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Abstract
Generating synthetic images has wide applications in several fields such as creating datasets for ma-
chine learning or using these images to investigate the behaviour of machine learning models. An
essential requirement when generating images is to control aspects such as the entities or objects in
the image. Controlling this helps in creating custom datasets tailored for the above applications and
creates a platform to conduct diverse experiments with the generated images, enabling research in the
application’s field. Existing methods individually enable controllability over various elements in the im-
age such as selecting the objects, their properties, colour or the relations between objects, etc. but we
identify a research gap in this field where no single method allows the user to control all these aspects
of the image. An additional research gap identified is that existing methods cannot generate images
based on a query with a logic based combination of entities.

In this thesis, we aim to fill this research gap by developing SceneUI - a system that allows the user to
specify and control aspects of the scene through a user interface such as the objects, object properties,
spatial relations between objects, object colour, extent of contextual objects and the background of the
image. Additionally, we include a component where the scene is generated based on an OR query
specifying the objects as predicates, which serves as a foundation to generating images based on entity
combinations. Owing to the limited range of attributes for objects and the lack of objects with attributes
in the dataset, we augment the dataset by expanding the attributes of objects in the scene graphs of the
dataset and introducing additional objects that have attributes. This was done by identifying recurring
objects in the dataset that could be expanded and manually annotating the changes in the dataset.
This increases the level of controllability and gives a wider range of an object’s properties to choose
from.

The goal of the thesis is to design and develop a method that allows the user to declare, specify
and manipulate elements of the image and eventually use the images generated for two use cases -
Generating Images for Interpretable Machine Learning andGenerating Images fromQueries as Ground
Truth. We evaluate SceneUI to show its usability and effectiveness for the two use cases through two
experiments. In the first experiment, we use SceneUI to create biased datasets where each bias is
based on an object’s colour or object type and the goal is to train a deep learning model that learns
the biases. The results show that the model learns the biases well and thus, SceneUI can be used to
control datasets which can be used to benchmarkmachine learning explainability methods. The second
experiment generates a dataset of images using the OR query and training machine learning models
on the dataset to ensure the suitability of the images for machine learning tasks. As the generated
images will be used as ground truth given a query for a specialised machine learning model, the model
is expected to identify the predicate objects in the image. The results show SceneUI can generate
images based on objects in the query and can also accommodate the objects to have properties. The
models identify important features in the SceneUI-generated images and are thus suitable to be used
as ground truth. We also discuss the limitations and tradeoffs of SceneUI and present potential future
directions for research to improve its scalability.
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1
Introduction

There is an increasing trend of using deep learning models to solve complex problems [30] in research
areas ranging from speech translation [47] to using computer vision models for medical image analysis
[36]. Though these models give great results with high accuracy, they come with their drawbacks as
they can be difficult to debug and comprehend their decision-making procedure [46] which results in
hindrances to using them in real life. Thus, as deep learning models are complex black-box models,
they require extensive efforts by researchers to understand their behaviour. To design methods that
explain a model’s behaviour we need to know its true nature of behaviour. Once this is known, the
behaviours can be introduced into models by creating biased datasets where the images of a class
are biased towards the presence of a particular object, object property or colour. Acquiring relevant
datasets with images that contain specific features is tedious and expensive [53]. Thus, generating
synthetic images which contain specific objects, or objects with a certain colour is a viable alternative,
especially if the features expected in the image can be controlled. These synthetic images can also be
used in the training set for various machine learning models where these images will act as the ground
truth for a given class.

Image generation has captured the interest of Computer Science researchers for several years and
it is now a growing field where the methods for creating realistic images are developing at a rapid pace
[42, 41, 13]. The images generated at scale have a wide variety of applications in several fields and
the images generated could be based either on an outdoor or indoor setting. Indoor scene generation
is a domain within image generation where the scope of the generated content is narrowed down to
rooms with appropriate furniture and layouts [60]. The scene is a 3D rendered layout of objects where
the camera angle of the view can be changed if needed and an image extracted. Given the constrained
space of a room, indoor scene generation methods allow a great extent of controllability in selecting
objects based on their type or property, placing them at particular positions with respect to other objects,
or selecting the background of the room in which the objects are placed. In this thesis, we restrict the
scope of our thesis to indoor image generation due to the limited number of objects and the extent of
controllability enabled.

Existing methods in indoor scene generation provide for this controllability through the means of
text-to-scene synthesis [5, 7, 8, 34]. These methods make the user declare and specify the objects
and the number of instances expected in the scene, the spatial relations between objects, and object
properties. These methods achieve the generation of the scene in different ways and each method
enables the user to control only certain elements of the scene. Therefore, there is no singular method
that allows the user to control all of the following elements - selection of objects, the quantity of objects,
positioning of objects with respect to each other, object with functionality, the colour of objects, and the
background of the scene. These methods also have a limited range of attributes for an object to select
from. Another drawback of the existing methods that request a user to specify the scene is the high
cognitive load on the user. Due to the user providing only a text input, they are expected to remember
all the possible objects that exist in the scene, the properties that the method allows them to select as
well as the relations permitted for image generation.

1



2 1. Introduction

1.1. Thesis Goal
The goal of the thesis is to develop a method that allows the generation of indoor images based on
the specification provided by the user. The method also follows an object-oriented approach which
is based on designing classes with specific functions and calling objects from these class to process
information using the functions. In this way, the the decision-making of the method is traceable and
easy to understand. Through this method, the user should also be able to control various aspects of
the image by specifying the objects and their quantity, attributes or colour of objects, relations between
objects, and the background of the image. The image generation process is also expected to consider
these specifications as constraints for the image generation problem.

This is achieved by the means of creating an interactive user interface that allows the user to control
all aspects of the scene earlier described. The user interface is merged with an existing work that
translates natural language to an indoor scene. The natural language component is replaced with the
interface, and further changes are made to increase the level of controllability. We name this method
that generates images or scenes via a user interface as SceneUI, and our method will be referred to by
this in the report. The thesis explores using this controllable image generation method in the context
of generating images for the following two use cases:

• Generating Images for Interpretable Machine Learning
The synthetic images generated will be used to benchmark interpretability and explainability meth-
ods in Deep Learning models for Computer Vision. The images will be used to train and evaluate
computer vision models to verify whether explainability methods can reveal known model be-
haviours such as using human interpretable concepts like object shapes, colours, and textures
during classification. The known behaviours are introduced in the model by creating biased image
datasets and training the models on the biased datasets. Essentially, the images will be used to
debug and understand deep learningmodels by investigating whether models learn certain biases
from the dataset.

• Generating Images from Queries as Ground Truth
Specialised machine learning models are a type of neural network which can be used to identify
entities in an image or retrieve images given a query with the entities as predicates. Based on the
query, images with appropriate entities are retrieved. Training such models require ground truth
images with entities based on the possible queries. Thus, there is a need to generate images
based on a query to subsequently use them as ground truth. The specification of the image
generated should contain a query with predicates as the entities expected in the images. For
example, if the query is a Chair AND Stool, both objects should be in the image. Alternatively, for
a more complex query - ChairOR Stool, there should be an instance of the image where only one
of the two is present or both objects are present. The images synthesised will serve as ground
truth for training a collection of specialised machine learning models.

(a) Study Room with an Office Chair. (b) Study Room with a Dining Chair.

Figure 1.1: Images generated by altering Attributes of objects in a study room.
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To further elaborate on the concept of controllability that is expected of this method, an example
is shown in Figure 1.1 which depicts two scenes of a study room. The common scenario for both
images in the scene is to have a desk with a chair in front of it and a trash can on the right of the desk.
Additionally, a monitor, keyboard, mouse and two speakers are placed on the table. On observing the
main differences between the two figures, we can see that Figure 1.1a constitutes a dark brown study
desk with a black office chair in a brown room, and Figure 1.1b depicts a light brown study desk and
a light brown dining chair in a green room. With the image generation method developed through the
thesis (SceneUI), the user should be able to recreate both scenes. The user can specify all the objects
occurring in either image, place them at particular locations, and also select the colours of objects.

In the context of the use cases, the images could be used to explore whether a deep learning
model considers the type of chair (Office or Dining) or the colour of the objects in the scene important
for classifying a study room. For the second use case, if we provide the query of an office chair Or a
dining chair, with the remaining objects, we could expect either of these images.

1.2. Research Questions
Given the motivation of generating images for the use cases, we want to develop a method that enables
the user to synthesise images. While generating images, the method should also enable the user to
control and select the objects occurring in it as well as the object’s attributes and positions in the scene.
We define the following research question to meet this objective :

• RQ: How to build a system that generates indoor scene images where the object properties,
colour and spatial relations between objects can be controlled?

Answering this research question requires additional research sub-questions to be answered:

• RSQ1: What are the current methods of image generation and what features of the synthesised
image do they allow control over?
Answering this question involves conducting a literature study of image generation methods. The
study also narrows down to indoor scene generation and discusses the controllable aspects of
the methods.

• RSQ2: How can the attributes of objects be expanded to allow controllability over multiple prop-
erties?
Current methods allow controlling none or only limited properties of an object during image gen-
eration. Solving this question would require augmenting the dataset with annotations such that
the methods can recognise an object’s additional property based on its colour or functionality.

• RSQ3: How can the user provide specifications for all the controllable variables in the image?
Answering this question involves developing an interactive user interface which enables the user
to select the objects and specify all relations and properties of the objects. This interface which
takes the user’s constraints is be merged well with the image generating algorithm.

• RSQ4: How can images be generated given a query with objects as predicate terms?
To answer this, the method should include a capability for the user to provide a query with objects
as query predicates and synthesise an image based on this.

• RSQ5: To what extent can the method be used for the two use cases?
Answering this question requires conducting experiments using the images generated for sce-
narios with both use cases. The goal of the experiments would be to evaluate the suitability of
the image generating method for the use cases.

1.3. Thesis Challenges
Answering the research questions and subsequent research sub-questions presented above come with
their corresponding challenges.

• RSQ2: A significant challenge is increasing the level of controllability by making changes to an
existing method which is selected as the baseline. As this method allows controllability over only
certain features, we would have to include the remaining features of controllability such as colour
and selecting a background for the objects.
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• RSQ3: The second challenge relates to having a single method that consolidates all controllable
features objects may have. This challenge is tackled by designing the user interface that provides
functionalities for the user to select the objects, their properties and relations. Designing this user
interface also comes with the additional technical hurdle of ensuring it merges with themain scene
generating algorithm. Steps were taken to ensure that the input from the interface was processed
and collected in a way that allows conversion of the input to a required graph structure.

• RSQ5: Another challenge that could be encountered is the evaluation of SceneUI in the context
of the use cases. Existing literature evaluates similar methods based on the plausibility and
realistic look of the images [5, 7, 34, 8, 17]. In this thesis, we aim to evaluate SceneUI via
downstream tasks to investigate the suitability of the methods. The challenge here arises due
to a lack of literature that could be referred to evaluate the method in this setting. To perform
an accurate evaluation of the method with regards to its suitability, we design experiments that
reflect scenarios in which the method would be used for both use cases.

1.4. Contributions
By answering the above research sub-questions and tackling the challenges, we aim to provide the
following contributions through the thesis:

• C1: We contribute in the literature study an analysis of indoor scene generation methods which
compares aspects of the scene the methods allow control over.

• C2: We enhance the level of controllability by expanding and augmenting existing attributes of
objects in the scene graphs of the dataset.

• C3: We design a user interface through which the user can describe a scene by specifying ob-
jects, object properties, spatial relations between objects, and selection of the background. This
user interface is merged with an existing method that generates scenes.

• C4: We include a feature in SceneUI where the user can provide a query with objects and the
resultant image includes objects based on the query.

• C5: We evaluate the suitability of the SceneUI and its features in the context of two use cases.

1.5. Thesis Outline
The structure of the thesis report is designed in a way to give the reader sufficient background of the
problem and existing work, before diving deep to the main method of SceneUI and the experiments
while also describing the motivations behind the choices made.

• In chapter 2 we provide background information about existing methods and techniques for image
generation using machine learning and computer graphics. We also discuss methods for indoor
scene generation and provide an analysis of the existing methods, thereby answering RSQ1.

• In chapter 3 we discuss the workings of SceneUI by giving an overview of the system and the
pipeline for information flow. We also describe the dataset used, and various stages of the
pipeline. Additionally, we describe how the dataset was manually augmented, the design and
functionality of the user interface, and the generation of images based on queries. This chapter
collectively answers RSQ2 in section 3.3, RSQ3 in section 3.7, and RSQ4 in section 3.8.

• In chapter 4 we describe the experimental setup to evaluate SceneUI and its suitability for the
two use cases.

• In chapter 5 the results and findings from the experiments conducted in chapter 4 are discussed.
The answer to RSQ5 is collectively given in chapter 4 and chapter 5.

• In chapter 6 we summarise the thesis and provide answers to research questions. Addtionally,
we compare SceneUI to literature and discuss its limitations and directions for future work.
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Background

This chapter provides information and context about image generation methods. These methods are
classified under Machine Learning or Computer Graphics as approaches for image generation and
are discussed in section 2.1 and section 2.2 respectively. Machine Learning methods learn the features
of the input data to generate images, whereas Computer Graphics methods follow a procedure-based
technique to synthesise several images. For the purpose of the thesis we also narrow down our scope
to image generation of indoor scenes using computer graphics as they allow more controllability over
object features and spatial relations. The various methods used within indoor scene synthesis are also
presented in section 2.3. These methods are different from traditional computer graphics techniques to
generate images as they require modelling spatial relations or using scene graphs to generate images.
Furthermore, background information is also provided in section 2.4 on the use cases to provide a better
understanding of the existing methods in both fields and how this thesis benefits the fields. Finally, in
section 2.5 an analysis of literature on indoor scene generating methods is discussed, and the research
gaps are presented with a comparison to the method developed in the thesis.

2.1. Machine Learning For Image Generation
Machine Learning is the field of learning from examples or data by understanding and modelling the
features of the available data. By learning the distribution of the data and identifying patterns, statistical
algorithms can be applied to make predictions or identify structures in data. Deep learning is a sub-field
of machine learning where an artificial neural network is created, similar to the structure of the human
nervous system to learn the representation of the data [19]. Deep learning methods are powerful and
can be used to synthesise images as the output of the neural network [53]. For deep learning models to
generate images similar to the training data, they first need to learn its distribution. Generative Adver-
sarial Networks (GANs) are extensively used in deep learning to generate photorealistic images and
are the current state of the art in image generation [43] when compared with other generative models
like Variational Autoencoders. A GAN consists of two models - a discriminator network and a genera-
tor network. The generator model synthesises an image by sampling from a random noisy distribution
while the discriminator classifies the generated image if it is part of the training distribution or not [20].
The resultant loss and feedback are provided to the generator model and it learns to generate more
accurate images by finding a mapping from the noise distribution to the training data distribution.

Initial works with GANs did not allow much controllability in the generated images but certain text-to-
image generation methods have led to more progress in this area as the text input can specify features
of the image that are expected or required [31]. Text-to-image generation uses an attention-based ap-
proach which encodes the input text and identifies important keywords that correspond to regions in
the generated image that should have certain features. This allows a correlation between semantically
meaningful parts with corresponding words and colour descriptions. Using the encoded text descrip-
tion, images are generated by considering a loss function that signifies a relation between the input
text and generated image [31, 57]. Imagen, the current state of the art generates realistic and accurate
images given a very complicated or implausible textual description [42].

5
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Though there exist several works in deep learning that generate realistic and accurate images given
text, they come with their limitations. A major limitation is that deep learning models are very complex
and consist of several layers and parameters. They are also black-box in nature thus making them
difficult to interpret and debug. Another drawback with these methods is that the neural networks are
also very difficult to design due to the high level of complexity, and can take very long to train, thereby
requiring high-end computation power. With a procedural algorithm based on computer graphics, it
would also be easier to enforce controllability in the synthesised scene by having a rule-based ap-
proach. In section 2.2 we discuss ways to scale a particular scene by having several variations of the
image. This allows several images to be created whereas most of the works for image generation with
machine learning synthesise a single image for an input. Due to the above reasons, we proceed with
a computer graphics approach for the thesis.

2.2. Computer Graphics For Image Generation
Computer Graphics is a discipline within Computer Science focusing on creating virtual images, scenes
and other content. To synthesise visual content, computer graphics methods study the 3D representa-
tion of objects, render 3D models of objects, and create animations with these objects if needed. Com-
puter graphics has several applications in the gaming industry and 3D modelling. In subsection 2.2.1
computer graphics methods are described where 3D objects are added to backgrounds to generate
images, subsection 2.2.2 details software and engines that are used to create image datasets, and sub-
section 2.2.3 introduces the topic of domain randomisation to create multiple variations of the image
by varying parameters.

