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SUMMARY

Owing to its exceptional spin properties and bright spin-photon interface, the nitrogen-
vacancy (NV) center in diamond has emerged as a promising platform for quantum sci-
ence and technology, including quantum communication, quantum computation and
quantum sensing. In this thesis we develop novel methods for atomic-scale imaging
and high-fidelity control of complex nuclear-spin systems coupled to the electron spin
of an NV center in diamond. This well-controlled quantum system provides new op-
portunities in quantum sensing, quantum information processing, and may also form
the building block of a large-scale quantum network, one of the key goals in quantum
technology.

We first study and enhance the coherence properties of the NV electron spin. By
using dynamical decoupling spectroscopy techniques, we probe and characterize the
nuclear-spin environment of a single NV center. We find that this spin environment
can be described by seven individual 13C nuclear spins and six 13C-13C nuclear-spin
pairs. We then utilize this knowledge to demonstrate a record-long coherence time of the
NV center electron spin (> 1.5 seconds)—the longest coherence time for single electron
spins in the solid state—by using tailored dynamical decoupling sequences that avoid
unwanted interactions.

Following from these results, we develop novel control and multidimensional spec-
troscopy techniques, which isolate individual nuclear-nuclear spin interactions within
this complex spin bath with high accuracy. With these methods we demonstrate atomic-
scale magnetic resonance imaging of a cluster of 27 13C nuclear spins in diamond. This
experiment provides a proof-of-principle towards the magnetic imaging of individual
molecules or complex spin structures, one of the visionary goals in the field of quantum
sensing.

Furthermore, we develop the NV center and this surrounding cluster of 13C nuclear
spins as a promising quantum register with exceptional coherence properties. We demon-
strate a fully connected 10-qubit register with high-fidelity control, coherence times up
to one minute, and genuine multipartite entanglement of up to 7 qubits. These results
enable high-fidelity control of multi-qubit quantum registers.

Additionally, this developed quantum register is used to realize the smallest fault-
tolerant logical qubit of a complete error correction code (the [[5,1,3]] code with an ad-
ditional ‘flag’ qubit). We utilize multiple non-destructive parity measurements in addi-
tion to a flag ancilla measurement to demonstrate fault-tolerant encoding of the logi-
cal states. We measure a logical-state fidelity of 95(2)% for the fault-tolerant encoding
compared to 81(2)% for the non-fault-tolerant encoding, thus demonstrating a signifi-
cant improvement. Furthermore, we demonstrate fault-tolerant operations on the log-
ical qubit by applying a set of transversal logical gates. These results present a key step
towards fault-tolerant quantum computations.

vii



viii SUMMARY

Finally, we introduce 13C-13C nuclear-spin pairs as a novel intrinsically coherence-
protected qubits with extraordinary coherence properties. We demonstrate high-fidelity
control and single-shot readout (> 98%) of these pairs using the NV center electron spin.
We demonstrate an inhomogeneous dephasing time, T ∗

2 = 1.9(3) minutes—the longest
reported for an individually controlled qubit. Moreover, we demonstrate entanglement
between two spin pairs through projective parity measurements. These new qubits have
the potential to provide extremely robust quantum memories for quantum networks.

The work presented in this thesis advances the NV center and its surrounding nuclear-
spin environment as a promising quantum system for quantum information processing,
quantum simulations, and quantum sensing. The characterization and control meth-
ods developed here can likely be extended to other new defect systems. Therefore, when
combined with fast progress in research groups around the world on, for example, devel-
oping photonic cavities, controlled surfaces, and fabrication methods, these results pro-
vide new opportunities for atomic-scale magnetic resonance imaging as well as large-
scale quantum networks.



SAMENVATTING

Door zijn uitzonderlijke spin eigenschappen en spin-selectieve optische transities, is
het stikstof-gat defect (nitrogen vacancy, NV) in diamant uitgegroeid tot een veelbelo-
vend platform voor quantum technologie, waaronder quantum communicatie, quan-
tum computatie en quantum sensoren. In dit proefschrift ontwikkelen we nieuwe me-
thodes voor de beeldvorming op atomaire schaal en uitstekende controle van complexe
kernspin systemen gekoppeld aan het elektron spin van een NV in diamant. Dit ge-
controleerde quantum systeem biedt nieuwe mogelijkheden voor quantum sensoren,
quantum informatica en zou ook als bouwsteen kunnen functioneren in grootschalige
quantum netwerken.

Ten eerste bestuderen en verbeteren we de coherentie van het NV elektron spin.
Door het gebruik van dynamische ontkoppelingstechnieken, onderzoeken en karakte-
riseren we de kernspin omgeving van een enkel NV. Hieruit concluderen we dat de om-
geving goed kan worden beschreven door zeven individuele 13C kernspins en zes 13C-
13C kernspin paren. We gebruiken deze kennis om een record in coherentie tijd van het
NV elektron spin te demonstreren (>1.5 seconden) – de langste coherentie tijd voor een
enkele elektron spin in vaste stof– door middel van op maat gemaakte dynamische ont-
koppelingssequenties die ongewenste interacties vermijden.

Als vervolg op deze resultaten, ontwikkelen we nieuwe multidimensionale spectro-
scopie en controle technieken, die individuele kernspin-kernspin interacties isoleren
binnenin het complexe spin bad met hoge nauwkeurigheid. Met deze methodes de-
monstreren we beeldvorming op atomaire schaal door middel van magnetische reso-
nantie van een cluster bestaande uit 27 13C kernspins in diamant. Dit experiment toont
de principiële bruikbaarheid van deze techniek aan voor het in kaart brengen van enkele
moleculen of complexe spin structuren, een van de visionaire doelen in het gebied van
quantum sensoren.

Daarnaast ontwikkelen we van het NV en omliggende cluster van 13C kernspins een
quantum register met uitzonderlijke coherentie eigenschappen. We demonstreren een
volledig verbonden 10-qubit register met uitstekende controle, coherentie tijden tot een
minuut lang, en verstrengeling van 7 qubits. Deze resultaten maken uitstekende controle
van multi-qubit quantum registers mogelijk.

Bovendien gebruiken we het ontwikkelde quantum register om de kleinste fouttole-
rante logische qubit van een complete fouten correctie code (de [[5,1,3]] code met een
extra ’vlag’ qubit) te realiseren. Door het gebruik van meerdere niet-destructieve pa-
riteitsmetingen en een vlag ancilla meting, demonsteren we de fouttolerante codering
van logische quantum toestanden. We meten de preparatie van een logische quantum
toestand met een zekerheid van 95(2)% voor een fouttolerante codering in vergelijking
met 81(2)% voor een niet-fouttolerante codering, en demonstreren daarmee een signifi-
cante verbetering. Daarnaast, implementeren we fouttolerante operaties op de logische
qubit door het toepassen van een set van transversale logische quantum operaties. Deze
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x SAMENVATTING

resultaten demonstreren een belangrijke stap in de richting van fouttolerante quantum
computaties.

Tot slot introduceren we 13C-13C kernspin paren als nieuwe en intrinsiek tegen de-
coherentie beschermde qubits, met buitengewone coherentie eigenschappen. We de-
monstreren uitstekende controle en het betrouwbaar uitlezen (> 98%) van de spin pa-
ren door het gebruik van het NV. Ook meten we een inhomogene decoherentie tijd van
T ∗

2 = 1.9(3) minuten, de langste gerapporteerd voor een individueel gecontroleerde qu-
bit. Daarnaast laten we verstrengeling zien van twee spin paren door projectieve pari-
teitsmetingen. Deze nieuwe qubits hebben de potentie om als extreem robuuste quan-
tum geheugens voor quantum netwerken te functioneren.

Het werk gepresenteerd in dit proefschrift demonstreert een belangrijke vooruitgang
van het NV en omliggende kernspins als een veelbelovend quantum systeem voor quan-
tum informatica, quantum simulaties, en quantum sensoren. De ontwikkelde karak-
terisatie en controlemethodes komen in aanmerking om gebruikt te worden in andere
systemen bestaande uit defecten. Hierdoor, indien gecombineerd met de snelle voor-
uitgang van onderzoeksgroepen vanuit de hele wereld in bijvoorbeeld het ontwikkelen
van optische trilholtes, gecontroleerde oppervlaktes, en fabricatie methodes, zullen deze
resultaten nieuwe mogelijkheden voor atomaire-schaal magnetische resonantie beeld-
vorming methodes én grootschalige quantum netwerken creëren.



1
INTRODUCTION

1.1. THE RISE OF QUANTUM SCIENCE AND TECHNOLOGY
Quantum mechanics is one of the most successful theories describing physical phenom-
ena in our world. Several key technologies in the last century rely on mechanisms that
can only be explained in the framework of quantum mechanics. For example, semi-
conductor technologies, lasers, photodectors, nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI), just to name a few.

Owing to remarkable progress made over the last few decades in isolating and ma-
nipulating individual quantum systems [1, 2] (such as single electrons, atoms, molecules
or photons), a newer version of this field—often referred to as quantum science and
technology—has emerged. Most of the earlier technologies are best described by meso-
scopic or even microscopic quantum theory, they were typically developed following a
top-down approach. In contrast, the emerging field of quantum science and technology
takes the peculiar phenomena of quantum mechanics, such as quantum superposition
and quantum entanglement, and aims to build quantum devices which exploit these
phenomena. Such an approach requires building from the bottom-up level of individual
quantum systems. These devices can —in principle— be much faster, more secure or
more efficient than what is ever possible with their classical counterparts. These new
quantum technologies manifest in four main categories: quantum simulation, quantum
computation, quantum communication, and quantum sensing and metrology [3].

Quantum computation is perhaps the most famous one of these categories [4]. While
classical computers use bits (that are defined in either the state ‘0’ or ‘1’), quantum com-
puters use quantum bits (‘qubits’) which can exist in arbitrary superposition states of ‘0’
and ‘1’. Many quantum algorithms which show an exponential speed-up compared to
the best known classical algorithms have been theoretically proposed [5], and proof-of-
principle experiments that show the validity of such algorithms have been demonstrated
[4, 6, 7]. Moreover, these quantum computers can be used to simulate and understand
complex many-body quantum systems [8, 9], which are typically impractical to simu-
late by classical computers. The reason is that the computational power required to fully
describe quantum systems scales exponentially with the number of its constituents.

1



1

2 1. INTRODUCTION

Although quantum computers might still be a long-term goal, scientists have come
up with another category of devices that are less complex than general-purpose quan-
tum computers, but can still efficiently simulate complex quantum systems; these so-
called quantum simulators are special purpose devices designed to study the behaviour
of specific quantum systems or learn more about certain physical phenomena [10]. By
building controllable quantum systems where some of the physical parameters can be
tuned, we can simulate certain physical problems and get more insights about them
[10, 11].

Another important category of emerging quantum technologies is quantum commu-
nication, which deals with transmitting the quantum states of particles or qubits from
one place to another [12, 13]. This can enable fundamentally secure ways of communi-
cations guaranteed by the laws of quantum mechanics such as quantum key distribution
[14].

Finally, the quantum technology, which is already penetrating various markets, is
quantum sensing and metrology. Quantum sensors are devices or systems that utilize
quantum properties or phenomena to measure a certain physical quantity. The applica-
tions of quantum sensors range from measuring magnetic and electric fields to measur-
ing temperatures, frequencies, time or pressure [15]. The essence of quantum sensing is
that it utilizes the extreme sensitivity of quantum systems to disturbances in their envi-
ronment to measure these physical phenomena with high accuracy and resolution that
might not even be possible with the best classical devices [15].

For each of these applications, the main building block is often a controllable indi-
vidual quantum system (usually referred to as qubit). These qubits can be realized using
several experimental platforms, for example the state of a photon, an electron spin, a
nuclear spin, an atom, an ion, or even artificial atoms such as a quantum dot or a super-
conducting qubit [3]. Each of these platforms come with their own fascinating physics,
challenges and opportunities.

1.2. SPINS IN DIAMOND: A VERSATILE QUANTUM SYSTEM
Solid-state spins associated to optically active defect centers are among the most ad-
vanced and reliable systems for quantum technologies due to their relatively long coher-
ence times [16–20], compatibility for on-chip integration [21, 22] and suitability to work
over a wide range of temperatures [16]. Among these systems, the nitrogen-vacancy (NV)
center in diamond—a lattice defect in diamond which consists of a substitutional ni-
trogen atom (replacing a carbon atom) next to a vacant lattice site—has received great
attention as it combines a number of these properties [16, 23].

The NV electron spin has exceptional coherence properties [17, 19], can be initialized
and read-out with high fidelity via optical means [21], and it provides an optical inter-
face for creating remote entanglement [23–25]. Due to spin-spin couplings, this electron
spin can be used to detect and control 13C nuclear spins in its vicinity, which can serve as
excellent quantum registers or memories [26–28]. This opens up several interesting ap-
plications in quantum communication [24, 29], quantum computation and simulation
[28, 30], and quantum sensing [15, 31], but also enables performing fundamental studies
in spin physics or fundamental tests of quantum mechanics [25, 32, 33].
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1.3. QUANTUM NETWORKS WITH SPINS IN DIAMOND
One of the long-term goals for solid-state defects in general (and for NV centers in par-
ticular) is to use them to build a large-scale quantum network [16, 34]. This envisioned
quantum network is a promising approach for large-scale distributed quantum com-
puting and secure quantum communications [35–37]. Such a network would consist of
multiple nodes, where each of them might contain several nuclear-spin qubits to store
and process quantum information, and that are connected together through optical en-
tanglement links based on photons, see Fig. 1.1.

In this thesis, we study and develop one of the building blocks of such a network:
the multi-qubit node. Each node consists of an NV center which is coupled to a 13C
nuclear-spin environment (Fig. 1.1). We study this nuclear-spin environment and de-
velop novel methods to control the nuclear-spins and to image them with atomic-scale
resolution. This provides a precise understanding and description of the quantum node
(the full system Hamiltonian) and paves the way towards using this for building a large-
scale quantum network but also opens up new opportunities in quantum information
processing, quantum sensing, and quantum simulation. The nuclear spins can be used
to realize an excellent quantum register to store and process quantum information, and
may ultimately be used to improve the efficiency and quality of optical links between the
nodes via entanglement distillation [38] or quantum error correction [36, 37, 39].

1.4. THESIS OVERVIEW
Here, we outline the contents of the thesis:

In chapter 2, we introduce the NV center in diamond, and give an overview of the
main theoretical and experimental methods used throughout the rest of this thesis.

In chapter 3, we study and enhance the coherence properties of an NV electron-
spin coupled to a multi-qubit nuclear spin environment. We demonstrate a record-long
coherence time of the NV center electron spin (1.5 second)—the longest coherence time
for single electron spins in the solid state—by precise understanding of (and decoupling
from) the interactions with individual 13C nuclear spins and 13C-13C nuclear spin pairs
in the environment. We develop basic initialization, control and readout of the 13C-13C
pairs in order to directly reveal their coupling strength. We then exploit this knowledge
to store quantum states in the electron spin for over a second using tailored dynamical
decoupling sequences that carefully avoid unwanted interactions.

In chapter 4, we demonstrate atomic-scale magnetic imaging of a cluster of 27 13C
nuclear spins in diamond using the NV center as a quantum sensor. This cluster pro-
vides a model system for the magnetic imaging of single molecules or atomic structures
outside the diamond, an outstanding goal in the field of quantum sensing. We present
a multidimensional spectroscopy method that isolates individual nuclear–nuclear spin
interactions in the cluster with high spectral resolution and high accuracy, and develop
methods to extract the three-dimensional structure of the cluster from these measure-
ments with sub-ångström resolution.

In chapter 5, we show that the NV center combined with this cluster of 13C nuclear
spins is a promising platform for quantum information processing applications. We
demonstrate a fully connected 10-qubit register with high-fidelity control, coherence
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Figure 1.1: A quantum network with spins in diamond. Constructing quantum networks with defect centers is
a promising approach for large-scale distributed quantum computing and secure quantum communications.
Such a network would consist of multiple nodes that each contain several qubits to store and process quantum
states, and that are connected together through optical entanglement links based on photons. In this thesis
we focus one of the building blocks of this network: the multi-qubit node. Each node is made of an NV center
which is coupled to a nuclear-spin environment. This spin environment provides a quantum register to store
and process quantum information, and is also promising to improve the network quality through entangle-
ment purification or error correction.

times up to one minute, and genuine multipartite entanglement of up to 7-qubits.

In chapter 6, we use the developed quantum register to demonstrate a fault-tolerant
logical qubit with spins in diamond. We utilize multiple non-destructive parity measure-
ments to demonstrate fault-tolerant encoding of a complete logical qubit. Afterwards,
we demonstrate transversal fault-tolerant logical gates on the encoded state. Such a
fault-tolerant logical qubit is a key building block for large-scale quantum information
processing.

In chapter 7, we introduce 13C-13C nuclear-spin pairs as a novel qubit with intrinsic
coherence protection. We demonstrate high-fidelity control and single-shot readout (>
98%) of these pairs using the NV center electron spin. Furthermore, we demonstrate
an inhomogeneous dephasing time, T ∗

2 = 1.9(3) minutes, the longest reported for any
individual qubit. Finally, we demonstrate entanglement between two spin pairs through
projective parity measurements.

In chapter 8, we summarize the main findings and conclusions of this thesis and
discuss the near-term potential improvements and avenues. We then give an outlook for
the continued development of this platform.
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2
BACKGROUND AND METHODS

In this chapter, we introduce the NV center in diamond, which is the system used for all
experiments in this thesis. We also give an overview of the main theoretical background
and experimental methods used throughout this thesis.

9
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Figure 2.1: The nitrogen-vacancy (NV) center in diamond. a) The crystal structure of diamond. The NV center
is formed by a substitutional nitrogen atom next to a vacant lattice side. About 1.1% of the carbon atoms in the
diamond lattice are 13C isotopes (yellow). b) The NV molecular orbitals and their occupation in the electronic
ground state. Figures adapted from Pfaff [25], Bernien [26].

2.1. THE NV CENTER IN DIAMOND
The nitrogen-vacancy (NV) center in diamond is a common lattice defect in diamond.
It consists of a substitutional nitrogen atom (replacing a carbon atom) next to a vacant
lattice site (Fig. 2.1). This defect can occur naturally in the diamond, or can be formed
by ion implantation [1, 2], or electron irradiation [3]. More recently, it was also shown
that it can be formed by direct laser writing [4–6]. The NV center mainly exists in one
of two charge states: neutrally-charged (NV0) and negatively-charged (NV−) [7]. In the
neutral charge state, there are 5 unbound electrons coming from the nearby nuclei (2
from the nitrogen and 3 from the carbons) [7]. The defect can also capture an addi-
tional electron from nearby charge traps in its environment which lead to the negatively
charged state NV− [7]. The NV− charge state is a particularly interesting and versatile
platform for quantum technologies [8] with many applications ranging from quantum
sensing [9–15] to quantum information processing [16–19], and quantum networks and
communications [8, 20–24].

In this thesis we focus on NV− (hereafter denoted NV). The electronic structure of
this NV center is shown in Fig. 2.1b. The electronic wavefunction can be approximated
by a linear combination of the available atomic orbitals from the neighbouring nitro-
gen and carbon atoms [27–29], see Fig.2.1b. In the ground state, the six electrons are
distributed among the orbitals as shown in Fig. 2.1b. The two lowest-energy levels (a

′
1

and a1) are doubly occupied, and the molecular orbitals ex,y have one electron each. In
the excited state, one electron from the orbital a1 is promoted to one of the e orbitals
[27–29].

In both the ground and excited states, two unpaired electron spins can combine into
triplet or singlet states. Due to Coulomb repulsion, the triplet states are lower in energy;
therefore, the lowest energy ground state is the triplet state (S = 1) in the ground molec-
ular orbital [27, 30]. Figure 2.2 shows the energy level diagram of the ground and excited
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states, for which the fine structure will be described in the following section.
Excitation of the NV from the spin-triplet ground state to one of the six excited states

can occur by resonant optical excitations, or off-resonantly via the phonon-sideband.
The relaxation can also occur in a similar manner by emitting photons resonantly through
the zero phonon line (ZPL), or off-resonantly via the phonon-sideband or singlet states.
Note that an important feature of the NV center is that both the ground and first excited
state levels have unoccupied energy levels only inside the diamond bandgap. This gives
the NV center optical properties similar to those of ions trapped in vacuum [31].

2.2. SYSTEM HAMILTONIAN: NV IN A SPIN BATH
Beyond the central NV electron spin, our quantum system additionaly comprises the
host 14N nuclear spin and the surrounding bath of 13C spins. A significant part of this
thesis is focused on exploring, understanding, and controlling this complex quantum
system. So, we start here by giving a detailed description of the system Hamiltonian.

In the orbital ground state of the NV, the system Hamiltonain can be described by
the summation of the Hamiltonians of each of the individual subsystems (components
of the system) in addition to the interaction terms between them:

H = He +HN +Hc +HeN +Hec +Hcc +HN c , (2.1)

where He is the NV electron spin ground state Hamiltonian; HN is the Hamiltonian of the
14N nuclear spin; Hc is the Hamiltonian of the 13C spins; HeN is the hyperfine interaction
between the electron spin and the host 14N nuclear spin; Hec is the hyperfine interaction
between the electron spin and the 13C nuclear spins; Hcc is the nuclear-nuclear coupling
between the 13C spins; HN c is the coupling between the 14N and 13C nuclear spins. In
the following, we shall take a closer look at each term of this Hamiltonian.

Electron spin. The NV electron spin ground state is a spin triplet (S = 1) and its Hamil-
tonian can be described as (neglecting second order spin-orbit coupling) [30, 32]:

He =∆ZFSS2
z +γe (B ·S), (2.2)

where ∆ZFS ≈ 2.88 GHz is the electron zero field splitting (due to spin-spin interactions),
γe ≈ 2.8 MHz/G is the electron gyromagnetic ratio, B = (Bx ,By ,Bz ) is the magnetic field
vector, S = (Sx ,Sy ,Sz ) are the electron spin-1 operators. The spin states ms = 0 and
ms = ±1 are split by ∆ZFS at zero applied magnetic field; applying an external magnetic
field lifts the degeneracy of the ms =±1 states due to the Zeeman term (see Fig. 2.2). We
can then define a qubit between two of these three spin states. In this thesis, we typically
define our electron-spin qubit between the states ms = 0 (|0〉) and ms =−1 (|1〉).

Nitrogen spin. The 14N nuclear-spin Hamiltonian HN and its interaction with the elec-
tron spin HeN can be written as:

HN +HeN =−QN I 2
N ,z +γn(B · IN)+S ·AN · IN, (2.3)
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Figure 2.2: Energy level diagram of the negatively charged NV center (ground and excited states). Bottom
center: The NV ground state is a spin triplet (S = 1). The zero field splitting (∆ZFS ≈ 2.88 GHz) separates
the ms = 0 state and the two degenerate states ms = ±1. Bottom right: Applying an external magnetic field
(along the NV axis) lifts this degeneracy by Zeeman splitting and allows the definition of a qubit within the
ground state triplet. Top center: The fine structure of the excited states (which can only be observed at cryo-
genic temperatures). There are two levels (Ex,y ) that correspond to ms = 0 and four levels that correspond
to ms = ±1 (E1,2, A1,2); Ex,y , E1,2 are both doubly degenerate. Excitation of the NV from the ground state to
one of the six excited states can occur by optical excitations resonantly (light red line), or off resonantly via
the phonon-sideband (green line). The relaxation can also occur in a similar manner by emitting photons res-
onantly through the zero phonon line (ZPL), or off-resonantly via the phonon-sideband or the singlet states
(Left). Top right: The effect of lateral strain or electric field (up to first order) on the excited state levels. The
lateral strain has no effect on the ground state levels to first order. Figure adapted from Pfaff, Bernien, Hensen
[25, 26, 30].
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Figure 2.3: Sketch of the quantum system: the NV in a spin bath. The NV electron spin (S = 1) is the central spin
in the system. It couples to the host 14N nuclear spin (I = 1) via hyperfine coupling (purple line; Hamiltonian:
HeN ). There is a natural abundance (1.1%) of spin-1/2 13C atoms in the diamond. The electron spin couples
to the 13C spins via hyperfine coupling (red lines, Hamiltonian term: Hec ), which depends on the relative
positions of these 13C spins. These couplings shift the energy of the 13C spins, and can be used as a way to
detect, polarize and coherently control the 13C spins via the electron spin. In addition, the nuclear spins in the
environment (i.e., 13C and 14N spins) interact with each other via dipolar coupling (green lines, Hamiltonian:
HN c ; yellow lines, Hamiltonian: Hcc ). The nuclear-nuclear couplings depend on the relative positions of the
spins (distance and angle with respect to the external magnetic field). When two spins are close to each other,
this lead to a strong coupling (i.e., coupling > 1/T∗

2 ) and we call such spins a 13C pair (chapter 3 in this thesis).
In some cases three or more spins happen to be close to each other forming strongly coupled subclusters
(chapter 4).
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where QN ≈ 4.98 MHz is the quadrupole splitting (separates the nitrogen-spin states
mI = 0 and mI =±1 under zero magnetic field) [32], γn = 0.3077 kHz/G is the nitrogen-
spin gyromagnetic ratio, IN = (IN ,x , IN ,y , IN ,z ) are the spin-1 operators for the 14N nu-
clear spin, and AN is the hyperfine tensor describing the electron-14N interaction. Note
that under the secular approximation, HeN can be approximated to A∥Ŝz ÎN ,z , where
A∥ = 2.16 MHz is the parallel component of the hyperfine interaction.

Carbon-13 spins. The 13C spins Hamiltonian Hc and their hyperfine interaction with
the electron-spin Hec can be written as:

Hc +Hec =
∑

i
γc B · Ii +

∑
i

S ·Ai · Ii , (2.4)

where γc = 1.0705 kHz/G is the carbon-spin gyromagnetic ratio, Ii = (Ii ,x , Ii ,y , Ii ,z ) are
the spin-1/2 operators for the 13C nuclear spins, and Ai is the hyperfine tensor describ-
ing the electron-13C interaction.

Nuclear-nuclear interactions. In addition to their interactions with the NV electron
spins, the nuclear spins in the environment (i.e., 13C and 14N spins) interact with each
other via dipolar coupling.

Hcc =
∑
i , j

Ii ·Cij · I j , (2.5)

HN c =
∑

j
IN ·CN,j · I j , (2.6)

where Ci,j, CN,j are the tensors describing the 13C-13C and 14N-13C nuclear-nuclear in-
teractions respectively.

2.3. EXPERIMENTAL SETUP
Our setup consists of five main parts: 1) control electronics: used to run the control cy-
cle and to communicate between different components of the setup; 2) optics: used for
initialization and readout of the NV electron spin; 3) microwave and RF: used for ma-
nipulating the spin states of the electron and nuclear spins; 4) external magnetic field:
to create controllable energy splittings through the Zeeman effect; 5) cryogenics: to cool
down the diamond sample to 3.7 K. See Figure 2.4 for a detailed sketch of the main com-
ponents of the setup and how they communicate with each other.

2.4. DIAMOND DEVICES AND OPTICAL ADDRESSING

2.4.1. DIAMOND DEVICES
The experiments in this thesis are performed on a single, naturally occurring NV center
in a high-purity chemical-vapor-deposition homoexpitaxially grown diamond (type IIa)
with a natural abundance of 13C (1.1%) and a <111> crystal orientation. Figure 2.5 shows
a typical device similar to the one used in this thesis. To improve the photon-collection
efficiency, a solid immersion lens (SIL) is fabricated on top of the NV center, by milling
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Figure 2.4: Schematic of the experimental setup. Control electronics: We use a PC to program the control cycle
onto a micro-controller (Jaeger ADwin Pro II) and to program the pulse sequence with nanosecond resolution
onto an arbitrary waveform generator (Tektronix AWG 5014, 4.5V pk-pk). The communication between the
different components of the setup is mainly done by the ADwin, including triggering the AWG to start the
pulse sequence. Optics: We use a green laser (515 nm, Cobolt MLD, on/off ratio of >135 dB ) for charge state
control and two resonant lasers (Toptica DL Pro and New Focus TLB-6704-P) for initialization and readout.
To generate optical pulses, the green laser can be directly modulated by the ADwin. For the two resonant
lasers, we use Acousto-optic modulators (AOM). To suppress the optical background noise we cascade two
AOM’s (Gooch and Housego Fibre Q, total on/off ratio >100 dB) for each of the lasers. The frequencies of the
two resonant lasers are measured using a wavemeter (HF-ANGSTROM WS/U-10U) and stabilized using a PC-
controlled feedback loop (PID loop) to 2 MHz accuracy. We use a home-built confocal microscope to focus
light onto the sample and to collect the emission. The microscope objective is mounted on XYZ piezo scanner
(PI) that can be used to make 3-dimensional scans and to precisely align the NV center to the optical path.
Microwave and RF: Microwave pulses are generated using a vector source (SGS100). The frequencies, timings,
shapes and phases of theses pulses are controlled via the AWG through IQ- and pulse-modulation. The signal
is amplified by a microwave amplifier (AR 25S1G6). We use a fast microwave switch (TriQuint TGS2355-SM,
suppression ratio of 40 dB, controlled by the AWG) to protect the NV from the amplifier noise while idling.
Video leakage noise generated by the switch is filtered with a high pass filter. The RF signal is generated directly
by the AWG; in some experiments in this thesis (only parts of Chapter 5) we use an RF amplifier to achieve
higher Rabi frequencies (Analog Devices ADA4870). However, for the rest of the multi-qubit experiments, we
do not use the RF amplifier to avoid heating of the chip and to allow shorter RF pulses without ringing from
filters in the RF electronics. In both cases, the MW and RF signals are then combined using a diplexer and the
output is then fed to the diamond sample. External magnetic field: We apply a static magnetic field, Bz ≈ 403
G, along the NV-axis using a permanent room-temperature neodymium magnet. We stabilize the magnetic
field strength to < 3 mG and the magnet is aligned to the NV-axis with uncertainty of 0.07° using thermal
echo sequences (see chapter 4 or ref. [33] for details of magnetic field stability and the alignment procedure).
Cryogenics: The sample is held in a closed cycle cryostat (Montana Cryostation) at a temperature of 3.7 K.
Figure adapted from pfaff, Cramer [25, 34].
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Figure 2.5: a) Scanning electron microscope image of a solid immersion lens (SIL) in the diamond chip. The
stripline close to the SIL is used to send MW and RF pulses for driving the electron and nuclear spin resonances.
The gates are used to apply DC voltages for strain tuning (not used in this work). b) A scanning confocal
microscope image of the SIL using green laser light. The bright spot in the middle of the SIL shows the emission
of a single NV center in the phonon-sideband. Figure from Bernien [26].

away diamond using focused ion beam [35] (Fig. 2.5). In addition, an aluminum-oxide
anti-reflection coating layer (grown by atomic-layer-deposition) is used [35].

Lithographically-defined, on-chip striplines are fabricated close to the solid immer-
sion lenses by metal evaporation. These striplines are used to apply microwave and RF
fields for driving the electron- and nuclear-spin transitions. Gold gate-electrodes are
fabricated near the SILs to apply static electric fields. This allows tuning the strain in the
NV-centre which can be used for fine-tuning of the optical resonances [36]. Note that
these gates are not used throughout this work.

2.4.2. OPTICAL ADDRESSING
For the work presented in this thesis, we work at low temperatures (3.7 K) and there-
fore we use spin-selective resonant optical excitations for high-fidelity initialization and
readout of the NV electron spin [35]. We typically initialize the NV electron spin into the
ms = 0 state (Fidelity > 99.7%) through a spin pumping process. We use a resonant laser
(spin pump (SP) laser) that excites the ground states ms = ±1 into the optically excited
states E1,2 (see Fig. 2.2, Fig. 2.8a). Initialization into ms = ±1 is done by applying reso-
nant microwave pulses that drive the electron spin from the initialized ms = 0 state into
the desired state.

We read out the electron spin state in a single shot by shining a laser in resonance
with the transition ms = 0 to Ex (RO laser) [35]. Ideally, this leads to emission of one or
more photons if the electron spin is in ms = 0 or zero photons if the state is ms = ±1
(average readout fidelity here ≈ 94.5%).
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2.5. DETECTION AND CONTROL OF 13C NUCLEAR SPINS
As discussed in section 2.2, the NV center in diamond is surrounded by a bath of 13C nu-
clear spins (with natural abundance of 1.1%). While this bath of 13C nuclear spins is the
main source of decoherence for the NV electron spin [9, 37], recent advances in quan-
tum control methods have enabled the detection and universal control of individual 13C
nuclear spins in the bath [17, 38–40], thus transforming these spins into a promising re-
source (a quantum register). Additionally, this bath provides a model system to study
and develop methods for quantum sensing and atomic-scale magnetic resonance imag-
ing, which are among the main applications areas of the NV center [9–13, 38, 41–45] (see
also ch. 4). In this chapter, we will give an overview of the main methods used in this
thesis for the detection (sensing) and control of these 13C spins. Note that a significant
part of this thesis is focused on developing better detection and control methods. These
novel methods will be discussed in detail in their dedicated chapters.

ms= -1

ωL ω̃

A

ms= 0

ωL
ba

ee

13C13C

Figure 2.6: Dependence of the 13C nuclear spin precession on the electron spin state. a) For ms = 0, the 13C
nuclear spin rotates along an axis parallel to the external magnetic field direction and with the bare Larmor
frequency ω0 = γc Bz (the hyperfine coupling is effectively turned off). b) For ms = −1, and for non-zero

A⊥, the rotation axis is tilted and the evolution frequency is ω̃ =
√

(ω0 − A∥)2 + A2
⊥. This leads to two anti-

commuting rotation axes based on the electron spin state [17, 38]. Figure adapted from Cramer [34].

2.5.1. SIMPLIFIED INTERACTION HAMILTONIAN

To develop a better understanding of the detection and control of 13C spins, let us first
consider the simple scenario of a single nuclear spin in the vicinity of an NV center. The
Hamiltonian describing the electron-carbon system (a simplified version of eq. 2.1), in
the interaction picture with respect to the electron energy splitting and under the secular
approximation can be described by [17, 38]:

H =ω0Iz + A∥Sz Iz + A⊥Sz Ix , (2.7)

whereωo (= γc Bz ) is the bare Larmor frequency, and A∥(A⊥) is the parallel (perpendicu-
lar) hyperfine coupling between the electron and the 13C nuclear spin with respect to the
applied static magnetic field. Note that these hyperfine components have contributions
from two different effects: a dipolar coupling term and a Fermi-contact term [46].

We can rewrite the above Hamiltonian as follows:
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H =|0〉〈0|H0 +|1〉〈1|H1, (2.8)

H0 =ω0Iz , (2.9)

H1 =(ω0 − A∥)Iz + A⊥Ix , (2.10)

where H0 (H1) is the Hamiltonian describing the evolution of the nuclear spin if the elec-
tron is in the state ms = 0 (ms =−1).

