
A Note on Integrity
ILP Modelling and Analysis on Graph Families

M.J.P. Reinders

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

A Note on
Integrity
ILP Modelling and

Analysis on Graph Families

by

M.J.P. Reinders

to obtain the degree of Bachelor of Science

at the Delft University of Technology,

to be defended publicly on Monday July 17, 2023 at 1:30 PM.

Student number: 4899334
Institution: Delft University of Technology
Thesis committee: Dr. A. Bishnoi, TU Delft, supervisor

Dr. ir. R.J. Fokkink, TU Delft
Project duration: April, 2023 – July, 2023

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Preface

This thesis was written under the Department of Discrete Mathematics & Optimization of the Faculty of
Electrical Engineering, Mathematics, and Computer Science at Delft University of Technology.

During the selection process of choosing my topic for this thesis, my attention was immediately drawn
to graph theory topics. I developed a strong interest in this field while taking a course on graph theory.
After considering various topics within this field, I eventually narrowed it down to the final topic of this
thesis: The Integrity of a Graph. I chose this topic due to its connection to the min-max problem, which
further fueled my growing fascination with it during the research.

I would like to thank my supervisor, Anurag Bishnoi, for guiding me throughout the entire process of
creating this thesis. His invaluable guidance during my first experience in conducting original research
and proving new statements has been instrumental to my progress. The weekly meetings with Anurag
throughout my work on the thesis provided me with a solid foundation and helped me track my research
and writing progress. I am also grateful for the continuous refinement and updating of the thesis di-
rection based on the valuable feedback I received. Lastly, I extend my thanks to Robbert Fokkink for
being a part of my graduation committee.

M.J.P. Reinders
Delft, July, 2023

iii

Abstract

This thesis provides a fresh perspective on the (vertex) integrity of graphs, serving as a measure of
network robustness. The study begins by introducing fundamental concepts and methods for evalu-
ating the integrity of different graph families. An Integer Linear Programming (ILP) model, specifically
designed for assessing integrity, is then presented. By applying this model, integrity values are calcu-
lated for various graph families, and patterns within the results are identified. These patterns contribute
to establishing boundaries or determining exact values of integrity for the analyzed graph families.

The analyzed graph families encompassGlued Paths, generalized Theta graphs, (Double) Cone graphs,
Fan graph, Lollipop graphs, generalized Barbell graphs, (Dutch) Windmill graphs, Paley graphs, and
Kneser graphs. Additionally, two conjectures are formulated: one concerning a lower bound for the in-
tegrity of all Paley graphs, and another addressing the exact integrity values of specific Kneser graphs.

The ILP model proves to be a valuable tool for further exploration of graph family integrity, offering
opportunities for additional research and expanding our understanding of network robustness.

v

Layman Abstract

This thesis explores how different networks, like those in transportation systems, social networks, and
computer networks, can maintain its functionality and integrity in the face of disruptions, failures, or
targeted attacks. It introduces a measure called (vertex) integrity to assess the strength and resilience
of networks.

To evaluate network integrity, a mathematical approach called Integer Linear Programming is used.
This method enables precise calculations and comparisons of network robustness. By applying this
approach to various types of networks, including Theta graphs, Paley graphs, Kneser graphs, and
more, the study uncovers valuable insights.

Through the analysis of integrity values, the study identifies patterns and limitations in network re-
silience. It sheds light on the specific characteristics and behaviors that contribute to a network’s ability
to recover from disruptions. These findings have practical implications for designing and optimizing
networks to be more robust and reliable.

The mathematical model employed in this research establishes a strong foundation for studying net-
work resilience. It enhances our understanding of network behavior and opens avenues for further
research in exploring different aspects of network strength. This knowledge advancement allows us to
develop strategies to enhance the resilience of real-world networks, ensuring their ability to withstand
unforeseen challenges and maintain effective operations.

vii

Contents

Preface iii

Abstract v

Layman Abstract vii

1 Introduction 1
1.1 Robustness of a Network . 2
1.2 Overview . 2

2 Preliminary 3
2.1 Basic Graph Properties . 3
2.2 Spectral Graph Theory . 6
2.3 Basic Graph Structures . 7
2.4 Measures for the Robustness of a Network . 8

3 Integrity of a Graph 11
3.1 Graph Unions . 16
3.2 Graph Joins . 19
3.3 Spectral Bounds . 19

4 Integer Linear Programming 21
4.1 Largest size of a Connected Component . 21
4.2 Vertex Integrity of a Graph . 22

4.2.1 Additional Constraints . 22
4.3 Largest size of an empty balanced bipartite subgraph . 23
4.4 Computational Complexity . 24

5 Integrity of Families of Graphs 25
5.1 Glued Paths. 25
5.2 Generalized Theta Graphs . 26
5.3 (Double) Cone Graphs . 27
5.4 Fan Graphs . 28
5.5 Lollipop Graphs. 28
5.6 Generalized Barbell Graphs . 30
5.7 (Dutch) Windmill Graphs . 31
5.8 Paley Graphs . 32
5.9 Kneser Graphs . 33

6 Conclusion and Open Problems 35

References 37

A Data 39

B Python Code 41
B.1 General Functions . 41
B.2 Graph Families . 41
B.3 Graph Properties . 42
B.4 File Management . 46
B.5 Paley Graphs . 46

ix

1
Introduction

In today’s world, networks play a vital part in our daily lives. From social connections to transporta-
tion systems, understanding the structures and dynamics of these networks is crucial. This is where
graph theory plays an important role, providing a powerful framework for studying, analyzing, and un-
derstanding the complex relations of networks. Its origin dates back to the 18th century when Swiss
mathematician Leonhard Euler introduced the concept of a graph via a paper in 1741. This first paper
on graph theory, about the Seven Bridges of Königsberg problem, laid the foundation of the field [14].

The city of Königsberg (now Kaliningrad, Russia) was located on both sides of the Pregel River, con-
sisting of two large islands connected to each other and the mainland by seven bridges, as shown in
Figure 1.1. The problem was whether it was possible to take a walk through the city crossing each
bridge exactly once. This type of walk is now referred to as an Eulerian Trail.

Figure 1.1: A view of Königsberg showing the seven bridges over the River Pregel [30].

Euler took an abstract approach to the problem, focusing only on which pairs of land masses are
connected to each other and the number of bridges connecting them. This abstraction allowed him to
focus on the essential connections rather than the physical layout of the city. Euler proved that it was
impossible to find such a path, and his proof laid the foundations of graph theory.

Euler’s solution to the Seven Bridges of Königsberg problem marked the birth of graph theory as a
mathematical discipline. It established the idea of representing real-world problems using abstract
graphs. It also laid the groundwork for the development of graph-related concepts, such as connectivity,
independence number, regularity, Hamiltonicity, and many other graph properties and algorithms.

Since Euler’s time, graph theory has evolved into a fundamental discipline with broad applications in
various fields, including computer science, social network analysis, logistics, and optimization. The

1

2 1. Introduction

first graph problem posed by Euler remains an important historical milestone that paved the way for
the extensive study and application of graphs in modern mathematics and beyond.

1.1. Robustness of a Network
In addition to understanding the structure and dynamics of networks, assessing the robustness of
a network holds significant value. The robustness refers to the ability of a network to maintain its
functionality and integrity in the face of disruptions, failures, or targeted attacks. It is a vital consideration
in various domains, including transportation systems, communication networks, and social networks.

The early research on robustness can be traced back to the 1970s [16, 25]. One of the first measures
for the robustness of a graph is known as the vertex connectivity [15]. The vertex connectivity quantifies
the minimum number of nodes that need to be removed in order to disconnect the network into two or
more groups. In other words, it measures the resilience of a network against node failures.

The vertex connectivity of a graph is a fundamental measure in assessing its robustness and can pro-
vide insights into the network’s ability to withstand failures or targeted attacks on individual nodes. By
studying the vertex connectivity of a graph, researchers can identify critical nodes that, if compromised
or removed, could significantly impact the network’s functionality and integrity.

However, the vertex connectivity alone may not fully encompass the network’s robustness. The ver-
tex connectivity investigates the connectedness of the network after node deletion, but overlooks the
intrinsic structure of the remaining groups after this deletion. This is where vertex integrity becomes
evident.

To illustrate this point, consider two networks with identical vertex connectivity. Despite their identical
vertex connectivity, their levels of integrity can vary significantly. In Chapter 2 we will explore a com-
pelling example that clearly demonstrates this distinction. This example highlights the importance of
vertex integrity as it offers a more thorough evaluation of a network’s robustness, surpassing the sole
consideration of vertex connectivity.

The vertex integrity, commonly referred to as integrity, was originally introduced in the late 1980s by
Barefoot, Entringer, and Swart [6]. It considers two quantities: the number of deleted nodes and the
size of the largest remaining group after deletion [3].

Until now, we have primarily mentioned the practical applications of vertex integrity in transportation
systems. However, recently, vertex integrity has played a role in resolving one of the central open
problems on minimal codes, and strong blocking sets [2].

1.2. Overview
The goal of this thesis is to investigate the integrity of specific graph families. To achieve this, we will first
study the integrity of general graphs. Next, we aim to model certain properties of a graph, including the
integrity, through Integer Linear Programming (ILP). These ILP models will help us discover patterns
in the integrity of graph families, enabling us to establish boundaries or determine exact values of the
integrity for those graph families.

Firstly, in Chapter 2, we define several important concepts and properties that will be used throughout
the thesis. Then, in Chapter 3, we introduce various concepts related to the integrity of general graphs.
In Chapter 4, we define and explain our ILP models for calculating the values of specific graph proper-
ties. Combining these ILP models with the concepts from Chapter 3, we prove exact values or bounds
for the integrity of particular graph families in Chapter 5. Additionally, Chapter 6 delves into the open
problems encountered during our research. In conclusion, we provide suggestions for further research
opportunities in this thesis.

2
Preliminary

In this chapter, we will provide a brief overview of the graph theory concepts used in this thesis. For
further notation, refer to the book ‘Introduction to Graph Theory’ by West [32].

Firstly, we define a network, its structure, and its nodes in mathematical terms, using the definition of a
graph. In this thesis, we consider only undirected simple graphs.

Definition 2.1. A graph G = (V, E) consists of a set of vertices V and a set of edges E, where V is
non-empty and E is a subset of the set {{𝑢, 𝑣} ∶ 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣}, for convenience denoted by (), of
all two-element subsets of V. The set {𝑢, 𝑣} is commonly denoted by 𝑢𝑣. By this definition, 𝐺 is undi-
rected, since for each edge it holds that 𝑒 = {𝑢, 𝑣} = {𝑣, 𝑢}. 𝐺 is also simple, since there is at most
one edge between two vertices and none from and to the same vertex.

Remark 2.2. Let G = (V, E) be a graph. The order of G is the number of vertices, denoted by either 𝑛
or |𝑉|. Generally the order is denoted by 𝑛.
Graphs can be visualized by a graph drawing. When visualizing, we use filled circles for the vertices
and connect two circles by a line, or rather a curve, if there is an edge between the corresponding
vertices.

Example 2.3. Figure 2.1 depicts a graph drawing of the Petersen graph, a graph of order 10 with 15
edges, i.e. |𝐸| = 15

Figure 2.1: Graph drawing of the Petersen graph, a graph of order 10 with 15 edges, i.e. | |

2.1. Basic Graph Properties
Besides the network and its structure, it is necessary to define notations pertaining to the properties of
a network in order to facilitate analysis. In our context, these notations are known as graph properties.

3

4 2. Preliminary

Graph properties encompass various categories, including measures of both local and global charac-
teristics. Local graph properties are specific to individual vertices or edges within a graph, capturing
their unique characteristics and features. Conversely, global graph properties encompass characteris-
tics that apply to the entire graph as a unified entity, considering its overall structure. These properties
offer a comprehensive understanding of the graph, capturing its holistic behavior.

Both local and global graph properties play a crucial role in comprehending the characteristics, behav-
ior, and functionality of a graph. They provide valuable insights into different facets of the network’s
structure and dynamics, enabling analysis and interpretation from diverse perspectives. By examining
these properties, we gain a deeper understanding of the network’s intricacies.

Consequently, we need to define notations to refer to subnetworks of the network. The following defi-
nitions concerning (sub)graphs will facilitate this.

Definition 2.4. For any graph G = (V, E), a subgraph of G is the graph H = (V’, E’) such that 𝑉 ⊆ 𝑉
and 𝐸 ⊆ 𝐸 ∩ (). The subgraph is induced if 𝐸 = 𝐸 ∩ (). A proper subgraph is a subgraph with
either 𝑉 ⊂ 𝑉 or 𝐸 ⊂ 𝐸 ∩ ().

Example 2.5. Figure 2.2 depicts a graph drawing of the Petersen graph, along with a proper induced
subgraph, the cycle 𝐶 of order 5.

(a) The Petersen graph. (b) The cycle of order 5.

Figure 2.2: The Petersen graph, along with a proper induced subgraph, the cycle of order 5.

Definition 2.6. Let G = (V, E) be a graph. For any 𝑆 ⊆ 𝑉, The graph 𝐺 − 𝑆 is the proper induced
subgraph H = (V’, E’) of G with 𝑉 = 𝑉 ⧵ 𝑆. For any 𝑣 ∈ 𝑉, 𝐺 − {𝑣} is commonly denoted by 𝐺 − 𝑣.
Another notation for 𝐺 − 𝑆 is 𝐺[𝑉].

Example 2.7. Figure 2.2 depicts a graph drawing of the Petersen graph, along with the cycle 𝐶 of
order 5. Let 𝐺 be the Petersen graph and let 𝑆 be the 5 inner vertices of the Petersen graph, then
𝐺 − 𝑆 = 𝐶 .

Now that we have the ability to mathematically describe a network and its subnetwork, it is essential to
establish some fundamental terminology that will allow us to describe the structure of the graph and its
(sub)parts.

Definition 2.8. In the graph 𝐺 = (𝑉, 𝐸) , two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent if 𝑢𝑣 ∈ 𝐸 and non-adjacent
if 𝑢𝑣 ∉ 𝐸. A set of pairwise non-adjacent vertices in a graph is called an independent set, also known
as a co-clique. Conversely, a set of pairwise adjacent vertices is called a clique.

Example 2.9. Figure 2.3 depicts a graph drawing of the Petersen graph, in which the yellow vertices
form an independent set and the blue vertices a clique.

2.1. Basic Graph Properties 5

Figure 2.3: The Petersen graph, in which the yellow vertices form an independent set and the blue vertices a clique.