2.2.1. Generating Synthetic Datasets
Computer graphics is extensively used to create synthetic datasets for machine learning purposes.
These methods often use a pre-existing background and impose 3D objects in the background in a
realistic way. One such method to create synthetic datasets for object detection uses a dataset of
scene images such as a kitchen or dining room background [18]. Once the background is selected,
potential surfaces in the background are identified using a semantic segmentation algorithm. This
allows surfaces in the background similar to a kitchen counter or desk to be identified as regions on
which 3D objects are rendered and placed. The scale of the 3D objects placed is also adjusted to make
the image more realistic. This process is repeated for every background image where variations of the
objects rendered are also made within the same image. Another approach uses a physics engine
and computer graphics engine to create a dataset [37]. This method first simulates and renders a
background, a surface along with a set of randomly selected 3D models. The objects are then allowed
to fall by gravity using a physics simulation and are allowed to rest once they fall. Once the scene is
stabilised, images are retrieved by varying the camera angles and lighting of the scene. The synthetic
dataset is thereafter used for an object detection task. Synthetic datasets are also created for human
pose detection by generating images with synthetic humans [55]. This technique retrieves a 3D model
of a human body and allows the selection of a random shape. The pose of the body is also selected,
and then a human texture with clothing is imposed on this model. Finally, a background of a scene
is added and the lighting and camera angle are decided. The number of images created is scaled by
randomising the selection of all possible selections made. However, this method results in unrealistic
images often with the synthetic humans being of a very large size. The benefit of using these computer
graphics methods is that a wide variety of images can be generated by retrieving realistic 3D models
from several datasets that serve different purposes.

2.2.2. Dataset Generating Software
Software and packages that allow 3D modelling and rendering are also applied in this field to create
image datasets. Blender is an open-source software based on OpenGL [56] that allows 3D modelling,
simulation, rendering, animation and game creation [10]. It also allows users to customise applications
and create tools using an API for its rendering engine. Unity Engine is another popular rendering engine
widely used in the gaming industry but finds use cases in architecture and filmmaking [54].
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BlenderProc
BlenderProc [13] is a procedural data generating pipeline based on Blender which uses objects from the
SUNCG dataset [49] to generate images and create datasets for a variety of deep learning tasks. The
modular pipeline recreates scenes from the SUNCG dataset and renders the scene as a realistic colour
image, a depth image based on an internal depth estimator or an image with a semantic segmentation
mask where similar objects are coloured. The BlenderProc sampler allows further variation in the scene
by altering parameters for the camera, lights, and distance between objects.

Kubric
Similar to BlenderProc, Kubric is a dataset generating framework also based on Blender’s rendering
engine. It consists of a highly scalable pipeline which can be run on a local workflow to run large jobs on
several machines in the cloud. The dataset generation process allows the selection of the number of
objects in the scene from 4 datasets, with the objects, camera and lighting randomly initialised. Using
the PyBullet physics engine to account for collisions and overlap between objects, and the Blender
rendering engine, a random scene is created using the number of objects, and other initial parameters
specified. This process is repeated several times while having random variations in the light, camera
angle, and velocity of objects instantiated. In addition to the colour image, the scene’s depth maps,
instance segmentation, optical flow, surface normals, and object coordinates can also be extracted for
use in computer vision tasks.

Unity Perception
Unity Perception is a synthetic data generating package that extends the Unity Editor and Unity Engine.
The main contribution of this package compared to other works is that it provides an extensive frame-
work to introduce randomisations in the images, apart from variations in camera angles and lighting [3].
The framework allows this by randomising the location of the objects to be detected with respect to the
camera, such that the images contain objects of different sizes. In addition, a wall of random objects
is placed behind the objects to be detected to which the object texture is also randomised.

2.2.3. Domain Randomisation
Domain Randomisation is a technique used in creating synthetic image datasets for object detection.
The goal of domain randomisation is to help the model generalise well by having a lot of background
variations in the images, enabling it to recognise true objects [51]. This also helps to bridge the gap
between reality and the synthetic dataset by having diversity in the datasets. This is done by varying the
quantity and shape of distracting (background) objects, the texture and position of objects, lighting in
the scene, camera angle and random noise. One work that utilises domain randomisation for creating
synthetic datasets, performs this randomisation by creating a background layer of 3D objects, and
imposes the main objects to be detected in the foreground [23]. The objects in the background layer
are randomised along with the light position and light colour. Furthermore, random noise is also added
with some objects being blurred. Another approach adds different textures to the objects such as
a flat colour, gradient of colours, chess pattern in the colour, and colour with Perlin noise [4]. One
work that produced a dataset for car detection uses domain randomisation by placing the 3D object of
the car in random scenes as background with an assortment of geometrical objects [52]. Structured
domain randomisation is a unique approach that generates distractor objects in the scene based on
probabilities by considering the context. This is in contrast to domain randomisation where objects are
added to the image based on a uniform probability distribution [39]. For example, in an outdoor image
generation setting, based on a parameter for road curvature, road lanes and sidewalks are generated,
and vehicles, cyclists, houses and buildings are placed accordingly.

2.3. Indoor Scene Synthesis
For this thesis, the scope is constrained to generating images of indoor rooms with computer graphics
methods as working with indoor scenes includes a limited number of realistic objects. This further
allows more controllability over aspects such as the object’s property or the spatial relations between
objects. A computer graphics based approach was also selected for the thesis as it entails a transparent
process for image generation. Additionally, the inner details of the method would also be easier to
tune and configure, especially when compared with deep learning techniques such as GANs which
are black-box and difficult to interpret. The main difference between this section and the methods
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described in section 2.2 is the focused domain for image generation and the considerations made when
generating images such as modelling spatial relations and considering object attributes. This section
explores the field of generating indoor scenes and themethods involved in synthesising realistic scenes.
In subsection 2.3.1 methods that convert text to 3D scenes are described, subsection 2.3.2 details
methods where semantic scene graphs are used for creating indoor scenes, and subsection 2.3.3
describes a technique to include additional objects in a scene to make the scene more realistic.

2.3.1. Text to 3D Scene
Text to 3D scene methods consist of two main parts in the entire scene synthesis pipeline. The first
step is to process the text as natural language and most methods addressing Text to 3D Scene creation
follow the same process. The input text is processed either using the Stanford CoreNLP Pipeline [35]
or other Natural Language Processing methods, where Part-Of-Speech (POS) tags are assigned to
the raw text. These tags label a word as a noun, adjective, pronoun, verb, etc. The POS tags are then
provided as input through a universal dependency parser which identifies spatial relations between
objects and the object’s properties. Using this dependency representation, there are several existing
approaches used to create an indoor scene.

Early Works in Text to 3D Scene Synthesis
WordsEye is one of the first methods to create a 3D scene given text that can be applied to indoor and
outdoor settings [11]. It considers various spatial relations, between objects, and object properties such
as colour, shape, and transparency while also introducing poses and grips for a character interacting
with an object. The objects, properties and relations are named as depictors and rules are created
for depictors in a scene, with each rule having multiple scenarios based on the entities and relations
involved. The scene is finally created by retrieving 3D objects that fit into the rules and thereafter mod-
ified. This approach is heavily rule-based and also requires the distance between two objects to be
explicitly specified, for example, a table is five feet away from a chair, which makes this method inflex-
ible. Another early work in this field, makes a less rigid computer graphics approach by analysing the
voxels (3D pixels) of objects and identifying potential surfaces [44]. From the dependencies identified
in the text and the spatial relations specified, the objects are placed accordingly with respect to each
other based on the surfaces identified and extracted earlier. This work also allows controllability over
selecting the object’s colour but the spatial relations are limited and the resultant images are unrealistic.

Modelling priors and Spatial Relations
The limitation of these approaches led to advancements in research in Text to 3D scenes for indoor
rooms. A key contribution is the learning of spatial representations from data and relating this to key-
words in language that denote the representation [5]. The spatial representations are learned by study-
ing several indoor room scenes and modelling prior probabilities by observing objects, their positions,
and their co-occurrence with other objects [16]. The following priors are learned: the probability of
object occurrence in different scenes (kitchen, bedroom, dining room); support hierarchy priors - the
probability of objects supporting other objects (plate on a dining table); support surface prior - the
probability of one of the parent object’s surfaces supporting a child object; relative position prior - the
probability of an object being placed at a particular region or position with respect to another object
given a scene (placing a keyboard on a study desk with a monitor). To relate pre-defined spatial re-
lations with text, the authors crowdsource text descriptions of two objects in a scene. The description
provided of the spatial relations between the objects are then mapped with the following features for
those objects - the distance between objects, overlap of the objects’ bounding boxes and if the objects
support each other. Finally, given the objects and spatial relation, the likelihood of an object’s posi-
tion with respect to another is predicted with a machine learning classifier. During the scene creation
process, a scene template of the objects is designed from the dependency parser with all the objects,
relations and properties. Relevant objects are retrieved from a 3D model database and using the priors
and spatial relations learned, objects are instantiated at high likelihood locations, and the scene layout
is optimised to minimise collisions.

Follow-up Work to Modelling Priors
Follow-up work that builds on this grounds textual descriptions to objects. This is known as lexical
grounding where lexical terms containing the description of an object are mapped to 3D objects [7].
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The mapping is created by training a machine learning classifier on a large dataset containing pairs
of scenes and textual descriptions. The classifier learns features from the pairs and finds the lexical
groundings. For example, it learns the mapping of a red cup, green room, black bed, and yellow round
table to appropriate objects respectively. Additionally, this method also helps to learn lexical variants
of an object (sofa and chair), making it more flexible and giving it the ability to generalise well during
scene creation. This method is finally combined with the spatial relations and priors learned in [5] for
indoor scene creation. SceneSeer is another follow-up work that follows the same approach as [5] but
also allows interactions with the scene to insert, remove, replace, move or scale objects [8].

2.3.2. Semantic Scene Graphs
A semantic scene graph is a graph used to represent objects in the scene as well as relations between
them. The nodes in the graph can represent either the object, the object’s attribute or the spatial re-
lation between objects, while the edges connect related nodes. Scene graphs are used for various
applications such as visual question answering, image understanding or 3D scene understanding, but
here we study its application in indoor scene synthesis [9]. A benefit of using semantic scene graphs is
that they encode all the relationships in the scene and also denote semantic information of the scene
by explicitly stating the spatial relations and the object’s attributes. Using semantic graphs further aids
our goal of controllability in scene synthesis as specific nodes in the graph can be altered or selected
that would result in the creation of the scene specific to our needs. Figure 2.1 and Figure 2.2 illustrate
examples of scene graphs given a text description of a scene.

Figure 2.1: Scene Graph example for the description - There are books stacked on the desk. The blue nodes denote objects,
green node the spatial relation and yellow node the property [34].

Figure 2.2: Scene Graph example for an elaborate description - The round dining table is surrounded by 3 chairs and there is a
flower vase on top of the table. A more complicated description results in an intricate scene graph [34].

Scene Graphs in Text to Scene
Some methods convert raw text to a semantic scene graph via the intermediary step of generating the
universal dependency parser from the text. One approach creates a semantic scene graph where the
nodes encode information on the object, count of objects, attributes and spatial relations [34]. The
scene creation process involves matching the scene graph created from the input with a database of
scene graphs and ultimately selecting a subgraph from the matched graph. The scene graphs used
in this method also provide a grounding between text and 3D objects as well as spatial relations. This
method is described in detail in chapter 3.
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Scene Graphs Modelling Object Co-Occurrence and Functionalities
An important requirement when using semantic scene graphs to generate images is to have a database
annotated of the objects in the scene and their relations. Some scene graphs do not include nodes con-
taining spatial relations or object properties but just the objects themselves. In this case, the weighted
edges connecting the objects encode information about the scene and the relation between objects.
One such approach assigns the weight of the edges based on the frequency of objects co-occurring,
and activity priors [17]. An activity prior is assigned a value of 1 if the objects are used together by a
human (bed, night table and TV) or if both objects would have a functional purpose for a human, and
0 otherwise. During the scene creation process, the user provides the objects and layout of the room.
Given this, the graph for the output is created which consists of the input objects and additional objects
that have a strong link to the input objects given the room size. Using the objects selected from the
graph, a final layout is created which is similar to the database of layouts.

Scene Graphs with Multiple Edges
SceneGen is another framework that uses scene graphs to augment scenes with an additional object by
considering its placement and orientation [27]. The nodes in the scene graph represent objects, rooms
or object groups (dining chairs and dining tables) while edges represent spatial relations. The graph
contains multiple edges between a pair of nodes. The relationships between the objects as edges are
represented as follows: Positional Relationships - position of an object in the room, distance between
objects and object groups, objects surrounding given object, object support relationships; Orientation
relationships - an object facing towards the centre of a room, away from a wall, facing a group of
objects, next to an object and facing it. The extensive scene graph generated using these relations are
subsequently used in a probabilistic model, to find the appropriate position and orientation to place an
object in an existing scene.

2.3.3. Including Contextual Objects
Some scene generation methods also include additional objects in the scene not specified by the user.
Often, the addition of these objects makes the scene more realistic and provides more context to the
scene. These objects could either be ones that co-occur with the objects specified or supporting objects
for the specified object. For example, the co-occurring object for a plate could be a knife and spoon
and the supporting object could be a dining table. The number of contextual objects included can be
controlled by either specifying the maximum number of objects [5, 8] or by introducing objects that have
a probability of occurring above a threshold [34]. Figure 2.3 shows an example of changing the scene
by setting a context parameter [34]. The first image of the scene has a low 𝛼 value and constitutes
a scene with only the specified objects. Once the context parameter is increased to 0.5, the scene is
augmented by including an office chair, two speakers and a notebook. These additional objects have
a high co-occurrence probability with the existing objects of the scene and are thereby selected.

Figure 2.3: Change in scene with more objects such as speakers and chair on increasing the context parameter [34].

2.4. Use Cases
In this section background information and an overview of relevant methods for both use cases is
provided in subsection 2.4.1 and subsection 2.4.2.
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2.4.1. Generating Images for Interpretable Machine Learning
The black-box nature of complex deep learning models makes them difficult to debug and understand
the reasons for failure or accurate results. This makes it a complicated and challenging task to deploy
machine learning systems [14]. Additionally, as per European Union regulations and rules, it is also ex-
pected of systems to provide an explanation if requested, when a decision is made [22]. Interpretability
in machine learning refers to the machine learning model providing an explanation of the functioning
of a model in terms easy to understand by humans [2].

Methods to provide explanations in machine learning can be categorised on a local or global level
based on the data instances being considered for interpretation [1]. Local explanation methods provide
explanations over an instance of an image through saliency maps where the pixels that the model
finds important for classification are highlighted [45] or via counterfactual explanations [21], where
given a classified image an explanation is provided as to what should change in the image that results
in the model giving a different classification. Global methods provide high-level explanations about
human-understandable concepts that are important to the model for classification [28]. Interpretability
methods can also be categorised as inherent or post-hoc. In inherent explainability methods, the model
architecture is constrained and forced to ensure interpretability which could result in changes in model
performance [2]. Examples of post-hoc methods are the local methods described above and are easier
to implement as they do not require tuning of the models. The purpose of post-hoc methods is to use
a trained model and then investigate model explanations.

Existing techniques that evaluate a model’s explainability transform the dataset to understand its
behaviour based on features of the dataset changed [59]. The BAM framework [59] does this by aug-
menting an image with an object from another dataset, and training two models trained on the object
label, or scene label the object was placed in. The creation of biased datasets helps in evaluating
the importance of features. Other works investigate the influence of features by removing important
features from the image or by blurring highly attributed features of the image [24]. To further help in
understanding the behaviour of the models, SceneUI is used to create biased and unbiased datasets,
thereby benchmarking explainability methods. By generating biased datasets and training a biased
model, the biases created should reflect in existing explainability methods used to understand the
model behaviour.

2.4.2. Generating Images from Queries as Ground Truth
Specialised or proxy neural networks are deep learning models which are based on a reference neural
network and mimic their behaviour to an extent [26]. The reference model is trained on a dataset and
its outputs are used to train the specialised model. The specialised model consists of fewer layers and
thus requires lesser computational resources. It is also unable to generalise and works well only for
specific data. Specialised networks are often used in video analysis, where given a query the network
identifies frames of the video that contain the query’s predicates. The network achieves this by drawing
bounding boxes in the frame to identify objects that are specified in the query. For a query - Bus or
Car, the network should retrieve frames that contain either a bus, a car, or a bus and a car.