From this Hamiltonian, we note that the 13C nuclear spin evolution depends on the
electron spin state (see Fig. 2.6 for illustration). For ms = 0, the 13C nuclear spin rotates
along an axis parallel to the external magnetic field and with the Larmor frequency ω0.
For ms =−1, and for non-zero A⊥, the rotation axis is tilted and the evolution frequency

is ω̃ =
√

(ω0 − A∥)2 + A2
⊥. This leads to two non-commuting rotation axes based on the

electron spin state. By utilizing dynamical decoupling (DD) sequences that switch be-
tween the electron spin states, we can engineer the average Hamiltonian to produce cer-
tain controlled (or uncontrolled) rotations for the 13C nuclear spin. This allows us to de-
sign controlled-gates which can be further used to make maximally entangled electron-
nuclear spin states, and can also be used for ancilla-based initialization and readout of
the nuclear spins [17, 34, 38]. In the following sections, we shall look into each of these
elements in more detail.

2.5.2. DETECTION AND CHARACTERIZATION OF SINGLE NUCLEAR SPINS

Each NV center is surrounded by a unique 13C nuclear spin environment because the
spins are randomly located in the diamond lattice. The hyperfine coupling parameters
(A∥, A⊥) depend on the position of the spins with respect to the NV center. Strongly cou-
pled spins (A∥ > 1/T ∗

2,e , T ∗
2,e is the electron spin dephasing time) will be distinct from the

rest of the bath in the typical electron spin resonance (ESR) experiments and can be di-
rectly detected and controlled using resonant microwave fields [18, 38, 47–49]. However,
to detect and control weakly coupled spins (A∥ < 1/T ∗

2,e ), which are the vast majority
spins in the environment, other techniques are required. Pioneering work has used mul-
tipulse dynamical decoupling sequences to detect such weakly coupled spins [38, 39, 50].
These multipulse sequences enhance the electron spin coherence by decoupling it from
the spin bath [51, 52], and at the same time isolate the weak signals from specific nuclear
spins, by tuning the sequence to be resonant with their dynamics [38, 39, 50].

The dynamical decoupling sequences that are typically used in this thesis can be
decomposed into primitive units of the form: (τ - π - 2τ - π - τ ), see Fig. 2.7a. The
unitary describing the evolution of the nuclear spin during this operation can be written
as [38]:

V0 =exp[−i H0τ]exp[−i H12τ]exp[−i H0τ], (2.11)

V1 =exp[−i H1τ]exp[−i H02τ]exp[−i H1τ], (2.12)

where V0 (V1) is the unitary evolution for an initial electron spin state ms = 0 (ms =−1).



2.5. DETECTION AND CONTROL OF 13C NUCLEAR SPINS

2

19

These unitaries can also be written as single-qubit rotations [38]:

V0 =exp[−iφ(I · n̂0)],

V1 =exp[−iφ(I · n̂−1)], (2.13)

where n̂0 (n̂−1) is the rotation axis for the initial electron-spin state ms = 0 (ms =−1). Im-
portantly, these rotation axes depend on the interpulse delay τ, and by selecting specific
τ resonant with the electron-nuclear spin dynamics, these rotation axes can be anti-
parallel (see Fig. 2.7b). The rotation angle φ does not depend on the input electron
state but it does depend on the number of dynamical decoupling pulses N [38]. Thus,
by selecting a specific combination of τ and N values, we can tailor the desired unitary
operation on the nuclear spin [17].

If the two rotation axes (n̂0 and n̂−1) are not parallel, a non-trivial conditional rota-
tion of the nuclear spins is realized, which can lead to entanglement between the elec-
tron and nuclear spins. This can be used to probe the nuclear spins in the environment.
First, the electron spin is prepared into a superposition state, e.g. |x〉 = (|0〉 + |1〉)/

p
2.

After applying a dynamical decoupling sequence with Nπ-pulses with a variable pulse
delay τ, the remaining electron coherence is measured (see Fig. 2.8a). When the inter-
pulse delay 2τ is in resonance with one of the nuclear spins in the environment, a dip
(coherence collapse) in the signal is observed (see Fig. 2.8b for an example).

The obtained dynamical decoupling signal from such experiments can be described
by [38]:

Px = (M +1)/2, (2.14)

where, for a single nuclear spin j,

M = Re[Tr[(V N /2
0 (V N /2

1 )†]]. (2.15)

For multiple nuclear spins (with negligible nuclear-nuclear interaction), the coherence
term M will just be the multiplication of those of the individual ones:

M =
n∏

i=1
Mi . (2.16)

A more detailed treatment, which takes into account nuclear-nuclear interactions is pre-
sented in chapter 3.

Note that, in principle, we can use the dynamical decoupling signals for different
values of N ,τ to obtain the hyperfine parameters A∥, A⊥, by matching simulated signals
with experiment [19, 38]. More recently, automatic algorithmic methods and machine-
learning-enhanced techniques have been realised to obtain these parameters more ac-
curately (see our recent work [55, 56]). Note that there are also other more advanced
spectroscopy methods that can directly obtain these hyperfine parameters with high ac-
curacy (see for example refs. [33, 43, 57].)



2

20 2. BACKGROUND AND METHODS

N/2

τ 2τ τ
π πa

b

1

0.5

0

-0.5

-1

Z

X

P
ro

je
ct

io
n 

n -1

1

0.5

0

-0.5

-1

Z

X

P
ro

je
ct

io
n 

n 0

ms= 0

ms= −1

τ (µs)

n0

n0

n-1

n-1

4.50.5 1 1.5 2 2.5 3 3.5 4 5 5.50

Figure 2.7: Nuclear-spin dynamics under dynamical decoupling sequences. a) The dynamical decoupling se-
quences that are typically used in this thesis can be decomposed into primitive units of the form: (τ - π - 2τ -
π - τ ). b) Example showing the dynamics of a single nuclear spin (A∥ = 78.2 kHz, A⊥ = 30 kHz ) under a single
dynamical decoupling unit (i.e., N = 2) for variable interpulse delay τ. The middle panels show the X and Z
projections of the nuclear-spin rotation-axes for ms = 0 (n̂0) and ms =−1 (n̂−1). For specific τ values (e.g., left
dashed line and corresponding Bloch spheres) the nuclear-spin rotation-axes for n̂0 and n̂−1 are anti-parallel;
by selecting the right number of pulses the rotation angle can be adjusted to certain values (e.g. π/2) [17]. For
most of the other values of τ, the nuclear spin undergoes simple Z-rotations independent of the electron spin
state (e.g. the right dashed line and corresponding Bloch spheres). Figure adapted from Taminiau et. al. [17],
Cramer [34].
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Figure 2.8: Dynamical decoupling spectroscopy. a) Detailed experimental sequence. The pulse sequence con-
sists of four main parts: NV preparation, NV initialization, Dynamical decoupling sequence, NV readout. NV
preparation: the NV centre is prepared in the negative charge state and brought on resonance with the lasers
used for the initialization (SP laser) and Readout (RO laser) steps. We simultaneously apply the SP and RO
lasers for 150 µs and count the number of detected photons (wavelength 637 nm, RO laser resonant with
ms = 0 to Ex transition and SP laser resonant with ms =±1 to E1,2 transition) [35]. If the number of detected
photons exceeds a certain threshold, the NV is in the negative charge state and on resonance with both lasers,
and the sequence proceeds to the next step. If not, the charge reset laser (RS, wavelength 515 nm) is applied for
1 ms and the same process is repeated until success [35]. NV initialization: the NV electron spin is initialized
into the ms = 0 state through spin pumping on the E1,2 transition (SP laser, 100 µs) [35]. Dynamical decou-
pling sequence: the electron spin is prepared into a superposition state by applying a π/2-pulse. Afterwards, a
sequence of Nπ-pulses is applied on the electron spin with the form (τ- π - τ)N . To reduce the effect of pulse
errors, we alternate the phases of the π-pulses according to the XY-8 scheme [53]. NV readout: we apply the
RO laser for 10 µs and count the number of detected photons in this period. This allows us to read out the NV
electron spin state in a single shot (fidelity ≈ 94.5%). b) Example showing the obtained dynamical decoupling
signal for N = 32 pulses. Loss of coherence indicates the interaction of the electron spin with nuclear spins
in the environment. Here, the total signal is described by seven 13C spins and a bath of 200 randomly gener-
ated spins with hyperfine couplings below 10 kHz. For the seven spins, the hyperfine parameters A∥, A⊥, are
obtained by matching simulated signal with experiment. Blue: data. Solid lines: theory. Figure adapted from
Abobeih et al. [54] and Jung et al. [55]

.
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Figure 2.9: Nuclear-spin control using dynamical decoupling sequences. a) Sketch demonstrating the basic
idea. Dynamical decoupling can be used to isolate the interaction between the electron spin and a certain
nuclear spin while decoupling it from the rest of the spin bath. b) By selecting τ to be resonant with one of
the carbon spins, and selecting the right number of pulses, the dynamical decoupling sequence leads to an
electron-controlled nuclear gate Rx (±π/2) which is equivalent to a standard CNOT gate up to single qubit ro-
tations. Note that Rx (±π/2) = |0〉〈0| ⊗Rx (+π/2)+ |1〉〈1| ⊗Rx (−π/2). c) Sweeping the number of pulses N ,
with τ being resonant with one of the spins, leads to a coherent oscillation due to the nuclear spin undergoing
differing rotation angles, φ, at different number of pulses N , which is then reflected in the measured 〈X 〉 for
the electron spin. One quarter of a period corresponds to a maximally entangling gate Rx (±π/2). d) Imple-
mentation of the standard controlled gates using our two-qubit gate schemes and extra single qubit rotations.
Ry (±π/2) can be directly implemented using Rx (±π/2) by adding phase-shift gates.
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2.5.3. UNIVERSAL CONTROL OF 13C NUCLEAR SPINS

As discussed in the previous section, a careful choice of τ and N can be used to tailor
the desired unitary operations on the nuclear spin, including controlled rotation gates
(see Fig. 2.9). These controlled-rotations are equivalent to the standard CNOT gate
up to single qubit rotations (Fig. 2.9b) and can be used to create maximally entangled
states between the electron and nuclear spins [17, 19]. These two-qubit gates can also
be used to initialize and readout the nuclear spins via the electron spin ancilla (see sec-
tions 2.5.4,2.5.5). In addition, entanglement of multiple nuclear spins can be realized by
sequential entanglement with the electron spin [17, 19] (more details in chapter 5).

If the electron is in an eigenstate, single qubit rotations along Z axis (phase-shift
gates) are achieved by free precession (the evolution frequencies can be calibrated with
high accuracy [19, 54]). Single qubit rotations along X or Y can be done by applying a res-
onant dynamical decoupling gate (which effectively acts as a single qubit rotation in this
case). Alternatively, direct radio frequency (RF) pulses resonant with the nuclear spin
transition can be used [58]. Otherwise, if the electron is in an arbitrary quantum state,
single qubit rotations along X, Y or Z can be done by off-resonant dynamical decoupling
sequences (as shown in Fig. 2.7b) which also mitigate the electron decoherence.

Therefore, we have a universal gate-set for the electron and nuclear spins which
make them appealing muti-qubit quantum registers.

2.5.4. ANCILLA-BASED INITIALIZATION OF THE NUCLEAR SPINS

For both quantum information processing and quantum sensing applications, initial-
ization (or polarization) of the nuclear spins is a key step for many experiments. In our
work, we typically use two methods for initialization: 1) measurement-based initializa-
tion (MBI), and 2) SWAP initialization (see Fig. 2.10 for illustration of both methods).
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Figure 2.10: Carbon initialization methods. a) Measurement-based initialization (MBI). The electron spin is
brought into superposition using a π/2 pulse, and then a resonant DD gate is applied. A final π/2 pulse brings
the electron to its eigenbasis. Measuring the electron spin projects the nuclear spin into |x〉n or |−x〉n de-
pending on the measurement outcome. b) SWAP initialization. Here an extra controlled Ry (±π/2) is applied
(compared to the MBI initialization) which brings the nuclear spin to the state |0〉 independent of the electron
spin state. Finally, an optical pulse is used to reset the electron state to |0〉.

For MBI, the electron spin is initialized in a superposition state (e.g., |x〉 = (|0〉 +
|1〉)/

p
2), before application of a resonant DD gate which effectively applies an electron-

controlled gate on the nuclear spin (Fig. 2.10).
Assuming the nuclear spins are in a fully mixed state (in this thesis we operate in the

infinite temperature regime kbT ÀħγBz ), the density matrix describing its state can be
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written as ρm = I /2 = (|x〉〈x| + |−x〉〈−x|)/2. The combined electron-nuclear state after
the rotation Rπ/2

y on the electron spin can be written as [59]:

|x〉〈x|e ⊗
1

2
(|x〉〈x|n +|−x〉〈−x|n), (2.17)

with |−x〉 = (|0〉−|1〉)/
p

2. After applying the electron-nuclear gate, the state can be writ-
ten as:

1

2
(
∣∣−y

〉〈−y
∣∣
e ⊗|x〉〈x|n + ∣∣y

〉〈
y
∣∣
e ⊗|−x〉〈−x|n) (2.18)

with
∣∣y

〉= (|0〉+ i |1〉)/
p

2 and
∣∣−y

〉= (|0〉− i |1〉)/
p

2. Effectively, the electron-controlled
nuclear gate effectively adds a conditional phase shift to the electron state dependent on
the nuclear state. Finally, an Rx (π/2)-rotation brings back the electron to the eigenbasis:

1

2
(|0〉〈0|e ⊗|x〉〈x|n +|1〉〈1|e ⊗|−x〉〈−x|n) (2.19)

A projective measurement on the electron (via resonant optical excitation) would
thus project the nuclear-spin state into a certain state. For an outcome |0〉e (|1〉e ) for the
electron, the nuclear spin is projected into |x〉n (|−x〉n ). Note this initialization method
is probabilistic as the nuclear-spin state depends on the outcome of the electron mea-
surement. However, we can make it deterministic by applying feedback depending on
the measurement outcome.

The second initialization method is SWAP, in which the electron and nuclear spin
states are swapped. This method deterministically initializes the nuclear-spin into an
eigenstate. From equation 2.19, it can be seen that applying a controlled rotation Ry (±π/2)
will cause the nuclear spin to end up in the state |0〉, independent of the electron-spin
state.

1

2
(|0〉〈0|e ⊗|0〉〈0|n +|1〉〈1|e ⊗|0〉〈0|n) (2.20)

The electron spin, however, ends up in a mixed state, and we reinitialize it by optical
pumping which generally does not perturb the nuclear spin eigenstate for the relatively
weak hyperfine couplings used here.

2.5.5. ANCILLA-BASED READOUT OF THE NUCLEAR SPINS
The readout of the nuclear spin state in the X basis can be performed in a similar way to
the MBI scheme. From equation 2.19, we can see that if the input nuclear spin state is
|x〉n (|−x〉n ), the outcome of the electron measurement is 0 (1). Measuring the nuclear-
spin along different axes (e.g., Y or Z) is achieved by extra basis rotations (single qubit
gates).

Measuring multi-qubit nuclear-spin operators can be realized in a similar way (Fig.
2.11). As each additional electron-controlled nuclear gate adds a π/2 phase shift to the
electron spin (Fig. 2.9), the final phase of the π/2 readout pulse has to account for the
number of the spins being measured (i.e., the phase depends on the number of non-
trivial terms in the measured tomography operator). A few examples are given in Fig.
2.11.
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Figure 2.11: Ancilla-based tomography of nuclear spin states. a) Reading out a single nuclear spin in the X-
basis is done in a similar way to MBI; if the input nuclear spin state is |x〉n (|−x〉n ), the outcome of the electron
measurement is 0 (1). Reading out the nuclear spin in the Y-basis (b), and Z-basis (c) is done by simple extra
basis rotation. d,e,f) Measuring multi-qubit operators. As each measured nuclear spin (the electron-controlled
nuclear gate) adds a π/2 phase shift to the electron, the final phase of the π/2 readout pulse has to account for
the number of the spins being measured (i.e., depends on the number of non-identity terms in the tomography
process).

2.5.6. STABILIZER (PARITY ) MEASUREMENTS

Non-destructive parity measurements are important components in quantum informa-
tion processing, providing a mechanism to engineer entangled states, but also as the
key ingredient for quantum error detection and correction protocols [60, 61]. In gen-
eral, the circuits for implementing parity measurements are very similar to those used
in the tomography steps discussed in section 2.5.5. The key difference is that, the parity
measurement requires a quantum non-demolition (QND) measurement of the nuclear
spins (data qubits). The main challenge in our system is that optically reading out the
electron spin (ancilla) could lead to undesired spin flips, which—due to the hyperfine
interaction—translates to dephasing of the nuclear spins and would diminish the QND
nature of the measurement. To mitigate this, we use a QND-type readout of the ancilla
by resonant optical excitation and dynamically stopping the excitation process (within 2
µs) upon photon collection [19]. This reduces undesired spin flips during the excitation
process (the probability that the electron spin is in the same state after the measurement
is 0.992 [19]).

Note that directly applying our gate scheme similar to Fig. 2.11 leads to an extra basis
rotation for the nuclear spins. When measuring multiple stabilizers in a row, this extra
basis rotation has to be taken into account. This can be done by updating the following
stabilizer measurements such that the final output state would be the originally targeted
one up to single-qubit rotations. For instance, if we want to measure multiple stabilizers
P1,P2, ..,PN in a row, we can simplify the implementation given our own gate schemes
as follows.
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Figure 2.12: Measuring stabilizers. a) General scheme for ancilla-based measurement of a stabilizer P . The
phase φ of the final π/2 pulse will depend on the operator P as discussed earlier. b) Given our experimental
implementation of controlled gates, the most straightforward way to measure an operator P (i.e., with least
amount of applied single qubit gates) usually leads to extra single qubit rotations U . If we want to measure
multiple stabilizers in a row, we either undo the extra rotation by applying the unitary U † first, or instead
update the next stabilizers to be measured to account for this.

First, we measure the stabilizer P1. If the measurement outcome is +1, we project
into the state with +1 eigenvalue. The state after that measurement would thus be (up to
a normalization factor):

ψ̄1 =U1(I +P1)
∣∣ψi n

〉
. (2.21)

To take into account the extra rotation U1, for the second stabilizer to be measured,
we measure P̄2 =U1P2U †

1 instead of P2. The obtained state after measuring P̄2 will there-
fore be:

ψ̄2 =U2 · (I +U1P2U †
1 ) ·U1 · (I +P1)

∣∣ψi n
〉

=U2U1 · (I +P2) · (I +P1)
∣∣ψi n

〉
=U2U1

∣∣ψ2
〉 (2.22)

We can generalize this for the N stabilizers. For the Nth stabilizer we measure:

P̄N = (UN−1...U1) ·PN · (UN−1...U1)† (2.23)

The final output state will be:

ψ̄out = (UNUN−1...U1)
∣∣ψout

〉
, (2.24)

which is the target output state up to single qubit rotations (U =UNUN−1...U1).

Another method to measure multiple stabilizers in a row is to replace each controlled
X, Y or Z gate by its equivalent in our scheme following Figure 2.9d and finally compile
the circuit to reduce the total number of gates (see chapter 6 for an example).

2.5.7. TWO-QUBIT GATE OPTIMIZATION
As shown in the previous sections, by selecting τ in resonance with the electron-nuclear
dynamics, and selecting the number of pulses N such that the rotation angle is π/2, we
can obtain the two qubit gate Rx (±π/2). As there are many periodic resonances in the
dynamical decoupling spectrum (as shown in Fig. 2.8), we aim to select the resonant τ
which would lead to the best gate performance. In addition, for practical reasons, we
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Figure 2.13: Optimization of the electron-nuclear two-qubit gates. a) Experimental sequence used for gate
optimization. Two sequential measurements of the nuclear spin are performed using DD gates with roughly
chosen parameters near a certain resonance. The second measurement is performed in both X- and Y-bases (to

get 〈Ix 〉,〈Iy 〉 ). b) An example showing the dependence of the measured Bloch vector length (
√

〈Ix 〉2 +〈Iy 〉2)

with N and ∆τ. The previous process is then repeated for other potentially promising resonances and we then
choose the optimal gate configuration. Figure adapted from Kalb [31].

can allow slight detuning in the resonance condition τ which provides more flexibility
to optimize τ and N for a better gate performance [17, 19, 31]. Ideally, the combination
of (τ, N) maximizes the gate fidelity by 1) Minimizing the interaction with non-targeted
spins such that the electron only entangles with the target (i.e. minimizes crosstalk); 2)
Setting the rotation angle φ as close as possible to π/2, such that a maximally entangled
state is produced. Therefore, having flexibility in changing τ can help in reducing the
discretization errors as N can only change in steps of 2 pulses.

To this end, we optimize our two-qubit gates by performing the sequence shown
in Fig. 2.13a. We perform two sequential measurements of the nuclear spin using a
DD gate with a (τ, N) combination that is roughly chosen near a certain resonance. To
avoid systematic phase shifts on the nuclear spin due to detunings of the applied DD
gate, we perform the second measurement in both X and Y bases and we then calculate

the Bloch vector length in the XY-plane of the Bloch sphere
√
〈Ix〉2 +〈Iy 〉2. Note that

this constant phase shift is calibrated away after selecting the optimal parameters [31].
We then make 2D scans of τ and N used to implement the controlled rotation gates in
both initialization and readout steps, and find the parameters that maximize the Bloch
vector length. We then repeat the previous procedure for other potentially promising
resonances and finally select the optimal gate configuration.
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3
ONE-SECOND COHERENCE FOR A

SINGLE ELECTRON SPIN COUPLED

TO A MULTI-QUBIT NUCLEAR-SPIN

ENVIRONMENT

M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, T. H. Taminiau

Single electron spins coupled to multiple nuclear spins provide promising multi-qubit reg-
isters for quantum sensing and quantum networks. The obtainable level of control is de-
termined by how well the electron spin can be selectively coupled to, and decoupled from,
the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a
single nitrogen-vacancy electron spin through decoupling sequences tailored to its micro-
scopic nuclear-spin environment. First, we use the electron spin to probe the environment,
which is accurately described by seven individual and six pairs of coupled carbon-13 spins.
We develop initialization, control and readout of the carbon-13 pairs in order to directly
reveal their atomic structure. We then exploit this knowledge to store quantum states in
the electron spin for over a second by carefully avoiding unwanted interactions. These re-
sults provide a proof-of-principle for quantum sensing of complex multi-spin systems and
an opportunity for multi-qubit quantum registers with long coherence times.

The results of this chapter have been published in Nature Communications 9, 2552 (2018).
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3. ONE-SECOND COHERENCE FOR A SINGLE ELECTRON SPIN COUPLED TO A MULTI-QUBIT

NUCLEAR-SPIN ENVIRONMENT

3.1. INTRODUCTION
Coupled systems of individual electron and nuclear spins in solids are a promising plat-
form for quantum information processing [1–6] and quantum sensing [7–11]. Initial ex-
periments have demonstrated the detection and control of several nuclear spins sur-
rounding individual defect or donor electron spins [12–17]. These nuclear spins provide
robust qubits that enable enhanced quantum sensing protocols [7–11], quantum error
correction [2, 3, 18], and multi-qubit nodes for optically connected quantum networks
[19–22].

The level of control that can be obtained is determined by the electron spin coher-
ence and therefore by how well the electron can be decoupled from unwanted interac-
tions with its spin environment. Electron coherence times up to 0.56 s for a single elec-
tron spin qubit [5] and ∼ 3 seconds for ensembles [23–26] have been demonstrated in
isotopically purified samples depleted of nuclear spins, but in those cases the individual
control of multiple nuclear-spin qubits is forgone.

Here we realize a coherence time exceeding one second for a single electron spin
in diamond that is coupled to a complex environment of multiple nuclear-spin qubits.
First, we use the electron spin as a quantum sensor to probe the microscopic structure
of the surrounding nuclear-spin environment, including interactions between the nu-
clear spins. We find that the spin environment is accurately described by seven isolated
single 13C spins and six pairs of coupled 13C spins (Fig. 3.1a). We then develop pulse
sequences to initialize, control and readout the state of the 13C-13C pairs. We use this
control to directly characterize the coupling strength between the 13C spins, thus re-
vealing their atomic structure given by the distance between the two 13C atoms and the
angle they make with the magnetic field. Finally, we exploit this extensive knowledge of
the microscopic environment to realize tailored decoupling sequences that effectively
protect arbitrary quantum states stored in the electron spin for well over a second. This
combination of a long electron spin coherence time and selective couplings to a system
of up to 19 nuclear spins provides a promising path to multi-qubit registers for quantum
sensing and quantum networks.

3.2. SYSTEM
We use a single nitrogen vacancy (NV) center (Fig. 3.1a) in a CVD-grown diamond at
a temperature of 3.7 K with a natural 1.1% abundance of 13C and a negligible nitrogen
concentration (< 5 parts per billion). A static magnetic field of Bz ≈ 403 G is applied
along the NV-axis with a permanent magnet (see section 3.9). The NV electron spin is
read out in a single shot with an average fidelity of 95% through spin-selective resonant
excitation [27]. The electron spin is controlled using microwave pulses through an on-
chip stripline (see section 3.9).

3.3. LONGITUDINAL RELAXATION
We first address the longitudinal relaxation (T1) of the NV electron spin, which sets a
limit on the maximum coherence time. At 3.7 Kelvin, spin-lattice relaxation due to two-
phonon Raman and Orbach-type processes are negligible [28, 29]. No cross relaxation to
P1 or other NV centers is expected due to the low nitrogen concentration. The electron
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Figure 3.1: Experimental system and T1 measurements. (a) We study a single nitrogen-vacancy (NV) center
in diamond surrounded by a bath of 13C nuclear spins (1.1% abundance). In this work, we show that the
microscopic nuclear-spin environment is accurately described by 7 isolated 13C spins, 6 pairs of coupled 13C
spins and a background bath of 13C spins (not depicted). (b) Longitudinal relaxation of the NV electron spin.
The spin is prepared in ms = 0,−1, or +1 and the fidelity with the initial state is measured after time t . The
inset shows the microwave (MW) and laser controls for the NV spin and charge states, as well as the pathways
for spin relaxation induced by potential background noise from these controls. All error bars are one statistical
s.d.
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spin can, however, relax due to microwave noise and laser background introduced by the
experimental controls (Fig. 3.1). We ensure a high on/off ratio of the lasers (> 100 dB)
and use switches to suppress microwave amplifier noise (see section 3.9). Figure 3.1b
shows the measured electron spin relaxation for all three initial states. We fit the average
fidelity F to

F = 2/3e−t/T1 +1/3. (3.1)

The obtained decay time T1 is (3.6±0.3) ·103 s. This value sets a lower limit for the spin
relaxation time, and is the longest reported for a single electron spin qubit. Remark-
ably, the observed T1 exceeds recent theoretical predictions based on single-phonon
processes by more than an order of magnitude [30, 31]. To further investigate the ori-
gin of the decay, we prepare ms = 0 and measure the total spin population summed over
all three states. The total population decays on a similar timescale (∼ 3.6 ·103 s), indicat-
ing that the decay is caused by a reduction of the measurement contrast, possibly due to
drifts in the optical setup (see section 3.9), rather than by spin relaxation. This suggests
that the spin-relaxation time significantly exceeds the measured T1 value. Nevertheless,
the long T1 observed here already indicates that longitudinal relaxation is no longer a
limiting factor for NV center coherence.

3.4. QUANTUM SENSING OF THE SPIN ENVIRONMENT.
To study the electron spin coherence, we first use the electron spin as a quantum sensor
to probe its nuclear-spin environment through dynamical decoupling spectroscopy [12–
14]. The electron spin is prepared in a superposition |x〉 = (|ms = 0〉 + |ms = −1〉)/

p
2

and a dynamical decoupling sequence of N π-pulses of the form (τ−π−τ)N is applied.
The remaining electron coherence is then measured as a function of the time between
the pulses 2τ. Loss of electron coherence indicates an interaction with the nuclear-spin
environment.

The results in Fig. 3.2a for N = 32 pulses reveal a rich structure consisting of both
sharp and broader dips in the electron coherence. The sharp dips (Fig. 3.2b) have been
identified previously as resonances due to the electron spin undergoing an entangling
operation with individual isolated 13C spins in the environment [12–14]. For this NV
center, the observed signal is well explained by seven individual 13C spins and a back-
ground bath of randomly generated 13C spins (Fig. 3.2b). To verify this explanation we
perform direct Ramsey spectroscopy on all seven spins (Fig. 3.6) [3]. For the electron
spin in ms =±1, each spin yields a single unique precession frequency due to the hyper-
fine coupling, indicating that all seven spins are distinct and do not couple strongly to
other 13C spins in the vicinity (See Fig. 3.6).

The electron can be efficiently decoupled from the interactions with such isolated
13C spins by setting τ = m · 2π

ωL
, with m a positive integer and ωL the 13C Larmor fre-

quency for ms = 0 [33]. In practice, however, this condition might not be exactly and
simultaneously met for all spins due to: the limited timing resolution of τ (here 1 ns),
measurement uncertainty in the value ωL , and differences between the ms = 0 frequen-
cies for different 13C spins, for example caused by different effective g-tensors under a
slightly misaligned magnetic field (here < 0.35◦, section 3.10.3) [3, 33–35]. We numeri-
cally simulate these deviations from the ideal condition and find that, for our range of
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Figure 3.2: Quantum sensing of the microscopic spin environment. (a) Dynamical decoupling spectroscopy
[13] revealing a rich nuclear-spin environment consisting of individual 13C spins, as well as pairs of coupled
13C spins. The electron spin is prepared in a superposition, |x〉 = (|ms = 0〉+ |ms =−1〉)/

p
2 and a decoupling

sequence of N = 32 π-pulses separated by 2τ is applied. Loss of coherence indicates the interaction of the
electron spin with nuclear spins in the environment. Blue: data. Purple line: theory (see section 3.9). The
shaded areas mark the signals due to six 13C-13C pairs labeled 1 to 6. (b) Zoom-in showing sharp signals
due to coupling to isolated individual 13C spins [12–14]. The total signal is well described by seven 13C spins
(see Table 3.2 for hyperfine parameters) and a bath of 200 randomly generated spins with hyperfine couplings
below 10 kHz. (c) Zoom-in showing a broad signal due to 13C-13C pair 1 [16, 32]. Blue: data. The solid orange
line is the theoretical signal just due to pair 1, while the purple line includes the seven individual 13C spins and
the 13C spin bath as well.
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parameters, the effect on the electron coherence is small and can be neglected (Fig. 3.7).

We associate the broader dips in Fig. 3.2a and Fig. 3.2c to pairs of strongly coupled
13C spins. Such 13C - 13C pairs were treated theoretically [32, 36] and the signal due to
a single pair of nearest-neighbor 13C spins with particularly strong couplings to a NV
center has been detected [16]. In this work, we exploit improved coherence times to
detect up to six pairs, including previously undetected non-nearest-neighbor pairs. We
then develop pulse sequences to polarize and coherently control these pairs to be able
to directly reveal their atomic structure through spectroscopy.

3.5. DIRECT SPECTROSCOPY OF NUCLEAR-SPIN PAIRS.
The evolution of 13C - 13C pairs can be understood from an approximate pseudo-spin
model in the subspace spanned by |↑↓〉 = |⇑〉 and |↓↑〉 = |⇓〉, following Zhao et al. [32]
(sections 3.10.1 and 3.10.2). The pseudo-spin Hamiltonian depends on the electron spin
state. For ms = 0 we have:

Ĥ0 = X Ŝx (3.2)

and for ms =−1:

Ĥ1 = X Ŝx +Z Ŝz (3.3)

where Ŝx and Ŝz are the spin- 1
2 operators. X is the dipolar coupling between the 13C

spins and Z is due to the hyperfine field gradient (see section 3.9) [32]. The evolution of
the 13C - 13C pair during a decoupling sequence will thus in general depend on the initial
electron spin state, causing a loss of electron coherence.

We now show that this conditional evolution enables direct spectroscopy of the 13C -
13C dipolar interaction X . Consider two limiting cases: X >> Z and Z >> X , which cover
the pairs observed in this work. In both cases, loss of the electron coherence is expected
for the resonance condition τ= τk = (2k−1) π

2ωr
, with k a positive integer and resonance

frequencyωr =
√

X 2 + (Z /2)2 [13, 32, 37]. For X >> Z the net evolution at resonance is a
rotation around the z-axis with the rotation direction conditional on the initial electron
state (mathematically analogous to the case of a single 13C spin in a strong magnetic field
[13, 38]). For Z >> X the net evolution is a conditional rotation around the x-axis (anal-
ogous to the Nitrogen nuclear spin subjected to a driving field [37]). These conditional
rotations provide the controlled gate operations required to initialize, coherently control
and directly probe the pseudo-spin states.

The measurement sequences for the two cases are shown in Fig. 3.3a. First, a dy-
namical decoupling sequence is performed that correlates the electron state with the
pseudo-spin state. Reading out the electron spin in a single shot then performs a pro-
jective measurement that prepares the pseudo-spin into a polarized state. For X >> Z
the pseudo-spin is measured along its z-axis and thus prepared in |⇑〉. For Z >> X the
measurement is along the x-axis and the spin is prepared in (|⇑〉+ |⇓〉)/

p
2. Second, we

let the pseudo-spin evolve freely with the electron spin in one of its eigenstates (ms = 0
or ms = −1) so that we directly probe the precession frequencies ω0 = X (for ms = 0) or
ω1 =

p
X 2 +Z 2 (for ms = −1). For Z >> X , an extra complication is that the initial state

(|⇑〉+ |⇓〉)/
p

2 is an eigenstate of Ĥ0. To access ω0 = X , we prepare (|⇑〉+ i |⇓〉)/
p

2 - a
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Figure 3.3: Direct spectroscopy of nuclear-spin pairs. (a) Measurement sequences for Ramsey spectroscopy
of 13C - 13C pairs, for Z >> X and for X >> Z . The controlled ±x (±z) gates are controlled ±π/2 rotations
around x (z) with the sign controlled by the electron state. (b,c) Nuclear spin Ramsey measurements and
obtained precession frequencies for pairs 2, 4 and 6. The electron spin state during the free evolution time
t is set to ms = 0 (b) or ms = −1 (c) and an artificial detuning is applied. Each pair yields a unique set of
frequencies, confirming that the pairs are distinct. For pair 2 an additional beating is observed (frequency of
23(3) Hz), indicating a small coupling to one (or more) additional spins. See Fig. 3.8 for the other three pairs
and Table 3.4 for fit results. All error bars are one statistical s.d.
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Figure 3.4: Atomic structure and decoupling signal for the six nuclear-spin pairs. (a) Structure of the six 13C
- 13C pairs within the diamond unit cell (up to symmetries and equivalent orientations). The z values give
the height in fractions of the diamond lattice constant a0. The magnetic field is oriented along the < 111 >
direction, i.e. along the axis of pair 4. For pair 3 there is an additional possible structure that yields a similar X ,
see Table 3.3. (b) The calculated signal for the six individual 13C - 13C pairs accurately describes the measured
decoupling signal for different number of pulses N . Data is taken for τ= m · 2π

ωL
to avoid coupling to single 13C

spins. See Fig. 3.10 for other values of N .

superposition of Ĥ0 eigenstates - by first letting the system evolve under Ĥ1 for a time
π/(2ω1). Finally the state of the pseudo-spin is read out through a second measurement
sequence.

