of the particular Markov 

Chain. The sparseMatrix generated by the end of the frequent episode mining phase of 

our automated model abstraction method contains three columns (line 20-22 in Table 

B.1 reads these three columns): state i, state j, transitionProbabilities Pij. An example sparse-

Matrix containing some example data belonging to is given in Table B.2.  

 
Table B.1. MarkovModel constructor 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

public MarkovModel(String directory, String sparseMatrixFilename) 
    { 
        try (BufferedReader sparseMatrixFile = new BufferedReader(new FileReader(direc-
tory + sparseMatrixFilename))) 
        { 
            String line; 
            String[] parts; 
            int s = 0; 
            int t = 0; 
            double p = 0.0; 
            int source = -1; 
            List<Double> probList = new ArrayList<>(); 
            List<Integer> targetList = new ArrayList<>(); 
            do 

                                                        

 

29 It should be noted that source code and data will become available as open data, and that the final thesis will 
contain the link to all data used in the research. 
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15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

            { 
                line = sparseMatrixFile.readLine(); 
                if (line != null) 
                { 
                    parts = line.split("\t"); 
                    s = Integer.parseInt(parts[0]); 
                    t = Integer.parseInt(parts[1]); 
                    p = Double.parseDouble(parts[2]); 
                } 
                if (line == null || s != source) 
                { 
                    if (source != -1 || line == null) 
                    { 
                        int[] targetArray = new int[targetList.size()]; 
                        double[] probArray = new double[probList.size()]; 
                        double cumProb = 0.0; 
                        for (int i = 0; i < probArray.length; i++) 
                        { 
                            targetArray[i] = targetList.get(i); 
                            cumProb += probList.get(i); 
                            probArray[i] = cumProb; 
                        } 
                        probArray[probArray.length - 1] = 1.0; 
                        this.targetMap.put(source, targetArray); 
                        this.probMap.put(source, probArray); 
                        probList.clear(); 
                        targetList.clear(); 
                    } 
                    source = s; 
                } 
                targetList.add(t); 
                probList.add(p); 
            } 
            while (line != null); 
            sparseMatrixFile.close(); 
             
        } 
        catch (IOException e) 
        { 
            e.printStackTrace(); 
        } 
    } 

 

*
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Table B.2. Example sparseMatrix with states and transition probabilities 
State i State j Transition Probability Pij 

1 2 0.680 

1 4 0.020 

1 4683910 0.020 

1 6186116 0.020 

1 1108859 0.020 

1 2563306 0.040 

1 261035 0.040 

1 261033 0.080 

2 1108859 0.010 

2 261033 0.069 

2 261035 0.079 

2 2 0.663 

2 4 0.020 

2 579758 0.040 

2 4683910 0.020 

2 861729 0.079 

2 8125670 0.010 

2 6186116 0.010 

4 4 0.727 

4 7 0.273 

7 7 0.769 

7 12 0.077 

7 4026157 0.154 

12 16 1.000 

16 16 0.875 

16 23 0.125 

23 23 0.882 

 

After the Markov Chain is constructed using the transition matrix, the next step is to 

simulate the Markov Chain. The Table B.3 shows the code snippet of the run method 

that performs the (stochastic) state walks. The method takes a unique Mersenne Twister 

pseudo-RNG seed value, a repetition count and the initial state of the Markov Chain.   

158962 Tekinay BNW.indd   206158962 Tekinay BNW.indd   206 09-05-2022   15:4509-05-2022   15:45



 195 

Table B.3. run method of the Markov Chain that executes the state walks  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

public List<Integer> run (final long seed, final long maxCount, int initialState)  
    { 
        List<Integer> outputStateList = new ArrayList<>(); 
        StreamInterface stream = new MersenneTwister(seed); 
        int state = initialState; 
        int count = 0; 
        double[] probs; 
        double rand; 
        int nr; 
        while (true) 
        { 
            outputStateList.add(state); 
            probs = this.probMap.get(state); 
             
            if (probs == null) 
            {     
              int lastIndex = outputStateList.size()-1; 
              outputStateList.remove(lastIndex); 
              break; 
            } 
 
            rand = stream.nextDouble(); 
            if (probs[0] == 0 || count >= maxCount) 
                break; 
 
            nr = 0; 
            while (probs[nr] < rand) 
                nr++; 
            state = this.targetMap.get(Army)[nr]; 
 
            count++; 
        } 
        return outputStateList; 
    } 

 

  

*
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B.2. Markov Chain: MATLAB Implementation Details 

The creation and the simulation of the discrete-time Markov Chain (dtmc) used by the 

M/M/1 case study in chapter 3 is implemented in MATLAB. We used the dtmc object 

that comes with the Econometrics Toolbox30 of MATLAB (version R2018b) to create 

the discrete-time, finite-state, time-homogeneous Markov chain from given state transi-

tion matrix. To simulate the random state walks of a generated dtmc, we used the simulate 

function which comes with the same Econometrics Toolbox. The simulate function re-

turns state-trace data for each run in the form of random state walks for the following 

input parameters: 1) the discrete-time Markov Chain mc, 2) random state-walk length 

numSteps, 3) the initial state 'X0' of 4) simulation x0. The Table B.4 shows the code snippet 

of the MarkovChain.m function which was the main program to perform Markov Chain 

experiments for the M/M/1 case study.  

The MarkovChain function takes the transition matrix, initial pseudo-RNG seed value 

(e.g., 5001 for the M/M/1 case study), number of repetitions (e.g., 100 runs), a list of 

stateNames (i.e., unique episodes with maxwin of 1 identified by the EMMA algorithm), 

and the number of steps (i.e., the length of the state walk – 50,000 for the M/M/1 case 

study). It can be seen from the code snippet that the mc discrete-time Markov Chain is 

created in line 10 and simulated using the simulate function in line 17. Finally, the output 

of the simulate function, which is a Markov Chain state-trace, is written to text file after 

each run (line 26).  

 

  

                                                        

 

30 The Econometrics Toolbox of MATLAB: https://www.mathworks.com/products/econometrics.html 
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Table B.4. MarkovChain.m MATLAB implementation  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

function MarkovChain(transitionMatrix, initialSeed, numOfRep, stateNames, num-
Steps) 
  numStepIndex = 1; 
  for seed = initialSeed:(initialSeed + (numOfRep-1)) 
 
    rng(seed ,'twister'); % For reproducibility  
   %assigning TM to P. Note that TM should be loaded to the memory. 
    P = transitionMatrix;  
      
   %creation of the mc discrete-time Markov Chain 
    mc = dtmc(P, 'StateNames', stateNames); 
 
    %setting the number of states vector with [1 0 0 0 ... 0] 
    x0 = zeros(1, mc.NumStates); 
    x0(1,1) = 1; 
 
    %simulating the mc discrete-time markov chain 
    X = simulate(mc,numSteps(1,numStepIndex),'X0',x0); 
 
    X = X(X~=0); %only non-zero states (sparse matrix) 
    L = length(X); %Length of each run 
    %Markov Chain state-trace file name 
    X_MC_name = strcat('MC_StateTrace_', num2str(numStepIndex,'%03.f'),'.txt'); 
    
   %writing the content of the state-trace to the file 
    fid = fopen(X_MC_name, 'wt'); 
    dlmwrite(X_MC_name, X,'precision', 6); 
    fclose(fid); 
   
    numStepIndex = numStepIndex + 1; 
  end %end of for loop 
end %end function MarkovChain.m 

 

 

*
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Appendix C 

C.1. Short-merge Case Study State-Trace Metadata 

This chapter provides further details on the reportState method implementation in Java 

that was used in Chapter 5’s short-merge case study model to capture the state-trace 

metadata, and the content of this state-trace metadata with the model reported model 

variables, example values, and their descriptions.  A state-trace metadata corresponds to 

the source system in Klir’s GSPS (Klir, 1985) and contains the time-indexed trajectories 

of model variables such as state-variables, run-statistics, contextual variables, and simu-

lation time needed for the possible set of model abstraction experiments to be per-

formed. The modeler can use the proposed method to select a subset of the state-trace 

metadata and perform the automated model abstraction. 