Definition 2.10. Let G = (V, E) be a graph and 𝑢, 𝑣 ∈ 𝑉. A path from u to v is the set of distinct vertices
𝑣 , 𝑣 , … , 𝑣 such that 𝑢 = 𝑣 , 𝑣 = 𝑣 , and 𝑣 𝑣 ∈ 𝐸 for all 0 ≤ 𝑖 ≤ 𝑘 − 1. A graph is called connected
if it either has only one vertex or there exists a path between any two distinct vertices.

Definition 2.11. Let G = (V, E) be a graph and 𝑢, 𝑣 ∈ 𝑉. The relation 𝑢 ∼ 𝑣, if u and v are connected
to each other by a path, is an equivalence relation of the vertices of G. The equivalence classes of this
relation are known as connected components of the graph.

Definition 2.12. Let G = (V, E) consist of components 𝐶 , 𝐶 , … , 𝐶 for some 𝑘 ∈ ℤ . hen the amount
of components in G, denoted by 𝑐(𝐺), is 𝑐(𝐺) = 𝑘.

We now have the ability to describe a network, its subnetworks, and its (sub)parts in mathematical
terms. Next, we need to define commonly used graph properties that will assist us in our analysis.

Definition 2.13. Let G = (V, E) consist of components 𝐶 , 𝐶 , … , 𝐶 for some 𝑘 ∈ ℤ . Then the largest
size of a (connected) component in G, denoted by 𝑚(𝐺), is the integer

𝑚(𝐺) ∶=max |𝐶 |.

Example 2.14. Figure 2.4 depicts graph 𝐺, a graph with 2 components. The components have sizes
2 and 3. Hence, the largest size of a (connected) component in G is, 𝑚(𝐺) = 3.

Figure 2.4: Graph drawing of graph , a graph with two components. The components have sizes 2 and 3. Hence () .

Definition 2.15. For any graph G, the independence number, denoted by 𝛼(𝐺), is the largest size of
an independent set in G.

Definition 2.16. For any graph G, the clique number, denoted by𝜔(𝐺), is the size of the largest clique
in G.

Remark 2.17. Determining the independence number is NP-hard [18] and the clique number is NP-
complete [23], making it computationally challenging problems for general graphs.

Example 2.18. Consider the Petersen graph, with its graph drawing depicted in Figure 2.3. The set
of yellow vertices represents the largest possible independent set in the graph. Similarly, the set of
blue vertices represents the largest possible clique in the graph. Therefore, we can conclude that
𝛼(Petersen graph) = 4 and 𝜔(Petersen graph) = 2.

6 2. Preliminary

Definition 2.19. Let 𝐺 = (𝑉, 𝐸) and 𝑢 ∈ 𝑉. Then the set 𝑁 (𝑢) = {𝑣 ∈ 𝑉 ∶ 𝑢𝑣 ∈ 𝐸}, is called the
neighbourhood of u. The size of this set is the degree of vertex 𝑢, denoted by deg (𝑢) = #𝑁 (𝑢).
𝑁 (𝑢) and deg (𝑢) are commonly denoted by 𝑁 (𝑢) and deg (𝑢) respectively.

Definition 2.20. Let G = (V, E) be a graph. The minimum degree of G is the integer

𝛿(𝐺) ∶=min
∈

deg(𝑣).

Definition 2.21. Let G = (V, E) be a graph. The maximum degree of G is the integer

Δ(𝐺) ∶=max
∈

deg(𝑣).

Definition 2.22. Let G = (V, E) be a graph. For any set 𝑆 ⊆ 𝑉, the maximum degree of S in G is the
integer

Δ(𝐺, 𝑆) ∶=max
∈

deg (𝑠).

Example 2.23. Figure 2.5 depicts tree 𝑇 of order 12. The orange vertex has a degree of 3, the minimum
degree of the graph is 𝛿(𝑇) = 1 and the maximum degree of the graph is Δ(𝑇) = 3. Let the magenta
vertices form the set 𝑆. Then the maximum degree of 𝑆 in 𝑇 is Δ(𝑇, 𝑆) = 1.

Figure 2.5: Graph drawing of tree of order 12. The orange vertex has a degree of 3, () and () . Let the
magenta vertices form the set , then (,) .

2.2. Spectral Graph Theory
An intriguing field within graph theory is spectral graph theory. This field utilizes algebraic methods
and concepts from linear algebra to investigate various properties of graphs. Spectral graph theory
focuses on the study of eigenvalues and eigenvectors of matrices associated with graphs, such as the
adjacency matrix or Laplacian matrix. By examining the spectrum of these matrices, spectral graph
theory provides insights into graph connectivity, graph coloring, graph clustering, and other structural
properties. The use of spectral techniques enables a deeper understanding of graphs and their under-
lying structures, leading to applications in diverse fields such as computer science, physics, and social
network analysis.

To begin, let us first establish the definition of an adjacency matrix.

Definition 2.24. The adjacency matrix of a graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices is a square matrix 𝐴 of
size 𝑛 × 𝑛. The vertices of the graph are numbered from 1 to 𝑛. Each element 𝐴 , of the adjacency
matrix is set to 1 if the 𝑖-th and 𝑗-th vertices are adjacent, and 0 otherwise. Note that for undirected
graphs, the adjacency matrix is a real symmetric matrix.

Example 2.25. Consider the empty graph 𝐾 and the complete graph 𝐾 . The adjacency matrix of
𝐾𝑛 is the empty matrix of size 𝑛 × 𝑛, where all elements 𝐴𝑖, 𝑗 are 0. The adjacency matrix of 𝐾 is the
matrix 𝐽 −𝐼 , where 𝐽 is the matrix of size 𝑛×𝑛 with all elements 𝐴𝑖, 𝑗 equal to 1, and 𝐼 is the identity
matrix of size 𝑛 × 𝑛.

With the definition of the adjacency matrix, we can delve into the field of spectral graph theory by defin-
ing the eigenvalues of a graph.

2.3. Basic Graph Structures 7

Definition 2.26. For any graph𝐺 with 𝑛 vertices and adjacencymatrix𝐴, the eigenvalues of 𝐺 are equiv-
alent to the eigenvalues of the matrix 𝐴. The adjacency matrix 𝐴 is a real symmetric matrix, and accord-
ing to the real spectral theorem from linear algebra, it possesses real eigenvalues 𝜆 ≥ 𝜆 ≥ … ≥ 𝜆 .
Furthermore, there exists an orthonormal basis in ℝ consisting of eigenvectors of 𝐴.

The eigenvalues serve as powerful indicators of the spectral nature of graphs, allowing us to explore
their rich structural landscape.

Finally we use the definition of a spectrum to compact all the information into one expression.

Definition 2.27. For any graph 𝐺, the spectrum of 𝐺 is defined as the collection of its distinct eigen-
values with their corresponding multiplicities, denoted by (𝜇) , … , (𝜇) .

Example 2.28. Consider the empty graph 𝐾 , the complete graph 𝐾 , and the Petersen graph. The
empty graph has spectrum (0) , the complete graph has spectrum (𝑛−1) , (−1) , and the Petersen
graph has spectrum (3) , (1) , (−2) .

2.3. Basic Graph Structures

Now that we have established various concepts and properties for effective network analysis, it is
essential to define specific structures that networks can have. These structures exhibit unique charac-
teristics and play a significant role in shaping the behavior and properties of the network.

Definition 2.29. A graph is called d-regular, if all vertices in the graph have degree 𝑑. If all vertices in
a graph have the same degree, the graph is called regular.

Example 2.30. The cycle 𝐶 is an example of a 2-regular graph. Similarly, the Petersen graph is a
3-regular graph. Conversely, the path 𝑃 of order 𝑛 is not regular because it has two vertices with a
degree of 1, while the other vertices have a degree of 2.

Definition 2.31. [8] A strongly regular graph, denoted by srg(𝑛, 𝑑, 𝑎, 𝑏), is a 𝑑-regular graph with 𝑛
vertices that has the following 2 properties. Any two adjacent vertices have exactly 𝑎 common neigh-
bours and any two non-adjacent vertices have exactly 𝑏 common neighbours.

Example 2.32. The Petersen graph is a 𝑠𝑟𝑔(10, 3, 0, 1), the cycle 𝐶 is a 𝑠𝑟𝑔(𝑛, 2, 0, 1) and the complete
bipartite graph 𝐾 , is a 𝑠𝑟𝑔(2𝑛, 𝑛, 0, 𝑛).

As networks become more complex, describing them can be challenging. However, by recognizing
that a network consists of multiple known networks, the following definitions will assist us in describing
these complex networks in familiar terms.

Definition 2.33. [22] The union 𝐺 = 𝐺 ∪ 𝐺 of graphs 𝐺 and 𝐺 , with disjoint sets 𝑉 and 𝑉 and edge
sets 𝐸 and 𝐸 , is the graph the graph with 𝑉 = 𝑉 ∪ 𝑉 and 𝐸 = 𝐸 ∪ 𝐸 . The disjoint union of 𝑘 copies
of graph 𝐺 is commonly denoted by 𝑘𝐺, with the 𝑖-th copy denoted as 𝐺 .

Example 2.34. Figure 2.6 depicts the graph 𝐶 ∪𝐾 , the graph union of the cycle 𝐶 of order 5 and the
complete graph 𝐾 of order 4.

8 2. Preliminary

Figure 2.6: Graph drawing of ∪ , the graph union of the cycle of order 5 and the complete graph of order 4.

Definition 2.35. [22] The join 𝐺 = 𝐺 + 𝐺 of graphs 𝐺 and 𝐺 , with disjoint sets 𝑉 and 𝑉 and edge
sets 𝐸 and 𝐸 , is the graph the graph union 𝐺 ∪ 𝐺 together with all the edges joining 𝑉 and 𝑉 .

Example 2.36. Figure 2.7 depicts the graph 𝑃 + 𝑃 , the graph join of the path 𝑃 of order 4 and the
path 𝑃 of order 3.

Figure 2.7: Graph drawing of , the graph join of the path of order 4 and the path of order 3.

2.4. Measures for the Robustness of a Network
Finally, we can mathematically define both measures, vertex connectivity and vertex integrity intro-
duced in Chapter 1, for assessing the robustness of the network in mathematical terms.

Definition 2.37. [15] Let G = (V, E) be a simple graph and let 𝛿(𝐺) denote the minimum degree of G.
The vertex connectivity of G, denoted by 𝜅(𝐺), is the minimum size of a vertex cut set, i.e., a set S ⊆
V such that G - S is disconnected or has only 1 vertex.

Proposition 2.38. [33] Let G = (V, E) be a simple graph and let 𝛿(𝐺) denote the minimum degree of
G. Then, we have

0 ≤ 𝜅(𝐺) ≤ 𝛿(𝐺).

High vertex connectivity in a graph implies that the graph can endure the removal of vertices without
losing its connectivity. Even if we delete 𝜅(𝐺) vertices, the graph remains connected, ensuring that
there is still a path between any two vertices.

Definition 2.39. [6] Let G = (V, E) be a simple connected graph. For any subgraph H, let 𝑚(H) denote
the largest size of a connected component in H. The integrity of G is the integer

𝜄(𝐺) ∶=min
⊆
{|𝑆| + 𝑚(𝐺 − 𝑆)} .

High vertex integrity in a graph implies that the graph can endure the removal of vertices without losing
its internal connectivity within the remaining groups. Even if some vertices are deleted, the remaining
vertices form connected groups, ensuring that there is still a path between any two vertices within each

2.4. Measures for the Robustness of a Network 9

group. However, the graph as a whole may not remain connected if the removed vertices disconnect
the entire graph. On the contrary, low vertex integrity suggests that removing a few critical vertices can
cause the graph to break into disconnected components, with each component containing only a small
subset of vertices.

The integrity values for various graph families have already been established and were initially discov-
ered by Barefoot, Entringer, and Swart [5, 6]. In the following theorem, we present the integrity values
for several graph families.

Theorem 2.40. [3, 5, 6] The integrity of
(a) the complete graph 𝐾 is n;
(b) the null graph 𝐾 is 1;
(c) the star 𝐾 , is 2;
(d) the path 𝑃 is ⌈2√𝑛 + 1 ⌉ − 2;
(e) the cycle 𝐶 is ⌈2√𝑛 ⌉ − 1;
(f) the complete bipartite graph 𝐾 , is 1 +min{𝑚, 𝑛};

To compare the two measures, we consider two examples: the star and a path.

Example 2.41. Consider a train station network, where the vertices represent the train stations and the
edges represent the railroads between the stations. Let the network have a structure that is identical
to the star 𝐾 , of order n, denoted by 𝑆 . Figure 2.8 depicts a drawing of a star 𝐾 , of order 6.

Figure 2.8: The star , of order 6.

Then, we have 𝜅(𝑆) = 1 and 𝜄(𝑆) = 2. This implies that regardless of the amount of vertices, the
vertex connectivity is one and the vertex integrity is two. Both measures indicate a low level of ro-
bustness, as the removal of the center vertex disconnects the whole graph into components of size
one. Applying this result to the train station network, we find that if the center train station experiences
failure, the whole train station network will be shut down. Hence, the level of robustness in this train
station network is very low, indicating that constructing a network with a star structure would not be the
optimal choice in terms of robustness.

Example 2.42. Consider a train station network, where the vertices represent the train stations and
the edges represent the railroads between the stations. Let the network have the same structure as a
path of order n, denoted by 𝑃 . Figure 2.9 depicts a drawing of the path 𝑃 of order 6.

Figure 2.9: The path of order 6.

10 2. Preliminary

Then 𝜅(𝑃) = 1 and 𝜄(𝑃) = ⌈2√𝑛 + 1 ⌉−2. In this example there is a clear difference in the values of the
measures. According to the vertex connectivity the level of robustness of the system is very low, as the
removal of one vertex disconnects the graph. However, the integrity shows that even after removing a
‘small’ number of vertices the graph still has at least one relatively ‘large’ component, ensuring some
level of connectivity.

Upon careful analysis of the results obtained in Example 2.41 and 2.42, it becomes apparent that if
we solely rely on vertex connectivity, both networks would be evaluated as having equal robustness.
However, the integrity measure provides a more nuanced view, revealing that the network structured
as a path maintains a higher level of connectivity even after node deletions compared to the network
structured as a star. This observation highlights the significance of considering vertex integrity to gain
a deeper understanding of a network’s resilience, especially when comparing different network struc-
tures.

3
Integrity of a Graph

In this Chapter we focus on general concepts to determine bounds or exact values for the integrity.
These concepts will be applied in Chapter 5.

