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Summary
Neural information retrieval (IR) has transitioned from using classical human-defined rel-
evance rules to leveraging complex neural models for retrieval tasks. While benefiting
from advances in machine learning (ML), neural IR also inherits several drawbacks, in-
cluding the opacity of the model’s decision-making process. This thesis aims to tackle this
issue and enhance the transparency of neural IR models. Particularly, our work focuses on
understanding which input features neural ranking models rely on to generate a specific
ranking list. Our work draws inspiration from interpretable ML. However, we also recog-
nize the unique aspects of IR tasks, which guide our development of methods specifically
designed to interpret IR models.

We begin with interpreting black-box text ranking models. Without access to the in-
ternal parameters, we employ simple surrogates to approximate the complex black-box
model’s prediction. Ideally, the surrogate model can offer a high-fidelity explanation if
it approximates the complex model’s output closely. Therefore, we come up with opti-
mization techniques to directly maximize the approximation of surrogate models, so that
they can closely simulate the complex model and generate similar (identical in an ideal
scenario) rank lists.

Secondly, building intrinsically explainable models has been highly advocated over in-
terpreting trained models due to several advantages. Following this approach, we explore
the applicability of popular outcomes from interpretable ML to IR. Our findings indicate
that we can leverage interpretable ML to minimize feature redundancy, making predic-
tions in IR more transparent by utilizing a limited number of features.

However, despite their seemly great performance, we start to question if the previ-
ously explored interpretable models are really faithful. Specifically, we study the selector-
predictor paradigm and demonstrate that the predictor incorporates additional informa-
tion when making predictions, even though it appears that only the selected features are
used as input. That is, the information about unselected features or the labels are leaked to
the predictor, making the explanations unfaithful, because in such scenario, the prediction
does not (entirely) come from the explanation. As a result, we propose formal definitions
of leakage and introduce our faithful approach with theoretical guarantees. Initially de-
veloped for interpretable ML, our approach is also applicable to IR.

Therefore, this thesis contributes to interpretable neural IR, and ultimately interpretable
ML. We develop our approaches on public benchmark datasets, and all of our source code
is publicly available. With these two domains becoming increasingly intertwined, we hope
our findings and insights in this thesis help construct transparent and effective systems
for both two domains.
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Samenvatting
Neurale informatie retrieval (IR) heeft de overgang gemaakt van het gebruik van klassieke,
door mensen gedefinieerde relevantieregels naar het gebruik van complexe neurale mo-
dellen voor retrieval taken. Hoewel neurale IR profiteert van de vooruitgang in machine
learning (ML), heeft het ook een aantal nadelen, waaronder de ondoorzichtigheid van het
besluitvormingsproces van het model. Dit proefschrift heeft als doel dit probleem aan te
pakken en de transparantie van neurale IR-modellen te verbeteren. In het bijzonder richt
ons werk zich op het begrijpen op welke inputkenmerken neurale rangschikkingsmodel-
len zich baseren om een specifieke ranglijst te genereren. Ons werk is geïnspireerd op
interpreteerbare ML. We erkennen echter ook de unieke aspecten van IR-taken, waardoor
we methoden ontwikkelen die specifiek zijn ontworpen om IR-modellen te interpreteren.

We beginnen met het interpreteren van black-box tekstrangschikkingsmodellen. Zon-
der toegang tot de interne parameters gebruiken we eenvoudige surrogaten om de voor-
spelling van het complexe black-box model te benaderen. Idealiter kan het surrogaatmo-
del een waarheidsgetrouwe verklaring bieden als het de uitvoer van het complexe model
nauwkeurig benadert. Daarom komen we met optimalisatietechnieken om de benadering
van surrogaatmodellen direct te maximaliseren, zodat ze het complexe model nauwkeurig
kunnen simuleren en vergelijkbare (identieke in een ideaal scenario) ranglijsten kunnen
genereren.

Ten tweede wordt het bouwen van intrinsiek verklaarbare modellen sterk bepleit bo-
ven het interpreteren van getrainde modellen vanwege verschillende voordelen. Volgens
deze benadering onderzoeken we de toepasbaarheid van populaire uitkomsten van inter-
preteerbare ML op IR Onze bevindingen geven aan dat we interpretable ML kunnen ge-
bruiken om feature redundantie te minimaliseren, waardoor voorspellingen in IR transpa-
ranter worden door gebruik te maken van een beperkt aantal features.

Ondanks hun ogenschijnlijk goede prestaties beginnenwe ons echter af te vragen of de
eerder onderzochte interpreteerbare modellen wel echt getrouw zijn. We bestuderen het
selector-predictor paradigma en tonen aan dat de predictor extra informatie meeneemt bij
het doen van voorspellingen, ook al lijkt het alsof alleen de geselecteerde kenmerken als
invoer worden gebruikt. Dat wil zeggen, de informatie over niet-geselecteerde kenmerken
of de labels lekken op de een of andere manier naar de voorspeller, waardoor de uitleg
ontrouw wordt, omdat in zo’n scenario de voorspelling niet (volledig) uit de uitleg komt.
Daarom stellen we formele definities van lekken voor en introduceren we onze getrouwe
benadering met theoretische garanties. Onze benadering is in eerste instantie ontwikkeld
voor interpreteerbare ML, maar is ook toepasbaar op IR.

Daarom draagt dit proefschrift bij aan interpreteerbare neurale IR, en uiteindelijk aan
interpreteerbare ML. We ontwikkelen onze benaderingen op openbare benchmark data-
sets en al onze broncode is openbaar beschikbaar. Nu deze twee domeinen steeds meer
met elkaar verweven raken, hopenwe dat onze bevindingen en inzichten in dit proefschrift
helpen bij het bouwen van transparante en effectieve systemen voor beide domeinen.
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1
Introduction

I nformation retrieval (IR) describes the process of finding relevant information that sat-
isfies the user’s search need from a usually large collection of corpus. It is one of the

most user-centric systems ranging from general web search, to domain-specific and enter-
prise search etc. Take web search as an example: the user encodes her information need
into a query–a usually short textual term that can be under-specified or ambiguous. Then,
the search engine takes the query and applies some ranking model to compute the rele-
vance scale of each item (e.g., document) within the collection to the query. Eventually,
a list of ranked top-k relevant documents will be returned to the user, who determines
the ground-truth relevance of a document. A desirable ranking model should have a high
coherence with the user in terms of relevance judgment. Therefore, understanding the
model’s decision-making logic is essential to ensure it serves users’ search needs. In the
era of generative AI, where information retrieval (IR) serves as the initial step for numer-
ous knowledge-intensive tasks [98], the need for transparent and reliable IR systems has
become increasingly urgent.

1.1 Complex Ranking Models
Classical ranking models, such as BM25 [4] measure the relevance of a document to the
issued query by the frequency of the query terms appearing in the document (i.e., term
frequency). This type of static model is transparent and easily understandable for system
developers and users; and has been well applied until the recent advances in neural models
and natural language processing (NLP) [31, 126]. Modern ranking models employ neural
components, such as transformer architecture [126] and BERT pre-training to learn the
relevance judgments implicitly from the user-annotated labels and have shown notice-
able performance boosts. Popular options include the cross-encoder design, where the
query and document are combined into a single input, and the model predicts the rele-
vance score as the output. Another approach is the dual-encoder design, which uses
two separate models to encode the query and document individually, with the relevance
score determined by measuring the similarity (e.g., semantic similarity) between the two
representations. However, these learned neural ranking models have also inherited the
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Figure 1.1: The five adversarial tokens added to the beginning of the highest-ranked document for 40 queries
from ClueWeb09, selected by local ranking attack method to demote the document. Specific tokens frequently
recur across queries. The frequency is denoted by the color.

disadvantage of opaqueness, a well-recognized and extensively studied issue in general
machine learning (ML) [145].

With the rankingmodel being a black box, it is unclear how the decision of a single item
or rank has been made. Data bias, such as gender and ethnicity bias, might potentially be
encoded in the model and harm the reliability of the system. Short-cuts or hidden patterns
might be the essential factor for model decision, without being noticed or aligned to the
right reason [62]. Furthermore, neural models are known to be fragile towards impercep-
tible perturbations [130]. In previous work [133], we show that a small change (less than
five words) made in a target document can promote or demote the rank of the document
by a large margin. For instance, Figure 1.1 presents frequent words that can be added to
shift the document rank by a BERT-based cross-encoder from the bottom-10 to the top-10
position within a 100-depth list in the ClueWeb09 dataset [25]. This highlights the brittle
yet intriguing nature of complex neural models. Accordingly, interpreting model deci-
sions in various applications, including language and computer vision (CV), have proven
useful in identifying adversarial snippets, thereby enhancing the system’s reliability and
robustness. [40, 49, 74, 91].
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1.2 Interpretability in Machine Learning
Before diving into interpretability in information retrieval (IR), we begin with a brief
overview of interpretability in machine learning (ML), which mainly solves classification
tasks for images and texts. This is crucial as advancements in interpretable ML have pro-
foundly shaped the landscape of interpretable IR.

Interpretable ML aims to improve the interpretability or explainability¹ of complex ML
models. Current efforts generally fall into twomain categories: (1) Developing methods to
interpret a complex trained model, resulting in what is termed as an explanation. These
methods are typically referred to as post-hoc methods; (2) Designing models that are in-
herently interpretable to humans rather than interpreting a black-box model. These mod-
els provide explanations alongside predictions, driven by challenges in evaluating post-
hoc methods and additional computation costs (usually including many runs of forward
calls) for generating explanations. Such models are often referred to as self-explainable,
intrinsically interpretable, or interpretable-by-design models, which are used inter-
changeably in this thesis.

Post-hoc methods typically interpret a particular model prediction by looking at the
input instance. The resulting explanations can be (causal) rules (if X, then Y) [41, 107],
or more commonly, attribute scores (or heatmaps) corresponding to the contribution of
individual input features (e.g., pixels or tokens). Different methods compute the scores
differently, such as using gradient-related scores (like integrated-gradient [105]) when
model parameters are accessible, or employing permutation techniques (like Shapley val-
ues [82]) or simple surrogate approximation (like LIME [106]) otherwise.

On the other hand, current self-explainable models primarily focus on the explicit use
of input features while treating the neural architectures as a black box. Specifically, the
model identifies (either specified or learned) the important features and uses only those for
prediction. These used features are considered faithful explanations [9, 24, 147] as they
are directly derived from the model. Meanwhile. when a large input is reduced to a small
set of crucial features², it becomes easier to discern which features are essential and which
can be discarded. Unlike post-hoc heatmaps with continuous importance scores, this type
of explanation can be seen as concrete binary masks. In principle, hard masks should offer
clearer insights than heatmaps because themasked-out features are entirely excluded from
the model’s decision-making process, leaving a handful of features for user interpretation.
However, the more features that are masked out—resulting in higher feature sparsity—
the more likely the model’s performance may suffer. Conversely, better explanations
are achieved if the model maintains performance with a smaller set of features. There-
fore, a model’s interpretability degree is often evaluated using the performance-sparsity
curve. Popular self-explainable models are constructed on the selector-predictor frame-
work [24, 71, 141], where the selector conducts feature selection and the predictor per-
forms downstream prediction with selected features. Usually, both modules are learned
simultaneously. We point to the survey [45] for more detailed discussion.

¹The terms explainable and interpretable are now used interchangeably in current literature.
²Note this differs from feature compression.
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1.3 Interpretability in Information Retrieval
Prior to the emergence of neural IR, two types of ranking models were conventionally con-
sidered intrinsically transparent: the first type includes static retrieval models based
on classical human-defined relevance factors (e.g., term matching). Models with closed
form notations like BM25 [4] or RM3 [51] fall into this type; the second type comprises
models based on inherently interpretable architectures like decision trees³, Support Vec-
tor Machines (SVMs), etc., where the decision-making process or the contribution of fea-
tures leading to the decision is understandable by users (developers). In IR domains,
these two types of models are usually associated with particular tasks. For instance,
the retrieval models are often used in text ranking, namely ranking documents⁴ for a
given query. Whereas the learnable interpretable models are typically studied in popular
LETOR Learning-to-Rank (we denote as LTR) benchmarks [102]. This is a specific IR
task where the query-document pair is represented by a vector of pre-computed numeri-
cal statistics (e.g., term frequency, incoming URL frequency, etc.). Nowadays, both types of
models have been replaced by their complex neural counterparts for performance gains.
As previously mentioned, the opaque nature of these neural components and the auto-
matic learning process (using deep learning) create challenges in understanding which in-
put elements make it relevant. This need for enhanced interpretability parallels the recent
performance improvements seen with neural models in general machine learning (ML).
Therefore in this thesis, we tackle the issues related to neural IR, or models with neural
components. We categorize our contributions in a manner similar to those in interpretable
ML, with each contribution focused on a specific IR task.

1.3.1 Post-hoc Interpretations
When a search query is submitted to a ranking model, the model presents a list of items
(documents) ranked by their assigned relevance scores to the user. This multi-decision
aggregation process contrasts with single-prediction tasks like classification. As a result,
the scope of interpretation tasks expands into the following three folds:

• pointwise – why does the model predict 𝑑𝑜𝑐𝑖 as relevant or not relevant?
• pairwise – why does the model rank 𝑑𝑜𝑐𝑖 higher than 𝑑𝑜𝑐𝑗 (𝑑𝑜𝑐𝑖 ≻ 𝑑𝑜𝑐𝑗 )?
• listwise – why does the model rank 𝑑𝑜𝑐1 ≻ 𝑑𝑜𝑐2⋯ ≻ 𝑑𝑜𝑐𝑛?
Themajority of works (particularly those adapted from interpretableML) [55, 115] can

answer the first two questions, while the last one concerns only the ranking scenario and
thus requires additional designs than merely applying existing methods (e.g., LIME [106])
from interpretable ML.

Regardless of the pointwise, pairwise or listwise ranking decision, it can be explained
from multiple aspects. That is, the resulting explanations are of different formats. For
instance, it can be tokens (features if not for textual input) in the query or document
highlighted by attribute scores. Those scores indicate the significance of each individual
token to the ranking model for classifying 𝑑𝑜𝑐𝑖 as (ir)relevant, or 𝑑𝑜𝑐𝑖 more relevant than

³Note that large ensemble or deep trees are considered hard to interpret.
⁴Broadly, this can include images, audio, videos, etc., but we focus solely on document retrieval in this thesis.
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ery: can you do yoga from a chair
Rank Score Document Text

ery: can you do yoga from a chair
Rank Score Document Text

1
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9.37

9.34

10 Yoga Poses You Can Do in a Chair | Chair pose yoga, Chair yoga, Yoga poses ...

Chair Hip Opening And Strength Flow Yoga | Yoga Sequences, Benefits ...

Figure 1.2: Post-hoc explanation: attribute scores. The dark orange color highlights the important words in both
query and document for classifying the relevance of the document.
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10 Yoga Poses You Can Do in a Chair | Chair pose yoga, Chair yoga, Yoga poses ...

Chair Hip Opening And Strength Flow Yoga | Yoga Sequences, Benefits ...

Chair Seated Twists Yoga | Yoga Sequences, Benefits, Variations, and Sanskrit ... 

5 Best Yoga Ball Chair for Homes and Offices (2021 Buying Guide) - Learn ... 

Chair Yoga for Seniors: 8 Chair Yoga Poses Seniors Can Do Easily At Home ...

+ {poses, guide, home, how, hip, sequence, learn}

Figure 1.3: Post-hoc explanation: quey expansion. The expansion terms (green) are chosen such that a simple
term-based ranker best approximates the rank list produced by a black-box model.

𝑑𝑜𝑐𝑗 . Figure 1.2 showcases explaining the model prediction on one query-document pair
with attribute scores. Token highlights can indeed offer some insights, but it is restricted
from explaining listwise decisions. Moreover, previous works [46] show that token high-
lights seem ineffective in improving user understanding or even counter-intuitive, simply
because they only answer which tokens make the document relevant, but not what are the
criteria for relevance judgment. Another type of explanation is generated natural sen-
tences, appreciated for their straightforward and understandable nature [144]. It requires
human-crafted explanations to train a model for generating terms or sentences for a given
rank list. The quality of the explanation highly relies on the model capability and training
explanation datasets. In addition, generalizing to other ranking tasks with shifted domains
can be problematic. Furthermore, the generated explanations are not guaranteed to align
with the model prediction, and it is hard to verify because the model’s reasoning may not
always align with the user’s either. This is particularly the case when the search queries
are ambiguous and the retrieved documents from a large corpus can contain any or all of
the meanings of a query. Therefore, to understand how a rankingmodel generates a partic-
ular ranking decision (from pointwise to listwise), it is important to first identify how the
model understands the query. Namely, explaining ranking results is posed as query inter-
pretation. Towards this, existing works [80, 116] tend to expand the short query terms by
additional words. This technique is known as query expansion in the IR domain, where
a model (e.g., RM3) applies simple heuristics to obtain a set of words to enrich the query,
as indicated in Figure 1.3, so that the ranking performance can be hopefully improved. In
return, the expanded query can serve as a more clarified explanation for the original query,
and obtaining such expansion remains challenging and thus is the major contribution to
query understanding. Note that this thesis does not cover all types of explanations, and
for more notions and clarifications we point to our survey [5].

One of the major difficulties for post-hoc explanations is evaluation. As mentioned
before, the discrepancy between the human and the model makes the manually annotated
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explanations untruthful. In most cases, ground-truth datasets are unavailable. Instead, a
logical hypothesis is that if the explanation is indeed the complete and necessary reason
for the model’s prediction, it should be able to produce the same results as the model. Con-
sequently, a widely used evaluation metric measures how well the explanations can repli-
cate the model’s results. This so-called fidelity measure calculates the similarity between
the predictions from the model and those from the explanation. For ranking outputs, the
correlation factor is typically used as a similarity metric.

Limitations of current literature
Most current explanation methods in IR are merely borrowed from interpretable ML,
which may not align well with the decision-aggregation output in IR. Consequently, the
resulting explanations may lack clarity in understandable relevance factors.

1.3.2 Interpretability by Design
It is appealing to have an intrinsically interpretable model without much compromise in
performance, in comparison to post-hoc interpretations. As mentioned in Section 1.2, cur-
rent solutions mainly offer transparency in used features, rather than entirely transparent
decision paths. This idea is particularly practical for the Learning-to-Rank (LTR ) task be-
cause it works on structured datasets with numerical feature values, which can be kept or
eliminated by applying some concrete binary mask.

Such process of identifying important input features has been previously studied and
noted as feature selection in LTR. The goal is to select only features that matter—either
align with human judgments or result in the best performance. In the former scenario,
usually simple heuristics, such as Fisher or Laplace [47] scores, or if available, human
annotations are applied; while the latter tends to discover features that maximize the per-
formance of a particular model, and thus has become increasingly favored especially in
the modern neural era.

Specifically, feature selection is addressed as a learning problem, as iterating each com-
bination of features is NP-hard. It can be learned along with the model optimization via
regularization terms such as L1 or L2 regularization [123]. This is particularly effective for
LTR task because each input feature can be eliminated by tuning its weight to zero. How-
ever, most existing methods are constrained to classical ML models like decision trees or
regression models, and the application of feature selection on neural LTR models is still
unexplored.

Limitations of current literature
Most existing feature selection methods in IR are only designed for traditional LTR mod-
els, and thus do not satisfy the needs of neural LTR models.

1.4 Goals and Research Questions
In this thesis we lay out our contributions to interpretability for information retrieval
in post-hoc and intrinsic diagrams. We start by interpreting black-box neural models
for text ranking. The goal is to generate easy-to-understand (to developers) explanations
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that can cover all ranking-specific aspects ranging from pointwise to listwise. Parallelly,
we explore the possibilities of designing self-explainable ranking models. This is under-
explored in IR, however, a popular research topic in ML. Therefore, our goal is firstly
to investigate whether those research outcomes from ML are directly applicable to IR.
Following that, we take a close look at those widely applied methods in ML, and carefully
examine if their self-generated explanations are faithful to their predictions. We highlight
the significance of this investigation because faithfulness is one of the most critical and
fundamental requirements of explanations. Towards this, we aim at proposing our novel
self-explainable model that is proven to be faithful. Even though this solution falls in the
ML domain, we argue it is generally applicable to ranking targets as well. As a result, we
aim to achieve the aforementioned research goals to improve the interpretability of neural
IR and formulate the following research questions which will be studied in each chapter:

RQ1 How do we explain ranking-specific decisions from black-box text ranking models?

RQ2 Is interpretable ML applicable for building self-explainable ranking models?

RQ3 Are self-explainable models faithful and how to design theoretically guaranteed
faithful models?

1.5 Contribution
This thesis comprises threemain chapters, each focusing on one of the above research ques-
tions and altogether contributing to the field of interpretable IR and furthermore general
machine learning. In terms of interpretation paradigm, we focus on post-hoc explanations
in Chapter 2, and interpretable-by-design models in Chapter 3 and Chapter 4. In terms
of specific retrieval tasks, we target on text ranking in Chapter 2, and LTR benchmark in
Chapter 3. Note that Chapter 4 mainly solves tabular and image classification, but it is
easily applicable to the LTR benchmark, due to the same data format. We summarize the
main contributions of the thesis as follows:

4 In Chapter 2, we address RQ1 and interpret trained complex ranking models by
query expansion, which shows one or multiple understandings of the black-box
model to a single query. This shows the challenge in terms of manual evaluation
due to the machine-human discrepancy.

4 Based on query expansion, we employ multiple classical IR models (e.g., BM25) as
the surrogates to explain complex black-box rankers for RQ1. This helps explain
the ranking models by not just query specification, but also exact relevance factors.

4 We directly optimize the fidelity via extending preference coverage maximization
solved by linear programming in Chapter 2. Our solution called MULTIPLEX results
in potentially optimal explanations, addressing the research gap in high-fidelity list-
wise explanations.

4 In Chapter 3, we introduce intrinsically interpretable ranking models via input fea-
ture selection to answer RQ2. We investigate all (to our best knowledge) available
options proposed in the general ML field but remain unexplored in the IR domain.
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We summarize an overview of interpretableML and bridge the research gap between
ML and IR. Practically, we also construct a benchmark conducting feature selection
for neural LTR models.

4 Chapter 3 answers RQ2 from different diverse aspects closely related to ranking
tasks, including interpretability, efficiency, robustness, and so on.

4 In Chapter 4, inspired by the previous work in Chapter 3, we study RQ3 and ex-
perimentally prove that existing methods in interpretable ML, despite being widely
applied, are not faithful due to the occurrence of leakage during training.

4 Chapter 4 introduces the first in literature the formal leakage concept to solve RQ3,
including feature leakage and label leakage. Furthermore, we formally define the
necessary conditions of leakage-free guarantee as a theoretical ground for construct-
ing faithful models.

4 We propose SUWR in Chapter 4 as a promising solution to RQ3, the first local fea-
ture selection model that is guaranteed to have no leakage, and provides step-wise
highlights to enhance the interpretability of model decisions.

1.6 Thesis Origins
The three major chapters of this thesis have origins in three individual papers published
during my Ph.D. All papers are collaboration results between me (with major contribu-
tions) and my co-authors. Here we list the original papers and the publication venues.

• Chapter 2  Lijun Lyu and Avishek Anand. 2023. Listwise explanations for ranking
models using multiple explainers. In ECIR 2023. Springer, 653–668 [83].

• Chapter 3  Lijun Lyu, Nirmal Roy, Harrie Oosterhuis, Avishek Anand. 2024. Is
Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-
Rank? In ECIR 2024. Springer, 384-402 [85].

• Chapter 4  Harrie Oosterhuis∗, Lijun Lyu∗ and Avishek Anand. 2024. Local Fea-
ture Selection without Label or Feature Leakage for Interpretable Machine Learning
Predictions. ∗equal contribution. Accepted at ICML 2024..
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2
Interpreting Ranking Models

In this chapter, we start with RQ1–How do we explain ranking-specific decisions from black-
box text ranking models? Towards this, we propose a novel approach towards better inter-
pretability of a trained text-based ranking model in a post-hoc manner. Popular approaches
for post-hoc interpretability of text ranking models are based on locally approximating the
model behavior using a simple ranker. Since rankings have multiple relevance factors and
are aggregations of predictions, existing approaches that use a single ranker might not be
sufficient to approximate a complex model, resulting in low fidelity. In this chapter, we over-
come this problem by considering multiple simple rankers to better approximate the entire
ranking list from a black-box ranking model. We pose the problem of local approximation
as a GENERALIZED PREFERENCE COVERAGE (GPC) problem that incorporates multiple simple
rankers towards the listwise explanation of ranking models. Our method MULTIPLEX uses a
linear programming approach to judiciously extract the explanation terms, so that to explain
the entire ranking list. We conduct extensive experiments on a variety of ranking models
and report fidelity improvements of 37%−54% over existing competitors. We finally compare
explanations in terms of multiple relevance factors and topic aspects to better understand the
logic of ranking decisions, showcasing our explainers’ practical utility.