To iteratively identify and include new model variables such as state-variables, run-sta-

tistics, contextual variables, and simulation time to the short-merge model's state-trace 

data for each new model abstraction experiment (e.g., addition of new variables to im-

prove model accuracy) is not an optimal strategy given the time it takes for a single run 

to generate state-trace data from the short-merge model and the desired number of rep-

etitions (100). Instead, we generated a state-trace metadata set that includes a larger set 

of model variables that may be necessary for the possible set of model abstraction ex-

periments. Then, we selected a subset of the columns from this meta state-trace data in 

order to perform the case study in Chapter 5. Table C.1 below lists this larger set of 

model variables31 generated from the execution of the short-merge model. The table 

shows the name of the variables, example values, and their descriptions.  

 

 

                                                        

 

31 The vehicle-related variables (i.e., twenty variables per vehicle) are listed only for 2 vehicles as they repeat for 
all 2,500 vehicles. 
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Table C.1. State-trace metadata of the short-merge case study 
Model variable Value Description 
1. time 
2. elapsedTime 
3. nrVehiclesAB_d1 
4. nrVehiclesAB_d2 
5. nrVehiclesBC_d1 
6. nrVehiclesBC_d2 
7. nrVehiclesBC_d3 
8. nrVehiclesCD_d1 
9. nrVehiclesCD_d2 
10. nrVehiclesDE_d1 
11. nrVehiclesDE_d2 
12. nrVehiclesF2B_d1 
13. nrVehiclesAB 
14. nrVehiclesBC 
15. nrVehiclesCD 
16. nrVehiclesDE 
17. nrVehiclesF2B 
18. avgSpeedACar_N 
19. avgSpeedACar_Mean 
20. avgSpeedACar_StDev 
21. avgSpeedACar_Min 
22. avgSpeedACar_Max 
23. avgSpeedFCar_N 
24. avgSpeedFCar_Mean 
25. avgSpeedFCar_StDev 
26. avgSpeedFCar_Min 
27. avgSpeedFCar_Max 
28. avgSpeedATruck_N 
29. avgSpeedATruck_Mean 
30. avgSpeedATruck_StDev 
31. avgSpeedATruck_Min 
32. avgSpeedATruck_Max 
33. avgSpeedFTruck_N 
34. avgSpeedFTruck_Mean 
35. avgSpeedFTruck_StDev 
36. avgSpeedFTruck_Min 
37. avgSpeedFTruck_Max 
38. modelTimeACar_N 
39. modelTimeACar_Mean 
40. modelTimeACar_StDev 
41. modelTimeACar_Min 
42. modelTimeACar_Max 
43. modelTimeFCar_N 
44. modelTimeFCar_Mean 
45. modelTimeFCar_StDev 
46. modelTimeFCar_Min 
47. modelTimeFCar_Max 
48. modelTimeATruck_N 
49. modelTimeATruck_Mean 
50. modelTimeATruck_StDev 
51. modelTimeATruck_Min 
52. modelTimeATruck_Max 
53. modelTimeFTruck_N 
54. modelTimeFTruck_Mean 
55. modelTimeFTruck_StDev 
56. modelTimeFTruck_Min 
57. modelTimeFTruck_Max 
58. nrVehiclesABForward1_nrVehicles 
59. nrVehiclesABForward1_N 
60. nrVehiclesABForward1_WeightedMean 
61. nrVehiclesABForward1_WeightedStDev 
62. nrVehiclesABForward1_Min 
63. nrVehiclesABForward1_Max 

3,599.5 
0.5 
30 
67 
1 
3 
0 
1 
0 
21 
27 
1 
97 
4 
1 
48 
1 
1627 
24.53 
6.54 
7.58 
37.84 
312 
19.52 
2.513 
14.28 
27.39 
266 
18.51 
4.79 
7.68 
25.89 
141 
17.03 
1.67 
13.64 
20.73 
1627 
133.64 
55.91 
77.73 
387.68 
312 
87.74 
10.73 
61.56 
118.10 
266 
173.75 
61.91 
113.31 
381.53 
141 
99.47 
9.79 
80.93 
122.99 
30.0 
7199 
16.74 
8.28 
0.0 
43.0 

Absolute time 
Delta time 
Start glue option 1 
| 
| This contextual variable set indicates the 
|number of cars on each lane. Through this 
|value, average speed, acceleration and 
| deceleration, as well as lane changes 
| are influenced. The more cars, the lower 
| the average speed, for instance. 
| 
End contextual variable set - option 1 
Start contextual variable set - option 2 
| Shorter version with #cars per link 
|    (all lanes combined) 
|    So #13 = #3 + #4    (97 = 30 + 67) 
End contextual variable set - option 2 
Start statistic #1 
| Speed statistic of cars that left the 
| model, for cars that started at the 
| left side of the model. 
End statistic #1 
Start statistic #2 
| Speed statistic of cars that left the 
| model, for cars that started at the 
| bottom side of the model. 
End statistic #2 
Start statistic #3 
| Speed statistic of trucks that left the 
| model, for trucks that started at the 
| left side of the model. 
End statistic #3 
Start statistic #4 
| Speed statistic of trucks that left the 
| model, for trucks that started at the 
| bottom side of the model. 
End statistic #4 
Start statistic #5 
| Time-in-system of cars that left the 
| model, for cars that started at the 
| left side of the model. 
End statistic #5 
Start statistic #6 
| Time-in-system of cars that left the 
| model, for cars that started at the 
| bottom side of the model. 
End statistic #6 
Start statistic #7 
| Time-in-system of trucks that left the 
| model, for trucks that started at the 
| left side of the model. 
End statistic #7 
Start statistic #8 
| Time-in-system of trucks that left the 
| model, for trucks that started at the 
| bottom side of the model. 
End statistic #8 
Start statistic #9 
| Number of vehicles on AB lane 1 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #9 