Firstly, we aim to find a lower bound for the integrity, as it is the most challenging thing to compute in a
minimization problem. To achieve this, we begin by seeking a lower bound for one of the terms in the
definition, specifically the size of the largest component of the subgraph 𝐺 − 𝑆.

Lemma 3.1. Let G = (V, E) be a simple graph with 𝑛 vertices. For any subgraph 𝐻, let 𝑐(𝐻) denote the
amount of components in 𝐻. Then, for any set S ⊆ V,

𝑚(𝐺 − 𝑆) ≥ 𝑛 − |𝑆|
𝑐(𝐺 − 𝑆) .

Proof. Let 𝑆 ⊆ 𝑉 be a set of vertices. Then 𝐺 − 𝑆 has 𝑐(𝐺 − 𝑆) components remaining. Then 1

component must have at least
𝑛 − |𝑆|
𝑐(𝐺 − 𝑆) vertices. To prove this, we use proof by contradiction. Thus

assume all components have less than
𝑛 − |𝑆|
𝑐(𝐺 − 𝑆) vertices and for 1 ≤ 𝑖 ≤ 𝑐(𝐺 − 𝑆) let 𝐶 be the set of

vertices that are in the 𝑖-th component. Then, we have

𝑉(𝐺 − 𝑆) ∶=
()

∑ |𝐶 | <
()

∑ 𝑛− |𝑆|
𝑐(𝐺 − 𝑆) = 𝑛 − |𝑆|.

This is a contradiction as there are 𝑛 − |𝑆| vertices in 𝐺 − 𝑆. Thus we have proven that there is a

component with at least
𝑛 − |𝑆|
𝑐(𝐺 − 𝑆) vertices.

Lemma 3.1 provides a lower bound for the largest size of a component in the subgraph 𝐺 − 𝑆, where
𝐺 is our original graph, and 𝑆 is a subset of vertices in graph 𝐺. When the graph breaks up into even
components, meaning that the sizes of the components are relatively balanced, the lower bound given
by the lemma is likely to be a tight bound. This implies that the actual largest size of a component in
𝐺 − 𝑆 is close to the lower bound provided by the lemma.
However, in cases where the graph breaks into one big component and many small components, the
lower bound may not be tight. This indicates that the actual largest size of the big component in 𝐺 − 𝑆
could be significantly larger than the lower bound given by the lemma. In such scenarios, the lower
bound does not accurately capture the size of the big component.

Substituting Lemma 3.1 into the definition of integrity, we obtain the following lower bound.

11

12 3. Integrity of a Graph

Theorem 3.2. Let G = (V, E) be a simple connected graph with 𝑛 vertices. For any subgraph 𝐻, let
𝑐(𝐻) denote the amount of components in 𝐻. Then, for any set S ⊆ V,

𝜄(𝐺) ≥min
⊆
{|𝑆| + 𝑛 − |𝑆|

𝑐(𝐺 − 𝑆)} .

Proof. Substituting Lemma 3.1 in Definition 2.39 gives

𝜄(𝐺) ∶=min
⊆
{|𝑆| + 𝑚(𝐺 − 𝑆)} ≥min

⊆
{|𝑆| + 𝑛 − |𝑆|

𝑐(𝐺 − 𝑆)} .

Next, we seek to find an upper bound for the number of components in 𝐺 − 𝑆 to obtain a more refined
and improved lower bound for the integrity. By combining the lower bound for the largest component
size and the upper bound for the number of components, we can derive a more accurate estimate of
the integrity of the graph.

Lemma 3.3. Let G = (V, E) be a simple connected graph with 𝑛 vertices, and let deg (𝑣) denote the
degree of 𝑣 in G. For any subgraph 𝐻, let 𝑐(𝐻) denote the number of components in 𝐻. Then, for any
set 𝑆 ⊆ 𝑉,

𝑐(𝐺 − 𝑆) ≤ 1 +∑
∈
deg (𝑠) − |𝑆|.

Proof. Let 𝑆 ⊆ 𝑉 be a set of vertices. To proof this, we use strong induction on |𝑆|.
Base: Take |𝑆| = 0, then 𝑆 = ∅. As 𝐺 is connected, 𝐺 − 𝑆 is also connected and has at most 1 ≤
1 + ∑ ∈ deg (𝑠) − |𝑆| components.
Induction Step: Assume the hypothesis holds for sets with size < |𝑆| and that |𝑆| > 0. Let 𝑆 = 𝑇 ∪ {𝑣}.
Then 𝐺−𝑇 has at most 1+∑ ∈ deg (𝑡)−|𝑇| components remaining, since |𝑇| < |𝑆|. Now 𝑣 is either a
vertex cut or not. If 𝑣 is a vertex cut, there are at most deg (𝑣)−1 components more. If 𝑣 is not a vertex
cut, there are at most 0 components more. So in either case the are at most deg (𝑣) − 1 components
more. Hence for any 𝑆 ⊆ 𝑉, 𝐺 − 𝑆 has at most 1 + ∑ ∈ deg (𝑠) − |𝑆| components remaining.

Example 3.4. This is an example for which the upper bound provided in Lemma 3.3 is strict. Let’s
consider the Star 𝐾 , with 𝑛 + 1 vertices, and let the center vertex form our set 𝑆 ⊆ 𝑉. Thus |𝑆| = 1.
Then, by Lemma 3.3,

𝑐(𝐾 , − 𝑆) ≤ 1 + 𝑛 − 1 = 𝑛,

and we know that this upper bound is strict as 𝑐(𝐾 , − 𝑆) = 𝑛.
Lemma 3.3 provides an upper bound for the number of components in the subgraph 𝐺−𝑆. When every
vertex 𝑣 in 𝑆 creates deg (𝑣) − 1 components, the upper bound is tight. This means that in scenarios
where each vertex in 𝑆 contributes exactly deg (𝑣) − 1 components to the subgraph, the upper bound
accurately reflects the actual number of components in 𝐺 − 𝑆. Consequently, the lemma is more likely
to be tight for vertices with small degrees.

Substituting Lemma 3.3 into the obtained lower bound for the largest size of a component and the in-
tegrity, we obtain the following lower bound for the largest size of a component in the subgraph 𝐺 − 𝑆
and the integrity.

Lemma 3.5. Let G = (V, E) be a simple connected graph with 𝑛 vertices and let deg (𝑣) denote the
degree of v in G. Then, for any set S ⊆ V,

𝑚(𝐺 − 𝑆) ≥ 𝑛 − |𝑆|
1 + ∑

∈
deg (𝑠) − |𝑆| .

13

Proof. Substituting Lemma 3.3 in Lemma 3.1 gives

𝑚(𝐺 − 𝑆) ≥ 𝑛 − |𝑆|
𝑐(𝐺 − 𝑆) ≥

𝑛 − |𝑆|
1 + ∑

∈
deg (𝑠) − |𝑆| .

Substituting Lemma 3.5 into the definition of integrity, we get the following lower bound.

Corollary 3.6. Let G = (V, E) be a simple connected graph with 𝑛 vertices, and let deg (𝑣) denote the
degree of v in G. Then,

𝜄(𝐺) ≥min
⊆
{|𝑆| + 𝑛 − |𝑆|

1 + ∑
∈
deg (𝑠) − |𝑆|} .

Proof. Substituting Lemma 3.5 in Theorem 3.2 gives

𝜄(𝐺) ≥min
⊆
{|𝑆| + 𝑛 − |𝑆|

𝑐(𝐺 − 𝑆)} ≥min
⊆
{|𝑆| + 𝑛 − |𝑆|

1 + ∑
∈
deg (𝑠) − |𝑆|} .

Now, in cases where the exact degrees of each vertex in 𝑆 are unknown, we seek to find a compact
term that captures this uncertainty. This leads us to the following lower bound for the integrity.

Corollary 3.7. Let G = (V, E) be a simple connected graph with 𝑛 vertices, let Δ(𝐺, 𝑆) denote the
maximum degree of S in G. Then,

𝜄(𝐺) ≥min
⊆
{|𝑆| + 𝑛 − |𝑆|

1 + (Δ(𝐺, 𝑆) − 1)|𝑆|} .

Proof. As ∑
∈
deg (𝑠) ≤ Δ(𝐺, 𝑆)|𝑆|, by Corollary 3.6, we obtain

𝜄(𝐺) ≥min
⊆
{|𝑆| + 𝑛 − |𝑆|

1 + ∑
∈
deg (𝑠) − |𝑆|} ≥min

⊆
{|𝑆| + 𝑛 − |𝑆|

1 + (Δ(𝐺, 𝑆) − 1)|𝑆|} .

In connected graphs, the largest component size is equal to the number of vertices in the graph. By
utilizing this fact, along with the observation that the integrity is bounded above by the number of ver-
tices, we can arrive at the following equality for the integrity.

Theorem 3.8. [3] For any simple connected graph G = (V, E) with 𝑛 vertices,

𝜄(𝐺) = 1 +min
∈
𝜄(𝐺 − 𝑣).

Proof. From Definition 2.39, we have that

𝜄(𝐺) =min {𝑚(𝐺), 1 +min
∈
𝜄(𝐺 − 𝑣)} .

Since 𝐺 is connected, we have that 𝑚(𝐺) = 𝑛 and we know from this definition that 𝜄(𝐺 − 𝑣) ≤ 𝑛 − 1.
Hence we get that 1 + 𝜄(𝐺 − 𝑣) ≤ 𝑚(𝐺).

14 3. Integrity of a Graph

By utilizing vertex connectivity, we can further extend the equality obtained in Theorem 3.8 to the fol-
lowing equality for the integrity.

Corollary 3.9. Let G = (V, E) be a simple graph, and let 𝜅(𝐺) denote the vertex connectivity of G. Then,
for any 0 ≤ 𝑘 ≤ 𝜅(𝐺),

𝜄(𝐺) = 𝑘 +min
⊆ ,

| |

𝜄(𝐺 − 𝑆).

Proof. We use strong induction on 𝑘.
Base: Take 𝑘 = 0, then

𝜄(𝐺) = 0 +min
⊆ ,
| |

𝜄(𝐺 − 𝑆) = 𝜄(𝐺).

Induction Step: Assume the hypothesis holds for 𝑘 − 1 and that 0 < 𝑘 <= 𝜅(𝐺). For 𝑘 − 1, we have

𝜄(𝐺) = (𝑘 − 1) + min
⊆ ,

| | ()

𝜄(𝐺 − 𝑆).

For any set 𝑆 ⊆ 𝑉 with |𝑆| = 𝑘 − 1, since |𝑆| < 𝜅(𝐺), 𝐺 − 𝑇 is connected. By Theorem 3.8, we get

𝜄(𝐺) = (𝑘 − 1) + min
⊆ ,

| | ()

{1 +min
∈
𝜄((𝐺 − 𝑆) − 𝑣)} = 𝑘 +min

⊆ ,
| |

𝜄(𝐺 − 𝑆).

For the purpose of case analysis, it is beneficial to split the integrity into two components: one where
the exact value is known, and the other where a bound can be established. In Chapter 5, the following
corollary will be utilized extensively.

Corollary 3.10. Let 𝐺 = (𝑉, 𝐸) be a simple connected graph. For any set 𝑆 ⊆ 𝑉, let 𝑆 denote the set
𝑉 ⧵ 𝑆. Then, for any non-empty set 𝑇 ⊆ 𝑉,

𝜄(𝐺) = 1 +min {min
∈
𝜄(𝐺 − 𝑣),min

∈
min
⊆ ⧵

{|𝑆| + 𝑚(𝐺 − 𝑣 − 𝑆)}} .

Proof. As 𝐺 is connected, by Theorem 3.8, we have

𝜄(𝐺) = 1 +min
⊆
𝜄(𝐺 − 𝑣).

Now, we can split the minimum into two cases: one where the vertex 𝑣 is in the set 𝑇, and another
where it is not. Thus, we have

min
⊆
𝜄(𝐺 − 𝑣) =min {min

⊆
𝜄(𝐺 − 𝑣),min

⊆
𝜄(𝐺 − 𝑣)} .

The right inner minimum above can be expressed, by Definition 2.39, as

min
⊆

𝜄(𝐺 − 𝑣) =min
⊆

min
⊆ ⧵

{|𝑆| + 𝑚(𝐺 − 𝑣 − 𝑆)}

Expanding this form leads to cases: one where the set 𝑆 has a vertex from the set 𝑇, and another
where there is no such vertex. Therefore, we get

min
⊆

𝜄(𝐺 − 𝑣) =min
⊆

{min
⊆ ⧵
∩ ∅

{|𝑆| + 𝑚(𝐺 − 𝑣 − 𝑆)}, min
⊆ ⧵
∩ ∅

{|𝑆| + 𝑚(𝐺 − 𝑣 − 𝑆)}}

15

Focusing only on the right inner minimum above, by Definition 2.39, we obtain

min
⊆

min
⊆ ⧵
∩ ∅

{|𝑆| + 𝑚(𝐺 − 𝑣 − 𝑆)} =min
⊆

min
⊆ ⧵
∈ ∩

{|𝑆| + 𝑚(𝐺 − 𝑣 − 𝑆)}

=min
⊆

min
⊆ ⧵
∈ ∩

{|𝑆| + 𝑚(𝐺 − 𝑡 − ((𝑆 ⧵ 𝑡) ∪ 𝑣))}

=min
⊆

min
⊆ ⧵
∩ ∅

{|𝑆| + 𝑚(𝐺 − 𝑡 − 𝑆)}

≥min
⊆

min
⊆ ⧵

{|𝑆| + 𝑚(𝐺 − 𝑡 − 𝑆)}

=min
⊆
𝜄(𝐺 − 𝑣)

Combining these results, we conclude that

𝜄(𝐺) = 1 +min
⊆
𝜄(𝐺 − 𝑣).

Now, let’s investigate the connection between the integrity of a graph and its subgraph. As stated in
Theorem 3.8, this equality suggests the existence of a subgraph within the original graph that has a
lower integrity value.

Corollary 3.11. Let G = (V, E) be a simple connected graph with 𝑛 > 1 vertices. Then there exists a
subgraph 𝐻 with 𝑛 − 1 vertices, such that

𝜄(𝐻) < 𝜄(𝐺).

Proof. As 𝐺 is connected, by Corollary 3.9, we obtain

𝜄(𝐺) = 1 +min
⊆ ,
| |

𝜄(𝐺 − 𝑆) >min
⊆ ,
| |

𝜄(𝐺 − 𝑆)

This implies that there exists a vertex 𝑣 ∈ 𝑉, such that

𝜄(𝐺 − 𝑣) =min
⊆ ,
| |

𝜄(𝐺 − 𝑆).