This chapter is based on the following paper:

 Lijun Lyu and Avishek Anand. 2023. Listwise explanations for ranking models using multiple explainers. In ECIR
2023. Springer, 653–668 [83].
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2.1 Introduction
Recent approaches for ranking text documents have focused heavily on neural models [58,
89, 92]. Neural rankers learn the complex and often non-linear relationships between the
query and document that are difficult to encode using closed-form analytical ranking func-
tions like BM25 [4]. However, the superior ranking performance of such models comes
at the expense of reduced interpretability, thus increasing the risk of encoding spurious
correlations and undesirable biases [116, 133]. In parallel to developing better rankers,
there has been an increased focus on interpreting neural ranking models [36, 114–116]
that specifically aim at explaining the rationale behind the ranking decisions.

This chapter aims to propose post-hoc approaches to interpret neural text rankers.
Post-hoc methods explain already-trained models and do not compromise on the accu-
racy of the learned model, hence making them popular choices for interpreting machine
learning models. One prevalent strategy in post-hoc interpretability is to locally approxi-
mate a trainedmodel with a simple and interpretable proxy or a surrogate model. The degree
of approximation is called fidelity and the objective is to maximize the fidelity between
the proxy model and the underlying black-box model. Post-hoc methods for rankings en-
tail using simple rankers to locally approximate (on a per-query basis) complex rankers
such that the simple ranker has a high rank correlation (or high fidelity) with the complex
ranking. Adapting this general post-hoc framework to ranking models has two specific
challenges – how do we aggregate multiple decisions inherent in a single ranking? And how
do we explain ranking decisions with different inherent relevance factors?

• Rankings as aggregations of decisions. Text ranking models output a ranked
list of documents for a given query. Unlike other learning tasks (e.g. regression and
classification) that deal with a single decision, the ranking task can be viewed as
an aggregation of multiple pointwise or pairwise decisions [2]. Any interpretability
approach or explainer should therefore explain the reasoning behind the ranking list,
or multiple preference pair predictions. Therefore existing explanation techniques
such as feature-attribution methods [112, 113, 120] that explain a single decision
(pointwise) cannot be seamlessly used for rankings. Instead, a listwise explanation
method that intends to cover all individual decisions in the entire ranking list is
needed for rankings.

• Different explanations for different relevance factors. Secondly, it is well-
known thatwhen ranking text, multiple relevance factors (also called ranking heuris-
tics or axioms) determine the relevance of a document to a query, e.g., lexical match-
ing, semantic similarity, term proximity etc. Unlike traditional models that explicitly
encode each of these relevance factors, neural rankers automatically learn them
from data. The next challenge in explaining rankings is ascertaining the relevance
factor that best explains a given decision. Informally, there might not exist a single
relevance factor that explains or satisfies all preferences 𝑑𝑖 ≻ 𝑑𝑗 in a given rank-
ing. Therefore trying to approximate a ranking with a single relevance factor might
result in low fidelity. A notable example is the listwise explanation approach [116]
that considers coveringmultiple ranking decisions, but uses a single explainerwhich
captures only one relevance factor (i.e., term matching), resulting in low-fidelity ex-
planations due to the mismatch of exact terms.
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2 Lijun Lyu and Avishek Anand

Table 1: Explaining the query bobcat with multiple relevance factors – (i) “charlotte-
bobcat basketball club”; (ii) “learn to hunt bobcat”; (iii) “animal bobcat” and (iv) “bobcat
mechanical retailer”. MULTIPLEX carefully chooses from multiple relevance factors to
explain a ranking. See Table 3 for more examples.

Explainers Explanation Terms

Term Matching charlotte, north, sales, 2008
Position Aware basketball, north, states, learn

Semantic Similarity felidae, carnivorous, boko, extinction, deserts, iucn
MULTIPLEX felidae, carnivorous, boko, extinction, deserts, gvwr, north

trained model with a simple and interpretable proxy or a surrogate model. The degree of
approximation is called fidelity and the objective is to maximize the fidelity between the
proxy model and the underlying black-box model. Post-hoc methods for rankings entail
using simple rankers to locally approximate (on a per-query basis) complex rankers such
that the simple ranker has a high rank correlation (or high fidelity) with the complex
ranking. Adapting this general post-hoc framework to ranking models has two specific
challenges – how do we aggregate multiple decisions inherent in a single ranking? And
how do we explain ranking decisions with different inherent relevance factors?

Rankings as aggregations of decisions. Text ranking models output a ranked list of doc-
uments for a given query. Unlike other learning tasks (e.g. regression and classification)
that deal with a single decision, the ranking task can be viewed as an aggregation of
multiple pointwise or pairwise decisions [1]. Any interpretability approach or explainer
should therefore explain the reasoning behind the ranking list, or multiple-preference pair
predictions. Therefore existing explanation techniques such as feature-attribution meth-
ods [21, 22, 28] that explain a single decision (pointwise) cannot be seamlessly used
for rankings. Instead, a listwise explanation method that intends to cover all individual
decisions in the entire ranking list is needed for rankings.

Different explanations for different relevance factors. Secondly, it is well-known that
when ranking text, multiple relevance factors (also called ranking heuristics or axioms)
determine the relevance of a document to a query, e.g., lexical matching, semantic
similarity, term proximity etc. Unlike traditional models that explicitly encode each of
these relevance factors, neural rankers automatically learn them from data. The next
challenge in explaining rankings is ascertaining the relevance factor that best explains a
given decision. Informally, there might not exist a single relevance factor that explains
or satisfies all preferences di � dj in a given ranking. Therefore trying to approximate a
ranking with a single relevance factor might result in low fidelity. A notable example is
the listwise explanation approach [25] that considers covering multiple ranking decisions,
but uses a single explainer which captures only one relevance factor (i.e., term matching),
resulting in low-fidelity explanations due to the mismatch of exact terms.

In this paper, we define an explanation to be a combination of the underlying rel-
evance factors along with the actual machine intent. In this paper, we firstly consider
multiple simple rankers or explainers(formally defined in Section 3.1), which rely on
different well-known and human-understandable (to system designers, or IR practition-

Figure 2.1: Explaining the query bobcat with multiple relevance factors – (i) “charlotte-bobcat basketball club”;
(ii) “learn to hunt bobcat”; (iii) “animal bobcat” and (iv) “bobcat mechanical retailer”. MULTIPLEX carefully
chooses from multiple relevance factors to explain a ranking. See Figure 2.6 for more examples.

Due to the aforementioned challenges, we then ask RQ1: How do we explain ranking-
specific decisions from black-box text ranking models? To address this question in this
chapter, we define an explanation to be a combination of the underlying relevance factors
along with the actual machine intent. We firstly consider multiple simple rankers or ex-
plainers (formally defined in Section 2.3.1), which rely on different well-known and human
understandable (to system designers, or IR practitioners) relevance heuristics. Secondly,
we explain the machine intent in terms of expansion terms (in addition to the query terms)
such that the simple ranker explains a complex black-box model by inducing a similar
ranking list. Thus a combination of simple rankers that represents a relevance factor, along
with its expanded query terms (also called explanation terms) is the listwise explanation of
the reasoning behind the ranking.

Approach wise, we carefully select a small set of explanation terms sourced from the
documents of the ranked list to maximize the explanation’s approximation ability (i.e. fi-
delity). Specifically, we define the GENERALIZED PREFERENCE COVERAGE (GPC) frame-
work, on which we optimize the preference coverage using approximated integer linear
programming. Our method MULTIPLEX is shown to be able to improve the fidelity, and
more interestingly combine terms from multiple explainers, implicitly covering multiple
topics for an ambiguous query. Figure 2.1 shows an example of explanation terms ex-
tracted by each single explainer and MULTIPLEX can cover terms of multiple aspects. Note
the aspects of terms are specified by manual observation.

We conduct extensive experiments using datasets from the TREC test collections –
TREC-DL and Clueweb09 with three neural rankers to evaluate MULTIPLEX. We report
fidelity improvements of 37% − 54% over existing competitors. We also present anecdo-
tal examples that showcase the practical utility of MULTIPLEX in understanding neural
rankers. The datasets and source code are publicly available ¹.

2.2 Related Work
2.2.1 Feature attribution for ranking models
Theearliest works of interpreting rankingmodels were simple extensions to existing point-
wise explanation techniques – explain a single instance given a trained ML model for gen-
eral machine learning tasks in vision and language. Singh and Anand [115], Verma and
Ganguly [127] adapted the popular surrogate-based LIME [106] to generate terms as the

¹https://github.com/GarfieldLyu/RankingExplanation

https://github.com/GarfieldLyu/RankingExplanation
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explanation for a trained black-box ranker. On the other hand, Fernando et al. [36] ap-
plied a game-theory feature attribution method [82] to interpret the relevance score of a
document given a query. Alternatively, other prevalent gradient-based feature attribution
methods [112, 113, 120] can be adapted in the same way to attribute the relevance predic-
tion to the textual input elements. All these methods provide pointwise explanations (why
is doc𝑖 relevant?) or pairwise explanations (why is doc𝑖 ranked higher than doc𝑗?). We
instead focus on listwise explanations or explaining the entire ranked list.

2.2.2 Listwise explanations for ranking models
There is limited work on listwise explanations, i.e., explaining the entire ranking list.
LiEGe [142] tackles the task as text generation. Specifically, LiEGe employs a Transformer
style model to generate terms for each document in a ranked list, and the explanation con-
tains all generated terms. However, this method presupposes documents with labeled
explanation terms, which is unrealistic in most application scenarios. Additionally, the
explanation generator is not human-understandable, hindering understanding of the ex-
planation generation process. In contrast, GreedyLM [116] uses a simple ranker to repli-
cate the ranking list of a complex black-box model by expanding the query terms. The
simple ranker and expanded query terms constitute the explanation for the complex model.
We follow the same philosophy that the explanation terms along with the explanation gen-
eration process should be human interpretable. However, a limitation of [116] is that it
assumes that a single relevance factor (modeled by a simple surrogate ranker) is adequate
to explain an entire ranking. We challenge this assumption in this work and use multiple
simple explainers instead.

2.2.3 Axioms as explanations
Another line of work uses IR axioms (or ranking heuristics) to ground the decisions of
complex models. Axioms are well-understood, interpretable, and deterministic sets of
rules that lay down the fundamental relevance factors of documents given a query. Recent
works [19, 105] diagnosed a group of ad-hoc neural rankers with a set of axioms and found
out that neural models only to a limited extent adhere to the IR axioms. Similarly, Völske
et al. [129] also found it hard to characterize BERT models in terms of IR axioms. The
hypothesis is axiomatic approaches are limited to using just the query terms, resulting in
low fidelity. In this work, we consider a much larger vocabulary of explanation terms to
optimize the fidelity of our explanations.

In parallel, there are other works dealing with explaining learning-to-rank (LTR) [114,
118], probing contextual ranking models [117, 131], and intrinsic methods for extractive
explanations [48, 73, 147]. We point the readers to a recent survey [5] in explainable in-
formation retrieval for a more detailed overview. In this work, we operate on text rankers
and generate term-based explanations in a post-hoc manner.

2.3 Background and Preliminaries
We start with the notion of a ranker Φ that takes as input a keyword query 𝒬 to output
an ordering 𝜋 over a set of documents 𝜋 = (𝑑1 ≻ 𝑑2 ≻ … ≻ 𝑑𝑛) based on the relevance of the
documents to the query, i.e., Φ(𝒬)→𝜋 . We aim to interpretΦ in a model-agnostic manner,
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using simple proxy rankers (called explainers Ψ). Note that the output of a ranker can be
viewed as a set of preferences over the documents, or w.l.o.g 𝜋 = {(𝑑𝑖 ≻ 𝑑𝑗)}. Therefore
explaining a ranking 𝜋 is akin to explaining all or most of the preference pair decisions in
𝜋 . An example of a single decision is whether the preference pair (𝑑𝑖 ≻ 𝑑𝑗) is true/false.

2.3.1 Explainers for Ranking
The explainer Ψ mimicking a black-box ranking model is essentially a simple ranker op-
erating based on human-understandable closed form formulae (i.e. ranking heuristics). A
popular example of such interpretable rankers is BM25 [4] model, which ranks documents
for a given query by measuring the term-matching frequency of query terms in each doc-
ument. Apart from term matching, there are also other factors or heuristics that might
affect the relevance judgment such as the term position. Specifically, in news articles,
the title and the introductory paragraphs are regarded to be more important. A ranking
model should then weigh the term matching that occurred in the earlier paragraphs more
than the rest. Additionally, semantic similarity is known to be crucial to address the ex-
act mismatch problem. This is particularly true in neural models with embedding vectors
as input. However, the semantic meaning of a term is less interpretable as it can vary if
the context changes due to different training procedures or datasets. In this regard, we
draw the line of choosing the commonly-used context-free embeddings (i.e. GloVe [97]) as
human-understandable input representation, instead of other contextualized embeddings
(i.e., generated by BERT language model).

This set of simple ranking heuristics can be large given different granularities [19, 105].
In this work we start from three explainers to encode the above three ranking heuristics.
Note that our framework allows a flexible amount of explainers, and thus more heuristics
can be added if necessary. In summary, the explainers rank a document (𝑑) based on its
relevance to a query (𝑞) by:

• Term Matching or Ψ𝑙𝑚: Ψ𝑙𝑚(𝑞,𝑑) = 1
|𝑑| ∑𝑡∈𝑞 tf(𝑡,𝑑), where tf(𝑡,𝑑) denotes the

term frequency of 𝑡 in 𝑑 .

• Position Aware or Ψ𝑝𝑎: a position-aware term-matching model [37], Ψ𝑝𝑎(𝑞,𝑑) =
∑𝑡∈𝑑

1
|𝑑| ∑𝑝∈𝑑 tf(𝑡,𝑝)

1
𝑝 , where 𝑝 denotes the 𝑝𝑡ℎ paragraph in d.

• Semantic Similarity or Ψ𝑒𝑚𝑏 : Ψ𝑒𝑚𝑏(𝑞,𝑑) = 1
|𝑞|×|𝑑| ∑𝑡∈𝑞,𝑤∈𝑑 cosine(𝑡,𝑤), where 𝑡

and 𝑤 are represented by the pre-trained GloVe embedding vectors [97].

2.3.2 Explanations to a Ranking Model
The output of an interpretability procedure is an explanation, which should be simple,
human-understandable, and faithful to the behavior of Φ. For the ranking task, the expla-
nation can be decomposed into two parts: (1) a simple ranker whose decision-making
process is fully transparent; (2) the machine intent of Φ in terms of an expanded query.
The quality or fidelity (in XAI parlance) of the explanation can be evaluated by comparing
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Figure 2.2: Explaining black-box model with simple rankers and query terms.

the ranked lists induced by Φ and Ψ by standard rank-correlation metrics, e.g., Kendall’s
tau or just counting concordant preference pairs.

Take Figure 2.2 as an example of interpreting the ranking induced by a black-box
model. The simple Term Matching explainer with the input terms (“keyboard” and “re-
view”) can be regarded as an explanation, with a fidelity of 1/3, as only one out of three
preference pairs agrees with the original ranking. It is common that the query term is
under-specified, and thus the simple ranker fails to extract the exact query intent. One
solution is to use query expansions – a commonly used concept in IR (e.g., RM3 [51]) to im-
prove ranking performance. For instance, when adding “music” to the query, the explainer
is aware of the musical preference of the black-box ranker and improves the explanation
fidelity to 2/3. The questions we ask are: (1) which terms can be added to the query to max-
imize fidelity?, and if more than one explainer is applied, (2) how can we combine multiple
simple explainers to cover as many pairs as possible?

Fidelity Variants. Note that rankings can be misleading because they do not show the
magnitude of the relevance difference. Sometimes the relevance scores of a preference
pair can be very close, and explaining such pair is challenging even to humans. Therefore,
to avoid uncertainty due to small score differences, we obtain a set of important preference
pairs after excluding the similar pairs whose prediction difference is below some thresh-
old. As Figure 2.2 shows, suppose the black-box ranker predicts similar scores for 𝑑2 and
𝑑3, then 𝑑2 ≻ 𝑑3 is not considered for evaluation. As a result, the TermMatching explainer,
along with the input terms (“keyboard”, “review” and “music”), can faithfully cover all
pairs and get 100% fidelity. Given different choices of selecting to-be-explained prefer-
ence pairs, we introduce different variants of fidelity, which will be further discussed in
Section 2.5.3.
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2.3.3 Problem Statement
We solve the explaining task as directly optimizing the fidelity, under the constraints of
pre-defined explainers and the associated terms. Formally, given a query 𝒬, a complex
ranking model Φ and a set of simple ranking models {Ψ}, we aim to select a small set of
terms 𝔼 ∈ 𝒱 (where 𝒱 is the vocabulary), to explain most of the preference pairs {𝑑𝑖 ≻ 𝑑𝑗 }
from the original ranking 𝜋 .

Figure 2.3: Approach overview of MULTIPLEX using multiple explainers.

2.4 Generalized Preference Coverage
As mentioned earlier, choosing explanation terms to maximize fidelity can be formulated
as a coverage problem of the preference pairs. We briefly describe the preference cov-
erage (PC) framework as introduced in [116], using a single explainer as a precursor to
introducing the generalized PC problem.

2.4.1 The Preference Coverage Framework
Similar to [116], the PC framework operates on a preference matrix constructed with a
single Ψ. First, a set of 𝑛 potentially important candidate terms 𝒳(𝒳 ⊆ 𝒱 , |𝒳 | = 𝑛) are
extracted from the list of documents using simple statistics (e.g., tf-idf ). Then, 𝑚 prefer-
ence pairs are sampled from 𝜋 to create the preference matrix M ∈ ℝ𝑛×𝑚 . Each cell in
M represents the utility or degree of Ψ in explaining the preference 𝑑𝜋(𝑖) ≻ 𝑑𝜋(𝑗) with 𝑡
as input, by computing a preference score 𝑓 𝑡𝑖𝑗 = Ψ(𝑡,𝑑𝜋(𝑖))−Ψ(𝑡,𝑑𝜋(𝑗)). A positive 𝑓 score
means with 𝑡 , the Ψ can explain or cover this pair, otherwise cannot. Each 𝑡 can now be
viewed as an𝑚-dimensional vector f, where each element represents how well it explains
a specific pair. The PC framework using a single Ψ aims to choose a subset of rows 𝔼 ⊆ 𝒳
(equivalent to selecting terms) fromM so as to maximize the number of non-zero values in
the aggregated vector. Since choosing or not choosing the row/term is a boolean decision,
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we can formulate the PC objective as an Integer Linear Program (ILP):

maximize
𝑚
∑
𝑖=1

(sign(x⊤M))𝑖 , s.t. x = [𝑥1,⋯ ,𝑥𝑛] ; 𝑥𝑖 ∈ {0,1} (PC)

x is a selection vector with boolean values where 𝑥𝑖 = 1 indicates selecting term 𝒳𝑖 ,
and 𝑥𝑖 = 0 otherwise. The sign is an element-wise operation. Namely, 𝔼 = {𝑖|𝑥𝑖 == 1}.
This equation however is NP-hard and not solvable by the prevalent convex programming
solvers (e.g., supported by CVXPY [33]) due to the non-differentiable sign function. Next,
we present an improved formulation of the PC problem followed by a generalization to ac-
commodate multiple explainers called the GENERALIZED PREFERENCE COVERAGE problem.

2.4.2 Optimizing PC for Multiple Explainers
Compared to PC, our proposal should be (i) practically solvable, (ii) ensuring sparse output
x so that the explanation is human-understandable, and (iii) flexible to combine multiple
explainers or M.

Correspondingly, the first change we introduce is using tanh to approximate the non-
convex sign operator. Secondly, we add a ℓ1-regularization ‖x‖ to enforce sparsity con-
straints on the number of terms to be selected. A straightforward way to combine all
explainers is to sum up their scores, i.e., Ψ𝑚𝑢𝑙𝑡𝑖(𝑡,𝑑) = ∑ Ψ(𝑡,𝑑). However, different ex-
plainers can have different output ranges and exhibit high variance. For instance, the
term-matching score usually lies in [0,1], whereas the position-aware score typically op-
erates in a much larger range. Normalization these scores in the optimization procedure
is central to flexibly adding multiple explainers. We therefore formulate the GENERALIZED
PREFERENCECOVERAGE problem that intends to optimizemultiplematrices simultaneously
as:

minimize (−
𝑚
∑
𝑖=1

(tanh(v))𝑖 + ‖x‖) (GPC)

s.t. v =
𝑝
∑
𝑗=1

tanh(x⊤M𝑗), 0 ≤ 𝑥𝑖 ≤ 1, 𝑎 ≤
𝑚
∑
𝑖=1

𝑥𝑖 ≤ 𝑏

Like in PC, GPC also maximizes the number of positive elements in the aggregated vec-
tor v, computed by summing upmultiple vectors transposed frommultipleM. M𝑗 denotes
the matrix constructed by the 𝑗𝑡ℎ explainer from the total 𝑝 explainers. Note that tanh is
also element-wise. The sparsity constraint is ensured by 𝑎 and 𝑏, namely the lower/upper
bound of the term-selection budget. The current formulation can now be solved by the
latest proposed solver GENO [68] that handles constraints with the augmented lagrangian
algorithm.

Picking the 𝑖𝑡ℎ term will choose all 𝑖𝑡ℎ row vectors simultaneously. Before summing
them up, each vector element is already transformed to the same range by tanh activa-
tion. This accounts for the variable range problem. Figure 2.3 briefly shows the coverage
computing when selecting “pueblo” and “outhouse” during optimization.
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2.5 Experimental Setup
2.5.1 Datasets and Ranking Models
We choose two datasets: (1) Clueweb09 collection (category B), for all ranking models,
we use 120/40/40 splits for train/dev/test, and the explanation experiments are conducted
on the test queries. (2) 40 randomly selected queries from Trec-DL 2019 passage ranking
test set, and the ranking models are trained on the MS MARCO passage ranking dataset.
We focus on the following three neural ranking models:

• DRMM [44] computes the term-document similarity histograms beforehand and
then jointly learns a matching and a term gate layer from the query and matching
histograms. We take the implementation from MatchZoo².

• BERT [31] takes the query and document separated by [SEP] as input and computes
the pooled ([CLS]) representation, on which a feed-forward layer predicts the final
relevance score. Both DRMM and BERT models are trained to optimize the margin
between the scores of a relevant/non-relevant input pair.

• DPR [58] encodes the query and document by two separate BERT models. The rele-
vance is simply measured by the cosine similarity of the two pooled representations.
We use the pretrained checkpoints directly without fine-tuning.

2.5.2 Baseline and Competitors
We compare our approach named MULTIPLEX with the following methods:

• qUERY-TERMS serves as the baseline by feeding only the query terms to our explain-
ers. By comparing this baseline, we argue that only the original query is insufficient
to discover the underlying ranking logic.

• DEEPLIFT [112] is a popular white-box feature attribution method. To adapt it to
ranking, we first compute the importance of a word in a document using Captum ³,
then we take the average across all documents and extract important terms as a
listwise explanation for a query. Note that we omit this baseline for DRMM since
its input is a histogram, thus the importance cannot be attributed to the word level.

• GREEDY-LM [116] uses a term-matching explainer to approximate neural rankers. It
optimizes the preference coverage greedily. Our approach shares a similar pipeline
of generating candidate terms and preference matrices. By comparing this baseline,
we show the improvements of combining multiple explainers and approximated lin-
ear programming optimization.

2.5.3 Metrics
Sincemultiple explainers are applied, a preference pair from the original ranking is counted
as explained as long as a single explainer can explain it. This evaluation does not apply
to GREEDY-LM as it generates explanation terms based on a single explainer. For both

²https://github.com/NTMC-Community/MatchZoo
³https://github.com/pytorch/captum

https://github.com/NTMC-Community/MatchZoo
https://github.com/pytorch/captum
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Table 2.1: Fidelity (ℱ ) results. The best results are in bold.

Clueweb09 Trec-DL

Model Method ℱglobal ℱdiff ℱsampled ℱglobal ℱdiff ℱsampled

qUERY-TERMS 0.81 0.88 0.76 0.81 0.82 0.63
BERT DEEPLIFT [112] 0.77 0.81 0.67 0.70 0.75 0.62

GREEDY-LM [116] 0.63 0.77 0.69 0.59 0.69 0.84
MULTIPLEX 0.88 0.97 0.93 0.86 0.93 0.97

qUERY-TERMS 0.81 0.86 0.71 0.82 0.84 0.64
DPR DEEPLIFT [112] 0.68 0.71 0.57 0.60 0.63 0.58

GREEDY-LM [116] 0.61 0.68 0.88 0.63 0.70 0.75
MULTIPLEX 0.87 0.93 0.87 0.87 0.92 0.96

qUERY-TERMS 0.82 0.85 0.72 0.80 0.81 0.59
DRMM DEEPLIFT [112] - - - - - -

GREEDY-LM [116] 0.57 0.60 0.72 0.53 0.54 0.34
MULTIPLEX 0.88 0.92 0.84 0.85 0.88 0.95

GREEDY-LM and MULTIPLEX, we fix 200 candidate terms and 500 sampled pairs for prefer-
ence matrix construction. We also fix a maximum of 10 explanation terms for all methods
except qUERY-TERMS. For both datasets, we consider a ranking depth (𝑘) of 100.