*
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64. nrVehiclesABForward2_nrVehicles 
65. nrVehiclesABForward2_N 
66. nrVehiclesABForward2_WeightedMean 
67. nrVehiclesABForward2_WeightedStDev 
68. nrVehiclesABForward2_Min 
69. nrVehiclesABForward2_Max 
70. nrVehiclesBCForward1_nrVehicles 
71. nrVehiclesBCForward1_N 
72. nrVehiclesBCForward1_WeightedMean 
73. nrVehiclesBCForward1_WeightedStDev 
74. nrVehiclesBCForward1_Min 
75. nrVehiclesBCForward1_Max 
76. nrVehiclesBCForward2_nrVehicles 
77. nrVehiclesBCForward2_N 
78. nrVehiclesBCForward2_WeightedMean 
79. nrVehiclesBCForward2_WeightedStDev 
80. nrVehiclesBCForward2_Min 
81. nrVehiclesBCForward2_Max 
82. nrVehiclesBCForward3_nrVehicles 
83. nrVehiclesBCForward3_N 
84. nrVehiclesBCForward3_WeightedMean 
85. nrVehiclesBCForward3_WeightedStDev 
86. nrVehiclesBCForward3_Min 
87. nrVehiclesBCForward3_Max 
88. nrVehiclesCDForward1_nrVehicles 
89. nrVehiclesCDForward1_N 
90. nrVehiclesCDForward1_WeightedMean 
91. nrVehiclesCDForward1_WeightedStDev 
92. nrVehiclesCDForward1_Min 
93. nrVehiclesCDForward1_Max 
94. nrVehiclesCDForward2_nrVehicles 
95. nrVehiclesCDForward2_N 
96. nrVehiclesCDForward2_WeightedMean 
97. nrVehiclesCDForward2_WeightedStDev 
98. nrVehiclesCDForward2_Min 
99. nrVehiclesCDForward2_Max 
100. nrVehiclesDEForward1_nrVehicles 
101. nrVehiclesDEForward1_N 
102. nrVehiclesDEForward1_WeightedMean 
103. nrVehiclesDEForward1_WeightedStDev 
104. nrVehiclesDEForward1_Min 
105. nrVehiclesDEForward1_Max 
106. nrVehiclesDEForward2_nrVehicles 
107. nrVehiclesDEForward2_N 
108. nrVehiclesDEForward2_WeightedMean 
109. nrVehiclesDEForward2_WeightedStDev 
110. nrVehiclesDEForward2_Min 
111. nrVehiclesDEForward2_Max 
112. nrVehiclesF2BForward1_nrVehicles 
113. nrVehiclesF2BForward1_N 
114. nrVehiclesF2BForward1_WeightedMean 
115. nrVehiclesF2BForward1_WeightedStDev 
116. nrVehiclesF2BForward1_Min 
117. nrVehiclesF2BForward1_Max 
118. gtuId 
119. active_0 
120. carTruck_0 
121. laneId_0 
122. lanePos_0 
123. odometer_0 
124. speed_0 
125. acceleration_0 
126. turnIndicator_0 
127. brakingLights_0 
128. distanceHalfSec_0 
129. x_0 
130. y_0 
131. z_0 

67.0 
7199 
32.35 
20.40 
0.0 
87.0 
1.0 
7199 
1.35 
0.95 
0.0 
4.0 
3.0 
7199 
2.04 
1.10 
0.0 
5.0 
0.0 
7199 
0.92 
0.89 
0.0 
4.0 
1.0 
7199 
0.17 
0.37 
0.0 
1.0 
0.0 
7199 
0.29 
0.45 
0.0 
1.0 
21.0 
7199 
14.51 
4.15 
0.0 
25.0 
27.0 
7199 
22.07 
4.77 
0.0 
33.0 
1.0 
7199 
2.75 
1.69 
0.0 
9.0 
0 
0 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

Start statistic #10 
| Number of vehicles on AB lane 2 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #10 
Start statistic #11 
| Number of vehicles on BC lane 1 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #11 
Start statistic #12 
| Number of vehicles on BC lane 2 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #12 
Start statistic #13 
| Number of vehicles on BC lane 3 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #13 
Start statistic #14 
| Number of vehicles on CD lane 1 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #14 
Start statistic #15 
| Number of vehicles on CD lane 2 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #15 
Start statistic #16 
| Number of vehicles on DE lane 1 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #16 
Start statistic #17 
| Number of vehicles on DE lane 2 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #17 
Start statistic #18 
| Number of vehicles on F2B lane 1 
| nr = number at the moment, 
| N = number of observations, 
| mean, stdev, min, max are weighted stats 
End statistic #18 
GTU-based state generation start - Id# 0-2499 
0 = inactive, 1 = active 
car or truck; car = 0; truck = 1 
lane of the reference point of the vehicle 
position in meters from the start of the lane 
odometer of vehicle in m (driven distance) 
speed in m/s 
acceleration in m/s2 
turnindicator: 0 = off, 1 = left, 2 = right 
braking lights off = 0, on = 1 
driven distance in current half second 
x position of vehicle 
y position of vehicle 
z position of vehicle 
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132. dirZ_0 
133. deltaX_0 
134. deltaY_0 
135. deltaZ_0 
136. deltaLanePos_0 
137. deltaOdometer_0 
138. gtuId 
139. active_1 
140. carTruck_1 
141. laneId_1 
142. lanePos_1 
143. odometer_1 
144. speed_1 
145. acceleration_1 
146. turnIndicator_1 
147. brakingLights_1 
148. distanceHalfSec_1 
149. x_1 
150. y_1 
151. z_1 
152. dirZ_1 
153. deltaX_1 
154. deltaY_1 
155. deltaZ_1 
156. deltaLanePos_1 
157. deltaOdometer_1 
158. gtuId 
159. active_2 
160. carTruck_2 
161. laneId_2 
162. lanePos_2 
163. odometer_2 
164. speed_2 
165. acceleration_2 
166. turnIndicator_2 
167. brakingLights_2 
168. distanceHalfSec_2 
169. x_2 
170. y_2 
171. z_2 
172. dirZ_2 
173. deltaX_2 
174. deltaY_2 
175. deltaZ_2 
176. deltaLanePos_2 
177. deltaOdometer_2 

NA 
NA 
NA 
NA 
NA 
NA 
1 
0 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
2 
0 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

z-rotation (orientation) of vehicle in rad. 
deltaX position of vehicle 
deltaY position of vehicle 
deltaZ position of vehicle 
deltalanePos on the lane of the vehicle 
deltaOdometer of gtu (delta driven distance) 
VEHICLE #1 STARTS HERE 
|  20 fields for next vehicle 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| END OF VEHICLE 1 
VEHICLE #2 STARTS HERE 
| 20 fields for next vehicle 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| END OF VEHICLE 2 

 

C.2. reportState Method Implementation 

To generate the state-trace data shown in Table C.1, we implemented the reportState 

method which is scheduled as a method call to be executed by the simulator at every 0.5 

seconds delta time (line 97 in Table C.2). The complete code snippet of the reportState 

method is given in Table C.2. In the code snippet, the lines 5-15 are responsible for the 

reporting of the linkCapacity contextual variables discussed earlier in §5.2.3.1.2. The lines 

17-35 reports the transient values of the run statistics for the short-merge model. The 

lines 37-95 registers the state-variables for each vehicle until all 2,500 vehicle states are 

*
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captured in the same row of the state-trace, separated by a tab character. Finally, the 

reporter completes registering all model variables, moves to a new line and flushes the 

writer (line 95 and 96) and schedules another method call to be executed at getSimula-

torTime()+relativeDuration, where the relativeDuration is 0.5 seconds.  