Now let 𝐻 = 𝐺 − 𝑣, then 𝐻 is a proper subgraph with 𝑛 − 1 vertices and 𝜄(𝐻) < 𝜄(𝐺).

Moreover, the definition of integrity gives rise to the following inequality.

Theorem 3.12. [3] Let G be a simple graph. Then, for any subgraph 𝐻,

𝜄(𝐻) ≤ 𝜄(𝐺).

Proof. Let 𝐺 = (𝑉, 𝐸). For any subgraph 𝐻 = (𝑉 , 𝐸), we have

𝑚(𝐻 − 𝑆) ≤ 𝑚(𝐺 − 𝑆).

By Definition 2.39, we get

𝜄(𝐻) =min
⊆

{|𝑆| + 𝑚(𝐻 − 𝑆)} ≤min
⊆

{|𝑆| + 𝑚(𝐺 − 𝑆)} ≤min
⊆
{|𝑆| + 𝑚(𝐺 − 𝑆)} = 𝜄(𝐺).

By utilizing the clique number, we can establish the following equality for the integrity.

16 3. Integrity of a Graph

Proposition 3.13. For every graph G = (V, E), let 𝜔(𝐺) denote the clique number of G. Then, for any
0 ≤ 𝑘 ≤ 𝜔(𝐺),

𝜄(𝐺) = min
⊆

()
{|𝑆| + 𝑚(𝐺 − 𝑆)} .

Proof. As 0 ≤ 𝑘 ≤ 𝜔(𝐺), there exists a clique of size 𝑘. Let the vertices in this clique form the set 𝐶.
Then, for any set 𝑇 ⊆ 𝑉 ⧵ 𝐶, we have 𝑚(𝐺 − 𝑇) ≥ 𝑘. To lower the 𝑚(𝐺 − 𝑇) by an integer 𝑥, we need
to at least remove 𝑥 vertices from this clique. Let 𝑈 ⊆ 𝐶. This implies that 𝑚(𝐺 − (𝑇 ∪ 𝑈)) ≥ 𝑘 − |𝑈|.
Thus, |𝑇 ∪ 𝑈| + 𝑚(𝐺 − (𝑇 ∪ 𝑈)) ≥ |𝑇| + 𝑘. Note that, |𝑇| + 𝑚(𝐺 − 𝑇) ≥ |𝑇| + 𝑘. Hence,

𝜄(𝐺) = min
⊆

()
{|𝑆| + 𝑚(𝐺 − 𝑆)} .

Proposition 3.13 will be highly valuable in Chapter 5. This proposition enables a reduction in the search
space, allowing us to explore fewer possibilities for the set 𝑆. As a result, it enhances our ability to
establish lower bounds for the integrity.

By utilizing the independence number, we can establish the following upper bounds for the integrity.

Proposition 3.14. For any simple graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices, let 𝛼(𝐺) denote the independence
number of G. Then,

𝜄(𝐺) ≤ 𝑛 − 𝛼(𝐺) + 1.

Proof. Let 𝑇 be an independent set in G of size 𝛼(𝐺), and let 𝑆 = 𝑉 ⧵ 𝑇. As 𝑇 is an independent set,
we have 𝑚(𝐺 − 𝑆) = 1. As |𝑆| = 𝑛 − 𝛼(𝐺), by Definition 2.39, we obtain

𝜄(𝐺) ≤ |𝑆| + 𝑚(𝐺 − 𝑆) = 𝑛 − 𝛼(𝐺) + 1.

Remark 3.15. Some cases for which this bound is strict are the complete graph 𝐾 , the empty graph
𝐾 , the complete bipartite graph 𝐾 , , and the star 𝐾 , .

The upper bound presented in Proposition 3.14 is particularly interesting because it applies to any
graph. It raises the intriguing question of which graphs satisfy this bound strictly.

3.1. Graph Unions
For graph unions, the most relevant aspect for this thesis is the integrity of the union of copies of the
same graph.

Now redefine the integrity measure to specifically focus on determining the integrity of copies of the
same graph. This will simplify the process of finding the value for the integrity in such cases.

Theorem 3.16. Let H = (V, E) be a simple connected graph. Then, for any 𝑘 ≥ 1,

𝜄(𝑘𝐻) =min
⊆
{𝑘|𝑆| + 𝑚(𝐻 − 𝑆)} .

Proof. Let 𝑘𝐻 = (V’, E’), where 𝐻 has 𝑛 vertices. All connected components have exactly 𝑛 vertices,
thus 𝑚(𝑘𝐻) = 𝑛. To lower 𝑚(𝑘𝐻), a vertex must be removed from all components. To minimize the

3.1. Graph Unions 17

amount of removed vertices, we will remove exactly 𝑥 vertices in each component 𝐻 . Thus |𝑆| = 𝑘𝑥,
with 0 ≤ 𝑥 ≤ 𝑛. Let 𝑆 = {𝑣 ∈ 𝑆 ∶ 𝑣 ∈ 𝐻 }. As |𝑆 | = 𝑥, by Definition 2.39, we have

𝜄(𝑘𝐻) ∶=min
⊆

{|𝑆| + 𝑚(𝑘𝐻 − 𝑆)}

=min
⊆

{|𝑆| +max𝑚(𝐻 − 𝑆)}

=min
⊆
{𝑘|𝑆| + 𝑚(𝐻 − 𝑆)} .

Consider the case where the number of graph copies exceeds the number of vertices in the largest
connected component, we can arrive at the following equality.

Corollary 3.17. [3] Let H be a simple graph. Then, for any 𝑘 ≥ 1 such that 𝑚(𝐻) < 𝑘,

𝜄(𝑘𝐻) = 𝑚(𝐻).

Proof. As 𝑚(𝐻 − 𝑆) ≤ 𝑚(𝐻) < 𝑘, by Theorem 3.16, we have

𝜄(𝑘𝐻) =min
⊆
{𝑘|𝑆| + 𝑚(𝐻 − 𝑆)} <min

⊆
{𝑘|𝑆| + 𝑘} = 𝑘.

As 𝑘|𝑆| + 𝑚(𝐻 − 𝑆) < 𝑘, we get that |𝑆| = 0, thus 𝑆 has to be the empty set. Hence, 𝜄(𝑘𝐻) = 𝑚(𝐻).

The following results will be used to prove exact values and bounds for various graph families in Chap-
ter 5. First, we determine the value of the integrity for the union copies of paths.

Theorem 3.18. Let 𝑘𝑃 be a disjoint union of 𝑘 copies of the path 𝑃 , and let 𝑥 =max {0, √ () }.
Then,

𝜄(𝑘𝑃) =min {𝑘⌈𝑥⌉ + ⌈ 𝑙 − ⌈𝑥⌉⌈𝑥⌉ + 1⌉ , 𝑘⌊𝑥⌋ + ⌈
𝑙 − ⌊𝑥⌋
⌊𝑥⌋ + 1⌉} .

Proof. Let 𝑃 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉. As Δ(𝑃) = 2, ∑ ∈ deg (𝑠) ≤ 2|𝑆|. By Lemma 3.5, we get

𝑚(𝑃 − 𝑆) ≥ 𝑙 − |𝑆|
1 + |𝑆| .

By Theorem 3.16, we obtain

𝜄(𝑘𝑃) =min
⊆
{𝑘|𝑆| + 𝑚(𝑃 − 𝑆)}

≥ min {𝑘𝑥 + 𝑙 − 𝑥
𝑥 + 1}

=min {𝑘⌈𝑥⌉ + ⌈ 𝑙 − ⌈𝑥⌉⌈𝑥⌉ + 1⌉ , 𝑘⌊𝑥⌋ + ⌈
𝑙 − ⌊𝑥⌋
⌊𝑥⌋ + 1⌉} ,

with 𝑥 =max {0, √ () }.

For the upper bound, let 𝑆, 𝑇 ⊆ 𝑉 such that |𝑆| = ⌈𝑥⌉, |𝑇| = ⌊𝑥⌋, and 𝑚(𝑃 − 𝑆) and 𝑚(𝑃 − 𝑇) are
minimized. Then, we have

𝑚(𝑃 − 𝑆) = ⌈ 𝑙 − ⌈𝑥⌉⌈𝑥⌉ + 1⌉ ∧ 𝑚(𝑃 − 𝑇) = ⌈
𝑙 − ⌊𝑥⌋
⌊𝑥⌋ + 1⌉

18 3. Integrity of a Graph

Then, by Theorem 3.16 we obtain

𝜄(𝑘𝑃) =min
⊆
{𝑘|𝑆| + 𝑚(𝑃 − 𝑆)} ≤min {𝑘⌈𝑥⌉ + ⌈ 𝑙 − ⌈𝑥⌉⌈𝑥⌉ + 1⌉ , 𝑘⌊𝑥⌋ + ⌈

𝑙 − ⌊𝑥⌋
⌊𝑥⌋ + 1⌉} .

Second, we explore the value of the integrity for the union copies cycles.

Theorem 3.19. Let 𝑘𝐶 be a disjoint union of 𝑘 copies of the cycle 𝐶 , and let 𝑥 =max{1,√ }. Then,

𝜄(𝑘𝐶) =min {𝑙, 𝑘⌈𝑥⌉ + ⌈ 𝑙 − ⌈𝑥⌉⌈𝑥⌉ ⌉ , 𝑘⌊𝑥⌋ + ⌈ 𝑙 − ⌊𝑥⌋⌊𝑥⌋ ⌉} .

Proof. Let 𝐶 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉. Let |𝑆| ≥ 1 and 𝑣 ∈ 𝑆. As 𝐶 − 𝑣 = 𝑃 and Δ(𝑃) = 2,
∑ ∈ deg (𝑠) ≤ 2|𝑆|. By Lemma 3.3, we get

𝑐(𝐶 − 𝑆) = 𝑐(𝐶 − 𝑣 − (𝑆 ⧵ 𝑣)) = 𝑐(𝑃 − (𝑆 ⧵ 𝑣)) ≤ 1 + |𝑆 ⧵ 𝑣| = |𝑆|.

By Lemma 3.1, we obtain

𝑚(𝐶 − 𝑆) ≥ 𝑛 − |𝑆|
|𝑆| .

By Theorem 3.16, we get

𝜄(𝑘𝐶) =min
⊆
{𝑘|𝑆| + 𝑚(𝐶 − 𝑆)}

≥min {𝑙,min {𝑘𝑥 + 𝑙 − 𝑥𝑥 }}

=min {𝑙, 𝑘⌈𝑥⌉ + ⌈ 𝑙 − ⌈𝑥⌉⌈𝑥⌉ ⌉ , 𝑘⌊𝑥⌋ + ⌈ 𝑙 − ⌊𝑥⌋⌊𝑥⌋ ⌉} ,

with 𝑥 =max{1,√ }.

For the upper bound, let 𝑆, 𝑇 ⊆ 𝑉 such that |𝑆| = ⌈𝑥⌉, |𝑇| = ⌊𝑥⌋, and 𝑚(𝐶 − 𝑆) and 𝑚(𝐶 − 𝑇) are
minimized. Then, we have

𝑚(𝐶 − ∅) = 𝑙 ∧ 𝑚(𝐶 − 𝑆) = ⌈𝑙 − ⌈𝑥⌉⌈𝑥⌉ ⌉ ∧ 𝑚(𝐶 − 𝑇) = ⌈𝑙 − ⌊𝑥⌋⌊𝑥⌋ ⌉

Then, by Theorem 3.16 we obtain

𝜄(𝑘𝐶) =min
⊆
{𝑘|𝑆| + 𝑚(𝐶 − 𝑆)} ≤min {𝑙, 𝑘⌈𝑥⌉ + ⌈ 𝑙 − ⌈𝑥⌉⌈𝑥⌉ ⌉ , 𝑘⌊𝑥⌋ + ⌈ 𝑙 − ⌊𝑥⌋⌊𝑥⌋ ⌉} .

Lastly, apart from the union of copies of paths and cycles, it is crucial to consider the union of copies
of the complete graph.

Theorem 3.20. Let 𝑘𝐾 be a disjoint union of 𝑘 copies of the complete graph 𝐾 . Then,

𝜄(𝑘𝐾) = 𝑛.

Proof. By Theorem 3.16, we get

𝜄(𝑘𝐾) =min
⊆
{𝑘|𝑆| + 𝑚(𝐾 − 𝑆)} =min

⊆
{𝑘|𝑆| + 𝑛 − |𝑆|} = 𝑛.

3.2. Graph Joins 19

3.2. Graph Joins
For the graph join, we find that we can evaluate the integrity based on the integrity values of its con-
stituent parts. This property allows us to determine the resilience of the resulting graph by considering
the integrity of the graphs being joined together. Moreover, this property is extendable to cases involv-
ingmore than two graph joins, providing a convenient approach for evaluating the integrity of large-scale
network structures.

Theorem 3.21. [3] For any simple graphs 𝐺 and 𝐻,

𝜄(𝐺 + 𝐻) =min {𝜄(𝐺) + |𝐻|, 𝜄(𝐻) + |𝐺|} .

Similar to Section 3.1, the following results are also useful in proving exact values and bounds for var-
ious graph families in Chapter 5. First, we determine the value of the integrity for graphs joined with
the complete graph.

Corollary 3.22. [3] For any simple graph H,

𝜄(𝐾 + 𝐻) = 𝑛 + 𝜄(𝐻).

Proof. By Theorem 2.40, 𝜄(𝐾) = |𝐾 | = 𝑛. As |𝐾 | = 𝑛, by Theorem 3.21, we have

𝜄(𝐾 + 𝐻) =min {𝜄(𝐾) + |𝐻|, 𝜄(𝐻) + |𝐾 |} = 𝑛 + 𝜄(𝐻).

Lastly, apart from graphs joined with the complete graph, graphs joined with the empty graph are also
crucial to consider.

Corollary 3.23. For any simple graph H,

𝜄(𝐾 + 𝐻) =min {1 + |𝐻|, 𝑛 + 𝜄(𝐻)} .

Proof. By Theorem 2.40, 𝜄(𝐾) = 1. As |𝐾 | = 𝑛, by Theorem 3.21, we get

𝜄(𝐾 + 𝐻) =min {𝜄(𝐾) + |𝐻|, 𝜄(𝐻) + |𝐾 |} =min {1 + |𝐻|, 𝑛 + 𝜄(𝐻)} .