Similar to [105], we measure fidelity by computing the fraction of the maintained pref-
erence pairs by the explainers given the explanation terms. In other words, the fidelity
measures the coverage over the feasible preference pairs. As mentioned in Section 2.3,
depending on the choice of feasible preference pairs, we consider the following three vari-
ants of fidelity:

• Fidelity-global (ℱglobal) includes all (𝑘2) pairs induced by a 𝑘-length ranking list.

• Fidelity-sampled (ℱsampled) considers the sampled pairs from the matrix construc-
tion.

• Fidelity-diff (ℱdiff) discards all pairs whose relevance score difference < 𝑔. The
magnitude of 𝑔 is chosen based on the relevance score distribution of a particular
model. For BERT we set 𝑔 = 2 as the prediction margin appears to be larger than the
rest two models, for which 𝑔 = 0.05.

2.6 Evaluation Results
To show the effectiveness of our approach, we first present the quality of our approach
in terms of fidelity on all datasets and models compared to other competitors in Table 2.1.
Then we show the improvements of adding multiple explainers by an ablation study pre-
sented in Figure 2.4. Finally, we discuss how our explanations can be used to explain a
specific preference pair, as well as other potential use cases.
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2.6.1 Effectiveness of Explanations
In terms of fidelity (cf. Table 2.1), our method consistently outperforms other competitors.
Besides, for all methods the global fidelity (ℱglobal) scores are always lower than ℱdiff
where close, hence potentially noisy pairs are all excluded. This shows that all methods
and prominently MULTIPLEX can better explain document pairs with larger differences in
relevance scores.
Ranking heuristics vs. Query expansion. Though both factors constitute the expla-
nation of ranking, which one is more crucial? Take qUERY-TERMS and GREEDY-LM as a
comparison, note that qUERY-TERMS includes the given query terms but three ranking
heuristics, while GREEDY-LM on the contrary only relies on one term-matching but richer
query information. Their fidelity results show qUERY-TERMS outperforms GREEDY-LM by a
large margin, strongly suggesting that ranking heuristics particularly semantic similarity,
are more effective in explaining neural models.
The importance of explanation aggregation. Applying simple aggregation strategies
(i.e. average) on the prevalent pointwise feature attribution methods is shown to be less
effective by the results of DEEPLIFT. Compared to qUERY-TERMS, the extra expanded
query terms extracted by DEEPLIFT seem unhelpful in enhancing fidelity but introducing
noise. On the other hand, methods directly optimizing fidelity (i.e. GREEDY-LM and MUL-
TIPLEX) explicitly include the aggregation in the optimization loop. The ℱsampled results
of DEEPLIFT and GREEDY-LM further confirm the importance of aggregation.
The Benefits of our optimization solution. We also experimented with every single
Ψ to extract explanation terms with our approximated ILP objective shown in Figure 2.4.
Comparing the fidelity results of term-matching (orange bar) with theℱdiff of GREEDY-LM
(using the same explainer) in Table 2.1, we show the superiority of our optimizing strategy
over the greedy-algorithm.
The Benefits of Combining Explainers. As Figure 2.4 indicates, semantic explainer
overall generates the most faithful explanations than the rest. However, combining all
explainers can further improve the preference coverage and in turn increase the fidelity
results. When one explainer fails to explain a pair, it is still possible to be covered by other
explainers. Moreover, we also notice that combining multiple explainers in optimization
can generate explanation terms exhibiting multiple topic aspects, especially for short and
ambiguous queries. More examples are presented in Figure 2.1 and Figure 2.6.

2.6.2 Utility of Explanations
Explaining document preference. We now show how to explain a single preference
pair using MULTIPLEX, i.e., why does a model prefer 𝑑𝑖 over 𝑑𝑗? We start by constructing
preference scores for each candidate term as described in Section 2.4.1. Next, we select
the important terms with significant scores. Figure 2.5 illustrates the explanation terms
of two opposing decisions by BERT and DPR respectively, for keyboard review.
Discovering model preference and spurious correlations. We believe that explana-
tion terms encode relevance factors that rank relevant documents over others. Based on
this assumption, we create a perturbed document by adding explanation terms to a po-
tentially non-relevant document (e.g. at the lowest rank). We then feed this modified
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Figure 2.4: Fidelity-diff results of each single and combined explainer using our method.

document to the black-box model and measure the rank improvement. Unsurprisingly,
the terms extracted by MULTIPLEX result in the maximum rank increase (cf. Figure 2.7),
meaning our method can better identify the black-box model’s preference. Moreover, we
manually selected some ambiguous queries, and our initial observation of their explana-
tion terms suggests the ranking model shows some topic preference when ranking the
documents, while the explanation terms representing the preferred topics are also shown
dominant quantitively. Thus, it helps understand the model’s topic preference more easily
by analyzing the explanations instead of going through hundreds of documents.

Another possible usage is model debugging, or finding spurious correlations in models
or datasets, by analyzing explanation terms. One simple example is “Wikipedia” which
appears as an explanation term for many different queries. This is not surprising as the
Wikipedia entity pages are usually labeled as relevant. We leave a more systematic explo-
ration of making use of ranking explanations to future work.
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BERT: music-related terms are pos

DPR: music-related terms are neg.

Figure 2.5: Query: keyboard review. Document pair: clueweb09-en0008-49-09140 (musical keyboard) vs.
clueweb09-en0010-56-37788 (technical keyboard). BERT prefers the former whereas DPR prefers the latter, re-
sulting in opposite explanations.
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Table 3: Anecdotal examples show that each explainer selects terms from a different
aspect. The color highlights denote the explanation terms in Multiple are combined from
different explainers. For ambiguous query “adobe Indian houses", Term Matching and
Position Aware focus on popular but ’shallow’ terms indicating “adobe company“. For
certain query “hp mini 2140", the semantic similarity suffers from OOV. Position Aware
can capture the non-frequent yet important terms based on their position, e.g., the official
site for the query “ESPN sports".
Query Explainer Explanation Fdiff

adobe indian Term Matching pdf, adobe, style, house, first, also 0.85
houses Position Aware pdf, adobe, style, texas, wikipedia, 2009 0.81

Semantic Similarity pueblo, amarillo, castroville, outhouse, abourezk, alcove 0.95

Multiplex pueblo, amarillo, castroville, outhouse, abourezk, pdf 0.91

espn sports Term Matching espn, abc, network, company, award, entertainment, 0.86
Position Aware espn, sportscenter, abc, company, news, espn.com 0.99

Semantic Similarity espn, sportscenter, abc, walt, disney, entertainment, 0.93
Multiplex espn, sportscenter, abc, walt, disney, news, espn.com 0.99

hp mini 2140 Text Matching hp, mini, 2140, 2133 0.94

Position Aware hp, mini, 2140, 2133 0.90
Semantic Similarity hp, touchpad, overview, hdd, 0.71

Multiplex hp, mini, 2140, 2133, touchpad, overview 0.91

6.2 Utility of Explanations

Explaining document preference. We now show how to explain a single preference pair
using MULTIPLEX, i.e., why does a model prefer di over dj? We start by constructing
preference scores for each candidate term as described in Section 4.1. Next, we select
the important terms with significant scores. Figure 4 illustrates the explanation terms of
two opposing decisions by BERT and DPR respectively, for keyboard review.

Discovering model preference and spurious correlations. We believe that explanation
terms encode relevance factors that rank relevant documents over others. Based on this
assumption, we create a perturbed document by adding explanation terms to a potentially
non-relevant document (e.g. at the lowest rank). We then feed this modified document
to the black-box model and measure the rank improvement. Unsurprisingly, the terms
extracted by MULTIPLEX result in the maximum rank increase (cf. Figure 5), meaning
our method can better identify the black-box model’s preference. Moreover, we manually
selected some ambiguous queries, and our initial observation of their explanation terms
suggests the ranking model shows some topic preference when ranking the documents,
while the explanation terms representing the preferred topics are also shown dominant
quantitively. Thus, it helps understand the model’s topic preference more easily by
analyzing the explanations instead of going through hundreds of documents.

Another possible usage is model debugging, or finding spurious correlations in
models or datasets, by analyzing explanation terms. One simple example is “Wikipedia"
which appears as an explanation term for many different queries. This is not surprising

Figure 2.6: Anecdotal examples show that each explainer selects terms from a different aspect. The color high-
lights denote the explanation terms in Multiple are combined from different explainers. For ambiguous query
“adobe Indian houses”, TermMatching and Position Aware focus on popular but ’shallow’ terms indicating “adobe
company“. For certain query “hp mini 2140”, the semantic similarity suffers from OOV. Position Aware can cap-
ture the non-frequent yet important terms based on their position, e.g., the official site for the query “ESPN
sports”.
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Figure 2.7: Average rank improvements. Left: on all test queries; Right: on hand-picked ambiguous queries.
Note that for each query the document size ≤ 100.
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2.7 Conclusion and Outlook
RQ1: How do we explain ranking-specific decisions from black-box text ranking models?
To conclude, this chapter answers RQ1 by proposing a post-hoc model-agnostic frame-
work to explain text ranking models using multiple explainers. Our method MULTIPLEX
systematically combinesmultiple explainers to capture different relevance factors encoded
in the ranking decisions. The extensive experiments show that our method can generate
high-fidelity explanations for over-parameterized models like BERT, delivering up to 54%
fidelity improvements. Our method explains a ranking by a set of terms attributed to
a union of multiple explainers. It is interesting to examine which explainer (or ranking
heuristic) contributes to which extent using which particular terms for future work. We
also plan to extend our framework to account for n-grams and to make our explanation
generation procedure efficient enough to be used during query processing. Moreover,
it is well known that validating explanations is challenging, especially in the absence of
ground-truth data. Wemeasure fidelity in this work, however, the fidelitymight not reflect
the real underline logic of a complex model. Therefore, incorporating human perspectives
into the evaluation and meanwhile, balancing the cost of annotating numerous decisions
in a ranking are also worth exploring in future work.
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3
Interpretable Ranking Models – by

Design
In this chapter, we continue with RQ2 to explore if interpretable ML is applicable for building
self-explainable ranking models. Neural ranking models have become increasingly popular
for real-world search and recommendation systems in recent years. Unlike their tree-based
counterparts, neural models are much less interpretable. That is, it is very difficult to un-
derstand their inner workings and answer questions like how do they make their ranking
decisions? or what document features do they find important? This is particularly disadvan-
tageous since interpretability is highly important for real-world systems. In this chapter, we
explore feature selection for neural learning-to-rank (LTR). In particular, we investigate six
widely-used methods from the field of interpretable machine learning (ML) and introduce our
ownmodification, to select the input features that are most important to the ranking behavior.
To understand whether these methods are useful for practitioners, we further study whether
they contribute to efficiency enhancement. Our experimental results reveal a large feature
redundancy in several LTR benchmarks: the local selection method TABNET can achieve op-
timal ranking performance with less than 10 features; the global methods, particularly our
G-L2X, require slightly more selected features, but exhibit higher potential in improving effi-
ciency. We hope that our analysis of these feature selection methods will bring the fields of
interpretable ML and LTR closer together.

This chapter is based on the following paper:

 Lijun Lyu, Nirmal Roy, Harrie Oosterhuis, Avishek Anand. 2024. Is Interpretable Machine Learning Effective at
Feature Selection for Neural Learning-to-Rank? In ECIR 2024. Springer, 384-402 [85].
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3.1 Introduction
Learning-to-rank (LTR) is at the core of many information retrieval (IR) and recommen-
dation tasks [79]. The defining characteristic of LTR, and what differentiates it from other
machine learning (ML) areas, is that LTR methods aim to predict the optimal ordering
of items. This means that LTR methods are not trying to estimate the exact relevance
of an item, but instead predict relative relevance differences, i.e., whether it is more or
less relevant than other items. Traditionally, the most widely adopted and prevalent LTR
methods were based on Gradient Boosted Decision Trees (GBDT) [18, 61, 134]. However,
in recent years, neural LTR methods have become increasingly popular [39, 95, 99]. Re-
cently, [103] have shown that neural models can provide ranking performance that is
comparable, and sometimes better, than that of state-of-the-art GBDT LTR models on es-
tablished LTR benchmark datasets [21, 30, 101]. It thus seems likely that the prevalence
of neural LTR models will only continue to grow in the foreseeable future.

Besides the quality of the results that ranking systems return, there is an increasing
interest in building trustworthy systems through interpretability, e.g., by understanding
which features contribute the most to ranking results. Additionally, the speed at which
results are provided is also highly important [6, 8, 10]. Users expect ranking systems to be
highly responsive and previous work indicates that even half-second increases in latency
can contribute to a negative user experience [10]. A large part of ranking latency stems
from the retrieval and computation of input features for the ranking model. Consequently,
feature selection for ranking systems has been an important topic in the LTR field [42, 43,
94, 100, 104, 119, 139]. These methods reduce the number of features used, thereby helping
users understand and greatly reduce latency and infrastructure costs, while maintaining
ranking quality as much as possible. In line with the history of the LTR field, existing work
on feature selection has predominantly focused on GBDT and support-vector-machine
(SVM) ranking models [39, 56], but has overlooked neural ranking models. To the best
of our knowledge, only two existing works have looked at feature selection for neural
LTR [100, 104]. This scarcity is in stark contrast with the importance of feature selection
and the increasing prevalence of neural models in LTR.

Outside of the LTR field, feature selection for neural models has received much more
attention, for the sake of efficiency [72, 73], and also to better understand the model be-
haviours [7, 148]. Those methods mainly come from the interpretable ML field [34, 90],
where the idea is that the so-called concrete feature selection can give insights into what
input information a ML model uses to make decisions. This tactic has already been suc-
cessfully applied to natural language processing [147], computer vision [9], and tabular
data [7, 141]. Accordingly, there is a potential for these methods to also enable embedded
feature selection for neural LTR models, where the selection and prediction are optimized
simultaneously. However, the effectiveness of these interpretable ML methods for LTR
tasks is currently unexplored, and thus, it remains unclear whether their application can
translate into useful insights for LTR practitioners.

The goal of this work is to answerRQ2: Is interpretableML applicable for building self-
explainable ranking models? We address this by investigating whether six prevalent fea-
ture selection methods – each representing one of the main branches of the interpretable
ML field – can be applied effectively to neural LTR. In addition, we also propose a novel
method with minor modifications. Our aim is to bridge the gap between the two fields by



3.2 Related Work

3

27

translating the important concepts of the interpretable ML field to the LTR setting, and by
demonstrating how interpretable ML methods can be adapted for the LTR task. Moreover,
our experiments consider whether these methods can bring efficiency into the practical
application by reducing irrelevant input features for neural ranking models.

Our results reveal a large feature redundancy in LTR benchmark datasets, but this
redundancy can be understood differently for interpretability and for efficiency: For un-
derstanding the model, feature selection can vary per document and less than 10 features
are required to approximate optimal ranking behavior. In contrast, for practical efficiency
purposes, the selection should be static, and then 30% of features are needed. We conclude
that – when adapted for the LTR task – not all, but a few interpretable ML methods lead
to effective and practical feature selection for neural LTR.

To the best of our knowledge, this is the first work that extensively studies embed-
ded feature selection for neural LTR. We hope our contributions bring more attention to
the potential of interpretable ML for IR field. To stimulate future work and enable repro-
ducibility, we have made our implementation publicly available ¹ (MIT license).

3.2 Related Work
3.2.1 Learning-to-Rank (LTR)
Traditional LTR algorithms mainly rely on MLmodels, such as SVMs and decision trees to
learn the correlation between numerical input features and human-annotated relevance la-
bels [22, 38, 57, 64, 77, 134, 137, 143]. Neural approaches [16, 17, 20, 108, 122, 135] have also
been proposed, but did not show significant improvements over traditional non-neural
models. Inspired by the transformer architecture [126], recent works have also adapted
self-attention [95, 99, 103] and produced the neural LTR methods that outperform Lamb-
daMART [134], albeit with a relatively small difference. It shows that neural rankers can
provide competitive performance, consequently, the interest and effort towards neural
models for LTR are expected to increase considerably in the near future.

Efficiency is crucial in real-world systems since users expect them to be highly respon-
sive [6, 8, 10]. Aside from model execution, the latency of ranking system is largely due to
feature construction, as it happens on-the-fly for incoming queries. Thus, efficiency is of-
ten reached by reducing (expensive) features. Previous works [39, 132] apply a cascading
setup to reduce the usage of expensive features. Another growing trend in LTR is to design
interpretable models. Existing methods rely on specific architecture design, such as gen-
eral additive model (GAM) [150] or a feature-interaction constrained and depth-reduced
tree model [81].

3.2.2 Feature Selection for LTR
Feature selection can achieve both efficiency and interpretability [7, 72, 73, 148]. By select-
ing a subset of input features, the input complexity of models is reducedwhile maintaining
competitive performance. This helps with (1) efficiency as it avoids unnecessary construc-
tion of features [72, 73], and (2) interpretability as fewer input features are involved in
prediction [7, 148].

¹https://github.com/GarfieldLyu/NeuralFeatureSelectionLTR

https://github.com/GarfieldLyu/NeuralFeatureSelectionLTR
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Existing feature selection methods in LTR are classified commonly as filter, wrapper
and embedded methods [42, 43, 100]. Filter andwrappermethods are applied to given static
ranking models which are not updated in any way; filter methods are model-agnostic [42]
while wrapper methods are designed for a particular type of model [43]. In this work we
will focus on the third category, embedded methods, where feature selection is performed
simultaneously with model optimization. Most embedded methods are limited to partic-
ular model designs such as SVMs [64, 65, 67] or decision trees [81, 94, 139]. To the best
of our knowledge, only two methods are designed for neural LTR [100, 104]: one applies
group regularization methods [104] to reduce both input and other model parameters; the
other [100] uses the gradients of a static ranking model to infer feature importance, and
thus it belongs to the filter category. We do not investigate these two methods further, as
the focus of this work is on embedded input feature selection methods.

3.2.3 Interpretable Machine Learning
The earliest work in interpretable ML attempted to explain a trained model in post-hoc
manner, mainly relying on input perturbations [82, 106], gradients [113, 120] and so on [112].
In parallel, more recent works advocated intrinsically interpretable models, that are cat-
egorized as interpretable-by-design methods [1, 3, 110]. For neural networks, explaining
the decision path is challenging due to the large set of parameters. Therefore, the more
prevalent choice for intrinsic interpretable neural models is to shift the transparency to
the input features. Namely, the final prediction comes from a subset selection of input
elements, e.g., words or pixels and the rest irrelevant features are masked out [24, 73, 147].
Importantly, this selection decision can be learned jointly with the predictive accuracy of
a model. Thereby, we limit our research focus in intrinsic interpretable ML models.

Due to the discrete nature of selection, many approaches such as L2X [24], Concrete
AutoEncoders (CAE) [9], Instance-wise Feature grouping (IFG) [88] apply Gumbel-Softmax
sampling [52] to enable backpropagation through the feature selection process. Alterna-
tively, regularization is also a commonly-used feature selection approach in traditional
ML algorithms [64, 123], and is applicable to neural models, i.e., with INVASE [141] or
LassoNet [72]. Moreover, TabNet [7] applies both regularization and the sparsemax acti-
vation function [87] to realize sparse selection. These approaches have been successfully
applied in language, vision and tabular domains, and suggested that the resulting feature
selections substantially improved the user understanding of models and datasets [60, 109].

Despite their success in other domains, we find that the above-mentioned feature se-
lection methods for neural models (L2X, CAE, IFG, INVASE, LassoNet and TabNet) have
not been studied in the LTR setting. In response, we hope to bridge this gap between
the interpretable ML and the LTR field by adapting and applying these methods to neural
ranking models.

3.3 Background
3.3.1 Learning-to-Rank (LTR)
TheLTR task can be formulated as optimizing a scoring function 𝑓 that given item features
𝑥 predicts an item score 𝑓 (𝑥) ∈ ℝ, so that ordering items according to their scores corre-
sponds to the optimal ranking [79]. Generally, there are relevance labels 𝑦 available for
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Table 3.1: Properties of feature selection methods from the interpretable ML field as discussed in Section 3.3.

Method Global Local Sampling Regularization Fixed-Budget Composable
L2X [24] � � � �
INVASE [141] � � � �
CAE [9] � � � �
IFG [88] � � �
LASSONET [72] � � �
TABNET [7] � �
G-L2X (ours) � � � �

each item, often these are labels provided by experts where 𝑦 ∈ {0,1,2,3,4} [21, 101, 102].
Given a training set 𝒟𝑞 = {(𝑥𝑖 , 𝑦𝑖)}

𝑁𝑞
𝑖=1 for a single query 𝑞, optimization is done by mini-

mizing a LTR loss, for instance, the softmax cross entropy loss [15, 20]:

ℒ(𝑓 ∣ 𝒟𝑞) = − 1
|𝒟𝑞 |

∑
(𝑥,𝑦)∈𝒟𝑞

𝑁𝑞
∑
𝑖=1

𝑦𝑖 log𝜎(𝑥𝑖 ∣ 𝑓 ,𝒟𝑞), (3.1)

where 𝜎 is the softmax activation function:

𝜎(𝑥 ∣ 𝑓 ,𝒟𝑞) =
exp(𝑓 (𝑥))

∑𝑥′∈𝒟𝑞 exp(𝑓 (𝑥′))
. (3.2)

The resulting 𝑓 is then commonly evaluatedwith a rankingmetric, for instance, thewidely-
used normalized discounted cumulative gain metric (NDCG) [53].

3.3.2 Properties of Feature Selection Methods
As discussed before, feature selection is used in the interpretable ML field to better under-
stand which input features MLmodels use to make their predictions. Furthermore, feature
selection is also important to LTR for increasing the efficiency of ranking systems. How-
ever, selecting a subset of input features without compromising the model performance
is an NP-hard problem, since the number of possible subsets grows exponentially with
the number of available features [43, 100]. As a solution, the interpretable ML field has
proposed several methods that approach feature selection as an optimization problem. We
will now lay out several important properties that can be used to categorize these methods,
which will be elaborated in next section.
Global vs. local. Global methods select a single subset of features for the entire dataset,
whereas local methods can vary their selection over different items.
Composable vs. non-composable. Non-composable methods are designed for a specific
model architecture, and therefore, they can only perform feature selection for those mod-
els. Conversely, composable methods are not constrained to specific architectures, and
thus, they work for any (differentiable) model.
Fixed-budget vs. budget-agnostic. Fixed-budget methods work with a pre-defined se-
lection budget, i.e., what number of features should be selected in total, or a cost per feature
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and a maximum total cost for the selection. Their counterparts are budget-agnostic meth-
ods that do not use an explicit budget, consequently, one has to carefully fine-tune their
hyper-parameters to achieve a desired performance-sparsity trade-off.

Sampling-based vs. regularization-based. As their names imply, sampling-basedmeth-
ods optimize a sampling procedure to perform the feature selection, whereas regularization-
based methods use an added regularization loss to stimulate sparsity in feature selection.
While these groups apply very different approaches, whether one is significantly more
useful for LTR purposes than the other remains unknown.

3.4 Feature Selection from Interpretable ML for LTR
In this section, we present a brief technical overview of our selection of six interpretable
ML methods and their adaption to neural LTR models, and propose our G-L2X method
based on a minor modification. While any ranking loss can be chosen, we use a listwise
softmax cross entropy (Eq. 3.1) with all methods, for the sake of simplicity. Therefore, the
training of each query is conducted after generating the output of all documents associated
with the query. Table 3.1 highlights the properties of all methods and Figure 3.1 provides
a visual overview to accompany this section.

3.4.1 Sampling-based Feature Selection
Sampling-based approaches use a two-stage architecture consisting of a selector that gen-
erates a sparse selection over the input features; and a ranker that only takes selected
features as its input, in the form of a masked vector 𝑥̂ .

The training of a ranker follows conventional LTR, i.e., Eq 3.1 with 𝑥𝑖 replaced by
̂𝑥𝑖 . But the optimization of a selector (𝜁 ) is not as straightforward; Usually, 𝜁 constructs

a probability distribution p = [𝑝1, 𝑝2,⋯𝑝𝑑 ], indicating a selection probability per feature.
However, the ranker uses a concrete selection𝑚 ∈ {0,1}𝑑 from the probability distribution,
and this concrete operation does not allow optimization of the selector via backpropaga-
tion. The common solution is to generate a differentiable approximation 𝑚̃, by concrete
relaxation or the Gumbel-Softmax trick [52]. Namely, the selection of 𝑝𝑖 can be approxi-
mated with the differentiable 𝑐𝑖 as:

𝑐𝑖 =
𝑒𝑥𝑝{(log𝑝𝑖 +𝑔𝑖)/𝜏 }

∑𝑑
𝑗=1 𝑒𝑥𝑝{(log𝑝𝑗 +𝑔𝑖)/𝜏 }

, (3.3)

where 𝑔 is the Gumbel noise and 𝜏 ∈ ℝ>0 is the temperature parameter. Now, the selec-
tor 𝜁 can be optimized with stochastic gradient descent by using 𝑚̃. The following four
sampling-based methods apply this overall procedure, but differ in how they generate p
and 𝑚̃.