 

Table C.2.  The Java code snippet of the reportState method implemented in the short-merge 
case study model  
1 
2 
3 
4 
5 
6 
7 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

public void reportState() throws Exception 
     { 
       this.out.print(getSimulator().getSimulatorTime().si + "\t0.5"); 
 
       double[] ingested = new double[10]; 
        ingested[0] = this.nrVehiclesABForward1.ingest(this.net-
work.lanes.get("AB.FORWARD1").getGtuList().size()); 

        ingested[1] = this.nrVehiclesABForward2.ingest(this.net-
work.lanes.get("AB.FORWARD2").getGtuList().size()); 
        ingested[2] = this.nrVehiclesBCForward1.ingest(this.net-
work.lanes.get("BC.FORWARD1").getGtuList().size()); 
        ingested[3] = this.nrVehiclesBCForward2.ingest(this.net-
work.lanes.get("BC.FORWARD2").getGtuList().size()); 
        ingested[4] = this.nrVehiclesBCForward3.ingest(this.net-
work.lanes.get("BC.FORWARD3").getGtuList().size()); 
        ingested[5] = this.nrVehiclesCDForward1.ingest(this.net-
work.lanes.get("CD.FORWARD1").getGtuList().size()); 
        ingested[6] = this.nrVehiclesCDForward2.ingest(this.net-
work.lanes.get("CD.FORWARD2").getGtuList().size()); 
        ingested[7] = this.nrVehiclesDEForward1.ingest(this.net-
work.lanes.get("DE.FORWARD1").getGtuList().size()); 
        ingested[8] = this.nrVehiclesDEForward2.ingest(this.net-
work.lanes.get("DE.FORWARD2").getGtuList().size()); 
        ingested[9] =this.nrVehiclesF2BForward1.ingest(this.net-
work.lanes.get("F2B.FORWARD1").getGtuList().size()); 
 
            for (SimTally.TimeDoubleUnit tally : this.statTallyArray) 
            { 
                this.out.print("\t" + tally.getN()); 
                this.out.print("\t" + tally.getSampleMean()); 
                this.out.print("\t" + tally.getSampleStDev()); 
                this.out.print("\t" + tally.getMin()); 
                this.out.print("\t" + tally.getMax()); 
            } 
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36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

            int i = 0; 
            for (SimPersistent.TimeDoubleUnit persistent : this.statPersistentArray) 
            { 
                this.out.print("\t" + ingested[i++]); 
                this.out.print("\t" + persistent.getN()); 
                this.out.print("\t" + persistent.getWeightedSampleMean()); 
                this.out.print("\t" + persistent.getWeightedSampleStDev()); 
                this.out.print("\t" + persistent.getMin()); 
                this.out.print("\t" + persistent.getMax()); 
            } 
 
            for (int gtuId = 0; gtuId < NUM_GTUS; gtuId++) 
            { 
                LaneBasedIndividualGtu gtu = (LaneBasedIndividualGtu) this.network.getGtuByIdMap().get(gtuId); 
                this.out.print("\t" + gtuId); 
                this.out.print("\t" + (gtu == null ? "0" : "1")); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.getGTUType().getId().equals("car") ? "0" : "1")); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.getReferencePosition().getLane().getFullId())); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.getReferencePosition().getPosition().si)); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.getOdometer().si)); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.getSpeed().si)); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.getAcceleration().si)); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.getTurnIndicatorStatus().ordinal())); 
                this.out.print("\t" + (gtu == null ? "NA" : gtu.isBrakingLightsOn() ? "1" : "0")); 

                this.out.print("\t" + (gtu == null ? "NA" : gtu.getOperationalPlan().getTotalLength().si)); 
                OrientedPoint3d pos = gtu == null ? null : gtu.getLocation(); 
                this.out.print("\t" + (gtu == null ? "NA" : pos.x)); 
                this.out.print("\t" + (gtu == null ?  "NA" : pos.y)); 
                this.out.print("\t" + (gtu == null ? "NA" : pos.z)); 
                this.out.print("\t" + (gtu == null ?  "NA": pos.getDirZ())); 
                LastGtuRecord last = this.network.getLastGtu(gtuId); 
                String dx = last != null ? String.valueOf(pos.x - last.x) : "NA"; 
                this.out.print("\t" + dx); 
                String dy = last != null ? String.valueOf(pos.y - last.y) : "NA"; 
                this.out.print("\t" + dy); 
                String dz = last != null ? String.valueOf(pos.z - last.z) : "NA"; 
                this.out.print("\t" + dz); 
                String dLP = "NA"; 
                if (last != null) 
                { 
                    try 
                    { 
                        if (last.firstLane.length() == 0) 
                        { 
                            last.firstLane = gtu.getReferencePosition().getLane().getFullId(); 

*
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81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 

105 
106 
107 
108 

                        } 
                        if (gtu.getReferencePosition().getLane().getFullId().equals(last.lastLane)) 
                        { 
                            dLP = String.valueOf(gtu.getReferencePosition().getPosition().si - last.lastLaneX); 
                        } 
                    } 
                    catch (GtuException exception) 
                    { 
                        exception.printStackTrace(); 
                    } 
                } 
                this.out.print("\t" + dLP); 
                String dOdo = last != null ? String.valueOf(gtu.getOdometer().si - last.odo) : "NA"; 
                this.out.print("\t" + dOdo); 
                if (gtu != null && last != null) 
                { 
                    last.x = pos.x; 
                    last.y = pos.y; 
                    last.z = pos.z; 
                    last.lastLane = gtu.getReferencePosition().getLane().getFullId(); 
                    last.lastLaneX = gtu.getReferencePosition().getPosition().si; 
                    last.odo = gtu.getOdometer().si; 
                } 
            } 

            this.out.println(); 
            this.out.flush(); 
            getSimulator().scheduleEventRel(Duration.instantiateSI(0.5), this, this, "reportState", null); 
        } 
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206 – Summary 

Summary 

Large-scale complex systems are characterized by a large number of interconnected var-

iables and a diverse set of interactions. As the demand for the development and optimi-

zation of large-scale systems is growing, so does the need for better techniques to under-

stand their underlying dynamic behavior and predict and manage their long-term perfor-

mance. With the increased capabilities of computer technology, we have been able to run 

simulation models for these systems that are larger in scale and higher in complexity. 

While these advancements have enabled more accurate representations of real-world sys-

tems, the ever-increasing scale and complexity of simulation models may eventually result 

in models that are too complex to work with – giving rise to large-scale complex simulation 

models.  

Large-scale complex simulation models raise new questions and challenges for the mod-

eling and simulation community, including how models of such large scale and complex-

ity can be expressed and modeled more efficiently, how to ensure that their representa-

tions of the underlying systems' complex dynamic behavior are valid, and what tools and 

techniques can be used to do so. Model abstraction is a strategy for dealing with the scale 

and complexity of large-scale complex simulation models. However, traditional model 

abstraction methods such as metamodeling and multiresolution modeling are limited in 

their ability to automate the model abstraction process.  