3.3. Spectral Bounds
Alon et al. [2] introduced a graph property that exhibits similarities with the independence number and
provides bounds for the integrity measure. This property can be bounded using spectral graph theory,
which offers new approaches and techniques for studying the integrity of graphs.

Definition 3.24. [2] For graph 𝐺, let 𝑧(𝐺) denote the largest integer 𝑧 such that there are two disjoint
sets of vertices in 𝐺, each of size 𝑧, with no edge between them.

Proposition 3.25. [2] For every graph G on n vertices,

𝑛 − 2𝑧(𝐺) ≤ 𝜄(𝐺) ≤ 𝑛 − 𝑧(𝐺).

Proof. Let 𝐺 = (𝑉, 𝐸) be a graph. For the upper bound, let 𝐴, 𝐵 ⊆ 𝑉 be two disjoint sets of size 𝑧 with
no edge between then. Let 𝑆 = 𝑉 ⧵ (𝐴 ∪ 𝐵). Then 𝐺 − 𝑆 consists only of vertices from 𝐴 and 𝐵. As
there is no edge between 𝐴 and 𝐵, the connected components in 𝐺 − 𝑆 are either vertices contained
only in 𝐴 or 𝐵. Hence the size of a component is at most 𝑧. Therefore, we have

𝜄(𝐺) ≤ |𝑆| + 𝑚(𝐺 − 𝑆) = |𝑆| + 𝑧 = (𝑛 − 2𝑧) + 𝑧 = 𝑛 − 𝑧.

20 3. Integrity of a Graph

For the lower bound, let 𝑧 = 𝑧(𝐺) and let 𝑆 ⊆ 𝑉 be of size 𝜁 such that the largest size of a connected
component in 𝐺 − 𝑆 is 𝜂 = 𝑚(𝐺 − 𝑆). Choose 𝜁 and 𝜂 such that 𝜄(𝐺) = 𝜁 + 𝜂. Let 𝐺 − 𝑆 consist of
the connected components 𝐶 , 𝐶 , … , 𝐶 with sizes 𝜂 = 𝑐 ≥ 𝑐 ≥ … ≥ 𝑐 and 𝑙 ∈ ℤ . Note that, since
𝑛 − 𝜁 = ∑ 𝑐 and 𝜂 = 𝑐 , we have 𝑛 − 𝜄(𝐺) = (𝑛 − 𝜁) − 𝜂 = ∑ 𝑐 . To prove the lower bound it
suffices to show that ∑ 𝑐 ≤ 2𝑧. Also note that there are no edges between 𝐶 and 𝐶 for any 𝑖 ≠ 𝑗.
We have two cases to prove this 2𝑧 upper bound. Case 1 is when 𝑐 ≥ 𝑧 + 1. Then by the maximality
of 𝑧 the size of 𝐶 ∪ … ∪ 𝐶 is at most 𝑧 and the upper bound holds. Case 2 is when 𝑐 ≤ 𝑧. For the
sake of contradiction, we assume that ∑ 𝑐 ≥ 2𝑧 + 1. Let 2 ≤ 𝑘 ≤ 𝑙 be the largest index for which
𝑐 +…+𝑐 ≥ 𝑧+1. As 𝑘 is the largest index, we have 𝑐 +…+𝑐 ≤ 𝑧. This implies that 𝑐 +…+𝑐 ≤ 𝑧+𝑐 .
Since 𝑐 ≤ 𝑐 , it follows that 𝑐 +…+𝑐 ≤ 𝑧+𝑐 . Therefore 𝑐 +⋯+𝑐 ≥ 2𝑧+1−(𝑧+𝑐) = 𝑧+1−𝑐 .
Let 𝑋 = 𝐶 ∪…∪𝐶 and 𝑌 = 𝐶 ∪…∪𝐶 . Then both 𝑋 and 𝑌 have a size of at least 𝑧 + 1, which is a
contradiction since they have no edge between them.

Proposition 3.26. [2] For any d-regular graph 𝐺 with n vertices and eigenvalue 𝜆,

𝑧(𝐺) ≤ 𝜆𝑛
𝑑 + 𝜆 .

Utilizing the bound from Proposition 3.25, we can find the following lower bound for the integrity.

Theorem 3.27. [2] For any d-regular graph 𝐺 with n vertices and eigenvalue 𝜆,

𝜄(𝐺) ≥ 𝑛𝑑 − 𝜆𝑑 + 𝜆 .

By utilizing the known eigenvalues of strongly regular graphs and combining them with the lower bound
presented in Theorem 3.27, we obtain the following lower bound.

Lemma 3.28. [32] Let 𝐺 be a srg(𝑛, 𝑑, 𝑎, 𝑏) graph, with 𝑏 ≠ 0, and let 𝐷 = (𝑎 − 𝑏) + 4(𝑑 − 𝑏) > 0.
Then 𝐺 has three distinct eigenvalues 𝑑 > 𝜆 > 𝜆 , where

𝜆 , =
1
2 ((𝑎 − 𝑏) ± √𝐷) .

Corollary 3.29. Let 𝐺 be a srg(𝑛, 𝑑, 𝑎, 𝑏) graph, with 𝑏 ≠ 0, and let 𝐷 = (𝑎−𝑏) +4(𝑑 −𝑏) > 0. Then,

𝜄(𝐺) ≥ 𝑛𝑏 − 𝑎 + 2𝑑 − √𝐷
𝑎 − 𝑏 + 2𝑑 + √𝐷

.

Proof. By Theorem 3.27 and Lemma 3.28, we get

𝜄(𝑃(𝑞)) ≥ 𝑛𝑑 − 𝜆𝑑 + 𝜆 = 𝑛
𝑏 − 𝑎 + 2𝑑 − √𝐷
𝑎 − 𝑏 + 2𝑑 + √𝐷

.

4
Integer Linear Programming

In this chapter, we introduce our developed Integer Linear Programming (ILP) models. These models
are tailored to tackle the computational challenge of efficiently determining the properties’ values com-
pared to exhaustive input evaluation. Leveraging the capabilities of ILP, our objective is to expedite
the property evaluation process and establish a reliable method for calculating accurate values.

4.1. Largest size of a Connected Component
Firstly, we examined one of the properties used in the definition of integrity: the largest size of a con-
nected component. This initial model was crucial to access the feasibility of constructing a model for
integrity.

Problem definition: The problem is to determine the largest size of a connected component, denoted
by 𝑚(𝐺).
Input: Let 𝐺 = (𝑉, 𝐸) be an undirected graph. Let 𝐶 denote the 𝑖-th component in G.
Variable definition: Let

𝑐 = { 1 if 𝑣 ∈ 𝐶
0 otherwise 1 ≤ 𝑖 ≤ 𝑛.

Model: Let

min 𝑀,

s.t. ∑
∈
𝑐 ≤ 𝑀 1 ≤ 𝑖 ≤ 𝑛, (4.1)

∑𝑐 = 1 𝑣 ∈ 𝑉, (4.2)

𝑐 = 𝑐 𝑢𝑣 ∈ 𝐸, 1 ≤ 𝑖 ≤ 𝑛, (4.3)
𝑐 ∈ {0, 1} 𝑣 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑛,
𝑀 ∈ ℤ .

Model description: The goal is to minimize𝑀, where Constraint (4.1) ensures that𝑀 is bigger than the
size of each component. There are at most 𝑛 components, as each vertex can be in its own component.
Constraint (4.2) forces that each vertex can only be in exactly 1 component. Finally, Constraint (4.3)
forces that if two vertices are adjacent then they should be in the same component.

21

22 4. Integer Linear Programming

4.2. Vertex Integrity of a Graph
Having confirmed the feasibility of constructing an ILP for the largest size of a connected component,
we proceed to explore the integrity parameter.

Problem definition: The problem is to determine the vertex integrity of a Graph, denoted by 𝜄(𝐺).
Input: Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑆 ⊆ 𝑉 be a set of vertices. Let 𝐶 denote the 𝑖-th
component in G.

Variable definition: Let

𝑠 = { 1 if 𝑣 ∈ 𝑆
0 otherwise

𝑐 = { 1 if 𝑣 ∈ 𝐶
0 otherwise 1 ≤ 𝑖 ≤ 𝑛.

Model: Let

min ∑
∈
𝑠 + 𝑀,

s.t. ∑
∈
𝑐 ≤ 𝑀 1 ≤ 𝑖 ≤ 𝑛, (4.4)

∑𝑐 = 1 − 𝑠 𝑣 ∈ 𝑉, (4.5)

𝑐 − 𝑐 ≤ 𝑠 + 𝑠 𝑢𝑣 ∈ 𝐸, 1 ≤ 𝑖 ≤ 𝑛, (4.6)
𝑐 − 𝑐 ≤ 𝑠 + 𝑠 𝑢𝑣 ∈ 𝐸, 1 ≤ 𝑖 ≤ 𝑛, (4.7)
𝑠 , 𝑐 ∈ {0, 1} 𝑣 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑛,
𝑀 ∈ ℤ .

Model description: The goal is to minimize the size of 𝑆 plus 𝑀, where Constraint (4.4) ensures that
𝑀 is bigger than the size of each component. There are at most 𝑛 components, as each vertex can
be in its own component. Constraint (4.5) forces that each vertex can only be in exactly 1 component
or 0 components if the vertex is in 𝑆. Finally, Constraints (4.6) and (4.7) force that if two vertices are
adjacent and both are not in 𝑆 then they should be in the same component.

4.2.1. Additional Constraints

We implemented the ILP-model for the integrity in Python [31] with the Gurobi software [21] (see Ap-
pendix B for the code). In order to enhance the model, we attempted to add additional constraints.

Initially, we explored removing the symmetry of the constraints by adding the requirement that the size
of the first component should be larger than the second component, and so on. This resulted in the
following constraint

∑
∈
𝑐 ≥ ∑

∈
𝑐 1 ≤ 𝑖 ≤ 𝑛 − 1. (4.8)

However, after testing, we observed that Constraint (4.8) led to a noticeable increase in solving time
without providing any significant improvement. Therefore, we decided to exclude this constraint from
the model.

4.3. Largest size of an empty balanced bipartite subgraph 23

Example 4.1. Consider the Paley graph with 41 vertices, where the integrity is 37. When computing
the integrity without the inclusion of Constraint (4.8), the computation time is 31.26 seconds (98.60
work units). However, when this constraint is included, the computation time increases significantly to
156.85 seconds (581.85 work units).

Furthermore, we explored the possibility of limiting the size of 𝑆 and the largest size of a connected
component 𝑀. This led to the following two constraints, where 𝑋 and 𝑌 are chosen values,

𝑀 ≤ 𝑌 (4.9)

∑
∈
𝑠 ≥ 𝑋. (4.10)

These constraints were added to graphs where we knew the desired size of 𝑆 or the desired value of
𝑀. However, Constraint (4.9) did not improve the solving time. On the other hand, Constraint (4.10)
improved the solving time in some cases. Specifically, when 𝑋 was equal to or larger than the desired
size of 𝑆 that would provide the correct value for the integrity, it improved the solving time. However,
in cases where the size of 𝑋 was considerably smaller than the desired size of 𝑆, the addition of this
constraint led to a noticeable increase in the solving time compared to not including it.

Example 4.2. Consider the Paley graph with 49 vertices, where the integrity is 49 and the desired size
of set 𝑆 is 42. When computing the integrity without the inclusion of Constraint (4.10), the computation
time is 79.54 seconds (215.79 work units). However, when applying the constraint with 𝑌 = 42, the
computation time significantly decreases to only 2.47 seconds (5.01 work units). On the other hand,
when Constraint (4.10) is used with 𝑌 = 32, the solving time is increased to 623.62 seconds (2809.75
work units).

4.3. Largest size of an empty balanced bipartite subgraph
Problem definition: The problem is to determine the value of 𝑧(𝐺) (see Definition 3.24).
Input: Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝐴, 𝐵 ⊆ 𝑉 be two sets of vertices.

Variable definition: Let

𝑎 = { 1 if 𝑣 ∈ 𝐴
0 otherwise

𝑏 = { 1 if 𝑣 ∈ 𝐵
0 otherwise .

Model: Let

max 𝑧,

s.t. ∑
∈
𝑎 = 𝑧, (4.11)

∑
∈
𝑏 = 𝑧, (4.12)

𝑎 + 𝑏 ≤ 1 𝑢𝑣 ∈ 𝐸, (4.13)
𝑎 + 𝑏 ≤ 1 𝑢𝑣 ∈ 𝐸, (4.14)
𝑎 , 𝑏 ∈ {0, 1} 𝑣 ∈ 𝑉,
𝑧 ∈ ℤ .

Model description: The goal is to maximize 𝑧, subject to Constraints (4.11) and (4.11), which ensure
that the sizes of 𝐴 and 𝐵 are both equal to 𝑧. Finally, Constraints (4.13) and (4.14) force that no edges
are between vertices in set 𝐴 and 𝐵.

24 4. Integer Linear Programming

4.4. Computational Complexity
A fundamental aspect of this study is the computational complexity of determining whether the integrity
of a graph is smaller or equal to 𝑝, given the graph 𝐺 and an integer 𝑝. Drange et al. [13] provide a
comprehensive overview of the computational complexity of this problem and related aspects. Clark et
al. [12] have established the problem as NP-complete, indicating that finding an exact solution using a
polynomial-time algorithm is currently infeasible. As the size of the graph increases, the computational
resources required to compute the integrity grow exponentially. Consequently, for larger graphs, the
precise calculation of integrity becomes impractical. To address the computational challenge posed
by the NP-completeness of the integrity problem, alternative approaches are necessary to find efficient
solutions. One such approach is the use of the ILP (Integer Linear Programming) model. By formulating
the problem as an ILP, we can take advantage of the efficient algorithms and techniques developed
for solving linear programming problems. The ILP model offers a more structured and systematic
approach to approximate the integrity values in a more efficient manner compared to the brute force
method. However, it is important to note that even with the utilization of the ILP model, the problem
remains NP-complete. Nonetheless, the ILP model provides a valuable tool for tackling the integrity
problem and facilitating more manageable computations.

However, there are certain graph families where the problem is not NP-complete, as mentioned by
Bagga et al. [3], and implied by the results from Kratsch et al. [24].

Furthermore, the concept of vertex integrity has been expanded by incorporating a weight function
that assigns weights to individual vertices. Drange et al. [13] have investigated the computational
complexity of determining the existence of a subset 𝑋 of vertices satisfying the condition that the weight
of 𝑋, combined with the weight of the heaviest component in 𝐺−𝑋, is at most 𝑝. This problem takes as
inputs a graph 𝐺 with 𝑛 vertices, a weight function 𝜔 ∶ 𝑉(𝐺) → ℕ, and an integer 𝑝. The study revealed
that this problem is only NP-complete for co-bipartite graphs, even when each vertex has a weight of
1.