Learning to explain (L2X). L2X [24] is a local selection method since its neural selector
generates a probability distribution p for each individual input instance. To generate 𝑚̃,
L2X repeats the sampling procedure 𝑘 times (Eq. 3.3), and subsequently, uses themaximum
𝑐𝑖 out of the 𝑘 repeats for the 𝑖𝑡ℎ element in 𝑚̃. The intention behind this maximization
step is to make the top-𝑘 important features more likely to have high probability scores
(ideally close to 1).
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Figure 3.1: Methods overview, as described in Section 3.4.

Global learning to explain (G-L2X, ours). As a counterpart, we propose a global
method G-L2Xbased on L2X. Our change is straightforward, where L2X generates a differ-
ent distribution p for each item, we apply the same p to all items. In other words, G-L2X
includes a global selector layer 𝜁 (𝜁 ∈ ℝ𝑑 ) to simulate p, and sampling is conducted in the
same way as L2X on the selector weights. Thereby, G-L2X will select the same features for
all items in the dataset.

Concrete autoencoder (CAE). CAE [9] is a global method where the selector is the en-
coder part of an auto-encoder model [63]. Specifically, the selector compresses the input
into a smaller representation 𝑥̂ , by linearly combining selected features, i.e. 𝑥⊤𝑚̃, where
𝑚̃ ∈ ℝ𝑘×𝑑 can be viewed as approximated k-hot concrete selection, sampled from the selec-
tor weights (𝜁 ∈ ℝ𝑘×𝑑 ). Therefore, CAE might result in repetitive selection, and the input
dimension to the predictor is reduced to 𝑘.
Instance-wise Feature Grouping (IFG). IFG [88] applies a similar approach as L2X, but
clusters features into groups and then selects 𝑘 feature groups for prediction. IFG first
assigns a group for each feature via Gumbel-sampling, and then makes a feature selection
by Gumbel-sampling 𝑘 out of the resulting groups. This grouping decision is also guided
by how rich the selected features are to recover the original input. Therefore, apart from
the ranking objective, IFG jointly optimizes an additional input restoring objective as well
(similar to auto-encoders [63]). IFG is agnostic to the number of selected features and the
group sizes, it can produce oversized groups and very large selections.

3.4.2 Regularization-based Feature Selection
Instead of the budget-explicit feature selection, regularization-based methods induce spar-
sity through implicit constraints enforced by regularization terms in the training objective.
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We propose modifications to three existing methods to make them applicable to the LTR
setting.
INVASE. We consider INVASE [141] to be a hybrid approach involving both sampling and
regularization. Built on the same structure as L2X, the selector of INVASE generates a
boolean/hard mask 𝑚 (instead of the approximation 𝑚̃) via Bernoulli sampling to train the
predictor. Since this disables backpropagation, INVASE uses a customized loss function
that does not need the gradients from the predictor to train the selector. The idea is to
apply another individual baseline predictor model that takes the full-feature input, simul-
taneously with the predictor that takes the masked input. The loss difference between the
two predictors is used as a scale to train the selector. Meanwhile, the L1 regularization is
applied to the selector output to enforce selection sparsity. Ultimately, INVASE will push
the selector to output a small set of selections which leads to the most similar predictions
as using all features.
LASSONET. As the name suggests, LASSONET [72] adapts a traditional Lasso (L1 regular-
ization) [123] on the first layer of a neural model to eliminate unnecessary features. The
challenge with neural models is, all weights corresponding to a particular feature entry in
the layer have to be zero in order to mask out the feature. Towards this, LASSONET adds
a residual layer with one weight per input feature to the original model to perform as the
traditional Lasso. Then, after every optimization step, LASSONET develops a proximal op-
timization algorithm to adjust the weights of the first layer, so that all absolute elements
of each row are smaller than the respective weight of residual layer corresponding to a
specific feature. Thereby, LASSONET performs global selection and the sparsity scale is
adjusted by the L1 regularization on the residual layer weights.
TABNET. Unlike the previous methods, TABNET [7] is non-composable and tied to a spe-
cific tree-style neural architecture. It imitates a step-wise selection process before it out-
puts the final prediction based only on the selected features. Each step has the same neural
component/block but with its own parameters, thus the model complexity and selection
budget grow linearly with the number of steps. At each step, the full input is transformed
by a feature transformer block first, and then an attentive transformer block conducts fea-
ture selection by sparsemax activation [87], as the weights in the resulting distribution
corresponding to unselected features are zeros. The final prediction is aggregated from all
steps to simulate ensemble models. A final mask 𝑚 is a union of selections from all steps,
and the entropy of the selection probabilities is used as the sparsity regularization.

3.5 Experimental Setup
Since feature selection can be applied in various manners and situations, we structure our
experiments around three scenarios:

• Scenario 1: Simultaneously train and select. Both the ranking model and the feature
selection are learned once and jointly. Themethods are evaluated by the performance-
sparsity trade-off. It is the standard setup for evaluating embedded feature selection
methods in the interpretable ML field [88, 104].

• Scenario 2: Train then select with an enforced budget. Practitioners generally set hard
limits to the computational costs a systemmay incur and the efficiency of the system
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#features #queries #docs
training validation test training validation test

MQ2008 46 471 157 156 9630 2707 2874
Web30k 136 18919 6306 6306 2270k 747k 753k
Yahoo 699 19944 2994 6983 473k 71k 165k

Table 3.2: The statistics of three benchmark datasets. The MQ2008 [102] and Web30k [101] are from Miscrosoft
LETOR and Yahoo is from YAHOO LTR challenge Set1 [21]. We chose Fold1 split for training, validation and
test for all datasets.

can be greatly enhanced if it only requires a much smaller amount of features to
reach competitive performance. Following the previous scenario, we evaluate the
trained model with test instances where only a fixed amount of features (which
the method deems important and selects frequently during training) are presented
and the rest are masked out. The resulting ranking performance and the costs of
computing the required features indicate how practical the method is in efficiency
improvements.

• Scenario 3: Train, select then re-train. In real-world settings, ranking systems are up-
dated iteratively, where features will be added or discarded andmodels re-optimized
frequently. To simulate this sequential scenario, we use standard LTR to re-train a
DNN model on varying budgets of features produced in Scenario 1. Similarly as in
scenario 2, this is also a global selection setup and we select features based on their
selection frequency for budget-agnosticmethods. This scenario enables a fairer com-
parison with the non-composable TABNET since re-training is done with the same
DNN architecture for all methods.

Datasets and preprocessing. We choose three public benchmark datasets: MQ2008 (46
features) [102], Web30k (136 features) [101] and Yahoo (699 features) [21], to cover varying
numbers of available features. More statistics are presented in Table 3.2 We apply a log1𝑝
transformation to the features ofWeb30k, as suggested in [103]. Yahoo contains cost labels
for each feature, for Web30k we use cost estimates suggested by previous work [39].² All
reported results are evaluated on the held-out test set partitions of the datasets.

Models. We use a standard feed-forward neural network with batch normalization, three
fully-connected layers and tanh activation as the ranking model, denoted as DNN. Ac-
cording to the findings in [103], this simple model performs closely to the most effective
transformer-based models, but requires much less resources to run. The selector models of
L2X and INVASE have the same architecture, and as the only exception, TABNET is applied
with its own unalterable model (see Section 3.4).

Implementation. Our experimental implementation is done in PyTorch Lightning [35].
For TABNET and LASSONET existing implementations were used.³ We created our own
implementations for the rest of the methods.

²MQ2008 is omitted from cost analysis since no associated cost information is available.
³https://github.com/dreamquark-ai/tabnet; https://github.com/lasso-net/lassonet

https://github.com/dreamquark-ai/tabnet
https://github.com/lasso-net/lassonet
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Table 3.3: Results of ranking performance and feature sparsity for methods applied in Scenario 1. For compar-
ison, we also include GBDT [14, 61] and DNN baselines without feature selection as upper bound. #F denotes
the number of selected features. Reported results are averaged over 5 random seeds (std in parentheses). Bold
font indicates the highest performing selection method; the ⋆ and underlines denote scores that are not signifi-
cantly outperformed by GBDT and the bold-score method, respectively (𝑝 > 0.05, paired t-tests using Bonferonni’s
correction).

Listwise MQ2008 NDCG@k (%) Web30k NDCG@k (%) Yahoo NDCG@k (%)
loss @1 @10 #F @1 @10 #F @1 @10 #F
Without feature selection.
GBDT 69.3 (2.5) 80.8 (1.7) 46 50.4 (0.1) 52 (0.1) 136 72.2 (0.1) 79.2 (0.1) 699
DNN 66.2⋆ (2) 80.2⋆ (0.6) 46 46.1 (0.6) 47.7 (0.2) 136 69.4 (0.3) 76.9 (0.1) 699
Fixed-budget feature selection using the DNN ranking model.
CAE 63.0 (1.1) 78.7 (0.5) 4 32.9 (2.9) 36.6 (2.2) 13 59.2 (0.2) 69.5 (0.1) 6
G-L2X 63.8⋆ (1.3) 79.1 (0.4) 4 41.1 (0.9) 44.4 (0.3) 13 65.4 (0.1) 74.0 (0.0) 6
L2X 63.0 (2.1) 78.7 (0.7) 4 34.5 (2.4) 39.7 (1.9) 13 61.9 (1.1) 73.2 (0.3) 6
Budget-agnostic feature selection using the DNN ranking model.
INVASE 62.5 (2.2) 77.5 (2.1) 5 (2) 15.1 (0.0) 22.1 (0.0) 0 38.7 (0.0) 57.8 (0.0) 0
IFG 66.4⋆ (0.9) 80.4⋆ (0.5) 20 (2) 32.5 (5.3) 37.5 (5.3) 72 (30) 69.6 (0.2) 77.1 (0.2) 58 (3)
LASSONET 64.7⋆ (2.2) 79.3 (1.2) 6 (3) 39.4 (0.8) 42.1 (0.3) 8 (2) 63.1 (2.3) 72.4 (1.5) 12 (4)
Budget-agnostic feature selection using a method-specific ranking model.
TABNET 64.7⋆ (2.7) 78.2 (1.2) 7 (3) 47.0 (0.4) 49.2 (0.1) 8 (1) 70.2 (0.4) 77.7 (0.1) 6 (1)

Table 3.4: Scenario 1: ranking quality and sparsity for MQ2008, using pointwise and pairwise training objectives.
Pointwise models trained using regression loss and pairwise models using Lambdarank loss for GBDT. INVASE
for pairwise training is not directly applicable and is omitted.

Pointwise loss, NDCG@k Pairwise loss, NDCG@k
Method @1 @5 @10 #F @1 @5 @10 #F
GBDT 62.2⋆ (2.7) 72.3 (1.3) 78.2⋆ (1.0) 46 69.7 (0.5) 77.9 (0.5) 81.4 (0.5) 46
DNN 66.5 (0.5) 76.5 (0.4) 80.4 (0.3) 46 62.4⋆ (2.2) 71.0 (0.9) 76.1 (1.0) 46
CAE 63.9⋆ (1.6) 72.9 (0.8) 77.6 (0.5) 4 62.0 (0.3) 71.5 (0.1) 76.9 (0.2) 4
G-L2X 61.8⋆ (1.2) 73.0 (0.4) 77.7 (0.4) 4 57.2 (1.6) 66.1 (2.5) 72.5 (2) 4
L2X 62.3⋆ (0.7) 73.4⋆ (1.1) 77.9⋆ (0.7) 4 61.4 (2.2) 71.1 (1.3) 76.6 (0.8) 4
INVASE 61.2⋆ (3.1) 71.2⋆ (3.9) 76.4⋆ (3.3) 9 (3) - - - -
IFG 65.4⋆ (0.9) 74.5⋆ (0.4) 79.7⋆ (0.4) 10 (5) 61.8 (2.9) 71.7 (1.5) 76.9 (1.3) 10 (4)
LASSONET 64.2 (1.8) 74.0 (1.3) 78.8 (1.0) 7 (11) 59.1⋆ (4.4) 67.6 (3.4) 73.5 (2.6) 2 (1)
TABNET 62.3⋆ (5) 72.1 (3.8) 77.6 (2.7) 6 (3) 59.0⋆ (4.3) 66.8 (3.8) 73.3 (2.9) 16 (5)
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Figure 3.2: Results of three fixed-budget methods applied to scenario 1. The x-axis indicates the pre-specified
percentile of selected features (𝑘). The shaded area shows the standard deviation over 5 random seeds.
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3.6 Results
We report the findings in the next three subsections, where each corresponds to one of the
scenarios described in Section 3.5. Additionally, we also analyze the selection similarity,
robustness to feature perturbations and sensitivity to random factors of several methods.

3.6.1 Simultaneous Optimization and Selection
We begin by investigating the effectiveness of the feature selection methods when applied
to Scenario 1, where feature selection and model optimization are performed simultane-
ously. The results for this scenario are displayed in Table 3.3, Table 3.4 and Figure 3.2.

Table 3.3 shows the ranking performance and the respective feature sparsity of all
feature selection methods and two baselines without any selection as the upper-bound
reference. For fixed-budget methods, the budgets were set to 10% of the total number of
features for MQ2008 and Web30k, and 1% for Yahoo (the results with varying budgets are
displayed in Figure 3.2). Since the sparsity of budget-agnostic methods is more difficult
to control, we performed an extensive grid search and used the hyper-parameters that
produced the highest ranking performance with a comparable feature sparsity as the other
methods.

The results in Table 3.3 show that not all feature selection methods are equally effec-
tive, and their performance can vary greatly over datasets. For instance, on MQ2008 all
methods perform closely to the baselines, with only a fraction of the features. However,
this is not the case for bigger datasets likeWeb30k and Yahoo. In particular, INVASE selects
no features at all due to big uncertainty in selection (for this reason, we omit INVASE from
all further comparisons). On the other hand, IFG performs poorly in inducing sparsity,
mainly because of its input reconstruction objective, whereas the ranking performance
is not substantially better than the rest of methods. Additionally, CAE does not seem ef-
fective either, and furthermore, increasing the selected features does not always result in
better ranking performance (cf. Figure 3.2). This is most likely because CAE samples with
replacement, and thus the same features can be selected repeatedly.

In contrast, the other two sampling-based methods L2X and G-L2X are designed to
avoid the repetitive selection issue. Overall, the global selection G-L2X outperforms the
local counterpart L2X, possibly because global selection generalizes better to unseen data.
Another global method LASSONET is also inferior to G-L2X, mainly due to the difficulties
in sparsity weight tuning and manually adjusting weights in the input layer.

Overall, TABNET shows the best performance-sparsity balance across all datasets, and
even outperforms the DNN baseline. Although, the comparison between TABNET and DNN
is not completely fair, as they optimize different neural architectures. It does reveal large
feature redundancies in these datasets: TABNET uses <10% of features on Web30k and 1%
on Yahoo, yet still beats the DNN baseline with all features.

Lastly, We also show the adaptability of all methods to both pointwise and pairwise
objectives, using MQ2008 as an example in Table 3.4. Note that the hyperparameter se-
tups might affect the performance of both GBDT and neural models, to save us from heavy
hyperparameter tuning, we use the same model parameters as the listwise training. Sim-
ilarly, the majority of results are very close to their corresponding DNN upper bounds,
with way fewer selected features in comparison to the results on MQ2008 using listwise
objective in Table 3.3.
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Figure 3.3: Scenario 2. Feature cost (left two) and ranking performance (right two) under incomplete input. The
x-axis indicates how many percentages of features are present in the input, to test the trained ranking model.
Note this differs from specifying 𝑘 during training for fixed-budget methods in scenario 1.

To summarize, we find that the local method TABNET is the most effective at balancing
ranking performance and sparsity. Slightly inferior but competitive enough is the global
method G-L2X, which reached > 95% of baseline performance with only 1% features on
Yahoo and > 93% with 10% on Web30k.

3.6.2 Feature Selection for Trained Ranking Models
Next, we evaluate the methods in Scenario 2, where only a specified budget (i.e., a given
number of features) of features are present in the test input. Figure 3.3 displays both the
ranking performance and the total feature cost for varying degrees of sparsity. The costs
represent the time it requires to retrieve the selected feature sets, and allow us to estimate
the actual efficiency improvements they provide.

Unlike previous scenario, all local methods including TABNET, are no longer able to
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Figure 3.4: Results of Scenario 3: performance of DNN trained with top% (x-axis) important features identified
by each method.

maintain superior performance. This is because for local methods, the selection is made
conditioned on full input information, and an incomplete input could affect the selection
and thus disrupt its prediction performance.

In contrast, global methods are immune to input changes. Therefore, CAE is still not
performing well as it did in Scenario 1; G-L2X and LASSONET provide the best overall per-
formance under small costs. LASSONETmaintains baseline performance with less than 40%
of features on both datasets, while G-L2X outperforms LASSONET when selected features
are less than 30%. Meanwhile, it also shows LASSONET tends to select more costly features
than G-L2X.

To conclude, we find that global methods G-L2X and LASSONET perform the best in
Scenario 2, where upcoming query inputs are masked under enforced feature budgets.
Particularly, G-L2X is superior in both ranking and computing cost when the feature bud-
get is small. This translates to substantial efficiency improvements in practical terms, as
ranking performance is maintained by selected features only.

3.6.3 Re-training after Feature Selection
In this section, we address Scenario 3 and evaluate the performance of a DNN ranking
model that is re-trained on the features selected from different methods, as displayed in
Figure 3.4.

We see that with only a small number of features (e.g., 30%), the performance of global
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methods is as good as using all features, on all three datasets. In particular, most methods
outperform the full-feature baseline with only 20% of features on MQ2008. However, it
seems clear that G-L2X is the most reliable method in this scenario, as it is the only method
that reaches optimal performance with 20% of features on all three datasets.

Overall, local methods have slightly lower performance than global methods. Thus,
as expected, it appears that some performance is lost when local feature selections are
turned into global selections. However, the difference is limited, suggesting that local
methods do tend to select features that are influential in the entire dataset. IFG again
performs poorly on Web30k, in line with the results in Table 3.3. Lastly, when comparing
Figure 3.4 with the results of Scenario 1 in Figure 3.2, we see that all methods reach higher
performance in Scenario 3, indicating that the extra re-training does bring a considerable
boost in performance.

In conclusion, all methods except IFG are quite effective across all datasets in Scenario
3, in that, they are able to select 50% of features and reach near-optimal performance.
Among them, the global method G-L2X appears to be the best, as it maintains near-optimal
ranking performance with as few as 20% of features.

3.6.4 Agreement, Sensitivity and Robustness
Finally, to gain a more thorough understanding of the feature selection methods, we also
investigate some of their other characteristics; in particular, selection similarity, method
sensitivity and robustness.
Selection Similarity. To understand to what extend different methods agree on what
features are most important, we consider the selection similarity between each pair of
methods using Kendall’s 𝜏 correlation, as illustrated by Figure 3.5. It appears that the
selections of CAE have the highest correlation with other methods, while IFG has the high-
est dissimilarity on Web30k. Due to the poor ranking performance of IFG (cf. Table 3.3),
we think that IFG mostly disagrees with the other methods because it fails to identify the
most-predictive features. Additionally, Figure 3.6 also presents the five most-frequently
selected features. Unsurprisingly, the majority of methods deem BM25 relevance-features
as most important.
Sensitivity and Robustness. Generally, we wish to avoid fragile or unstable methods
that generate drastically different selections, due to random factors or noise in its input
data. Accordingly, we conduct two extra experiments to evaluate sensitivity and robust-
ness:

1. A five-fold repetition of simultaneous training and selecting, under identical circum-
stances, but with different random seeds.

2. We randomly drop features, i.e., replacing their values with 0, and then measure
how these perturbations affect the (input-dependent) selection decisions of local
methods.

Figure 3.7 illustrates the sensitivity to the random seed of each method, while most
methods appear quite stable, TABNET is clearly the most sensitive. Possibly, this is because
for TABNET, a different random seed can heavily affect its sparsemax activations and thus
change the majority of its selection decisions.
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Figure 3.8 depicts the robustness of all local methods to feature perturbations. Again,
TABNET is the least robust compared to the other approaches. IFG appears to be more
robust, but this may simply be a result of its large selection size (cf. Table 3.3).
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3.7 Discussion
Are interpretable ML methods effective at feature selection for neural LTR? Our
experimental results have shown that interpretable ML methods can be very effective at
feature selection on neural LTR models, for both interpretability and practical efficiency
purposes. Our findings have revealed large redundancies in LTR datasets, as the TABNET
method needs <10 features per document yet outperforms aDNNwith access to all features.
Moreover, on two large benchmark datasets (Web30k and Yahoo), our results showed that
we can reduce more than 60% of feature retrieval costs without substantially affecting
ranking performance. Therefore, our study has shown that the feature selection methods
from the interpretable ML field can both explain neural LTR models by showing their
behavior mainly depends on a few features, and produce large practical efficiency gains
by greatly reducing feature costs.
Which feature selection method should be used by practitioners? The answer to
this question depends on the purposes for which the method will be used. If one wishes
to understand what features of individual documents reveal whether it is relevant or not,
then TABNET is the best choice. Since it can select only a handful of features per document,
while maintaining a ranking performance that is close the state-of-the-art GBDT model
with full feature information. On the other hand, for efficiency purposes, TABNET is a
poor choice because its selections that vary per document, do not translate to good global
feature selections. Instead, if one wishes to reduce the feature costs of a system, then the
global LASSONET and G-L2X methods have shown to be most effective at inducing feature
sparsity without compromising much ranking performance. Specifically, we estimate that
their selections lead to an actual reduction in feature retrieval costs of over 60%, while
maintaining more than 90% of ranking performance. However, since the computational
costs of fine-tuning the hyper-parameters of LASSONET is very high, we recommend G-
L2X as feature selection method that is easily applicable and highly effective at improving
practical efficiency in neural LTR.

3.8 Conclusion
RQ2: Is interpretable ML applicable for building self-explainable ranking models? To
answer this research question, we have investigated all (to the best of our knowledge)
prevalent approaches in interpretable ML, and our results have suggested some of the
methods are indeed applicable for building self-explainable LTR models.

The main goal of this work is to bring the interpretable ML and the LTR fields closer
together. To this end, we have studied whether feature selection methods from the inter-
pretable ML are effective for neural LTR, for both interpretability and efficiency purposes.
Inspired by the scarcity of feature selection methods for neural ranking models in previ-
ous work, we adapted six existing methods from the interpretable ML for the neural LTR
setting, and also proposed our own G-L2X approach. We discussed different properties of
these methods and their relevance to the LTR task. Lastly, we performed extensive exper-
iments to evaluate the methods in terms of their trade-offs between ranking performance
and sparsity, in addition, their efficiency improvements through feature cost reductions.
Our results have shown that several methods from interpretable ML are highly effective
at embedded feature selection for neural LTR. In particular, the local method TABNET can
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reach the upper bound with less than 10 features; the global methods, in particular G-L2X,
can reduce feature retrieval costs bymore than 70%, whilemaintaining 96% of performance
relative to a full feature model.

We hope our investigation can bridge the gap between the LTR and interpretable ML
fields. The futurework can be developingmore interpretable and efficient ranking systems,
and how that interpretability could support both practitioners and the users of ranking
systems. Furthermore, after extensive study of existing explainable models, we started
to question if the self-extracted explanations are truly faithful, despite this being a well-
established concept. Future work should reconsider the necessary conditions for faithful
explanations when designing self-explainable models. To address this, we will conduct a
comprehensive investigation in the next chapter.
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4
Towards the Faithfulness of

Interpretable Models
Following the previous chapter, we propose RQ3: Are self-explainable models faithful, and if
not, how to design theoretically guaranteed faithful models? Current self-explainable models
mainly rely on input feature selection–either by globally selecting features across the entire
dataset, or by locally varying selections per instance. Local feature selection in machine learn-
ing provides instance-specific explanations by focusing on the most relevant features for each
prediction, enhancing the interpretability of complex models. However, such methods tend to
produce misleading explanations by encoding additional information in their selections. In
this chapter, we attribute the problem of misleading selections by formalizing the concepts of
label and feature leakage. We rigorously derive the necessary and sufficient conditions under
which we can guarantee no leakage, and show existing methods do not meet these conditions.
Furthermore, we propose the first local feature selection method that is proven to have no leak-
age called SUWR. We prove that, under certain conditions, our method is the only solution
without leakage. Our experimental results indicate that SUWR is less prone to overfitting and
combines state-of-the-art predictive performance with high feature-selection sparsity. Our
generic and easily extendable formal approach provides a strong theoretical basis for future
work on interpretability with reliable explanations.

This chapter is based on the following paper:

Harrie Oosterhuis∗, Lijun Lyu∗ and Avishek Anand. 2024. Local Feature Selection without Label or Feature Leakage
for Interpretable Machine Learning Predictions. ∗equal contribution. In ICML 2024, PMLR 235, 38740-38761 [93].
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4.1 Introduction
Feature attributions and feature selections in interpretable machine learning (ML) help
users understand howmuch each input feature influences the output of the model [34, 90].
One prominent family of methods is designed for local feature selection, a.k.a. instance-
wise feature selection, for interpretable ML [45]. These approaches aim to only select the
most important features per instance and to exclude the rest during inference [76], thereby
making the predictions by the model easier to interpret.