A more viable approach for automating the model abstraction and preserving the under-

lying dynamic behavior for large-scale complex simulation models, specifically discrete-

event simulation models, may be model abstraction at the transformation level (also re-

ferred to as generative system level or the state transition level). Abstraction at the trans-

formation level can be achieved using state-trace data that encapsulate the model's dy-

namic behavior. State-trace data describe the dynamic behavior of the model at discrete 

points in time, allowing modelers to capture the state-transitions of the model over the 

runtime. The state-trace data can be expressed as event sequences or multivariate time 

series consisting of categorical variables, numerical variables, or both. As such, state-trace 

data can be used to discover behavioral patterns relevant to the desired level of 
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abstraction. Assuming a morphism relation between a pair of system specifications at the 

state-transition level, a valid correspondence relation (mapping) can be established be-

tween the base model’s (i.e., the more detailed system specification) and the lumped 

model’s (i.e., the abstracted system specification) state-transitions, where the lumped 

model uses these previously discovered behavioral patterns as aggregated states.  

However, traces of state-transitions obtained from the runs of large-scale complex sim-

ulation models can get extensive in terms of their volume (the size of the trace data and 

the number of state variables to be sampled from different model components) and va-

riety (the number of unique states). This consequently confines modelers’ ability to iden-

tify and utilize state trace patterns for model abstraction. Data mining and machine learn-

ing methods have been designed to ease the process of discovering frequent patterns in 

temporal data. Although such methods have proven to be useful for recognizing behav-

ioral patterns within large volumes of data, they have not yet been applied to automate 

the abstraction of large-scale complex discrete-event simulation models. This would re-

quire techniques that not only identify important behavioral patterns in state-trace data, 

but also generate aggregated states at various abstraction levels to construct models at a 

higher level of abstraction. Integrating the fields of modelling and simulation and tem-

poral data mining may provide a promising direction to deal with the automated abstrac-

tion of large-scale complex simulation models. 

In this dissertation, we aim to investigate to what extent the abstraction of large-scale 

complex simulation models, specifically the discrete-event simulation models expressed 

in DEVS formalism, can be automated using their state-trace data. In order to achieve 

this objective, we designed a method that integrates the fields of modeling and simulation 

and temporal data mining by utilizing state-trace data and applying frequent episode min-

ing techniques to discover behavioral patterns. We demonstrated the practical applica-

tion of our method using three simulation case studies with increasing scale and com-

plexity and with different model characteristics.  

In DEVS, the next state can be determined solely by knowing the current state and the 

time elapsed (i.e., memoryless). Consequently, the dynamic behavior of a DEVS model 

encapsulated in state-trace data can be simplified by applying frequent episode mining 

algorithms to identify frequent state-trace record pairs corresponding to the model’s 

*
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state-transitions. The resulting simplified model can subsequently be formally described 

using Markov Chain. The memoryless property of Markov Chain states is akin to the 

discrete-event model states in DEVS and the state-transition probabilities represented in 

matrix format is the transition matrix of a valid stochastic discrete-time Markov Chain. 

To determine the best performing frequent episode mining algorithm for the state-trace 

data generated by the execution of discrete-event simulation models, we compared sev-

eral popular frequent episode mining algorithms, such as MINEPI, MINEPI+, and 

EMMA. Experiment results (Appendix A) revealed that, at the time of our research, 

EMMA is the fastest frequent episode mining algorithm in finding all unique state-trace 

records and consecutive state-trace record pairs from state-trace data of varying lengths. 

In Chapter 3, we first provided a formal description of discrete-event simulation gener-

ated state-trace data and state-trace record, which is essential for a unified understanding 

of these concepts and to properly position our method in the modeling and simulation 

literature. Subsequently, we presented a breakdown of our method and discussed a range 

of considerations at each step that are essential for generating a valid abstraction of the 

base model. In essence, the quality of the behavioral patterns discovered by the temporal 

data mining techniques, and therefore, the success of our method to automate the gen-

eration of valid model abstractions, is highly dependent on the state-trace data generated 

by the base models – the large-scale complex discrete-event simulation models. There-

fore, the first step of our proposed method is to addresses the considerations and actions 

regarding the generation of state-trace data from the discrete-event simulations. We dis-

cussed that there are several factors the modeler needs to consider before deciding on 

the content of the state-trace data and its generation from the simulation of discrete-

event simulation models: representation of time, type of model (stochastic vs. deterministic), type of 

simulation (terminating vs. non-terminating), inclusion of input data, inclusion of output data, and 

complete vs. partial model state-trace data. In Chapter 3, we closely followed the guidelines 

provided for each consideration by our method and demonstrated the step-by-step gen-

eration of the data using a simple M/M/1 single-server queueing model. Similarly, we 

generated state-trace data from the simulation of the battlefield model in Chapter 4 and 

the traffic model in Chapter 5.  
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After the generation of state-trace data from the base model, the next step of our method 

is the application of the frequent episode mining algorithm for the task of discovering 

serial state-transitions and generating the transition probability matrix P of the discrete-

time Markov Chain. We identified several considerations regarding the application of the 

temporal data mining tasks to the state-trace data such as the preprocessing of the state-trace 

data, the application of the EMMA algorithm, and the construction of the transition matrix. For the 

preprocessing of the state-trace data, we provided guidance to the modelers on several 

important sub-considerations such as how to address the input format requirements of 

the EMMA algorithm, how to apply different quantization techniques to deal with a large 

range of values for state variables in the state trace, and how to format the state-trace 

data when performing model abstraction at the system state level and at the model com-

ponent level. After preprocessing the state-trace data, the EMMA algorithm is applied to 

construct the transition matrices represented as sparse matrices and generate the Markov 

Chains. For the M/M/1 and battlefield case studies, we demonstrated the application of 

EMMA algorithm and the generation of Markov Chains at system-state level. For the 

larger and more complex traffic case study (in Chapter 5), we introduced a skip factor 

variable to the EMMA algorithm by means of a preprocessing transformation to the 

state-trace data to identify transition probabilities at model-component level, and thus, 

construct unique transition matrices for each individual vehicle in the traffic system.  

After obtaining the Markov Chain, the next step in our method is to design Markov 

Chain simulation experiments with multiple runs (using unique Random Number Gen-

erator seeds for each run) and to generate state-trace data from these runs. We demon-

strated the difference between simulating the Markov Chain of terminating base models 

and non-terminating base models. In a non-terminating Markov Chain (Chapters 3 and 

5), similar to a non-terminating discrete-event simulation, an artificial end-condition 

should be introduced to terminate the run of the Markov Chain model. However, for the 

terminating battlefield model in Chapter 4, we demonstrated that the accuracy of the 

represented terminating behavior of the base model can be problematic (i.e., models may 

not converge towards the end state) in the absence of absolute time as a state variable in 

the state-trace data. On the other hand, the representation of absolute simulation time 

would introduce monotonously increasing values in the state-trace data, which will 

*
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undermine the ability of the frequent episode mining algorithms to find recurring pat-

terns. To overcome this issue and accurately represent the terminating behavior, contex-

tual variables that provide the progression over time should be included, albeit without 

adding monotonously increasing values to each state record. 

Once the state-trace data are generated from the Markov Chain, the final step of our 

proposed method is to evaluate the accuracy and validity of the abstracted Markov Chain. 