5
Integrity of Families of Graphs

In this chapter, we apply the concepts described in Chapter 3 to explore the integrity of various graph
families. To determine the most suitable concepts to use, we employ the ILP-model for the integrity,
as described in Chapter 4. Using this model, we are able to compute the integrity values for several
graph families. Through the analysis of these values, we have identified patterns that provide insights
into which concepts should be employed to establish exact values or bounds for the integrity.

5.1. Glued Paths
Definition 5.1. [27] A Glued Path, denoted by 𝐺𝑃 , and depicted in Figure 5.1, consists of a vertex u
with 𝑘 > 2 internally disjoint paths of length 𝑙 − 1, denoted by 𝑃 , joined at u. The vertex 𝑢 is called
the root vertex.

𝑢

𝑃

𝑃

𝑃

Figure 5.1: General form of a Glued Path.

Theorem 5.2. Let 𝐺𝑃 , be a Glued Path, and let 𝑥 =max{0, √ }. Then,

𝜄(𝐺𝑃 ,) = 1 +min {𝑘⌈𝑥⌉ + ⌈ 𝑙 − 1 − ⌈𝑥⌉⌈𝑥⌉ + 1 ⌉ , 𝑘⌊𝑥⌋ + ⌈ 𝑙 − 1 − ⌊𝑥⌋⌊𝑥⌋ + 1 ⌉} .

Proof. Let 𝐺𝑃 , = (𝑉, 𝐸), with 𝑢 as the root vertex, and let 𝑇 = {𝑢}. As 𝐺𝑃 , is connected, by Corol-
lary 3.10, we get

𝜄(𝐺𝑃 ,) = 1 +min {min
∈
𝜄(𝐺𝑃 , − 𝑣),min

∈
min
⊆ ⧵

{|𝑆| + 𝑚(𝐺𝑃 , − 𝑣 − 𝑆)}}

= 1 +min{min
∈
𝜄(𝐺𝑃 , − 𝑣),−1 +min

⊆
| |

{|𝑆| + 𝑚(𝐺𝑃 , − 𝑆)}} .

25

26 5. Integrity of Families of Graphs

As for any 𝑡 ∈ 𝑇, 𝐺𝑃 , − 𝑡 ≅ 𝑘𝑃 , we have

𝜄(𝑘𝑃) =min
∈
𝜄(𝐺𝑃 , − 𝑣).

For any 𝑆 ⊆ 𝑇 , Δ(𝐺𝑃 , , 𝑆) ≤ 2. By Corollary 3.7 and Theorem 3.18, we obtain

−1 +min
⊆
| |

{|𝑆| + 𝑚(𝐺𝑃 , − 𝑆)} ≥ −1 +min
⊆
| |

{|𝑆| + |𝑉| − |𝑆||𝑆| + 1 }

≥ ⌈2√|𝑉| + 1 ⌉ − 3

= ⌈2√𝑘(𝑙 − 1) + 2 ⌉ − 3
≥ 𝜄(𝑘𝑃).

Hence we obtain

𝜄(𝐺𝑃 ,) = 1 + 𝜄(𝑘𝑃).

5.2. Generalized Theta Graphs
Definition 5.3. [28] A Theta graph, consists of a pair of vertices u, v with 3 internally disjoint paths
joining u to v.

Definition 5.4. [28] A generalized Theta graph, denoted by Θ , and depicted in Figure 5.2, consists
of a pair of vertices u, v with 𝑘 > 2 internally disjoint paths of length 𝑙 − 2, denoted by 𝑃 , joining u to
v. The vertices u and v are called the root vertices.

𝑢

𝑃

𝑃

𝑃

𝑣

Figure 5.2: General form of a Theta graph.

Theorem 5.5. Let Θ , be a generalized Theta graph, and let 𝑥 =max {0, √ () }. Then,

𝜄(Θ ,) = 2 +min {𝑘⌈𝑥⌉ + ⌈ 𝑙 − 2 − ⌈𝑥⌉⌈𝑥⌉ + 1 ⌉ , 𝑘⌊𝑥⌋ + ⌈ 𝑙 − 2 − ⌊𝑥⌋⌊𝑥⌋ + 1 ⌉} .

Proof. Let Θ , = (𝑉, 𝐸), with 𝑢 and 𝑣 as the root vertices, and let 𝑇 = {𝑢, 𝑣}. As Θ , is connected, by
Corollary 3.10, we get

𝜄(Θ ,) = 1 +min {min
∈
𝜄(Θ , − 𝑣),min

∈
min
⊆ ⧵

{|𝑆| + 𝑚(Θ , − 𝑣 − 𝑆)}}

= 1 +min{min
∈
𝜄(Θ , − 𝑣),−1 +min

⊆
| |

{|𝑆| + 𝑚(Θ , − 𝑆)}} .

5.3. (Double) Cone Graphs 27

As for any 𝑡 ∈ 𝑇, Θ , − 𝑡 ≅ 𝐺𝑃 , , we have

𝜄(𝐺𝑃 ,) =min
∈
𝜄(Θ , − 𝑣).

For any 𝑆 ⊆ 𝑇 , Δ(Θ , , 𝑆) ≤ 2. By Corollary 3.7 and Theorem 3.18, we obtain

−1 +min
⊆
| |

{|𝑆| + 𝑚(Θ , − 𝑆)} ≥ −1 +min
⊆
| |

{|𝑆| + |𝑉| − |𝑆||𝑆| + 1 }

≥ ⌈2√|𝑉| + 1 ⌉ − 3

= ⌈2√𝑘(𝑙 − 2) + 3 ⌉ − 3
≥ 𝜄(𝐺𝑃 ,).

Hence we obtain

𝜄(Θ ,) = 1 + 𝜄(𝐺𝑃 ,).

5.3. (Double) Cone Graphs
Definition 5.6. The Double Cone graph, denoted by 𝐾 + 2𝐶 , is a graph obtained by joining two
disjoint cycles 𝐶 of order n with a single point 𝐾 . Figure 5.3 depicts the Double Cone graph 𝐾 + 𝐶 .

Figure 5.3: Graph drawing of the Double Cone graph , the graph join of the complete graph and two disjoint copies
of the cycle .

Theorem 5.7. Let 𝐾 + 2𝐶 be a Double Cone graph, and let 𝑥 =max{1,√ }. Then,

𝜄(𝐾 + 2𝐶) = 1 +min {𝑛, 2⌈𝑥⌉ + ⌈𝑛 − ⌈𝑥⌉⌈𝑥⌉ ⌉ , 2⌊𝑥⌋ + ⌈𝑛 − ⌊𝑥⌋⌊𝑥⌋ ⌉} .

Proof. By Corollary 3.22 and Theorem 3.19, we have

𝜄(𝐾 + 2𝐶) = 1 + 𝜄(2𝐶).

Definition 5.8. [10] The Cone graph, denoted by 𝐾 +𝐶 and also known as the generalized Wheel
graph, is a graph obtained by joining a cycle 𝐶 of order m with the empty graph 𝐾 of order n. Fig-
ure 5.4 depicts the Cone graph 𝐾 + 𝐶 .

28 5. Integrity of Families of Graphs

Figure 5.4: Graph drawing of the Cone graph , the graph join of the empty graph and the cycle .

Theorem 5.9. Let 𝐾 + 𝐶 be a Cone graph. Then,

𝜄(𝐾 + 𝐶) =min {1 + 𝑚, ⌈2√𝑚⌉ + 𝑛 − 1} .

Proof. By Corollary 3.23 and Theorem 2.40, we get

𝜄(𝐾 + 𝐶) =min {1 + 𝑚, 𝑛 + 𝜄(𝐶)} .

5.4. Fan Graphs
Definition 5.10. The Fan graph, denoted by 𝐹 , , is a graph obtained by joining the path 𝑃 of order
m with the empty graph 𝐾 of order n. Therefore 𝐹 , ≅ 𝐾 +𝑃 . Figure 5.5 depicts the Fan graph 𝐹 , .

Figure 5.5: Graph drawing of the Fan graph , , the graph join of the empty graph and the path .

Theorem 5.11. Let 𝐹 , be a Fan graph. Then,

𝜄(𝐹 ,) =min {1 + 𝑚, ⌈2√𝑚 + 1⌉ + 𝑛 − 2} .

Proof. By Corollary 3.23 and Theorem 2.40, we obtain

𝜄(𝐹 ,) = 𝜄(𝐾 + 𝑃) =min {1 + 𝑚, 𝑛 + 𝜄(𝑃)} .

5.5. Lollipop Graphs
Definition 5.12. [11, 29] A bridge of a connected graph is a graph edge whose removal disconnects
the graph. [22] More generally, a bridge is an edge of a not-necessarily-connected graph G whose
removal increases the number of components of G.

5.5. Lollipop Graphs 29

Definition 5.13. [19] The Lollipop graph, denoted by 𝐿 and with 𝑛 > 2, is a graph connecting the
complete graph 𝐾 and the path 𝑃 by a bridge. Figure 5.6 depicts the Lollipop graph 𝐿 .

Figure 5.6: Graph drawing of the Lollipop graph , the graph connecting the complete graph and the path by a bridge.

Theorem 5.14. Let 𝐿 be a Lollipop graph and let 𝑘 =max {0, ⌊√𝑙 + 𝑛⌋ − 𝑛}. Then,

𝜄(𝐿) = ⌊ 𝑙 − 𝑘𝑛 + 𝑘 ⌋ + 𝑛 + 𝑘.

Proof. Let 𝐿 = (𝑉, 𝐸). As 𝐾 is a subgraph of 𝐿 , 𝜔(𝐿) ≥ 𝑛. By Proposition 3.13, we have

𝜄(𝐿) = min
⊆

()

{|𝑆| + 𝑚(𝐿 − 𝑆)} .

Let 𝑆 ⊆ 𝑉, and let 0 ≤ 𝑘 ≤ 𝑙 + 1. Label the vertex in 𝐾 connected to the bridge as 0, and label the
vertices along the path 𝑃 starting from this vertex as 1, 2, … , 𝑙, where the 𝑖-th vertex is adjacent to the
(𝑖 + 1)-th vertex for all 𝑖 = 0,… , 𝑙 − 1.
We will remove the 𝑘-th vertex, so the 𝑘-th vertex is in 𝑆. If 𝑚(𝐿 − 𝑆) = (𝑛 − 1) + 𝑘, we have

|𝑆| ≥ ⌊ 𝑙 − 𝑘
(𝑛 − 1) + 𝑘 + 1⌋ + 1 = ⌊

𝑙 − 𝑘
𝑛 + 𝑘 ⌋ + 1.

By Proposition 3.13, we obtain

𝜄(𝐿) = min
⊆

()

{|𝑆| + 𝑚(𝐿 − 𝑆)}

≥ min {⌊ 𝑙 − 𝑘𝑛 + 𝑘 ⌋ + 1 + (𝑛 − 1) + 𝑘}

= ⌊ 𝑙 − 𝑘𝑛 + 𝑘 ⌋ + 𝑛 + 𝑘,

with 𝑘 =max {0, ⌊√𝑙 + 𝑛⌋ − 𝑛}.

For the upper bound, let 𝑆 ⊆ 𝑉 such that𝑚(𝐿 −𝑆) = (𝑛−1)+𝑘, and the size of 𝑆 is minimized. Then,
we have

|𝑆| = ⌊ 𝑙 − 𝑘𝑛 + 𝑘 ⌋ + 1

Then, by Proposition 3.13 we get

𝜄(𝐿) = min
⊆

()

{|𝑆| + 𝑚(𝐿 − 𝑆)} ≤ ⌊ 𝑙 − 𝑘𝑛 + 𝑘 ⌋ + 𝑛 + 𝑘.

30 5. Integrity of Families of Graphs

5.6. Generalized Barbell Graphs
Definition 5.15. [19] The Barbell graph, denoted by 𝐵 and with 𝑛 > 2, is a graph connecting two
copies of a complete graph 𝐾 by a bridge.

Definition 5.16. The generalized Barbell graph, denoted by 𝐵 and with 𝑛 > 2, is a graph connecting
the path 𝑃 and on both sides a complete graphs 𝐾 by bridges. If the length of the path is 0, we have
𝐵 ≅ 𝐵 . Figure 5.7 depicts the Barbell graph 𝐵 .

Figure 5.7: Graph drawing of the Barbell graph , the graph connecting the path and on both sides a complete graphs
by bridges.

Theorem 5.17. Let 𝐵 be a generalized Barbell graph and let 𝑘 =max {0, ⌊√𝑙 + 2𝑛⌋ − 𝑛}. Then,

𝜄(𝐵) = ⌊𝑙 − 2𝑘𝑛 + 𝑘 ⌋ + 𝑛 + 𝑘 + 1.

Proof. Let 𝐵 = (𝑉, 𝐸). As 𝐾 is a subgraph of 𝐵 , 𝜔(𝐵) ≥ 𝑛. By Proposition 3.13, we have

𝜄(𝐵) = min
⊆

()

{|𝑆| + 𝑚(𝐵 − 𝑆)} .

Let 𝑆 ⊆ 𝑉, and let 0 ≤ 𝑘 ≤ 𝑙 + 1. Label the vertex in one of the 𝐾 connected to one of the bridges
as 0, and label the vertices along the path 𝑃 starting from this vertex as 1, 2, … , 𝑙 + 1, where the 𝑖-th
vertex is adjacent to the (𝑖 + 1)th vertex for all 𝑖 = 0,… , 𝑙. Note that the (𝑙 + 2)-th vertex is in the other
𝐾 connected to the other bridge.

We will remove the 𝑘-th and the (𝑙 + 1 − 𝑘)-th vertex, so the 𝑘-th and (𝑙 + 1 − 𝑘)-th vertices are in 𝑆. If
𝑚(𝐵 − 𝑆) = (𝑛 − 1) + 𝑘, we have

|𝑆| ≥ ⌊ 𝑙 − 2𝑘
(𝑛 − 1) + 𝑘 + 1⌋ + 2 = ⌊

𝑙 − 2𝑘
𝑛 + 𝑘 ⌋ + 2.

By Proposition 3.13, we obtain

𝜄(𝐵) = min
⊆

()

{|𝑆| + 𝑚(𝐵 − 𝑆)}

≥ min {⌊ 𝑙 − 2𝑘𝑛 + 𝑘 ⌋ + 2 + (𝑛 − 1) + 𝑘}

= ⌊𝑙 − 2𝑘𝑛 + 𝑘 ⌋ + 𝑛 + 𝑘 + 1,

with 𝑘 =max {0, ⌊√𝑙 + 2𝑛⌋ − 𝑛}.