We find six distinct sets of frequencies (Fig. 3.3b), indicating that six different 13C -
13C pairs are detected. The measurements for ms = 0 directly yield the coupling strengths
X and therefore the atomic structure of the pairs (Fig. 3.4a). We observe a variety of cou-
pling strengths corresponding to nearest-neighbor pairs (X /2π= 2082.7(7) Hz, theoreti-
cal value 2061 Hz) as well as pairs separated by several bond lengths (e.g. X /2π= 133.8(1)
Hz, theoretical value 133.4 Hz). The observed number of pairs is consistent with the 13C
concentration of the sample (Fig. 3.9). Note that for pair 4 we have X >> Z , so the reso-
nance condition is mainly governed by the coupling strength X . This makes it likely that
additional pairs with the same dipolar coupling X — but smaller Z values — contribute
to the observed signal at τ = 120 µs. Nevertheless, the environment can be described
accurately by the six identified pairs, which we verify by comparing the measured dy-
namical decoupling curves for different values of N to the calculated signal based on the
extracted couplings (Fig. 3.4b).
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Figure 3.5: Protecting quantum states with tailored decoupling sequences. (a) Normalized signal under
dynamical decoupling with the number of pulses varying from N = 4 to N = 10240. The electron is initialized
and readout along x. The thin lines are fits to equation (3.4), which takes into account the six 13C −13 C pairs
identified. We use the extracted amplitudes A to re-normalize the signal. Thick lines are the extracted envelops

(0.5+0.5 · e−(t/T )n
) with T and n obtained from the fits. See Fig. 3.11 for the obtained values n. (b) Scaling

of the obtained coherence time T as function of the number of pulses (error bars are < 5%). The solid line is
a fit to the power function TN=4 · (N /4)η, where TN=4 is the coherence time for N = 4. We find η = 0.799(2).
(c) The average state fidelity obtained for the six cardinal states (Fig. 3.13). Unlike in (a), the signal is shown
without any renormalization. The number of pulses N is chosen to maximize the obtained signal at the given
total evolution time while avoiding interactions with the 13C environment. The solid green line is a fit to an
exponential decay. The horizontal line at 2

3 fidelity marks the classical limit for storing quantum states. The
two curves cross at t = 1.46 s demonstrating the protection of arbitrary quantum states well beyond a second.
All error bars are one statistical s.d.
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3.6. ELECTRON SPIN COHERENCE TIME.
Next, we exploit the obtained microscopic picture of the nuclear spin environment to
investigate the electron spin coherence under dynamical decoupling. To extract the loss
of coherence due to the remainder of the dynamics of the environment, i.e. excluding
the identified signals from the 13C spins and pairs, we fit the results to:

F = 1

2
+ A ·M(t ) ·e−(t/T )n

, (3.4)

in which M(t ) accounts for the signal due to the coupling to the 13C-13C pairs (Fig. 3.4b,
see section 3.9). A, T and n are fit parameters that account for the decay of the envelope
due to the rest of the dynamics of the environment and pulse errors. As before, effects
of interactions with individual 13C spins are avoided by setting τ= m · 2π

ωL
. An additional

challenge is that at high numbers of pulses the electron spin becomes sensitive even to
small effects, such as spurious harmonics due to finite MW pulse durations [39, 40] and
non-secular Hamiltonian terms [41], which cause loss of coherence over narrow ranges
of τ (< 10 ns). Here, we avoid such effects by scanning a range of ∼ 20 ns around the
target value to determine the optimum value of τ.

Figure 3.5a shows the electron coherence for sequences from N = 4 to 10240 pulses.
The coherence times T , extracted from the envelopes, reveal that the electron coherence
can be greatly extended by increasing the number of pulses N . The maximum coherence
time is T = 1.58(7) seconds for N = 10240 (Fig. 3.5b). We determine the scaling of T with
N by fitting to TN=4 · (N /4)η, with TN=4 the coherence time for N = 4 [23, 42–45] which
gives η= 0.799(2). No saturation of the coherence time T is observed yet, so that longer
coherence times are expected to be possible. In our experiments, however, pulse errors
become significant at larger N , causing a decrease in the amplitude A (see Fig. 3.12).

3.7. PROTECTING ARBITRARY QUANTUM STATES.
Finally, we demonstrate that arbitrary quantum states can be stored in the electron spin
for well over a second by using decoupling sequences that are tailored to the specific mi-
croscopic spin environment (Fig. 3.5c). For a given storage time, we select τ and N to
maximize the obtained fidelity by avoiding interactions with the characterized 13C spins
and 13C-13C pairs. To asses the ability to protect arbitrary quantum states, we average
the storage fidelity over the six cardinal states and do not re-normalize the results. The
results show that quantum states are protected with a fidelity above the 2/3 limit of a
classical memory for at least 0.995 seconds (using N = 10240 pulses) and up to 1.46 sec-
onds from interpolation of the results. These are the longest coherence times reported
for single solid-state electron spin qubits [5], despite the presence of a dense nuclear
spin environment that provides multiple qubits.

3.8. CONCLUSION
These results provide new opportunities for quantum sensing and quantum information
processing, and are applicable to a wide variety of solid-state spin systems [4, 5, 17, 46–
56]. First, these experiments are a proof-of-principle for resolving the microscopic struc-
ture of multi-spin systems, including the interactions between spins [32]. The developed
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methods might be applied to detect and control spin interactions in samples external to
the host material [10, 57–59]. Second, the combination of long coherence times and
selective control in an electron-nuclear system containing up to twenty spins enables
improved multi-qubit quantum registers for quantum networks. The electron spin co-
herence now exceeds the time needed to entangle remote NV centers through a photonic
link, making deterministic entanglement delivery possible [60]. Moreover, the realized
control over multiple 13C-13C pairs provides promising new multi-qubit quantum mem-
ories with long coherence times, as the pseudo-spin naturally forms a decoherence-
protected subspace [61].

3.9. METHODS

3.9.1. SETUP

The experiments are performed at 3.7 Kelvin (Montana Cryostation) with a magnetic
field of ∼403 G applied along the NV axis by a permanent magnet. We realize long re-
laxation (T1 > 1 hour) and coherence times (> 1 second) in combination with fast spin
operations (Rabi frequency of 14 MHz) and readout/initialization (∼ 10 µs), by minimiz-
ing noise and background from the microwave (MW) and optical controls. Amplifier (AR
25S1G6) noise is suppressed by a fast microwave switch (TriQuint TGS2355-SM) with a
suppression ratio of 40 dB. Video leakage noise generated by the switch is filtered with
a high pass filter. We use Hermite pulse envelopes [62, 63] to obtain effective MW pulses
without initialization of the intrinsic 14N nuclear spin. To mitigate pulse errors we alter-
nate the phases of the pulses following the X Y 8 scheme [64]. Laser pulses are generated
by direct current modulation (515 nm laser, Cobolt MLD - for charge state control) or
by acoustic optical modulators (637 nm Toptica DL Pro and New Focus TLB-6704-P –
for spin pumping and single-shot readout [27]). The direct current modulation yields an
on/off ratio of > 135 dB. By placing two modulators in series (Gooch and Housego Fibre
Q) an on/off ratio of > 100 dB is obtained for the 637 nm lasers. The laser frequencies
are stabilized to within 2 MHz using a wavemeter (HF-ANGSTROM WS/U-10U). Possible
explanations for the observed decay in Fig. 3.1b are frequency drifts of this wavemeter
or spatial drifts of the laser focus over one-hour timescales.

3.9.2. SAMPLE

We use a naturally occurring Nitrogen-Vacancy (NV) center in high-purity type IIa ho-
moepitaxially chemical-vapor-deposition (CVD) grown diamond with a 1.1% natural abun-
dance of 13C and a 〈111〉 crystal orientation (Element Six). The NV center studied here
has been selected for the absence of very-close-by strongly coupled 13C spins (> 500 kHz
hyperfine coupling), but not on any other properties of the nuclear spin environment. To
enhance the collection efficiency a solid-immersion lens was fabricated on top of the NV
center [27, 65] and a single-layer aluminum-oxide anti-reflection coating was deposited
[66, 67].
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3.9.3. DATA ANALYSIS.
We describe the total signal for the NV electron spin after a decoupling sequence in Fig.
refch3:Figure2 as:

F = 1

2
+ A ·Mbath(t ) ·

7∏
i=1

M i
C (t ) ·

6∏
j=1

M j
pai r (t ) ·e−(t/T )n

, (3.5)

where t is the total time. Mbath is the signal due to a randomly generated background
bath of non-interacting spins with hyperfine couplings below 10 kHz. M i

C are the signals

due to the seven individual isolated 13C spins [13]. M j
pai r are the signals due to the six

13C −13 C pairs and are given by 1/2+Re(Tr (U0U †
1 ))/4, with U0 and U1 the evolution

operators of the pseudo-spin pair for the decoupling sequence conditional on the initial
electron state (ms = 0 or ms =−1) [32]. The coherence time T and exponent n describe
the decoherence due to remainder of the dynamics of the spin environment.

Setting τ= m ·2π/ωL avoids the resonances due to individual 13C spins, so that equa-
tion (3.5) reduces to:

F = 1

2
+ A ·

6∏
j=1

M j
pai r (t ) ·e−(t/T )n

. (3.6)

The data in Fig. 3.4 and 3.5 are fitted to equation (3.6) and A, T and n are extracted from
these fits.

3.10. SUPPLEMENTARY INFORMATION

3.10.1. SYSTEM HAMILTONIAN.
The Hamiltonian describing a system composed of an NV center and a 13C nuclear spin
environment, in a suitable rotating frame and under the secular approximation can be
described by:

Ĥ =
n∑

i=1
(ω0 Î i

z + Ai
∥Ŝz Î i

z + Ai
⊥Ŝz Î i

x )+ Ĥn−n , (3.7)

whereωo (= 2π·γc Bz ) is the Larmor frequency, A∥(A⊥) is the parallel (perpendicular) hy-
perfine coupling between the electron and 13C nuclear spin with respect to the applied
static magnetic field. The dipolar interaction between 13C nuclear spins in the environ-
ment Hn−n is given by:

Ĥn−n = ∑
i> j

µo

4π

γi
cγ

j
c

r 3
i j

[Ii · I j −3(Ii · r̂i j )(I j · r̂i j )], (3.8)

where γc is the gyromagnetic ratio of the nuclear spin, r̂i j is the unit vector connecting
the two nuclear spins and Ii is the spin- 1

2 operator. Now we can rewrite the Hamiltonian
as follows:
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Ĥ =|0〉〈0| Ĥ0 +|1〉〈1| Ĥ1, (3.9)

Ĥ0 =Ĥn−n +
n∑

i=1
ω0 Î i

z , (3.10)

Ĥ1 =Ĥn−n +
n∑

i=1
(ω0 − Ai

∥)Î i
z + Ai

⊥ Î i
x , (3.11)

where H0 (H1) is the Hamiltonian describing the rest of the system if the electron is in
the state ms = 0 (ms =−1).

3.10.2. PSEUDO-SPIN MODEL

Under high magnetic field, the dynamics of a 13C −13 C pair can be approximated by a
pseudo-spin- 1

2 model [14, 16], where the two anti-parallel spin states of the pair (|↑↓〉
and |↓↑〉) are mapped into spin-up (|⇑〉) and spin-down (|⇓〉) states of the pseudo-spin.
The polarized states (|↑↑〉 and |↓↓〉) have large energy separation (due to large Zeeman
energy) with respect to other states and thus do not play a role in the dynamics. Under
these assumptions, the dynamics of the pseudo-spin can be described conditional on
the electron spin state by the Hamiltonian:

Ĥ0 = X Ŝx , and Ĥ1 = X Ŝx +Z Ŝz , (3.12)

where Ĥ0 (Ĥ1) is the Hamiltonian if the electron is in ms = 0 (ms =−1), X is the dipolar
coupling strength between the two nuclear spins [32]:

X = µ0

4π

γ2
c

r 3

1

2
(1−3cos2θ), (3.13)

where γc is the gyromagnetic ratio of the 13C nuclear spin, r is the distance between the
two nuclear spins forming the pair, θ is the angle between the pair axis~r and the external
magnetic field direction ([1,1,1] in our case). Z is due to the hyperfine field gradient [16],

Z = Z∥+Z⊥ = (A1
∥− A2

∥)+ (A1
⊥)2 − (A2

⊥)2

2π ·γC B0
. (3.14)

Table 3.3 shows the calculated set of possible coupling strengths for pairs with differ-
ent distances, r , and angles, θ, starting from the most strongly coupled pair (2.061 kHz)
down to a coupling strength of 61 Hz. This is the range of interest for the pairs that we de-
tect in this work. The values of the coupling strength X are distinct for different possible
pairs and thus enable us to determine the distance between the two nuclear spins form-
ing the pair and their orientation with respect to the external field. An exception is pair
3, for which two different types of pairs yield values close to the experimental value (see
table 3.4). Although this information is enough to describe the dynamics under dynam-
ical decoupling and the electron spin coherence, the measured value of Z for a single
electron-spin state, i.e. ms = −1 in our case, does not yet enable us to uniquely deter-
mine the relative position of the pair with respect to the NV. Measuring Z for ms = +1
as well enables obtaining the two quantities (A1

∥ − A2
∥) and (A1

⊥)2 − (A2
⊥)2, which would

further narrow down the possible pair positions [16].
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3.10.3. EFFECT OF MAGNETIC FIELD MISALIGNMENT ON 13C PRECESSION

FREQUENCIES
A misaligned field from the NV-axis would give rise to non-secular terms in the Hamilto-
nian leading to an effective g-tensor for 13C nuclear spins that depends on the hyperfine
coupling strength between the electron and the 13C nuclear spin. For the electron in
ms = 0, this effective g-tensor can be calculated as follows [33]:

ĝ (ms = 0) =
1+ηAxx ηAx y ηAxz

ηAx y 1+ηAy y ηAy z

0 0 1

 , (3.15)

where η = 2γe
2π·γc∆

= 1
2π ·1.824 ·10−3 kHz−1, and Amn is the hyperfine tensor between the

electron and 13C nuclear spin. The 13C precession frequency can now be calculated as
ω0 =

∣∣2πγc~B · ĝ (0)
∣∣ [33]. We estimate our magnetic field alignment to be better than 0.35

degrees, which corresponds to a maximum perpendicular field component of 2.5 G ( see
Table 3.1). Now if we assume that our field lies in xz-plane, i.e. ~B = Bz êz +Bx êx , then
~B · ĝ = Bx (1+ηAxx )êx +ηBx Ax y êy + (ηBx Axz +Bz )êz , which leads to :

ω0 = 2π ·γc

√
[Bx (1+ηAxx )]2 + [ηBx Ax y ]2 + [Bz +ηBx Axz ]2 (3.16)

In our case Axz and Axx range from −2π · 50 to 2π · 50 kHz (at maximum), and the
maximum value of Bx is 2.5 G. This means that different nuclear spins would have dif-
ferent precession frequencies, ω0, depending on their hyperfine coupling parameters.
The dominant term of change in ω0 with the hyperfine coupling strengths, for our range
of parameters, is 2π · γcηBx Axz , which would lead to a maximum difference in ω0 of
2π ·500 Hz between different nuclear spins. This is consistent with what we experimen-
tally observe (see Table 3.2).
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Figure 3.6: Ramsey experiments for the seven individual 13C spins. Ramsey interferometry [3] for the 13C
nuclear spins. The electron spin state during the free evolution time is ms =−1 (+1 for C4 and C7). Lines are

sinusoidal fits with a Gaussian decay: F = a + A · e−(t/T∗
2 )2

cos(δt +φ), with t the free evolution time and δ a
detuning. All seven spin signals are well described by a single, unique precession frequencyω±1 ≈ω0±A∥ (see
Table 3.2) and a Gaussian decay, indicating that all seven spins are distinct and that none couple strongly to
other 13C spins in the environment. The minimum coupling strength for the observed 13C-13C pairs of 83 Hz
(Table 3.4), would already introduce a clear beating in ∼ 3 ms, indicating that the seven identified single 13C
spins are not part of the 6 detected 13C - 13C pairs.
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Figure 3.7: Effect of deviations of τ from 2π/ω0. To avoid coupling to the single 13C spins, we aim to set
the interpulse spacing to the revival condition τ= m ·2π/ω0, with m an integer and ω0 the 13C frequency for
ms = 0 [33]. However, this condition is not met exactly and simultaneously in the experiments for all 13C spins
(section 3.10.3 and Table 3.2). Here we explore the effect of small deviations from this condition. a) Simulated
electron spin fidelity after a decoupling sequence with τ= m · 2π

ωL
, withωL the 13C Larmor frequency estimated

from ESR measurements (Table 3.1). In these simulations we include the seven characterized 13C spins and
set all precession frequencies to ω0 =ωL −∆ω. The curves show results for ∆ω2π = 100,130 and 160 Hz. The y-
axis scale is such that the difference between horizontal lines at τ= 0 is 1. The dashed blue line marks the 1/e
decay times for different values of N (from Fig. 3.5); the main region of interest lies to the left of this line. Note
that since the coherence time does not scale linearly with the number of pulses but rather with N 0.799, the 1/e
value for τ becomes shorter for larger N. The vertical gray dashed line provides a visual aid to illustrate how the
dip positions change with ∆ω. This shows that a change of 30 Hz in ∆ω

2π leads to variations of the dip pattern.
b) The obtained state fidelity averaged over 500 repetitions with ω0 for the seven spins drawn from a Gaussian
distribution with a mean frequency of ωL −∆ω and standard deviation of 30 Hz. These fluctuations match the
typical observed values of T2

∗ for the nuclear spins. The result shows that differences in ms = 0 frequencies
for different 13C spins are smeared out by dephasing, so that their net effect on the decoupling curves is small.
Additionally, the interpulse delay is set with a precision of δp = 1 ns. The maximum relative error occurs at
short τ (τ= τL ) and is of order δp /2τ. This is equivalent to a ∆ω∼ 2π ·100 Hz, for which the simulations show
a negligible effect at short τ. At larger τ (τ> 10τL ) the relative error in τ quickly becomes negligible.
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Pair 1 Pair 1

Pair 3 Pair 3

Pair 5 Pair 5

0.244(4) kHz

0.083(2) kHz

0.1868(6) kHz

7.905(4) kHz

4.42(2) kHz

2.807(4) kHz

Figure 3.8: Direct spectroscopy of 13C-13C pairs. Ramsey spectroscopy for pairs 1, 3 and 5 and for electron
state ms = 0 (left) and ms =−1 (right) during the free evolution time. The measurement sequence is shown in
Fig. 3.3a. These pairs are all of the type Z >> X . For the measurements with ms = −1 an artificial detuning
was applied. Pair 1 shows an additional beating (frequency of 22(2) Hz) indicating a small coupling to one (or
more) additional spins. Parameters and fit results are summarized in Table 3.4.
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Figure 3.9: Statistics for the number of 13C pairs per NV center with coupling parameters in the range of
the experimentally observed pairs. To estimate if the observed number of pairs is consistent with the 13C
concentration (1.1%), we generate 10000 NV centers with random nuclear spin baths. For each NV, all pairs
with coupling strength in the range X = 2π · 75 Hz to X = 2π · 2061 Hz are identified. For the range 2π · 75
Hz É X É 2π ·687 Hz, we count the pairs for which the first resonance lies within our experimental window:

τr = π
2ωr

< 300 µs, with ωr =
√

X 2 + (Z /2)2. This lead to the condition:
√

X 2 + (Z /2)2 > 2π · 833 Hz. For
pairs with X = 2π ·2.061 kHz the signal always lies within the 300 µs window, however for the signal strength
to be significant Z must be sufficiently large. We count all such pairs with Z > 50 Hz. The resulting statistics
for the total number of pairs per NV gives an average of 9.4 with a standard deviation of 3.7. Although this
estimate doesn’t take into account the all the subtleties of the possible dynamics of the pairs, it indicates that
the number of observed pairs is consistent with the 13C concentration.
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N=128

N=512

N=256

Figure 3.10: Comparison of the calculated signal for the six 13C −13 C pairs to the decoupling data. Similar
to the examples in Fig. 3.4 for N = 16 and 32, here we show extra examples for different N to confirm that the
six identified 13C −13 C pairs provide a good description of the dynamical decoupling data. τ= m · 2π

ωL
to avoid

effects of coupling to individual 13C spins.
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Figure 3.11: Extracted exponent of the coherence decay. Fitted values of n for the e−(τ/T )n
envelop decay

for the different numbers of pulses N in Fig. 3.5a. The fact that the value is around 2 even for N = 104 pulses
confirms that coherence times are not yet limited by T1 (expected n = 1 for T1-limited case).
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Figure 3.12: Dynamical decoupling data of Fig. 3.5a without normalization. Measured state fidelities under
dynamical decoupling with the number of pulses varying from N = 4 to N = 10240. Pulse errors become
significant for higher number of pulses causing a decrease in the initial amplitude A (see also Fig. 3.13).
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Total free evolution time t (ms)

Figure 3.13: State fidelity for the six states used in Fig. 3.5c. We prepare the six states: |0〉 = |ms = 0〉, |1〉 =
|ms =−1〉, |±〉 = (|0〉±|1〉), |±i 〉 = (|0〉±i |1〉) and measure the fidelity of the final state with the ideal initial state.
The curve in Fig. 3.5c in the main text is the average of these six state fidelities. The spin eigenstates |0〉 and |1〉
show a similar decay to the superposition states, indicating that the fidelities are likely limited by pulse errors.
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ms =−1 transition ( f−1) 1.746666(3) GHz
ms =+1 transition ( f+1) 4.008580(3) GHz
Zero field splitting (∆) 2.877623 GHz

Magnetic field Bz 403.553 G
Magnetic field stability 3 ·10−3 G

Magnetic field alignment < 0.35 degrees

Electron T ∗
2 4.9(2) µs

Electron T2 1.182(5) ms
Electron T1 3.6(3) ·103 s

Frequency for pulse spacing ωL/2π 432.004 kHz
Period for pulse spacing τL 2.3147 µs

Electron Rabi freq. 14.31(3) MHz
NV strain 4.0 GHz

Table 3.1: Experimental parameters. ms = −1 and ms = +1 transitions are the obtained frequencies from
electron spin resonance (ESR) measurements for the two spin transitions 0 → −1 and 0 → +1. Assuming a
well-aligned field with the NV axis, the zero field splitting (ZFS) is the average of the two frequencies. The mag-

netic field Bz is the estimated field strength from ms =−1 and ms =+1 frequencies (Bz = f+1− f−1
2γe

,γe = 2.8024

MHz/Gauss). The magnetic field stability is the standard deviation of the magnetic field measured continu-
ously (typical measurement time is 80 s) for 5 hours, during which the magnetic field is re-calibrated every 30
minutes, just as during the actual measurements. The magnetic field is aligned with the NV axis by sweeping

the magnet position in the transversal directions and minimizing
f+1+ f−1

2 . The maximum deviation from the
minimum is estimated to be 10 kHz. This implies a maximum perpendicular field B⊥ of 2.5 G, equivalent to
a maximum misalignment angle of 0.35 degrees. Electron T∗

2 is the free induction decay of the electron spin
measured in a Ramsey interference experiment. Electron T2 is the 1/e decay time of a spin echo measurement.
Electron T1 is the electron relaxation time shown in Fig. 3.1. ωL /2π is the 13C Larmor frequency for ms = 0 es-
timated from the ESR measurements (ωL = 2πγc ·Bz , γc = 1.0705 kHz/Gauss). τL is the estimated 13C Larmor
period ( 2π

ωL
) as used for setting the half interpulse delay (τ = m ·τL ) in the dynamical decoupling sequences.

NV strain is the splitting of the excited states Ex and Ey due to strain perpendicular to the NV axis, measured
by a resonant excitation spectroscopy at a temperature of 3.7 K.
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ω0/2π (kHz) ω1/2π (kHz) T ∗
2 (ms) A∥/2π (kHz) A⊥/2π(kHz)

C1 431.994(3) 469.320(5) 10.2(4) -36.4 25
C2 431.874(3) 413.739(1) 12.5(5) 20.6 43
C3 431.891(2) 447.209(2) 6.6(3) -11.4 59
C4 431.947(3) 440.740(2) 8.3 (6) 8.1 21
C5 431.934(3) 408.303(3) 20.8(7) 24.4 26
C6 431.960(1) 480.607(4) 4.0(2) -48.7 12
C7 431.95(1) 446.63(1) 5.0(7) 14.5 11

Table 3.2: Spectroscopy of isolated 13C.ω0 andω1 are the measured nuclear precession frequencies for ms = 0
and ms =−1 (ms =+1 for C4 and C7), obtained from least-squares fits of the Ramsey signals (e.g. Fig. 3.6) to
sinusoidal functions with Gaussian decays. T∗

2 is the dephasing time for ms = −1 (ms = +1 for C4 and C7)
obtained from the same fit. We use the variation in ω0 for these spins as an estimate of how much ω0 varies
between spins. This variation can be explained by an effective g-tensor for 13C nuclear spins, due to a slightly
misaligned field (see section 3.10.3). We study how these variations can affect the dynamical decoupling signal
in Fig. 3.7. A∥ and A⊥ are estimates for the hyperfine interaction components parallel and perpendicular to
the applied magnetic field, obtained by matching theoretical signal (e.g. Fig. 3.2a, b) to the observed electron
spin coherence. Uncertainties are estimated to be of the order of the last digit.

~r r θ (degrees) |X |/2π (Hz)

a0

4
[1,1,1] 0.433a0 0 2061.0

a0

4
[1,-1,1] 0.433a0 70.5 687.0

a0

4
[±2,2,0] 0.707a0 35.3/90 236.7

a0

4
[1,1,3] 0.829a0 29.5 186.8

a0

4
[1,-3,1] 0.829a0 80.0 133.4

a0

4
[3,1,3] 1.089a0 22.0 102.1

a0

4
[3,3,3] 1.299a0 0 76.3

a0

4
[2,2,4] 1.225a0 19.5 75.9

a0

4
[3,-1,-3] 1.089a0 82.4 61.3

Table 3.3: Main 13C −13 C pairs in the diamond lattice and their calculated coupling strengths. The coupling
strength X is given by equation (3.13).~r is the vector connecting the 13C −13 C pair; θ is the angle between the
pair axis and the external magnetic field which is along [1,1,1]. The distance between the two carbons forming
the pair is r . The diamond lattice constant is taken to be a0 = 3.5668 Å at 3.7 K [68]. This table shows pairs with
coupling strength down to 61 Hz which covers the range of pairs that we observed in this work. For the pairs
with X = 236.7 Hz two different angles with respect to the magnetic field are possible.



REFERENCES

3

55

τ (µs) N ω0/2π (kHz) X theor y /2π (kHz) ω−1/2π (kHz) Z /2π (kHz)
Pair 1 63 14 0.244(3) 0.2367 7.894(9) 7.890(9)
Pair 2 76 10 0.247(6) 0.2367 6.587(7) 6.582(6)
Pair 3 111 26 0.083(2) 0.0759/0.0763 4.42(2) 4.42(2)
Pair 4 120 24 2.0827(7) 2.061 2.0843(2) 0.230
Pair 5 172 8 0.1868(6) 0.1868 2.807(4) 2.801(4)
Pair 6 277 8 0.1338(1) 0.1334 1.831(3) 1.826(3)

Table 3.4: Parameters for the six 13C−13C pairs. τ is half of the interpulse delay and N is the number of pulses
in the decoupling sequence used to perform the conditional gates in the Ramsey measurement sequences
shown in Fig. 3.3. ω0 and ω−1 are the measured pseudo-spin precession frequencies for ms = 0 and ms =−1
respectively. ω0/2π is a direct measurement of the coupling strength X and Xtheor y is the closest theoretical
dipolar coupling strength to this value. This can be used to determine the atomic structure of the pair as
shown in Table 3.3. Z is due to the hyperfine field gradient and is calculated from the measured ω0 and ω−1:

Z =
√
ω2
−1 −ω2

0. Note that for pair 4 we have X >> Z , so the resonance condition is mainly governed by the

coupling strength X (resonant τ ∼ 120 µs). Therefore, it is likely that additional pairs with the same X —
but smaller Z values — contribute to the observed signal at 120 µs. Here we match the measured dynamical
decoupling data for different values of N (see e.g. Fig. 3.4b) to the calculated signal for a single pair, and find
that the results are accurately reproduced for Z /2π = 0.230 kHz. Note that for pair 3, there are two possible
configurations with theoretical coupling strength close to the measured value.
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J. Isoya, S. Pezzagna, J. Meijer, J. F. Du, M. B. Plenio, B. Naydenov, L. P. McGuinness,
and F. Jelezko, Nuclear magnetic resonance spectroscopy with single spin sensitivity,
Nat. Commun. 5, 4703 (2014).

[16] F. Shi, X. Kong, P. Wang, F. Kong, N. Zhao, R.-B. Liu, and J. Du, Sensing and atomic-
scale structure analysis of single nuclear-spin clusters in diamond, Nat. Phys. 10, 21
(2014).

[17] S.-Y. Lee, M. Widmann, T. Rendler, M. W. Doherty, T. M. Babinec, S. Yang, M. Eyer,
P. Siyushev, B. J. Hausmann, M. Loncar, et al., Readout and control of a single nuclear
spin with a metastable electron spin ancilla, Nat. Nanotech. 8, 487 (2013).

[18] N. Kalb, J. Cramer, D. J. Twitchen, M. Markham, R. Hanson, and T. H. Taminiau, Ex-
perimental creation of quantum zeno subspaces by repeated multi-spin projections
in diamond, Nat. Commun. 7, 13111 (2016).

[19] B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg,
R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell,
M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson,
Loophole-free bell inequality violation using electron spins separated by 1.3 kilome-
tres, Nature 526, 682 (2015).

http://dx.doi.org/ 10.1103/PhysRevLett.109.137602


REFERENCES

3

57

[20] S. Yang, Y. Wang, D. D. B. Rao, T. Hien Tran, A. S. Momenzadeh, MarkhamM, D. J.
Twitchen, P. Wang, W. Yang, R. Stöhr, P. Neumann, H. Kosaka, and J. Wrachtrup,
High-fidelity transfer and storage of photon states in a single nuclear spin, Nat. Pho-
ton. 10, 507 (2016).

[21] A. Reiserer, N. Kalb, M. S. Blok, K. J. M. van Bemmelen, T. H. Taminiau, R. Han-
son, D. J. Twitchen, and M. Markham, Robust quantum-network memory using
decoherence-protected subspaces of nuclear spins, Phys. Rev. X 6, 021040 (2016).

[22] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H.
Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, Entan-
glement distillation between solid-state quantum network nodes, Science 356, 928
(2017).

[23] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Solid-state elec-
tronic spin coherence time approaching one second, Nat. Commun. 4, 1743 (2013).

[24] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker,
H.-J. Pohl, T. Schenkel, M. L. W. Thewalt, K. M. Itoh, and S. A. Lyon, Electron spin
coherence exceeding seconds in high-purity silicon, Nat. Mater. 11, 143 (2012).

[25] G. Wolfowicz, S. Simmons, A. M. Tyryshkin, R. E. George, H. Riemann, N. V. Abrosi-
mov, P. Becker, H.-J. Pohl, S. A. Lyon, M. L. W. Thewalt, and J. J. L. Morton, Decoher-
ence mechanisms of 209bi donor electron spins in isotopically pure 28si, Phys. Rev. B
86, 245301 (2012).

[26] G. Wolfowicz, A. M. Tyryshkin, R. E. George, H. Riemann, N. V. Abrosimov, P. Becker,
H.-J. Pohl, M. L. W. Thewalt, S. A. Lyon, and J. J. L. Morton, Atomic clock transitions
in silicon-based spin qubits, Nat. Nanotech. 8, 561 (2013).

[27] L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson,
High-fidelity projective read-out of a solid-state spin quantum register, Nature 477,
574 (2011).

[28] S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, Quenching
spin decoherence in diamond through spin bath polarization, Phys. Rev. Lett. 101,
047601 (2008).

[29] A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budker, Temperature- and
magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensem-
bles in diamond, Phys. Rev. Lett. 108, 197601 (2012).

[30] T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya,
S. Onoda, J. Isoya, et al., Solid-state electron spin lifetime limited by phononic vac-
uum modes, Nature materials 17, 313 (2018).

[31] A. Norambuena, E. Muñoz, H. T. Dinani, A. Jarmola, P. Maletinsky, D. Budker, and
J. R. Maze, Spin-lattice relaxation of individual solid-state spins, Phys. Rev. B 97,
094304 (2018).

http://dx.doi.org/10.1103/PhysRevX.6.021040
http://dx.doi.org/10.1103/PhysRevB.86.245301
http://dx.doi.org/10.1103/PhysRevB.86.245301
http://dx.doi.org/10.1038/nature10401
http://dx.doi.org/10.1038/nature10401
http://dx.doi.org/ 10.1103/PhysRevLett.101.047601
http://dx.doi.org/ 10.1103/PhysRevLett.101.047601
http://dx.doi.org/https://doi.org/10.1038/s41563-017-0008-y
http://dx.doi.org/10.1103/PhysRevB.97.094304
http://dx.doi.org/10.1103/PhysRevB.97.094304


3

58 REFERENCES

[32] N. Zhao, J.-L. Hu, S.-W. Ho, J. T. K. Wan, and R. B. Liu, Atomic-scale magnetometry of
distant nuclear spin clusters via nitrogen-vacancy spin in diamond, Nat. Nanotech.
6, 242 (2011).

[33] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup,
P. R. Hemmer, and M. D. Lukin, Coherent dynamics of coupled electron and nuclear
spin qubits in diamond, Science 314, 281 (2006).

[34] J. Maze, J. Taylor, and M. Lukin, Electron spin decoherence of single nitrogen-
vacancy defects in diamond, Physical Review B 78, 094303 (2008).

[35] P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K. Yeung, P. Cappellaro, P. R. Hem-
mer, A. Yacoby, M. D. Lukin, and R. L. Walsworth, Coherence of nitrogen-vacancy
electronic spin ensembles in diamond, Physical Review B 82, 201201 (2010).

[36] Z.-Y. Wang, J. Casanova, and M. B. Plenio, Delayed entanglement echo for individual
control of a large number of nuclear spins, Nat. Commun. 8, 14660 (2017).

[37] T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A.
Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, Decoherence-protected
quantum gates for a hybrid solid-state spin register, Nature 484, 82 (2012).

[38] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, Universal
control and error correction in multi-qubit spin registers in diamond, Nat. Nanotech.
9, 171 (2014).