BlazeIt is a follow-up work where specialised networks are also able to consider more complicated
queries that require the aggregation of objects in the queries such as the sum of objects occurring in
the frames [25]. The framework is also capable of limiting the number of frames retrieved that hold
the aggregated values. The process of identifying columns and relations from unstructured input like
images or videos based on queries is computationally costly. To make this process of inferring machine
learning from queries more efficient, Probabilistic Predicates which are binary classifiers are used [33].
The probabilistic predicates use binary classifiers such as Support Vector Machines, Kernel Density
Estimators, or a Neural Network to determine whether the input (video or image) contains features
that meet the requirements of the query predicate. Essentially, it does not allow the input to reach the
inference stage and reduces the load on the query inference by machine learning, thereby making it
more efficient.

SceneUI includes a feature to generate images based on a query. In addition to a basic AND or OR
query with two predicates, the queries could also be more complex by selecting multiple (more than
two objects as predicates). Furthermore, the queries could also be based on a Conjunctive Normal
Form which is a combination of AND, OR and NOT queries. Given the objects in the query, the image
generated should accordingly consist of the objects. As the images synthesised correspond to a query
and predicates, these images can be used as ground truths for training the specialised models. There-
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fore, when the model is required to process a query, it uses the ground truth images to learn which
image to retrieve and which objects should be present in the image. In this thesis, we focus only on
generating images using the OR query with two predicates to show the possibilities of using queries to
generate images.

2.5. Literature Analysis & Research Gaps
The previous sections describe various methods for image generation using machine learning or com-
puter graphics. For this thesis, we decide to proceed with indoor room scene synthesis using computer
graphics as it allows controllability of objects and their properties to a wide extent, and is also explain-
able. An analysis of the existing works in indoor scene generation is also discussed as well as the
methods and techniques involved. Keeping in mind the use cases of Interpretable Machine Learning
and Generating Images from Queries as Ground Truth, the expectation of SceneUI is that it should
allow controllability in the image over a wide variety of factors such as the objects, object’s attributes,
spatial relations, and should also allow an image to be generated based on an OR query containing
two objects as a predicate.

Table 2.1: Overview of literature pertaining to Indoor Scene Synthesis and its features.

Paper Object
Direction Query Context Colour Spatial

Relations Quantity Background Scene
Graphs

Learning Spatial Knowledge
for Text to 3D Scene Generation [5] X X X X

Text to 3D scene Generation with
Rich Lexical Grounding [7] X X X X X

SceneSeer - 3D Scene Design with
Natural Language [8] X X X X

Language-Driven Synthesis of 3D
Scenes from Scene Databases [34] X X X X X

Adaptive Synthesis of Indoor Scenes
via Activity-Associated Object
Relation Graphs [17]

X X X X

SceneGen: Generative Contextual
Scene Augmentation using Scene
Graph Priors [27]

X X X

WordsEye: An Automatic Text-to-
Scene Conversion System [11] X X X X

Real-time Automatic 3D Scene
Generation from Natural Language
Voice and Text Descriptions [44]

X X

To get a better understanding of the literature on indoor scene synthesis, and the requirements for
SceneUI, a literature analysis was conducted to get an overview of the method’s features and con-
trollability factors. This overview is shown in Table 2.1. The rows in the Table denote the papers
discussed earlier related to indoor scene synthesis and the columns correspond to the properties that
the framework or system allows, in context to the use cases. The columns were selected to compare
the methods over features they allow controllability over, and features we expect to have in our method.
These features either assist in having more controllability when generating images or make the scene
more realistic. The Object Direction column denotes whether the objects instantiated in the scene are
oriented in a direction by considering other objects around it, such as a chair facing a table, thereby
making the scene realistic. The Query column denotes whether scenes can be generated by providing
a query with predicate terms, and none of the methods satisfies this. This column is crucial as a core
requirement of the method is to generate images based on a query. Works are also analysed to check
if they allow controllability over scene Context to include additional objects that make the scene more
plausible; object Colour to select objects with different colours; object Quantity to specify the number
of objects required in the scene; Spatial Relations between objects to have a specific arrangement be-
tween objects, and selecting whether the scene has a Background. Additionally, the table also denotes
whether the method uses Scene Graphs for scene synthesis as this helps in further controllability over
features in the scene.
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The method developed through this thesis - SceneUI should ideally have all the properties stated in
Table 2.1 and we set these properties as its requirements. This method can be developed by selecting
one of the existing works as a baseline and making improvements to it to also fill in the existing gaps for
research in indoor scene synthesis. Another limitation of existing works is their method of evaluation.
The scene generation methods are usually evaluated by conducting user studies to obtain insights into
the plausibility and realistic nature of the scene, or by comparing very similar works. Though this is not
a limitation as such, the works do not evaluate the method while considering the downstream tasks the
frameworks are developed for, which helps get an idea of the actual usability and utility of the method.
With regards to this limitation, through the thesis, we aim to evaluate SceneUI and its images in the
context of downstream tasks - the two use cases.





3
SceneUI

In this chapter, the main method - SceneUI is presented which generates images by providing a set
of specifications or constraints as input. The core image generation procedure is based on the work
by Ma et al. [34]. This framework was selected as the base work, based on the research gaps and
literature analysis discussed in section 2.5 and Table 2.1. It satisfies most of the requirements needed
to develop a controllable image generation method. The base framework allows controllability over
spatial relations, the extent of context in the scene, and the number of objects to be synthesised in the
image, and the object’s attributes. Furthermore, it uses semantic scene graphs in its image generation
algorithm which further helps in enhancing controllability. Another reason for this choice as base line
was due to an available and open-source code base1 that made the modifications easier to apply. To
answer the research questions, modifications were made to the original work’s code by introducing
a user interface which allows the selection of objects to be introduced in the scene, the number of
instances for each object, the spatial relations between objects, and the objects’ properties, presence
of a background room, and context parameter. In addition to selecting the controllable features, the
user interface also allows input for objects as query predicates. The existing work had limited attributes
about the object’s properties in the scene graphs. These attributes were also expanded by augmenting
scene graphs in the database with additional functional properties of the object and its colour. An
entire overview of the scene generation pipeline by the system is provided in section 3.1 which also
illustrates the information flow via scene graphs to the final scene. The various stages of the pipeline
of Graph Synthesis, Graph Matching and Scene Creation are described in section 3.4, section 3.5,
and section 3.6 respectively. In section 3.2 details about the dataset are described which contains
the 3D models used for scene synthesis details of the scene graphs. In section 3.3 the procedure to
expand the attributes is described with an overview of the incremented attributes. The details of the
user interface through which the user provides specifications of the scene are provided in section 3.7
and the method to generate a scene by providing a query with objects is detailed in section 3.8.

3.1. System Overview
The original scene generating framework consists of four main stages as shown in Figure 3.1. The
first stage requires the input that contains the description of the scene. In the original work, the user
provides the input as raw text via a Textbox. With the help of Natural Language Processing tools such
as Part-of-Speech tagging and a universal dependency parser, the raw unstructured text is converted
to a more structured form. This structure holds information about the objects, attributes the objects
have, and their relations with other objects. This is followed by the second stage in the pipeline of
Graph Synthesis where the semi-structured conversion of the raw text is translated to a scene graph.
From the text, appropriate object nodes, corresponding attributes and relation nodes are identified
with connecting edges, thereby creating a scene graph from the input. In Figure 3.1, O denotes an
Object node, R denotes a Relation node and A denotes an Attribute node. The third stage of the
process is to find the most similar graph in the scene graph dataset, to the input graph. This process of
Graph Matching identifies graphs that are closest in terms of objects, objects with attributes and spatial
1https://manyili12345.github.io/Publication/2018/T2S/index.html
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relations. The most similar graph is modified by altering the nodes to meet the input specifications
and is finally selected for the final stage in the pipeline for scene creation. The Scene Creation step
retrieves the objects that match the properties in the selected scene graph, and the layout is optimised
to avoid collisions and overhanging between objects. An example of the input, resultant synthesised
graph, graph with aligned nodes, and final scene generated is also provided below each corresponding
stage to represent it.

Textbox Graph Synthesis
 Graph Matching
 Scene Creation


O R O

A

O R O

A

Text Description

Figure 3.1: System Overview of the Original Work. The user provides a text description of the scene which is converted to a
scene graph. Subsequently, similar graphs are identified and an image is generated.

User Interface
 Graph Synthesis
 Graph Matching
 Scene Creation


O R O

A

O R O

A

Qty

Rel

Att

OR

Expanded Attributes

Figure 3.2: System Overview of SceneUI. The key difference is the User Interface which allows the user to select the quantity,
attributes and relations of objects along with an OR query. The interface is supported by a dataset where objects are

augmented to have more attributes. SceneUI also enables the image to have a background.

A key contribution of the thesis and SceneUI is the inclusion of the user interface that allows the user
to provide an input with specifications that are required in the scene. This way of providing input not
only allows the constraints and specifications of the objects to be directly provided but also removes the
dependency of processing the input with NLP tools. The original work required the scene generating
software to be connected to a server that processes the raw input to a structured form by a universal
dependency parser. In this way, an unnecessary dependency is removed from the system. The user
interface has additional benefits which are described in more detail in section 3.7. The updated pipeline
with the user interface is shown in Figure 3.2. Similar to Figure 3.1, an example for each stage is
provided below the pipeline to better visualise the stages of the pipeline. The main difference in the
pipeline compared to Figure 3.1 is the user interface to describe the required scene and the augmented
dataset of scene graphs. The rest of the steps in the pipeline are the same and follow the same process
to synthesise a scene using semantic scene graphs. Additionally, the final image can be synthesised
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with a background as a room. The differences are also highlighted in Figure 3.2. Similar to Figure 3.1,
in Figure 3.2 O denotes an Object node, R denotes a Relation node and A denotes an Attribute node.

3.2. Dataset
Owing to the computer graphics approach, the dataset should comprise several 3D objects with the di-
mensions of their bounding boxes and orientations annotated. SceneUI uses the SceneSynth dataset
which consists of 133 realistic scenes [16]. This dataset was used in the original baseline work and
thus we select it for our implementation and experiments for the thesis. The scenes contain a variety
of objects portraying different categories of rooms such as a dining room, living room, study room,
bedroom, bathroom, etc. In total, there are 371 categories of objects with 1742 unique 3D objects in
the dataset used in the scenes. This shows that there are several different types of objects based on
colour, shape, or size for each category of object. The presence of different objects within a category
aids our goal of controllability as different objects can be selected as per the method’s needs.

The SceneSynth dataset originally consists of the 3D object file to be rendered along with a file
describing the object’s material. The authors of [34] augment the SceneSynth dataset by including
additional information about the size, dimension and orientation of the objects. The size of the 3D
object is denoted and constrained by a box known as a bounding box. The dimensions of the bounding
box are used to model spatial relations between objects. Each 3D object is associated with the following
files -

• Material Template Library (.mtl) - This describes the surface and appearance properties of a 3D
object. It also provides information about the colour the object may radiate, the object’s colour
itself or the transparency and reflective nature of the object.

• Object Bounding Box (.obb) - This describes the centroid of the bounding box, the orientation of
the three axes, and the size of the bounding box

• Support Plane (.supp) - The support plane is extracted for the model which allows other objects
to rest on the plane

• Top Plane (.bbtop) - This details the dimensions of the top plane of the model’s bounding box

The dimensions of the bounding boxes and supporting planes are used especially to model relations
between objects by considering the relative positions and distances between objects via the bounding
boxes. For a particular spatial relation, the orientation and distance between the bounding boxes are
considered. For example, for a spatial relation that denotes whether an object is to be placed on top of
another object (plate on table), the support plane of the supporting object is considered to appropriately
place the object. Furthermore, the size of the bounding boxes is also considered while optimising the
scene layout to avoid collisions between objects.

3.2.1. Semantic Scene Graphs
Semantic scene graphs, described in subsection 2.3.2, are a core component for image generation in
this method. The graph consists of three types of nodes: an object node for each object in the scene,
an attribute node describing the object’s properties, and a relation node that signifies a spatial rela-
tion between two objects. The spatial relations between objects in the scene graph define the relative
position of one object with respect to another object’s frame of reference. The relations defined are
left, right, on, front, back, near, and under. An overview of the attributes defined for every object in the
scene graph is provided in Table 3.1. The attributes are limited to the functional use of the object, shape
or size, and the attributes are provided only for chairs, tables or a bed. In the scene graph, the object
node is assigned a label of the object, the attribute node has a label of the property the object holds,
and the relation node is assigned a label denoting the spatial relationship between objects. Finally,
edges connect the attribute node to its corresponding object or connect two object nodes via a relation
node. A visual of a semantic scene graph for a scene containing a chair, desk and bed is illustrated in
Figure 3.3. The chair has the attribute of an office chair, and the bed is queen-sized. Additionally, the
chair is in front of a desk and the desk is to the right of the bed. These spatial relations are denoted in
the graph accordingly.
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In this way, a scene graph is created. Using this process to generate a scene graph, 133 scene
graphs are synthesised by the authors of the original work by considering all the scenes in the Sce-
neSynth dataset. In every scene, the object nodes and labels are identified, followed by the object’s
attribute nodes based on visual observations of the shape, or appearance. The scene is augmented
with spatial relation nodes, whose labels are determined based on the position of objects around a
reference object. Edges are then assigned from one node to other relevant nodes. The graph of each
scene is stored as a file along with the IDs of the 3D models to be retrieved that correspond to the
objects in the scene, and information about the object’s bounding boxes and position in the scene.

Table 3.1: Attributes of objects in the scene graphs in the dataset.

Object Attribute

Chair
Dining
Office
Sofa

Table

Dining
Coffee
Round
Rectangular

Bed Queen

Object

Chair


Attribute

Office


Relation

Front

Object

Desk


Relation

Right

Object

Bed


Attribute

Queen

Figure 3.3: Scene graph for a scene with an office chair in front of desk, with the desk on the right of the queen sized bed.

3.3. Expanding Attributes
The scene graph dataset annotated and created by the authors of the baseline work covers only 3
objects with a total of 7 attributes as shown in Table 3.1. These properties cover mostly the functional
use of the object such as whether it is a dining chair, office chair, or coffee table. Other attributes
refer to the shape or size of the object such as a round or rectangular table, or a queen-sized bed.
Thus, the existing attributes in the dataset are quite limited and none of the properties also describe
the colour of the object. To further aid our goal of having controllability in image generation, we decided
to expand the attributes in the scene graphs of the dataset by annotating the graphs in the dataset.
Having more attributes to choose from gives us more flexibility in selecting the controllable aspects of
the objects in the image. This also makes using SceneUI to generate images more relevant for the
use cases. Having more attributes for an object helps the user to create multiple images of the same
objects with different colours, materials and designs apart from the existing attributes. In addition to
augmenting an object’s attributes, attributes are also created for objects not present in Table 3.1. The
objects introduced with attributes are: Desk, Bookcase, Couch and Stool. An overview of the set of
objects and their attributes is shown in Table 3.2. The augmentation of objects and attributes was done
by manually making changes to the files in the dataset by creating new nodes and connecting relevant
edges. This is described in more detail in subsection 3.3.1. In subsection 3.3.2 a description is given
of the attributes for corresponding objects.
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Table 3.2: Expanded attributes of existing and additional objects in the scene graph dataset.

Object Colour Functionality Material Shape

Desk

Light Brown, Dark Brown, Brown,
White, Black-Brown, Light Brown-White,
Brown-Grey, Yellow, Grey

Study

Black, Dark Brown, Brown, Light Brown,
Blue

Lab

Chair

Light Brown, Dark Brown, Grey, White
Brown, Light Grey, Dark Grey,
Brown-White

Dining

Brown, White Dining, Armrest
Black, Reddish Brown, Yellow-Green,
Grey, Red, Blue, Light Brown, Brown,
Grey-Black, Black-Brown

Office

Yellow, White Sofa

Bed Grey, Purple, Black-White Queen
Grey, White Single

Table

Dark Brown, Brown, White, Design,
Yellow

Dining
Round

Green Glass
Grey, Brown, Red, Dark Brown,
Light Brown Rectangular
Brown Glass
White

Coffee
Round

Brown Glass
Black, White Rectangular
Transparent Glass

Bookcase

Brown 2 shelves
Brown, Grey, Black 3 shelves
Dark Brown 4 shelves
Black 5 shelves
Brown 6 shelves

Couch
Brown, Grey, Red, White, Light Grey,
Light Brown

Stool Blue, Brown, Black, White Backrest
Grey, Blue, Brown, Black No Backrest

3.3.1. Method to Expand Attributes
The selection of new objects in the dataset which have attributes was determined by examining all the
scenes in the dataset. During this examination, observations were made on recurring categories of
objects and the variations in the object’s colour, material or functional type. These common objects
were identified which had several different properties and were also typically found in certain types of
rooms. Once the objects to be introduced were identified, the colours exhibited in every instance by
the object were also noted as properties that category may have. The remaining attributes of the object
were identified by examining occurrences of the object and categorising them into their different prop-
erties. To have an additional reference of properties the object may have, the Visual Genome project
[29] was referred. The Visual Genome project is a dataset widely used for visual question answering
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which has thousands of images with descriptions of several regions in the image, often representing
various parts of an object. Using a combination of visual observations from the dataset and examining
the objects in the Visual Genome project, the attributes were determined as shown in Table 3.2.