Let 𝑖 refer to an instance in a dataset with 𝑥𝑖 ∈ ℝ𝑑 as its 𝑑-dimensional feature vector
representation and 𝑦𝑖 as its accompanying label to be predicted. A feature selector 𝜁 takes
𝑥𝑖 as input and outputs a feature mask ℎ𝑖 ∈ {0,1}𝑑 , either through a stochastic or deter-
ministic process: ℎ𝑖 ∼ 𝜁 (𝑥𝑖). Let 𝑥𝑖 ⊙ℎ𝑖 indicate the masked features that are resulted from
applying ℎ𝑖 to 𝑥𝑖 , where all non-selected features are masked. We denote a masked feature
with ∅, to clearly differentiate it from a zero value, and the 𝑗th element in a vector with
[𝑗]:

(𝑥𝑖 ⊙ℎ𝑖)[𝑗] ≔ {𝑥𝑖[𝑗] if ℎ𝑖[𝑗] = 1,
∅ if ℎ𝑖[𝑗] = 0. (4.1)

here 𝜁 is a local selector and produces a differentmask for each instance. We note that local
feature selection differs from global feature selection which reveals feature importance on
the dataset level, as it has a fixed mask for all instances [9, 70, 72, 140]. By being able to
vary masks, local methods are more flexible and can give more in-depth insight into the
importance of features in individual instances [7, 141].

A widely used setup for local feature selection is to follow a selector-predictor architec-
ture that is typically jointly optimized [7, 54, 141]. More precisely, let 𝑓 be the predictor
model that can take masked features as input: 𝑓 (𝑥 ⊙ ℎ), importantly, ℎ can be inferred
exactly from 𝑥 ⊙ℎ. The optimization of the selector 𝜁 and predictor 𝑓 is usually based on
a linear combination of a prediction loss 𝐿 and the sparsity of a mask ‖ℎ‖ to enforce high
sparsity (and hence interpretability). For a dataset of 𝑁 instances, we use:

ℒ(𝜁 ,𝑓 )≔ 1
𝑁

𝑁
∑
𝑖=1

𝔼ℎ𝑖∼𝜁 (𝑥𝑖)[𝐿(𝑓 (𝑥𝑖 ⊙ℎ𝑖),𝑦𝑖) +𝜆‖ℎ𝑖‖], (4.2)

where the parameter 𝜆 ∈ ℝ>0 balances feature sparsity against predictive performance. The
loss thus incentivizes the exclusion of features that do not contribute to high predictive
performance, consequently, the selector should learn only to select the features that are
the most important for accurate predictions.

Whilst the reasoning behind the local feature selection approach appears intuitive,
previous work has found a fundamental flaw: local methods can choose features that pro-
vide high predictive performance but clearly are unfaithful explanations of feature im-
portance [50]. Jethani et al. [54] discuss a selector and predictor combination for digit
classification where a single pixel is selected per image, yet optimal accuracy prediction
is maintained. Instead of selecting features based on importance, their selector learned to
encode a prediction of the digit in the selection mask ℎ. Because they are optimized jointly,
the predictor also learned the relation between the encoding and the original prediction.
In other words, instead of selecting the most important features, the behavior of the selec-
tor was aimed at passing as much information about the corresponding label as possible.
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The resulting selections thus provide misleading explanations that give false insights into
the prediction process. As a remedy, Jethani et al. [54] add noise to the selection mask ℎ;
whilst this appears to improve the situation, it does not address the underlying problem.
Therefore we formulateRQ3 by asking whether those prevalent feature selection methods
are truly faithful. To the best of our knowledge, no existing local feature selection method
can guarantee that their selections never provide misleading explanations by encoding
additional information.

In this chapter, we provide the first formal approach to the issue of additional informa-
tion being encoded in local feature selections. We name this problem leakage and define
it using two novel formal concepts: label leakage, where information about the label is
encoded in a local selection as defined in Section 4.3.1, and feature leakage, where infor-
mation about the values of non-selected features is encoded in a local selection as defined
in Section 4.3.2. Subsequently, we derive the sufficient and necessary properties of a local
feature selection method in Section 4.3.3, supported by theoretical proof in Section 4.9, it
appears no existing method meets these criteria.

Thus we further extend RQ3 by asking how we can design faithful models with theo-
retical guarantees. To address this problem, we propose two methods for optimizing local
feature selection policies that are guaranteed to have no leakage. First, we introduce a
novel linear programming method in Section 4.4 to search for the optimal selection and
prediction policy for any desired sparsity and accuracy tradeoff. This method is highly
effective but can only be applied to problems with complete knowledge that are of small
scale, which means it has limited practical utility. Second, we introduce a novel method in
Section 4.5 that is much more practical and widely applicable called sequential unmasking
without reversion (SUWR). SUWR selects features over several sequential decision rounds,
where each decision is based only on the values of features that were selected in previous
rounds and decisions cannot be reversed in subsequent rounds. We prove that in Sec-
tion 4.10 it is impossible for SUWR to encode information about non-selected features or
any labels, since it never had access to those values when deciding what to select. More-
over, in Section 4.11 we conjecture that when the feature distribution fully supports the
Cartesian product of possible feature values, SUWR is the only solution without leakage,
because it captures all possible policies that have no leakage. Our experimental results
indicate that SUWR is less prone to overfitting and combines state-of-the-art predictive
performance with high feature-selection sparsity. Furthermore, the sequential decisions
of SUWR provide a novel way to explain predictions by giving a narrative of how predic-
tions are formed (e.g., Figure 4.6), a unique insight that previous methods do not provide.
The SUWR method can be applied to various forms of data and types of model architec-
tures and optimization, its approach is generic and easily extendable.

4.2 Related Work
The current mainstream lines of work in interpretable machine learning have been cate-
gorized into explaining trained models in post-hoc manner [82, 106, 112, 113] and building
intrinsically explainable models [24, 141, 147]. Due to the discrepancies within post-hoc
methods [124], the latter has been increasingly advocated in recent years. In the neural
era, one common way of building interpretable models is via input features. The main
idea is to learn to select a small set of informative input features and use those features
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exclusively for the final prediction. Meanwhile, explanations come from the selected fea-
tures, e.g., pixels for images and words for texts (we note that in language tasks this sort of
method is more often referred as rationale models [11, 23, 71, 96]). Thus, sparsity (i.e., the
number of selected features) and the final prediction performance are considered together
to measure the model effectiveness and explainability [32].

4.2.1 Feature selection as explanation
One challenge of feature selection is the scarcity of ground-truth labels to indicate the
importance of features. As a result, existing solutions learn to select features by jointly
optimizing predictive performance and selection sparsity. This type of joint training is re-
ferred as Joint amortized explanationmethods [27, 54, 111]. The learnable selection and pre-
diction function (selector and predictor) can be two separated models, e.g., as for CAE [9],
L2X [24], INVASE [141] and REAL-X [54], or components within a single model, e.g., as
for TabNet [7]. For the former type, the training signals (e.g., the gradients or rewards)
between the predictor and selector are propagated via Gumbel-relaxation [52] or policy
gradient. For TabNet, the selection is generated by sparsemax activation [87] and thus
trained by standard back-propogation. Additionally, CAE conducts global selection, and
the others are local selection methods that vary selections per instance.

4.2.2 Irrationality of local feature selection
Nevertheless, local selectionmethods, particularly the joint amortizedmethods have raised
increasing concerns in recent works [50, 55, 149]. They argue the selected features do not
necessarily align with the true explanations, and thus unfaithful to the model behaviors.
Furthermore, Jethani et al. [54] showcased the selection mask can leak prediction to the
predictor, and therefore achieve unrealistic high performance whether the selected fea-
tures are relevant or not. As a remedy, they proposed REAL-X, which aims to prevent
the predictor overfitting on the selector by injecting noise into the selection masks. Our
work shows that REAL-X is still subject to leakage (Section 4.6), and to the best of our
knowledge, we have proposed the first theoretically guaranteed solutions to this problem.

4.2.3 Dynamic feature selection
Another tangentially relevant line of work is dynamic feature selection [26, 78]. Similar to
SUWR, some dynamic feature selectionmethods also conduct a greedy selection procedure
without access to the full feature set. However, dynamic feature selection is designed
for settings where features are costly, and selection should be made to avoid the costs
associated with retrieving specific feature values. This is a very different purpose than
our work, hence their methods are not designed to address leakage, nor do they formally
analyse interpretability for ML models.

4.3 Leakage in Feature Selection
This section introduces a formal definition of leakage based on label and feature leakage.
Subsequently, we use them to prove the necessary and sufficient conditions for leakage.

To keep our terminology succinct, we define leakage as either feature leakage or label
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leakage, thus:¹

Definition 4.3.1. A feature selector does not have leakage, if it has neither label leakage
(Definition 4.3.3) nor feature leakage (Definition 4.3.4).

Table 4.1 displays an intuitive example of leakage where a selection policy mask per-
fectly encodes all information about the label and non-selected features.

4.3.1 Formalization of label leakage in feature selection
Colloquially, we understand label leakage to be the problem where the selection mask
ℎ encodes information about the label. In the context of interpretable machine learning
(ML), the purpose of ℎ is to select the features that provide the most salient information.
Therefore, this purpose is entirely defeated by the injection of additional information about
the label in ℎ. This problematic behavior has been observed in previous work [50, 54],
however, to the best of our knowledge, no one has introduced a formal definition of this
issue yet.

In our notation, we denote 𝑠in as the set of indices of the selected features (included)
and 𝑠ex for the non-selected features (excluded). To keep our notation brief, we define:

Definition 4.3.2. Ω is the set of all possible selections of feature values and label values:

Ω ≔ {(𝑥,𝑦, 𝑠in, 𝑠ex) ∶ 𝑝(𝑥) > 0∧𝑝(𝑠in, 𝑠ex ∣ 𝑥, 𝜁 ) > 0
∧𝑝(𝑥[𝑠in],𝑦) > 0∧ 𝑠in ∪ 𝑠ex = {1,2, ..., 𝑑}}. (4.3)

Our proposed definition of label leakage is based on the idea that the selection ℎ should
not be able to provide information about the label. For a selection, (𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, the
predictive information in this selection can be represented by the natural label distribu-
tion conditioned on the selected feature values: 𝑝(𝑦 ∣ 𝑥[𝑠in]). This distribution can be fur-
ther conditioned the fact that 𝑠in has been selected by the selector 𝜁 : 𝑝(𝑦 ∣ 𝑥[𝑠in],ℎ[𝑠in] =
1,ℎ[𝑠ex] = 0,𝜁 ). The key insight in our definition is that when there is no label leakage,
these distributions should be equal.

Definition 4.3.3. A feature selector 𝜁 does not have label leakage, if conditioning the
label distribution on the selection of features by 𝜁 does not change the label distribution:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, (4.4)
𝑝(𝑦 ∣ 𝑥[𝑠in]) = 𝑝(𝑦 ∣ 𝑥[𝑠in],ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0,𝜁 ).

In other words, if the knowledge that a feature selection comes from a specific selector
𝜁 changes the probability of a label, then 𝜁 has label leakage. Imagine two masked feature
values: 𝑥1 ⊙ℎ1 =𝑥2 ⊙ℎ2, one made with a uniform random selection, the other with 𝜁 , if
predictions are only based on the selected feature values then both should lead to the exact
same predictions: ∀𝑦, 𝑝(𝑦 ∣ 𝑥1 ⊙ℎ1) = 𝑝(𝑦 ∣ 𝑥2 ⊙ℎ2, 𝜁 ).
¹Our definition is different but related to the concept of data leakage: the availability of information during
optimization that is unavailable during inference [59].
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Table 4.1: Example of feature and label leakage in feature selection (non-selected features are omitted). The label
𝑦 is the sum of the two independent features, therefore, perfect label prediction should only be possible with
both features. However, each 𝑥 ⊙ℎ value is matched with a single label and set of feature values, thereby, this
solution provides 100% accuracy in label prediction and feature reconstruction, with a 62.5% feature reduction.
This combination of performance and sparsity is only possible because of leakage.

𝑝(𝑥,𝑦,ℎ) 𝑥[1] 𝑥[2] ℎ[1] ℎ[2] (𝑥 ⊙ℎ)[1] (𝑥 ⊙ℎ)[2] y

0.25 1 1 1 0 1 2
0.25 0 1 0 1 1 1
0.25 1 0 0 1 0 1
0.25 0 0 0 0 0

4.3.2 Formalizing feature leakage in feature selection
Analogous to label leakage, we also propose the concept of feature leakage where the selec-
tion mask ℎ encodes information about non-selected features. As illustrated in Table 4.1,
we motivate the prevention of feature leakage with two arguments:

(i) feature leakage defeats the purpose of feature selection as information about the
values of non-selected features is not actually excluded; and

(ii) when there is a correlation between features and labels, a basic assumption in ma-
chine learning [12], feature leakage implies label leakage.

Therefore, it also seems infeasible to prevent label leakage without also tackling feature
leakage. We formally define feature leakage as:

Definition 4.3.4. A feature selector 𝜁 does not have feature leakage, if conditioning the
feature distribution on the selection of features by 𝜁 does not change the feature distribu-
tion:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in])
= 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in],ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0,𝜁 ). (4.5)

Similar to label leakage, the intuition behind feature leakage is that knowing that a
feature selection was made by 𝜁 should not affect the probability of non-selected feature
values.

4.3.3 The necessary and sufficient conditions for leakage
From these formal definitions of feature leakage and label leakage, we derive the sufficient
and necessary conditions for a feature selector without leakage in Section 4.9. We find the
following:

Corollary 4.3.5. A feature selector does not have leakage if and only if every probability
for every possible feature selection does not depend on any label values or any non-selected
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feature values:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 )
= 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in],𝑥[𝑠ex],𝑦, 𝜁 ). (4.6)

Proof. Follows directly from Theorem 4.9.3 and Theorem 4.9.4 in Section 4.9. □

In other words, a feature selector has no leakage if the probability of a selection is only
determined by the values of the selected features, and not by the label or non-selected
feature values. Therefore, for any possible feature values 𝑥 and any label value 𝑦 and any
selection mask ℎ, any change in the label or in any of the features not selected by ℎ should
not result in a different probability for the selection: 𝜁 (ℎ ∣ 𝑥). Thus, for any possible feature
values 𝑥′ and label value 𝑦′, where the selected features have identical values: 𝑥 ⊙ℎ = 𝑥′⊙ℎ,
the probability of the selection should be identical: 𝜁 (ℎ ∣ 𝑥) = 𝜁 (ℎ ∣ 𝑥′).

Intuitively, we can understand that if the value of the label or unselected features
changes the behavior of 𝜁 , then it could be possible to infer information about unselected
features or the label from the behavior of 𝜁 . Accordingly, we can prove a feature selector
has leakage by finding a single example of two pairs of (𝑥,𝑦) and (𝑥′, 𝑦′) for which the
above condition does not hold. Conversely, to prove a feature selector has no leakage, we
have to rule out the possibility of such an example entirely.

4.4 A Linear Programming Solution
We now propose our first method that meets the above criteria using linear program-
ming [29]. It requires full knowledge of the problem setting, i.e., 𝑝(𝑥,𝑦) is known com-
pletely, and assumes a finite set of possible values for 𝑥 . In this setting, the perfect predic-
tor is available, e.g., for a mean squared error loss:

𝑓 ∗(𝑥 ⊙ℎ) = 𝔼𝑥 [𝑦 |𝑥⊙ℎ] = ∑
𝑥′∶𝑥′⊙ℎ=𝑥⊙ℎ

𝑝(𝑥′)∑
𝑦
𝑝(𝑦 |𝑥′)𝑦, (4.7)

and thus, only 𝜁 has to be optimized. Corollary 4.3.5 shows that the probability of any
masked feature vector 𝑥 ⊙ℎ should only depend on the selected features, since:

∀(𝑥,𝑥′,ℎ), (𝑝(𝑥) > 0∧𝑝(𝑥′) > 0∧ (𝑥 ⊙ℎ) = (𝑥′ ⊙ℎ))
⟶ 𝜁(ℎ ∣ 𝑥) = 𝜁 (ℎ ∣ 𝑥′). (4.8)

Therefore, for optimization, we only have to consider a single probability variable for every
possible set of values for 𝑥 ⊙ ℎ. The probability variables should be chosen to minimize:
ℒ(𝜁 ,𝑓 ∗) (Eq. 4.2), under the constraint that they describe valid probability distributions:

∀𝑥, 𝑝(𝑥) > 0⟶(∑ℎ∈𝜁 (𝑥) 𝜁 (ℎ ∣ 𝑥) (4.9)

= ∑
𝑠in,𝑠ex∶𝑠in∪𝑠ex={1,2,...,𝑑}

𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 ) = 1).

Section 4.12 details how this task is translated to a linear programming problem. Whilst
its requirements limit it to unrealistic toy problems, this method enables us to closely
approximate the Pareto optimal front of selection without leakage, which we use in our
analysis of existing methods.
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Algorithm 1 Inference with the SUWR method.
1: Input: Features: 𝑥 , Max-𝑡 : 𝑇 , Selector: 𝜁 , Predictor: 𝑓
2: ℎ← 0
3: for 𝑡 ∈ [0,1,…,𝑇 −1] do
4: if Bernoulli_Trial(𝜁 𝑡stop(𝑥 ⊙ℎ)) then
5: Return: (𝑓 (𝑥 ⊙ℎ),ℎ)
6: end if
7: ℎ← ℎ+Sample_Mask(𝜁 𝑡select(𝑥 ⊙ℎ)) # Eq. 4.10
8: end for
9: Return: (𝑓 (𝑥 ⊙ℎ),ℎ) =0

4.5 Sequential Unmasking without Reversion
In this section, we propose a more practical method titled sequential unmasking without
reversion (SUWR), which describes a feature selection algorithm that provenly has no
leakage, but is applicable to more realistic settings than the linear programming solution.
SUWR guarantees no leakage by approaching the selection of features as a sequential de-
cision process where each decision is only based on a specific subset of feature values, and
no decision can be reversed at a later step. The core of SUWR is its selection inference al-
gorithm, which is agnostic to what underlying ML model is used and how it is optimized.
Therefore, SUWR can be seen as a generic framework that can easily be extended and
adapted to specific feature selection problems.

4.5.1 Feature selection inference with SUWR
From Section 4.3, we know that a feature selector 𝜁 without leakage, should base the
probability of a specific selection only on the values of the selected features. As discussed
in Section 4.4, the probability distribution over each possible selection of feature values
has to be valid.² Based on these properties, we propose SUWR which meets these criteria
through sequential selection. Algorithm 1 describes inference with SUWR in pseudocode,
the remainder of this section describes it step-by-step.

SUWR requires a model 𝜁 that can output a stop probability and a distribution to
sample feature indices, given an input of masked features. The feature selection process
takes place over 𝑇 steps, each step starts by deciding whether to stop the process, and
if not, which features to select next. For a step 𝑡 , where 0 ≤ 𝑡 < 𝑇 , a Bernoulli trial is
performed according to 𝜁 𝑡stop(𝑥 ⊙ℎ𝑡 ) and if successful then the process is stopped and ℎ𝑡
is the final feature selection and 𝑓 (𝑥 ⊙ ℎ𝑡 ) the final prediction. Otherwise, the process
continues and a new set of feature indices is sampled and added to the selection mask:

𝑢𝑡 ∼ 𝜁 𝑡select(𝑥 ⊙ℎ𝑡 ), ℎ𝑡+1 = ℎ𝑡 +𝑢𝑡 . (4.10)

Importantly, both the stop probability and the sampling of new features are only condi-
tioned on the values of features selected in the previous steps (𝑥 ⊙ℎ𝑡 ). Accordingly, the first

²Meeting both of these criteria is not trivial, since a standard normalization term would depend on all possible
selections for an instance 𝑥 and thus also on non-selected features; i.e., 𝜁 (ℎ ∣ 𝑥) ≔ ̂𝜁 (ℎ ∣ 𝑥)/∑ℎ ̂𝜁 (ℎ ∣ 𝑥) is not
allowed since the normalizing denominator depends on all feature values.
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step (𝑡 = 0) starts with an emptymask ℎ0 = 0, and the stop probability 𝜁 0stop(𝑥 ⊙ℎ0) = 𝜁 0stop(∅)
is constant over 𝑥 , similarly, the feature distribution 𝜁 0select(𝑥 ⊙ℎ0) is the same for every 𝑥
in the first step. Additionally, since each step only adds features to the selection and never
removes any, the probability of the decisions that lead to ℎ𝑡 in a step 𝑡 , only depends on
the values of features selected in previous steps (𝑥 ⊙ ℎ𝑡−1). If the final step 𝑡 = 𝑇 − 1 is
reached, then the process is automatically stopped (𝜁 𝑇stop(⋅) = 1) and the final selection is
ℎ𝑇 and the final prediction 𝑓 (𝑥 ⊙ℎ𝑇 ).

As we can see, SUWR is completely agnostic to what the underlying model 𝜁 and
predictor 𝑓 are; it only requires them to handle masked inputs and 𝜁 to output a stop
probability and feature distribution. The parameter 𝑇 acts as a computational budget as it
ensures the process halts within 𝑇 steps. Additionally, 𝑇 is also a feature budget when 𝜁
limits the number of features to be sampled per step.

Section 4.10 provides a full proof that proves SUWR has no leakage. The intuition
behind this property is straightforward: Any decision to select a feature is never based
on information from (thus far) unselected features. Therefore, the value of a feature that
is not in the final selection could never affect its probability. Furthermore, the process
guarantees a selection is always made, thereby providing a valid probability distribution
over all possible feature selections.

In addition, in Section 4.11 we conjecture that the SUWR algorithm describes every
possible selection policy without leakage, when the feature value distribution provides
support for the Cartesian product of possible feature values:

∀𝑖, 𝑗,𝑎,𝑏, (𝑝(𝑥[𝑖] = 𝑎) > 0∧𝑝(𝑥[𝑗] = 𝑏) > 0)
⟶𝑝(𝑥[𝑖] = 𝑎,𝑥[𝑗] = 𝑏) > 0. (4.11)

In other words, we conjecture that when Eq. 4.11 holds, the inference of any feature se-
lection policy without leakage can be computed by the SUWR algorithm. Therefore, in
this setting, SUWR captures all solutions to feature selection without leakage, and thus,
SUWR provides the only solution to feature selection without leakage when Eq. 4.11 is
true.

4.5.2 Optimization of SUWR feature selection policies
While SUWR inference strictly follows Algorithm 1 to prevent leakage, there are no restric-
tions on the optimization of the underlying 𝜁 and 𝑓 models. Therefore, any optimization
method can be chosen without risking the introduction of leakage. For this work, we pro-
pose a reinforcement learning optimization approach that is evaluated in our experiments.

The set of possible feature selections grows exponentially with the number of features,
it is therefore important that we avoid iterating over all possibilities. We use a REINFORCE
approach [121] and repeatedly sample a set of 𝑇 selection steps while ignoring the stop
probabilities. Thus, we start at 𝑡 = 0 with the zero selection: ℎ̄0𝑖 = 0, and for each subse-
quent step 𝑡 , we follow the SUWR procedure: ̄𝑢𝑡𝑖 ∼ 𝜁 (𝑥𝑖 ⊙ ℎ̄𝑡−1𝑖 ), ℎ̄𝑡𝑖 = ℎ̄𝑡−1𝑖 + ̄𝑢𝑡𝑖 . For each
datapoint 𝑥𝑖 , this results in a sampled sequence of 𝑇 selection masks: 𝐻̄𝑖 = {ℎ̄0𝑖 , ℎ̄1𝑖 ,..., ℎ̄𝑇𝑖 }.
The probability that SUWR stops at any 𝑡 , conditioned on the sampled sequence is:

𝑝stop(𝑡 ∣ 𝐻̄𝑖) ≔ 𝜁 𝑡stop(𝑥𝑖 ⊙ℎ𝑡𝑖 )
𝑡−1
∏
𝑗=0

(1− 𝜁 𝑗stop(𝑥𝑗𝑖 ⊙ℎ𝑗𝑖 )). (4.12)
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Using this formulation, we can create the following unbiased estimate of our generic loss
function (Eq. 4.2):

̄ℒ (𝜁 , 𝑓 ) ≔ (4.13)

1
𝑁

𝑁
∑
𝑖=1

𝑇
∑
𝑡=0

𝑝stop(𝑡 ∣ 𝐻̄𝑖)(𝐿(𝑓 (𝑥𝑖 ⊙ ℎ̄𝑡𝑖 ),𝑦𝑖) +𝜆‖ℎ̄𝑡𝑖 ‖).

Computing its gradient w.r.t. 𝜁stop is straightforward; for the gradient w.r.t. 𝜁select, we
use the log-trick from the REINFORCE method [121]. Then, we apply standard gradient
descent to optimize both 𝜁 and 𝑓 based on our sampled loss ̄ℒ .