[39] M. Loretz, J. M. Boss, T. Rosskopf, H. J. Mamin, D. Rugar, and C. L. Degen, Spurious
harmonic response of multipulse quantum sensing sequences, Phys. Rev. X 5, 021009
(2015).

[40] J. E. Lang, J. Casanova, Z.-Y. Wang, M. B. Plenio, and T. S. Monteiro, Enhanced res-
olution in nanoscale NMR via quantum sensing with pulses of finite duration, Phys.
Rev. Applied 7, 054009 (2017).

[41] A. Ajoy, Y. Liu, and P. Cappellaro, Dc magnetometry at the T2 limit, ArXiv ,
1611.04691 (2016).

[42] G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, Universal dy-
namical decoupling of a single solid-state spin from a spin bath, Science 330, 60
(2010).

[43] C. A. Ryan, J. S. Hodges, and D. G. Cory, Robust decoupling techniques to extend
quantum coherence in diamond, Phys. Rev. Lett. 105, 200402 (2010).

[44] B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. Hollenberg, F. Jelezko, and
J. Wrachtrup, Dynamical decoupling of a single-electron spin at room temperature,
Phys. Rev. B 83, 081201 (2011).
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A. Edmonds, M. Atatüre, P. Bushev, and C. Becher, All-optical control of the silicon-
vacancy spin in diamond at millikelvin temperatures, Phys. Rev. Lett. 120, 053603
(2018).

[53] B. C. Rose, D. Huang, Z.-H. Zhang, P. Stevenson, A. M. Tyryshkin, S. Sangtawesin,
S. Srinivasan, L. Loudin, M. L. Markham, A. M. Edmonds, et al., Observation of
an environmentally insensitive solid-state spin defect in diamond, Science 361, 60
(2018).

[54] P. Siyushev, M. H. Metsch, A. Ijaz, J. M. Binder, M. K. Bhaskar, D. D. Sukachev,
A. Sipahigil, R. E. Evans, C. T. Nguyen, M. D. Lukin, P. R. Hemmer, Y. N. Palyanov, I. N.
Kupriyanov, Y. M. Borzdov, L. J. Rogers, and F. Jelezko, Optical and microwave con-
trol of germanium-vacancy center spins in diamond, Phys. Rev. B 96, 081201 (2017).

[55] J. J. Pla, F. A. Mohiyaddin, K. Y. Tan, J. P. Dehollain, R. Rahman, G. Klimeck, D. N.
Jamieson, A. S. Dzurak, and A. Morello, Coherent control of a single 29Si nuclear
spin qubit, Phys. Rev. Lett. 113, 246801 (2014).

[56] T. Iwasaki, Y. Miyamoto, T. Taniguchi, P. Siyushev, M. H. Metsch, F. Jelezko, and
M. Hatano, Tin-vacancy quantum emitters in diamond, Phys. Rev. Lett. 119, 253601
(2017).

[57] G. Kucsko, P. Maurer, N. Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. D. Lukin,
Nanometer scale thermometry in a living cell, Nature 500, 54 (2013).

http://dx.doi.org/10.1103/PhysRevLett.114.247603
http://dx.doi.org/10.1103/PhysRevLett.114.247603
http://dx.doi.org/10.1103/PhysRevB.90.241203
http://dx.doi.org/10.1103/PhysRevLett.113.263602
http://dx.doi.org/ 10.1103/PhysRevLett.119.223602
http://dx.doi.org/ 10.1103/PhysRevLett.120.053603
http://dx.doi.org/ 10.1103/PhysRevLett.120.053603
http://dx.doi.org/10.1126/science.aao0290
http://dx.doi.org/10.1126/science.aao0290
http://dx.doi.org/10.1103/PhysRevB.96.081201
http://dx.doi.org/10.1103/PhysRevLett.113.246801


3

60 REFERENCES

[58] F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M. Chen, C. Ju, F. Reinhard,
H. Chen, et al., Single-protein spin resonance spectroscopy under ambient condi-
tions, Science 347, 1135 (2015).

[59] J.-P. Tetienne, T. Hingant, J.-V. Kim, L. H. Diez, J.-P. Adam, K. Garcia, J.-F. Roch, S. Ro-
hart, A. Thiaville, D. Ravelosona, et al., Nanoscale imaging and control of domain-
wall hopping with a nitrogen-vacancy center microscope, Science 344, 1366 (2014).

[60] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen,
M. Markham, and R. Hanson, Deterministic delivery of remote entanglement on a
quantum network, Nature 558, 268 (2018).

[61] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum
computation, Phys. Rev. Lett. 81, 2594 (1998).

[62] L. M. K. Vandersypen and I. L. Chuang, NMR techniques for quantum control and
computation, Rev. Mod. Phys. 76, 1037 (2005).

[63] W. S. Warren, Effects of arbitrary laser or NMR pulse shapes on population inversion
and coherence, J. Chem. Phys. 81, 5437 (1984).

[64] T. Gullion, D. B. Baker, and M. S. Conradi, New, compensated Carr-Purcell se-
quences, Journal of Magnetic Resonance 89, 479 (1990).

[65] J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Pat-
ton, J. L. O’Brien, and J. G. Rarity, Strongly enhanced photon collection from dia-
mond defect centers under microfabricated integrated solid immersion lenses, App.
Phys. Lett. 97, 241901 (2010).

[66] W. Pfaff, B. J. Hensen, H. Bernien, S. B. v. Dam, M. S. Blok, T. H. Taminiau, M. J.
Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, and R. Hanson, Uncon-
ditional quantum teleportation between distant solid-state quantum bits, Science
345, 532 (2014).

[67] T. K. Yeung, D. L. Sage, L. M. Pham, P. L. Stanwix, and R. L. Walsworth, Anti-reflection
coating for nitrogen-vacancy optical measurements in diamond, App. Phys. Lett.
100, 251111 (2012).

[68] S. Stoupin and Y. V. Shvyd’ko, Thermal expansion of diamond at low temperatures,
Phys. Rev. Lett. 104, 085901 (2010).

http://dx.doi.org/10.1038/s41586-018-0200-5
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/ 10.1103/RevModPhys.76.1037
http://dx.doi.org/ https://doi.org/10.1016/0022-2364(90)90331-3
http://dx.doi.org/10.1063/1.3519847
http://dx.doi.org/10.1063/1.3519847
http://dx.doi.org/ 10.1126/science.1253512
http://dx.doi.org/ 10.1126/science.1253512
http://dx.doi.org/ 10.1063/1.4730401
http://dx.doi.org/ 10.1063/1.4730401
http://dx.doi.org/ 10.1103/PhysRevLett.104.085901


4
ATOMIC-SCALE MAGNETIC

RESONANCE IMAGING USING A

QUANTUM SENSOR

M. H. Abobeih, J. Randall, C. E. Bradley, H. P. Bartling, M. A. Bakker, M. J. Degen,
M. Markham, D. J. Twitchen, T. H. Taminiau

Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of
molecules and proteins [1]. Whereas conventional NMR requires averaging over large en-
sembles, recent progress with single-spin quantum sensors [2–9] has created the prospect
of magnetic imaging of individual molecules [10–13]. As an initial step towards this goal,
isolated nuclear spins and spin pairs have been mapped [14–21]. However, large clusters
of interacting spins—such as those found in molecules—result in highly complex spec-
tra. Imaging these complex systems is an outstanding challenge because it requires high
spectral resolution and efficient spatial reconstruction with sub-angstrom precision. Here
we realize such atomic-scale imaging using a single nitrogen-vacancy (NV) center as a
quantum sensor, and demonstrate it on a model system of 27 coupled 13C nuclear spins
in a diamond. We present a multidimensional spectroscopy method that isolates individ-
ual nuclear-nuclear spin interactions with high spectral resolution (< 80mHz) and high
accuracy (2 mHz). We show that these interactions encode the composition and inter-
connectivity of the cluster, and develop methods to extract the 3D structure of the cluster
with sub-angstrom resolution. Our results demonstrate a key capability towards magnetic
imaging of individual molecules and other complex spin systems [9–13].

The results of this chapter have been published in Nature 576,7787 (2019).
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4.1. INTRODUCTION
The nitrogen-vacancy (NV) center in diamond has emerged as a powerful quantum sen-
sor [2–13, 22, 23]. The NV electron spin provides long coherence times [5, 6, 20] and
high-contrast optical readout [5, 24, 25], enabling high sensitivity over a large range of
temperatures [5, 6, 20, 25, 26]. Pioneering experiments with near-surface NV centers
have demonstrated spectroscopy of small ensembles of nuclear spins in nano-scale vol-
umes [2, 3, 5–8], and electron-spin labelled proteins [4]. Furthermore, single nuclear
spin sensitivity has been demonstrated and isolated individual nuclear spins and spin
pairs have been mapped [14–21]. Together, these results have established the NV cen-
ter as a promising platform for magnetic imaging of complex spin systems and single
molecules [10–13].

In this work, we realise a key ability towards that goal: the 3D imaging of large nuclear-
spin structures with atomic resolution. The main idea of our method is to obtain struc-
tural information by accessing the couplings between individual nuclear spins. Three
key elements are: (1) realising high spectral resolution so that small couplings can be
accessed, (2) isolating such couplings from complex spectra, and (3) transforming the
revealed connectivity into the 3D spatial structure with sub-angstrom precision.

The basic elements of our experiment are illustrated in Fig. 4.1a. We consider a clus-
ter of 13C nuclear spins in the vicinity of a single NV center in diamond at 4 Kelvin. This
cluster provides a model system for the magnetic imaging of single molecules and spin
structures external to the diamond. Each 13C spin precesses at a shifted frequency due
to the hyperfine interaction with the electron spin, resembling a chemical shift in tradi-
tional NMR [1, 27]. These shifts enable different nuclear spins in the cluster to be distin-
guished.

4.2. MULTIDIMENSIONAL SPECTROSCOPY
We use the NV electron spin as a sensor to probe the nuclear-nuclear interactions (Fig.
4.1b). Inspired by NMR spectroscopy [1, 27], we develop sequences that employ spin-
echo double-resonance (SEDOR) techniques to isolate and measure individual couplings
with high spectral resolution. First, we polarise a nuclear “probe" spin (frequency RF 1)
using recently developed quantum sensing sequences that can detect spins in any direc-
tion from the NV, enabling access to a large number of spins (see section 4.7) [28]. Sec-
ond, we let this probe spin evolve for a time t and apply N echo pulses that decouple it
from the other spins and environmental noise. Simultaneously, pulses on a “target" spin
in the cluster (frequency RF 2) re-couple it to the probe spin, selecting the interaction
between these two spins. Finally, a second sensing sequence detects the resulting polar-
isation of the probe spin through a high-contrast readout of the electron spin (see sec-
tion 4.7), which enables fast data collection. This double-resonance sequence provides
a high spectral resolution through a long nuclear phase accumulation time. Importantly,
the resolution is not limited by the relatively short coherence time of the electron spin
sensor (see section 4.7) [24, 29].

It is instructive to first consider the case without echo pulses (N = 0). In such a
Ramsey-type measurement [24–26, 29, 30], all couplings act simultaneously. This re-
sults in complex spectra that indicate the presence of multiple spins and many nuclear-
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Figure 4.1: Basic concepts of the experiment. a, We consider an individual cluster of 13C nuclear spins near
a single NV center in diamond. To obtain the 3D structure of the cluster we use the NV electron spin as a
quantum sensor to measure nuclear-nuclear spin couplings. b, Experimental sequence. The NV sensor is used
to polarise and detect the “probe” spin(s) at frequency RF 1 (see section 4.7). A double-resonance sequence
of N echo pulses is applied simultaneously on the probe spin(s) (RF 1) and the “target” spin(s) (RF 2), so that
the coupling between these spins is selectively detected. See Fig. 4.5 for the detailed sequence. c, A Ramsey
signal (N = 0) for a nuclear spin in the cluster (detuning f0 = 5 kHz relative to RF 1 = 455.37kHz). Because
all couplings are probed simultaneously, the power spectral density (PSD) yields a complex non-resolvable
spectrum. See Fig. 4.6 for more examples. d, Double-resonance spectroscopy (N = 1). Sweeping the target
frequency (RF 2) reveals all spins that couple to the probe spin(s). For larger t , more peaks appear as weaker
couplings become visible. RF 1 = 463.27 kHz. e, Sweeping the evolution time t for a fixed RF 1 and RF 2 reveals
the coupling strength between spins. This example reveals a 235.96(1) Hz coupling between two spins with a
spectral resolution of 1.807(7) Hz FWHM. RF 1 = 463.27 kHz and RF 2 = 455.37 kHz. f, An example with N = 256
echo pulses showing an extended coherence time to 10.9(5) seconds, which enables selective measurements
of sub-Hz couplings with high spectral resolution (78(1) mHz) and precision (2 mHz). RF 1 = 408.32 kHz and
RF 2 = 413.48 kHz. All graphs: see section 4.7 for fit functions. Error bars are one standard deviation, a.u.
indicates arbitrary units.
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nuclear spin interactions in the cluster (Fig. 4.1c). However, this 1D measurement gives
no direct information on the connectivity between spins. Additionally, the underlying
structure of individual spins and couplings is obscured by the many frequencies (2 j for
coupling to j spins) and the low spectral resolution of >30 Hz FWHM (set by the dipolar-
broadened linewidth of the nuclear spins and inversely proportional to the dephasing
time T ∗

2 ).

In contrast, our double-resonance sequence enables couplings between specific spins
to be isolated and measured with high resolution. We first scan the target frequency RF 2
for a fixed probe frequency RF 1 (Fig. 4.1d). This reveals the spectral positions of nu-
clear spins coupled to the probe spin. We then sweep the evolution time t and Fourier
transform the signal to quantify the coupling strengths (Fig. 4.1e). For a single pulse
(N = 1), the nuclear spin coherence time is T2 = 0.58(2)s, yielding a spectral resolution of
1.807(7)Hz and a center frequency accuracy of 10 mHz. The spectral resolution is set by
the coherence of the sample spins and can be further enhanced by applying more echo
pulses. For N = 256, a resolution of 78(1) mHz and an accuracy of 2 mHz are obtained,
making it possible to detect sub-Hertz interactions (Fig. 4.1f). The obtained resolution
is an improvement by a factor ∼ 103 over Ramsey-type spectroscopy on the same type
of sample (Fig. 4.1c) [18–21, 24, 26, 29], and is an order of magnitude higher than in
previous experiments on other spin samples [6–8, 25, 30, 31].

To characterise the complete cluster, we perform 3D spectroscopy by varying the
probe frequency RF 1, the target frequency RF 2, and the evolution time t . The combi-
nations of RF 1 and RF 2 reveal the spectral positions of the spins in the cluster. The cou-
pling between spins is retrieved from the Fourier transform along the time dimension t .
This yields a 3D data set that in principle encodes the composition and connectivity of
the spin cluster (Fig. 4.2).

4.3. RESOLVING SPECTRALLY OVERLAPPING SPINS

In general, multiple spins can have (near-)identical precession frequencies. This has
two consequences. First, the echo pulses will invert these spins simultaneously, so that
multiple couplings are probed at the same time. Figure 4.3a shows an example with
one probe spin and three target spins. This example illustrates that, while the resulting
spectra are more complex, the high spectral resolution of our method enables retrieval
of the underlying nuclear-nuclear couplings even when several spins overlap spectrally.

Second, to determine the number of spins in the cluster, and to assign the measured
couplings to them, we need to resolve the ambiguity introduced by the fact that multiple
spins can overlap spectrally. For example, the observation of a coupling between fre-
quencies {RF 1,RF 2} = {A,C } and a coupling between frequencies {B ,C } is by itself not
enough to determine if there are one or two spins with frequency C . Our method re-
solves such ambiguities by extracting an over-determined data set with many couplings
that together constrain the problem. This enables individual spins to be uniquely iden-
tified from their connections to the rest of the cluster (see Fig. 4.3b for an example).
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Figure 4.2: Three-dimensional spectroscopy. By varying the probe frequency RF 1, the target frequency RF 2,
and the evolution time t , we obtain a three-dimensional data set that encodes the composition of the spins
in the cluster and their couplings. The observation of a signal at {RF 1,RF 2} indicates the presence of one or
more spins at both frequencies and a coupling between them. The Fourier transform along the time dimension
t reveals the spin-spin coupling strengths. Examples for three different RF 1 values are shown.
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Figure 4.3: Spectrally overlapping spins. a, Retrieving couplings when multiple spins are re-coupled simulta-
neously. Example in which the echo pulses invert three target spins (quadruple resonance). The PSD reveals a
complex, yet resolvable, spectrum. Red lines indicate the 8 frequencies f =± f1 ± f2 ± f3, where f1 = 17.17(2)
Hz, f2 = 7.05(3) Hz and f3 = 3.21(4) Hz are the extracted couplings of the probe spin to three target spins. Grey
dashed lines mark additional frequency components that appear due to failures to invert one or two of the
target spins (see Fig. 4.11 for detailed analysis). b, Overcoming ambiguity in identifying spins and assigning
couplings. Example from the data. Spins C2, C3, C6, C14, C15 and C18 all yield a coupling signal to the same
RF2 frequency. Because the couplings between these 6 spins reveal that they are part of two spatially separated
sub-clusters, it follows that the signals at RF2 must originate from two distinct spins (C24 and C27).
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4.4. CORRECTIONS FOR ELECTRON MEDIATED INTERACTIONS
Transforming the 3D spectra into a spatial structure requires a precise relation between
the measured couplings and the relative positions of the spins. A complication is that
the presence of electronic spins can modify the nuclear couplings [32], causing the mea-
sured value to deviate from a basic dipole-dipole coupling. We use perturbation the-
ory to derive a set of many-body corrections that depend on the electron-nuclear and
nuclear-nuclear couplings, and the magnetic field direction (see section 4.7). For the
type of cluster considered here, the corrections could be significant. However, the signs
of the leading terms depend on the electron spin state. By averaging the measured cou-
plings for the ms =+1 and ms =−1 states, the deviations are strongly reduced. Together
with a novel method to align the magnetic field to within 0.07 degrees (see section 4.7),
this enables us to approximate the nuclear-nuclear couplings as dipolar.

4.5. ATOMIC-SCALE IMAGING OF THE CLUSTER
Finally, we determine the structure of the spin cluster. Figure 4.4a summarises all ex-
tracted couplings. We identify M = 27 nuclear spins and retrieve a total of 171 pairwise
couplings, out of the total of M(M − 1)/2 = 351 couplings. The structure of the clus-
ter is completely described by 3M −4 = 77 spatial coordinates (see section 4.7), so that
the problem is over-determined. However, due to the large number of parameters and
local minima, a direct least-squares minimisation [10] is challenging. Instead, we se-
quentially build the structure by progressively adding spins, while keeping track of all
possible structures that match the measured couplings within a certain tolerance.

We use two different methods. The first method constrains the spin coordinates to
the diamond lattice. The second method discretises space in a general cubic lattice,
with voxel spacing down to 5 × 10−3 nm (∼ 1/70th of the lattice constant, see section
4.7). While this second method is more computationally intensive, it uses minimum a
priori knowledge and can be applied on arbitrary spin systems. We run these analyses
in parallel with the measurements, so that sets of the most promising spin assignments
and structures are regularly created. These yield predictions for which unmeasured cou-
plings (combinations of RF 1 and RF 2) are required to decide between different assign-
ments and structures, which we use to guide the experiments and reduce the total mea-
surement time (see section 4.7).

Figure 4.4b shows the structure obtained for the 27 spins using the diamond-lattice.
The blue connections show the strongest couplings (> 3 Hz) and visualise the inter-
connectivity of the cluster. The cubic-lattice method yields a nearly identical structure
(see section 4.7); the average distance between the spin positions for the two solutions
is 0.58Å, a fraction of the bond length of ∼ 1.54Å. As a final step, we use these struc-
tures as inputs for least-squares minimisation, where the x, y, z coordinates are allowed
to relax to any value. The solution obtained lies close to the initial guess with an average
distance of 0.46 Å. The uncertainties for the spatial coordinates (δx, δy , δz) are below
a diamond bond length for all 27 spins (Fig. 4.4c,d), indicating atomic-scale imaging of
the complete 27-spin cluster.

Additionally, we determine the position of the NV sensor relative to the cluster. Al-
though not required to reconstruct the cluster, this provides a control experiment. We
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Figure 4.4: Atomic-scale imaging of the 27-nuclear-spin cluster. a, 2D plot summarising all couplings be-
tween the 27 spins identified from the 3D spectroscopy (Fig. 4.2). Includes identification of spins with over-
lapping frequencies. The size and colour of each point indicates the strength of the measured coupling aver-
aged over the electron ms = +1 and ms = −1 states. Dashed grey lines indicate the nuclear spin frequencies
(ms =−1 state). Solid grey lines indicate the bare 13C Larmor frequency. Total measurement time: ∼ 400 hours.
See Tables 4.2,4.3,4.4 for numerical values and uncertainties. b, 3D structure of the nuclear spins obtained us-
ing the diamond-lattice method (see text). Blue lines indicate couplings greater than 3Hz and illustrate the
connectivity of the cluster. See Fig. 4.7 for zoom-ins of strongly coupled subclusters. c, Distance ∆r between
the obtained spin positions from the diamond-lattice method (see text) and from a least-squares optimisation.
Deviations are generally below one diamond bond length (dashed line, ∼ 1.54Å). d, The uncertainties for the
77 spatial coordinates of the cluster from a least-squares optimisation are less than the bond length, indicating
atomic-scale resolution. See Figs 4.13,4.14,4.15 and Table 4.5 for in depth comparisons between the structures
and uncertainties obtained with the different methods.
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measure the coupling of the 14N nuclear spin to 12 of the 13C spins (Fig. 4.8). This un-
ambiguously determines the location of both the 14N atom and the vacancy (fit uncer-
tainties < 0.3Å). We can now compare the electron-13C hyperfine couplings to previ-
ous density functional theory (DFT) calculations for 5 of our spins [33]. All 5 couplings
agree with the DFT calculations (Fig. 4.8), providing an independent corroboration of
the extracted structure, as well as a direct test of the DFT calculations. Looking beyond
quantum sensing, this precise microscopic characterisation of the NV environment pro-
vides new opportunities for improved control of quantum bits for quantum information
[20, 24, 28, 31, 32], and for investigating many-body physics in coupled spin systems.

In our method, the NV sensor spin is exclusively used to create and detect polari-
sation (Fig. 4.1b). Therefore, the two main requirements for the sensor spin are (1) a
high-contrast readout to keep measurement times manageable, and (2) that it does not
limit the spectral resolution by disturbing the evolution of the nuclear spins through
relaxation [25, 30, 31]. We satisfy these requirements by working at 4 Kelvin, so that
the electron relaxation is negligible (T1 = 3.6(3)× 103 s [20]), and high-fidelity readout
through resonant optical excitation is available (see section 4.7). Recent experiments
have demonstrated both these requirements up to room temperature [5, 25, 26, 30, 31].
The electron spin relaxation—milliseconds at room temperature—can be decoupled from
the sample spins through laser illumination [30, 31] or sequential weak measurements
[25, 26]. High-contrast readout has been demonstrated by using a nuclear spin as a
memory that can be read out repeatedly [5, 30]. Nuclear spins themselves are well-
isolated from temperature [31]. Therefore, when combined with those methods, the
ideas presented here could be extended to ambient conditions.

4.6. CONCLUSION
In conclusion, we have developed and demonstrated 3D atomic-scale imaging of large
clusters of nuclear spins using a single-spin quantum sensor. Our approach is compat-
ible with room temperature operation [25, 26, 30, 31] and could be extended to larger
structures, as the number of required measurements scales linearly with the number of
spins. Future improvements in the data acquisition and the computation of 3D struc-
tures can further reduce time requirements. In particular, recent methods to polarise
and measure nuclear spins are expected to improve sensitivity [25, 26], especially for
samples with weak couplings to the NV sensor. Optimised sampling of the measure-
ments and adaptive algorithms based on a real-time structure analysis can further re-
duce the total number of required measurements. Therefore, when combined with re-
cent progress in nanoscale NMR with near-surface NV centers [2–8], our results provide
a path towards the magnetic imaging of individual molecules and complex spin struc-
tures external to diamond [10–13].

4.7. METHODS

4.7.1. SAMPLE AND NV CENTER SENSOR
We use a naturally occurring NV center in a homoepitaxially chemical-vapor-deposition
(CVD) grown diamond with a 1.1% natural abundance of 13C and a 〈111〉 crystal orien-
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tation (Element Six). The NV is placed in a solid-immersion lens to enhance photon col-
lection efficiency [34]. The NV center has been selected for the absence of 13C spins with
hyperfine couplings > 500 kHz. The NV electron spin coherence times are T ∗

2 = 4.9(2)µs
and T2 = 1.182(5)ms. We work at 4 Kelvin, so that the electron relaxation is negligible
(T1 = 3.6(3)×103 s [20]), and use high-fidelity readout through resonant optical excita-
tion (average F = 94.5%) [34].

The nuclear-spin dephasing times observed range from T ∗
2 = 3 ms to 17 ms, corre-

sponding to a inhomogeneous linewidth of ∼ 30−150 Hz. Due to the frequency differ-
ences between nuclear spins in ms =±1 (Table 4.1), spin diffusion is strongly suppressed
and the longitudinal relaxation of the nuclear spins is T1 > 6 minutes [28].

4.7.2. MAGNETIC FIELD ALIGNMENT
A magnetic field of ∼ 403G is applied using a room-temperature permanent magnet
which is installed on a XYZ translation stage to control the strength and the direction
of the magnetic field. Our methods are based on echoes and are therefore robust against
slow fluctuations in the magnetic field strength. Although magnetic field drift has no
significant effect on the measured nuclear-nuclear couplings, we stabilise the magnetic
field to < 3 mG using temperature stabilisation of the magnet and an automatic re-
calibration procedure (every few hours).

We align the magnetic field along the NV axis to avoid electron-mediated shifts that
cause the measured couplings to deviate from nuclear-nuclear dipolar coupling (see sec-
tion 4.8.3). We use a “thermal” echo sequence—previously introduced to measure tem-
perature [35] (see Fig. 4.9). In this sequence, the electron evolves half of the time in a
superposition of the states ms = 0 and ms = −1, and half of the time in a superposition
of ms = 0 and ms =+1. Since the energies of the states ms =±1 are shifted by equal and
opposite amounts by Hamiltonian terms proportional to Sz , the effects of such terms
are cancelled. However, Hamiltonian terms that shift the energies of ms = ±1 in the
same way, such as the magnetic field perpendicular to z, do not cancel. Therefore, the
sequence decouples the main source of noise (the magnetic field fluctuations along z
from the surrounding spin bath), while remaining sensitive to shifts caused by a non-
zero magnetic field in the x, y directions. This sequence extends the sensing time from
T ∗

2 ≈ 5µs to T2 ≈ 1 ms, resulting in an uncertainty in the alignment of 0.07 degrees (Fig.
4.9).

4.7.3. QUANTUM SENSING SEQUENCES
We employ two different sensing sequences (see the polarise and detect blocks in Fig.
4.1b). Sequence A consists of dynamical decoupling sequences of N ′ equally spaced π-
pulses on the electron spin of the form (τr −π− τr )N ′

[36–38]. This sequence is only
sensitive to nuclear spins with a significant electron-nuclear hyperfine component per-
pendicular to the applied magnetic field [36]. The inter-pulse spacing 2τr determines
the spin frequency that is being probed.

Sequence B is a recently developed method, described in detail in Bradley et al. [28],
that interleaves the dynamical decoupling sequence with RF pulses. This method en-
ables the detection of spins with a weak or negligible perpendicular hyperfine compo-
nent [28, 30]. For this sequence, the frequency of the RF pulse sets the targeted spin
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frequency, while τr can be freely chosen [28]. Importantly, the amplitudes and phases
of the RF pulses are set so that they together build up to the desired evolution [28]. The
added RF field imprints a deterministic phase on the electron spin sensor [28], which we
compensate by calibrating the phase of the electron π/2-pulses.

4.7.4. ELECTRON-NUCLEAR SPECTROSCOPY

As a starting point, we use the electron spin as a sensor to roughly characterise some of
the nuclear spins in the cluster. We perform spectroscopy by sweeping the interpulse
delay τr in sequence A (see for example Abobeih et al. [20]) and the RF frequency for
sequence B [28]. This identifies the frequency range at which spins are present in the
cluster and provides the parameters to polarise and detect several spins [24]. Note that
the resolution of this spectroscopy technique is limited by the electron spin T2 and the
nuclear spin T ∗

2 .

4.7.5. NUCLEAR-NUCLEAR DOUBLE-RESONANCE SPECTROSCOPY

The sequence for the double-resonance experiments is shown in Fig. 4.1b and Fig. 4.5.
To polarise and detect the probe spin, we either use sequence A (without the RF1 pulses
in the dashed box) or sequence B (with the RF1 pulses), depending on whether the per-
pendicular hyperfine coupling to the electron spin is significant or not. For sequence A,
we set the interpulse delay as τr = (2k−1)π/(ω0+RF 1), with k an integer andω0 the 13C
Larmor frequency for the electron ms = 0 state, and calibrate the number of pulses N ′
to maximise the signal [36]. For sequence B we calibrate the RF power to maximise the
signal.

We create nuclear polarisation by projective measurements [24]. First the electron
is prepared in a superposition state through resonant excitation [34] and a π/2 pulse.
Second, the sensing sequence correlates the phase of the electron with the nuclear spin
state. Finally, the electron is read out so that the nuclear spin is projected into a po-
larised state [24]. To enhance the signal-to-noise ratio and to ensure that the electron
measurement does not disturb the nuclear spin evolution, we only perform the double-
resonance sequence if a photon was detected during the electron readout [24]. The re-
sulting signal contrast for different spins varies from 20% to 96%.

Because the correlation data is read out and stored in the electronics, the ultimate
limit for the spectral resolution of our method - i.e. when applied on hypothetical signals
with infinitesimal spectral width - is set by the precision of the 10 MHz reference clock
used for the timing of the waveform generator [7, 39, 40]. For the double-resonance
sequence, the phases of the RF1 echo pulses are calibrated so that their phase difference
is 0 or π/2 with respect to the polarisation axis, which is determined by the direction of
the hyperfine interaction [18, 19, 41]. For the target spins, the phase of the RF2 pulse
does not affect the signal and is arbitrarily set.

To mitigate pulse errors we alternate the phases of the pulses following the XY8 scheme
[42], both for the electron and nuclear spins. For the electron spin, we use Hermite pulse
envelopes [43] with Rabi frequency ∼ 14MHz to obtain effective microwave pulses with-
out initialisation of the intrinsic 14N nuclear spin. The nuclear-spin Rabi frequencies are
in the range 0.3−0.7kHz.
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4.7.6. DATA ANALYSIS
We extract the spin-spin couplings f and their uncertainties from fitting the time-domain
double-resonance signals (e.g. Fig. 4.1e-f, top) to S = a+A·e−(t/T2)n

cos(2π f t +φ), where
T2 is the coherence time (also a fit parameter). The PSD is obtained from a Fourier trans-
form of the time domain signal with zero filling [1] and the D.C. component filtered out
(e.g. Fig. 4.1e-f, bottom). The spectral resolution (FWHM) is obtained from a Gaussian
fit of the PSD. Alternatively we can define the spectral resolution (FWHM) directly from

the time domain signal as 2
p

l n2
πT2

. This yields a spectral resolution of 0.91(3) Hz for Fig.
4.1e. For the spin in Fig. 4.1f, using N = 1 yields a spectral resolution of 0.8(1) Hz and
using N = 256 yields 49(2) mHz. Note that no saturation of the improvement of spectral
resolution with the number of pulses is yet observed. Therefore, with more pulses (and
longer measurement times) higher spectral resolutions and more precise measurements
are feasible.

4.7.7. ELECTRON-MEDIATED INTERACTIONS
We calculate corrections to the nuclear-nuclear couplings due to the presence of the
electron spin using perturbation theory up to second order. The effect of other nuclear
spins on nuclear-nuclear couplings was found by numerical simulations to be negligible
(∼ mHz). In contrast to previous results for strong electron-nuclear couplings [32, 44],
here many-body interactions due to the non-secular nuclear-nuclear couplings must be
taken into account. The resulting frequency in a double-resonance experiment is of the
form (see section 4.8.1)

fDR(ms =±1) ≈ 1

4π
|C +

+∆λ1(ms )+∆λ2(ms )+∆λ3(ms )|,
(4.1)

where C is the parallel (zz) component of the dipole-dipole interaction between the nu-
clear spins and ∆λi are correction terms due to the presence of the electron spin. See
section 4.8 for the full analysis of all terms.

The dominant correction for our parameter regime is ∆λ2, which depends on both
the electron-nuclear and nuclear-nuclear interactions. We make a Taylor expansion up

to first order in A( j )
zz /γc Bz , where A( j )

zz is the parallel electron-nuclear hyperfine coupling
for spin j , γc is the nuclear gyromagnetic ratio and Bz is the component of the magnetic
field along the NV axis. This yields an expression of the form ∆λ2(ms ) ≈ ms∆λ

(0)
2 +∆λ(1)

2 ,

where the leading, zeroth-order, correction ms∆λ
(0)
2 is given by

∆λ(0)
2 = (A(1)

zx + A(2)
zx )Czx + (A(1)

z y + A(2)
z y )Cz y

γc Bz
, (4.2)

where A( j )
zx (Czx ) and A( j )

z y (Cz y ) are the perpendicular electron-nuclear (nuclear-nuclear)
coupling components. We cancel this term by averaging the double-resonance frequen-
cies measured for the ms =±1 electron spin projections.

The remaining electron-mediated corrections depend on the angles of the electron-
nuclear hyperfine interactions. Because these angles are unknown, we estimate the max-
imum possible shift for each spin-spin interaction by maximising over all angles. For our
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cluster (Fig. 4.4), most of these maximum possible shifts are small (their average value is
∼ 0.03Hz). In rare cases, the maximum possible correction runs up to 0.6Hz (see section
4.8.3), but as the locations of the involved spins are already precisely fixed through strong
(> 20Hz) interactions with several other spins, this would have a negligible effect on the
obtained structure. Therefore, we can base the structural analysis on dipole-dipole in-
teractions.

4.7.8. 3D STRUCTURE ANALYSIS
The 3D structure of the nuclear spins is obtained using the dipole-dipole coupling for-
mula, which relates the zz couplings Ci j to the spatial x, y, z coordinates of spins i and j
as

Ci j =
αi j

∆r 3
i j

(
3(z j − zi )2

∆r 2
i j

−1

)
, (4.3)

where ∆ri j =
√

(x j −xi )2 + (y j − yi )2 + (z j − zi )2, αi j = µ0γiγ jħ/4π, µ0 is the permeabil-

ity of free space, γi is the gyromagnetic ratio of nuclear spin i and ħ is the reduced Planck
constant.