To introduce these additions, 102 of the 133 existing scene graphs in the dataset were modified by
making changes manually. These 102 scene graphs were the ones that contained the objects in the
scene to which new attributes were to be added. The attributes were expanded by identifying the files
that required changes, as well as the attribute nodes to be added for the object in the scene. There was
a possibility for multiple attribute nodes for a single object or attributes for different objects. In every
file, the new attribute nodes were manually created based on the observations made earlier. Once the
attribute nodes were created, edges were synthesised in the file to connect the attribute nodes to their
relevant object nodes. Finally, the count of the number of nodes and edges was updated.

3.3.2. Expanded Attributes and Objects
As the existing attributes for objects do not include the object’s colour, a common theme was to include
the colour for all the objects shown in Table 3.2. Some colours for objects like the chair or desk consist
of a combination of colours: Black-Brown, Grey-Black, etc. This combination of colours was selected
as the object’s colour exhibited a blend of the two colours. In addition to the object’s colour, the aug-
mented attributes are based on the object’s functionality, material, or structural design of the object.
For example, the desk is classified as a typical study desk or a lab desk. A dining chair is further divided
into one that either has or does not have an armrest, depicting controllability over the item’s structure.
The functional attributes of the stool also describe the structural design of the object, as the user would
be allowed to select a stool with or without a backrest. Furthermore, the attributes of a bed consist of a
smaller single-person sized bed in addition to a larger queen sized bed. The dining and coffee tables
also allow a further categorisation based on the material, by allowing the table to be selected as one
that’s made of glass. Finally, with the additional attributes, properties to the bookcase are included so
that various bookcases can be selected by determining the number of shelves from a range of two to
six. The couch is a frequently occurring object but does not have much variability in its design due to all
of them having a similar shape and size. Thus the attributes of a couch are only limited to its colours.
In conclusion, the prior attributes of the objects are incremented manifold, and various attributes were
added ranging from colour, shape, size, purpose and design. Having these graphs with vast attributes
aids our goal of having controllability over a wide range of object properties. Figure 3.4 illustrates two
dining tables with different colours. These images were generated using the method by selecting the
dining table with specific colours, included as a result of attribute expansion.

(a) Black Dining Table. (b) White Dining Table.

Figure 3.4: Generating Tables with different colours selected from the expanded attributes.

3.4. Graph Synthesis
The description of the scene provided by the user is stored in a C++ data struct. A separate structure is
created for a scene description which is composed of a structure of entities where an entity is an object
that is required to be present in the scene. Furthermore, each entity contains a structure describing
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the type of spatial relations as well as the other entity it has a relation with, and another structure con-
taining the type of attribute the entity should possess. Additional information is encoded in the entity
about the number of attributes, relations, and the count of instances of the entity required in the scene.
The original work initialises the structures with the scene description by referring to the NLP processed
form of the input. In SceneUI, we read the input provided by the user interface and translate the input
to the structures.

Once the structure containing the scene description is created with entities and their objects, and
relations, a scene graph is synthesised from this input. Every entity in the scene is parsed and for
each entity, the relevant relation and attribute nodes are generated. As every entity denotes an object,
every entity has an Object node created representing it. If the entity has multiple instances, as many
Object nodes are created. The relation information in the entity structure is considered a reference.
Every relation that the entity holds is parsed and a new Relation node is created with a label denoting
the spatial relation, and an edge is added from the current entity to the entity it should be connected
to. This is further repeated for all the instances of the entity. A similar process is followed to create
nodes for an entity’s properties. For every attribute of the entity, a new Attribute node is created and
assigned a label for the property the object should hold. A connecting edge is then created from this
node to the entity’sObject node. In this way, the entire scene graph is created by generating entities as
Object nodes along with their respective Relation and Attribute nodes. Every Object node in the graph
is instantiated in the scene. This input graph is then used for the subsequent step of Graph Matching.
Object nodes along with their respective Relation and Attribute nodes. Every Object node in the graph
is instantiated in the scene. This input graph is then used for the subsequent step of Graph Matching.

3.5. Graph Matching
With the input graph synthesised, the next step is to find a scene graph from the dataset that is most
similar to the input graph. This process of matching the input graph with existing scene graphs is graph
alignment. By identifying the similar graphs, the method knows the specific locations to render the
matched objects. These locations are based on the SceneSynth dataset where objects in the scenes
are placed in realistic positions. Once the most suitable scene graph from the dataset is selected,
it is altered by removing or increasing nodes to meet the explicit requirements from the input graph.
By removing nodes from the selected graph, we can prevent unspecified objects from occurring in the
scene. The graph alignment process is described in subsection 3.5.1 along with ametric to score similar
scene graphs. The method to modify the highest scoring scene graph is detailed in subsection 3.5.2.

3.5.1. Graph Alignment
The input graph obtained from the graph synthesis stage is denoted as 𝑈𝐼𝑔. The object nodes in the
graph are explicitly specified to be in the scene and are also required to have certain properties as
denoted by their attribute nodes. The procedure for graph alignment requires the input graph to be
compared with all the annotated scene graphs in the database (𝐷𝑔). Each comparison is scored by a
metric, and the highest scoring graph is ultimately selected in the scene.

In the graph alignment phase, the object node in 𝑈𝐼𝑔 is aligned when the object node with the same
category name is aligned with an object node from 𝐷𝑔. Furthermore, if the object node from 𝑈𝐼𝑔 is
associated with attribute nodes, it is aligned when the object node from 𝐷𝑔 also possesses the same
attributes. A pairwise relation node from 𝑈𝐼𝑔 is aligned when the type of relation matches with the
relation node of 𝐷𝑔 along with the object nodes the relation is connected to. This graph alignment
procedure is repeated for all remaining 132 scene graphs in the dataset to obtain candidate graphs
from the highest scoring scene. The metric to score the graph alignment is shown in Equation 3.1,
where for every graph comparison, the number of nodes matched is counted and summed. 𝑁𝑖 denotes
the node from 𝑈𝐼𝑔 and 𝑁𝑗 is a node that belongs to the 𝐷𝑔 graph. For the pair of nodes being compared,
𝑀(𝑁𝑖 , 𝑁𝑗) achieves the value of 1 if the nodes match and 0 otherwise. The match scores from all the
nodematches are summed for every scene graph and assigned to the scene graph to obtain the highest
scoring scene graphs.
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𝑀(𝑈𝐼𝑔 , 𝐷𝑔) = ∑
𝑁𝑙∈𝑈𝐼𝑔 ,𝑁𝑗∈𝐷𝑔

𝑀(𝑁𝑖 , 𝑁𝑗) (3.1)

Figure 3.5 depicts the scene graph 𝑈𝐼𝑔 synthesised from the user input and Figure 3.6 illustrates a
scene graph 𝐷𝑔 from the dataset. The two figures are compared for the graph matching and alignment
phase. The nodes highlighted in Figure 3.6 are the aligned nodes, identified after comparing the two
graphs. The Object node with a dining chair is not aligned as the input graph explicitly specifies an
office chair. This underlines the requirement for aligning an object node where both the object category
and its associated attribute should be matched. Additionally, the Front Relation node is not matched
due to the different objects it is associated with.

Object

Chair


Attribute

Office


Relation

Front

Object

Desk


Relation

Right

Object

Bed


Attribute

Queen

Figure 3.5: Scene graph 𝑈𝐼𝑔 synthesised from the input.
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Figure 3.6: Scene Graph 𝐷𝑔 from the dataset with aligned nodes that match with 𝑈𝐼𝑔 highlighted.

3.5.2. Subgraph Augmentation
The highest scoring scene graphs are stored in a list where the graphs are denoted as 𝑆𝑔. It is quite
likely that the high scoring candidate graph does not have all the object nodes explicitly specified in
𝑈𝐼𝑔. This requires augmenting the selected graph 𝑆𝑔 to create the final scene. 𝑆𝑔 is also named a
subgraph as it is only a part of the final scene graph synthesised. To augment this graph, the absent
nodes specified in 𝑈𝐼𝑔 are generated and included in 𝑆𝑔. The new nodes created are added to the
scene such that they match 𝑈𝐼𝑔. Object nodes are created and added with their attributes if any, and
a Relation node is also synthesised and linked to the object nodes as indicated in the input graph 𝑈𝐼𝑔.
In this way, the candidate scene graph 𝑆𝑔 is augmented with additional nodes to ensure that the final
representation contains all the requirements specified in 𝑈𝐼𝑔. There are also cases where the subgraph
𝑆𝑔 has many more nodes than 𝑈𝐼𝑔 and has all the nodes from 𝑈𝐼𝑔 aligned. In this case, 𝑆𝑔 is pruned by
removing the extra nodes not specified in 𝑈𝐼𝑔. For example, if 𝑈𝐼𝑔 specifies just a chair and desk, and
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𝑆𝑔 contains a desk and chair with a monitor, computer, mouse and keyboard on the desk, the nodes
from 𝑆𝑔 are removed such that only the nodes corresponding to the chair and desk mentioned in 𝑈𝐼𝑔
remain.

Once 𝑆𝑔 is altered by removing or adding nodes, there is a possibility to further enhance the scene
by including contextual objects to it. Using an approach defined in subsection 2.3.3, these objects are
added. The contextual objects included here are those that co-occur frequently with a particular entity.
The system provides a controllable parameter 𝛼 where objects that have a co-occurrence probability
larger than 𝛼 are added to the scene. Thus, a low context parameter will result in several often, irrel-
evant objects added to the scene. An example of introducing contextual objects in the scene graph
based on object co-occurrence is illustrated in Figure 3.7. The monitor and speaker objects frequently
occur with a desk and are typically placed on the desk. The input graph from Figure 3.5 is augmented
with relevant objects by adding additional nodes and connecting them to existing nodes, based on co-
occurrence probabilities learnt. Additionally, the support hierarchy probabilities are also learned to see
which type of objects support the other. Therefore, if an object is specified in 𝑈𝐼𝑔 without its supporting
object, the final 𝑆𝑔 graph is expanded by adding relevant nodes to the graph such that the unsupported
object is now supported, according to the support hierarchy learned. For example, if 𝑈𝐼𝑔 describes a
scene with a plate and knife without a table, with the help of context enhancement, the scene graph is
updated to include a table on which the plate and knife will be placed.
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Figure 3.7: Augmented Graph 𝑆𝑔 with contextual nodes highlighted.

3.6. Scene Creation
The graph 𝑆𝑔 is retrieved from the Graph Matching phase after subgraph augmentation, and context
enrichment is selected for the final step of scene creation. The process of scene creation requires
rendering relevant objects in appropriate positions in the scene environment that conform to the re-
quirements specified in 𝑈𝐼𝑔. The original aligned nodes in 𝑆𝑔 before the node augmentation phase
originate directly from the database graph 𝐷𝑔. The scene graph file in the dataset contains informa-
tion on the positions of these objects in the scene. Thus, the positions in the scene of the originally
aligned object nodes from 𝑆𝑔 are known. In addition to the positions of the objects, the 3D models that
correspond to the object nodes and their attributes are also referenced, to render them accordingly.

3.6.1. Generating Subgraph Scene Nodes
The aligned objects from 𝑆𝑔 that are based on the dataset scene graph 𝐷𝑔 are first introduced in the
scene. The positions of these objects in the scene are already known as they are aligned objects. Thus,
the objects are placed based on the size of their bounding boxes or their level in the support hierarchy.
The bounding box dimensions are obtained by reading the dimensions of the boxes from the dataset
file as well as selecting the 3D models that match the object’s properties. The larger objects are placed
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first followed by the supporting objects such as tables or desks. This is proceeded by the remaining
objects that satisfy the constraints or requirements. If the placement of an object does not meet the
layout score, the layout generating algorithm is reverted to a previous state. The object’s position is
then modified by placing it at an alternate location. If after several rollbacks, an appropriate location
for the object cannot be found, a failure message is returned and the object is skipped. In this way, a
scene is generated and rendered for objects in the subgraph 𝑆𝑔 that completely match and align with
the input graph, 𝑈𝐼𝑔.

3.6.2. Rendering Augmented Nodes
For scenarios where the subgraph needs augmenting with additional nodes, the placement of the new
objects needs to be considered based on their spatial relationship. This is primarily because the posi-
tions of the objects in the original 𝑆𝑔 graph are known. The authors of [34] formulate a score for a new
object 𝑜 added to the scene with a spatial relation as shown in Equation 3.2, to ensure its placement
is physically plausible.

𝑆𝑐𝑜𝑟𝑒(𝑜) = 𝐿(𝑜) ⋅ 𝐻(𝑜) ⋅ 𝑅(𝑜) (3.2)

𝐿(𝑜) is the term that indicates a collision penalty that holds a value of 1 if there is no collision between
the objects and 0 otherwise. A collision is when the bounding box of the object 𝑜 intersects with another
object in the scene, which would result in an unrealistic scene of the objects appearing to be merged.
The term 𝐻(𝑜) denotes an overhang penalty score which is defined in [16]. The overhang penalty is
defined to avoid the object being placed on the edge of its supporting surface which would result in an
implausible scene as the object would not realistically rest in such a position. The final relation score
𝑅(𝑜) is defined in Equation 3.3 [34].

𝑅(𝑜) = 𝜔 ∑
𝑜𝑖∈𝑂𝐸 ,𝑟∈𝐸

𝐴(𝑜, 𝑜𝑖 , 𝑟) + (1 − 𝜔) ∑
𝑜𝑖∈𝑂𝑈

𝐴𝐼(𝑜, 𝑜𝑖) (3.3)

The term 𝑅(𝑜) considers the implicit and explicit relations for the object 𝑜 when introducing it to the
scene. 𝐸 is the set of relations specified from the user interface input and 𝑂𝐸 is the set of objects that
are a part of the relations in 𝐸. The term 𝐴(𝑜, 𝑜𝑖 , 𝑟) is a score based on the arrangement of two objects
having a particular relation. The score maps the probability distribution of the relative position of the
two objects by modelling their respective coordinates and the orientation between the objects, for all
scenes when they occur together. 𝑂𝑈 is the set of objects already present in the scene and 𝐴𝐼(𝑜, 𝑜𝑖) is
the implicit relation priors between the object 𝑜 and the other object between the scene 𝑜𝑖. 𝜔 denotes
whether a higher priority should be given to the object’s explicit relations or the implicit relations for the
object placement.

A layout quality threshold is determined to allow objects to be placed at a location only if they satisfy
a minimum layout score. If the object placed in the scene results in a collision, overhang, or a low layout
score, the layout is then optimised by using a hill-climbing strategy. This strategy involves finding new
possible locations to place the model based on the distribution of relations between objects previously
modelled. If the layout score result is insufficient or 0 again, the location is not considered for future
iterations. If after several iterations, the object cannot be placed at a location that achieves a sufficient
layout score given the constraints, the object is placed at a random location.

By following the above process, the objects that belong to augmented nodes in the subgraph are
placed at appropriate positions in the scene with the existing objects whose positions are pre-defined.
The objects are also placed such that collisions and overhanging are avoided, therebymaking the scene
created plausible and realistic. The scene rendered in the 3D environment can then be used for various
purposes which are presented in chapter 4. The system allows the user to rotate the camera angle
and zoom of the 3D environment which helps to get a view of the scene from all possible viewpoints.
A screenshot function allows the user to extract an image of the scene. An image from the scene
generated is illustrated in Figure 3.8, which is based on the input scene graph depicted in Figure 3.5
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Figure 3.8: Final image generated from the description and input scene graph.

3.7. User Interface
The most important contribution and addition to the existing work is the addition of the User Interface.
The interactive User Interface was designed using QT: a C++ based platform to develop mobile and
software applications [40]. QT Design and QT Creator were extensively used to create the layout of
the interface, and various widgets, tables and lists to take input from the user or display information.
These tools also allowed the implementation of back-end logic that enables the interaction between
the layout widgets and adds functionalities for interacting with various elements in the layout. In this
section, we describe the user interface designed for describing the scene for indoor scene generation.
In subsection 3.7.1, we describe how table widgets are used in the interface to take input from the user,
subsection 3.7.2 details the use of lists to display and select information and subsection 3.7.3 explains
how additional parameters are considered for scene synthesis. The last subsection 3.7.4 highlights the
importance of the interface and the benefits of using the interface when compared to the original work.
The user provides their specification for the scene by following these steps by providing information in
the user interface:

• Select the Object from the Object List and place it in the Quantity Table.

• Enter the number of instances for the object which adds the objects to the Object Scene list.

• To specify the attributes of an object, select the object in the Object Scene List.

• Select the checkbox attributes and colours from the list based on the object selected.