To do so, the Markov Chain generated state-trace data is compared with an independent 

state-trace validation set obtained from the base model. In this dissertation, key statistics 

and performance measures obtained from the original model’s validation sets and the 

abstracted Markov Chains-generated state-trace data were compared using descriptive 

(e.g., spread measures, histograms, box and whisker plots) and inferential statistics (e.g., 

𝜒𝜒2-test, Student’s t-test, two-sample Kolmogorov-Smirnov). The results obtained from 

the three case studies, and specifically their validation process, demonstrated that our 

method is able to obtain Markov Chain estimates of performance measures with an ac-

ceptable level of precision that do not significantly deviate from and follow a similar 

distribution as the original model’s validation set. We also argued that it is of great im-

portance for the modeler to not solely rely on p-values to judge the accuracy of the base 

model’s representation but also evaluate descriptive statistics as well as the magnitude of 

the difference, that is, Markov Chains’ estimates should be considered within the context 

of the system of interest and the goals of the model abstraction study. For instance, in 

the traffic case study (Chapter 5), the Student’s t-test results indicated that the car and 

truck mean speeds generated from the Markov Chain differed significantly from the 

mean speeds obtained from the base model for Route F; however, the absolute mean 

difference was insignificantly small given the nature of the case study. Similarly, the re-

sults of the 𝜒𝜒2-test in Chapter 3 illustrated that a large sample size may result in a signif-

icant difference between the two distributions (a known problem with significance test-

ing based on p-values), even though the Cramer’s V effect size and graphical visualiza-

tions suggested that the magnitude of this difference was very small.  

Finally, the results in this dissertation revealed that increasing the model’s resolution by 

increasing the quantization levels of the variables (e.g., the number of bins) alone does 

not improve the accuracy of the model in the absence of relevant contextual variables. 
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In fact, the results of the battlefield case study (Chapter 4) showed that the presence of 

contextual variables is important for the accurate representation of the terminating be-

havior of the base model, and specifically, for obtaining run-lengths that are sufficiently 

close to the base model’s run-length. Similarly, in the traffic case study (Chapter 5), our 

validation study highlighted how essential the contextual variables are for the accuracy 

of the Markov Chain when representing the stochastic behavior (e.g., the generation of 

the traffic stream) of the base model. Experiments indicated that the average number of 

vehicles generated (across all runs) by the Markov Chains with the additional contextual 

variables got closer to the base model’s numbers than the Markov Chains without those 

additional contextual variables. 

In sum, the presented research showed that our novel method is capable of automating 

the abstraction of large-scale and complex discrete-event simulation models with large 

state-spaces. Although the process can be fully automated, some decisions, such as which 

state variables and contextual variables to be included and what quantization levels to be 

used, will benefit from support by modelers who understand the simulation model and 

the context in which the model is to be used. The findings throughout this dissertation 

demonstrated that the method is able to generate valid Markov Chains from the base 

model’s state-trace data that adequately represent the dynamic behavior of the base 

model and estimate its key performance measures with sufficient precision and accuracy. 

Moreover, by presenting a sequence of clear steps and decisions for our method and 

addressing a range of considerations that modelers may face, we demonstrated how state-

trace data and temporal data mining techniques may best be applied to automatically 

abstract simulation models with different characteristics. 

 

*
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Samenvatting 

Grootschalige complexe systemen worden gekenmerkt door een groot aantal variabelen 

en hun diverse relaties en interacties. Naarmate de vraag naar de ontwikkeling en opti-

malisatie van grootschalige systemen toeneemt, groeit ook de behoefte aan betere tech-

nieken om het onderliggende dynamische gedrag en de langetermijnprestaties te kunnen 

begrijpen, voorspellen en beïnvloeden. Vanwege hun omvang en complexiteit is het ech-

ter vaak te moeilijk of te duur om rechtstreeks met grootschalige complexe systemen te 

experimenteren. Derhalve zijn modellen nodig die de complexiteit van deze systemen 

kunnen afbeelden, maar die wel praktisch zijn om mee te werken. Een bruikbare en ef-

fectieve methode om grootschalige complexe systemen te kunnen analyseren en evalue-

ren is simulatie. Dankzij de toegenomen mogelijkheden van de computertechnologie zijn 

we in staat om simulatiemodellen van steeds grotere schaal en hogere complexiteit te 

ontwikkelen. Hoewel hierdoor veel vooruitgang is geboekt in het nauwkeurig represen-

teren van real-world systemen, kan de alsmaar groeiende schaal en complexiteit van zowel 

de systemen als hun simulatiemodellen ertoe leiden dat uiteindelijk ook de simulatiemo-

dellen zelf te complex worden om mee te werken – resulterend in grootschalige complexe 

simulatiemodellen.  

Grootschalige complexe simulatiemodellen werpen nieuwe vragen en uitdagingen op 

voor modelleurs en simulatiedeskundigen, zoals de vraag hoe modellen van een derge-

lijke grote schaal en complexiteit op een effectieve en efficiënte wijze kunnen worden 

afgebeeld, hoe kan worden gewaarborgd dat de representatie van het complexe dynami-

sche gedrag van de onderliggende systemen valide is, en welke instrumenten en tech-

nieken hiervoor kunnen worden gebruikt. Een van de strategieën om met grootschalige 

complexe simulatiemodellen om te gaan is het abstraheren van modellen (model abstrac-

tion). Traditionele modelabstractiemethoden (bijvoorbeeld metamodellering en multire-

solutiemodellering) zijn echter beperkt in hun mogelijkheden om het abstractieproces te 

automatiseren, terwijl handmatige abstractie van grootschalige complexe simulatiemo-

dellen op structuurniveau – zoals de meeste conventionele modelabstractiemethoden 

158962 Tekinay BNW.indd   224158962 Tekinay BNW.indd   224 09-05-2022   15:4509-05-2022   15:45



213 

doen – vaak niet haalbaar is gezien het grote en diverse aantal modelcomponenten en 

hun onderlinge relaties.  

Een wellicht meer haalbare benadering voor het automatisch abstraheren van grootscha-

lige complexe simulatiemodellen, met name discrete-event simulatiemodellen, is modelab-

stractie op niveau van de transformaties (theoretisch overeenkomstig met het generatief 

systeemniveau dat zich richt op de toestandsovergangen of state-transitions). Abstractie op 

transformatieniveau kan worden gerealiseerd door gebruik te maken van state-trace data 

die het dynamische gedrag van het model representeren. State-trace data beschrijven de 

opeenvolgende toestandsovergangen van het model op discrete tijdstippen, waardoor 

modelleurs de geschiedenis van een simulatierun kunnen vastleggen en inzicht krijgen in 

hoe complexe verschijnselen zich in de tijd ontwikkelen. State-trace data kunnen worden 

uitgedrukt als reeksen van gebeurtenissen (event sequences) of multivariate tijdreeksen be-

staande uit categorische variabelen, numerieke variabelen of een combinatie daarvan. 

Zodoende kunnen state-trace data worden gebruikt om gedragspatronen te ontdekken die 

relevant zijn voor het gewenste abstractieniveau. Uitgaande van een morfisme tussen 

twee systeemspecificaties op het transformatieniveau, kan een valide relatie (mapping) 

worden bepaald tussen de toestandsovergangen van het basismodel (d.w.z. de meer ge-

detailleerde systeemspecificatie) en die van het geclusterde model (d.w.z. de geabstra-

heerde systeemspecificatie), waarbij het geclusterde model deze eerder ontdekte gedrags-

patronen als geaggregeerde toestanden gebruikt. 