The goal is to minimise the sum of squares ξ=∑
i< j |∆ fi j |2, where∆ fi j = fi j−|Ci j |/4π

are the residuals and fi j are the measured coupling frequencies. For M = 27 spins, there
are 3M −4 = 77 free coordinates and M(M −1)/2 = 351 pairwise couplings, of which 171
were determined in this work. ξ can in principle be minimised using standard fitting
methods, however tests with randomly generated spin clusters indicate that the initial
guess for the coordinates should be within ∼ 0.5Å in order for the fit to converge to the
correct solution. For 27 spins, this corresponds to an intractable ∼ 10100 possible initial
guesses. Instead we sequentially build the structure by adding spins one-by-one.

For the diamond lattice positioning method, we first use the strongest measured cou-
pling to any spin that is already positioned to reduce the position of a new spin to a num-
ber of possible lattice coordinates. For each possible coordinate, we then check if the
predicted couplings to all other spins satisfy ∆ fi j < T , where T = 1.1Hz is a tolerance
that is chosen to ensure that all promising configurations are included while maintain-
ing reasonable computation time. Configurations are discarded if they do not satisfy this
requirement for one or more of the pairwise couplings. If more than Xcutoff = 5000 pos-
sible configurations are identified, only the best Xcutoff solutions are kept, according to
their ξ values.

For the cubic lattice positioning method, the same procedure is followed, with the
key difference being that the lattice is adaptively generated depending on the strongest
coupling to an already positioned spin in the cluster (see section 4.8.4). This ensures
that in each case the lattice spacing is fine enough to appropriately sample the volume
associated with the dipole-dipole coupling between the nuclear spins.

4.7.9. ROBUSTNESS OF THE ANALYSIS
The method is robust to failure. The problem is generally highly over-determined, so that
discarding the correct configuration due to Xcutoff will lead to no solution at all, rather
than an erroneous solution. Given enough computational resources, a correct solution is
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always expected to be found. As a test, we used the cubic lattice reconstruction method
on 17 randomly generated 30-spin clusters spins with added noise and no erroneous
structures were returned (see section 4.8.4).

4.7.10. COMPARISON TO 1D RAMSEY SPECTROSCOPY
Fig. 4.6 compares the 1D Ramsey signal with reconstructed spectra from our 3D spec-
troscopy. This comparison illustrates the effective improvement in resolution, and the
ability to resolve dense spectra, of our method. Note that, apart from the spectral res-
olution, the signals should not be compared directly, because the Ramsey experiment
is difficult to interpret quantitatively. First, the Ramsey signals likely contain contribu-
tions from multiple spins, both due to spectral overlap and higher-order contributions
[36–38]. Second, any inadvertent polarisation of other spins in the cluster or the environ-
ment modifies the spectrum. These effects are difficult to separate from actual nuclear-
nuclear couplings, and the fact that the spectra are asymmetric indicates that they play
a significant role. Our 3D spectroscopy method resolves these issues.

4.7.11. FINDING THE POSITION OF THE NV CENTER
Because the NV electron wavefunction is not known a-priori, we cannot use the electron-
nuclear couplings to find the NV position. In particular, density functional theory (DFT)
calculations [33] indicate that, for electron-nuclear couplings in the range observed here,
assuming a point-dipole model for the electron spin can lead to large discrepancies, and
is therefore not justified.

Our approach is to measure the couplings between the 13C spins and the NV nitro-
gen nuclear spin, for which the point-dipole approximation is accurate. The nitrogen-
13C couplings can be measured using a similar double-resonance procedure as for mea-
suring 13C-13C couplings. We use the nitrogen spin as the probe spin: this gives better
spectral resolution, due to its longer coherence time (T2 = 2.3(2)s [28]). We initialise the
nitrogen spin in mI = 0 using measurement-based initialisation [34] and manipulate the
spin state using RF pulses. Fig. 4.8b shows the measured couplings between the nitrogen
and 13C spins.

Using the couplings, the nitrogen spin is added to the 13C nuclear spin cluster us-
ing the diamond lattice positioning method, where γ j → γn = 2π× 0.3077kHz/G, the
nitrogen gyromagnetic ratio, in equation 4.19. Determining the nitrogen lattice site also
allows the vacancy site to be determined due to the known N-V distance and the align-
ment with the magnetic field along z, thereby giving the location and the orientation of
the NV center with respect to the 13C nuclear spin cluster. The resulting 3D plot showing
the best solution is shown in Fig. 4.8a. The nitrogen spin coordinate is the same for all
5000 configurations identified. Fig. 4.8c gives the results of a least-squares fit.

4.7.12. COMPARISON TO DFT
Now that we independently determined the position of the 13C spins relative to the NV
center, we can compare the hyperfine couplings to DFT calculations, without any prior
assumptions. In Nizovtsev et al. [33], hyperfine couplings are calculated for 510 lattice
sites surrounding the NV center. Fig. 4.8d shows the lattice positions given in Nizovtsev
et al. along with the coordinates of the 13C spins found in this work. The 13C spin co-
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ordinates are transformed so that the nitrogen spin is at the origin, and mirrored such
that z →−z, in order to be in the correct coordinate frame. Additionally a scaling factor
of 1.02 was applied, which was found by comparing the 510 lattice sites from Nizovt-
sev et al. with the same sites in our work. 5 of the 27 spins identified in this work were
calculated in Nizovtsev et al. The remaining spins cannot yet be compared with DFT
calculations. Fig. 4.8e shows the measured electron-13C hyperfine couplings (see Table
4.1), as well as those predicted in Nizovtsev et al., for the 5 spins. For the DFT results, we
take the average of the predicted couplings for the possible C3v symmetric lattice sites.
Additionally, we take the negative of the predicted A∥ for all spins (a global minus sign is
possible due to the unknown orientation of the magnetic field along z).
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Figure 4.5: Experimental sequence. The pulse sequence consists of five parts: sensor preparation, sensor
initialisation, polarisation of the probe spin, double resonance, and detection of the probe spin. Sensor prepa-
ration: The NV center is prepared by excitation with two 637 nm lasers for 150 µs and counting the detected

photons (RO laser resonant with the Ex transition and Init laser with the E
′

transition) [24, 34]. If the number
of photons exceeds a certain threshold, the NV is in the negative charge state and resonant with both lasers,
and we proceed to the next step. If not, we apply a 515 nm laser (charge reset (RS) laser, 1 ms) and repeat the
process [24, 34]. Sensor initialisation: The NV electron spin is initialised into the ms = 0 state through spin
pumping (Init laser, 100 µs) [34]. Polarising probe spin: First, the NV sensor is brought into a superposition
state using a π/2 pulse. Then, a dynamical decoupling sequence of N ′ equally spaced π-pulses on the electron

spin of the form (τr −π−τr )N ′
is applied. This sequence correlates the state of the nuclear spin(s) with the

phase of the electron spin. We use two different sequences (see section 4.7). For sequence B, the MW π-pulses
are interleaved with radio-frequency pulses (RF 1) that resonantly drive the probe spin(s) (dashed box), see
Bradley et al. for details [45]. A second π/2 pulse maps the electron phase to population and the electron
spin is read out (RO laser). Double resonance: N echo pulses are applied simultaneously on the probe spin(s)
(RF 1) and the target spin(s) (RF 2), so that the coupling between these spins is isolated. To mitigate pulse er-
rors we alternate the phases of the pulses following the XY8 scheme [42]. Detecting probe spin: The detection
sequence is the same as the polarisation sequence except for the final RO laser pulse which is applied for 10 µs
and with higher power.
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Figure 4.6: Ramsey experiments and reconstructed underlying spectra. a, Schematic of the pulse sequence
used to perform the Ramsey experiment (equivalent to correlation spectroscopy). See section 4.7 and Fig. 4.5
for details. b, Ramsey signal for C2 and the corresponding power spectral density (5 kHz detuning). The red
line represents the central frequency f0. Green lines are the 27 frequencies based on the 7 strongest coupling
strengths extracted from our high resolution double-resonance spectroscopy (Table 4.4). These frequencies
are given by f0 ± f1 ± f2 ± f3 ± f4 ± f5 ± f6 ± f7, where f1 to f7 are the 7 largest measured coupling strengths for
C2. c, The same experiment for C3 (∼ 5 kHz detuning), d, for C15 (∼ 1 kHz detuning) and e, for C5 (∼ 2 kHz
detuning).
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Figure 4.7: Strongly coupled subclusters. 3D plots showing the structure of two strongly coupled subclusters
(orange panels) within the larger cluster (shown in the center). The positions of the subclusters within the
larger cluster are marked by the orange boxes and arrows. Ramsey measurements performed on spins within
these subclusters show clear beating signals within their T∗

2 dephasing time (see for example Fig. 4.6). Panel
a) shows an 8 spin subcluster, while panel b) shows a 4 spin subcluster. Couplings above 3Hz are marked
blue, above 20Hz green and above 50Hz red. Grey points show the 2D projections of the diamond lattice
coordinates.
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Figure 4.8: Finding the position of the NV center. a, 3D plot showing the 27 nuclear spin cluster as shown in
Fig. 4.4, with the position of the nitrogen spin (green) and vacancy (purple) lattice sites calculated from the
measured nitrogen-13C couplings. The grey dots show the 2D projections of the diamond lattice coordinates.
b, Bar plot showing the measured couplings fi N between 13C spin i and the nitrogen spin (grey), as well as the
theoretically calculated couplings |Ci N |/4π (green). Error bars are one standard deviation. See Table 4.4 for
the numerical values. c, Bar plots of ∆r for the fitted position for the nitrogen spin (black), as well as fit errors
δx (blue), δy (orange) and δz (green), where the 13C spins are fixed at the diamond lattice solution. d, Plot of

z vs. rx y =
√

x2 + y2 for all lattice positions used in the DFT calculation from Nizovtsev et al. [33] (blue) and

for the appropriately transformed 13C coordinates found in this work (orange). Spins 5, 6, 9, 12 and 19 match
a DFT lattice position, while the rest of the spins identified are outside of the 510 lattice sites simulated. e,
Measured electron-13C parallel (top) and perpendicular (bottom) hyperfine couplings for the 5 spins that are
within the DFT calculation volume (red, taken from Table 4.1), compared with the DFT results from Nizovtsev
et al. (blue).
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Figure 4.9: Aligning the magnetic field using a thermal echo sequence. a, Pulse sequence for the thermal
echo measurement [35]. The electron spin is prepared in a superposition of the states ms = 0 and ms =−1 in
the first half of the sequence, and then swapped to a superposition of ms = 0 and ms =+1 for the second half,
using a sequence of three closely spaced π pulses. By sweeping τ, the average frequency fTE = ( f+1 + f−1)/2
is obtained, which is minimised when B⊥ = 0. f±1 are the ms = 0 ↔ ms = ±1 transition frequencies. The NV
nitrogen spin is initialised in mI = 0 [34]. b, Magnetic field alignment by scanning the magnet position in two
orthogonal directions. The obtained thermal echo frequencies are fitted to a parabolic function to find the
optimum position (i.e. minimal fTE). The plots show the frequency difference fTE −2.877652GHz. c, Placing
the magnet at the optimum position and repeating the measurement 200 times (over a 10-hour period). The
obtained average frequency difference is 0.13 kHz, with a standard deviation of 0.27 kHz, which is consistent
with the statistical measurement error. Therefore, the total uncertainty for the magnet alignment is ∼ 0.4 kHz
which corresponds to a perpendicular field of 0.5 Gauss or a misalignment angle of 0.07 degrees.
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4.8. SUPPLEMENTARY INFORMATION

4.8.1. PROPERTIES OF THE NUCLEAR SPIN CLUSTER
This section summarises the properties of the nuclear spin cluster that we retrieved from
the 3D spectroscopy. Table 4.1 gives the precession frequencies of the 27 spins that com-
pose the cluster. Tables 4.2-4.4 summarise the retrieved couplings between these spins.
Table 4.5 gives the obtained spatial coordinates for the spins in the cluster.

Additionally, Table 4.1 gives estimates for the hyperfine couplings of the nuclear spins
to the electron spin. These electron-nuclear couplings play no role in retrieving the
structure of the cluster as our imaging method solely relies on the internal nuclear-
nuclear couplings. Instead, these couplings are used to estimate realistic bounds on
electron-mediated interactions (section 4.8.3) and to provide an independent compari-
son to DFT calculations (see section 4.7).

The hyperfine couplings are estimated as follows. Under the secular approximation
and assuming a perfectly aligned magnetic field, the nuclear spin precession frequencies
ωms for electron spin state ms are given by [36]

ω0=ωL ,

ω±1=
√

(ωL ± A∥)2 + A2
⊥,

(4.4)

where ωL = γc Bz is the Larmor frequency, γc is the 13C gyromagnetic ratio and Bz is the
ẑ component of the externally applied magnetic field. Rearranging equations 4.4, we
obtain expressions for the electron-13C hyperfine parameters, given by

A∥ =
ω2
+1 −ω2

−1

4ω0
,

A⊥ =
√
ω2
+1 +ω2

−1 −2ω2
0 −2A2

∥
2

.

(4.5)

For spins C5, C6, C9, C10, C12, C14, C18 and C19, we measure the ms = 0 precession
frequencyω0, while for the rest of the spins we use the average of these measured values
(= 2π · 431.960 kHz). We observe a standard deviation of 6 Hz in the measured values
of ω0, which can be attributed to non-secular terms in the Hamiltonian in conjunction
with a slightly misaligned magnetic field (< 0.1 deg, see Fig. 4.9). For spins C24 to C27,
equations 4.5 give imaginary values for A⊥, which we attribute to shifts inω0 that are not
captured in this approximate model. For these spins we set A⊥ = 0 in the table.
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ω−1/2π (kHz) ω+1/2π (kHz) A∥/2π (kHz) A⊥/2π(kHz) τr (µs) N
′

Sequence

C1 452.83(2) 411.40(2) -20.72(1) 12(1) 7.435 64 A

C2 455.37(2) 408.956(9) -23.22(1) 13(1) 8.92 62 A

C3 463.27(2) 400.79(2) -31.25(1) 8(2) 18.522 48 B

C4 446.23(4) 418.10(1) -14.07(2) 13(1) - - -

C5 447.234(1) 424.752(3) -11.346(2) 59.21(3) 16.480 20 A

C6 480.625(1) 383.48(4) -48.58(2) 9(2) 4.932 90 A

C7 440.288(6) 423.65(2) -8.32(1) 3(5) - - -

C8 441.77(1) 422.20(4) -9.79(2) 5(4) - - -

C9 218.828(1) 645.123(1) 213.154(1) 3.0(4) 16.204 48 B

C10 414.407(1) 449.687(2) 17.643(1) 8.6(2) 23.152 48 B

C11 417.523(4) 446.612(3) 14.548(3) 10(1) 10.812 58 A

C12 413.477(1) 454.427(1) 20.569(1) 41.51(3) 11.25 22 A

C13 424.449(1) 440.490(1) 8.029(1) 21.0(4) 10.682 36 A

C14 451.802(1) 412.175(5) -19.815(3) 5.3(5) 18.522 64 B

C15 446.010(5) 418.093(3) -13.961(3) 9(1) 8.444 72 A

C16 436.67(5) 427.35(3) -4.66(3) 7(4) - - -

C17 437.61(1) 426.38(2) -5.62(1) 5(2) - - -

C18 469.020(1) 396.542(1) -36.308(1) 26.62(4) 7.218 44 A

C19 408.317(1) 457.035(1) 24.399(1) 24.81(4) 6.540 32 A

C20 429.403(4) 434.782(6) 2.690(4) 11(1) - - -

C21 430.937(3) 433.36(1) 1.212(5) 13(1) - - -

C22 424.289(3) 439.655(7) 7.683(4) 4(3) - - -

C23 435.143(7) 428.789(5) -3.177(5) 2(4) - - -

C24 436.183(3) 427.732(7) -4.225(4) 0(6) - - -

C25 435.827(5) 428.079(9) -3.873(5) 0(4) - - -

C26 435.547(2) 428.31(1) -3.618(5) 0(2) - - -

C27 435.990(3) 427.910(9) -4.039(5) 0(3) - - -

Table 4.1: The 27 nuclear spins. Retrieved 13C spin precession frequenciesω−1,ω+1 for the ms =−1 and ms =
+1 electron spin projections respectively. Obtained by least-squares fitting the frequency scan signal in double
resonance experiments to a Gaussian function (e.g. Fig. 4.11) or from fits of Ramsey signals to sinusoidal
functions with Gaussian decays. A∥ and A⊥ are estimates for the parallel and perpendicular components of

the electron-13C hyperfine interaction respectively, obtained from the measured frequenciesω−1,ω+1 andω0

(see equations 4.5). τr and N
′

are the half pulse delay and the total number of pulses used in the polarisation
and detection sequences (Fig. 4.5). The sequence column identifies whether sequence A or B was used to
polarise/detect the spin. The spins marked with “-" were detected as target spins (no initialisation or direct
detection with the electron spin required). The dephasing time, T∗

2 , for the spins in the cluster varies from
3 ms to 17 ms. The measured coherence time (T2) using a single refocusing pulse is typically ∼ 0.5 seconds,
corresponding to a FWHM spectral resolution of ∼ 1 Hz in the double resonance experiments.
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Table 4.2: All measured coupling frequencies in Hz for the ms = −1 electron spin projection. To account for
the cases where pulse errors cannot be neglected, the coupling frequencies are extracted by fitting the time-

domain double resonance signals to S = a+A ·e−(t/T2)n
cos(2π f t +φ)+B ·e−(t/T2)n

, where T2 is the coherence
time and n, A and B are fit parameters that account for the signal decay shape, contrast and pulse errors. For
the couplings marked as < 1Hz in the tables, no oscillation was observed within the decay time. All couplings
in the table are measured using N = 1 (T2 ∼ 0.5 s) except for C19 - C12 (N = 256) and C9 - C18 (N = 32).
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Table 4.3: All measured coupling frequencies in Hz for the ms = +1 electron spin projection. All couplings in
the table are measured using N = 1.
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Table 4.4: All measured coupling frequencies in Hz averaged over the ms = +1 and ms = −1 electron spin
projections. A total of 171 couplings are measured, including the couplings marked < 1Hz.
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86 4. ATOMIC-SCALE MAGNETIC RESONANCE IMAGING USING A QUANTUM SENSOR

Spin Diamond Diamond Fit Cubic Cubic Fit

x (Å) y (Å) z (Å) x (Å) y (Å) z (Å) x (Å) y (Å) z (Å) x (Å) y (Å) z (Å)

1 0.00 0.00 0.00 0.00† 0.00† 0.00† 0.00 0.00 0.00 0.00† 0.00† 0.00†

2 2.52 2.91 -0.51 2.53(2)‡ 2.92(2)‡ -0.45(7) 2.52 2.91 -0.50 2.52(2)‡ 2.91(2)‡ -0.47(7)

3 3.78 0.73 -0.51 3.77(3) 0.72(3) -0.50(9) 3.75 0.71 -0.55 3.78(3) 0.72(3) -0.48(9)

4 -1.26 2.18 0.00 -1.28(3) 2.18(3) - 0.0(1) -1.23 2.20 0.05 -1.28(3) 2.17(4) - 0.1(1)

5 0.00 4.37 -6.18 0.06(5) 4.45(5) -6.17(7) 0.03 4.38 -6.19 0.05(5) 4.45(5) -6.18(7)

6 5.04 -1.46 -2.06 5.1(1) - 1.4(1) -2.03(6) 5.14 -1.36 -2.08 5.1(1) - 1.4(1) -2.02(6)

7 5.04 -1.46 5.66 4.93(9) - 1.5(1) 5.67(8) 4.83 -1.59 5.65 4.92(9) - 1.6(1) 5.67(8)

8 7.57 1.46 3.60 7.5(2) 1.7(2) 3.6(1) 7.42 1.72 3.32 7.5(2) 1.6(2) 3.6(1)

9 7.57 -4.37 -10.81 7.3(4) - 4.6(5) -10.7(2) 7.70 -4.31 -10.90 7.2(4) - 4.5(4) -11.0(2)

10 0.00 8.74 -12.36 0.0(3) 8.5(3) -13.2(3) 0.05 8.56 -12.99 - 0.1(3) 8.6(3) -13.1(3)

11 6.31 9.46 -12.87 6.3(5) 9.5(4) -12.6(3) 6.39 9.47 -12.67 6.2(4) 9.6(4) -12.7(3)

12 11.35 0.73 -14.42 11.4(5) 0.9(5) -14.5(2) 11.37 0.54 -14.42 11.0(5) 1.0(5) -14.7(2)

13 12.61 2.91 -6.69 12.7(6) 3.3(6) - 6.9(2) 12.23 3.23 -6.99 12.3(6) 3.3(5) - 7.1(2)

14 5.04 -2.91 -22.65 5.4(4) - 3.2(4) -22.9(3) 5.40 -3.35 -22.72 4.9(4) - 3.2(4) -23.2(3)

15 1.26 3.64 -22.65 2.0(5) 3.5(4) -22.7(4) 2.34 3.48 -22.27 1.8(5) 3.6(4) -22.7(4)

16 2.52 8.74 -23.17 3.5(6) 8.4(5) -23.5(3) 3.26 8.28 -23.38 3.3(5) 8.5(5) -23.5(3)

17 6.31 -2.18 -29.34 5.8(8) - 2.6(8) -29.8(4) 5.40 -3.35 -29.75 5.7(7) - 2.7(8) -30.1(4)

18 0.00 -1.46 -19.05 - 0.2(4) - 1.2(5) -19.1(3) 0.17 -1.55 -18.46 - 0.2(4) - 1.3(4) -19.0(3)

19 3.78 -9.46 -8.75 3.8(8) - 9.1(8) - 8.4(4) 4.55 -9.32 -8.65 3.3(8) - 9.4(8) - 8.8(5)

20 3.78 10.92 -4.63 3.1(5) 11.8(5) - 5.7(6) 3.24 11.64 -5.49 3.0(5) 11.9(4) - 5.7(6)

21 -5.04 5.82 -4.12 - 4.7(4) 5.8(5) -4.02(8) -4.81 5.78 -4.08 - 4.8(4) 5.7(4) -4.03(8)

22 16.39 -3.64 -8.24 16(1) -3(1) -8(1) 16.94 -2.19 -9.02 15(1) -3(1) - 8.4(7)

23 16.39 -0.73 3.60 16(1) 0(1) 3.5(6) 16.14 -0.16 3.37 15(1) 0(1) 3.5(5)

24 1.26 -0.73 9.78 1.2(3) - 0.8(3) 9.8(1) 1.08 -0.28 9.98 1.2(3) - 0.8(3) 9.8(1)

25 6.31 -0.73 9.78 7.5(4) 0.5(5) 9.4(3) 7.17 0.47 9.74 7.5(4) 0.5(5) 9.4(3)

26 12.61 -5.82 -0.51 12.6(8) - 6.1(9) - 0.7(6) 13.12 -5.59 -1.40 12.3(8) - 6.6(9) - 0.8(6)

27 1.26 -3.64 -31.40 1.3(4) - 3.3(4) -31.4(4) 1.06 -3.27 -31.06 0.7(4) - 3.1(4) -31.5(4)

N 3.78 -0.73 -8.75 3.8(3)* - 0.7(3)* -8.61(8)* - - - - - -

Table 4.5: Structure of the cluster. Coordinates obtained from the measured couplings using the diamond
lattice positioning method (section 4.8.4), the cubic lattice method (section 4.8.4) and from using least-squares
minimisation using the diamond and cubic solutions as an initial guess (section 4.8.4). †Coordinate fixed to
zero in the fitting routine. ‡Rotational symmetry fixed by rotating the initial guess solution by −49.1deg and
fixing the rotated coordinate y ′2 to zero. *Nitrogen spin fitted coordinates when the 13C coordinates are fixed
to the diamond lattice solution (see section 4.7).
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4.8.2. MULTI-RESONANCE EXPERIMENTS AND RESOLVING SPECTRALLY OVER-
LAPPING SPINS

As discussed in the main text, resolving ambiguities due to overlapping signals from
multiple spins at (near-)identical frequencies is a key component for determining the
composition of the cluster and how the spins couple to each other. To resolve such am-
biguities, there are two main challenges: first, how to extract the underlying coupling
frequencies from the complex signals in the case of multiple overlapping spins; second,
how to determine the number of spins in the cluster and to assign the measured cou-
plings to specific spins.

To address the first challenge we use two examples from our data to demonstrate that
our method can extract the coupling frequencies from the complex signals in the case of
multiple overlapping spins (Fig. 4.10). In this scenario, our pulse sequence would essen-
tially perform a spin echo multi-resonance experiment as multiple overlapping target
spins will be flipped simultaneously with the probe spin. Correspondingly, the couplings
between the probe spin and the target spins will be isolated. Whilst this case naturally
arises when the NMR lines of multiple spins overlap, we note that the effect might more
generally allow for the extraction of multiple couplings simultaneously by the applica-
tion of several resonant RF pulses (Fig. 4.10a) or a single spectrally broad pulse. This is a
potential technique for parallelised data acquisition.

Fig. 4.10b shows the obtained signal for a spin echo triple-resonance experiment
between a probe spin (C5) and two spectrally overlapping target spins (C4, C15). The
two spins have similar resonance frequencies within 200Hz, and their spectra strongly
overlap (Fig. 4.11b). The Rabi frequency of the RF pulses is ∼ 500Hz. Therefore a single
resonant RF pulse on one of the target spins would flip the other target spin simultane-
ously.

While the obtained spectra for multi-resonance experiments are generally more com-
plex (Fig. 4.10b), the high spectral resolution in our case enables the coupling frequen-
cies to be resolved. For the triple-resonance experiment, and assuming ideal inversion
pulses, the expected frequencies are f = ± f1 ± f2 where f1 = 19.0(1) Hz and f2 = 1.9(1)
Hz are the extracted couplings between the probe spin and the two target spins (red
lines). Due to pulse imperfections, additional frequencies also emerge (grey lines). For
example, a failure in the inversion of the second target spin will create the frequency
components ± f1 that originate from a double resonance signal between the probe and
the first target spin. Similarly a failure on the inversion of the first target spin will lead to
± f2. We perform numerical simulations of this experiment taking into account the pulse
errors (Fig. 4.10c). The inversion probability of the pulses in this simulation is set to 80%.
The large infidelity in the pulses in this case is due to strong couplings of the target spins
to other nearby nuclear spins, which leads to a spectrally broad signal compared to the
Rabi frequency. The result of this simulation shows that pulse errors can indeed explain
the emergence of the extra observed frequencies.

Fig. 4.10d shows another example of a quadruple resonance experiment (Probe spin:
C5, Target spins: C2, C1, C3). In this case we use 3 separate RF pulses to invert the three
target spins as they have different resonance frequencies. The obtained spectrum of this
measurement is even more complex, yet nevertheless the high spectral resolution makes
it possible to resolve the couplings. For ideal inversion pulses, the eight theoretically
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expected frequencies are given by f = ± f1 ± f2 ± f3, where f1 = 17.17(2) Hz, f2 = 7.05(3)
Hz and f3 = 3.21(4) Hz are the extracted couplings between the probe spin and the three
target spins respectively. Additional frequencies emerge due to pulse imperfections (grey
lines) as described above and confirmed by numerical simulations (Fig. 4.10e).

While our scheme allows multiple couplings to be extracted from the complex ob-
tained signal due to the high spectral resolution, this measurement alone does not yet
enable the obtained couplings to be assigned to certain spins. To overcome this, we
utilise the inter-connectivity between the spins in the cluster which provides enough
redundancy to constrain the problem. The key idea is that each spin couples predomi-
nantly to other spins in its vicinity, and so provides a different vantage point of the clus-
ter. So by repeating the previous measurement using different probe spins we can obtain
more information to resolve these ambiguities. Fig. 4.11a,b show how we can resolve and
identify the two overlapping spins, C4 and C15 shown in Fig. 4.10b.

The same idea—nuclear spins predominantly couple to other spins in their vicinity—
enables the detection and imaging of nuclear spins with small hyperfine couplings to the
electron spin (< 5kHz). In the system considered here, spins with small hyperfine cou-
plings are challenging to resolve directly using the electron spin, because of a multitude
of overlapping signals from spins with very similar frequencies [36]. By using multiple
spatially close nuclear spins (i.e., a sub-cluster) as probes, we can filter out the signals
from remote nuclear spins at the target frequency, as we predominantly probe a certain
region of the space. This allows our method to also isolate and detect, and therefore
position, spins with small couplings to the electron. Fig. 4.11c,d,e illustrate this concept.
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Figure 4.10: Multi-resonance experiments: probing multiple couplings simultaneously. a, A pulse sequence
describing a multi-resonance experiment that causes multiple couplings to be accessed simultaneously. The
echos are performed simultaneously on the probe and the target spins. This can be realised using multiple
resonant RF pulses or a single spectrally broad pulse. When the NMR lines of multiple spins overlap, the
last situation naturally and inevitably occurs . b, In this case two spectrally overlapping spins in the cluster
are flipped simultaneously using a single RF pulse (i.e., a triple resonance experiment). For ideal inversion
pulses the expected frequencies are f = ± f1 ± f2, where f1 = 19.0(1) Hz and f2 = 1.9(1) Hz are the extracted
couplings between the probe spin and the two target spins (red lines). Additional frequencies emerge due to
non-ideal inversion pulses (grey lines). c, Numerical simulation of the experiment in b) taking into account
the non-ideal pulses. The obtained result matches well the experimental data and confirms that pulse errors
can indeed explain the emergence of the extra observed frequencies. d, A quadruple-resonance experiment
between a probe spin (C5) and three spectrally resolvable target spins (C2, C1, C3). See also main text Figure
4.3. Red lines are the theoretically expected frequencies for ideal π- pulses on the target spins, f =± f1± f2± f3,
where f1 = 17.17(2) Hz, f2 = 7.05(3) Hz and f3 = 3.21(4) Hz are the extracted couplings between the probe spin
and the three target spins respectively. Grey dashed lines correspond to additional frequencies due to a failure
to invert one or two of the target spins. e, Numerical simulation taking into account the pulse errors.
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Figure 4.11: Identifying spectrally overlapping nuclear spins. a, Illustration of the basic idea: C15 and C4 are
two nuclear spins with similar precession frequencies due to their similar coupling to the electron spin, yet
we can identify and position them through their coupling to other nuclear spins. Each of these spins couples
strongly to other nuclear spins in their vicinity. This connectivity reveals that there are two spins (C15 and C4)
that are far apart. b, Double resonance frequency scan using four different probe spins (top to bottom: C14,
C10, C6, C3) around a target frequency of 446 kHz. C10 and C14 are more strongly coupled to C15, while C6 and
C3 are more strongly coupled to C4. The scans for C14 and C10 show a peak at a target frequency of 446 kHz
due to coupling to C15, while scans for C6 and C3 show two peaks due to a coupling to C4 (in this case C4 also
strongly couples to another spin with 236 Hz which causes this splitting in its spectrum). The spectra of C15
and C4 are thus overlapping but each of them couples very differently to the 4 probe spins, revealing that there
are two distinct spins. The dashed grey lines mark the center frequencies of C15 and C4. c, The same idea—i.e.,
nuclear spins predominantly couple to other nuclear spins in their vicinity—can be used to uniquely identify
and position nuclear spins with small couplings to the electron spin (< 1kHz), even though, in our system,
there will generally be multiple other spins with near-identical frequencies at other locations. The shown data
is a double resonance frequency scan near the bare nuclear spin Larmor frequency using C6 as a probe spin. We
observe well resolved peaks potentially due to nuclear spins with relatively strong couplings to this probe spin.
d, Double resonance scan around the shaded area in c (∼ 1 kHz from the Larmor frequency) using 4 probe spins
(top to bottom: C6, C3, C2, C5) that are spatially close to each other. e, The measured couplings between this
target spin (C21) and the four probe spins. These measured couplings provide sufficient information to identify
C21 and position it with respect to the four probe spins. The error bars represent one statistical standard
deviation.
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4.8.3. ACCOUNTING FOR ELECTRON-MEDIATED COUPLINGS
The nuclear-nuclear couplings measured by a double-echo sequence can be modified
due to the presence of the electron spin and a misaligned magnetic field. To understand
these effects, we can use perturbation theory. In refs. [44, 46], shifts in the nuclear-
nuclear couplings are calculated by only considering the interaction between the elec-
tron and 13C spins in the perturbation. However, for the weak electron-nuclear cou-
plings considered in this work, modifications due to the non-secular nuclear-nuclear
interactions combined with the electron-nuclear interactions can also give a significant
correction, and should therefore also be included in the perturbation. We will consider
the Hamiltonian describing the spin-1 electron plus two spin-1/2 13C spins, given by

H = He +Hc +Hec +Hcc ,

He =∆ZFSS2
z +γe (Bx Sx +By Sy +Bz Sz ),

Hc = γc B · (I(1) + I(2)),

Hec = S ·A(1) · I(1) +S ·A(2) · I(2),

Hcc = I(1) ·C · I(2),

(4.6)

where ∆ZFS is the electron zero field splitting, γe (γc ) is the electron (13C) gyromagnetic
ratio, B = (Bx ,By ,Bz ) is the magnetic field vector, S = (Sx ,Sy ,Sz ) are the electron spin

operators, I( j ) = (I ( j )
x , I ( j )

y , I ( j )
z ) are the 13C spin operators for spin j , and A( j ) and C are

the hyperfine tensors describing the electron-nuclear and nuclear-nuclear interactions

respectively, with components A( j )
αβ

and Cαβ for α,β ∈ {x, y, z}.

In our experiments we apply a strong magnetic field along the z-axis (Bz ∼ 403G),
and align the field such that Bx ,By ≈ 0. The dominant energy scales are then given by

the terms∆ZFSS2
z , γe Bz Sz and γc Bz I ( j )

z . Therefore, we will take terms that commute with
S2

z , Sz , I (1)
z and I (2)

z as the unperturbed Hamiltonian H0. This gives

H0 =∆ZFSS2
z +γe Bz Sz +γc Bz (I (1)

z + I (2)
z )+ A(1)

zz Sz I (1)
z + A(2)

zz Sz I (2)
z +Czz I (1)

z I (2)
z . (4.7)

The eigenstates of H0 are |ms ,m(1)
I ,m(2)

I 〉, where ms ∈ {+1,0,−1} are the eigenvalues of Sz

and m( j )
I ∈ {+ 1

2 ,− 1
2 } are the eigenvalues of I ( j )

z . The eigenvalues of H0 are then

λ0(ms ,m(1)
I ,m(2)

I ) =m2
s∆ZFS +msγe Bz + (m(1)

I +m(2)
I )γc Bz

+ms m(1)
I A(1)

zz +ms m(2)
I A(2)

zz +m(1)
I m(2)

I Czz .
(4.8)

A double-resonance measurement gives an oscillating signal at frequency [27]

fDR(ms ) = 1

4π

∣∣∣∣λ(
ms ,+1

2
,+1

2

)
+λ

(
ms ,−1

2
,−1

2

)
−λ

(
ms ,+1

2
,−1

2

)
−λ

(
ms ,−1

2
,+1

2

)∣∣∣∣ .