4.5.3 Discussion
Since we can prove SUWR has no leakage, each mask ℎ is guaranteed to indicate the only
features that were used to make its corresponding prediction. To the best of our knowl-
edge, SUWR is the first method to have this guarantee, therefore, we argue it is also the
first feature selection method that guarantees its explanations are faithful [50]. Further-
more, the sequential selection procedure can be interpreted as a step-by-step narrative
of how the prediction was constructed. For example, Figure 4.6 displays multiple steps of
SUWRon images of a sandal and a boot. At each step, we can seewhat information became
available to the predictor and how this changes its predictions. Thereby, this step-by-step
explanation provides even more insight than the final selection mask. We believe SUWR
is the first approach that produces narrative explanations about feature importance.

While the guarantee of no leakage is a great advantage over existing methods, the
SUWR algorithm could potentially require more computational costs than previous ap-
proaches. Namely, for each intermediate feature selection step, a call to 𝜁select is made.
This could pose a challenge to data with high dimensionality, e.g., if 𝜁 only selects a single
feature per step, and thus a high 𝑇 should be chosen. Luckily, the SUWR framework is
highly flexible and can be adapted to handle such situations better. For instance, one can
choose 𝜁select to be a lightweight model that can choose multiple features at once. In our
experiments in Sections 4.6 & 4.7, we choose 𝜁select to be a model that selects one feature
per step 𝑡 ; in contrast, for the experiment based on image data in Section 4.8, we use a
𝜁select that selects a patch of nine pixels per step. This makes the resulting selection eas-
ier to interpret than one where individual pixels can be selected, while at the same time
reducing the number of steps needed to select a complete image. We expect that specific
𝜁select models can be developed to increase the computational efficiency and scalability of
SUWR further.

Nevertheless, we want to note that there are some unintuitive aspects of SUWR that
seem to be unavoidable consequences from the definition of leakage. In particular, at the
first step (𝑡 = 0) SUWR selects features without conditioning on any feature values, thus
this first step can be seen as a blind selection. While 𝜁select(∅) can be optimized to select the
most informative features, its distribution over features must be the same for all possible
values of 𝑥 . At first glance this may seem counter-intuitive, however, it appears that this
is an inevitable consequence of selecting without leakage. Consider a setting where we
wish to select a single feature per 𝑥 without leakage, according to Corollary 4.3.5, the
selection of a single feature can only depend on the value of that single feature. However,
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Figure 4.1: Performance curves of the first experiment. Grey area indicates performance that is impossible
without leakage.

if the distribution of features supports the Cartesian product of possible feature values
(Eq. 4.11), then the probability of each mask is not dependent on any feature values. To
put this formally, let ℎonly 𝑖 indicate the mask where only feature 𝑖 is selected: ℎonly 𝑖[𝑖] =
1,∀𝑗 ≠ 𝑖,ℎonly 𝑖[𝑗] = 0, if only such masks can be chosen then the probability each mask is
independent of any feature value since:

𝜁 (ℎonly 𝑖 ∣ 𝑥[𝑖]) (4.14)

= 1− max
{𝑥′∶𝑝(𝑥′)>0∧𝑥[𝑖]=𝑥′[𝑖]}

∑
𝑗∶0<𝑗<𝑑∧𝑖≠𝑗

𝜁 (ℎonly 𝑗 ∣ 𝑥′[𝑗])

= 1− max
{𝑥′∶𝑝(𝑥′)>0}

∑
𝑗∶0<𝑗<𝑑∧𝑖≠𝑗

𝜁 (ℎonly 𝑗 ∣ 𝑥′[𝑗]) = 𝜁 (ℎonly 𝑖),

where we rely on the fact that Eq. 4.11 implies that the maximum operator over unselected
feature values is a constant w.r.t. the value of any selected feature 𝑥[𝑖]. Thus, this deriva-
tion proves that, in this setting, blind selection is necessary for feature selection without
leakage.

4.6 Experiment 1: Pareto Front Analysis
4.6.1 Setup
Our first experiment is designed to identify whether existing methods have leakage. For
that, we design an idealized setup where complete information is available so the Pareto
front can be approximated. Leakage can then be identified by performance that exceeds
that front. Specifically, we design a toy problem with ten binary features: 𝑥 ∈ {0,1}10, in
a uniform distribution: 𝑝(𝑥) ≔ 1024−1. As labels we use a sum of the product of feature
pairs: 𝑦 ≔ (∑5

𝑖=1 𝑥2𝑖−1𝑥2𝑖)2, this induces feature redundancies that enable interesting local
feature selection. For example, if 𝑥1 = 0 then the value of 𝑥2 is irrelevant to 𝑦, but if 𝑥1 = 1
then 𝑥2 is relevant; this is a typical kind of pattern that only local feature selectionmethods



4

54 4 Towards the Faithfulness of Interpretable Models

can capture. For this experiment, all methods are provided all possible values of 𝑥 and 𝑦,
this creates a fair comparison with the Pareto front which is constructed using the same
complete information.

4.6.2 Methods
The comparison includes the following state-of-the-art methods:

(i) L2X [24]: https://github.com/Jianbo-Lab/L2X;

(ii) INVASE [141]: https://github.com/jsyoon0823/INVASE;

(iii) TabNet [7]: https://github.com/dreamquark-ai/tabnet;

(iv) REAL-X [54]: https://github.com/rajesh-lab/realx;

(v) our proposed SUWR method.

(vi) local-optimal, a close approximation of the Pareto front using the linear program-
ming method from Section 4.4;

(vii) global-optimal, the Pareto front of global feature selection computed through brute-
force.

All methods are built on neural networks. Among all, L2X, INVASE and REAL-X have
independent selector and predictor models. The selector is constructed by feed-forward
(FF) layers and outputs a selection probability for each feature. The predictor has a similar
architecture but outputs the task-specific prediction, using the selected input by masking
out the unselected features. CAE is slightly different, as it uses a single trainable 𝑑 × 𝑘
matrix as the global selector, the matrix values are used as the selection probabilities. The
predictor is an FF network, which transforms the selected features (so the input dimension
reduces to 𝑘) and outputs the prediction. TabNet unlike the others, has a single architec-
ture for both selection and prediction. The selection is conducted step-wisely by a neural
selection component and the final prediction is generated by ensembling the outputs from
all steps.

Our method is flexible in architecture design. We choose to employ a simple model
with FF networks to generate selection (𝑢𝑡 ), prediction (𝑦̂𝑡 ) and stop probability (𝑝𝑡stop)
simultaneously at the step 𝑡 , defined as follows:

𝑒𝑛𝑐 = FFenc(𝑥 ⊙ℎ𝑡 ), 𝑝𝑡stop = FFstop(𝑒𝑛𝑐), 𝑢𝑡 = FFselect(𝑒𝑛𝑐), 𝑦̂𝑡 = FFpred(𝑒𝑛𝑐) (4.15)

FFenc is used to encode the input to a hidden representation and across all experiments,
we set it to 3 layers. FFstop and FFselect are both set to 1 layer. FFpred is set to 1 layer for toy
and synthetic datasets, and 2 layers for MNIST datasets. The selection for next step ℎ𝑡+1
is sampled from 𝑢𝑡 , and to avoid repeated selection, the probabilities of selected features
in corresponding 𝑢𝑡 are set to 0 before sampling.

For sparsity-related hyper-parameters, both L2X and CAE require a pre-specified 𝑘
value as the number of selected features; the rest of methods determine the number of
selections by a sparsity weight 𝜆. Additionally, TabNet also requires a number of steps
𝑛𝑠𝑡𝑒𝑝𝑠 , except for 𝜆. For our method, we need to specify a maximum selection budget (or
step) 𝑇 , and a sparsity weight 𝜆 to control the number of selections.

https://github.com/Jianbo-Lab/L2X
https://github.com/jsyoon0823/INVASE
https://github.com/dreamquark-ai/tabnet
https://github.com/rajesh-lab/realx
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Table 4.2: Selection and prediction performance on the synthetic benchmark of the second experiment. Results
are averages over five runs.

Dataset Syn1 (𝑔1) Syn2 (𝑔2) Syn3 (𝑔3) Syn4 (𝑔4) Syn5 (𝑔5) Syn6 (𝑔6)
Metrics TPR↑FDR↓AUROC↑TPRFDRAUROCTPRFDRAUROCCFSR↑TPR↑FDR↓AUROC↑CFSRTPRFDRAUROCCFSRTPRFDRAUROC
w/o FS 100. 82. .578 100. 64. .789 100. 64. .854 100. 100. 64. .558 100. 100. 64. .662 100. 100. 55. .692
Oracle 100. 0. .700 100. 0. .895 100. 0. .903 100. 100. 0. .818 100. 100. 0. .823 100. 100. 0. .902
L2X 33.2 33.6 .675 44.6 55.4 .872 66.0 34. .889 56.5 79.2 34.7 .781 51.0 71.9 43.6 .788 34.0 80.1 19.9 .876
INVASE 100. 0. .692 100. 0. .873 95.0 0. .883 56. 91. 10.2 .792 40.7 76. 2.2 .780 60.7 89.4 7.0 .877
TabNet 86.4 57.9 .667 98.7 5.6 .885 96.6 9.7 .903 99.7 91.5 29.5 .789 98.9 92.5 36.2 .791 100. 97.5 23.6 .870
REAL-X 100. 24.2 .661 100. 20.0 .794 100. 7.94 .873 100. 99.9 41.9 .748 100. 99.8 52.4 .774 100. 97.2 8.27 .842
SUWR 100. 2.35 .700 97.0 0. .895 100. 0. .903 100. 98.0 20.0 .810 100. 99.6 20.0 .816 100. 97.4 0.37 .896

4.6.3 Results
Figure 4.1 displays the performance curves of each method in terms of mean squared er-
ror (MSE) and mean ratio of the number of selected features. There is a large gap between
the Pareto fronts of local and global feature selection, showing the usefulness of local
selection in this setting. However, all of the baseline methods produce policies that im-
prove over the Pareto front, which is impossible without leakage. For instance, TabNet only
needs two features to achieve perfect prediction. Clearly, given the formula for 𝑦 , this is
impossible with predictors that truly only use two features. Therefore, our results prove
that L2X, INVASE, TabNet and REAL-X all have leakage, and thus, that their selectors en-
code additional information into their selections. Even though REAL-X was specifically
proposed to mitigate this issue by adding noise to ℎ, our results prove that this strategy
is not enough to prevent leakage. In contrast, SUWR is the only method that is close to
the Pareto front and stays in the range of possible performance. As expected, because
SUWR is guaranteed to have no leakage. In conclusion, these results conclusively prove
that all of the baseline methods have leakage. To the best of our knowledge, we can there-
fore conclude that SUWR is the first and the only local feature selection method without
leakage.

4.7 Experiment 2: Synthetic Benchmark
4.7.1 Setup
Whilst SUWR has excellent performance for the first experiment (Section 4.6), it con-
cerned an idealized complete-information setting. Our second experiment aims to eval-
uate its generalizability by considering a more realistic setup where the training and
test sets are separated. For a better comparison with previous work, we use an exist-
ing benchmark [24, 54, 141]. In this setup, eleven features, 𝑥 ∈ ℝ11, are sampled from a
normal distribution: 𝑥[𝑖] ∼ 𝒩 (0,1). Labels are binary, 𝑦 ∈ {0,1}, and sampled according to
𝑝(𝑦 = 1 ∣ 𝑥) ≔ 1

1+𝑔(𝑥) . The 𝑔(𝑥) function thus determines the relation between 𝑥 and 𝑦. Six
different 𝑔(𝑥) functions are used, the first three use non-overlapping sets of features:

• 𝑔1(𝑥) ≔ exp(𝑥[1]𝑥[2]);

• 𝑔2(𝑥) ≔ exp(∑6
𝑖=3 𝑥[𝑖]2 −4);
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• 𝑔3(𝑥) ≔ −10sin(2𝑥[7]) + 2|𝑥[8]| + 𝑥[9]+ exp(−𝑥[10]).
The latter three use a selection function based on the eleventh feature: 𝑧(𝑥,𝑔,𝑔′) ≔1[𝑥[11] <
0]𝑔(𝑥)+1[𝑥[11] ≥ 0]𝑔′(𝑥), to choose between the first three functions:

• 𝑔4(𝑥) ≔ 𝑧(𝑥,𝑔1, 𝑔2);
• 𝑔5(𝑥) ≔ 𝑧(𝑥,𝑔1, 𝑔3);
• 𝑔6(𝑥) ≔ 𝑧(𝑥,𝑔2, 𝑔3).

Thereby, the latter are specifically designed for local feature selection where the eleventh
feature (called the control-flow feature) determines the relevance of the other features. We
use 10,000 independent samples for training and another 10,000 as the test set.

4.7.2 Methods
The same methods are included as in the first experiment (Section 4.6). Additionally, we
also train a predictor without feature selection (w/o FS) and another with an oracle selector
that only selects the features used by 𝑔(𝑥) for each 𝑥 .

4.7.3 Metrics
We use the same metrics as Jethani et al. [54]:

• the true positive rate: TPR = # selected relevant features
# relevant features ;

• the false discovery rate FDR = # selected irrelevant features
# selected features ;

• the control-flow selection rate (CFSR): the frequency of selecting the eleventh feature.

To measure predictive performance, we use the area under the receiver operating charac-
teristic curve (AUROC). We note that a low CFSR score indicates leakage especially when
TPR or AUROC is high, because it means the feature selection method actually uses the
control-flow feature but does not select it.

4.7.4 Results
Table 4.2 displays our results on the synthetic benchmark test set. Interestingly, there is
a large gap in the AUROC between the baseline without feature selection and the oracle
baseline in all settings, this indicates that excluding irrelevant features can make predic-
tion substantially easier.

In terms of AUROC, SUWR consistently has the highest performance of all methods
(excluding the oracle), with especially high margins on the latter three settings (Syn4-6).
In the first three settings (Syn1-3), SUWR reaches oracle performance; whilst among the
other methods, only TabNet is able to reach oracle performance in the third setting (Syn3).
This is surprising, since the first experiments showed that the existing methods could
reach extremely high performance through leakage. However, a key difference with the
first experiment is that in this setting evaluation is based on a held-out test set. Therefore,
leakage could instead result in heavy overfitting in this setting, whereas it could not in
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Figure 4.2: Left: at what step x11 is selected for Syn6. Right: selection budget vs. sparsity for Syn1, where only
two features are relevant.

the first experiment. We believe that this explains why SUWR has substantially higher
predictive performance for the second experiment: There are many more ways to overfit
with leakage than without, as a result, SUWR is less prone to overfitting than the existing
methods.

In terms of correct feature selection, SUWR has a near-perfect TPR that is greater than
97% across all settings and a perfect CFSR of 100% in the relevant settings (Syn4-6). REAL-
X is the only baseline that has comparable TPR and CFSR across all settings. The FDR of
SUWR is consistently lower than all baselines in all settings, except for INVASE which
does better in the fourth and fifth setting (Syn4-5). Nevertheless, INVASE also has a very
low CFSR and TPR in these settings, which strongly suggests that it is benefitting from
leakage. Accordingly, the possibility of feature leakage makes it difficult to compare the
feature sparsity of SUWR with the baselines. Nonetheless, in our results, SUWR has near-
perfect TPR and perfect CFSR, and the best FDR of baselines with comparable TPR and
CFSR.

We also show that SUWR consistently learns to select the control-flow feature first and
that SUWR is very robust to the budget parameter 𝑇 . Figure 4.2 shows the advantages of
ourmethod. Firstly, as shown in the left figure, ourmethod is able to select the control-flow
feature (x11) at the very first step, as its value determines the upcoming relevant features.
We observed that for the other step-wise method TabNet, x11 is usually selected in a later
step. Our method in this regard, provides a more interpretable reasoning logic for the
selection decision. Furthermore, as the right figure shows, our method has the flexibility
to allow us to either explicitly specify a selection budget without sparsity penalty, or figure
out the right number of features by tuning a sparsity weight within a maximum selection
budget, so that the model can squeeze out irrelevant features and converge to the optimal
selection within the budget window.

In conclusion, our results on the synthetic benchmark reveal that SUWR reaches higher
predictive performance than the baselines. We believe this is the case because leakage
makes local feature selection methods more prone to overfitting, from which SUWR is
unaffected. Furthermore, it also appears that SUWR selects nearly all relevant features
while excluding more irrelevant features than baseline methods.
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Figure 4.3: Results on MNIST: digits (left) and fashion (right).

4.8 Experiment 3: MNIST Digits and Fashion
4.8.1 Setup
Finally, we evaluate SUWRon an image classification task on two datasets: digits-MNIST [69]
and fashion-MNIST [136]. Both datasets consist of 28×28 (784) pixel images and each im-
age is annotated by one of ten classes, indicating either which digit or which type of
fashion item is in the image. Because individual pixels are difficult to see in visualizations,
we let the methods select 3×3 patches of pixels on the fashion dataset. As a result, the
produced selection masks are much easier to interpret as selected pixels are less scattered.

4.8.2 Methods
We omit L2X and INVASE from this comparison due to their extremely unrealistic and
unfaithful behavior in a previous study by Jethani et al. [54] (e.g., 96% accuracy while
selecting a single pixel). Despite its leakage, we do include REAL-X since its introduction
was motivated with its performance on digits-MNIST [54]. Additionally, we include the
concrete autoencoder (CAE) [9], a state-of-the-art global feature selection method, and a
predictor trained without any feature selection.
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Figure 4.4: Selecting by patch on digits-MNIST. Early stopping before maximum step budget 𝑇 .



4.8 Experiment 3: MNIST Digits and Fashion

4

59

1

2

1

2

3

4
5

1

2

3
4

1

2

3

4
5

6

1

2

3

4 1

2

3

4
5

1

2

3

4

5

Figure 4.5: Several selection masks produced by SUWR for different fashion items from fashion-MNIST. Red
squares indicate selected patches, the numbers shown inside indicate at what step each patch was selected. All
items were correctly classified by SUWR.
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Figure 4.6: Narrative explanations derived from the SUWR inference process for a sandal (top) and boot (bottom)
from fashion-MNIST. Step 𝑡 = 2 up to 𝑡 = 5 are visualized, red squares indicate patches selected in that step, blue
squares those selected in previous steps.

4.8.3 Results
Figure 4.3 displays the performance curves of the methods in terms of accuracy and the
number of selected pixels or patches on the test sets. We see that SUWR consistently
outperforms both CAE and REAL-X on both datasets, and even approximates the per-
formance of the baseline without feature selection while only selecting a fraction of the
features. Admittedly, on digits-MNIST, the difference between SUWR and CAE becomes
marginal when more than thirty pixels are selected, indicating that local selection is less
beneficial on this dataset. In contrast, on fashion-MNIST, the differences between SUWR,
CAE and REAL-X are considerably large; for instance, CAE with ten patches does not yet
achieve the performance that SUWR reaches with just six patches. Surprisingly, REAL-
X consistently has considerably lower performance than both SUWR and CAE. In other
words, the local feature selection of REAL-X does substantially worse than even the global
selections of CAE. We speculate REAL-X is overfitting due to leakage, and additionally,
that its intentional injection of noise during optimization hinders its performance.

Additionally, we also include some patch-selection examples fromdigits-MNIST datasets.
Figure 4.4 again shows the benefits of early stopping in reducing selection while maintain-
ing performance. On the left side, we plot the average number of actual selections (i.e.,
the average sparsity) can be much smaller than the maximum selection budget 𝑇 , under
the same prediction performance. The right side gives a concrete image example of the
digit 0. After 4 steps, the model (1) can correctly predict the digit with high confidence;
and (2) is recommended to stop here by the stop probability. Continuing the selection will
not affect the prediction performance.
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To conclude, our results on the MNIST datasets reveal that SUWR provides substan-
tially better performance curves than REAL-X and CAE. Thereby, SUWR shows that local
feature selectionwithout leakage can provide considerably higher performance than global
feature selection.

4.8.4 Interpretability
Lastly, we discuss several examples that illustrate how SUWR makes predictions more in-
terpretable. Figure 4.5 displays the selection masks for several items in fashion-MNIST,
and the order in which patches were selected. We see that the placement, order and num-
ber of selected patches highly varies per image. Because SUWR has no leakage, we are
certain that no features outside of the selected patches were used for prediction. Thus, i.e.,
we know that the trousers were correctly classified based only on two patches. Similarly,
the bag was classified using only four patches: three on its edges and an empty patch on
the top. While these insights may be surprising, they are provenly faithful and thus pro-
vide an accurate account of the complete information that SUWR used for its predictions.

Figure 4.5 illustrates several steps in the SUWR inference process for a sandal and a
boot. Besides what patches are selected per step, we also see how predictions and stop
probabilities change as more features are selected. This brings numerous interesting in-
sights; e.g., the differences in predictions between the two items at 𝑡 = 2 can be attributed
to a single pixel (top-left of the bottom patch). Additionally, we see that the predictor is
already correct about the sandal after the third patch, but SUWR decides to select more
features for more certainty.

Another example in Figure 4.7 shows the process of predicting an image of “3” with
step-wisely selecting patches. The first three patches are enough to distinguish the image
from the rest of classes except for “8”, and the fourth path however, shows high discrimi-
native information of “3” or “8”. This is also supported by the minor perturbation of pixels
in the fourth patch. When the fourth patch is not blank anymore, the prediction is flipped



4.9 Necessary and sufficient conditions for feature selection without label or feature leakage

4

61

from “3” to “8”. This example shows a strong example of how the SUWR can explain the
contribution of each feature to the prediction, which here gives much more insight than
if one would highlight all selected features at once. To the best of our knowledge, SUWR
is the first local feature selection method that provides narrative explanations that are
guaranteed to be faithful.

4.9 Necessary and sufficient conditions for feature selec-
tion without label or feature leakage

Our formal proofs for the conditions for leakage will rely on two basic assumptions:

Assumption 4.9.1. The choice of selector policy has no effect on the label distribution:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(𝑦 ∣ 𝑥[𝑠in]) = 𝑝(𝑦 ∣ 𝑥[𝑠in], 𝜁 ). (4.16)

Assumption 4.9.2. The choice of selector policy has no effect on the feature distribution:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in]) = 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in], 𝜁 ). (4.17)

Together, these assumptions entail that the natural distribution of features and labels
is not dependent on the feature selector, i.e., 𝜁 does not have any effect on the feature and
label frequencies in the data.

Theorem 4.9.3. A features selector does not have label leakage if and only if every proba-
bility for every possible feature selection does not depend on label values:

(¬Label-Leakage(𝜁 ))
⟷ (∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 )
= 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex]ℎ𝑠𝑝𝑎𝑐𝑒1𝑐𝑚 = 0 ∣ 𝑥[𝑠in],𝑦, 𝜁 )).

(4.18)

Proof. First, we take Eq. 4.4 from Definition 4.3.3 and multiply both sides with 𝑝(ℎ[𝑠in] =
1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 ), to get the following:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(𝑦 ∣ 𝑥[𝑠in])𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 )
= 𝑝(𝑦,ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 ). (4.19)

From Assumption 4.9.1, we have 𝑝(𝑦 ∣ 𝑥[𝑠in]) = 𝑝(𝑦 ∣ 𝑥[𝑠in], 𝜁 ), from Definition 4.3.2 we
know these values are positive, and thus we can divide each side of Eq. 4.19 by them:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(𝑦 ∣ 𝑥[𝑠in])𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 )
𝑝(𝑦 ∣ 𝑥[𝑠in])

= 𝑝(𝑦,ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 )
𝑝(𝑦 ∣ 𝑥[𝑠in], 𝜁 ) .

(4.20)

Reformulating each side of the above equation, results in:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 |𝑥[𝑠in], 𝜁 ) = 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 |𝑥[𝑠in],𝑦, 𝜁 ).
(4.21)
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Thereby, we have proven that the condition for label leakage in Eq. 4.4 of Definition 4.3.3
implies the condition in Eq. 4.21. Since our derivation is still valid when reversed, it also
proves Eq. 4.21 implies Eq. 4.4. Therefore, the conditions are logically equivalent, this
completes our proof. □

Theorem 4.9.4. A features selector does not have feature leakage if and only if every prob-
ability for every possible feature selection does not depend on non-selected feature values:

(¬Feature-Leakage(𝜁 ))
⟷ (∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 )
= 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in],𝑥[𝑠ex], 𝜁 )).

(4.22)

Proof. Analogous to the proof for Theorem 4.9.3, we begin by taking Eq. 4.5 from Defini-
tion 4.3.4 and multiply both sides with 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 ), to get the follow-
ing:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in])𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0, ∣ 𝑥[𝑠in], 𝜁 )
= 𝑝(𝑥[𝑠ex],ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0, ∣ 𝑥[𝑠in], 𝜁 ). (4.23)

FromAssumption 4.9.2, we have 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in]) = 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in], 𝜁 ), fromDefinition 4.3.2
we know these values are positive, and thus we can divide each side of Eq. 4.23 by them:

∀(𝑥,𝑦, 𝑠in, 𝑠ex) ∈ Ω, 𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in])𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0, ∣ 𝑥[𝑠in], 𝜁 )
𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in])

= 𝑝(𝑥[𝑠ex],ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0, ∣ 𝑥[𝑠in], 𝜁 )
𝑝(𝑥[𝑠ex] ∣ 𝑥[𝑠in], 𝜁 ) .