Een beperking in het gebruik van state-trace data voor modelabstractie is dat state-trace data 

die verkregen zijn uit de runs van grootschalige complexe simulatiemodellen, zeer om-

vangrijk kunnen worden in zowel volume (de omvang van de trace data en het aantal 

toestandsvariabelen van verschillende modelcomponenten) als variëteit (het aantal 

unieke toestanden). Dit maakt het lastig voor modelleurs om frequente patronen in deze 

data te identificeren en te gebruiken voor modelabstractie. Datamining- en machine lear-

ning-methoden zijn ontworpen om het ontdekken van frequente patronen in temporele 

datasets te vergemakkelijken. Hoewel dergelijke methoden nuttig zijn gebleken voor het 

herkennen van patronen in grote hoeveelheden data, zijn ze tot op heden nog niet toe-

gepast voor het automatiseren van de abstractie van grootschalige complexe discrete-event 

simulatiemodellen. Dit zou technieken vereisen die niet alleen belangrijke 

*
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gedragspatronen in state-trace data identificeren, maar ook de geaggregeerde toestanden 

kunnen genereren om modellen op een hoger abstractieniveau te construeren. Het inte-

greren van concepten en technieken vanuit de simulatie en de temporele datamining kan 

daarom een veelbelovende oplossingsrichting bieden voor het automatiseren van de ab-

stractie van grootschalige complexe simulatiemodellen.  

In dit proefschrift onderzoeken we in hoeverre de abstractie van grootschalige complexe 

simulatiemodellen, specifiek discrete-event simulatiemodellen beschreven volgens het 

DEVS-formalisme, kan worden geautomatiseerd met behulp van hun state-trace data. 

Hiertoe hebben we een methode ontwikkeld waarbij frequent episode mining-technieken 

worden toepast op state-trace data met het doel gedragspatronen te ontdekken. We de-

monstreren de praktische toepasbaarheid van onze methode aan de hand van drie case-

studies met simulatiemodellen van toenemende omvang en complexiteit en met verschil-

lende eigenschappen. 

Kenmerkend voor DEVS is dat toekomstige toestanden enkel afhangen van de huidige 

toestand en de verstreken tijd (m.a.w., er is geen “geheugen” nodig). Dit betekent dat het 

dynamisch gedrag van een DEVS-model, samengevat in de state-trace data, vereenvoudigd 

kan worden door frequent episode mining-algoritmen toe te passen op opeenvolgende paren 

van toestandsovergangen van het model. Het resulterende vereenvoudigde model kan 

vervolgens formeel worden beschreven met een Markov Chain.  De geheugenloze eigen-

schap van Markov Chain toestanden komt overeen met die van de discrete-event toestanden 

in een DEVS-model. De matrix met overgangskansen van opeenvolgende toestanden 

van een DEVS-model vormt de basis voor de overgangsmatrix van een stochastische 

discrete-time Markov Chain.  

Om te bepalen welk frequent episode mining algoritme het beste presteert voor het identifi-

ceren van frequente toestandsovergangen in de state-trace data van discrete-event simulatie-

modellen, hebben we verschillende populaire algoritmen vergeleken, waaronder 

MINEPI, MINEPI+ en EMMA. Uit de resultaten van deze vergelijking (zie Appendix 

A) blijkt dat het EMMA-algoritme ten tijde van het onderzoek het snelst was in het vin-

den van alle unieke state-trace records en opeenvolgende state-trace record-paren uit state-trace 

datasets met verschillende omvang. 
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 In Hoofdstuk 3 hebben we eerst een formele beschrijving gepresenteerd van door dis-

crete-event simulatie gegenereerde state-trace data en state-trace records, daar dit essentieel is 

voor een eenduidig begrip van deze concepten en voor het correct positioneren van onze 

methode in de simulatieliteratuur. Vervolgens hebben we onze methode stap-voor-stap 

uiteengezet en een reeks overwegingen besproken die essentieel zijn voor het genereren 

van een valide abstractie van het basismodel.  

In wezen is de kwaliteit van de gedragspatronen die worden ontdekt door toepassing van 

de temporele dataminingtechnieken, en daarmee het succes van onze methode om het 

abstraheren van grootschalige complexe simulatiemodellen te automatiseren, in hoge 

mate afhankelijk van de state-trace data die door de basismodellen worden gegenereerd. 

De eerste stap in onze methode is dan ook om een aantal overwegingen en keuzes te 

bespreken met betrekking tot het genereren van state-trace data uit de discrete-event simula-

tie. Er zijn verschillende factoren waarmee de modelleur rekening moet houden voordat 

hij/zij een beslissing neemt over de inhoud van de state-trace data en de manier waarop 

deze worden gegenereerd. Belangrijke factoren en keuzes zijn de weergave van tijd, het 

type model (stochastisch versus deterministisch), het type simulatie (eindigend versus 

niet-eindigend), het meenemen van input data, het meenemen van output data, en het 

abstraheren van de volledige state-trace data of van een subset. In Hoofdstuk 3 hebben we 

de richtlijnen voor elk van deze overwegingen secuur beschreven en de abstractie van 

een simulatiemodel op basis van de state-trace data gedemonstreerd aan de hand van een 

eenvoudig M/M/1 single-server wachtrijmodel. Op eenzelfde wijze hebben we state-trace 

data gegenereerd uit de simulatie van een militaire oefening in Hoofdstuk 4 en een ver-

keersmodel in Hoofdstuk 5. 

De volgende stap in onze methode is de toepassing van het frequent episode mining-algo-

ritme op de uit het basismodel verkregen state-trace data om opeenvolgende toestands-

overgangen te identificeren en een overgangsmatrix P van de discrete-time Markov Chain 

te genereren. Voor deze stap hebben we diverse aandachtspunten geïdentificeerd voor 

de voorbewerking van de state-trace data, de toepassing van het EMMA-algoritme en de 

constructie van de overgangsmatrix. Voor de voorbewerking van de state-trace data zijn 

richtlijnen beschreven voor de eisen aan de invoer voor het EMMA-algoritme, het toe-

passen van verschillende kwantisatietechnieken wanneer de toestandsvariabelen een 

*
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groot waardenbereik hebben, en het afbeelden van de state-trace data voor het uitvoeren 

van abstractie op systeemniveau versus abstractie op modelcomponentniveau. Na het 

voorbewerken van de state-trace data kan het EMMA-algoritme worden toegepast om een 

overgangsmatrix te genereren en een Markov Chain te construeren. De M/M/1 (Hoofd-

stuk 3) en militaire (Hoofdstuk 4) casestudies demonstreren de toepassing van het 

EMMA-algoritme en het genereren van Markov Chains op systeemniveau. Voor het gro-

tere en complexere verkeersmodel (Hoofdstuk 5) hebben we via voorbewerking van de 

state-trace data eerst een zogenaamde skip-factor in het EMMA-algoritme geïntroduceerd 

om overgangskansen op modelcomponentniveau te kunnen identificeren, en zodoende 

unieke overgangsmatrices te construeren voor elk afzonderlijk voertuig in het verkeers-

systeem.  