• Add Objects in the Relation Table and specify the spatial relations between the objects.

• Determine whether the scene should have a background, contextual objects and value of the
context parameter.

• Click on the Generate button to synthesise the scene and extract the image.

The user interface designed is illustrated in Figure 3.9. The tables outlined in red (1) are a core
component where the user is allowed to define relations between objects, attributes of an object, or
the number of object instances by adding or removing rows from the table. The widgets on the left of
the layout outlined in blue (2) are the lists used to display information such as the relations, objects
in the dataset, objects in the scene, and the object’s colours and attributes. Additionally, the interface
also consists of parameters to control the level of contextual objects and whether the scene should be
generated in a room as the background. These parameters are outlined in the figure in green (3). The
figure is also annotated with a legend.
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Figure 3.9: User Interface designed with tables (1) to display and input information, lists (2) to display objects and select
attributes, and parameters (3) to further tune and control the setting.

3.7.1. Tables
Table elements in QT - QTableWidgets are a core component of the interface to provide specifications
of the scene. The interface designed consists of four QTableWidgets - the Quantity Table, Attribute
Table, the Relations Table, and the Or Query Table. These tables are enclosed within the red box in
Figure 3.9. The Quantity table is the first table that the user interacts with when providing the scene’s
specifications. The user selects the object in the scene by dragging the item from the Objects list and
placing it in the table, or by typing the object in the table cell. When the column denoting the number of
instances of the object is determined, the object is directly added to the Scene Objects list. If multiple
instances of an object that has attributes are specified in the table, the object category is indexed by
adding the object to the list as separate entities with each having a unique suffix attached to the ob-
ject name. By segregating and naming the objects uniquely, the user can specify different attributes
for each object instance of the same category. In addition to specifying each object’s attributes, their
corresponding spatial relations can also be defined. For example, if the user specifies 4 chairs in the
Quantity Table, the Scene Object list is updated by including the objects Chair-1, Chair-2, Chair-3, and
Chair-4. The user can then choose any two of these chairs to be dining, and set the other chairs as an
office chair or a sofa chair. The office chair could be placed near the desk while the sofa chair can be
located behind the dining table.

The Attribute Table allows the user to describe the properties that an object is expected to have.
The table provides a column for the object and a second column to determine the corresponding ob-
ject’s attribute. The attribute of the objects can be manually entered by the user or by clicking on the
object in the scene list and then selecting the attribute or colour from their respective lists. When the
checkbox from the attribute or colour list is selected, the property is added to the table along with the
object.

The Relation Table allows the user to specify the spatial relations between the objects. The first col-
umn is for the object in whose reference the spatial relation is specified. The spatial relation is selected
from the Relation List as well as the second object with which the relation is defined. The cells in the
table are mutable and also allow the user to type in the object or spatial relation instead of dragging
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and dropping elements from the object or relation lists.

The Or Query Table takes as input the two objects which are the predicates to the OR query. An
explanation of scene generation based on the query is provided in section 3.8

3.7.2. Lists
Similar to QTableWidgets, the User Interface includes QListWidgets which are lists used to display
information or provide functionality. The QListWidgets used are for displaying the possible Spatial Re-
lations between objects, the allowed categories of Objects in scene generation, the Scene Objects
which are the objects required in the scene as specified by the user, and Attribute and Colour lists
to dynamically display the available properties or colours for a selected object in the scene. The lists
displaying this information are highlighted within the blue box in Figure 3.9.

The Spatial Relations list as implied consists of the seven possible spatial relations between two
objects. These relations are provided as a reference to the user and the relation in the Relation Table
is selected from this list.

The Objects list provides the names of all the 371 object categories that can be used for selection
in the scene. This gives the user an overview of the possible objects that can be instantiated and can
be used as a reference to customise the scene by selecting relevant objects.

The Scene Objects list is a dynamic list which comprises the objects that are required in the scene
as stipulated by the user. All the objects in the list are generated in the scene. The list gets incremented
whenever the user adds an object to theQuantity Table and determines the number of instances. When
an item in this list is selected, the Attribute and Colour lists get filled with items as checkboxes if the
item consists of attributes. The Colour list is updated with values corresponding to the object based
on the colour column in Table 3.2. Similarly, the other attributes of the selected object are displayed in
the Attribute list. The Colour list is also dynamically updated based on the attribute selected. This is
done to ensure that the user can only select the colours exhibited by an object with a given property.
On checking the checkboxes of the items in the Attribute list or the Colour list, the property and the
corresponding object are added to the Attribute Table.

3.7.3. Parameters
In addition to the lists and tables in the user interface, extra parameters are also included in the in-
terface, to allow for more controllability in the scene. These are highlighted as elements in the green
box in Figure 3.9. The first parameter is to determine whether the objects specified in the interface
should be present with a background. The background is provided as a room in which the objects are
located and the room is also a 3D object in which the objects are placed. The user selects whether
the scene should contain a room by selecting the appropriate radio button. If a background room is
required, a new Object node for the room is created, and an On Relation node is created, connecting
the remaining scene object nodes to the room (object) node using this relation. Including this relation
ensures that the objects are constrained to be positioned inside the room. Allowing the selection of
the room along with the other objects and the relations they have is an important contribution when
compared with the earlier work [34]. The original work which takes only text input does not allow the
scene described to have a background. The backgrounds are only loaded as a stand-alone room or
when an existing scene graph from the dataset is loaded.

The user interface also enables the user to select whether contextual objects are to be added in the
scene. If the user wishes to include them, the appropriate option is selected. The user can also select
the context parameter 𝛼, where a low value would result in many and often irrelevant objects included
in the scene, while setting a high value for the parameter results in the inclusion of only very relevant
objects.

3.7.4. Comparison with Original Work
The original work in [34] consists only of a textbox where the description of the scene is given as raw
natural language. The natural language input requires additional processing to convert it to a scene
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graph. With the user interface described in this section, the additional steps of converting text through
a dependency parser are skipped, as the input provided via the interface is all gathered to create the
input scene graph. Every object in the scene list is considered as a separate entity, and its relation
nodes are created by parsing through the Relation Table to identify instances where the entity is the
first object of reference. Similarly, the Attribute nodes are created from the Attribute Table where a
property of the object is specified. By explicitly specifying the object’s relations, any scope of ambiguity
due to text is also eliminated. In the original work, the scene is generated by describing it one sentence
at a time which could be time-consuming and cumbersome for the user. The interface also provides a
solution to this issue by enabling the description of all components at the scene at once.

By indexing the object added to the scene list, properties for every instance can also be customised,
which was more complicated to ensure in the earlier method. Furthermore, the interface is designed
in a way to reduce the cognitive load on the user by providing the possible objects in the scene to
select from, the object’s possible properties, and the spatial relations. With this information provided in
the interface and easily accessible, the user would not have to remember these details. An additional
example of this is the updating of the Colour list based on the attribute selected of the object. The
updated list shows the user the available colours for the object that can be chosen given an object’s
attribute selected. The tables in the interface also serve the additional purpose of providing an overview
of all the attributes and relations in the scene, giving the user a better understanding of what to expect
in the synthesised result. Another improvement of using the interface, compared to the textbox is the
controllability provided over the scene having or not having a background, determining the addition
of contextual objects, and the extent of relevant contextual objects. Lastly, the interface also enables
the user to generate a scene by providing objects as predicates to an Or query. An example of using
the user interface to describe the specifications of the scene is depicted in Figure 3.10. The figure
shows the objects in the Quantity Table with the number of objects. The Relation Table specifies the
spatial relations between the chair and desk, and the desk and bed. Furthermore, the attributes of the
table are also visible in the Properties Table. The attributes were added by selecting the object from
the Object Scene list and checking the required item from the Attribute list. An instance of this is also
visible where the chair’s Office attribute is selected. Additionally, the parameters of the scene are also
determined to not have contextual objects or a room as a background.

Figure 3.10: User Interface describing a scene with an Office Chair, Desk, and a Queen Bed.
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3.8. Query Generated Scene
An important requirement in the development of SceneUI is to have a component where a query is
specified, containing objects as predicates. The image generated from this query would be used as
ground truth for specialisedmachine learningmodels. As earlier works do not explore generating indoor
scene images from queries, we limit the scope of our thesis to using OR queries with two predicates.
In this way, we create a baseline for generating images based on a query and also show that it is
possible to synthesise images from a query. We leave the scope of including multiple predicates in the
queries and more complex queries with conjunctive normal form such as - Table AND (Chair OR Stool)
for future work. Based on the OR query, the scene synthesised should consist of either one or both
the objects and the image extracted is used for the second use case as ground truth for specialised
machine learning models.

Object 1 Relation Object 2

Object 1 Relation Object 2

Object 1 Relation Object 2

Object 1 Relation Object 2

Original Relation Table

Query: Chair OR Stool

Key = 1

Key = 0

Key = 2

(Chair,  No Stool)

(No Chair, Stool)

(Chair, Stool)

Figure 3.11: Process for generating an image given an OR query. Changes are made to the Scene Objects list and the
Relations table based on the key value.

The input for the query is provided via the OR Query Table in the user interface: where objects
required as query predicates are specified in both columns of the table. For generating the scene
based on the query, we have three scenarios or possibilities of the image. The basic requirement for all
scenarios is that at least one of these objects is present in the generated scene. Thus, given a query
of a Chair OR Stool, the scene could have either a chair but no stool, a stool and no chair, or both
a chair and a stool. When generating the scene based on the query, there should also be an equal
probability of either of these scenarios occurring. Therefore, we generate a random number between 0
and 2, with this value denoting a key value. If the key generated is 0, the object in the first column of the
OR Query Table is selected to be present in the scene while the second is excluded. This is ensured
by iterating through the Relation Table and the Scene Objects list and removing occurrences of the
second object as we do not need it in the scene. Furthermore, the Scene Objects list is searched to
check if the first object is present in the scene. If it is not in the list, the list is incremented by adding
the object. Conversely, when the key is 1, the object in the second column is selected in the scene and
all instances of the first object occurring are excluded. A similar process is followed as the previous
scenario to remove all occurrences of the first object and augment the Scene Objects list with the
second object. When the generated key holds the value 2, both objects are present in the scene by
checking if the Scene Objects list contains both objects. If any object is not present, it is then added to
the list. Figure 3.11 illustrates the process described above where the changes are made to the relation
table based on the key generated.

The procedure to generate a scene based on the query only requires modifications to relevant
tables and lists to remove or include objects. Once the modifications are made, the rest of the pipeline
is followed to create the input scene graph, find and modify similar scene graphs, and finally generate
a scene containing at least one of the two predicate objects.





4
Experiments

This chapter describes the experimental setup conducted to evaluate SceneUI in the context of down-
stream tasks. Further details are provided on the settings of both use cases, their main requirements,
and how images are synthesised for the use cases. The goal of the experiments is to show the usability
of SceneUI itself for either task and how its features can be used to customise scenes created. The pur-
pose of the experiment described in section 4.1 is to create biased and unbiased image datasets using
SceneUI to observe how the inclusion of various biases in the training set influences the classification
process of a neural network. Furthermore, it should allow controllability over the biases induced. An
additional goal is to investigate if the computer vision model can learn the biases using the dataset of
images created by analysing the saliency maps on the test dataset. In section 4.2 we detail the experi-
ment to evaluate SceneUI by providing a query as an additional input in the user interface. Classes are
assigned to the images based on the query and a machine learning classification task is performed. An
additional goal is to show that the images generated from the framework can be used to train machine
learning models and that the model can learn the features and perform with reasonably good accuracy.

4.1. Bias Detection
This experiment evaluates SceneUI by utilising its features for the use case of explaining deep learning
models in the context of bias detection. Using the system, two training datasets are created - one bi-
ased and one unbiased with the test dataset also being unbiased. The extent of the biases learned by
the model is analysed by comparing classification statistics and explanations of what the model focuses
on via saliency maps on the test set, with the unbiased model. An unbiased dataset is also selected for
training as this learns an unskewed and fair representation of the scene and assists with the compari-
son of the biased model to understand the depth of the biases picked up. Additionally, the test dataset
is also unbiased as we are interested in observing the biased model’s performance on a realistic and
unskewed dataset. The description of the types of biases introduced in the experiment is provided in
subsection 4.1.1, subsection 4.1.2 details how causal graphs are used to create an overview of objects
to be included in each scene, and subsection 4.1.3 explains the image generation process. Finally,
subsection 4.1.4 provides details about fine-tuning the neural network with the datasets which is a key
part of the experiment.

Dataset Classes
The datasets consists of 3 classes - Study Room, Dining Room, and Living Room. These classes
were selected based on observations made on the existing scenes in the database as well as the object
categories. Furthermore, on studying the variations within an object category such as different types
of bookcases, dining tables or study desks, the three classes were decided as it would be possible to
create many variations of a realistic and representative scene. Additionally, 3 classes were decided
to create diversity in biases introduced and also increase the complexity of the classification task by
avoiding a simpler binary classification. In the biased dataset, each class has its own unique bias based
on an object’s property or co-occurrence with other objects. On the other hand, the unskewed or natural
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dataset contains a more uniform distribution of objects with also an overlap of objects present that
typically belong to other classes. The images for each class whether biased or natural were ensured to
be a depiction of a scene representative of that class and where a human could unambiguously identify
the scene or class the image belongs to. An example of this is the study room always has a study desk,
a dining room will have some type or shape of a dining table and a living room should have furniture to
sit on, such as a couch or a sofa chair.

4.1.1. Types of Biases
There are three biases introduced in the training set with each class having their custom bias. These
biases were selected for the experiment to show that SceneUI allows the user to introduce a variety
of biases in the dataset by fixing attributes or spatial relations of objects via the interface, thereby
generating images where the objects hold these attributes. An overview of the biases found in each
class as well as the biased objects are depicted in Table 4.1.

• The Study Room class comprises images that have an object co-occurrence bias where in all
the images a speaker or a monitor always exists on a study desk. This means that there are
instances of either object present on the desk or both objects. Among all the other objects in the
scene, either of the two or both objects is always present. The purpose here is to see whether the
model learns a study room as a scene where a speaker or monitor is always present on the study
desk. SceneUI is used to constrain the speaker and monitor to be placed on the study desk. An
example of a biased study room is shown in Figure 4.1.
Additional objects included only in this class of the biased dataset are those that are typically
found in study rooms: office chair, keyboard, computer mouse, mousepad, desk lamp, printer,
pencil, paper.

• The Dining Room class contains images that depict a colour bias. The recurring theme of images
in this class is that a red object should always be present in this class. The dataset of object
models has only a single type of a red dining table. Steps were taken to ensure that the model
learns the colour red and not just the same table or chair. This was done either by changing the
colour or types of chairs in the dining room but keeping a red table present or by having red chairs
with a different dining table. Additionally, images from scenes were also selected that had smaller
red objects on the table such as a red apple or a red plate. Using SceneUI, attributes of objects
were selected that exhibit a red colour. A sample image is illustrated in Figure 4.2.
Additional objects included only in this class of the biased dataset are those that are commonly
found on a dining table: bowl, mug, plate, knife, cup, food, bottle, fruit, pizza, donut.

• The Living Room class consists of images with an object bias and a part-of relation bias. The
images in this class always include scenes with a glass coffee table and on other occasions with a
bookcase having 3 shelves. The part-of relation bias mentioned above is a bias where the model
learns of a bookcase as an object that contains only 3 shelves. It would further be interesting to
see if the model still identifies a bookcase with a different number of shelves as a representative
of the living room. SceneUI allows the selection of the number of the bookcase’s shelves and the
type of table. Figure 4.3 depicts a biased scene from this class.
Additional objects included only in this class of the biased dataset are those that are typically
found on a dining table: couch, sofa chair, plant, knife, TV, TV stand, rug, cabinet.

4.1.2. Generating Causal Graphs
To create varying images with diverse objects in the scene, we need a distribution of objects for each
class. Given the number of samples for a class, the distribution of objects for each sample is produced
using causal graphs. The causal graph creates a representation of a class, the objects that occur in
this class as well as the properties of the class. The class, objects and their properties are all denoted
as nodes, and the edges connect the objects to the class and the properties nodes are also connected
to their respective objects by edges. The edges are weighted with a value that denotes the probability
of the object or property occurring. Overall, it is an intuitive way to represent the objects and their
properties that should occur in a class. This helps in generating the skews and biases we need for
the biased datasets, such as how often an object should occur in the dataset and how often should it
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Table 4.1: Categorisation of the biases, biased objects and properties included for each class.

Class Biased Objects Object Property Type of Bias

Study Room
Speaker -

Object Co-occurrence BiasMonitor -
Desk Study

Dining Room Table
Dining
Red Colour Bias

Chair Red

Living Room Table
Coffee
Glass

Object Bias

Bookcase 3 shelves Part-of Relation Bias

Figure 4.1: Biased Study Room with a
speaker and monitor on the desk.