(4.24)

Reformulating each side of the above equation, results in:

∀(𝑥,𝑦, 𝑠in, 𝑠ex)∈Ω, 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 )
= 𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in],𝑥[𝑠ex], 𝜁 ). (4.25)

Thereby, we have proven that the condition for feature leakage in Eq. 4.5 of Definition 4.3.3
implies the condition in Eq. 4.25. Since our derivation is still valid when reversed, it also
proves Eq. 4.25 implies Eq. 4.5. Therefore, the conditions are logically equivalent, this
completes our proof. □

4.10 Local Feature Selection with SUWR has no Leakage
Theorem 4.10.1. All SUWR feature-selection policies have no leakage. In other words, if
the inference of a policy 𝜁 is computable with SUWR then it has no leakage according to
Definition 4.3.1.

Proof. If 𝜁 is computable by the inference algorithm of SUWR, then it performs at most
𝑇 steps to make a selection. From Algorithm 1, we see that the creation of a selection
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ends when a Bernoulli trail with a probability determined by 𝜁stop succeeds. Therefore,
the probability 𝜁 (ℎ ∣ 𝑥) can be written as an expectation over 𝑇 steps; let 𝑞(𝑡 = 𝑖,ℎ ∣ 𝑥, 𝜁 )
indicate the probability that SUWR reaches step 𝑡 = 𝑖 and with the mask ℎ, we can then
formulate 𝜁 (ℎ ∣ 𝑥) as:

𝜁 (ℎ ∣ 𝑥) = 𝑞(𝑡 = 𝑇 ,ℎ ∣ 𝑥, 𝜁 ) +
𝑇−1
∑
𝑖=0

𝑞(𝑡 = 𝑖,ℎ ∣ 𝑥, 𝜁 )𝜁 𝑡=𝑖stop(𝑥 ⊙ℎ). (4.26)

In less formal terms, it is a sum over the probability of reaching each possible step and the
mask being ℎ at that step multiplied with the probability of stopping at that step. Thus,
𝑞(𝑡 = 𝑖,ℎ ∣ 𝑥, 𝜁 ) is the probability of SUWR reaching a step, not necessarily stopping at that
step. Accordingly, in the first step (𝑡 = 0), the mask is always the empty mask, therefore:

𝑞(𝑡 = 0,ℎ = 0 ∣ 𝑥, 𝜁 ) = 1, 𝑞(𝑡 = 0,ℎ ≠ 0 ∣ 𝑥, 𝜁 ) = 0. (4.27)

To keep our notation brief, we call a mask a subset of another mask if it selects the same
or a subset of features:

ℎ′ ⊆ ℎ⟷ (∀𝑖, ℎ′[𝑖] = 1⟶ℎ[𝑖] = 1). (4.28)

This enables us to give a short definition general definition of 𝑞(𝑡,ℎ ∣ 𝑥, 𝜁 ) by using its
recursive nature:

𝑞(𝑡,ℎ ∣ 𝑥, 𝜁 ) =
⎧⎪
⎨⎪⎩

1, if 𝑡 = 0∧ℎ = 0,
0, if 𝑡 = 0∧ℎ ≠ 0,
∑

ℎ′∶ℎ′⊆ℎ
𝑞(𝑡 − 1,ℎ′ ∣ 𝑥, 𝜁 )(1− 𝜁 𝑡−1stop(𝑥 ⊙ℎ′))∑

𝑢∈{0,1}𝑑∶ℎ′+𝑢=ℎ
𝜁 𝑡−1select(𝑢 ∣ 𝑥 ⊙ℎ′), otherwise.

(4.29)
Thus, when 𝑡 > 0, the value of 𝑞(𝑡,ℎ ∣ 𝑥, 𝜁 ) is a sum over the probability that the previous
step (𝑡 − 1) was reached with a subset of ℎ′ ⊆ ℎ, and that the SUWR process did not stop,
and that a new feature mask 𝑢 was sampled such that ℎ = ℎ′+𝑢. This recursion ends when
𝑡 = 0 is reached.

Clearly, we can see from Eq. 4.29 that for 𝑡 = 0 the 𝑞 function is not conditioned on 𝑥 :
𝑞(𝑡 = 0,ℎ = 0 ∣ 𝑥, 𝜁 ) = 𝑞(𝑡 = 0,ℎ = 0 ∣ 𝜁 ), 𝑞(𝑡 = 0,ℎ ≠ 0 ∣ 𝑥, 𝜁 ) = 𝑞(𝑡 = 0,ℎ ≠ 0 ∣ 𝜁 ), (4.30)

and therefore:
𝑞(𝑡 = 0,ℎ ∣ 𝑥, 𝜁 ) = 𝑞(𝑡 = 0,ℎ ∣ 𝜁 ). (4.31)

Similarly, at 𝑡 = 1 the following holds:

𝑞(𝑡 = 1,ℎ ∣ 𝑥, 𝜁 ) = 𝑞(𝑡 = 0,ℎ = 0 ∣ 𝜁 )(1− 𝜁 𝑡=0stop(∅))𝜁 𝑡=0select(ℎ ∣ ∅), (4.32)

and therefore:
𝑞(𝑡 = 1,ℎ ∣ 𝑥, 𝜁 ) = 𝑞(𝑡 = 1,ℎ ∣ 𝜁 ). (4.33)

We can continue this pattern by considering Eq. 4.29, where we can see that when 𝑡 > 0
the 𝜁stop and 𝜁select only take subsets of ℎ as input. Similarly, through the recursion of 𝑞
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only subsets of ℎ are given as input to 𝑞, therefore, the recursion cannot add a dependency
on any feature value not selected by ℎ. Consequently, the value of 𝑞(𝑡,ℎ ∣ 𝑥, 𝜁 ) does not
depend on any values of 𝑥 not selected by ℎ:

𝑞(𝑡,ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥, 𝜁 ) = 𝑞(𝑡,ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 ). (4.34)

Finally, combining this result with Eq. 4.26, we see that the final stop probability also does
not add a dependency on feature values not selected by ℎ, therefore:

𝜁 (ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥) = 𝜁 (ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in]). (4.35)

According to Corollary 4.3.5, this proves that 𝜁 does not have leakage. □

4.11 Conjecture: SUWR Describes any Selection Policy
without Leakage under Full-Support Feature Distri-
butions

Assumption 4.11.1. The feature value distribution provides support for the Cartesian
product of possible feature values. In other words, if there is a positive probability that
feature 𝑥[𝑖] has value 𝑎 and a positive probability that feature 𝑥[𝑗] has value 𝑏, then there
is a positive probability that feature 𝑥[𝑖] has value 𝑎 and feature 𝑥[𝑗] has value 𝑏 simulta-
neously:

∀𝑖, 𝑗,𝑎,𝑏, (𝑝(𝑥[𝑖] = 𝑎) > 0∧𝑝(𝑥[𝑗] = 𝑏) > 0)⟶𝑝(𝑥[𝑖] = 𝑎,𝑥[𝑗] = 𝑏) > 0. (4.36)

Definition 4.11.2. We define a reversed directed Hasse diagram (RDHD) SUWR policy as a
SUWR policy where the maximum step is the number of features: 𝑇 = 𝑑 , and 𝜁 𝑡select(𝑥 ⊙ℎ)
is a distribution over all single features that have not been selected yet:

𝜁 𝑡select(𝑢 ∣ 𝑥 ⊙ℎ){≥ 0 if (∃!𝑖, 𝑢[𝑖] = 1) ∧ (∀𝑖 ∈ {1,2,…,𝑑}, 𝑢[𝑖] = 1→ ℎ[𝑖] = 0),
= 0 otherwise.

(4.37)

Thereby, at each step 𝑡 , the process either stops or a single feature is added to ℎ. As
a result, the number of features selected by ℎ𝑡 is always equal to 𝑡 : ∑𝑑

𝑖=1 ℎ𝑡 [𝑖] = 𝑑 . An
example visualization of the possible steps of a RDHD SUWR policy for three features is
shown in Figure 4.8.

The naming of this type of policy is inspired by the fact that the inference process
of a RDHD SUWR policy can be visualized as traversing over a Hasse diagram (e.g., in
Figure 4.8). Traditionally, Hasse diagrams are constructed from the complete set and are
not directed. In contrast, RDHD SUWRpolicies start with the empty set and explicitly only
traverse in the direction where elements are added. Hence, we name it after a reversed and
directed version of the Hasse diagram.

Conjecture 4.11.3. Under the assumption that the feature distribution supports the Carte-
sian product of possible feature values (Assumption 4.11.1), every feature selection policy
𝜁 that has no leakage (Definition 4.3.1) has an equivalent RDHD SUWR policy. In other
words, the set of all possible feature selection policies without leakage is a subset of the
set of all possible RDHD SUWR policies.
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∅

{𝑥[1]} {𝑥[2]} {𝑥[3]}

{𝑥[1],𝑥[2]} {𝑥[1],𝑥[3]} {𝑥[2],𝑥[3]}

{𝑥[1],𝑥[2],𝑥[3]}

𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

Figure 4.8: Visualization of all possible steps and transitions for a RDHD SUWR policy when selecting from a
set of three features.

Support. We will provide reasons to support that, under Assumption 4.11.1, for any 𝜁
without leakage, there exists a 𝜁 𝑡stop and 𝜁 𝑡select for a RDHD SUWR policy, such that 𝜁 and
the RDHD SUWR policy have an identical distribution over feature selections.

For this section, the same 𝑞 function is used as for Theorem 4.10, but to keep our nota-
tion short, we will use 𝑞(ℎ ∣ 𝑥 ⊙ℎ) instead of 𝑞(𝑡,ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁stop, 𝜁select).
We can do this without loss of specificity since each ℎ can only occur at a single specific
step: 𝑡 = ∑𝑑

𝑖=1 ℎ[𝑖], we only consider 𝑞 in the context of 𝜁stop & 𝜁select, and we have already
proven that 𝑞 only depends on the features selected by ℎ, i.e., 𝑥 ⊙ℎ (see Theorem 4.10). In
other words, we use 𝑞(ℎ ∣ 𝑥 ⊙ ℎ) as the probability that the SUWR process at some point
considers mask ℎ, this is not the probability that ℎ is selected.

This difference reveals the requirement on the SUWR policy, the probability of consid-
ering ℎ should be equal to or greater than the probability to select ℎ:

∀ℎ,𝑥, 𝑝(𝑥) > 0⟶𝑞(ℎ ∣ 𝑥 ⊙ℎ) > 𝜁 (ℎ ∣ 𝑥 ⊙ℎ). (4.38)

This requirement exists because the probability of selecting ℎ in a RDHD SUWR policy is
equal to:

∀ℎ,𝑥, 𝑝(𝑥) > 0⟶ 𝜁(ℎ ∣ 𝑥 ⊙ℎ) = 𝑞(ℎ ∣ 𝑥 ⊙ℎ)𝜁stop(ℎ ∣ 𝑥 ⊙ℎ). (4.39)

Therefore, the probabilities 𝜁stop(ℎ ∣ 𝑥 ⊙ℎ) have to be:

∀ℎ,𝑥, 𝑝(𝑥) > 0⟶ 𝜁stop(ℎ ∣ 𝑥 ⊙ℎ) = 𝜁 (ℎ ∣ 𝑥 ⊙ℎ)
𝑞(ℎ ∣ 𝑥 ⊙ℎ,𝜁stop, 𝜁select),

(4.40)

this is a valid probability, i.e., 𝜁stop(ℎ ∣ 𝑥 ⊙ ℎ) ∈ [0,1], if Eq. 4.38 is true, i.e., 𝑞(ℎ ∣ 𝑥 ⊙ ℎ) >
𝜁 (ℎ ∣ 𝑥 ⊙ℎ).

Thus, we have to choose 𝜁select such that Eq. 4.38 is guaranteed to hold. To keep our
notation short, we denote 𝜁 𝑡select(𝑖 ∣ 𝑥 ⊙ℎ) for the selection of feature 𝑖, i.e., the sampling of
a vector 𝑢 such that only element 𝑖 is one: 𝑢[𝑖] = 1 and all other values are zero: 𝑖 ≠ 𝑗 ↔
𝑢[𝑗] = 0, conditioned on the feature values of 𝑥 selected by ℎ.
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Our key insight is that every time a RDHD SUWR policy samples a feature, it is ex-
cluding a set of possible selections, which can no longer be reached afterwards. Instead of
thinking about how the SUWR process includes features into its selection, we consider the
possible feature selections it excludes through the addition of each feature. The following
set covers all masks that can no longer be reached after 𝑖 is sampled by SUWR to be added
to mask ℎ:

excluded(ℎ, 𝑖) = {ℎ′ ∶ ℎ[𝑖] = 0∧∀𝑗 ∈ {1,2,…,𝑑},ℎ[𝑗] = 1→ ℎ′[𝑗] = 1}. (4.41)

As we can see, each mask in excluded(ℎ, 𝑖) makes the same selections as ℎ, in addition to
every other possible selection, that does not select 𝑖 as well. We note that when the set is
empty when 𝑖 has already been selected in ℎ: ℎ[𝑖] = 1 ⟶ excluded(ℎ, 𝑖) = ∅. Therefore,
the probability that feature 𝑖 is added to selection ℎ should not exceed the following:

𝑞(ℎ ∣ 𝑥 ⊙ℎ,𝜁stop, 𝜁select)(1− 𝜁stop(𝑖 ∣ 𝑥 ⊙ℎ))𝜁select(𝑖 ∣ 𝑥 ⊙ℎ)
|                                                                          {z                                                                          }

probability of reaching ℎ and adding 𝑖
≤ 1− max

{𝑥[𝑗]∶ℎ[𝑗]=0∧𝑖≠𝑗}
∑

ℎ′∈excluded(ℎ,𝑖)
𝜁 (ℎ′ ∣ 𝑥 ⊙ℎ)

|                                                    {z                                                    }
max. prob. of selections no longer accessible afterwards

. (4.42)

This leads to the following restriction on 𝜁select:

𝜁select(𝑖 ∣ 𝑥 ⊙ℎ) ≤
1−max{𝑥[𝑗]∶ℎ[𝑗]=0∧𝑖≠𝑗}∑ℎ′∈excluded(ℎ,𝑖) 𝜁 (ℎ′ ∣ 𝑥 ⊙ℎ)

𝑞(ℎ ∣ 𝑥 ⊙ℎ,𝜁stop, 𝜁select)(1− 𝜁stop(𝑖 ∣ 𝑥 ⊙ℎ))
(4.43)

This maximum restriction ensures that these selections remain reachable by the RDHD
SUWR policy with the required probability. Thereby ensuring the requirement in Eq. 4.38
is true. Importantly, this maximum can be inferred without knowledge of feature values
that are not selected in ℎ, thus it can be incorporated without introducing leakage.

However, not selecting feature 𝑖 also excludes a possible selection. Namely, the selec-
tion that is made by only adding feature 𝑖 to ℎ, as this can no longer be reached after the
addition of a different feature. We denote this mask as ℎ+𝑖 :

ℎ+𝑖 ∈ {0,1}𝑑 s.t. ℎ[𝑖] = 1∧∀𝑗 ∈ {1,2,…,𝑑}, 𝑖 ≠ 𝑗 ↔ ℎ′[𝑗] = ℎ[𝑗]. (4.44)

Therefore, the probability of reaching ℎ and selecting 𝑖 must be at least as great as the
maximal possible probability of ℎ+𝑖 conditioned on the feature values selected so far:

max
𝑥[𝑖]

𝜁 (ℎ+𝑖 ∣ 𝑥 ⊙ℎ+𝑖) ≤ 𝑞(ℎ ∣ 𝑥 ⊙ℎ,𝜁stop, 𝜁select)(1− 𝜁stop(𝑖 ∣ 𝑥 ⊙ℎ))𝜁select(𝑖 ∣ 𝑥 ⊙ℎ). (4.45)

This results in the following restriction on 𝜁select:
max𝑥[𝑖] 𝜁 (ℎ+𝑖 ∣ 𝑥 ⊙ℎ+𝑖)

𝑞(ℎ ∣ 𝑥 ⊙ℎ,𝜁stop, 𝜁select)(1− 𝜁stop(𝑖 ∣ 𝑥 ⊙ℎ))
≤ 𝜁select(𝑖 ∣ 𝑥 ⊙ℎ). (4.46)
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Again, we note that this restriction can be enforced without introducing leakage as the
minimum value only depends on feature values that are not selected in ℎ.

By combining the requirement in Eq. 4.46 and Eq. 4.43, we see that we need the fol-
lowing requirement to be true:

max
𝑥[𝑖]

𝜁 (ℎ+𝑖 ∣ 𝑥 ⊙ℎ+𝑖) + max
{𝑥[𝑗]∶ℎ[𝑗]=0∧𝑖≠𝑗}

∑
ℎ′∈excluded(ℎ,𝑖)

𝜁 (ℎ′ ∣ 𝑥 ⊙ℎ) ≤ 1. (4.47)

Since if Eq. 4.47 is not true, there is no value of 𝜁select(𝑖 ∣ 𝑥 ⊙ℎ) that can satisfy both Eq. 4.46
and Eq. 4.43.

We will now show that under Assumption 4.11.1, the requirement in Eq. 4.47 is always
guaranteed.³ To start, we use the following to denote the feature values that maximize
each of the maximum operations:

𝑥[𝑖]∗ = argmax
𝑥[𝑖]

𝜁 (ℎ+𝑖 ∣ 𝑥 ⊙ℎ+𝑖),

{𝑥[𝑗]∗} = max
{𝑥[𝑗]∶ℎ[𝑗]=0∧𝑖≠𝑗}

∑
ℎ′∈excluded(ℎ,𝑖)

𝜁 (ℎ′ ∣ 𝑥 ⊙ℎ). (4.48)

Importantly, feature 𝑖 is not selected by anymask in the excluded set: ∀ℎ′ ∈ excluded(ℎ, 𝑖), ℎ[𝑖] =
0. Therefore, there is no overlap between 𝑥[𝑖]∗ and {𝑥[𝑗]∗}, this means that a possible vector
of feature values exists that includes 𝑥[𝑖]∗, {𝑥[𝑗]∗} and 𝑥 ⊙ℎ. We denote this combination
of possible values as:

∃𝑥∗ ∶ 𝑥∗[𝑖] = 𝑥[𝑖]∗ ∧ (∀𝑥[𝑗]∗, 𝑥∗[𝑗] = 𝑥[𝑗]∗) ∧𝑥 ⊙ℎ = 𝑥∗ ⊙ℎ. (4.49)

By the definition of 𝑥∗, 𝑥[𝑖]∗ and {𝑥[𝑗]∗}, this vector maximizes both parts of the left side
of Eq. 4.47:

𝜁 (ℎ+𝑖 ∣ 𝑥∗ ⊙ℎ+𝑖) =max
𝑥[𝑖]

𝜁 (ℎ+𝑖 ∣ 𝑥 ⊙ℎ+𝑖),

∑
ℎ′∈excluded(ℎ,𝑖)

𝜁 (ℎ′ ∣ 𝑥∗ ⊙ℎ) = max
{𝑥[𝑗]∶ℎ[𝑗]=0∧𝑖≠𝑗}

∑
ℎ′∈excluded(ℎ,𝑖)

𝜁 (ℎ′ ∣ 𝑥 ⊙ℎ). (4.50)

Assumption 4.11.1 states that every possible combination of feature values is supported
by the feature distribution, therefore: 𝑝(𝑥 ∗) > 0. 𝜁 is a valid probability distribution over
all possible feature masks. For every possible value of 𝑥 , this means the sum of all proba-
bilities of all masks cannot be greater than one. Therefore, the same goes for this subset
of masks:

𝑝(𝑥 ∗) > 0⟶ 𝜁(ℎ+𝑖 ∣ 𝑥∗ ⊙ℎ+𝑖) + ∑
ℎ′∈excluded(ℎ,𝑖)

𝜁 (ℎ′ ∣ 𝑥∗ ⊙ℎ) ≤ 1. (4.51)

Consequently, the requirement in Eq. 4.47 is guaranteed to hold under Assumption 4.11.1,
and therefore, there always exists a value for 𝜁select(𝑖 ∣ 𝑥 ⊙ℎ) that can satisfy both Eq. 4.46
and Eq. 4.43.

³For comparison, Table 4.3 displays an example where Assumption 4.11.1 is not true, and accordingly, Conjec-
ture 4.11.3 does not hold.
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Table 4.3: Example of a feature selection policy without leakage that is impossible to compute with SUWR. This
happens because the feature distribution does not support the Cartesian product of possible feature values, as
stated in Assumption 4.11.1. In this example, knowing that 𝑥[1] = 1 means one also knows 𝑥[2] = 0 and 𝑥[3] = 0,
therefore, these selections can be safely removed once 𝑥[1] = 1 is known, without introducing leakage. Since
SUWR is agnostic to the underlying feature distribution, it does not use this property to enable the removal
of features after their selection. Consequently, the displayed policy cannot be executed through the SUWR
algorithm. (See Table 4.1 for an explanation of the notation).

𝑝(𝑥,𝑦,ℎ) 𝑥[1] 𝑥[2] 𝑥[3] ℎ[1] ℎ[2] ℎ[2] (𝑥 ⊙ℎ)[1] (𝑥 ⊙ℎ)[2] (𝑥 ⊙ℎ)[3] y

0.333… 1 0 0 1 0 0 1 2
0.333… 0 1 0 0 1 0 1 1
0.333… 0 0 1 0 0 1 1 0

Unfortunately, this does not provide a complete proof, since there is an additional
requirement that we were unable to prove. Namely, Eq. 4.46 can only hold if the following
is true:

max𝑥[𝑖] 𝜁 (ℎ+𝑖 ∣ 𝑥 ⊙ℎ+𝑖)
𝑞(ℎ ∣ 𝑥 ⊙ℎ,𝜁stop, 𝜁select)(1− 𝜁stop(𝑖 ∣ 𝑥 ⊙ℎ))

≤ 1, (4.52)

since otherwise, Eq. 4.46 implies that 𝜁select(𝑖 ∣ 𝑥 ⊙ ℎ) > 1 which would make it an invalid
policy. A simple reformulation reveals that this is a requirement on 𝑞:

𝑞(ℎ ∣ 𝑥 ⊙ℎ,𝜁stop, 𝜁select) ≤
max𝑥[𝑖] 𝜁 (ℎ+𝑖 ∣ 𝑥 ⊙ℎ+𝑖)

1− 𝜁stop(𝑖 ∣ 𝑥 ⊙ℎ)
. (4.53)

In other words, the probability of ℎ being considered conditioned on 𝑥 ⊙ℎ, 𝜁stop and 𝜁select
needs to be great enough to provide enough probability mass for both the maximum pos-
sible probability of ℎ and ℎ+𝑖 . For very small problems with two binary features, we are
able to find a closed-form solution that gaurantees this. Unfortunately, we were unable
to extend this approach to a more generic setting. Nonetheless, it appears that satisfying
both Eq. 4.46 and Eq. 4.43 also guarantees Eq. 4.53, but until this is proven our claim can
only remain a conjecture.

4.12 Details on the Linear Programming Approach
For our linear programming approach, we assume that the problem is fully known, thus
complete knowledge of 𝑝(𝑥,𝑦) is available. In addition, we assume that the set of possible
feature and label values is finite and iterable. As a result, the optimal predictor 𝑓 ∗ can be
treated as a lookup table that stores the optimal prediction per possible selected feature
values. For simplicity, we assume that the optimal prediction value is the expected label
conditioned on the selected feature values:

𝑓 ∗(𝑥 ⊙ℎ) = 𝔼𝑥 [𝑦 ∣ 𝑥 ⊙ℎ] = ∑
𝑥′∶𝑥′⊙ℎ=𝑥⊙ℎ

𝑝(𝑥′)∑
𝑦
𝑝(𝑦 ∣ 𝑥′)𝑦 = ∑

𝑥′∶𝑥′⊙ℎ=𝑥⊙ℎ
𝑝(𝑥′)∑

𝑦
𝑝(𝑦 ∣ 𝑥′)𝑦.

(4.54)
Therefore, we only have to find the optimal selector policy 𝜁 . Our linear programming ap-
proach poses the search as a constrained minimization problem in the following form [29,
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125]:
min𝜃 𝑐𝑇 𝜃 s.t. 𝐴𝜃 = 𝑏 ∧ 0 ≤ 𝜃 ≤ 1, (4.55)

where 𝜃 is a vectorwhere each element represents the conditional probability of a selection
𝜁 (ℎ ∣ 𝑥). The remainder of this section will show how the vectors 𝑏 and 𝑐 and matrix 𝐴
can be constructed so that this minimization problem is equivalent to selection policy
optimization.