Na het construeren van de Markov Chain is de volgende stap in de methode het ontwer-

pen van simulatie-experimenten met het Markov Chain model die bestaan uit meerdere 

runs (gebruikmakend van unieke seeds voor de toevalsgetalgenerator voor iedere run), 

en het genereren van state-trace data uit deze runs. In dit proefschrift hebben we het ver-

schil laten zien tussen het simuleren van Markov Chains van eindigende basismodellen 

en niet-eindigende basismodellen. Voor een niet-eindigende Markov Chain (Hoofdstuk-

ken 3 en 5), vergelijkbaar met een niet-eindigende discrete-event simulatie, moet een 

kunstmatige eindconditie worden geïntroduceerd om de run van de Markov Chain te 

beëindigen. In Hoofdstuk 4, waar we onze methode demonstreren aan de hand van een 

eindigend model voor een militaire oefening, hebben we laten zien dat de nauwkeurig-

heid van het terminerend gedrag van een basismodel problematisch kan zijn (d.w.z. dat 

modellen mogelijk niet convergeren naar de eindtoestand) als absolute tijd niet wordt 

meegenomen als toestandsvariabele in de state-trace data. Helaas zou het opnemen van 

absolute simulatietijd monotoon oplopende waarden in de state-trace data introduceren, 

wat het vermogen van het frequent episode mining-algoritme om terugkerende patronen te 

vinden ondermijnt. Om dit probleem op te lossen en het eindigende gedrag nauwkeurig 

te representeren, moeten contextuele variabelen worden opgenomen die de progressie in 

tijd weergeven, echter zonder een reeks monotoon oplopende waarden voor elk state 

record te introduceren.  
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Wanneer de state-trace data van de Markov Chain modelruns zijn verkregen, is de laatste 

stap in de methode het evalueren van de nauwkeurigheid en validiteit van de geabstra-

heerde Markov Chain. Hiertoe worden state-trace data die gegenereerd zijn uit de Markov 

Chain vergeleken met een onafhankelijke state-trace validatieset verkregen uit het basis-

model. In dit proefschrift hebben we statistieken en prestatie-indicatoren van beide mo-

dellen (de set afkomstig uit de geabstraheerde Markov Chain en de validatieset van het 

basismodel) vergeleken aan de hand van beschrijvende statistische technieken (bijv. 

spreidingsmaten, histogrammen, boxplots) en inferentiële statistische technieken (bijv. 

χ2-test, Student's t-toets, Kolmogorov-Smirnov toets). De resultaten van de drie casestu-

dies, en specifiek hun validatieproces, toonden aan dat onze methode in staat is om met 

een aanvaardbaar precisieniveau Markov Chain-schattingen van prestatie-indicatoren te 

genereren die niet significant afwijken van, en een vergelijkbare verdeling volgen als, de 

validatieset van het basismodel. Het onderzoek geeft aan dat het van groot belang is dat 

de modelleur niet alleen op p-waarden vertrouwt om de nauwkeurigheid van het geab-

straheerde model te beoordelen, maar daarnaast ook beschrijvende statistieken en effect-

groottes evalueert om te beoordelen hoe betekenisvol eventuele afwijkingen zijn. Met 

andere woorden, de schattingen van de Markov Chain moeten altijd worden beschouwd 

binnen de context van het gesimuleerde systeem en de doelen van de abstractiestudie. In 

het verkeersmodel (Hoofdstuk 5) lieten de resultaten van de t-toets bijvoorbeeld zien dat 

de gemiddelde snelheden voor voertuigen op Route F verkregen uit de Markov Chain 

significant verschilden van de gemiddelde snelheden verkregen uit het basismodel. Ech-

ter, het absolute gemiddelde verschil was onbeduidend klein. Evenzo illustreerden de 

resultaten van de χ2-test in Hoofdstuk 3 hoe een grote steekproefomvang kan leiden tot 

een significant verschil tussen de twee distributies (een bekend probleem met significan-

tietoetsen op basis van p-waarden), ondanks dat de Cramer's V-effectgrootte en grafische 

visualisaties aangaven dat de omvang van dit verschil erg klein was. 

Tenslotte lieten de bevindingen in dit proefschrift zien dat het verhogen van de resolutie 

van het model door enkel een hoger kwantisatieniveau (bijvoorbeeld een groter aantal 

bins) toe te passen niet resulteert in een verbeterde nauwkeurigheid wanneer relevante 

contextuele variabelen in het model ontbreken. In de militaire casestudie (Hoofdstuk 4) 

bleek dat de aanwezigheid van contextuele variabelen belangrijk is voor een accurate 
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representatie van het terminerend gedrag van het basismodel, in het bijzonder voor het 

verkrijgen van runlengten die voldoende overeenkomen met de runlengten van het ba-

sismodel. Op eenzelfde wijze liet de verkeerscasestudie (Hoofdstuk 5) zien hoe essentieel 

contextuele variabelen zijn voor het nauwkeurig abstraheren van stochastisch gedrag in 

het basismodel (bijv. de generatie van de verkeersstroom). Experimenten toonden aan 

dat schattingen van het aantal voertuigen gegenereerd door Markov Chains met extra 

contextuele variabelen dichterbij die van het basismodel lagen dan schattingen van 

Markov Chains zonder deze extra contextuele variabelen. 

Samenvattend heeft het onderzoek gepresenteerd in dit proefschrift laten zien dat onze 

nieuwe methode in staat is om de abstractie van grootschalige en complexe discrete-

event simulatiemodellen met grote toestandsruimten te automatiseren. Hoewel het pro-

ces volledig kan worden geautomatiseerd, zullen sommige beslissingen, zoals welke toe-

standsvariabelen en contextuele variabelen moeten worden opgenomen en welke kwanti-

satieniveaus moeten worden gebruikt, baat hebben bij ondersteuning door modelleurs 

die het simulatiemodel en de context waarin het model moet worden gebruikt begrijpen. 

De bevindingen in dit proefschrift hebben aangetoond dat de methode in staat is om uit 

de state-trace data van het basismodel valide Markov Chains te genereren die het dyna-

misch gedrag van het basismodel adequaat weergeven en de belangrijkste prestatie-indi-

catoren van het basismodel met voldoende precisie en nauwkeurigheid schatten. Door 

de methode te structureren volgens een helder stappenplan en een reeks overwegingen 

te behandelen waarmee modelleurs te maken kunnen krijgen, hebben we bovendien aan-

getoond hoe state-trace data en temporele dataminingtechnieken het best kunnen worden 

toegepast om simulatiemodellen met verschillende karakteristieken automatisch te ab-

straheren. 
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Large-scale complex systems are characterized by 
a large number of interconnected variables and a 
diverse set of interactions. As the demand for the 
development and optimization of large-scale sys-
tems is growing, so does the need for better tech-
niques to understand their underlying dynamic 
behavior and predict and manage their long-term 
performance. With the increased capabilities of 
computer technology, we have been able to run 
simulation models for these systems that are larger 
in scale and higher in complexity. While these 
advancements have enabled more accurate rep-
resentations of real-world systems, the ever-in-
creasing scale and complexity of simulation models 
may eventually result in models that are too com-
plex to work with – giving rise to large-scale com-
plex simulation models. 

In this dissertation, we aim to investigate to what 
extent the abstraction of large-scale complex simu-
lation models, specifically discrete- event simula-
tion models expressed in the DEVS formalism, can 
be automated using their state- trace data. In order 
to achieve this objective, we designed a method 
that integrates the fields of modeling and simula-
tion and temporal data mining by utilizing 
state-trace data and applying frequent episode 
mining techniques to discover behavioral patterns.
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