Figure 4.2: Biased Dining Room with a
red dining table.

Figure 4.3: Biased Living Room with a
glass coffee table and a 3 shelf

bookcase.

exhibit the given property. An example of a causal graph for a study room is depicted in Figure 4.4.

Study Room

Desk

Chair Office

Study

Speaker

Object PropertyClass

1.0

0.9

0.5

1.0

1.0

Figure 4.4: Causal Graph for a Biased Study Room.

For example, in the Study Room, the probability of a desk occurring is 1.0 and also very high for a
speaker or monitor as shown in Figure 4.4. Similarly, for the dining room, the probability of the chair
or table to have the colour Red is set to be very high. The other objects occurring in the scenes of the
biased datasets are assigned a probability of 0.5. On the other hand, for the unskewed dataset, the
probabilities of various objects occurring in respective scenes are assigned based on how one would
expect them to be, given real-world observations. The distribution of objects produced for instances of
each class is generated using the causal graphs from MirrorDataGenerator 1 [58].

1https://github.com/DataResponsibly/MirrorDataGenerator

https://github.com/DataResponsibly/MirrorDataGenerator
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4.1.3. Generating Images
Given the distribution of objects for each biased class and the natural datasets, the next step was to
make use of SceneUI to create images for the biased and both natural datasets. To ensure that the
model learns the features of each class well, 50 images were generated for each class in the dataset,
thereby also having a uniform distribution. This resulted in 150 images each for the biased and natural
datasets which also limits the computational time for the experiments. SceneUI was used to select
specific attributes of the objects in the scene, and their quantity and constrain them to particular spatial
relations. This was carried out by using the interface described in section 3.7.

Selecting Attributes from the Interface
By selecting attributes for the objects in the scene from the user interface, the classes can be created
such that the objects in it can conform to the biases described earlier as well as create a realistic visual
of a scene that is representative of an actual room corresponding to the class. The list of objects and
their corresponding attributes selected via the user interface for each class can be found in Table 4.2.

Table 4.2: Attributes of objects selected for each class with the user interface.

Class Object Attribute

Study Room Desk Study
Chair Office

Dining Room
Table Dining

Red
Chair Red

Living Room

Bookcase 3 shelves

Table Coffee
Glass

Chair Sofa

Selecting Spatial Relations from the Interface
The interface is also utilised to impose spatial relations between objects. This helps make the scene
more realistic and avoids unnatural cases such as objects floating in mid-air. To ensure this, smaller
objects that are expected to be on a surface are constrained with the On relation to being on top of
the larger surface. For example, the Study Room class would require the monitor, speaker, mouse,
keyboard, mousepad, etc. to be placed on the desk. Similarly, images depicting a Dining Room are
expected to have food items and cutlery on the table. Additionally, spatial relations were applied be-
tween objects to place objects at a specific position with respect to the other. An instance of this, is the
office chair placed in front of the desk in the study room, and in some images of the living room, the TV
is located in front of a coffee table which is also placed in front of the couch.

Image Generation Procedure
Every instance of the result obtained from the causal graph provides a distribution of the objects that
should be present in every scene. Given the objects to be instantiated in the scene and their properties,
the attributes for objects and spatial relations between objects (if needed) are selected and provided
as input in the user interface. To create multiple images of the same scene, variations of the scene
are made by camera rotations. The scene is also created without a background which further enables
obtaining multiple images of a scene from varying angles. The camera rotation function takes user
input via a key press, rotates the view of the scene and takes a screenshot of the window which serves
as the image. By repeating this action five times, five images of the scene are generated from various
angles, till a full rotation is complete. In this way, the process is scaled by providing various inputs of
different scenes and obtaining five images of the scene. Finally, 450 images are created, with 150 each
for the biased dataset for training, one natural set for training and another natural dataset for testing.
Each class in the dataset comprises 50 images. Figure 4.5 illustrates examples of various images used
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(a) Biased Dining Room. (b) Biased Study Room.

(c) Biased Living Room. (d) Biased Living Room.

(e) Natural Living Room. (f) Natural Study Room.

Figure 4.5: Examples of images used for different classes of the three datasets.

for different classes of the train and test datasets. Figure 4.5a, Figure 4.5b, Figure 4.5c and Figure 4.5d
are examples of images from the biased dataset. Figure 4.5a depicts a dining room with a red table
and red chairs, with a knife cup, fruit and bottle on the table. Figure 4.5b depicts a biased study room
with a monitor, speaker, keyboard, printer and mousepad on the desk, with an office chair in front of it.
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Figure 4.5c and Figure 4.5d are images from the same scene of a biased living room but with different
camera angles. The images constitute a couch adjacent to a bookcase with 3 shelves, and in front of a
coffee table with a plant on it, a TV on a TV stand and a cabinet. Figure 4.5e and Figure 4.5f are both
images from unskewed datasets belonging respectively to the Living Room and Study Room classes.
Figure 4.5e is an instance of the natural training dataset and Figure 4.5f belongs to the test set.

4.1.4. Fine-tuning the Neural Network
Following the creation of the datasets, the next step is to fine-tune a deep learning model on both the
datasets assigned for training and observe the results on the test dataset. Fine-tuning a neural network
is the process of making a pre-trained model learn the features of a new dataset that does not greatly
differ from the data it is pre-trained on. Learning new features of the dataset and reducing the number of
classes to predict helps in customising the network for our classification task. For this experiment, the
ResNet50 neural network is selected which is already pre-trained on the ImageNet dataset: a database
with millions of images that have 1000 categories [12].

Training Parameters
The setting and parameters of the ResNet50 were the same for training both datasets. Furthermore,
to limit computation time the images were resized to a height and width of 75 pixels respectively before
training. The following parameters were selected:

• Epochs - 75

• Batch Size - 125

• Optimizer - Adam

• Loss - Binary Cross Entropy

• Early Stopping - Patience value of 5 on validation accuracy

(a) Dining Room. (b) Saliency Map for a Dining Room.

Figure 4.6: Saliency map generated for an image. The highlighted region in the saliency map denotes attributes or areas the
image finds important for classification.

Generating Saliency Maps
The last step is to generate saliency maps of images from the test dataset. The saliency map of the
image highlights the regions in the image that the fine-tuned network focuses on and finds important
for classification. The saliency maps on the test set are generated for both the biased and unbiased
models trained earlier. For every image in the test set, the trained model highlights the pixels in the
image it considers important for classification using a SmoothGradmask [48], while also considering the
predicted class for the image. This mask of highlighted pixels is converted to a heatmap and overlayed
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on a grayscale conversion of the image. This combination of layers results in the saliency map for
a given image that shows the objects or regions the model considers essential for classification. An
example of a saliency map generated by the biased model for a Dining Room is shown in Figure 4.6b.
The model highlights the region of the dining table that it considers important for it to belong to the
Dining Room class.

4.2. Query Generated Images
In this experiment, the OR query feature of the interface is used to generate images. A supervised
classification setup is designed to predict two classes given an image - OR and Not. Images in the OR
class should have either a dining chair, a dining table or both objects together, amongst other objects
in the scene. In contrast, images from the Not class never contain a dining chair or dining table. The
purpose of the machine learning classification task is to discriminate between scenes or images that
have either of these objects or none of them. To ensure that at least one of the objects is present the
query input feature is used. This also helps to show that SceneUI can generate images when given a
complex query with objects specified. The query predicates - dining table and dining chair are selected
due to the variety of objects present in the database holding these attributes. Another reason for se-
lecting this category of objects is that both are present in the COCO dataset, a dataset with common
objects in context [32].

The dataset for the experiment is created in a way that there is an equal distribution of images for all
four cases - scenes with only a chair, scenes with only a table, scenes with both a chair and table and
scenes without a chair or table. However, as the images without a chair or table constitute a class of
their own and the former three make up the OR class together, the overall dataset is skewed towards
OR class. This section is further divided into two key subsections describing the experiment. In subsec-
tion 4.2.1 the entire image generation process to create the dataset is described, and subsection 4.2.2
details the machine learning classification task.

4.2.1. Generating Images
The image generation process is to an extent similar to the experiment described in section 4.1. The
main attributes to be selected here are the chairs and tables to both be dining when they occur. Ad-
ditionally, to increase the variety of images, tables were specified to be a rectangular or round shape.
Small objects were also constrained to spatial relations and were placed on top of objects like a book-
case, TV stand, desk or table by specifying this through the user interface. A notable difference from
section 4.1 in the image generation process is that the objects in the scene are in a room and thus have
a background. The presence of the room is also selected via the user interface. Another difference
is the variation of images of a scene is not generated by having different camera angles, but by often
having the same object in different backgrounds. This difference also shows that SceneUI can be used
to create a variety of images, either with a variety of backgrounds or without.

Image Generation Procedure
The images are created by providing the query through the interface, with the query predicates be-
ing Chair and Table. In the attributes section of the interface, both objects are specified to be of the
property Dining when they occur. To generate images for the positive class (OR), the predicates were
provided as input and the scene was created. The next step was to manually adjust the camera angle
and view of the scene to ensure that the image extracted had the objects appropriately with the room
as a background. A set of 150 images for the positive class was generated in this way, with an equal
distribution of 50 images each for scenarios with only a chair, only a table, and both chair and table.
Apart from the chair and table, other objects were also introduced in the scene such as a desk, bed,
bookcase, couch, TV, TV stand, cabinet, nightstand, dresser, vanity, bathtub, speaker, monitor, desk
lamp and food items. Images for the negative class Not were collected using a similar process, but
without any object provided in the OR query specification. Using a combination of the additional ob-
jects previously mentioned, scenes were created and 50 images corresponding to the Not class were
generated. To generate images for this class, it was important to make considerations to never instan-
tiate a dining chair or a dining table in the scene. 50 images were selected for each scenario to give
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the machine learning model sufficient examples to learn the features for each class. Figure 4.7 pro-
vides examples of images generated through the queries for both classes for all 4 scenarios and also
illustrates the possible backgrounds for the room that are possible to have. Figure 4.7a, Figure 4.7b,
Figure 4.7c belong to the positive OR class and Figure 4.7c belongs to the negative Not class.

(a) Scene with only a chair. (b) Scene with only a table.

(c) Scene with a chair and table. (d) Scene without a chair or table.

Figure 4.7: Examples of images generated for all scenarios based on objects specified as a query.

4.2.2. Image Classification
With the 200 images generated, the next task was to perform a supervised classification task. The
classification task is a simple binary class prediction and for this purpose, a simple, fast but powerful
machine learning model - the Support Vector Machine (SVM) classifier was used. The dataset is split
by assigning 120 images to the training set and 80 images to the test set (60-40 split), in a stratified way
to maintain an equal proportion of class distribution due to the imbalanced nature of the dataset. The
classification task of the experiment was further conducted by training the SVM classifier with 4 different
kernels and comparing the results. This comparison also indicates which kernel performs the best for
images generated using SceneUI. Using a GridSearch, the regularisation and gamma parameters for
every classifier were tuned to optimise the highest accuracy. By selecting the best parameters for
a kernel for the task, we can compare the best case results for each SVM kernel. Table 4.3 shows
the SVM kernels used in the experiments for classification and the resulting best parameters after the
GridSearch.

Table 4.3: Parameters for SVM kernels using GridSearch.

Kernel C Gamma
RBF 100 0.0001
Poly 0.1 0.001
Linear 0.1 0.0001
Sigmoid 0.1 0.0001



5
Results

This chapter presents the results obtained after conducting both the experiments detailed in chapter 4.

5.1. Bias Detection
The results from the experiment conducted in section 4.1 are presented in this section. The ResNet50
network fine-tuned on the biased dataset provides an accuracy of 58.0% with the test dataset, and
the network fine-tuned on the natural dataset resulted in an accuracy of 66.67% with the test dataset.
Analysing the confusion matrices obtained as a result of the classifier’s performance on the test set,
gives insights into the proportion of misclassification when trying to classify each class. The confusion
matrix summarises and provides information on the classification performance of the classifier [50].
It also gives information on the number of times the classifier predicts correctly and incorrectly when
trying to classify a particular label.

Analysing Confusion Matrices
Figure 5.1 illustrates the normalised confusion matrix of the classifier’s performance when trained on
the biased set and natural set respectively. A notable difference between the two confusion matrices,
is the disparity in misclassification rates. This difference indicates that the biased model in most cases
is inclined to misclassify one class over another due to the biases learned. When compared class by
class, the following differences were found :

• Dining Room - Figure 5.1a shows a difference between incorrectly classified classes as 0.24 and
0.04 in Figure 5.1b

• Living Room - Figure 5.1a shows a difference between incorrectly classified classes as 0.42 and
0.04 in Figure 5.1b

• Study Room - Figure 5.1a shows a difference between incorrectly classified classes as 0.12 and
0.32 in Figure 5.1b. This is the only scenario where the discrepancy in incorrect classification
between classes is higher for the classifier trained on the unskewed dataset.

From the two trained models, two sets of saliency maps were generated on the test set which
also contains images resized to (75,75). The saliency maps from the test set were analysed to see
whether the highlighted regions of the image correspond to the biases introduced for the class, while
also checking the class prediction or misclassification for the image highlighted with saliency maps.

Misclassifying Study Room
Figure 5.2 depicts examples of a Study Room being misclassified due to induced biases in the training
set. Figure 5.2a contains a desk with a mousepad and office objects on it, an office chair in front of it
and a couch behind the chair. The saliency map in Figure 5.2b strongly highlights regions of the couch,
which is what it strongly focuses on during prediction. Figure 5.2a was incorrectly classified as a Living
Room due to the presence of the couch. Similarly, Figure 5.2c consists of a study desk with a chair,
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(a) Normalised Confusion Matrix - Biased Classifier. (b) Normalised Confusion Matrix - Unbiased Classifier.

Figure 5.1: Normalised Confusion matrices for Biased and Unbiased models.

monitor and speaker, adjacent to a bookcase with 3 shelves. Due to the presence of this bookcase
only in the Living Room class, the image is classified as a Living Room. Figure 5.2d gives an indication
of the model highlighting the shelves of the bookcase.

(a) Study Room with a couch. (b) Saliency Map of the Study Room scene.

(c) Study Room with a 3 shelf bookcase. (d) Saliency Map of the Study Room scene.

Figure 5.2: Images and respective saliency maps when predicting a Study Room with the biased model.

Misclassifying Dining Room
Figure 5.3 illustrates examples of the dining room being misclassified due to biases originating from
the Study Room. Figure 5.3a is an image with a dining table, 3 dining chairs and a monitor on it. This
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image was classified as a Study Room due to the presence of the monitor on the table. The saliency
map in Figure 5.3b highlights the monitor as well as the regions on the table it is located. Another
example shown is Figure 5.3c which is also classified as a Study Room since the desk lamp occurs
only in study rooms in the training set. An additional explanation that contributes to this classification
could be that the image contains only a single chair, which is very often the case in the study rooms
in the training set. Figure 5.3d provides evidence of this by highlighting the desk lamp as well as the
dining chair.

(a) Monitor on a dining table. (b) Saliency Map of the Dining Room scene.

(c) Desk lamp on a dining table. (d) Saliency Map of the Dining Room scene.

Figure 5.3: Images and respective saliency maps when predicting a Dining Room with the biased model.

Misclassifying Living Room
Finally, in Figure 5.4 images of a Living Room are shown which are misclassified as a Dining Room
owing to the presence of red objects. Figure 5.4a is classified as a Dining Room due to the red chair
in the scene, even though other objects typically found in the Living Room class of the training set are
present, which is supported by the saliency map shown in Figure 5.4b. Similarly, Figure 5.4c comprises
a red table and a red sofa chair amongst other objects. On observing Figure 5.4d, it can be seen that
the model focuses on the red aspects of the dining table as well as the sofa chair. Therefore, it is
classified as a Dining Room. An interesting insight here is that the red sofa chair is not present in the
training set, and by highlighting the red portion of the chair in the saliency map, it shows that the model
has truly learned the colour bias introduced in the Dining Room class.

Analysing the Unbiased Model
An analysis conducted of the neural network trained on the natural dataset shows that the model can
learn the features of the objects which is also supported by the saliency maps. The saliency maps
highlight object properties such as the table’s surface when predicting a room, and also focus more on
a chair’s features as well as notices a bookcase’s shelves. This is not always the case for the biased
model which identifies biased objects and categorises the image accordingly. For instance, the biased
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(a) Living Room with a red chair. (b) Saliency Map of the Living Room scene.

(c) Living Room with a red table and red couch. (d) Saliency Map of the Living Room scene.