(4.9)
If we take the zeroth order approximation, such thatλ(ms ,m(1)

I ,m(2)
I ) ≈λ0(ms ,m(1)

I ,m(2)
I ),

we obtain
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fDR ≈ 1

4π
|Czz |, (4.10)

which holds for all electron spin projections. To zeroth order, the double resonance mea-
surement gives the zz dipolar coupling between the two 13C spins, as expected.

We can now calculate corrections to the nuclear-nuclear couplings due to the other
Hamiltonian terms using perturbation theory. Defining the remaining terms in the Hamil-
tonian as V = H −H0, up to second order the corrected eigenvalues are given by [47]

λ(ψn) ≈λ0(ψn)+〈
ψn

∣∣V
∣∣ψn

〉+ ∑
k 6=n

|〈ψk
∣∣V

∣∣ψn
〉 |2

λ0(ψn)−λ0(ψk )
, (4.11)

where
∣∣ψn

〉
are the eigenstates of H0. Since V contains no diagonal matrix elements,〈

ψn
∣∣V

∣∣ψn
〉 = 0 for all

∣∣ψn
〉

. We will restrict our analysis to the ms = ±1 subspace, as
only transitions within this subspace are measured for the experiments described in this
manuscript and for the ms = 0 subspace some eigenstates are degenerate, making the
analysis more complex. We find three sets of correction terms, allowing us to write the
corrected double resonance frequency up to second order as

fDR(ms =±1) ≈ 1

4π
|Czz +∆λ1(ms )+∆λ2(ms )+∆λ3(ms )|. (4.12)

The first correction term∆λ1 describes a correction to the nuclear-nuclear coupling that
is only dependent on the interaction between each 13C spin and the electron spin. This
term is equal to the correction term derived in refs. [44, 46]. With the approximation that

|γc Bz |, |A( j )
zz |, |Czz |¿ |∆ZFS +msγe Bz |, we obtain

∆λ1(ms =±1) ≈ A(1)
zx A(2)

zx + A(1)
z y A(2)

z y

∆ZFS +msγe Bz
. (4.13)

The second correction term∆λ2 describes a correction that depends on both the nuclear-
electron and the nuclear-nuclear interactions. With the approximation that |Czz | ¿
|γc Bz |, and making a Taylor expansion up to first order in A( j )

zz /γc Bz , we find

∆λ2(ms =±1) ≈ ms∆λ
(0)
2 +∆λ(1)

2 (4.14)

where ms∆λ
(0)
2 and ∆λ(1)

2 are the zeroth and first order terms in the Taylor expansion
respectively, given by

∆λ(0)
2 = (A(1)

zx + A(2)
zx )Czx + (A(1)

z y + A(2)
z y )Cz y

γc Bz

∆λ(1)
2 =−

2∑
j=1

(A( j )
zx Czx + A( j )

z y Cz y )A( j )
zz

γ2
c B 2

z
.

(4.15)

Lastly, there is a correction that depends on the perpendicular magnetic field. With the
approximation that |Czz | ¿ |γc Bz |, and making a Taylor expansion up to first order in

A( j )
zz /γc Bz , we obtain
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Figure 4.12: Corrections to the measured couplings a, Two examples of modified nuclear-nuclear couplings
due to electron mediated effects for exact numerical solutions (solid lines) and approximate solutions using
equations 4.12 and 4.18 (dashed lines). The hyperfine parameters are taken from Table 4.4. The radial mag-
netic field component B⊥ is set to zero in these examples, but similar results are seen for small values < 1G as
measured experimentally (see Fig. 4.9). The nuclear-nuclear hyperfine tensors are calculated from the coor-
dinates given in Table 4.5 and the unknown angles ϕ j are set to 0 for the first spin and varied for the second
spin (other values for the first spin also give similar agreement). b, Maximum corrections to the measured
nuclear-nuclear couplings between each of the 27 spins for the ms =±1 spin projections, fDR(±1), calculated
from equation 4.12. For each coupling the correction is maximised over the unknown parameters 0 <ϕ j < 2π,
0 < B⊥ < 1G and 0 < θ < 2π. c, The same correction matrix as in (b) for the averaged coupling f av

DR (equation
4.18).
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∆λ3(ms =±1) ≈∆λ(0)
3 +ms∆λ

(1)
3 (4.16)

where ∆λ(0)
3 and ms∆λ

(1)
3 are the zeroth and first order terms in the Taylor expansion

respectively, given by

∆λ(0)
3 = 2(BxCzx +ByCz y )

Bz

∆λ(1)
3 = (A(1)

zz + A(2)
zz )(BxCzx +ByCz y )

γc B 2
z

.

(4.17)

We can now calculate the average frequency for a double resonance measurement on
both ms =±1 transitions. We find

f av
DR = 1

2

(
fDR(+1)+ fDR(−1)

)
= 1

4π

∣∣∣∣Czz + ∆λ1(+1)+∆λ1(−1)

2
+∆λ(1)

2 +∆λ(0)
3

∣∣∣∣ ,
(4.18)

where in the last line we have assumed that |∆λ1(ms )+∆λ2(ms )+∆λ3(ms )| < |Czz |. It
can be seen that the terms ms∆λ

(0)
2 and ms∆λ

(1)
3 cancel when taking the average double

resonance frequency.
To check the validity of the approximate solutions, we can compare to exact numer-

ical solutions of the full Hamiltonian (equation 4.6) for some example cases. Since we

only measure the magnitude of the perpendicular couplings A( j )
⊥ =

√(
A( j )

zx

)2 +
(

A( j )
z y

)2
,

we will parameterise the couplings as A( j )
zx = A( j )

⊥ cos
(
ϕ j

)
and A( j )

z y = A( j )
⊥ sin

(
ϕ j

)
, where

ϕ j is the unknown azimuthal angle of the electron-nuclear hyperfine coupling for spin j .
Additionally, we can parameterise the magnetic field in the x − y plane as Bx = B⊥ cos(θ)
and By = B⊥ sin(θ). We can infer that B⊥ < 1G (see Fig. 4.9), while no information about
θ is known. Fig. 4.12(a) shows a comparison between the approximate and exact solu-
tions for two example cases based on parameters measured in this experiment. We can
also estimate the magnitude of each correction term using the values for the parameters
used in the experiment. Taking the coordinates of the 27 spin cluster (Table 4.5), for each
possible spin pair we can maximise equations 4.12 and 4.18 over the unknown anglesϕ j

and the magnetic field parameters B⊥ and θ. Matrix plots of estimated maximum values
are shown in Fig. 4.12(b,c). Averaging over the unknown angles ϕ j , the average correc-
tion over all spins is 0.04Hz for ms =±1 and 0.01Hz for the average, while the maximum
over all ϕ j and spins is 2.6Hz (3.1Hz) for ms = −1 (ms = +1) and 0.55Hz for the aver-
age. The corrections for ms = ±1 are therefore much greater than the averaged values,
thereby showing that the measured couplings are closer to the dipolar values when tak-
ing the average of the ms =±1 measurements.

4.8.4. OBTAINING THE STRUCTURE OF THE NUCLEAR SPIN CLUSTER
We would like to find the relative coordinates of M nuclear spins: {xi , yi , zi }, i = 1, ..., M .
Each nuclear spin is pairwise coupled to every other spin with zz coupling constants
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Ci j (xi , yi , zi , x j , y j , z j ), which, assuming point-dipole coupling, are related to the coor-
dinates by the set of equations

Ci j =
αi j

∆r 3
i j

(
3(z j − zi )2

∆r 2
i j

−1

)
, (4.19)

where ∆ri j =
√

(x j −xi )2 + (y j − yi )2 + (z j − zi )2, αi j = µ0γiγ jħ/4π, µ0 is the permeabil-

ity of free space, γi is the gyromagnetic ratio of nuclear spin i and ħ is the reduced Planck
constant. A double resonance measurement performed on two spins i and j gives a
signal oscillating at frequency fi j , which is approximately related to the magnitude of
the coupling as fi j ≈ |Ci j |/4π. Therefore, we define the residual for each coupling as
∆ fi j ≡ fi j − |Ci j |/4π. There are 3M coordinates and M(M − 1)/2 coupling constants.
Since we are interested in only the relative coordinates, we can fix the first spin to be at
the origin: {x1, y1, z1} = {0,0,0}. Additionally, since there is a rotational symmetry in the
x − y plane, we can also set one of the x, y coordinates of the second spin to zero. The
number of free coordinates is therefore 3M −4, and consequently to achieve more mea-
surements than free parameters, as required for the problem to be overdetermined, we
require M ≥ 6 (for M = 6: 3M − 4 = 14, M(M − 1)/2 = 15). The best fit solution is then
given by a set of parameters {xi , yi , zi } that minimise the sum of squares, defined as

ξ≡
M∑

i=1

i∑
j=1

|∆ fi j |2. (4.20)

As described in section 4.8.3, the largest of the corrections to the couplings (due to
the presence of the electron spin) are cancelled when taking the average of the frequen-
cies measured for the ms =±1 electron spin projections. Despite this, the measurement
uncertainties can be smaller than the corrections (measurement uncertainties are typ-
ically < 0.1Hz, while the corrections could be up to ∼ 0.6Hz in the worst case). Since
the corrections depend on unknown parameters (such as the azimuthal angles between
the electron wavefunction and the 13C spins), we consider them as an additional source
of uncertainty in this work. Techniques to measure these unknown parameters have
been developed in refs. [17, 18]. Combining our methods with those techniques could in
the future be used for precision spectroscopy on these coupled electron-nuclear-nuclear
systems.

A common method to minimise ξ is to use a fitting algorithm such as least-squares
minimisation. However, with no a priori information regarding the structure, finding
an initial guess where the fit will converge to the global minimum becomes difficult. By
testing with randomly generated clusters within a 1nm3 volume, we found that the initial
guess should be within approximately 0.5Å for each x, y, z component for each spin in
order for the fit to converge to the true solution. For 27 spins, this corresponds to an
intractable ∼ 10100 required initial guesses to cover the entire search space.

A solution is to build up the configuration on a three-dimensional grid by adding
spins one-by-one, while tracking all solutions within an error tolerance. We do this using
two different methods. In the first method, we use a priori knowledge of the diamond
lattice to constrain the possible spin positions (section 4.8.4). This is efficient for nuclear
spins in diamond, but cannot be used for an arbitrary spin system. The second method
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uses a finer cubic lattice (section 4.8.4), which is more computationally intensive, but
is general to any spin system measured using the methods described in this work. We
can also use these solutions as an initial guess for a fit of the spatial coordinates to the
measured couplings.

POSITIONING SPINS USING THE DIAMOND LATTICE

Since we know that the 13C spins identified in this work are located at points on the di-
amond lattice, it is efficient to constrain the spatial coordinates to possible lattice sites.
The procedure used to find the configuration is as follows. Firstly, the coordinates of a
diamond lattice are generated with 2NL +1 points along each of the [0,1,1], [1,0,1] and
[1,1,0] crystal axes, where NL is an integer, spaced by a0/

p
2, where a0 = 3.5668Å is the

diamond lattice constant [48]. An additional lattice site for each point is then added at a
displacement a0

4 [1,1,1], and the lattice is oriented such that the [1,1,1] direction is paral-
lel to the z-axis with the origin at the center. The total number of lattice sites is therefore
2(2NL +1)3. For each lattice site, the coupling to a spin at the origin is calculated using
equation 4.19 and stored in a lookup table along with the corresponding spatial vector
between the two coordinates. Starting from an initial spin placed at the origin, each spin
is placed in turn at a lattice site by choosing the strongest measured coupling to any
spin that has already been placed and finding all corresponding possible vectors from
the lookup table. Vectors from the lookup table are selected if the theoretically calcu-
lated coupling satisfies∆ fi j <T , where T is a tolerance that is chosen to ensure that all
promising configurations are included while maintaining reasonable computation time.

Next, for each possible configuration all theoretically calculated pairwise couplings
are compared with the experimentally measured values and are also required to satisfy
∆ fi j < T . Configurations that meet the criteria for all couplings are kept and the pro-
cedure is then repeated for the next spin. For the second spin added only one of the
six possible C3v-symmetric configurations is kept. Once this procedure has been per-
formed for all spins in the measured cluster, if multiple configurations have been found,
the best solution can be determined by minimising the sum of squares ξ (equation 4.20).
We use N = 1 echo pulses for most coupling measurements in Table 4.4. For some weak
couplings, no oscillation could be observed within the decay time for N = 1. Such weak
couplings can be measured more accurately using multiple pulses (e.g. Fig. 4.1f) or by a
low-noise comparison to the Hahn echo. However, since the precise values of such weak
couplings have a small effect on the obtained solution and due to time constraints, we
did not perform such measurements for all couplings. Couplings that have been deter-
mined to be weak, but for which no precise value was established, are marked as < 1Hz
(Tables 4.2-4.4). For these measurements, we use a value of 0.5Hz in the analysis.

For the solution presented in Fig. 4.4 of the main text and also in Fig. 4.13, the dia-
mond lattice coordinates were generated using NL = 11, corresponding to approximately
24×103 lattice sites and a volume of around 120nm3. The tolerance was chosen to be
T = 1.1Hz, so that the best solution is among the configurations identified with a high
probability. For a small number of measured couplings, the double resonance measure-
ment was only performed for one of the ms =±1 electron spin projections, and therefore
the higher order corrections (section 4.8.3) can be larger. For these couplings we allowed
a higher tolerance of Tsingle = 3Hz. In addition, a cutoff limit of Xcutoff = 5000 was set for
the maximum number of solutions that are carried over to the next spin. If the number
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Figure 4.13: Obtaining the structure using the diamond lattice. a, Total number of configurations found after
each spin added (log scale). The dashed grey line indicates the cutoff point set at Xcutoff = 5000. If more than
Xcutoff solutions are found for a given spin (the point is above the dashed line), only the best Xcutoff solutions
are kept for the next spin. b, Sum of squares ξ calculated from equation 4.20 for all configurations found for
27 spins, arranged in order from best to worst. c, Matrix plot showing the residuals ∆ fi j for the configuration
with the lowest ξ. White squares indicate unmeasured couplings. d, Matrix plot showing the predicted values
of |Ci j |/4π for couplings that were not measured. White squares indicate measured couplings. e, 3D plot of
the 27 spin configuration with the lowest ξ value. The three sides show the x − y , x − z and y − z projections
of the spins (yellow points) and the diamond lattice coordinates (grey points). Blue lines represent couplings
greater than 3Hz.
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of solutions found exceeds Xcutoff, the solutions are ordered from best to worst according
to their ξ value and only the first Xcutoff are saved.

For the first 8 spins, which form a strongly coupled sub-cluster, only one solution is
found for each spin added (Fig. 4.13a). After this, more weakly coupled spins are added,
which can give multiple configurations that satisfy the criteria. The final 27 spin solution
is given by the solution with the lowest ξ (Fig. 4.13b). Coordinates for this configuration
are given in Table 4.5 and the matrix of differences ∆ fi j , the unmeasured couplings and
a 3D plot are shown in Fig. 4.13c,d,e. Two identified sub-clusters are shown in greater
detail in Fig. 4.7. 19 spins have the same coordinates in all 5000 configurations found,
while the remaining 8 spins (18, 19, 20, 23, 24, 25, 26 and 27) have multiple positions
within the range of identified solutions. The routine took approximately 6hours on a
desktop PC.

Using the solution found for the spatial coordinates of the 27 spin cluster, we can
calculate the number of expected spins in the total volume to estimate the fraction of
spins in this region we have identified. Defining a rectangular box around the cluster
defined by the minimum and maximum x, y and z coordinates over all spins, we get a
volume of 2×2×4 = 16nm3. This volume contains approximately 2900 lattice sites. With
a natural 13C concentration of 1.1%, we therefore expect approximately 32 spins in this
volume, consistent with the 27 spins identified.

LEAST-SQUARES MINIMISATION

In addition to finding to structure of the cluster using the diamond lattice, we can further
use the obtained solution as an initial guess for a least-squares minimisation routine. To
properly constrain the fit, all three coordinates of spin 1 and additionally the y coor-
dinate of spin 2 are fixed to zero in order to constrain to only relative positions and to
break the rotational symmetry in the x − y plane. The solution used for the initial guess
is therefore rotated around the z-axis by an angle φ = −49.1deg so that the rotated co-
ordinate y ′

2 = 0. To quantify the difference between the initial and fitted solutions, we

can define the distance from the initial guess for each spin as ∆ri =
√
∆x2

i +∆y2
i +∆z2

i ,

where {∆xi ,∆yi ,∆zi } are the differences between the fitted coordinates and the initial
guess coordinates (from the diamond lattice solution) for spin i . A bar plot of ∆ri for
each spin in the fitted 27 spin solution, along with the associated fit uncertainties, is
shown in Fig. 4.14a. The average distance between the solutions is 1

M

∑M
i ∆ri = 0.46Å.

Since the measurement uncertainties are not well known due to the electron-mediated
coupling corrections (section 4.8.3), we calculate the fit parameter errors based only on
the variance of the residuals. It can be seen that for the majority of spins, the fitted coor-
dinates and uncertainties are within one diamond bond length from the configuration
entered as the initial guess.

The uncertainty of the fit for a given spin is dependent on its distance to the origin,
which is set by the spin whose coordinates are fixed. This can hide information about the
internal structure of a sub-cluster of strongly coupled spins that is far from the origin.
In particular, the internal structure of sub-clusters might be tightly defined, while the
position of the subcluster respectively to the origin is more uncertain. As an example,
in Fig. 4.14a, the origin is fixed at the position of spin 1, which is situated in a strongly
coupled 8 spin sub-cluster. The uncertainties in the fitted positions for spins within this
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Figure 4.14: Fitted solution for 27 spins. Bar plots of ∆r for each spin (black), defined as the magnitude of
the distance between the fitted coordinates and the initial guess, as well as fit errors δx (blue), δy (orange)
and δz (green). The initial guess was found using the diamond lattice method (see text). The dashed grey line
indicates the diamond bond length. a, Fit result if spin 1 is fixed at the origin. b, Fit result if spin 14 is fixed at
the origin.
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sub-cluster are therefore low, whereas the uncertainties in the fitted positions for spins
14 - 17, which are in a separate 4 spin sub-cluster, are higher. In Fig. 4.14b, the origin is
instead fixed at the position of spin 14, and consequently the uncertainties for the spins
in the 4 spin sub-cluster are reduced, while for the 8 spin sub-cluster they are increased.

POSITIONING SPINS USING A CUBIC LATTICE

The method outlined in section 4.8.4 is well suited for obtaining the structure of a 13C
nuclear spin cluster in diamond. However, this method could not be used to find the
structure of a spin cluster that is placed on the surface of the diamond, as the spins in
this case are not confined to lie at diamond lattice points (although other a priori knowl-
edge might be exploited). It is desirable to develop a method to find the structure of an
arbitrary nuclear spin cluster. One option is to follow a similar method, but instead use a
cubic lattice, which uses no pre-knowledge of the spin structure. In this case, the lattice
spacing should be made much finer than in the diamond lattice case, so as to appropri-
ately sample the entire volume given by the hyperfine coupling to the previous spin. The
number of possible solutions per spin is consequently much larger, making the prob-
lem more computationally intensive. By using a cutoff for the number of solutions as
introduced in section 4.8.4, the computation time can be reduced. However, this gives a
risk that the optimum solution for the entire spin cluster will be discarded if a different
solution is optimum for a subset of spins.

Despite these computational challenges, it was found that a similar solution to the
one found in section 4.8.4 is obtained using this method. The cubic lattice was created
with 2NL +1 lattice points per edge of length L, where NL is an integer. This gives (2NL +
1)3 points in total in a volume of L3, with lattice spacing∆L = L/2NL . To further constrain
the number of solutions obtained for each spin, NL and L were varied depending on the
coupling being used. By inverting equation 4.19, we can find the maximum distance
between two spins for a given coupling to be

∆r max
i j =

(
2αi j

Ci j

)1/3

, (4.21)

from which we can set Li j = 2∆r max
i j , with spin i at the origin (see Fig. 4.15a). We then

set N i j
L = ÑL/∆r max

i j , where ÑL = 2×10−8 is a scaling factor chosen to give a fine enough

lattice while also keeping the computation time within reasonable limits. Due to the
rotational symmetry in the x − y plane and inversion symmetry in z, for the second spin
added the position is confined to the x − z plane and for the third spin only solutions
with positive y values are taken.

Fig. 4.15b-e show the result of this method. The routine took approximately 14 hours
on a desktop PC parallelised over 8 cores. It can be seen that the best solution obtained
is close to the diamond lattice solution, both in the predicted couplings (b,c) and the
coordinates of the spins (d,e). The average distance between the diamond lattice posi-
tions and the cubic lattice positions is 0.58Å. We can also use this solution as an initial
guess for least-squares minimisation, which returns a similar solution as that obtained
by using the diamond lattice configuration as an initial guess (Fig. 4.15e).

As a test, we ran the cubic lattice reconstruction method on randomly generated 30-
spin clusters in a volume of 2x2x4 nm. For each cluster, the coupling matrix was calcu-
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lated using equation 3 in the methods and random Gaussian noise was added to each
coupling with a 10 mHz standard deviation to emulate measurement uncertainties. To
make the analysis run faster in order to get better statistics, we used a variable cutoff
point (defined in section IVA) which reduced the number of solutions kept to 10 after
8 spins were positioned. This was based on observations that often many similar solu-
tions were being kept from 8 spins onward causing unnecessary additional computation
time. We analysed 17 clusters over ∼ 300 hours, and in 16 cases found the correct so-
lution (defined as an average error in position of < 1.5 Å). In 10 cases, the analysis first
returned “no solution”, before finding the correct structure in 9 out of those 10 cases by
increasing the number of solutions tracked and/or attempting different orderings. The
case where no solution was returned ran into the memory limits of the PCs used to run
the analysis (∼ 2 GB). It is expected that, given more computational power or time, also
this solution will be found. Crucially, no erroneous structures were returned in any of
the cases, illustrating the robustness of the method.
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Figure 4.15: Obtaining the structure using a cubic lattice. a, Illustration of the lattice generation method,
shown in 2D for clarity. Parameters are defined in the text. b, Matrix plot showing the residuals ∆ fi j for the
configuration with the lowest ξ. White squares indicate unmeasured couplings. c, Matrix plot showing the pre-
dicted values of |Ci j |/4π for couplings that were not measured. White squares indicate measured couplings.
d, Total number of configurations found after each spin added (log scale). The dashed grey line indicates the
cutoff point set at Xcutoff = 5200. e, 2D projections showing a comparison between the nuclear spin structure
obtained using the diamond and cubic lattice methods. The cubic lattice solution has undergone the trans-
formation y →−y , z →−z plus a rotation around z by 49.1deg in order to align the two solutions. f, Distance
between the diamond and cubic lattice solutions for each spin (grey), and fit result using the cubic lattice as
an initial guess with spin 1 fixed, relative to the diamond solution (black). The associated fit errors δx (blue),
δy (orange) and δz (green) are also shown. The average distance between the cubic and diamond solutions is
0.58Å.
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A TEN-QUBIT SOLID-STATE SPIN

REGISTER

C. E. Bradley∗, J. Randall∗, M. H. Abobeih, R. C. Berrevoets, M. J. Degen,
M. A. Bakker, M. Markham, D. J. Twitchen, T. H. Taminiau

Spins associated to single defects in solids provide promising qubits for quantum infor-
mation processing and quantum networks. Recent experiments have demonstrated long
coherence times, high-fidelity operations and long-range entanglement. However, control
has so far been limited to a few qubits, with entangled states of three spins demonstrated.
Realizing larger multi-qubit registers is challenging due to the need for quantum gates
that avoid crosstalk and protect the coherence of the complete register. In this paper, we
present novel decoherence-protected gates that combine dynamical decoupling of an elec-
tron spin with selective phase-controlled driving of nuclear spins. We use these gates to
realize a 10-qubit quantum register consisting of the electron spin of a nitrogen-vacancy
center and 9 nuclear spins in diamond. We show that the register is fully connected by
generating entanglement between all 45 possible qubit pairs, and realize genuine multi-
partite entangled states with up to 7 qubits. Finally, we investigate the register as a multi-
qubit memory. We demonstrate the protection of an arbitrary single-qubit state for over
75 seconds - the longest reported for a single solid-state qubit - and show that two-qubit
entanglement can be preserved for over 10 seconds. Our results enable the control of large
quantum registers with long coherence times and therefore open the door to advanced
quantum algorithms and quantum networks with solid-state spin qubits.

The results of this chapter have been published in Phys. Rev. X 9, 031045 (2019).
∗Equally contributing authors.
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Figure 5.1: Illustration of the 10-qubit register developed in this work. The electron spin of a single NV center
in diamond acts as a central qubit and is connected by two-qubit gates to the intrinsic 14N nuclear spin, and a
further 8 13C nuclear spins surrounding the NV center.

5.1. INTRODUCTION
Electron and nuclear spins associated with single defects in solids provide a promising
platform for quantum networks and quantum computations [1, 2]. In these hybrid reg-
isters, different types of spins fulfill different roles. Electron spins offer fast control [3–
13] and high fidelity readout [7, 14, 15], and can be used to control and connect nu-
clear spins [15–21]. Furthermore, electron-electron couplings enable on-chip connec-
tivity between defects [19, 22, 23], whilst coupling to photons [12, 24–28] allows for the
realization of long-range entanglement links [29–31]. Nuclear spins provide additional
qubits with long coherence times that can be used to store and process quantum states
[16, 17, 21, 24, 32–35].

Recent experiments have demonstrated various schemes for high-fidelity two-qubit
gates [34, 36–41], as well as basic quantum algorithms [36, 42] and error correction codes
[16, 17]. However, to date, these systems have been restricted to few-qubit registers: the
largest reported entangled state contains 3 qubits [16, 17, 43]. Larger quantum registers
are desired for investigating advanced algorithms and quantum networks [44–46]. Such
multi-qubit registers are challenging to realize due to the required gates that selectively
control the qubits and at the same time decouple unwanted interactions in order to pro-
tect coherence in the complete register.

In this work, we develop a novel gate scheme based upon selective phase-controlled
driving of nuclear spins interleaved with decoupling sequences on an electron spin.
These gates enable high-fidelity control of hitherto inaccessible nuclear spin qubits. We
combine these gates with previously developed control techniques [14, 16, 47] to real-
ize a 10-qubit register composed of a diamond nitrogen-vacancy (NV) center, its 14N
nuclear spin and 8 13C spins (Fig. 5.1). We show that the register is fully connected
by preparing entangled states for all possible pairs of qubits. Furthermore, by also de-
coupling nuclear-nuclear interactions through echo sequences, we generate N -qubit
Greenberger-Horne-Zeilinger (GHZ) states, and witness genuine multipartite entangle-
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ment for up to 7 spins. Finally, we investigate the coherence properties of the register.
We measure coherence times up to 63(2) seconds and show that an arbitrary single qubit
state can be protected for over 75 seconds. Furthermore, we demonstrate that two-qubit
entanglement can be preserved for over 10 seconds.

5.2. TWO-QUBIT GATES: THEORY
We consider an NV center in diamond and surrounding 13C nuclear spins. To realize a
multi-qubit register, we design single-qubit gates and electron-nuclear two-qubit gates
to control the NV 14N spin and several individual 13C spins. Key challenges in these hy-
brid systems of multiple coupled spins are to maintain coherence on the electron spin
qubit and to avoid unwanted crosstalk. In particular, the electron spin continuously
couples to all 13C spins through the hyperfine interaction, and the dynamics of the elec-
tron spin and nuclear spins typically occur on very different timescales [36]. To address
these issues, a variety of decoherence-protected gates, in which decoupling sequences
on the electron spin are combined with nuclear spin control, have been investigated
[36, 37, 39, 40, 48–52]. Here we develop and demonstrate a novel electron-nuclear two-
qubit gate based upon phase-controlled radio-frequency (RF) driving of nuclear spins,
interleaved with dynamical decoupling (DD) of the electron spin. We will refer to this
scheme as a DDRF gate. Our scheme enables the control of additional 13C spins while
offering improved flexibility in dynamical decoupling to optimize the electron spin co-
herence and avoid unwanted crosstalk.

To design a selective two-qubit gate, we utilize the hyperfine interaction which cou-
ples each nuclear spin to the electron spin. As this interaction depends on the relative
position of the spin to the NV, different nuclear spins can be distinguished by their pre-
cession frequencies [48–50]. In the interaction picture with respect to the electron energy
splitting, and neglecting non-secular terms, the Hamiltonian describing the electron and
a single 13C nuclear spin is given by [48–50]

H =ωL Iz + A∥Sz Iz + A⊥Sz Ix , (5.1)

where ωL = γBz is the nuclear Larmor frequency set by the external magnetic field Bz

along the NV axis, γ is the 13C gyromagnetic ratio, Sα and Iα are the spin-1 and spin-1/2
operators of the electron and nuclear spins respectively, and A∥ and A⊥ are the parallel
and perpendicular hyperfine components.

To control the nuclear spin, we apply RF pulses of Rabi frequencyΩ, phaseφ and fre-

quency ω. To target a specific nuclear spin, we set ω = ω1, where ω1 =
√

(ωL − A∥)2 + A2
⊥

is the nuclear spin precession frequency when the electron is in the ms = −1 spin pro-
jection. In the following we assume (ωL −ω1) ÀΩ, such that driving of the nuclear spin
is negligible while the electron is in the ms = 0 spin projection, and set A⊥ = 0 for sim-
plicity (see the Supplemental Material online [53] for the general case). Considering only
the ms = {0,−1} subspace, with the addition of RF driving and in a rotating frame at the
RF frequency, the Hamiltonian of Eq. 5.1 becomes [36, 53]

H =|0〉〈0|⊗ (ωL −ω1)Iz

+|1〉〈1|⊗Ω(cos
(
φ

)
Ix + sin

(
φ

)
Iy ),

(5.2)
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Figure 5.2: (a) Illustration of the pulse sequence employed to realize a DDRF gate. Dynamical decoupling
pulses on the electron spin (purple) are interleaved with RF pulses (yellow) which selectively drive a single
nuclear spin. (b) Illustration showing that the initial state of the electron spin determines which RF pulses are
resonant with the nuclear spin. If the electron spin starts in |1〉 (ms =−1), the odd RF pulses (red) are resonant.
For initial electron state |0〉 (ms = 0), the even (blue) RF pulses are resonant. The phase of each RF pulse is
adapted to create the desired nuclear spin evolution, accounting for periods of free precession according to Eq.
5.3. (c) Nuclear spin trajectory on the Bloch sphere for a conditional rotation with N = 8 electron decoupling
pulses. Starting from the initial nuclear state |↑〉 (yellow), the red (blue) path shows the nuclear spin evolution
for the case where the electron starts in the state |1〉 (|0〉). The final state vectors are anti-parallel along the
equator: therefore, the gate is a maximally entangling two-qubit gate. (d) Top-down view of (c).
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where |0〉 (|1〉) indicates the electron ms = 0 (ms = −1) spin projection. In this picture,
for the electron in state |0〉, the nuclear spin undergoes precession around the ẑ-axis at
frequency (ωL −ω1) = A∥. Conversely, while the electron is in the state |1〉, the nuclear
spin is driven around a rotation axis in the x̂-ŷ plane defined by the phase of the RF field
φ.

To simultaneously decouple the electron spin from the environment, we interleave
the RF pulses in a sequence of the form (τ - π - 2τ - π - τ)N /2, where π is a π-pulse
on the electron spin, 2τ is the interpulse delay, and N is the total number of electron
decoupling pulses (Fig. 5.2(a)) [48–50]. We consider the evolution of the nuclear spin
during this sequence separately for the two initial electron eigenstates: |0〉 and |1〉 [48–
50]. We label each successive RF pulse by integer k = 1, ...,K , where K = N +1 is the total
number of RF pulses. If the inital electron spin state is |0〉, only the even k RF pulses will
be resonant and drive the nuclear spin (Fig. 5.2(b)). Conversely, for initial state |1〉, the
odd k pulses are resonant. The desired nuclear spin evolution can now be created by
setting the phases φk of the RF pulses.

We construct both an unconditional rotation (single-qubit gate) and a conditional
rotation (two-qubit gate). To ensure that the sequential RF rotations build up construc-
tively, the phases of each RF pulse should be set to account for the periods of nuclear
spin precession between them, which build up in integer multiples of φτ = (ωL −ω1)τ.
For the case where the electron starts in the state |0〉 (even k), the required sequence of
phases isφτ,3φτ,5φτ, . . . , while for the case where the electron starts in the state |1〉 (odd
k) we require the sequence 0,2φτ,4φτ, . . . . The required phases are therefore given by
[53]

φ′
k =

{
(k −1)φτ+π k odd
(k −1)φτ k even,

(5.3)

where the (optional) π phase shift for the odd k sequence converts the unconditional
rotation into a conditional rotation. By adding a further phaseϕ to all pulses, we can also
set the rotation axis of the gate. The RF pulse phases are thus summarized byφk =ϕ+φ′

k .
With this choice of phases, the total evolution of the two-qubit system is given by

V = Vz ·VCROT. Here, Vz is an unconditional rotation of the nuclear spin around z [53]
and VCROT is a conditional rotation of the nuclear spin depending on the electron state,
given by

VCROT =|0〉〈0|⊗Rϕ(NΩτ)

+|1〉〈1|⊗Rϕ(−NΩτ),
(5.4)

where Rϕ(θ) = e−iθ(cos(ϕ)Ix+sin(ϕ)Iy )/ħ. VCROT describes a controlled rotation of the nu-
clear spin with tuneable rotation angle (set by N , Ω and τ) and rotation axis (set by ϕ).
Setting NΩτ= π/2, a maximally entangling two-qubit operation is achieved, equivalent
to a controlled-not (CNOT) gate up to local rotations. Example dynamics for a nuclear
spin evolving under such a sequence are shown in Figs. 5.2(c) and (d).

Our design has several advantages. First, the gate allows nuclear spins with small or
negligible A⊥ to be controlled, thereby increasing the number of accessible nuclear spin
qubits. Second, because the targeted dynamics are achieved by setting the RF phases
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Figure 5.3: (a) Nuclear spin spectroscopy. After preparing the electron in a superposition state, the DDRF gate
(controlled ±π/2 rotation, see Eq. 5.4) is applied for different RF frequenciesω. The electron spin is then mea-
sured along a basis in the equatorial plane defined by angle ϕ (see inset). Each data point in (a) corresponds
to the fitted amplitude A of the function f (ϕ) = a + A cos

(
ϕ+ϕ0

)
, where ϕ is swept from 0 to 360 deg and ϕ0

accounts for deterministic phase shifts induced on the electron by the RF field. By fitting the amplitude, we
distinguish such deterministic phase shifts from loss of coherence due to entangling interactions. The signals
due to interaction with the 8 13C spins used in this work are labelled. The dashed gray line indicates the 13C
Larmor frequency ωL . A detailed analysis of the spectrum is given in the Supplemental Material online [53].
(b,c) Example phase sweeps for two data points highlighted in red (b) and orange (c) in (a). Solid lines are fits
to f (ϕ). The DDRF gate parameters are N = 48 and τ= 8τL , where τL = 2π/ωL (≈ 2.3µs).
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Figure 5.4: (a) Experimental sequence to prepare an electron-nuclear Bell state and determine the expectation
value of the two-qubit operator Z X . A series of single and two-qubit gates are used to initialize the nuclear
spin [16, 37]. A subsequent π/2 rotation and two-qubit gate generate the Bell state

∣∣ψBell
〉= (|0+〉+ |1−〉)/

p
2.