For the upper bound, let 𝑆 ⊆ 𝑉 such that𝑚(𝐵 −𝑆) = (𝑛−1)+𝑘, and the size of 𝑆 is minimized. Then,
we have

|𝑆| = ⌊ 𝑙 − 2𝑘𝑛 + 𝑘 ⌋ + 1

5.7. (Dutch) Windmill Graphs 31

Then, by Proposition 3.13 we get

𝜄(𝐵) = min
⊆

()

{|𝑆| + 𝑚(𝐵 − 𝑆)} ≤ ⌊𝑙 − 2𝑘𝑛 + 𝑘 ⌋ + 𝑛 + 𝑘 + 1.

5.7. (Dutch) Windmill Graphs
Definition 5.18. [17] The Dutch Windmill graph, denoted by 𝐷 and also known as the Friendship
Graph, is a graph obtained by taking m copies of the cycle 𝐶 with a vertex 𝑢 in common, where 𝑢 is
called the root vertex. This definition can be extended to 𝐷 , consisting of 𝑚 copies of 𝐶 . Figure 5.8
depicts the Dutch Windmill graph 𝐷 .

Figure 5.8: Graph drawing of the Dutch Windmill graph , the graph graph obtained by taking 3 copies of the cycle with a
vertex in common.

Theorem 5.19. Let 𝐷 be a Dutch Windmill graph, and let 𝑥 =max{0, √ }. Then,

𝜄(𝐷) = 1 +min {𝑚⌈𝑥⌉ + ⌈𝑛 − 1 − ⌈𝑥⌉⌈𝑥⌉ + 1 ⌉ ,𝑚⌊𝑥⌋ + ⌈𝑛 − 1 − ⌊𝑥⌋⌊𝑥⌋ + 1 ⌉} .

Proof. Let 𝐷 = (𝑉, 𝐸), with 𝑢 and 𝑣 as the root vertices, and let 𝑇 = {𝑢, 𝑣}. As 𝐷 is connected, by
Corollary 3.10, we get

𝜄(𝐷) = 1 +min {min
∈
𝜄(𝐷 − 𝑣),min

∈
min
⊆ ⧵

{|𝑆| + 𝑚(𝐷 − 𝑣 − 𝑆)}}

= 1 +min{min
∈
𝜄(𝐷 − 𝑣), −1 +min

⊆
| |

{|𝑆| + 𝑚(𝐷 − 𝑆)}} .

As for any 𝑡 ∈ 𝑇, 𝐷 − 𝑡 ≅ 𝑚𝑃 , we have

𝜄(𝑚𝑃) =min
∈
𝜄(𝐷 − 𝑣).

For any 𝑆 ⊆ 𝑇 , Δ(𝐷 , 𝑆) ≤ 2. By Corollary 3.7 and Theorem 3.18, we obtain

−1 +min
⊆
| |

{|𝑆| + 𝑚(𝐷 − 𝑆)} ≥ −1 +min
⊆
| |

{|𝑆| + |𝑉| − |𝑆||𝑆| + 1 }

≥ ⌈2√|𝑉| + 1 ⌉ − 3

= ⌈2√𝑚(𝑛 − 1) + 2 ⌉ − 3
≥ 𝜄(𝑚𝑃).

32 5. Integrity of Families of Graphs

Hence we obtain

𝜄(𝐷) = 1 + 𝜄(𝑚𝑃).

Definition 5.20. [17] The Windmill graph, denoted by 𝑊 , is a graph obtained by taking m copies
of the complete graph 𝐾 with a vertex 𝑢 in common, where 𝑢 is called the root vertex. Therefore
𝑊 ≅ 𝐾 +𝑚𝐾 . Figure 5.9 depicts the Windmill graph𝑊 .

Figure 5.9: Graph drawing of the Windmill graph , the graph graph obtained by taking 4 copies of the complete graph
with a vertex in common.

Theorem 5.21. Let𝑊 be a Windmill graph. Then,

𝜄(𝑊) = 𝑛

Proof. By Corollary 3.22 and Theorem 3.20, we have

𝜄(𝑊) = 𝜄(𝐾 +𝑚𝐾) = 1 + 𝜄(𝑚𝐾) = 1 + (𝑛 − 1) = 𝑛.

5.8. Paley Graphs
Definition 5.22. The Paley graph, denoted by 𝑃(𝑞) with 𝑞 as a prime power, is a graph on 𝑞 vertices.
In this graph, two vertices are adjacent if and only if their difference is a square in the finite field GF(𝑞).
Figure 5.10 depicts the Paley graph 𝑃(13).

Figure 5.10: Graph drawing of the Paley graph () with 13 vertices.

Proposition 5.23. [20] The Paley graph 𝑃(𝑞) is strongly regular with parameters (𝑞, , ,).

5.9. Kneser Graphs 33

Theorem 5.24. For any Paley graph 𝑃(𝑞),

𝜄(𝑃(𝑞)) ≥ 𝑞√𝑞
√𝑞 + 2

.

Proof. By Proposition 5.23 and Theorem 3.29, we get

𝜄(𝑃(𝑞)) ≥ 𝑞√𝑞
√𝑞 + 2

.

Proposition 5.25. [9] For any Paley graph 𝑃(𝑞), with q an even power of a prime,

𝜒(𝑃(𝑞)) = 𝜔(𝑃(𝑞)) = √𝑞.

Theorem 5.26. For any Paley graph 𝑃(𝑞), with q an even power of a prime,

𝛼(𝑃(𝑞)) = √𝑞.

Proof. As 𝑃(𝑞) is self-complementary, by Proposition 5.25, we obtain

𝛼(𝑃(𝑞)) = 𝜔(𝑃(𝑞)) = 𝜔(𝑃(𝑞)) = √𝑞.

Corollary 5.27. For any Paley graph 𝑃(𝑞), with q an even power of a prime,

𝜄(𝑃(𝑞)) ≤ 𝑞 − √𝑞 + 1.

Proof. Substituting Theorem 5.26 in Proposition 3.14 gives

𝜄(𝑃(𝑞)) ≤ 𝑞 − 𝛼(𝐺) + 1 = 𝑞 − √𝑞 + 1.

5.9. Kneser Graphs
Definition 5.28. [7] TheOdd graph, denoted by 𝑂(𝑛), is a graph whose vertices represent the (𝑛−1)-
subsets of {1, … , 2𝑛 − 1}, in which two vertices are connected if and only if they correspond to disjoint
subsets. Therefore O(n) has () vertices and is 𝑛-regular.

Definition 5.29. [26] The Kneser graph, denoted by 𝐾(𝑛, 𝑘) is a generalization of the Odd graph. Its
vertices represent the 𝑘-subsets of {1, … , 𝑛}, in which two vertices are connected if and only if they
correspond to disjoint subsets. Therefore K(n, k) has () vertices and is ()-regular. Figure 5.11
depicts the Kneser graph 𝐾(5, 2).

Figure 5.11: Graph drawing of the Kneser graph (,), also known as the Petersen graph, with 10 vertices.

34 5. Integrity of Families of Graphs

Definition 5.30. [4] The Ladder Rung graph, denoted by 𝑘𝑃 , consists of the graph union of 𝑘 copies
of the path 𝑃 .

Remark 5.31. For any two positive integers 𝑘 and 𝑛, we have special cases

𝐾(𝑛, 1) = 𝐾 ,
𝐾(𝑛, 𝑛) = 𝐾 ,

𝐾(𝑛, 𝑛 − 1) = 𝐾 ,

𝐾(2𝑛, 𝑛) = 1
2 (
𝑛
𝑘)𝑃 ,

𝐾(2𝑛 − 1, 𝑛 − 1) = 𝑂(𝑛).

Remark 5.32. For any two positive integers 𝑘 and 𝑛, the integrity of 𝐾(𝑛, 𝑘) is (still) unknown only in
the case where 1 < 𝑘 < .

Proposition 5.33. [1] For any non-empty Kneser graph 𝐾(𝑛, 𝑘),

𝛼(𝐾(𝑛, 𝑘)) = (𝑛 − 1𝑘 − 1) .

Corollary 5.34. For any non-empty Kneser graph 𝐾(𝑛, 𝑘),

𝜄(𝐾(𝑛, 𝑘)) ≤ (𝑛𝑘) − (
𝑛 − 1
𝑘 − 1) + 1.

Proof. Substituting Proposition 5.33 in Proposition 3.14 gives

𝜄(𝐾(𝑛, 𝑘)) ≤ (𝑛𝑘) − 𝛼(𝐺) + 1 = (
𝑛
𝑘) − (

𝑛 − 1
𝑘 − 1) + 1.

6
Conclusion and Open Problems

The goal of this thesis was to investigate the integrity of specific graph families. In Chapter 3, we
introduced general methods and concepts that enable us to establish boundaries or determine exact
values of the integrity. Chapter 4 described our ILP models for evaluating various properties of a graph,
including the integrity. We applied our integrity ILP model to determine the integrity for different graph
families, where we discovered interesting patterns and structures. These findings allowed us to estab-
lish boundaries or determine exact values of the integrity for those graph families. The graph families
analyzed include Glued Paths, generalized Theta graphs, (Double) Cone graphs, Fan graph, Lollipop
graphs, generalized Barbell graphs, (Dutch) Windmill graphs, Paley graphs, and Kneser graphs.

During our research on integrity, intriguing open problems emerged, particularly in the context of Pa-
ley graphs (see Definition 5.22) and Kneser graphs (see Definition 5.29). Within these families, we
uncovered compelling patterns and structures, which led us to formulate two conjectures. These con-
jectures provide exciting challenges and promising avenues for further research in graph theory and
vertex integrity.

The first conjecture centers around the integrity for Paley graphs. Figure 6.1 illustrates the integrity
values of Paley graphs with 𝑞 vertices, highlighting a recurring pattern. The exact values can be found
in Table A.1.

Figure 6.1: Integrity of Paley graphs with vertices. This plot showcases the integrity values of Paley graphs with vertices.
The x-axis represents the values of , while the y-axis displays the corresponding integrity values. The red points on the plot
represent cases where is an even power of a prime (Paley graphs), while the yellow points correspond to other values of .

Additionally, the plot includes a ’+’ symbol, indicating the value of ⌈ √ ⌉ .

35

36 6. Conclusion and Open Problems

Conjecture 6.1. For any Paley graph 𝑃(𝑞),

𝜄(𝑃(𝑞)) ≥ ⌈𝑞 − √𝑞⌉ + 1.

Combining the results from Conjecture 6.1 and Corollary 5.27, we obtain the following equality.

Theorem 6.2. If Conjecture 6.1 is true, then for any Paley graph 𝑃(𝑞), where 𝑞 is an even power of a
prime,

𝜄(𝑃(𝑞)) = 𝑞 − √𝑞 + 1.

The second conjecture centers around the integrity for Kneser graphs. Figure 6.2 illustrates the in-
tegrity values of Kneser graphs with parameters 𝑛 and 𝑘, highlighting a recurring pattern. The exact
values can be found in Table A.2.

Figure 6.2: Integrity of Kneser graphs with parameters and . This plot showcases the integrity values of Kneser graphs with
parameters and . The x-axis represents the values of , while the y-axis displays the corresponding integrity values. The
colour of the points represents the value of . Additionally, the plot includes a ’+’ symbol, indicating the value of () () .

Conjecture 6.3. For any non-empty Kneser graph 𝐾(𝑛, 𝑘), with 1 < 𝑘 < ⌊ ⌋,

𝜄(𝐾(𝑛, 𝑘)) = (𝑛𝑘) − (
𝑛 − 1
𝑘 − 1) + 1.

Remark 6.4. If Conjecture 6.3 is assumed to be true, then the integrity values for all Kneser graphs,
except for the Odd graphs, are known.

Paley and Kneser graphs are well-known for their high symmetry and have been extensively studied.
The conjectures formulated in this study carry great significance, as they highlight the observation that
certain Paley and Kneser graphs showcase the strictness of the upper bound proposed by Proposi-
tion 3.14, which applies to all graphs.

References

[1] M. Aigner, G. M. Ziegler, M. Aigner, and G. M. Ziegler. The chromatic number of Kneser graphs.
Proofs from THE BOOK, pages 251–255, 2010.

[2] N. Alon, A. Bishnoi, S. Das, and A. Neri. Strong blocking sets and minimal codes from expander
graphs. arXiv preprint arXiv:2305.15297, 2023.

[3] K. S. Bagga, L. W. Beineke, W. D. Goddard, M. J. Lipman, and R. E. Pippert. A sur-
vey of integrity. Discrete Applied Mathematics, 37-38:13–28, 1992. ISSN 0166-218X.
doi: 10.1016/0166-218X(92)90122-Q. URL https://www.sciencedirect.com/science/article/pii/
0166218X9290122Q.

[4] W. Ball and H. Coxeter. Mathematical Recreations and Essays. Dover Recreational Math Se-
ries. Dover Publications, 1987. ISBN 9780486253572. URL https://books.google.nl/books?id=
9lJqNJhYc9oC.

[5] C. Barefoot, R. Entringer, and H. Swart. Integrity of trees and powers of cycles. Congr. Numer,
58:103–114, 1987.

[6] C. A. Barefoot, R. Entringer, and H. Swart. Vulnerability in graphs-a comparative survey. J.
Combin. Math. Combin. Comput, 1(38):13–22, 1987.

[7] N. Biggs, N. L. Biggs, and B. Norman. Algebraic graph theory. Number 67. Cambridge university
press, 1993.

[8] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. Pacific
Journal of Mathematics, 13:389–419, 1963.

[9] I. Broere, D. Döman, and J. N. Ridley. The clique numbers and chromatic numbers of certain
Paley graphs. Quaestiones Mathematicae, 11(1):91–93, 1988.

[10] F. Buckley and F. Harary. On the euclidean dimension of a wheel. Graphs and Combinatorics, 4
(1):23–30, 1988.

[11] G. Chartrand. Cut-vertices and bridges. introductory graph theory, pages 45–49, 1985.

[12] L. H. Clark, R. C. Entringer, and M. R. Fellows. Computational complexity of integrity. J. Combin.
Math. Combin. Comput, 2:179–191, 1987.

[13] P. G. Drange, M. Dregi, and P. van’t Hof. On the computational complexity of vertex integrity and
component order connectivity. Algorithmica, 76:1181–1202, 2016.