Figure 5.4: Images and respective saliency maps when predicting a Living Room with the biased model.

model classifies almost every image with a red object as a Dining Room while the unbiased model
does not consider the colour but the objects present in the scene, based on the scenes in its training
set. The presence of biased objects sometimes helps the biased model to correctly predict images
from the class the biased objects originate from: a red table in a dining room assists the model in
classifying it as a dining room. As the unbiased model does not know these biases, it focuses on the
objects present or the combination of objects, which could also explain the slightly lower true positives
corresponding to the Dining Room and Study Room classes when comparing the confusion matrices
shown in Figure 5.1a and Figure 5.1b.

Bias Induced Misclassifications
Of the three biases introduced, the colour bias is learned best by the model. From the test dataset
itself, 8 Study Room images were predicted as a Dining Room from which 7 images had a red object.
Similarly, of the 23 Living Room images misclassified as a dining room, 16 had a red object. 14 Dining
Room images were incorrectly predicted as a Study Room where 4 of these had a monitor on the table,
1 had a speaker, and the other misclassifications were due to the table’s colour being similar to that
of the desk, or the presence of a desk lamp. Due to a slightly more complicated bias introduced, of
the 14 Study Rooms classified as a Living Room 6 included images with a bookcase having 3 shelves,
while the rest were misclassified due to the presence of a couch in the scene that was only found in
the Living Room class of the training set. An overview of these numbers can be found in Table 5.1.

Conclusion of the Experiment
From an analysis of the results, a suggestion would be to create biased datasets such that the biases
introduced should be based either on a colour or the absence or presence of large objects similar to a
couch or a bookcase. SceneUI allows the selection of these attributes (colour) as well as instantiating
large objects in the scene, as also shown in this experiment. Thus, it can be concluded from the experi-
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Table 5.1: Overview of the misclassifications cause due to the presence of biased objects or properties.

Bias Misclassified Class True Class Misclassified Images
Misclassified
Biased Images

Red Object Dining Room Study Room 8 7
Red Object Dining Room Living Room 23 16
Monitor Study Room Dining Room 14 4
Speaker Study Room Dining Room 14 1
Bookcase Living Room Study Room 14 6

ment that the neural network can learn biases deliberately introduced in the training set using SceneUI.
However, the biases learned vary to different extents based on the type of bias introduced. Addition-
ally, by generating an unbiased, natural dataset using SceneUI, and comparing the explanations of
the model trained on this dataset with the biased model, explainability methods can be benchmarked.
Therefore, the results from the experiment show that SceneUI can be used to create both biased and
unbiased datasets. Its features also allow the selection of various objects and their properties such as
their functionality or colour. The neural network is able to learn the biases introduced via SceneUI and
can also be compared with an unbiased neural network.

5.2. Query Generated Images
The results from the experiment conducted in section 4.2 are presented in this section. The analysis
involves a comparison of four different SVMmodels, trained on different kernels. To distinguish the per-
formance of different models and to identify the best performing kernel for this setting, the comparison
was made by considering the following classification metrics:

• Accuracy - Accuracy is the ratio of a classifier’s correct predictions, to the total number of predic-
tions made. Overall, it denotes how good a classifier is in predicting either class.

• Recall - Recall is the ratio of the correct predictions of the class to the total number of instances
of that class [38]. A high recall score signifies that the classifier has a low probability of predicting
the other (negative) class.

• Precision - Precision is the ratio of the correct predictions of a class, divided by the total number
of times that class is predicted [38]. It indicates the performance when the classifier is required
to predict the specific class.

• ROC - Receiver Operating Characteristic (ROC) is a plot of a classifier’s True Positive Rate (ratio
of correct predictions of positive class to the number of instances of that class) against the False
Positive Rate (ratio of incorrect predictions of a positive class to the number of instances of the
negative class) [15]. It denotes how well a classifier can distinguish the two classes.

• AUC - The Area Under the Curve (AUC) of the ROC curve plot is extracted as a singular value
metric to compare the performance of different models.

These metrics are selected as the scores help quantify the model’s performance over various aspects.
A model that performs well in most if not all of these metrics would be judged as the best performing
model for the task.

Classification Results
The scores from these metrics are presented in Table 5.2 with the columns containing values in bold
denoting the kernel that achieves the highest score for that metric. The table also contains precision
and recall scores for both classes, which helps us understand the model’s performance when predict-
ing both classes. 0 indicates the negative class, that isNot while 1 corresponds to the positiveOR class.

From the table, it can be observed that when the SVM is trained with the RBF kernel, it outperforms
the other kernels over all metrics except recall for the positive class. The ROC plots for all the kernels
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are also illustrated in Figure 5.5. Though there is a minor difference between the AUC values and the
plots of Figure 5.5a, Figure 5.5b, and Figure 5.5c is minor, the RBF kernel gives the best performance.
A reason why the Sigmoid kernel achieves a low AUC score, recall and precision values for the negative
class is because it predicts all instances as the positive OR class. Due to the imbalanced proportion of
the dataset, it still has a decent accuracy of 75% but very low scores for precision when predicting the
negative class. Due to the limited sample size and the imbalanced skew of the dataset, the recall and
precision scores for predicting the negative class are low, especially for recall. This indicates that the
classifier often incorrectly predicts the image to be of the OR class whereas its true class is Not.

Table 5.2: Performance of different SVM kernels over 4 metrics.

RBF Poly Linear Sigmoid
Accuracy 0.7875 0.7625 0.7625 0.75

Precision
0 - 0.64
1 - 0.81

0 - 0.54
1 - 0.81

0 - 0.54
1 - 0.81

0 - 0.00
1 - 0.75

Recall
0 - 0.45
1 - 0.87

0 - 0.35
1 - 0.90

0 - 0.35
1 - 0.90

0 - 0.00
1 - 1.0

AUC 0.77 0.76 0.74 0.48

(a) ROC curve for RBF kernel. (b) ROC curve for Poly kernel.

(c) ROC curve for Linear kernel. (d) ROC curve for Sigmoid kernel.

Figure 5.5: ROC plots for various SVM kernels used in the experiments.

Conclusion of the Experiment
Thus, from the comparison of metrics, it is observed that the RBF kernel performs the best and can
perform reasonably well and can distinguish between the two classes. With more images in the dataset
and a more balanced class distribution, the model could also perform better. From the experiment, it
can also be concluded that a variety of images can be generated using the query input feature of
SceneUI. The scenes are also synthesised in different backgrounds, giving further diversity in features
to be learned and also making the scene more realistic. The performance of all the SVM kernels on
the dataset also shows that machine learning models can learn the features of the images created as a
result of SceneUI and that the images generated are suitable for machine learning tasks and therefore
can be used as ground truth.
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Discussions & Conclusions

In this chapter, we provide the conclusions of the thesis in section 6.1 with a summary of the thesis
and answers to the research questions. Additionally, we analyse and discuss SceneUI by comparing it
with relevant literature in light of the use cases. We review the limitations of SceneUI in section 6.2 in
the context of the method and experiments conducted. Future research directions for development are
also presented in section 6.3 to improve the system and ensure its scalability to generate numerous
images.

6.1. Conclusions
In this section, we provide the conclusions of the thesis by summarizing our approach, experiments
and results in subsection 6.1.1 and answering the research questions defined. Additionally, we discuss
aspects of SceneUI and compare it with the literature reviewed.

6.1.1. Summary
In this thesis, we present SceneUI, a system to generate indoor scenes and extract images, where
the user describes a scene by specifying the objects and their properties, spatial relations between
objects, and the presence of a background. The system was developed by modifying an existing
similar work based on scene graphs by merging it with a user interface. The features of SceneUI
were designed based on the requirements for two use cases the images will be used for - Generating
Images for Interpretable Machine Learning and Generating Images from Queries as Ground Truth.
In this context, we increase the level of controllability provided in the existing work by expanding the
attributes in the scene graph of the dataset so that they cover more properties of an object as well as its
colours, and also introducing more objects that hold properties. Additionally, we design an interface that
allows the user to select and control several aspects of the image including contextual elements and
in this way combines various controllable image generation methods. The interface also consists of a
feature where the scene is generated based on anOR query provided with objects as query predicates.
Additional advantages of using SceneUI over the base work are that it reduces the cognitive load on
the user by providing an overview of all the relations in the scene, possible objects to choose from, and
also allows the entire description of the scene at once.

We showcase the suitability of SceneUI and the usability of the generated images for both use cases
by conducting two sets of experiments. The features introduced in the interface and the expanded
attributes of objects were also used in the experiments to generate images, thereby showing our work’s
benefits and usability. In the first experiment, we create biased and unbiased datasets, with each class
of the dataset having its own bias created using the interface based on the colour of objects or the
presence of objects. Thereafter, a neural network was trained on the datasets and saliency maps of
the biased model were investigated to see how well it learns the biases in the images. The analysis
indicated that several of the model’s misclassified images are due to the presence of biases in the
images. The experiment, therefore, supports our goal to use SceneUI to create biased and unbiased
datasets and benchmark explainability methods. The second experiment generates images using the
query feature of SceneUI and also places the objects with a background. The performance of four
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SVM kernels was compared by training them on a dataset of two imbalanced classes, where one class
contains the objects specified in the query and the other class contains neither object. The performance
metrics of the models highlight that the images generated from SceneUI using the query are suitable
for machine learning tasks and so the images can be used as ground truth for proxy models.

Answers to Research Questions
As a result of the research, development and design of experiments in the thesis, we provide the
following answers to the research sub-questions described in section 1.2:

• RSQ1: What are the current methods of image generation and what features of the synthesised
image do they allow control over?
A: The literature study in the Background chapter gives an overview and insights into Machine
Learning and Computer Graphics based methods for image generation. Additionally, for indoor
scene generation Table 2.1 gives an overview of the existing techniques in Computer Graphics
and various controllability features allowed such as object direction, query, context, colour, spatial
relations, quantity, background and use of scene graphs. Based on our analysis we identify a
research gap where none of the methods allow the user to manipulate all these features. Thus,
in this thesis, we select a base work [34] that already provides some of these features and can
be improved to provide more controllability.

• RSQ2: How can the attributes of objects be expanded to allow controllability over multiple prop-
erties?
A: To augment the dataset, observations need to be made on the existing scenes to identify
potential objects and their attributes. This was achieved by observing recurring categories of
objects and the variations in the object’s colour, material or functionality. Once the objects are
identified and categorised, the colours that they have in every scene are also noted. Finally, the
scene graph of the dataset is augmented by creating a new attribute node with the given attribute
or colour and connecting it with the relevant object. This gives the user an increased range of
attributes for an object to choose from.

• RSQ3: How can the user provide specifications for all the controllable variables in the image?
A: This question is answered by developing the user interface of SceneUI. It provides an overview
of all the possible objects and relations and allows the user to select the objects, their properties
and the spatial relations between images. Table and List widgets are extensively used to pro-
vide various functionalities in this interface. Additionally, we enable the selection of a room as a
background in the image and provide the selection of a parameter and its value for the presence
of contextual objects in the scene. Thus, an overview is provided of all the controllable elements
that the user describes in the image.

• RSQ4: How can images be generated given a query with objects as predicate terms?
A: Generating an image based on the OR query requires the consideration of 3 scenarios. A
random key value between 0 to 2 is generated and based on this value, modifications are made to
the relation table and the list containing objects expected in the scene. The modification ensures
that either one or both objects are selected in the scene, given the key value. With this feature in
the interface, images can be generated based on a query specified.

• RSQ5: To what extent can the method be used for the two use cases?
A: To evaluate SceneUI and its suitability to generate images, we evaluate it in the context of the
two downstream tasks. The experiments for both use cases were designed based on detailed
consultation and planning to simulate two scenarios for which the generated images would be
used. In addition to showing how the images will be used for the use cases, we also discuss and
present the advantages of using SceneUI and its features to synthesise the images. Our experi-
ments show how SceneUI can create biased datasets by ensuring that the objects have a fixed
property or a certain colour. Spatial relations are also enforced to ensure a specific arrangement
of objects. Additionally, we generate images based on a query where the objects also have spe-
cific attributes (dining chairs and tables) and the objects are placed in a room as a background.
In this way, a diverse range of images is synthesised.
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6.1.2. Discussion and Comparison with Literature
A comparison of SceneUI with the relevant works in indoor scene generation reviewed in Table 2.1
shows that it satisfies the requirements stated in the table. As SceneUI is based on [34], it alreadymeets
certain requirements of controllability. Through this thesis, SceneUI fills in all its remaining requirements
of controllability such as Query, Colour, and to an extent Background. Thus, SceneUI meets our initial
objectives of controllable image generation, making it valuable for our use cases. However, one aspect
of controllability missing in SceneUI is the ability to manipulate the scale of objects. SceneSeer [8] and
WordsEye [11] enable the user to specify the size of an object and a corresponding large or small
object is generated. Selecting the size of objects could be useful for the use cases by generating
biased datasets where objects have a certain size or by creating ground truth images where objects
have a given size. Another aspect where SceneUI falls short in comparison with SceneGen [27] from
the Table 2.1 is the dataset of 3Dmodels used by SceneGen. SceneGen uses theMatterport3D dataset
[6] which contains more realistic models in texture, colour and shape when compared to the models
from the SceneSynth dataset used in SceneUI. There is a strong preference for having realistic images
as this data would be easier to use for complex deep learning models which are pre-trained on real-
world data. For our use cases, the models for explainability or proxy models would be able to learn
the features well of such realistic data, yielding better results. In contrast to SceneUI, BlenderProc
generates numerous indoor images using realistic objects from the SUNCG dataset [49] and gives the
user the possibility to generate images with various masks. However, BlenderProc offers a basic level
of controllability in synthesising these images as it only allows the user to select the objects, image
lighting and the size of images, thereby not being suitable for the use cases. This further underlines
the importance of SceneUI’s controllability features that generate diverse images to meet the objectives
of our use cases.

6.2. Limitations
There are some limitations within SceneUI that we would like to address. Addressing these limitations
gives the reader some directions where the system can be improved and considerations that would
need to be made when developing similar systems. The limitations are described as follows :

• As the image generating procedure is based on a prior work [34], some of its limitations are
inherited with SceneUI, one of which being rudimentary pairwise relations described in subsec-
tion 3.2.1. The seven pairwise relations can be expanded by modelling additional relationships
such as adjacent or inside. Another limitation from the prior work is the lack of symmetry between
objects placed. For example, if two lamps are specified to be placed on either side of a bed, the
lamps may not be rendered symmetrically beside the bed [34]. This lack of symmetry results in
the creation of less plausible or realistic scenes.

• An important feature that SceneUI does not have is the ability to generate images at scale. The
images generated for the experiments require manually creating relations and attributes for ob-
jects via the interface and extracting screenshots of the scene. For the next set of images, the
attributes, relations and objects expected in the scene would have to be adjusted. This is man-
ageable and simple to do for a certain number of images but is not feasible to synthesise hundreds
or thousands of images within a short duration of time.

• Another limitation related to the scalability of the method is the duration taken to generate images.
SceneUI takes up to ≈6 seconds to load all the scene graphs and 3D models. If the dataset is
augmented with new scene graphs and additional 3D objects, it could take more time to load.
Additionally, based on the number and type of objects and relations specified in the input the
renderer takes additional time to render the objects. A simple specification is quicker to load
whereas a more complicated input with a room may take longer to generate and render due to
object collisions and optimisations. This latency can be improved by increasing the efficiency of
loading the dataset and the rendering of objects in the scene

• The interface allows the user to select a background as a room in the scene and the resultant
image extracted will have the background. The interface enables the user to only select whether
objects should or should not be placed within the room, and not the type of room to be selected
in terms of the colour, size or design of the room. Selecting the 3D object that denotes the type
of room would extend our current state of controllability.
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• Another drawback of SceneUI is that when the context parameter to include contextual objects
in the scene is set to Yes, the algorithm expects existing relation nodes corresponding to objects
in the scene graph. In other words, the input should have specified the spatial relations between
objects and this is considered a reference to introduce contextual objects. A failure case is reg-
istered if the user specifies only the objects to be initialised with random placement.

• The graph matching process described in section 3.5 finds the most similar scene graph from the
dataset to the input graph and places the matched objects in positions specified in the dataset,
resulting in a significant reliance on the dataset scene graphs. A complicated input specification
could lead to an input scene graph with several unaligned nodes. This in turn could lead to random
placement of objects with possibly an implausible layout due to a missing reference scene graph
to place the given combination of objects. An increase in controllability through SceneUI can
lead to intricate scene graphs synthesised as objects have more attributes to choose from. Thus,
there is a tradeoff between having high controllability and plausible scenes as the most similar
graph may have very few aligned nodes.

6.3. Future Work
The limitations discussed in section 6.2 provide gaps in the existing work which could be improved on
to make the system better. The main limitation of SceneUI is its scalability which could not be improved
due to the time constraints of the thesis. Thus, the following future research directions are envisioned
and recommended to improve SceneUI’s scalability in generating numerous images.