To start, we will show how 𝑐 and 𝜃 can be chosen so that 𝑐𝑇 𝜃 = ℒ(𝜁 ,𝑓 ∗) (cf. Eq. 4.2).
Importantly, we want our selection policy to have no leakage, as discussed in Section 4.3.3
this means that:

∀(𝑥,𝑥′,ℎ), 𝑥 ⊙ℎ = 𝑥′ ⊙ℎ⟶ 𝜁(ℎ ∣ 𝑥) = 𝜁 (ℎ ∣ 𝑥′). (4.56)

Therefore, we only have to find a single conditional probability 𝜁 (ℎ ∣ 𝑥) for every unique
𝑥 ⊙ℎ value. Thus, the size of vector 𝑥 is going to be the number of unique possible selected
feature values, where each element corresponds to a single 𝑥 ⊙ ℎ and contains the value
for all corresponding 𝜁 (ℎ ∣ 𝑥) values. To see that our loss can be rewritten as a dot product
with such a vector, we rewrite it as follows:

ℒ(𝜁 ,𝑓 ∗) =∑
𝑥,𝑦

𝑝(𝑥,𝑦)∑
ℎ
[𝜁 (𝑥 ⊙ℎ)𝐿(𝑓 ∗(𝑥 ⊙ℎ),𝑦)+𝜆‖ℎ‖]

= ∑
𝑥⊙ℎ

𝜁 (ℎ ∣ 𝑥) ∑
𝑥′∶𝑥′⊙ℎ=𝑥⊙ℎ

𝑝(𝑥′)(𝜆‖ℎ‖+∑
𝑦
𝑝(𝑦)𝐿(𝑓 ∗(𝑥 ⊙ℎ),𝑦)),

(4.57)

where the summation ∑𝑥⊙ℎ sums over every possible value of 𝑥 ⊙ℎ once. In other words,
if multiple feature values result in the same selected feature values e.g., 𝑥 ⊙ℎ = 𝑥′ ⊙ℎ, only
one of them is considered in the ∑𝑥⊙ℎ sum. From the above reformulation, we see that
for 𝑐𝑇 𝜃 = ℒ(𝜁 ,𝑓 ∗) we require:

∀(𝑥,ℎ), ∃!𝑖 ∈ ℕ>0, 𝜃𝑖 = 𝜁 (ℎ ∣ 𝑥) ∧ 𝑐𝑖 = ∑
𝑥′∶𝑥′⊙ℎ=𝑥⊙ℎ

𝑝(𝑥′)(𝜆‖ℎ‖+∑
𝑦
𝑝(𝑦)𝐿(𝑓 ∗(𝑥 ⊙ℎ),𝑦)).

(4.58)
Algorithm 2 shows how we construct 𝑐 accordingly: first a mapping is made for every
possible selected feature value (𝑥 ⊙ℎ) to an index on 𝑐, next the value of each element of
𝑐 is computed following Eq. 4.58 and stored in the corresponding position.

Besides minimizing ℒ , it is important that the 𝜁 is a valid probability distribution. To
be more precise, for all possible values of the full set of features 𝑥 , 𝜁 should produce a
valid distribution over all possible selections (𝜁 (ℎ ∣ 𝑥)). We can express this formally in
the following manner:

∀𝑥, 𝑝(𝑥) > 0⟶( ∑
ℎ∈𝜁 (𝑥)

𝜁 (ℎ ∣ 𝑥) = ∑
𝑠in,𝑠ex∶𝑠in∪𝑠ex={1,2,...,𝑑}

𝑝(ℎ[𝑠in] = 1,ℎ[𝑠ex] = 0 ∣ 𝑥[𝑠in], 𝜁 ) = 1). (4.59)

For the linear program, this requirement can be expressed through the 𝐴 matrix and 𝑏
vector in a straightforward manner. We set 𝑏 = 1 as a vector of ones with the size of the
number of possible values for 𝑥 . Thematrix𝐴 gets a first dimensionwith the same size as 𝑏
and the second dimension the same size as 𝜃 . Thereby, each row corresponds to a possible
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value of 𝑥 and each column to a possible value of 𝑥 ⊙ ℎ. Algorithm 2 iterates over each
row, representing a possible value of 𝑥 , and then selects each column that corresponds to a
possible set of masked features that could occur for 𝑥 and sets it to one. As a result, 𝐴𝜃 = 𝑏
indicates that the probability distribution 𝜁 (ℎ ∣ 𝑥) sums to one for each possible value of
𝑥 .

Having constructed 𝐴, 𝑏 and 𝑐, we use SciPy to solve the linear programming problem
of Eq. 4.55 [128] and find the optimal value of 𝜃 . Correspondingly, the output of Algo-
rithm 2 is a lookup-table representing the optimal predictor 𝑓 ∗, the vector 𝜃 containing
the optimal probabilities for 𝜁 , and an index that maps each (𝑥,ℎ) to the element in 𝜃
that contains the corresponding 𝜁 (ℎ ∣ 𝑥) value. If the linear programming solver functions
correctly, this solution represents the optimal predictor and selector policies possible for
the task. In our experimental analysis, we assume that the produced solutions are a close
approximation of the optimal policies.
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Algorithm 2 Our linear programming approach.
1: Input: Set of possible features: 𝑋 , Set of possible labels: 𝑌 , Set of possible masks: 𝐻 ,

Probability distribution function: 𝑝(𝑥,𝑦), Loss: 𝐿, Sparsity weight: 𝜆.
2: feat_index← {} # Empty dictionary to map possible masked feature values to indices.
3: feat_labels← {} # Empty dictionary to keep track of label values.
4: 𝑁unique ←0 # Counter tracking number of possible unique selected feature values.
5: for 𝑥 ∈ 𝑋 ,𝑦 ∈ 𝑌 ∶ 𝑝(𝑥,𝑦) > 0 do
6: for ℎ ∈ 𝐻 do
7: if 𝑥 ⊙ℎ ∉ feat_index then
8: 𝑁unique ←𝑁unique +1
9: feat_index[𝑥 ⊙ℎ] = 𝑁unique # If unique, the value 𝑥 ⊙ℎ receives the next

available index.
10: feat_labels[𝑥 ⊙ℎ] = ∅ # Initialize an empty set for every possible associated

label value.
11: end if
12: feat_labels[𝑥 ⊙ℎ]← feat_labels[𝑥 ⊙ℎ] ∪ {(𝑦,𝑝(𝑥,𝑦))} # Possible labels and cond.

probabilities stored per 𝑥 ⊙ℎ.
13: end for
14: end for
15: 𝑐 ← zero_vector(𝑁unique) # Zero initialization of cost vector of size 𝑁unique.
16: 𝑓 ∗ ← {} # Empty dictionary to store optimal predictor.
17: for 𝑥 ⊙ℎ ∈ feat_index do
18: 𝑝(𝑥 ⊙ℎ)←∑(𝑦,𝑝(𝑥,𝑦))∈feat_labels[𝑥⊙ℎ] 𝑝(𝑥,𝑦) # Natural probability of the selected

feature values.
19: 𝑓 ∗(𝑥 ⊙ℎ)← 1

𝑝(𝑥⊙ℎ) ∑(𝑦,𝑝(𝑥,𝑦))∈feat_labels[𝑥⊙ℎ] 𝑝(𝑥,𝑦)𝑦 # Assumption: Optimal

prediction is the expected value.
20: 𝑖 ← feat_index[𝑥 ⊙ℎ]
21: 𝑐[𝑖] ←∑(𝑦,𝑝(𝑥,𝑦))∈feat_labels[𝑥⊙ℎ] 𝑝(𝑥,𝑦)(𝐿(𝑓 ∗(𝑥 ⊙ℎ),𝑦)+𝜆|ℎ|)
22: end for
23: 𝐴← zero_matrix(|𝑋 |,𝑁unique) # Zero initialization of constraint matrix of size

|𝑋 | ×𝑁unique.
24: 𝑖 ← 0
25: for 𝑥 ∈ 𝑋 do
26: 𝑖 ← 𝑖 +1
27: for ℎ ∈ 𝐻 do
28: 𝑗 ← feat_index[𝑥 ⊙ℎ]
29: 𝐴[𝑖, 𝑗] ← 1 # Setting ones for every possible selected feature values per row for

each 𝑥 .
30: end for
31: end for
32: 𝑏 ← one_vector(|𝑋 |) # Vector of size |𝑋 | (number of possible feature values) filled with

ones.
33: 𝜃 ← Linear_Program_Solver(𝐴,𝑏, 𝑐) # Solves Eq. 4.55, outputs vector of size 𝑁unique

with ordering matching feat_index.
34: Return: 𝑓 ∗, 𝜃, feat_index =0
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4.13 Conclusion
RQ3: Are self-explainable models faithful and how to design theoretically guaranteed
faithful models? We have shown that self-explainable models via local feature selection
are not always faithful and their prediction might come from additional information other
than solely selected features due to feature or label leakage. This work has provided the
first formal definition of feature and label leakage, which causes local feature selection
methods to provide misleading explanations of what information predictions are based on.
To design theoretically guaranteed faithful models, we derived the necessary and sufficient
conditions for leakage and introduced the first methods that are guaranteed to have no
leakage: a linear programming method and SUWR. Our experimental results reveal that
existing state-of-the-art methods are all subject to leakage, in addition to beingmisleading,
this also appears to make them more prone to overfitting. In contrast, our results indicate
that SUWR combines high selection sparsity with high predictive accuracy, outperforming
all our baselines across several benchmarks. Uniquely, the step-by-step SUWR process
can be used as a narrative explanation itself. The SUWR approach is generic and easily
extendable, we believe it can serve as a strong foundation for future work on faithful
interpretable ML predictions with theoretical guarantees.

In particular, future work could consider methods to scale the SUWR approach to
high-dimensional data. For instance, by developing model architectures that can be ap-
plied efficiently in the SUWR framework. Alternatively, one could investigate whether
our definitions of leakage could provide a basis for novel indicators of feature importance.
In order to promote the future extension of our work, we have made the implementations
of our method and experiments publicly available⁴.

⁴https://github.com/GarfieldLyu/SUWR

https://github.com/GarfieldLyu/SUWR
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5
Conclusion

Information retrieval (IR) is the foundational step for many knowledge-intensive tasks,
underscoring the urgent need for transparent and reliable IR systems. However, the com-
plexity of IR models, often functioning as black boxes with neural components, makes it
unclear how individual items are ranked or decisions are made. This opacity can encode
biases, such as those related to gender and ethnicity, undermining the system’s reliabil-
ity. Moreover, crucial factors for model decisions may be hidden or based on unintended
patterns, going unnoticed and unaligned with the correct human rationale. Additionally,
neural models are known to be fragile and susceptible to subtle perturbations.

Correspondingly, this thesis aims at improving the interpretability of IR models. In
general, our contributions fall into two broad diagrams including (1). post-hoc explana-
tion of neural text ranking models, and (2). building intrinsically interpretable models.
We draw inspiration from interpretable machine learning (ML) while also considering the
unique aspects of IR to enhance ranking-related explanations. Our efforts extend beyond
bridging research gaps between these domains; they also contribute to the theoretical foun-
dations of interpretable ML. However, despite the potentially significant societal impact
of creating transparent and trustworthy systems, our work faces several challenges, par-
ticularly in the era dominated by large language models (LLMs). In the rest of this section,
we will first present a summary of the findings and contributions covered in this thesis.
Then, we explore the social implications of our contributions. Lastly, we conclude this
thesis by identifying limitations and proposing potential directions for future research.

5.1 Summary of Contributions
5.1.1 Query Expansion as Post-hoc Explanations
RQ1 How do we explain ranking-specific decisions from black-box text ranking models?

To address the research question at hand, we begin by highlighting the distinctions be-
tween ranking domains and other conventional machine learning tasks. In ranking, deci-
sions are derived from pointwise predictions that are then aggregated to form rank pairs
and lists. This aggregation process inherently complicates the explanation of ranking out-
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puts, as it requires consideration of multiple items, often numbering in the hundreds. Sec-
ondly, we argue that classical IR relevance factors (or axioms) such as term frequency,
semantic similarity, etc., are helpful for users to explain ranking decisions. Additionally,
it is crucial to acknowledge that users convey their search intent through queries. Whether
the machine learning model accurately perceives this intent is often unclear. Hence, we
argue that the initial and most vital step in explaining a ranking model is to assess its
comprehension of the search query.

In light of these considerations, we propose utilizing query expansion as a means to
elucidate the model’s understanding of the query, which subsequently leads to a specific
ranking outcome. Our method called MULTIPLEX involves a post-hoc, model-agnostic
framework designed to explain text rankingmodels through the use of multiple explainers.
We employ classical IR models as straightforward proxy explainers to demystify the work-
ings of complex ranking models within the framework of established relevance factors. To
enhance the fidelity of these explanations, we directly optimize the degree of preference
coverage using linear programming. This allows us to flexibly operate on any number of
explainers and choose any size of expansions. Our extensive experimental results demon-
strate that our approach can produce high-fidelity explanations for over-parameterized
models, such as BERT, achieving fidelity improvements of up to 54%.

Reflections. Our method explains a ranking by a set of terms attributed to a union of mul-
tiple explainers. Balancing efficiency and fidelity (preference coverage) is crucial for de-
veloping effective explanation algorithm. Future work may consider extending our frame-
work to account for n-grams or short terms to enhance readability. Additionally, it is
interesting to examine which explainer (or ranking heuristic) contributes to which extent
using which particular terms. Moreover, it is well known that validating explanations is
challenging, especially in the absence of ground-truth data. While we measure fidelity in
this work, it might not fully capture the underlying logic of a complex model. Therefore,
incorporating human perspectives into the evaluation process and balancing the cost of
annotating numerous decisions in a ranking are important areas for future exploration.

5.1.2 Adapting Interpretable ML to Interpretable Ranking
RQ2 Is interpretable ML applicable for building self-explainable ranking models?

As discussed in previous sections, self-explainable models have increasingly gained trac-
tion in interpretable machine learning (ML) due to their inherent transparency. One
widely recognized method for achieving transparency is through feature selection. Al-
though this concept is well-established and extensively researched in interpretable ML, it
has not been as thoroughly explored in the field of information retrieval (IR). Therefore,
the primary contribution of this work is to bridge the gap between interpretable ML and
IR, specifically in the learning to rank (LTR) domain.

We begin by outlining the commonalities between ML and neural LTR, as well as the
unique characteristics of ranking systems. For example, in addition to interpretability,
efficiency and robustness are highly valued in IR systems. To address this, we have in-
vestigated the effectiveness of feature selection methods from interpretable ML in neural
LTR, focusing on their impact on interpretability, efficiency, and robustness.
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Specifically, we adapt six existing methods from interpretable ML to the neural LTR
context and introduce our own G-L2X approach. We examined the distinct characteristics
of these methods and their relevance to the LTR task. Subsequently, we conduct exten-
sive experiments to evaluate the trade-offs between ranking performance and sparsity.
Our findings indicate that several methods from interpretable ML are highly effective for
feature selection in neural LTR. Notably, the local method TABNET can achieve optimal
ranking performance with fewer than 10 features. Additionally, we analyzed the efficiency
improvements through reductions in feature costs. The global methods, especially G-L2X,
can decrease feature retrieval costs by more than 70% while maintaining 96% of the per-
formance compared to a full feature model. Finally, we observe that all global methods, as
well as one local method IFG, demonstrate higher robustness and lower sensibility against
perturbations and randomness.

Reflections. This work mainly focuses on bridging the gap between the LTR and inter-
pretable ML fields. The resulting ranking performance is comparable, yet not substantially
superior to the ones by decision trees. Thus, future work can take inspiration from tree
models and incorporate them with neural feature selection. Furthermore, understanding
correlations between features and using features that are not just interpretable, but also
fast-to-compute, could support both practitioners and users to achieve transparent and
efficient ranking systems.

5.1.3 Faithful Interpretable Models without Leakage
RQ3 Are self-explainable models faithful and how to design theoretically guaranteed

faithful models?

This research question is divided into two sub-questions, which in turn lead to two phases
of work. The first sub-question addresses a well-established concept in the field of in-
terpretable ML: the extracted explanations are faithful to the model’s prediction because
the information utilized by the model comes solely from the extracted explanations. We
challenge this concept by introducing our own definition of faithfulness: a faithful model
should not exhibit feature leakage or label leakage. We provide formal mathematical defi-
nitions for both types of leakage. Next, we analyze several widely recognized methods in
interpretable ML, and surprisingly, all of these methods are subject to leakage, which can
lead to misleading explanations and unreliable performance.

Following this, the subsequent question explores how to design a model that ensures
no leakage. Building upon our definition of leakage, we derive the necessary and sufficient
conditions to introduce the first methods that guarantee no leakage: a linear programming
approach and SUWR. The linear programming method operates with complete informa-
tion, whereas SUWR optimizes based on existing knowledge and can generalize to unseen
scenarios. Therefore, SUWR presents a more realistic solution.

Our extensive results show that SUWR excels in achieving high selection sparsity with-
out compromising predictive accuracy, consistently outperforming all baseline methods
across various benchmark datasets. What sets SUWR apart is its ability to provide a step-
by-step process that serves as a coherent narrative explanation in itself. Given its generic
and adaptable nature, we believe SUWR lays a solid groundwork for future research in
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interpretable ML, offering theoretical guarantees for accurate and transparent model pre-
dictions.

Reflections. While the guarantee of no leakage is a great advantage over existing meth-
ods, our SUWR algorithm could potentially require more computational costs than previ-
ous approaches. This could pose a challenge to data with high dimensionality, e.g., if 𝜁
only selects a single feature per step, and thus a high 𝑇 should be chosen. However, the
SUWR framework is highly flexible and can be adapted to handle such situations better.
For instance, one can choose 𝜁select to be a lightweight model that can choose multiple fea-
tures at once, allowing SUWR approach to scale to high-dimensional data. Additionally,
our definitions of leakage might serve as a foundation for novel indicators of feature im-
portance. Exploring the potential of relaxing the no-leakage guarantee of SUWR to better
suit natural language domains is also worth considering.

5.2 Ethical and Societal Impacts
Interpretable information retrieval (IR) systems have the potential to highly impact soci-
ety by enhancing transparency and accountability in information-seeking processes. This
thesis aims to enhance transparency and, crucially, foster trust in modern IR systems by
providing clear and understandable explanations of how search results are generated by
models. Furthermore, this thesis also makes a significant contribution to the field of in-
terpretable machine learning (ML), which is crucial for the development of transparent
and hence responsible machine learning systems. We show that our methods are versatile
and can be applied to numerous applications, from healthcare to finance. Our research
provides the theoretical foundation for further advancements in creating models that are
not only effective but also intrinsically transparent and thus promote accountability. In an
era where algorithmic decisions have profound impacts on individuals and societies, the
methodologies presented in this thesis ensure that these systems can be scrutinized and
understood by stakeholders, thereby fostering trust and facilitating the broader adoption
of AI technologies in sensitive and impactful domains.

5.3 Broader Discussion and Moving Forward
The research in this thesis was carried out over a brief period, during which machine
learning (ML) and information retrieval (IR) have continued to evolve rapidly. Recent
advancements in retrieval-augmented generation (RAG) are merging the fields of infor-
mation retrieval (IR) and large language models (LLMs). It appears IR will only continue
to engage closely in modern intelligent systems. Given the constraints of timeline and
research scopes, we have identified multiple limitations in achieving interpretable IR. In
this section, we will discuss some major limitations in a high level. More importantly, we
propose a variety of future directions that can potentially improve the transparency and
accountability of intelligent systems.

5.3.1 Engaging Diverse Stakeholders
In this thesis, our main objective has been to clarify complex model predictions for de-
velopers. This requires a strong grasp of basic machine learning (ML) and information re-
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trieval (IR) principles. For other audiences, particularly end users, our explanations may
fall short of being fully comprehensible and, as a result, may not effectively enhance users’
trust in the systems. Additionally, our research primarily concentrates on the fidelity of
explanations and the effectiveness of models, while other important criteria, such as effi-
ciency and fairness, have been overlooked. With the growing interest in developing ML
systems across various application domains, ethical considerations have become a major
topic of discussion. Information retrieval, as a fundamental application that closely in-
volves both machines and users, must incorporate input from domain experts to address
ethical requirements. We believe that the transparency and trustworthiness of compre-
hensive systems cannot be achieved without involving all stakeholders. Therefore, future
work should take into account different audiences and potentially generate tailored expla-
nations for specific audience groups.

Starting from rethinking the purpose of explanations, it becomes clear that different
stakeholders have varying interests. For instance, system developers may prioritize the
model’s ability to uncover meaningful correlations within datasets. Therefore, explana-
tions that highlight key features can be valuable for developers, aiding them in debugging
models and ensuring that predictions are accurate for the correct reasons. However, there
remains a need for explanationmethods specifically designed for these sanity checks. Con-
sequently, the evaluation metrics for explanations should evolve to accommodate this
new role. For example, one metric could assess how effectively the explanations help
developers identify undesirable biases. When considering domain experts, explanations
can serve as alerts if they do not align with the experts’ predefined guidelines. This could
include instances where explanations contradict domain knowledge or violate ethical stan-
dards. On the other hand, end users, who typically lack technical expertise, may require
more accessible explanations, preferably in natural language. In this case, the methods
used for generating explanations, the final format of these explanations, and the evalua-
tion metrics will likely differ from those used for developers or domain experts.

5.3.2 The Lack of Real-World Practice
The work we have discussed in this thesis mainly involves popular open-source mod-
els rather than comprehensive real-world systems, such as commercial search engines
or domain-specific applications. Consequently, it remains uncertain what the actual chal-
lenges are or whether the explanation methods can seamlessly apply to the typically more
complex real-world systems. Although the datasets used in Chapter 2 and Chapter 3 are
real-world search logs, they have been in use for over a decade and may no longer meet
the standards of modern information-seeking purposes. Therefore, keeping academic re-
search aligned with real-world practices is undoubtedly beneficial for both fields. This is
surely a nontrivial process.

Real-world applications typically prioritize certain aspects. Firstly, can explanations
be provided to users in real-time for (ideally) every action? Since latency is one of the
most crucial factors affecting user satisfaction, balancing the trade-offs between explana-
tion accuracy (or faithfulness) and the time required to generate these explanations is a
potential area for future work. Additionally, commercial search engines often interact
directly with end users. As previously discussed, explanations for a particular ranking
should be understandable to end users. Therefore, exploring the optimal formats and pre-
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sentationmethods for these explanations is also valuable. Lastly, privacy is a big concern
for end users in many applications. In the context of search engines, users are often cu-
rious about what information about themselves is used for specific promotions. Does the
search engine maintain a user profile for each individual and generate personalized ad-
vertisements based on it? Helping users understand whether such profiles exist and if they
are accurate not only builds trust but also supports privacy advocacy.

5.3.3 Interpretability in the Era of Large Language Models
Large language models (LLMs) [13] have received unprecedented attention and success
recently due to their great generative capabilities. Such a natural-language level of gener-
ative capabilities can be a double-edged sword. On one hand, users seem more engaged
in relying on LLMs (e.g., ChatGPT ¹) to solve all kinds of real-world tasks. On the other
hand, the generative results do not guarantee to be true (despite seeming plausible), which
is commonly recognized as hallucination [146]. Without robust verificationmechanisms
including explanations for these outputs, the practical application of LLMs will certainly
be constrained.

There are a few empirical efforts in improving the reliability of generated results. For
example, retrieval-augmented generation (RAG) [75] seeks to incorporate in-context sce-
narios during generation, ideally grounding the generated outputs in these retrieved con-
texts. In this framework, the retrieved contexts serve partly as explanations for the gen-
erated answers, and the quality of these contextual resources can significantly impact the
quality of subsequent generations. However, unless the retrieval models strictly adhere
to traditional information retrieval (IR) factors, RAG does not simplify explaining the gen-
erated answers, but rather introduces one more explanation task of the retrieval results.

Another example is chain-of-thought (COT) generation [86]. It relies on manually
crafted prompts consisting of detailed actions to take and the corresponding reasons, so
that the model will hopefully pick up the reasoning pattern. However, recent work [66]
has already shown that actions do not always align with their tailored reasons by COT.
Similarly, Brown et al. [13], Dalvi et al. [28] ask the LLMs to output not just the answer,
but also the explanations to a question. As much as the explanations may seem plausible,
there is no guarantee that the model really understands the question or reasoning. This
is not surprising, as we already found out in Chapter 4, that the model can “lie” when the
explanation is part of the predicted outputs. With LLMs, it is much harder for humans
to verify both answers and explanations, due to the enormous datasets and complexity of
models and tasks.

Explaining generative outputs from LLMs is challenging due to multiple intertwined
factors, such as the complexity of training data (including human feedback), model pa-
rameters, and prediction tasks. Simply applying our method in Chapter 4 is impractical,
as it assumes structured data features and independent representations. In contrast, natu-
ral language processing has greatly benefited from contextualized pre-training. Therefore,
making trade-offs in faithful explanations to maintain the performance seems inevitable.
As a starting point, approximating the uncertainties of LLM outputs and their explana-
tions [138], aided by explainable retrieval contexts, could be beneficial.

¹https://chatgpt.com

https://chatgpt.com
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