[14] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum
Petropolitanae, pages 128–140, 1741.

[15] H. Frank and I. Frisch. Analysis and design of survivable networks. IEEE Transactions on Com-
munication Technology, 18(5):501–519, 1970. doi: 10.1109/TCOM.1970.1090419.

[16] S. Freitas, D. Yang, S. Kumar, H. Tong, and D. H. Chau. Graph vulnerability and robustness: A
survey. IEEE Transactions on Knowledge and Data Engineering, 35(6):5915–5934, 2023. doi:
10.1109/TKDE.2022.3163672.

[17] J. A. Gallian. A dynamic survey of graph labeling. Electronic Journal of combinatorics, 1
(DynamicSurveys):DS6, 2018.

[18] M. R. Garey. Computers and intractability: A guide to the theory of np-completeness, freeman.
Fundamental, 1997.

37

https://www.sciencedirect.com/science/article/pii/0166218X9290122Q
https://www.sciencedirect.com/science/article/pii/0166218X9290122Q
https://books.google.nl/books?id=9lJqNJhYc9oC
https://books.google.nl/books?id=9lJqNJhYc9oC

38 References

[19] A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective resistance of a graph. SIAM review, 50
(1):37–66, 2008.

[20] C. Godsil and G. F. Royle. Algebraic graph theory, volume 207. Springer Science & Business
Media, 2001.

[21] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.gurobi.
com.

[22] F. Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addison-Wesley Long-
man, Incorporated, 1969. ISBN 9780201027877. URL https://books.google.nl/books?id=
0A4rmgEACAAJ.

[23] R. M. Karp. Reducibility among combinatorial problems. Springer, 2010.

[24] D. Kratsch, T. Kloks, and H. Muller. Measuring the vulnerability for classes of intersection graphs.
Discrete Applied Mathematics, 77(3):259–270, 1997.

[25] J. Liu, M. Zhou, S. Wang, and P. Liu. A comparative study of network robustness measures.
Frontiers of Computer Science, 11:568–584, 2017.

[26] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinatorial
Theory, Series A, 25(3):319–324, 1978.

[27] S. Sankaran and N. Chidambaram. On hop domination number of some generalized graph struc-
tures. Ural Mathematical Journal, 7:121–135, 12 2021. doi: 10.15826/umj.2021.2.009.

[28] G. Sathiamoorthy and T. Janakiraman. Graceful labeling of generalized theta graphs. National
Academy science letters, 41:121–122, 2018.

[29] S. Skiena. Implementing discrete mathematics: combinatorics and graph theory with Mathemat-
ica. Addison-Wesley Longman Publishing Co., Inc., 1991.

[30] S. A. University. Königsberg bridges. [Image], n.d. URL https://mathshistory.st-andrews.ac.uk/
Extras/Konigsberg/.

[31] G. Van Rossum and F. L. Drake Jr. Python tutorial. Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands, 1995.

[32] D. B. West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, 2001.

[33] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of Mathematics,
54:61–79, 1932.

https://www.gurobi.com
https://www.gurobi.com
https://books.google.nl/books?id=0A4rmgEACAAJ
https://books.google.nl/books?id=0A4rmgEACAAJ
https://mathshistory.st-andrews.ac.uk/Extras/Konigsberg/
https://mathshistory.st-andrews.ac.uk/Extras/Konigsberg/

A
Data

𝑞 integrity |𝑆| ⌈𝑞 − √𝑞⌉ + 1
5 4 3 4
9 7 6 7
13 11 10 11
17 14 12 14
25 21 20 21
29 26 25 25
37 32 30 32
41 37 36 36
49 43 42 43
53 48 46 47
61 56 54 55
73 67 64 66
81 73 72 73
89 82 80 81
121 111 110 111

Table A.1: Integrity of Paley graphs with vertices. Comparison of integrity values, the size of the set of removed vertices, and
the lower bound based on . The integrity values were calculated using the ILP model described in Chapter 4.

𝑛 ⧵ 𝑘 2 3 4
5 6
6 11
7 16 17
8 22 36
9 29 57 57
10 37 85 127
11 46 121 211
12 56 166
13 67
14 79

Table A.2: Integrity of Kneser graphs with parameters and . Comparison of integrity values for various combinations of
and . The integrity values were computed using the ILP model described in Chapter 4.

39

B
Python Code

B.1. General Functions

[]: def pline():
print(’=’ * 109)

def log(col, value):
if col == ’red’:

print(’\033[91m’ + str(value) + ’\033[0m’)

def header(value):
pline()
print()
log(’red’, value)
print()
pline()
print()

def block(value):
print()
log(’red’, value)
print()

B.2. Graph Families

[]: from sage.all import *

def ThetaGraph(k, l):
node_s = -1
node_f = k*(l-2) + 1

P = graphs.PathGraph(l - 2)

G = P
for i in range(k - 1):

G += P

41

42 B. Python Code

for i in range(k):
j = i * (l - 2)
G.add_edge(node_s, j)
G.add_edge(j + l - 3, node_f)

return G

def getThetaPos(G, k, l):
result = dict()

for v in G:
pos = []
if v == -1:

pos.append((k - 1) / 2)
elif v == len(G) - 1:

pos.append((k - 1) / 2)
else:

pos.append(floor(v / (l - 2)))

if v == -1:
pos.append(-1)

elif v == len(G) - 1:
pos.append(l - 2)

else:
pos.append(v % (l - 2))

result[v] = pos

return result

def getPaleyPos(G, q):
C = graphs.CycleGraph(q)
C.relabel(list(G))
return C.get_pos()

def getKneserPos(G, n):
C = graphs.CycleGraph(n)
C.relabel(list(G))
return C.get_pos()

B.3. Graph Properties

[]: import gurobipy as gp
from gurobipy import GRB

def m(G, Output = 1):
G.relabel(range(1, len(G) + 1))

A = G.adjacency_matrix()
V = list(set(G))
C = range(len(V))

Create a new model
m = gp.Model()

B.3. Graph Properties 43

Create variables
M = m.addVar(name=”M”, vtype=GRB.INTEGER, lb=0, ub=len(V))

Cv = {}
for i in range(len(C)):

c = C[i]
for v in V:

Cv[c, v] = m.addVar(name=”c_%s,%s”%(c, v), vtype=GRB.BINARY)

Set objective function
m.setObjective(M, GRB.MINIMIZE)

Add constraints
for i in range(len(V)):

m.addConstr(gp.quicksum([Cv[C[i], v] for v in V]) <= M)

m.addConstr(gp.quicksum([Cv[c, V[i]] for c in C]) == 1)

for c in C:
for j in range(i + 1, len(V)):

if A[i][j]:
m.addConstr(Cv[c, V[i]] == Cv[c, V[j]])

m.setParam(’OutputFlag’, Output)

Solve it!
m.optimize()

return (int(m.objVal))

def a(G, Output = 1):
G.relabel(range(1, len(G) + 1))

A = G.adjacency_matrix()
V = list(set(G))
C = range(len(V))

Create a new model
m = gp.Model()

Create variables
Sv = {}
for i in range(len(C)):

Sv[V[i]] = m.addVar(name=”s_%s”%(V[i]), vtype=GRB.BINARY)

Set objective function
m.setObjective(gp.quicksum([Sv[v] for v in V]), GRB.MAXIMIZE)

Add constraints
for i in range(len(V)):

for j in range(i + 1, len(V)):
if A[i][j]:

m.addConstr(Sv[V[i]] + Sv[V[j]] <= 1)

44 B. Python Code

m.setParam(’OutputFlag’, Output)

Solve it!
m.optimize()

sets = [v for v in V if Sv[v].X == 1]

return (int(m.objVal), sets)

def z(G, Output = 1):
G.relabel(range(1, len(G) + 1))

A = G.adjacency_matrix()
V = list(set(G))
C = range(len(V))

Create a new model
m = gp.Model()

Create variables
M = m.addVar(name=”M”, vtype=GRB.INTEGER, lb=0, ub=len(V))

Av = {}
Bv = {}
for i in range(len(C)):

Av[V[i]] = m.addVar(name=”a_%s”%(V[i]), vtype=GRB.BINARY)
Bv[V[i]] = m.addVar(name=”b_%s”%(V[i]), vtype=GRB.BINARY)

Set objective function
m.setObjective(M, GRB.MAXIMIZE)

m.addConstr(gp.quicksum([Av[v] for v in V]) == M)
m.addConstr(gp.quicksum([Bv[v] for v in V]) == M)

Add constraints
for i in range(len(V)):

m.addConstr(Av[V[i]] + Bv[V[i]] <= 1)

for j in range(i + 1, len(V)):
if A[i][j]:

m.addConstr(Av[V[i]] + Bv[V[j]] <= 1)
m.addConstr(Av[V[j]] + Bv[V[i]] <= 1)

m.setParam(’OutputFlag’, Output)

Solve it!
m.optimize()

sets = ([v for v in V if Av[v].X == 1], [v for v in V if Bv[v].X == 1])

return (int(m.objVal), sets)

def i(G, Output = 1):
G.relabel(range(1, len(G) + 1))

B.3. Graph Properties 45

A = G.adjacency_matrix()
V = list(set(G))
C = range(len(V))

Create a new model
m = gp.Model()

Create variables
M = m.addVar(name=”M”, vtype=GRB.CONTINUOUS, lb=0, ub=len(V))

Cv = {}
Sv = {}
for i in range(len(C)):

Sv[V[i]] = m.addVar(name=”s_%s”%(V[i]), vtype=GRB.BINARY)

c = C[i]
for v in V:

Cv[c, v] = m.addVar(name=”c_%s,%s”%(c, v), vtype=GRB.BINARY)

Set objective function
m.setObjective(gp.quicksum([Sv[v] for v in V]) + M, GRB.MINIMIZE)

Add constraints
for i in range(len(V)):

m.addConstr(gp.quicksum([Cv[C[i], v] for v in V]) <= M)

m.addConstr(gp.quicksum([Cv[c, V[i]] for c in C]) == 1 -�
↪Sv[V[i]])

if i < len(V) - 1:
m.addConstr(gp.quicksum([Cv[C[i], v] for v in V]) <= gp.

↪quicksum([Cv[C[i + 1], v] for v in V]))

for c in C:
for j in range(i + 1, len(V)):

if A[i][j]:
m.addConstr(Cv[c, V[i]] - Cv[c, V[j]] <= Sv[V[i]] +�

↪Sv[V[j]])
m.addConstr(Cv[c, V[j]] - Cv[c, V[i]] <= Sv[V[i]] +�

↪Sv[V[j]])

m.setParam(’OutputFlag’, Output)

Solve it!
m.optimize()

sets = [v for v in V if Sv[v].X == 1]

return (int(m.objVal), sets)

46 B. Python Code

B.4. File Management

[]: import os

import pandas as pd

cwd = ’./Files/’

def readFile(file):
path = os.path.join(cwd, file)
df = pd.read_excel(path, index_col=0)

cols = list(df.columns)

return (df, cols)

def writeFile(file, cols, values):
data = {i: dict(zip(cols, vals)) for i, vals in enumerate(values)}

df = pd.DataFrame(data=data).T

path = os.path.join(cwd, file)
df.to_excel(path)

display(df)

def addToFile(file, values, sort = None):
df, cols = readFile(file)

data = {i: dict(zip(cols, vals)) for i, vals in enumerate(values)}

df_n = pd.DataFrame(data=data).T

df = pd.concat([df, df_n], ignore_index=True)
if sort:

df.sort_values(list(sort), inplace=True)

path = os.path.join(cwd, file)
df.to_excel(path)

display(df)

B.5. Paley Graphs

[]: #
Modules
#

import os
import random
import time
import math
import numpy as np

B.5. Paley Graphs 47

import matplotlib.pyplot as plt
from IPython.display import display
from ast import literal_eval

#
Module Files
#

sys.path.append(’./Modules’)

import Functions as f
import GraphFamilies as gf
import GraphProperties as gp
import FileManagement as fm

from importlib import reload

reload(f)
reload(gf)
reload(gp)
reload(fm)

[]: def checkPaleyGraph(q):
if q**0.5 == int(q**0.5):

return ’Quadratic PaleyGraph(q)’
return

[]: # i(G)

For other properties, replace all i’s with the for example a or z.

df, cols = fm.readFile(’paley-i.xlsx’)

reset = False

df_v, cols_v = fm.readFile(’paley-values.xlsx’)

Lz = []
for i, q in enumerate(df_v[cols_v[0]].head(int(40))):

if not checkPaleyGraph(q):
continue

if not reset and len(df[df[cols[0]] == q]) > 0:
continue

G = graphs.PaleyGraph(q)

f.header(’P(’ + str(q) + ’)’)

i_solve, sets = gp.i(G)

Li.append((G, q, i_solve, sets))

f.block(’i(G) = ’ + str(i_solve))

48 B. Python Code

pos = gf.getPaleyPos(G, q)
G.show(vertex_colors={ ’#FF0000’: list(sets) }, pos=pos)

[]: file = ’paley-i.xlsx’

cols = (’q’, ’i(G)’, ’|S|’, ’S’)
sort = (’q’)

values = [(q, i_value, len(sets), sets) for (G, q, i_value, sets) in Li]

if reset:
fm.writeFile(file, cols, values, sort)

else:
fm.addToFile(file, values, sort)

[]: df, cols = fm.readFile(’paley-i.xlsx’)

fig, ax = plt.subplots()

ax.plot(df[cols[0]], df[cols[1]], ’bo’, label=cols[1])

plt.xlabel(cols[0])
plt.ylabel(cols[1])

plt.legend()

plt.show()

display(df[cols[0:2]].T)

	Preface
	Abstract
	Layman Abstract
	Introduction
	Robustness of a Network
	Overview

	Preliminary
	Basic Graph Properties
	Spectral Graph Theory
	Basic Graph Structures
	Measures for the Robustness of a Network

	Integrity of a Graph
	Graph Unions
	Graph Joins
	Spectral Bounds

	Integer Linear Programming
	Largest size of a Connected Component
	Vertex Integrity of a Graph
	Additional Constraints

	Largest size of an empty balanced bipartite subgraph
	Computational Complexity

	Integrity of Families of Graphs
	Glued Paths
	Generalized Theta Graphs
	(Double) Cone Graphs
	Fan Graphs
	Lollipop Graphs
	Generalized Barbell Graphs
	(Dutch) Windmill Graphs
	Paley Graphs
	Kneser Graphs

	Conclusion and Open Problems
	References
	Data
	Python Code
	General Functions
	Graph Families
	Graph Properties
	File Management
	Paley Graphs