• Based on the first limitation discussed, scalability of generating images is a key issue to be re-
solved. This could be approached by providing an input file with all the instances of objects, their
attributes, spatial relations and the number of images to be generated for the scene. Once the
input scene graph from the specifications is created, the required images are extracted by varying
the camera angle of the scene. This automation would require an in-depth understanding of the
renderer’s camera function, to vary the camera angle of the scene and save the image without any
interaction. This direction would however require the user to forego the user interface designed
for SceneUI.

• An alternate approach to generating numerous images is to crowdsource the generated images.
This would require SceneUI to be deployed as an application on a crowdsourcing platform where
the requester seeks respondents to describe a scene using the interface based on a particular
setting such as a study room or a dining room. The user would then specify the objects, relations
and object properties that they expect and visualise to be present in the setting of the room. In this
way, several respondents can generate diverse images for a given room based on a description
provided. This could be further extended by giving additional conditions that the scene should
have, like the colour of a table or the number of chairs expected. In this way, the interface of
SceneUI is also used to generate images.

• A future direction that supports both the scalability of SceneUI as well as its controllability would
be to expand and include attributes for more objects than the existing ones augmented in the
thesis. This would give more properties to choose from when selecting an object. This would
involve a collaborative approach where scenes from the dataset are presented as a survey, high-
lighted with the objects to expand on. The objects could be identified by studying the scenes and
determining recurring objects that show variations. The attributes of these objects would then be
determined in the survey by collecting responses about the object’s shape, functionality, material
or colour, thereby increasing the controllable features. Furthermore, the possibility of merging
other datasets based on indoor 3D objects with SceneSynth should also be explored to increase
the variety and diversity of existing objects and scenes in the dataset.

• Another line of future work hinted in section 3.8 is to expand the query specification component
of SceneUI. This would include more predicates for the OR query where atleast 2 objects can be
specified and considering more scenarios with the combination of objects. Furthermore, complex
queries with a combination of objects based on Conjunctive Normal Form should also be enabled,
which would require a logic based solution to resolve the query and objects to be synthesised.



A
Appendix - Dataset Training Images

The images in the Appendix sections A.1, A.2, A.3 and A.4 correspond to the Bias Detection experiment
and images in sections A.5, A.6, A.7, and A.8 are used in the Query Generated Images experiment.

A.1. Biased Dining Room Images

Figure A.1: Biased images from the Dining Room class.
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A.2. Biased Study Room Images

Figure A.2: Biased images from the Study Room class.
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A.3. Biased Living Room Images

Figure A.3: Biased images from the Living Room class.
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A.4. Natural Training Images

Figure A.4: Unbiased images of all classes also used for training.
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A.5. Images with only Chair

Figure A.5: Images containing a chair from the OR class.
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A.6. Images with only Table

Figure A.6: Images containing a table from the OR class.
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A.7. Images with Chair and Table

Figure A.7: Images containing a chair and table from the OR class.
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A.8. Images without Chair and Table

Figure A.8: Images from the Not class which do not contain a chair or a table.



Bibliography
[1] Agathe Balayn et al. “How can Explainability Methods be Used to Support Bug Identification in

Computer Vision Models?” In: CHI Conference on Human Factors in Computing Systems. 2022,
pp. 1–16.

[2] Agathe Balayn et al. “What do you mean? Interpreting image classification with crowdsourced
concept extraction and analysis”. In: Proceedings of the Web Conference 2021. 2021, pp. 1937–
1948.

[3] Steve Borkman et al. “Unity perception: Generate synthetic data for computer vision”. In: arXiv
preprint arXiv:2107.04259 (2021).

[4] Joao Borrego et al. “Applying domain randomization to synthetic data for object category detec-
tion”. In: arXiv preprint arXiv:1807.09834 (2018).

[5] Angel Chang, Manolis Savva, and Christopher D Manning. “Learning spatial knowledge for text
to 3D scene generation”. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). 2014, pp. 2028–2038.

[6] Angel Chang et al. “Matterport3D: Learning from RGB-D Data in Indoor Environments”. In: Inter-
national Conference on 3D Vision (3DV) (2017).

[7] Angel Chang et al. “Text to 3d scene generation with rich lexical grounding”. In: arXiv preprint
arXiv:1505.06289 (2015).

[8] Angel X Chang et al. “SceneSeer: 3D scene design with natural language”. In: arXiv preprint
arXiv:1703.00050 (2017).

[9] Xiaojun Chang et al. “A Comprehensive Survey of Scene Graphs: Generation and Application”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022), pp. 1–1. DOI: 10.
1109/tpami.2021.3137605. URL: https://doi.org/10.1109%2Ftpami.2021.
3137605.

[10] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Founda-
tion. Stichting Blender Foundation, Amsterdam, 2018. URL: http://www.blender.org.

[11] Bob Coyne and Richard Sproat. “WordsEye: An automatic text-to-scene conversion system”. In:
Proceedings of the 28th annual conference on Computer graphics and interactive techniques.
2001, pp. 487–496.

[12] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[13] Maximilian Denninger et al. BlenderProc. 2019. DOI: 10.48550/ARXIV.1911.01911. URL:
https://arxiv.org/abs/1911.01911.

[14] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable machine learn-
ing”. In: arXiv preprint arXiv:1702.08608 (2017).

[15] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8 (2006),
pp. 861–874.

[16] Matthew Fisher et al. “Example-based synthesis of 3D object arrangements”. In: ACM Transac-
tions on Graphics (TOG) 31.6 (2012), pp. 1–11.

[17] Qiang Fu et al. “Adaptive synthesis of indoor scenes via activity-associated object relation graphs”.
In: ACM Transactions on Graphics (TOG) 36.6 (2017), pp. 1–13.

[18] Georgios Georgakis et al. Synthesizing Training Data for Object Detection in Indoor Scenes.
2017. DOI: 10.48550/ARXIV.1702.07836. URL: https://arxiv.org/abs/1702.
07836.

57

https://doi.org/10.1109/tpami.2021.3137605
https://doi.org/10.1109/tpami.2021.3137605
https://doi.org/10.1109%2Ftpami.2021.3137605
https://doi.org/10.1109%2Ftpami.2021.3137605
http://www.blender.org
https://doi.org/10.48550/ARXIV.1911.01911
https://arxiv.org/abs/1911.01911
https://doi.org/10.48550/ARXIV.1702.07836
https://arxiv.org/abs/1702.07836
https://arxiv.org/abs/1702.07836


58 Bibliography

[19] IanGoodfellow, Yoshua Bengio, and AaronCourville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[20] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing
systems 27 (2014).

[21] Yash Goyal et al. “Counterfactual visual explanations”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 2376–2384.

[22] Philipp Hacker and Jan-Hendrik Passoth. “Varieties of AI Explanations Under the Law. From the
GDPR to the AIA, and Beyond”. In: International Workshop on Extending Explainable AI Beyond
Deep Models and Classifiers. Springer. 2022, pp. 343–373.

[23] Stefan Hinterstoisser et al. “An annotation saved is an annotation earned: Using fully synthetic
training for object detection”. In: Proceedings of the IEEE/CVF international conference on com-
puter vision workshops. 2019, pp. 0–0.

[24] Sara Hooker et al. “A benchmark for interpretability methods in deep neural networks”. In: Ad-
vances in neural information processing systems 32 (2019).

[25] Daniel Kang, Peter Bailis, and Matei Zaharia. “Blazeit: Optimizing declarative aggregation and
limit queries for neural network-based video analytics”. In: arXiv preprint arXiv:1805.01046 (2018).

[26] Daniel Kang et al. “Noscope: optimizing neural network queries over video at scale”. In: arXiv
preprint arXiv:1703.02529 (2017).

[27] Mohammad Keshavarzi et al. SceneGen: Generative Contextual Scene Augmentation using
Scene Graph Priors. 2020. DOI: 10.48550/ARXIV.2009.12395. URL: https://arxiv.
org/abs/2009.12395.

[28] Been Kim et al. “Interpretability beyond feature attribution: Quantitative testing with concept acti-
vation vectors (tcav)”. In: International conference on machine learning. PMLR. 2018, pp. 2668–
2677.

[29] Ranjay Krishna et al. “Visual Genome: Connecting Language and Vision Using Crowdsourced
Dense Image Annotations”. In: 2016. URL: https://arxiv.org/abs/1602.07332.

[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553 (2015),
pp. 436–444.

[31] Bowen Li et al. “Controllable text-to-image generation”. In: Advances in Neural Information Pro-
cessing Systems 32 (2019).

[32] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2014. DOI: 10 . 48550 /
ARXIV.1405.0312. URL: https://arxiv.org/abs/1405.0312.

[33] Yao Lu et al. “Accelerating machine learning inference with probabilistic predicates”. In: Proceed-
ings of the 2018 International Conference on Management of Data. 2018, pp. 1493–1508.

[34] Rui Ma et al. “Language-Driven Synthesis of 3D Scenes from Scene Databases”. In: ACM Trans.
Graph. 37.6 (Dec. 2018). ISSN: 0730-0301. DOI: 10.1145/3272127.3275035. URL: https:
//doi.org/10.1145/3272127.3275035.

[35] Christopher D Manning et al. “The Stanford CoreNLP natural language processing toolkit”. In:
Proceedings of 52nd annual meeting of the association for computational linguistics: system
demonstrations. 2014, pp. 55–60.

[36] Ojas Mehta et al. “Machine Learning in Medical Imaging–Clinical Applications and Challenges in
Computer Vision”. In: Artificial Intelligence in Medicine (2022), pp. 79–99.

[37] Chaitanya Mitash, Kostas E Bekris, and Abdeslam Boularias. “A self-supervised learning system
for object detection using physics simulation and multi-view pose estimation”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 545–551.

[38] David MW Powers. “Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness and correlation”. In: arXiv preprint arXiv:2010.16061 (2020).

[39] Aayush Prakash et al. “Structured domain randomization: Bridging the reality gap by context-
aware synthetic data”. In: 2019 International Conference on Robotics and Automation (ICRA).
IEEE. 2019, pp. 7249–7255.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.2009.12395
https://arxiv.org/abs/2009.12395
https://arxiv.org/abs/2009.12395
https://arxiv.org/abs/1602.07332
https://doi.org/10.48550/ARXIV.1405.0312
https://doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.1145/3272127.3275035
https://doi.org/10.1145/3272127.3275035
https://doi.org/10.1145/3272127.3275035


Bibliography 59

[40] QT | Cross-platform Software Development for Embedded & Desktop. https://www.qt.io/.
Accessed: 2022-07-08.

[41] Aditya Ramesh et al. “Zero-shot text-to-image generation”. In: International Conference on Ma-
chine Learning. PMLR. 2021, pp. 8821–8831.

[42] Chitwan Saharia et al. “Photorealistic Text-to-Image Diffusion Models with Deep Language Un-
derstanding”. In: arXiv preprint arXiv:2205.11487 (2022).

[43] Axel Sauer, Katja Schwarz, and Andreas Geiger. “Stylegan-xl: Scaling stylegan to large diverse
datasets”. In: arXiv preprint arXiv:2202.00273 1 (2022).

[44] Lee M. Seversky and Lijun Yin. “Real-Time Automatic 3D Scene Generation from Natural Lan-
guage Voice and Text Descriptions”. In: Proceedings of the 14th ACM International Conference
on Multimedia. MM ’06. Santa Barbara, CA, USA: Association for Computing Machinery, 2006,
pp. 61–64. ISBN: 1595934472. DOI: 10.1145/1180639.1180660. URL: https://doi.
org/10.1145/1180639.1180660.

[45] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolutional networks:
Visualising image classification models and saliency maps”. In: arXiv preprint arXiv:1312.6034
(2013).

[46] Amitojdeep Singh, Sourya Sengupta, and Vasudevan Lakshminarayanan. “Explainable deep
learning models in medical image analysis”. In: Journal of Imaging 6.6 (2020), p. 52.

[47] Shashi Pal Singh et al. “Machine translation using deep learning: An overview”. In: 2017 Interna-
tional Conference on Computer, Communications and Electronics (Comptelix). 2017, pp. 162–
167. DOI: 10.1109/COMPTELIX.2017.8003957.

[48] Daniel Smilkov et al. “Smoothgrad: removing noise by adding noise”. In: arXiv preprint arXiv:1706.03825
(2017).

[49] Shuran Song et al. Semantic Scene Completion from a Single Depth Image. 2016. DOI: 10.
48550/ARXIV.1611.08974. URL: https://arxiv.org/abs/1611.08974.

[50] Kai Ming Ting. “Confusion Matrix”. In: Encyclopedia of Machine Learning. Ed. by Claude Sammut
and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 209–209. ISBN: 978-0-387-30164-8.
DOI: 10.1007/978-0-387-30164-8_157. URL: https://doi.org/10.1007/978-0-
387-30164-8_157.

[51] Josh Tobin et al. “Domain randomization for transferring deep neural networks from simulation
to the real world”. In: 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE. 2017, pp. 23–30.

[52] Jonathan Tremblay et al. “Training Deep Networks With Synthetic Data: Bridging the Reality Gap
by Domain Randomization”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. June 2018.

[53] Apostolia Tsirikoglou, Gabriel Eilertsen, and Jonas Unger. “A survey of image synthesis methods
for visual machine learning”. In:Computer Graphics Forum. Vol. 39. 6. Wiley Online Library. 2020,
pp. 426–451.

[54] Unity. Unity Technologies. 2022.
[55] Gul Varol et al. “Learning from Synthetic Humans”. In: 2017 IEEEConference on Computer Vision

and Pattern Recognition (CVPR). IEEE, July 2017. DOI: 10.1109/cvpr.2017.492. URL:
https://doi.org/10.1109%2Fcvpr.2017.492.

[56] Mason Woo et al. OpenGL programming guide: the official guide to learning OpenGL, version
1.2. Addison-Wesley Longman Publishing Co., Inc., 1999.

[57] Tao Xu et al. “Attngan: Fine-grained text to image generation with attentional generative adversar-
ial networks”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 1316–1324.

[58] Ke Yang, Joshua R Loftus, and Julia Stoyanovich. “Causal intersectionality for fair ranking”. In:
arXiv preprint arXiv:2006.08688 (2020).

https://www.qt.io/
https://doi.org/10.1145/1180639.1180660
https://doi.org/10.1145/1180639.1180660
https://doi.org/10.1145/1180639.1180660
https://doi.org/10.1109/COMPTELIX.2017.8003957
https://doi.org/10.48550/ARXIV.1611.08974
https://doi.org/10.48550/ARXIV.1611.08974
https://arxiv.org/abs/1611.08974
https://doi.org/10.1007/978-0-387-30164-8_157
https://doi.org/10.1007/978-0-387-30164-8_157
https://doi.org/10.1007/978-0-387-30164-8_157
https://doi.org/10.1109/cvpr.2017.492
https://doi.org/10.1109%2Fcvpr.2017.492


60 Bibliography

[59] Mengjiao Yang and Been Kim. “Benchmarking attribution methods with relative feature impor-
tance”. In: arXiv preprint arXiv:1907.09701 (2019).

[60] Song-Hai Zhang et al. “A survey of 3D indoor scene synthesis”. In: Journal of Computer Science
and Technology 34.3 (2019), pp. 594–608.


	Introduction
	Thesis Goal
	Research Questions
	Thesis Challenges
	Contributions
	Thesis Outline

	Background
	Machine Learning For Image Generation
	Computer Graphics For Image Generation
	Generating Synthetic Datasets
	Dataset Generating Software
	Domain Randomisation

	Indoor Scene Synthesis
	Text to 3D Scene
	Semantic Scene Graphs
	Including Contextual Objects

	Use Cases
	Generating Images for Interpretable Machine Learning
	Generating Images from Queries as Ground Truth

	Literature Analysis & Research Gaps

	SceneUI
	System Overview
	Dataset
	Semantic Scene Graphs

	Expanding Attributes
	Method to Expand Attributes
	Expanded Attributes and Objects

	Graph Synthesis
	Graph Matching
	Graph Alignment
	Subgraph Augmentation

	Scene Creation
	Generating Subgraph Scene Nodes
	Rendering Augmented Nodes

	User Interface
	Tables
	Lists
	Parameters
	Comparison with Original Work

	Query Generated Scene

	Experiments
	Bias Detection
	Types of Biases
	Generating Causal Graphs
	Generating Images
	Fine-tuning the Neural Network

	Query Generated Images
	Generating Images
	Image Classification


	Results
	Bias Detection
	Query Generated Images

	Discussions & Conclusions
	Conclusions
	Summary
	Discussion and Comparison with Literature

	Limitations
	Future Work

	Appendix - Dataset Training Images
	Biased Dining Room Images
	Biased Study Room Images
	Biased Living Room Images
	Natural Training Images
	Images with only Chair
	Images with only Table
	Images with Chair and Table
	Images without Chair and Table