A measurement of the electron spin in the Z -basis is followed by an X -basis measurement of the nuclear spin
through the electron spin. These measurements are separated by a nuclear spin echo, which is implemented to
mitigate dephasing of the nuclear spin. The entire sequence is applied with and without an additional electron
π-pulse (dashed box) before the first electron readout, in order to reconstruct the electron state while ensuring
that the measurement does not disturb the nuclear spin state [16, 42]. (b) Density matrix of the electron-
nuclear state after applying the sequence shown in (a) to qubit C1, reconstructed with state tomography. We
correct for infidelities in the readout sequence, characterized in separate measurements [53]. The DDRF gate
parameters are N = 8, τ = 17τL ≈ 39.4µs, Ω/2π = 1.09(3)kHz, and the total gate duration is 629µs, compared
with the nuclear spin T∗

2 = 12.0(6)ms. We use error function pulse envelopes with a 7.5µs rise / fall time for
each RF pulse to mitigate pulse distortions induced by the RF electronics [53]. The fidelity with the target Bell
state is measured to be FBell = 0.972(8). Lighter blue shading indicates the density matrix for the ideal state∣∣ψBell

〉
.
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and amplitudes, the interpulse delay τ of the decoupling sequence can be freely opti-
mized to protect the electron coherence. This is in contrast to the gates described in van
der Sar et al. [36], for which τ is restricted to a specific resonance condition for each
spin, making multi-qubit control challenging. Third, because our method does not rely
on an average frequency shift over the two electron spin states [37], our gates can also
be used for selective control of nuclear spins coupled to spin-1/2 defects (such as the
negatively-charged group-IV color centers [7, 9, 13, 20, 28, 54, 55]), and via a contact hy-
perfine coupling, such as for donor spins in silicon [34] and SiMOS quantum dots [21].
Finally, because control is achieved through the RF field, a multitude of avenues for fu-
ture investigation are opened up, such as parallelizing gates by frequency multiplexing
and using shaped and composite pulses to mitigate dephasing and crosstalk [38, 56, 57].

5.3. TWO-QUBIT GATES: EXPERIMENT
Our experiments are performed at 3.7K using a single NV center in diamond with natural
abundance of carbon isotopes (1.1% 13C). Further details of the sample and experimen-
tal setup can be found in the Supplemental Material online [53]. As a starting point,
we use the DDRF gate to identify and characterize 13C nuclear spin qubits surrounding
the NV center. If the electron spin is prepared in a superposition state and the RF fre-
quency is resonant with a nuclear spin in the environment, the entangling interaction
(Eq. 5.4) decoheres the electron spin. Therefore, varying the RF frequency (ω) performs
spectroscopy of the nuclear spin environment. Fig. 5.3 shows that multiple dips in the
electron coherence can be observed, indicating selective interactions with several indi-
vidual nuclear spins. Importantly, like other RF-based approaches [39, 52], the DDRF
sequence is sensitive to nuclear spins with small or negligible A⊥. Besides extending the
number of qubits that can be controlled with a single NV center, this also enables the
detection of additional spins when using the NV as a quantum sensor, which we exploit
in parallel work to realize 3D imaging of large spin clusters (see chapter 4) [58].

To verify the control offered by the DDRF two-qubit gate, we first demonstrate high
fidelity ancilla-based initialization and readout by preparation and tomography of a max-
imally entangled electron-nuclear state. To test the gate, we select a 13C spin (spin C1,
Fig. 5.3) with a strong parallel hyperfine component of A∥/2π = 213.154(1)kHz, but a
weak perpendicular hyperfine component A⊥/2π= 3.0(4)kHz [53]. We exploit the free-
dom in choosing the interpulse delay by setting τ to an integer multiple of the 13C Lar-
mor period, τL = 2π/ωL , so that unwanted interactions between the electron spin and
other 13C spins in the environment are effectively decoupled [47, 59]. The choice of Rabi
frequency Ω is a trade-off between obtaining faster gate speeds, maintaining frequency
selectivity and minimising additional noise from the electronic hardware [53].

The sequence to perform the state preparation and tomography experiment is shown
in Fig. 5.4(a) [16, 37]. We first initialize the electron spin in the state |0〉 by resonant
optical excitation [14]. We then swap the state of the electron spin onto the 13C spin
and reset the electron spin. Next, we prepare the electron in a superposition state before
performing the DDRF controlled-rotation gate, ideally preparing the electron-nuclear
Bell state

∣∣ψBell
〉= (|0+〉+|1−〉)/

p
2, where |±〉 = (|↓〉± |↑〉)/

p
2.

To perform quantum state tomography on the two-qubit state, we first measure the
electron spin along a chosen axis by appropriate basis rotations followed by Z -basis op-
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Figure 5.5: (a) Experimental sequence for the preparation of a nuclear-nuclear Bell state and measure-
ment of the two-qubit operator Z Z . After preparation of the electron-nuclear-nuclear GHZ state |GHZ3〉 =
(|0++〉+ |1−−〉)/

p
2, an X -basis measurement on the ancilla (electron spin) projects the nuclear spins into

the Bell state
∣∣Φ+〉= (|++〉+ |−−〉)/

p
2. Measurement of the two-qubit correlations between the nuclear spins

is then performed through the electron spin. Spin echoes (dashed boxes) built into the measurement sequence
protect the nuclear spins from dephasing errors. (b) Measured expectation values (non-zero terms of the ideal
state only) for the electron-nuclear-nuclear state |GHZ3〉, and for the nuclear-nuclear state

∣∣Φ+〉
. Blue (purple)

bars show the experimental (ideal) expectation values for each operator. The nuclear-nuclear correlations are
well preserved after a nondestructive measurement of the electron spin in the X -basis.

tical readout [14]. To mitigate potential dephasing of the nuclear spin induced by the
electron spin measurement, we make the electron spin measurement non-destructive
by using a short, weak laser pulse and conditioning progression of the sequence on the
outcome |0〉, i.e. the detection of a photon [16, 42] (see Supplemental Material online
for all readout parameters [53]). Following appropriate basis rotations, we then use the
electron spin to measure the nuclear spin in the X -basis [16]. In this measurement the
electron is read out in a single-shot with average fidelity 0.945(2) [14]. We independently
characterize the nuclear spin readout, which is then used to correct for readout infideli-
ties in subsequent measurements [53]. In order to reconstruct the full electron-nuclear
state, we perform the sequence with and without an additional electron π-pulse before
the first readout [53].

The reconstructed density matrix from quantum state tomography is shown in Fig.
5.4(b). The prepared state ρ exhibits a fidelity, FBell =

〈
ψBell

∣∣ρ ∣∣ψBell
〉= 0.972(8) with the

target Bell state. Based upon a simple depolarizing noise model, we estimate the two-
qubit gate fidelity to be Fgate = 0.991(9) [53]. Additional characterization measurements
in combination with numerical simulations indicate that the remaining infidelity can be
mostly attributed to electron spin dephasing due to noise from the electronic hardware
[53].

5.4. A 10-QUBIT SOLID-STATE SPIN REGISTER
We now show how the combination of our DDRF gate with previously developed gates
and control techniques [16, 37] enables high-fidelity control of a 10-qubit hybrid spin
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register associated to a single NV-center. Our register is composed of the electron and
14N spins of the NV-center, along with 8 13C nuclear spins (Fig. 5.1). Our quantum
register is connected via the central electron spin. To demonstrate this, we first show
that all nuclear spins can be entangled with the electron spin by following the proto-
col shown in Fig. 5.4(a). For the case of the nitrogen spin, initialization is performed
by a measurement-based scheme which heralds the preparation in a particular eigen-
state. Compared to previous work [60], we realize an improved initialization fidelity
(Finit = 0.997(11)) by pre-preparing the electron in the ms =−1 state instead of a mixed
state of ms = −1 and +1, and by repeating the measurement-based initialization se-
quence twice [53]. After initialization, we work in the mI = {0,−1} subspace, and perform
operations analogous to those for the 13C nuclear spins, including the two-qubit gates
using the DDRF scheme. Genuine entanglement is probed by measuring the non-zero
matrix elements of the target state, and confirmed by negativity of the entanglement
witness WBell = 1−2

∣∣ψBell
〉〈
ψBell

∣∣ [61].
Next, we show that the register is fully connected by preparing entangled states for

all possible pairs of spins. To prepare nuclear-nuclear entanglement, we implement a
probabilistic measurement-based scheme [62], as shown in Fig. 5.5(a). We first prepare a
three-qubit GHZ state comprising the electron and two nuclear spins, |GHZ3〉 = (|0++〉+
|1−−〉)/

p
2, before performing a non-destructive X -basis measurement on the electron

spin. The measurement ideally prepares the Bell state
∣∣Φ+〉 = (|++〉+ |−−〉)/

p
2 on the

targeted pair of nuclear spins. Finally, we measure the necessary expectation values in
order to reconstruct the non-zero matrix elements of this state and confirm bipartite
entanglement (Fig. 5.5(b)).

The measured Bell state fidelities, ranging from 0.63(3) to 0.97(1), are shown in Fig.
5.6. We attribute the variations in the measured values to differences in the two-qubit
gate fidelities for each spin. In particular, the lower values measured for 13C spins C7 and
C8 are due to short coherence times in combination with long two-qubit gate durations,
necessitated by close spectral proximity to other spins [53]. All data is measured using
a single set of gate parameters, and using a single hardware configuration, rather than
separately optimizing for each pair of qubits.

5.5. GENERATION OF N-QUBIT GHZ STATES
Quantum information processing tasks such as computations and error correction will
require the execution of complex algorithms comprising a large number of qubits. An
important requirement for a quantum processor is thus the ability to perform opera-
tions on many of its constituents within a single algorithm. We test this capability by
generating N -qubit GHZ type states, defined as

|GHZN 〉 = 1p
2

(|0〉⊗ |+〉⊗(N−1) +|1〉⊗ |−〉⊗(N−1)) . (5.5)

To generate such states, we follow the sequence shown in Fig. 5.7(a). First, N − 1
nuclear spins are initialized in the state |↑〉. Next, we prepare the electron spin in a su-
perposition state, and perform sequential controlled rotation gates between the electron
and nuclear spins.
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Figure 5.6: Measured Bell state fidelities for all pairs of qubits in the 10-qubit register. Genuine entanglement is
confirmed in all cases, as witnessed by a fidelity exceeding 0.5 with the target state. Qubits C1, C7, C8 and 14N
are controlled using DDRF gates (section 5.2). Qubits C2, C3, C4, C5, and C6 are controlled using the methods
described in Taminiau et al. [37], as their hyperfine interaction parameters enable high-fidelity control using
previously optimized gates.

Characterizing the full quantum state for a system of this size is an expensive task due
to the dimensionality of the associated Hilbert space. However, we can determine if the
state exhibits genuine multipartite entanglement of all N qubits using an entanglement
witness with a reduced subset of measurement bases [61]. For a GHZ state with system
size N , there exist 2N operators from which the non-zero elements of the density matrix
can be reconstructed by linear inversion, and from which a fidelity with the target state
can be calculated. Negativity of the entanglement witness WGHZ = 1/2−|GHZN 〉〈GHZN |
heralds genuine multipartite entanglement [61]. We determine the required expectation
values of products of Pauli operators on the register via the electron spin. In these experi-
ments, the readout sequence is modified slightly. Prior to the readout of the electron spin
state, we rotate the nitrogen spin such that the desired measurement basis is mapped to
the Z -basis. This ensures that the population in the measurement basis is protected
from dephasing during the optical readout of the electron spin, which is caused by the
large electron-nitrogen hyperfine coupling in the excited state [53, 63].

As the number of qubits is increased, a new challenge arises: the total sequence time
becomes comparable to, or even exceeds the natural dephasing times (T ∗

2 ) of the nuclear
spins. In order to preserve the nuclear spin coherence, we insert spin (Hahn) echo pulses
(RF π-pulses) into the sequence to refocus each spin at the point of the next operation
performed upon it. In the Supplemental Material online [53], we derive a general solu-
tion that can be used to algorithmically construct echo sequences that avoid any overlap
in gates and that minimize idle time with the electron spin in a superposition state.

In Figs. 5.7(b,c), we show measurements for N = 5 and N = 7 qubits. In Fig. 5.7(d),
we present the measured fidelities with the target GHZ states for 2 to 8 qubits, along with
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Figure 5.7: (a) Experimental sequence to prepare a 7-qubit GHZ state |GHZ7〉 (purple) and determine the ex-
pectation value of the 7-qubit operator X Y Y Y Y Z Z (orange). The measurement sequence is broken down
into basis rotations (BR 1,2), an electron readout (RO), nuclear spin echoes (Echo 1,2), and a multi-qubit read-
out of the nuclear spins. All operations are applied sequentially (in the same way as shown in Fig. 5.5), but
some are shown in parallel for clarity. (b-c) Bar plots showing the measured expectation values (non-zero
terms of the ideal state only) after preparing the 5-spin (b) and 7-spin (c) GHZ states. The colors indicate the
number of qubits involved, i.e. the number of (non-identity) operators in the expectation value (inset). Gray
bars show the ideal expectation values. See the Supplemental Material online [53] for the operator correspond-
ing to each bar. The fidelity with the target state is 0.804(6) (b) and 0.589(5) (c), confirming genuine multipartite
entanglement in both cases. (d) Plot of GHZ state fidelity against the number of constituent qubits. A value
above 0.5 confirms genuine N -qubit entanglement. The blue points are the measured data, while the green
points are theoretical predictions assuming a simple depolarizing noise model whose parameters are extracted
from single- and two-qubit experiments. Numerical values are given in the Supplemental Material online [53].
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theoretical values as predicted by a depolarizing-noise model based on the individual
two-qubit gate fidelities [53]. The growing discrepancy between the measured and pre-
dicted values for larger N suggests residual crosstalk between the qubits, which is not
taken into account in the model. For registers comprising up to 7 spins we observe neg-
ativity of the witness WGHZ, revealing genuine N -qubit entanglement of up to 7 qubits
with high statistical significance.

5.6. A LONG LIVED QUANTUM MEMORY
The nuclear spin qubits surrounding the NV center are promising candidates for quan-
tum memories with long coherence times [32, 64]. Here we investigate the coherence
properties of the register under dynamical decoupling and show that an arbitrary single-
qubit state can be protected for over 75 seconds. Furthermore, we show that two-qubit
entanglement can be preserved beyond 10 seconds.

We first investigate the coherence of individual nuclear spin qubits under dynamical
decoupling. After initializing the nuclear spin in the state |+〉, we prepare the electron
in the state |1〉 (electron T1 = 3.6(3) × 103 s [47]). This has two effects. Firstly, it allows
us to perform selective RF π-pulses on the target nuclear spin. Secondly, the magnetic
field gradient imposed by the electron-nuclear hyperfine interaction induces a frozen
core, which suppresses flip-flop interactions between nuclear spins [65, 66] and thereby
reduces the noise the spins are exposed to.

The observed spin-echo coherence times Tα=1
2 , withα the number of RF pulses, vary

between 0.26(3) s to 0.77(4) s for the 8 13C spins. For the 14N spin we find 2.3(2) s, con-
sistent with the smaller gyromagnetic ratio by factor 3.4. The range of coherence times
observed for the 13C spins is likely caused by differences in the microscopic environment
of each spin. In particular, 13C spins close to the NV center are in the heart of the frozen
core, and, generally tend to couple predominantly to the part of the spin environment for
which the dynamics are also suppressed most strongly. Spins farther from the NV tend to
couple more strongly to the spin environment outside the frozen core. This explanation
is consistent with the observation that the spin with the longest Tα=1

2 of 0.77(4) s is lo-
cated closest (C1, r = 0.53(5) nm [58]) to the vacancy lattice site, while the shortest Tα=1

2
of 0.26(3) s is found for a spin at a larger distance (C8, r = 1.04(4) nm [58]). As expected,
increasing the number of decoupling pulses leads to an increase in the measured coher-
ence times. For α = 256 pulses, the decay time of C5 reaches Tα=256

2 = 12.9(4)s, while
for the 14N spin, we measure Tα=256

2 = 63(2)s (ee the Supplemental Material online [53]).
For the other 13C spins for which we measure Tα=256

2 , we find a range of values from 4(1)
to 25(4) seconds [53].

To confirm that arbitrary quantum states can be protected, we prepare the six car-
dinal states and measure the average state fidelity under dynamical decoupling. The
measured decay curves for spin C5 and the 14N spin are shown in Fig. 5.8, where α is
varied from 1 to 256. With 256 pulses, we measure a state fidelity exceeding the classical
memory bound of 2

3 at a time of 16.8 s for C5, and at a time of 75.3 s for the 14N spin.
The coherence times demonstrated here are the longest reported for individual qubits

in the solid state and exceed values for isolated nuclear spin qubits in isotopically puri-
fied materials [24, 32, 33]. More importantly, however, in our register we realize these
long coherence times while maintaining access to 10 coupled spin qubits.
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Figure 5.8: (a) Dynamical decoupling for spin C5. With α = 256 pulses, the average state fidelity of the six car-
dinal states is measured to be 0.73(2) after 16.8 s, above the limit of 2

3 for a classical memory with a confidence

of 99.7% (upper-tailed Z test). Solid lines are fit to the function f (t ) = A +Be−(t/T )n
. The offset A is fixed us-

ing the average fidelity of the input states |↑〉 and |↓〉, which show no decay on these timescales. B , T and n
are fit parameters which account for the decay of the fidelity due to interactions with the nuclear spin bath,
external noise and pulse errors. (b) Dynamical decoupling of the 14N spin. For α = 256 pulses, the average
state fidelity at 75.3 s is 0.73(3), which is above the bound for a classical memory with 99.4% confidence. (c)
Dynamical decoupling of a pair of 13C spins prepared in the Bell state

∣∣Φ+〉
. Solid lines are fits to f (t ), but with

A as a free parameter to account for the observed decrease in the ZZ correlations at large pulse numbers, likely
due to pulse errors. With 256 decoupling pulses, genuine two-qubit entanglement is witnessed at times up to
10.2 s, where we observe a fidelity of 0.57(2) with the target Bell state (99.9% confidence of entanglement). In
addition, interpolation of the fit yields 11.3(8) s as the point where the fidelity crosses 0.5 [53]. (d) Normalized
coherence (〈X X 〉±〈Y Y 〉)/2N , where N is a normalization factor, for two pairs of 13C spins prepared in both
the even and odd parity Bell states

∣∣Φ+〉= (|↓↓〉+|↑↑〉)/
p

2 and |Ψ−〉 = (|↓↑〉−|↓↑〉)/
p

2. Solid lines are fits to f (t )
with A = 0 and B = 1. For pair 1, the fitted decay times, T , are 0.45(2) s and 0.54(1) s for the states

∣∣Φ+〉
and

|Ψ−〉 respectively. For pair 2, the equivalent values are 0.46(2) s and 0.70(3) s.
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We exploit the multi-qubit nature of the register to investigate the protection of en-
tangled states of two 13C spin qubits. After preparing the state

∣∣Φ+〉 = (|++〉+ |−−〉)/
p

2
following the sequence shown in Fig. 5.5(a), we again prepare the electron in the state
|1〉. We then measure the Bell state fidelity as a function of total evolution time for α= 1
toα= 256 pulses. Note that since

∣∣Φ+〉
is an eigenstate of Z Z , its evolution is not affected

by the coupling between the two qubits, which is predominantly dipolar and of the form
C Iz Iz , with C = 1.32(4) Hz [58]. The measured fidelities are plotted in Fig. 5.8(c). For
α = 256 decoupling pulses, we confirm the preservation of entanglement for > 10s, as
quantified by a fidelity exceeding 0.5 with the desired Bell state.

With the capability to protect multi-qubit quantum states, it becomes important to
consider additional effects that may affect their coherence, such as the presence of cor-
related noise. As a first experimental step towards understanding such effects, we use
entangled states of nuclear spins to explore spatial correlations within the noise environ-
ment. We perform experiments on two pairs of 13C spins. We prepare two Bell states for
each pair, one exhibiting even Z Z parity, which, written in the Z -basis, is given by

∣∣Φ+〉=
(|↓↓〉+ |↑↑〉)/

p
2, and another exhibiting odd Z Z parity, |Ψ−〉 = (|↓↑〉− |↑↓〉)/

p
2. The dif-

ference in the coherence times of these two states gives an indication of the amount of
correlation in the noise experienced by the two spins [67]. In the case of perfectly corre-
lated noise, one would expect the state

∣∣Φ+〉
to decay at four times the single qubit decay

rate (superdecoherence), while the state |Ψ−〉 would form a decoherence-free subspace
[68, 69]. In contrast, for completely uncorrelated noise, the coherence times for the two
states would be identical.

We measure the coherence times for the two Bell states, varying the total evolution
time for the case of a single spin-echo pulse (α= 1) with the electron spin prepared in the
state |1〉. In Fig. 5.8(d), we plot the normalized coherence signal for both Bell states and
for both pairs of qubits. A statistically significant difference between the decay curves
for the two Bell states is found for both pairs, where the odd-parity state |Ψ−〉 decays
more slowly than the even-parity state

∣∣Φ+〉
, indicating partly correlated noise in the

system. We can relate the size of the effect to the distance between the spins in the pairs,
which has been characterized in separate work [58]. This reveals that the pair with a
smaller separation (C1 and C6, distance 0.96(3)nm) shows more correlation than the
pair with a larger separation (C5 and C2, 1.38(7)nm). This observation is consistent with
the idea that spatially close spins tend to couple to the same nuclear spin environment,
and therefore experience correlated noise, although large deviations from this rule are
expected to be possible for specific cases [67]. Characterizing such correlated noise pro-
vides new opportunities to investigate the physics of decoherence in spin baths [67], and
to develop and test quantum error correction schemes that are tailored for specific cor-
related noise [70, 71].

5.7. CONCLUSION
In conclusion, we have developed a novel electron-nuclear two-qubit gate and applied
these gates to realize a 10-qubit solid-state spin register that can protect an arbitrary
single-qubit state for over one minute. The techniques developed in this work can be
readily implemented for multi-qubit control in a variety of other donor and defect plat-
forms, including spin-1/2 [7, 9, 13, 20, 28, 54, 55] and contact hyperfine [21, 34] systems,
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for which many previous gate designs are challenging to apply [37, 48–50]. Further im-
provements in selectivity and fidelity of the gates are anticipated to be possible by (opti-
mal) shaping of the RF pulses [38, 56, 57] and by reducing electronic noise. Additionally,
the use of direct RF driving opens the possibility to perform gates in parallel on multi-
ple qubits. Combined with already demonstrated long-range optical entanglement [29–
31], our multi-qubit register paves the way for the realization of rudimentary few-node
quantum networks comprising tens of qubits. This will enable the investigation of basic
error correction codes and algorithms over quantum networks [44–46]. Finally, look-
ing beyond quantum information, the gate sequences developed here also enable new
quantum sensing methods [58].
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6
FAULT-TOLERANT ENCODING AND

MANIPULATIONS OF A COMPLETE

LOGICAL QUBIT

M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen, C. E. Bradley, B. M. Terhal, T. H. Taminiau

Quantum error correction (QEC) is essential for reliable large-scale quantum information
processing. Pioneering experiments using a variety of physical platforms have demon-
strated QEC codes that could correct specific types of errors. However, a full experimental
demonstration of a fault-tolerant QEC code capable of correcting any type of single-qubit
error is challenging, due to the required number of qubits, control fidelities, and necessity
for non-destructive parity measurements. Recently, it has been shown that the smallest
fault-tolerant code can be realised using 7 qubits by extending the [[5,1,3]] code with a
‘flag’ ancilla. Here, we propose, and experimentally demonstrate, a novel scheme for fault-
tolerant encoding of the logical qubits of this code using non-destructive parity measure-
ments and flag ancilla measurements. We measure a logical-state fidelity of 95(2)% for the
fault-tolerant encoding scheme compared to 81(2)% for the non-fault-tolerant encoding,
thus demonstrating a significant improvement using our fault-tolerant scheme. Further-
more, we demonstrate fault-tolerant operations on the logical qubit by applying a set of
transversal logical Clifford gates. Our experiments provide the first experimental demon-
stration of a fault-tolerant logical qubit in the solid-state, a key step towards large-scale
quantum information processing.

129



6

130
6. FAULT-TOLERANT ENCODING AND MANIPULATIONS OF A COMPLETE

LOGICAL QUBIT

6.1. INTRODUCTION
Spin-qubit registers in solids are among the most advanced and promising physical plat-
forms for building large-scale quantum computers and quantum networks, due to their
exceptionally long coherence times [1–6], compatibility for on-chip integration [7–9] and
suitability to work at relatively high temperatures (few Kelvins) [1, 9, 10]. However, build-
ing large-scale quantum computers (or networks) will ultimately require methods to
protect the qubits from errors in order to have reliable computations: quantum error
correction (QEC) [11–13]. By encoding each data qubit into multiple physical qubits,
parity measurements can be used to non-destructively detect (and thereafter correct)
the errors [11, 14–17].

At the core of the QEC theory there is the concept of fault tolerance: the circuits used
in any stage of the process (encoding, decoding, error extraction, or computing) should
not cause errors to spread [16–18]. That is to say, any single error in any logical block
remains a single error at the output of the block [19]. For such fault-tolerant circuits, if
the error rates in the operations involved are below a certain threshold, we can reliably
perform arbitrarily large quantum computations (the threshold theorem) [11, 20, 21].

Experimentally, there has been remarkable progress during the last few years towards
implementing QEC codes using various physical platforms (such as superconducting
qubits [22–24], ion traps [25, 26] and NV centers [27, 28]). Pioneering experiments have
demonstrated error detection codes [29–32] as well as elementary QEC codes that could
only correct specific types of errors [22, 27, 28, 33]. More recently, fault-tolerant encod-
ing and post processing QEC of the Bacon-Shor [[9,1,3]] have been demonstrated using
trapped ions [26].

Until few years ago, the smallest fault-tolerant QEC code that was known required
at least 10 qubits [34], in addition to the ability to perform non-destructive multi-qubit
parity measurements, which are crucial for the error-syndrome extractions. These re-
quirements are challenging for all of the current physical platforms [35–37], and there-
fore have hindered the demonstration of a fault-tolerant QEC code.

Recently Chao and Reichardt [38] proposed a fault-tolerant QEC scheme that uses
only 7 qubits in total, see Fig. 6.1c. This is basically the well-known [[5,1,3]] code (the
perfect code) with a modification in the error-syndrome measurements, where an extra
flag ancilla is used to make the scheme fault tolerant. Concurrently, on the experimen-
tal side, we have recently made significant progress in the quantum control and opera-
tion of multi-qubit registers. In particular, for our physical platform—spin registers in
diamond—we have demonstrated 10-qubit registers with high-fidelity universal control
and coherence times up to one minute [6] (see ch. 5). Moreover, we have demonstrated
the generation of genuine multipartite entanglement of up to 7 qubits [6] (see ch. 5).
Therefore, our system would be a suitable testbed to run and test the smallest fault-
tolerant QEC code.

In this chapter, we present and experimentally demonstrate a scheme, that utilizes
multiple non-destructive parity measurements in addition to a flag ancilla check, to
fault-tolerantly encode the logical eigenstates of the [[5,1,3]] code. Furthermore, we
demonstrate fault-tolerant operations on the logical qubit by applying a set of transver-
sal logical gates. These experiments provide the first demonstration of a fault-tolerant
complete logical qubit in the solid-state, a key step for large-scale quantum information
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Figure 6.1: Basic idea of flagged error extraction. a) Traditional error extraction scheme (here measuring the
X Z Z X I stabilizer). However, this circuit is non-fault tolerant; a Z error on the ancilla after the second gate will
propagate into an I I Z X I error on the logical qubit, which is a weight-2 error. This error will be misdiagnosed,
leading to a logical error. b) By adding an extra flag ancilla, this circuit can measure the X Z Z X I stabilizer in
a fault-tolerant way; any single fault that can spread into weight two errors will trigger the flag. Furthermore,
such errors will be distinguishable by their syndromes and can be fixed [38].

processing.

6.2. THE SMALLEST KNOWN FAULT-TOLERANT QEC CODE

The [5,1,3] code is the smallest distance-3 error correction code (i.e., it can correct ar-
bitrary single qubit errors) [39, 40]. The code is a perfect code, saturating the quan-
tum Hamming bound: it encodes 1 logical qubit with the minimal number of physical
qubits. This code is defined by 4 independent stabilizers s1 = X Z Z X I , s2 = I X Z Z X , s3 =
X I X Z Z , s4 = Z X I X Z , which have a cyclic structure, and the logical operators are XL =
X X X X X , ZL = Z Z Z Z Z . The ability of this code to correct arbitrary single qubit errors,
however, relies on the assumption of perfect error-syndrome extraction. The traditional
extraction scheme of the error syndrome, such as the one shown in Fig. 6.1a, is non-fault
tolerant [38]; errors on the the ancilla can propagate to weight-2 errors and could lead
to logical errors. For example, an I Z error on the second gate in Fig. 6.1a leads to an
I I Z X I error on the logical qubit, which is a weight-2 error. This error will be misdiag-
nosed leading to a logical error [38].

There are some extensions of the error extraction schemes which can make this code
fault tolerant. For example, "Shor-like" syndrome extraction which requires 4 extra an-
cilla qubits (10 qubits in total) [34]. Another fault-tolerant extension scheme for the
[[5,1,3]] code was proposed by Yoder and Kim [41], and it uses 8 qubits in total. Re-
cently, Chao and Reichardt [38] proposed a simpler scheme which uses only one extra
ancilla qubit (flag) to make the code fault-tolerant (7 qubits in total). Figure 6.1 demon-
strates the basic idea of the flag-fault tolerance for the [[5,1,3]] code [38]. By adding the
flag qubit as shown in Fig. 6.1b, single faults that could lead to correlated errors can be
detected and corrected [38].
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6.3. FAULT-TOLERANT LOGICAL-STATE ENCODING
The first step for fault-tolerant quantum error correction is the fault-tolerant encoding
of the logical states. For distance-3 codes (such as the [[5,1,3]] code used here), fault-
tolerant encoding means that a single fault during the preparation circuit leads to the
desired logical state plus at most a single-qubit error on output [42]. A fault constitutes
the insertion of any Pauli error at a location in the preparation circuit where locations
can be a qubit idling step, a qubit measurement, a qubit preparation, or a single or two-
qubit gate. In case the location is a two-qubit gate, a single fault is the insertion of any of
the 15 Pauli errors after the action of the gate.

One can formulate nondeterministic fault-tolerant state preparation circuits for the
[[5,1,3]] code, for example using flag qubits [38]. The circuits previously proposed make
heavy use of two-qubit gates between data qubits, which are not native for our system
[? ]. A deterministic fault-tolerant state preparation can be achieved by following a non-
fault tolerant state preparation circuit up with several rounds of flag error corrections
[42], but the number of parity check measurements is considerable. Here, instead, we
present a simpler preparation scheme that uses two extra stabilizer measurements and
a flag check to herald the successful fault-tolerant encoding.

Here, we consider the fault-tolerant preparation of the logical state |−〉L = 1p
2

(|0〉L −
|1〉L), but similar circuits can be constructed for the other 5 eigenstates of the logical
Pauli operators. The logical state |−〉L is the unique +1 eigenstate of 5 independent
weight-3 operators (p1, p2, p3, p4, p5) given in Table 6.1. This can be understood as
p1 = −XL · s1 · s2, and due to the cyclic structure of the code, one can obtain the other
4 operators by performing cyclic permutations on the qubits.

s1 = X Z Z X I p1 = I Z X Z I
s2 = I X Z Z X p2 = Z I I Z X
s3 = X I X Z Z p3 = X Z I I Z
s4 = Z X I X Z p4 = Z X Z I I

XL = X X X X X p5 = I I Z X Z

Table 6.1: Measuring p1 to p5 is logically equivalent to measure the four stabilizers s1 to s4 and the weight-5
logical operator XL . However, due to the noisy gates, measuring the weight-3 logical operators is preferred.

Measuring p1 to p5 and updating the Pauli frame according to the measurement out-
comes can prepare |−〉L from an arbitrary density matrix non fault-tolerantly. Instead of
starting from a mixed state, we can also start the scheme by initializing the data qubits
into the state |00+0+〉, which is a simultaneous eigenstate of p1 and p2 with eigenvalue
+1, and then measure p3 to p5 (Fig. 6.2a). We refer to this preparation scheme through-
out the rest of this chapter as the non-fault-tolerant (NFT) scheme.

The previous scheme is not fault tolerant because some errors on the ancilla will
propagate to weight-2 errors that cause a logical error in the encoded state. To design
a fault-tolerant scheme that can capture such errors, we specially construct two extra
parity checks, T1 = p2 ·p4 ·p5 = I X I Y Y and T2 = p1 ·p3 ·p5 = X I Y Y I , in addition to a
flag check to make the circuit fault tolerant (see Fig. 6.2). In the proposed scheme, fault-
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Figure 6.2: The proposed fault-tolerant encoding scheme. The circuit diagram of the the encoding scheme. The
first part of the circuit prepares the logical state non-fault-tolerantly. First, the state |00+0+〉 (a simultaneous
eigenstate of p1, p2 with eigenvalue +1) is prepared, followed by measuring the logical operators p3 to p5.
In order to make the scheme fault tolerant, we add extra two stabilizer checks T1 = p2p4p5 , T2 = p1p3p5
and the flag ancilla check. The scheme is fault-tolerant once the following heralding criteria are satisfied: (1)
the measurement outcomes of T1 and T2 are compatible with the measurement outcomes mi of the logical
operators pi , i.e. mT1 = m2 ×m4 ×m5 and mT2 = m1 ×m3 ×m5; (2) the flag is not raised. Otherwise the state
is rejected and we start the preparation again. Note that instead of starting with the state |00+0+〉, the scheme
can start from an arbitrary density matrix by measuring p1 and p2.

tolerant preparation is heralded by satisfying the following conditions: (1) the measure-
ment outcomes of T1 and T2 are compatible with the measurement outcomes mi of the
logical operators pi , i.e. mT1 = m2 ×m4 ×m5 and mT2 = m1 ×m3 ×m5; (2) the flag is not
raised, i.e., measured to be in |0〉. Otherwise the state is rejected and we start the prepa-
ration again. See section 6.7.1 for a proof of the fault tolerance of this scheme. We refer
to this preparation scheme throughout the rest of this chapter as the fault-tolerant (FT)
scheme.

6.4. EXPERIMENTAL DEMONSTRATION OF THE ENCODING

In this section, we present the experimental implementation of the encoding scheme
as well as the obtained experimental results (for both the fault-tolerant and non-fault-
tolerant cases). The scheme requires one ancilla qubit, one flag ancilla qubit and 5 data
qubits. We use the NV electron spin as the ancilla qubit, the nitrogen nuclear spin as
the flag ancilla, and 5 13C nuclear-spin qubits as the data qubits. In order to implement
the proposed logical state encoding in fig. 6.2, we first translate it into our native ex-
perimental gates (see section 6.7.3). To mitigate decoherence of the data qubits, we use
multi-spin echoes which can increase the coherence times to several seconds (see chap-
ter 5). Additionally, we ensures that the data qubits are decoupled from each other by
using asynchronous echoes to mitigate the nuclear-nuclear coupling effects (see section
6.7.3).
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Figure 6.3: Experimental implementation of the encoding scheme and results. a) We convert the circuit dia-
gram in Fig. 6.2 to our experimental gate scheme and compile the circuit to minimize the number of single
qubit gates. We use the electron spin as the ancilla qubit as it is directly connected to the nuclear spin qubits.
We use 5 13C nuclear spins as the (data) qubits and the nitrogen spin as the flag ancilla. The 13C nuclear spins
are first initialized into |00000〉 using five sequential swap initialization steps (see ch. 2 for details), and the
nitrogen spin is initialized by measurement based initialization [6]. We use multi-spin echoes between the
stabilizer measurements (see Fig. 6.5) on the nuclear spins to overcome the dephasing. Note that we run this
scheme in a conditional form, we only continue upon measuring the electron spin to be in ms = 0 state (cor-
responds to +1 eigenvalues of the stabilizers), which directly heralds the fault-tolerant preparation of the state.
This way we reduce the measurement errors on the electron spin (ancilla qubit) [28, 43]. Note that this circuit
prepares the target state up to single qubit rotations. These rotations are accounted for in the tomography
step by updating the Pauli frame of the measured operators. b) Measured expectation values of the 31 multi-
qubit operators that define the logical state for the NFT and FT cases. c,d) Combined overlap between the
prepared state and the states with zero- and single-qubit Pauli errors with respect to logical |−〉L (P0,−,P1,−),
and the combined overlap between the prepared state and the states with zero- and single-qubit Pauli errors
with respect to logical |+〉L (P0,+,P1,+). The FT preparation scheme suppresses the probabilities to have logi-
cal errors (two- or three-qubit errors) while increasing the probabilities to have no logical errors (zero or single
qubit errors), and therefore improving FL .
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We run both the NFT and FT encoding schemes in Fig. 6.5 and compare the obtained
logical state fidelity FL in both cases. This fidelity represents the probability to have at
most a single qubit error in the encoded state (i.e., the overlap between the prepared
state and the target state after applying a perfect round of error correction, see section
6.7.2 for details on FL calculation). To this end, we measure the 31 operators that define
the target logical state for both NFT and FT preparation schemes (Fig. 6.5b), and cal-
culate the obtained FL in both cases (see section 6.7.2). We find that the FT encoding
scheme significantly outperforms the NFT one (FL,F T = 95(2)%, FL,N F T = 81(2)%).

To further assess this improvement, we calculate the overlap between the prepared
state, ρout , and the states with zero or single qubit errors with respect to the target state
|−〉L (i.e., there is no logical error), given by P0,− and P1,− respectively as

P0,− = Tr
(|−〉L 〈−|L ·ρout

)
, (6.1)

P1,− = ∑
E∈E

Tr
(
E |−〉L 〈−|L E ·ρout

)
, (6.2)

where E ∈ E = {Xi ,Yi , Zi , i = 1,2, · · ·5}. We also calculate the overlap between the pre-
pared state and the states with zero or single qubit errors with respect to the |+〉L (i.e.,
logical errors), given by P0,+ and P1,+ respectively as

P0,+ = Tr
(
E |+〉L 〈+|L E ·ρout

)
, (6.3)

P1,+ = ∑
E∈E

Tr
(
E |+〉L 〈+|L E ·ρout

)
. (6.4)

The combined overlaps between the prepared state and the two cases of logical- or
no-logical-error are shown in Fig. 6.3b. From this figure, we note that the FT preparation
scheme suppresses the probabilities to have two- or three-qubit errors (logical errors)
while increasing the probabilities to have at most a single qubit error, and therefore sig-
nificantly improving the logical state fidelity FL .

6.5. FAULT-TOLERANT OPERATIONS ON THE LOGICAL-QUBIT
Here we experimentally demonstrate fault-tolerant manipulations of the encoded logi-
cal state by applying fault-tolerant logical gates. Such fault-tolerant gates are important
building blocks for fault-tolerant quantum computations. Figure 6.4a shows the basic
experimental sequence; after fault-tolerant encoding of the logical state (here |−〉L), we
apply transversal fault-tolerant logical gates and then perform a tomography of the fi-
nal state, see Fig. 6.4a. Asynchronous echo sequences are applied between the encod-
ing, logical gate, and tomography steps to mitigate decoherence of the nuclear spins.
The logical X and Y gates are done in a transversal way as XL = X1X2X3X4X5 and YL =
Y1Y2Y3Y4Y5 [20, 44]. The logical Hadamard gate is done following Yoder et al. [44] by
applying HL = PπH1H2H3H4H5, where Pπ is an appropriate permutation of the five data
qubits. This permutation is done here by relabelling the qubits and not by applying
SWAP gates, and therefore it is transversal (fault-tolerant) [44].
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Figure 6.4: Fault-tolerant operations on a logically-encoded qubit. a) Scheme A: after fault-tolerant encoding
of a logical state (here |−〉L ), we apply a transversal fault-tolerant logical gate and then perform a tomography
of the final state. In this approach, the logical operations are done by applying five extra gate operations,
surrounded by their own echo sequences. We choose to implement this approach as an explicit demonstration
and a benchmark. b) Scheme B: an alternative (and generally better) approach is to combine the logical gate
with the tomography step (Pauli-frame update). In this approach, the logical operations are still applied in real
time, but due to the compilation, they do not come at an extra cost. c) Top: Bloch spheres showing the initial
(green) and target (orange) states after applying the logical X, Y, and H gates. Bottom: obtained logical-state
fidelities after applying the different logical gates. Blue: scheme A; Green: scheme B. d) Error distribution on
the obtained states using the first scheme.
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Figure 6.4c shows the obtained logical-state fidelities (with respect to the target state)
after applying the logical gates, which demonstrates high-fidelity logical operations. We
attribute the observed loss in fidelity to the extra echo stages which lead to an increased
sequence time. This causes extra dephasing due to the nuclear-nuclear couplings be-
tween the data qubits. We take this into account in the design of our echo sequences by
using asynchronous echo sequences to minimize these effects.

In the implementation discussed above, the gates are realized by separately applying
an additional set of 5 pulses including extra echo sequences. We choose this approach
to provide an explicit demonstration of applying fault-tolerant gates and to benchmark
the operations. Clearly, this is not the optimal way to apply transversal logical gates.
First, we note that there is a set of logical operators based on three-qubit operators (e.g.
XL = I I Z X Z ), instead of five qubit operators. Second, one would normally compile
away such operations: one can simply track the basis changes (Pauli frame) and adapt
the next operations accordingly (see Fig. 6.4b). As a reference, Fig. 6.4c also shows
the results for such an optimal tracking of the Pauli frame approach, in which the ex-
tra transversal logical operations come at no cost, that no fidelity is lost. Finally, note
that a ZL = Z Z Z Z Z operation is trivially implemented as it is automatically compiled
in the timing of subsequent gates.

6.6. CONCLUSION AND OUTLOOK
In conclusion, we have experimentally demonstrated fault-tolerant encoding of the small-
est fault-tolerant logical qubit. Our results show that the proposed fault-tolerant encod-
ing scheme reduces the probability of logical-qubit errors compared to the non-fault-
tolerant scheme. Additionally, we have demonstrated the first fault-tolerant operations
on a solid-state logical qubit of a complete error correction code by applying transversal
gates. These demonstrations are key building blocks for fault-tolerant quantum com-
putations. The final ingredient missing in the complete fault-tolerant operation of an
error-corrected logical qubit is to perform the syndrome extraction in a fault-tolerant
way. This requires a FT 4-qubit stabilizer measurement (see Fig. 6.1) and will be the
subject of future experiments.

6.7. SUPPLEMENTARY INFORMATION

6.7.1. PROOF OF FAULT-TOLERANCE OF THE PROPOSED SCHEME
We show that a single fault in the circuit in Fig. 6.2 leads to the correct preparation of |−〉L

plus at most a single-qubit error, assuming that the conditions for accepting the state
are fulfilled. We also note that the modification of this preparation scheme with the ad-
ditional single-qubit gates (for echoing and/or different gate decompositions) does not
change the fault-tolerance argument. In the experimental realization we condition on
the preparation runs which give m3 = +1,m4 = +1,m5 = +1 since these measurement
outcomes are more reliable. Such heralding does not affect the fault-tolerance argu-
ments from section. From now on, we denote controlled-NOT and controlled-Y gates as
C X and C Y here.

First, it should be noted that for this 5-qubit code any state |−〉L with more than 1
Pauli error is equivalent to either a |+〉L with at most 1 Pauli error or a |−〉L state with at
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most 1 Pauli error. This is due to the code being perfect: the states |±〉L plus any single-
qubit error are all orthogonal and there are 2× (1+15) = 25 = 32 such states, spanning
the full code space. Hence we just need to prove that the circuit does not lead to the state
|+〉L with at most 1 Pauli error. For this it is useful to tabulate all weight-3 incarnations
of the logical ZL and logical YL as these can bring |−〉L to |+〉L , see Table 6.2.

ZL ≡ Z1Z2Z3Z4Z5 Y3Z4Y5 (cyclic perm.) X2X3Z5 (cyclic perm.)
YL ≡ Y1Y2Y3Y4Y5 Z2Z3Y5 (cyclic perm.) X1X4Y5 (cyclic perm.)
XL ≡ X1X2X3X4X5 X2Y4Y5 (cyclic perm.) Z1Z4X5 (cyclic perm.)

Table 6.2: All weight-3 incarnations of the logical operators. Any cyclic permutation of the logical operator is
an equivalent logical operator.

We can assume that the fault appears either in the preparation circuit and the veri-
fication circuit is fault-free or vice versa. So we consider these cases separately as follows.

Case A: if the only fault occurs in the verification circuit
Since the only fault occurs in the verification circuit, the preparation circuit prepares the
state |−〉L with no errors (assuming noiseless Pauli frame corrections). We prove that the
circuit is fault-tolerant through different cases:

• Single-qubit faults on data qubits (in idling or after gates) during the verification.
These have the effect of either leading to a single-qubit error on output, or leading
to measurement of T1 or/and T2 which does not satisfy the consistency check, in
which case the state is not accepted.

• A single measurement fault in measurement of T1 or T2 or the flag ancilla mea-
surement leads to the state not being accepted.

• A two-qubit fault after one of the two-qubit gates in T1. If the action of this fault on
this ancilla is Z or Y , then it flips the ancilla and the state is not accepted. Hence
assume the action on the ancilla qubit is X . If this error P X (where P is some
Pauli I , X ,Y , Z ) occurs after the first C Y , it leads to outgoing error X2Y4P5 which
is equivalent to Y5P5XL , see Table 6.2, hence a single-qubit outgoing error. If P X
occurs after the second C Y it leads to outgoing error X2P4. X2Y4 is equivalent to
Y5XL , see Table 6.2. X2X4 and X2Z4 lead to the T2 outcome being flipped, so no
acceptance. P = I corresponds to a single-qubit error. If P X occurs after the (last)
C X it leads to a single-qubit outgoing error P .

• a two-qubit fault after one of the two-qubit gates in T2. If the action of this fault
on the ancilla qubit is Z or Y , then it flips the ancilla qubit and the state is not
accepted. Hence assume that the action on the ancilla qubit is X .

Consider first the two qubit gates between ancilla and data qubits. If the fault P X
occurs after the C X , then it does not flip the flag qubit, and leads to outgoing error
P1Y3Y4 which is equivalent to X1P1XL (Table 6.2), hence inducing a single-qubit
error. If the fault P X occurs after the first C Y it flips the flag qubit and the state is
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not accepted. If the fault P X occurs after the second C Y , it leads to a single qubit
error P4.

Now consider the C X between ancilla and flag ancilla. If the action of the fault is
X or Y on the flag ancilla the state is not accepted, hence assume that the action
on the flag ancilla qubit is Z . The fault X Z after the first C X will lead to the state
not being accepted. The fault X Z after the second C X will lead to an outgoing Y4

error.

p1 p2 p3 p4 p5 T1 = p2p4p5 T2 = p1p3p5

Y1 F F F F
X1 F F
Z1 F F
Y2 F F F F
X2 F F
Z2 F F
Y3 F F F
X3 F F F
Z3 F F
Y4 F F F
X4 F F F F
Z4 F F F
Y5 F F F
X5 F F F
Z5 F F

Table 6.3: Effect of single qubit errors. F denotes that the eigenvalue is flipped upon application of the error.
The errors highlighted in red flip both verification checks.

Case B: if the only fault occurs in the preparation circuit
Now if the fault in the non-fault-tolerant preparation circuit leads to the output |−〉L

plus at most a single-qubit error, then, since the verification circuit is perfect, the final
output has at most 1 error. Also, we note that any fault in the preparation circuit leads to
a |−〉L state with at most 2 Pauli errors and such state can be viewed as a logical |+〉L plus
at most a single-qubit error.

We thus need argue what outputs |+〉 with at most any single-qubit error are caught
by the verification circuit. For the output states which are not caught we need to argue
that they cannot occur due to a single fault in the preparation circuit.

Note that the output |+〉L is a −1 eigenstate of p1, . . . , p5. Clearly the state |+〉L would
be caught in the verification test as the product of any three pi s is −1 while it should be
+1 (assuming Pauli frame corrections). Now we examine what possible single-qubit er-
rors on |+〉L which would lead to passing the verification test which requires both eigen-
values of T1 and T2 to be flipped. We can see that these are the errors X4 and Z4 on top
of |+〉L in Table 6.3.

One can fully characterize these possible bad states X4 |+〉L and Z4 |+〉L by their syn-
dromes Mi =±1, that is, the syndromes of p1, . . . , p5 if we were to perfectly measure these
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checks on these output states. These output syndromes (denoted by capital letters) are
as follows

X4
∣∣+〉

: M3 = M4 = M5 =−1, M1 = M2 =+1, (6.5)

Z4
∣∣+〉

: M1 = M2 = M3 = M4 =−1, M5 =+1 (6.6)

Now we argue that no single fault in the preparation circuit can lead to a state with
such output syndromes Mi by looking at various subcases:

1) If the only fault occurs before measuring p4 and p5. Then the Pauli corrections in
the preparation circuit correctly fix these eigenvalues to be M4 = M5 =+1 on output, so
both syndromes in Eq. (6.5) and Eq. (6.6) are excluded.

2) If the only fault occurs in measuring p4. Similarly, M5 is fixed to be +1 due to cor-
rect Pauli corrections, so that the syndrome in Eq. (6.5) is not possible. Then for the
syndrome in Eq. (6.6) we argue as follows:

• A single fault in p4 can only induce 2-qubit errors on the data qubits C2 and C3.
These commute with p2 = Z I I Z X , hence M2 is fixed to be +1. The syndrome in
Eq. (6.6) is therefore not possible.

• Other single faults can only induce single-qubit errors on the data qubits, and a
single-qubit error cannot anti-commute with p1 = I Z X Z I , p2 = Z I I Z X and p3 =
X Z I I Z at the same time, i.e. M1, M2 and M3 cannot be −1 at the same time. The
syndrome in Eq. (6.6) is not possible.

3) If the only fault occurs in measuring p5.

• A single fault can only induce 2-qubit errors Z4Z5 and Y4Z5 (X4Z5 is equivalent to
the single-qubit error Z3), all commute with p3 = X Z I I Z and p4 = Z X Z I I , i.e. M3

and M4 are fixed to be +1. The syndromes in Eq. (6.5) and Eq. (6.6) are thus not
possible.

• If the fault occurs on an idling location of the data qubits C1 or C2, the induced
single-qubit errors commute with p5 = I I Z X Z and the measurement of p5 is
correct, i.e. the syndromes in Eq. (6.5) are not possible since M5 = +1. Because
any single-qubit error on C1 or C2 cannot anti-commute with p1 = I Z X Z I , p2 =
Z I I Z X , p3 = X Z I I Z and p4 = Z X Z I I at the same time, the syndrome in Eq. (6.6)
is also excluded.

• Other single faults can only induce a single-qubit error on the data qubits C3, C4 or
C5, which cannot anti-commute with p3 = X Z I I Z and p4 = Z X Z I I at the same
time, i.e. the syndromes in Eq. (6.5) and Eq. (6.6) are not possible.
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6.7.2. CHARACTERIZATION OF THE PREPARED STATES
As discussed earlier, the logical state fidelity FL is defined as the overlap between the pre-
pared state after assuming a perfect round of error correction and the target state. This
basically represents the probability to have at most a single qubit error in the prepared
state. We would like to verify that this logical state fidelity can be increased by using the
proposed fault-tolerant preparation scheme.

Noiseless measurements of p1 to p5 project an arbitrary state into the state E |−〉L

with E some Pauli error, which can be described by a projector:

E |−〉L 〈−|L E =
5∏

i=1

(
1+mi ·pi

2

)
where mi =±1 is the measurement outcome of pi , and mi =−1 when E anti-commutes
with pi . Writing E as the set of all single qubit Pauli errors, i.e. E = {I , Xi ,Yi , Zi , i =
1,2, · · ·5}, the logical state fidelity FL can be calculated as

FL = ∑
E∈E

Tr
(
E |−〉L 〈−|L E ·ρout

)
= 1

2
+ 1

8
(< p1 >+< p2 >+< p3 >+< p4 >+< p5 >

+< p1p2p3 >+< p1p2p4 >+< p1p3p5 >+< p2p4p5 >
+< p3p4p5 >−< p1p2p5 >−< p1p3p4 >−< p1p4p5 >
−< p2p3p4 >−< p2p3p5 >−< p1p2p3p4p5 >)

= 1

2
+ 1

8
(< I Z X Z I >+< Z I I Z X >+< X Z I I Z >+< Z X Z I I >

+< I I Z X Z >+< Y I X I Y >+< I Y Y I X >+< X I Y Y I >
+< I X I Y Y >+< Y Y I X I >+< Z Z Y X Y >+< Y X Y Z Z >
+< Z Y X Y Z >+< X Y Z Z Y >+< Y Z Z Y X >+< X X X X X >),

(6.7)

where < p >= Tr
(
p ·ρout

)
is the expectation value of the operator p, and ρout is the out-

put density matrix of the full preparation circuit in Fig 6.2.

6.7.3. EXPERIMENTAL IMPLEMENTATION OF THE FAULT-TOLERANT SCHEME
In this section we explain in more detail how to implement the proposed encoding scheme
using our physical platform. The scheme requires one ancilla qubit, one flag ancilla
qubit and five data qubits. We use the NV electron spin as the ancilla qubit, the 14N
nuclear spin as the flag ancilla, and five 13C nuclear spins as the data qubits. The NV
electron spin serves well as the ancilla qubit as it can be (non-destructively) read out by
optical means and it can be used to directly implement two qubit gates with all of the
13C nuclear-spin qubits as well as the 14N nuclear-spin flag qubit.

In order to implement the proposed logical state encoding in fig. 6.2, we first trans-
late it into our native experimental gates. As discussed in chapter 2, directly applying
our gate scheme (i.e. Rx (±π/2), Ry (±π/2)) leads to an extra basis rotation for the nuclear
spins and we have to take this into account. Here, we replace each controlled-gate (CX,
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CY, CZ) by its equivalent implementation in our gate scheme (see chapter 2) and after-
wards compile the circuit to reduce the total number of single-qubit gates. The obtained
circuit diagram is shown in Figure 6.5.

Afterwards, we numerically simulate the entire sequence using both the equivalent
circuit model (shown in Fig. 6.5) as well as the underlying pulse sequence used in the
experiments. Due to the high complexity of the experimental sequence used for the log-
ical state encoding, these simulations are important to verify and optimize the sequence
performance (see section 6.7.4 for details).

Another important issue to address here is how to mitigate decoherence of the data
qubits. The encoding circuit involves > 30 two-qubit gates (including those required for
the initialization and readout of the data qubits); the typical gate time is 0.5 to 1 ms. This
makes the total sequence time much longer than the dephasing time of the individual
nuclear spins (T ∗

2 = 5− 15 ms for the carbon spins used here, see ch. 5). An effective
way to overcome this dephasing is to use multi-spin echoes, similarly to our previous
experiments, which can increase the coherence times to several seconds (see ch. 5).
The designed echo sequence should minimize the idle waiting time during which the
electron spin is in a superposition state. We found that using two echo stages provides a
general solution such that the nuclear spins can refocus at the required points (see the
online supplementary material of ref. [6] for details).

An additional challenge here is that the nuclear spins used as the data qubits are
also coupled to each other. As the total sequence time is comparable to the nuclear-
nuclear coupling strengths [45], we have to account for these effects. From the measured
coupling strengths (presented in chapter 4), we find that the most relevant coupling
strengths are those between C3, C2 and C3, C5 (8.45(2) Hz and 6.48(2) Hz respectively).
An intuitively promising approach to overcome is to use asynchronous echo sequences,
i.e. we do not echo all the spins simultaneously. For example, by applying a single echo
pulse on C3, it is also decoupled from the other 4 qubits where 2 echo pulses are ap-
plied (see Fig. 6.5 for illustration). We simulate the entire encoding scheme including
the asynchronous echo sequence and compare the performance to the case with syn-
chronous echoes (see Fig. 6.6). We find that the asynchronous sequence significantly
outperforms the synchronous one, and that its performance is close to the case where
all the nuclear-nuclear couplings are set to zero in the simulations.

6.7.4. SIMULATIONS OF THE EXPERIMENTAL SEQUENCE

Due to the high complexity of the experimental sequence used for the logical state en-
coding, it is important to simulate the entire sequence with a realistic system Hamilto-
nian to verify and optimize the performance.

In chapter 4, we have already demonstrated the characterization and atomic-scale
imaging of our quantum system and its spin environment with high accuracy. In short,
we have measured the relevant coupling parameters between the electron spins and the
closest 27 carbon-13 atoms in the vicinity. In addition, we have measured the nuclear-
nuclear coupling between these spins in the environment and resolved their 3D struc-
ture, which already gives a compact way to describe the system Hamiltonian. Therefore,
this could—in principle—enable us to simulate our system with great accuracy. How-
ever, due to the computational requirements to simulate such a large quantum system,
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Figure 6.5: Experimental implementation of the logical state encoding scheme. The circuit diagram in Fig. 6.2
is converted to our experimental gate scheme and then compiled to minimize the number of single qubit gates.
The electron spin is used as the ancilla qubit as it is directly connected to the nuclear spin qubits. The nitrogen
spin is used as the flag ancilla and 5 carbon spins are used as the data qubits. The 13C nuclear spins are first
initialized into |00000〉 using five sequential swap initialization steps (see Ch. 2 for details), and the nitrogen
spin is initialized by measurement based initialization [6]. Note that we run this scheme in a conditional form,
we only continue upon measuring the electron spin to be in ms = 0 state (corresponds to +1 eigenvalues of
the stabilizers), which directly heralds the fault tolerance preparation of the state. This way we reduce the
measurement errors on the electron spin (ancilla qubit) [28, 43]. We apply multi-spin echoes on the nuclear
spins (between the stabilizer measurements) to mitigate the nuclear-spins decoherence. The echo sequences
are applied in asynchronous form: for qubit 3 only a single echo pulse is applied, so that it is also decoupled
from the other 4 qubits (2 echo pulses). This simultaneously enhance the nuclear spin coherence time and
avoid effects of nuclear-nuclear interactions between the spins involved in the circuit (see section 6.7.4 and Fig.
6.7.4). Boxes boxes e1,e2, ...,e5 correspond to spin echo pulses on those spins, with unique lengths calibrated to
maximize the pulse fidelity. Boxes X∗

1 , .., X∗
5 are the rephasing points for the first echo stage, and at these points

single-qubit rotations can be applied (in case of a required basis transformation). Boxes W1,W2, ...,W10 and t
are unique waiting duration times derived from a set of simultaneous equations similar to those presented in
Ch. 5.



6

144 REFERENCES

we only consider here the 7 spins involved in the encoding scheme. Consequently, these
simulations do not take into account decoherence effects due to the rest of the spin en-
vironment.

Fig. 6.6 shows the obtained numerical simulations of the circuit (shown in Fig. 6.5)
by applying the underlying pulse sequences and considering the system Hamiltonian as
described above. Next, we include the nuclear-nuclear couplings in the simulations and
study the performance of the sequence under different echo schemes. Fig. 6.6 shows a
clear advantage of using the asynchronous echo sequence to mitigate nuclear-nuclear
coupling effects.

Figure 6.6: Numerical simulations of the underlying pulse sequence of the encoding circuit. Shown are the
expectation values of the multi-qubit operators used to calculate FL as described earlier. Blue bars are the
outcomes of the ideal circuit (used here for comparison). No couplings: the nuclear-nuclear couplings are set
to zero in the simulations. Couplings Async. (Couplings Sync.): simulations taking into account the nuclear-
nuclear couplings and applying the asynchronous (synchronous) echo sequences. These simulations show a
clear advantage of using the asynchronous echo sequence to overcome the nuclear-nuclear couplings effects.
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7
ENTANGLEMENT OF INTRINSICALLY

COHERENCE-PROTECTED SPIN

PAIRS

H. P. Bartling, M. H. Abobeih, B. Pingault, M. J. Degen, S. J. H. Loenen, C. E. Bradley, J. Randall,
M. Markham, D. J. Twitchen, T. H. Taminiau

Understanding and protecting the coherence of individual quantum systems is a central
challenge in quantum science and technology. This challenge is particularly salient for
solid-state spin qubits that are embedded in a noisy environment [1–9]. Here, we show that
pairs of two identical coupled spins naturally form long-lived qubits that are protected
against decoherence. We study three carbon-13 pairs in diamond [3, 10, 11] and realize
high-fidelity projective measurements (F = 98%) of their quantum states using a single NV
center in their vicinity. We reveal that the spin pairs are robust to external perturbations
because they intrinsically combine three physical phenomena: clock states, decoherence-
protected subspaces, and a variant on motional narrowing. The resulting inhomogeneous
dephasing time is T ∗

2 = 1.9(3) minutes, the longest reported for an individually controlled
qubit [12]. Finally, we develop complete control and realize an entangled state between
two spin-pair qubits through projective parity measurements. These long-lived qubits are
abundantly and naturally present in diamond and other solids, and provide new oppor-
tunities for metrology, quantum sensing [13], quantum information processing [14–16],
and quantum networks [17] .
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7.1. INTRODUCTION
Over the last decades a rich variety of methods to investigate and protect quantum co-
herence have been developed in various systems, including atomic and spin ensembles
[5–7, 18], as well as individually controlled qubits [1–4, 8, 9, 12, 14, 19]. These methods
include the precise tuning of magnetic fields to create magnetic-field insensitive clock
states [7, 12, 18, 20, 21], decoherence-protected subspaces to protect against correlated
noise [4, 8, 20–22], active dynamical decoupling to mitigate slowly varying noise [3, 5, 6,
9, 14, 19], real-time Hamiltonian estimation [23], quantum error correction [15, 16, 24],
and isotopic purification to remove the spin background in solids [6, 9].

A complementary approach is to look for naturally occurring quantum systems that
are intrinsically protected from decoherence. Here we investigate a canonical quantum
system: a pair of two identical nuclear spins that are coupled together. Such spin pairs
are naturally and abundantly present in solids like diamond, silicon, silicon-carbide,
silicon-germanium, graphene and MoS2 [3, 10, 11, 25]. Traditionally, these spin pairs
have been regarded as a primary noise source for solid-state spin qubits [26].

In this work, we show that spin pairs themselves can be fully controlled and provide
intrinsically long-lived quantum systems. First, we experimentally develop high-fidelity
measurement for multiple spin pairs. Then, we reveal and analyze the various regimes
and physical phenomena that govern the spin-pair coherence. Finally, we demonstrate
complete control over the quantum states of multiple spin pairs by realizing an entan-
gled state between two pairs.

Our experiments reveal that the intrinsic robustness to noise of spin pairs in solids is
due to a simultaneous combination of three phenomena. First, the spins in the pair are
identical and closely spaced, so that the anti-parallel spin states form a decoherence-
protected subspace. Global magnetic field fluctuations cancel, as they affect both spins
equally. Second, the interaction of the spins creates a clock state that is first-order insen-
sitive to the remaining local magnetic field fluctuations. Third, due to the resulting long
coherence time, fluctuations of the surrounding spin bath become comparatively fast,
so that they average out in a phenomenon similar to motional narrowing.

7.2. SYSTEM
The system that we investigate is illustrated in Fig 7.1. We consider three pairs of coupled
13C nuclear spins in the vicinity of an NV center in a diamond at 3.7 K. The NV center spin
can be initialized and measured optically (see section 7.7) and is used to create a con-
trollable local magnetic-field gradient for each pair. This enables us to sense and control
the spin pairs [3, 10, 11], despite their excellent isolation from all other influences.

A pair of spins is described by four basis states: |↑↑〉, |↑↓〉, |↓↑〉 and |↓↓〉. We are
mainly interested in the dynamics in the antiparallel subspace and define a pseudo-spin
spanned by |⇑〉 = |↑↓〉 and |⇓〉 = |↓↑〉 [3, 10, 11]. The pseudo-spin Hamiltonian is given by:

H = X Îx +ms Z Îz , (7.1)

in which Îz and Îx are spin–1/2 operators. X is the dipolar coupling between the 13C
spins. ms = {−1,0,+1} is the NV spin projection and Z ≈ A1

∥− A2
∥ is due to the difference

between the two NV-13C hyperfine couplings (see section 7.8).
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Figure 7.1: a. We study three 13C spin pairs (A, B and C) in a diamond. The pairs are detected and controlled
using a nearby NV center. The main source of decoherence is the surrounding bath of 13C spins (1.1% abun-
dance). The insets show the structure of the pairs. Pair A and B are nearest-neighbour pairs aligned with the
external magnetic field Bz . For pair C we show one of the three possible orientations. b. Sensing the pair
pseudo-spins [3, 10, 11]. The NV electron spin is prepared in a superposition and a periodic sequence of π
pulses is applied. If the interpulse delay is resonant with the dynamics of a pair, a loss of electron coher-
ence is observed. We set τ = m2π/ωL with m an integer and ωL the 13C Larmor frequency to avoid interac-
tions with individual 13C spins. The vertical lines mark the values for τ used in this work for the three pairs
(τA = τB = 120.330 µs and τC = 177.026 µs).
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We examine three spin pairs (Fig. 7.1a). Pair A and pair B are both nearest-neighbour
pairs oriented along the external magnetic field with dipolar couplings X A = XB = 2π ·
2080.9900(3) Hz and ZA = 2π ·130(1) Hz and ZB = 2π ·91(2) Hz (see measurements be-
low). Pair C has a larger separation between the spins resulting in XC = 2π · 188.33(2)
Hz, and Z = 2π ·2802(2) Hz. In the following, we focus on developing initialization, con-
trol and measurement for pairs A and B, for which X À Z . For pair C, we have Z À X ,
leading to different dynamics and control methods. The control of pair C is developed
in section 7.8.

7.3. FULL CONTROL OF SPIN PAIRS
Previous work has demonstrated that the pseudo-spin of pairs can be detected and char-
acterized through dynamical decoupling sequences that toggle the ms Z Îz term by peri-
odically inverting the NV electron spin (Fig. 7.1b) [3, 10, 11]. For an interpulse delay of

2τ = π/ωr , with ωr =
√

X 2 + (Z /2)2, the sequence is resonant with the pseudo-spin dy-
namics and the effective NV-pair interaction is of the form Ŝz Îz , with Ŝz the spin operator
for the NV electron spin [3, 10, 11]. The NV center thus picks up a phase that depends on
the z-projection of the pseudo-spin. We use the NV center as a sensor to detect the spin
pairs in its environment by sweeping τ (Fig. 7.1b) [3, 10, 11] and find the resonances for
pair A and B (τ= 120.330 µs) and pair C (τ= 177.026 µs).

We start by developing projective single-shot measurements. Unlike all previous
work, which was limited to manipulating mixed states of the parallel and antiparallel
subspaces [3], these measurements enable us to initialize and read out the complete
state of both pairs with high contrast.

Our method is based on repeated non-destructive measurements and illustrated in
Fig. 7.2. We let the NV interact with the pair pseudo-spin before reading it out. During
the interaction the NV electron spin accumulates a positive (negative) phase if a pair
is in |⇑〉 (|⇓〉) (Fig. 7.2c). For a pair in the parallel subspace (|↑↑〉 or |↓↓〉), the NV spin
does not accumulate any phase. We choose τ such that pairs A and B interact with the
NV spin simultaneously. Therefore, the NV spin accumulates a phase that depends on
which of the 16 possible states the two pairs are in (Fig. 7.2c). By repeatedly applying
this sequence, we realize a projective measurement that can distinguish multiple states
with high contrast in a single shot.

We construct two types of measurement by setting different interaction times and NV
readout axes (Fig 7.2a,b). The ‘spin’ measurement distinguishes the four pseudo-spin
states (|⇑⇑〉 , |⇑⇓〉 , |⇓⇑〉 , |⇓⇓〉; Fig. 7.2a,c). The ‘parity’ measurement only distinguishes
the pseudo-spin parity of the two pairs ({|⇑⇑〉 , |⇓⇓〉} vs {|⇑⇓〉 , |⇓⇑〉}; Fig. 7.2b,d). Because
the pseudo spins evolve as |⇑〉 ↔ |⇓〉 with a frequency ∼ X during the NV spin readout,
each repetition must be timed to align the measurement axes. This synchronization of
repeated non-destructive measurements to the system evolution is similar to the case of
repeated measurements on individual spins, e.g. in the context of quantum algorithms
[15, 27], atomic frequency locking and quantum Zeno dynamics [28], and weak mea-
surement sequences [29, 30].

We combine these sequences to realize high-fidelity initialization and measurement.
We first apply the parity measurement sequence (20 repetitions) to herald preparation
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Figure 7.2: Projective spin and parity measurements. a. Sequence to measure the pseudo-spin states for
pair A and B. The NV electron spin is initialized in ms = 0. The Ŝz Îz interaction sequence (τ= 120.330 µs and
Ns = 14) maps the state of the two pairs onto the NV spin (see (c)). The NV spin is subsequently read out (RO)
and reset (SP) to ms = 0. We synchronize subsequent measurements by calibrating a waiting time τs

φ
= 323.5

µs to compensate for the Îx evolution during NV readout. This ensures that the full sequence duration is a
multiple of 1/X . b. Sequence to measure the pseudo-spin parity for pair A and B (Np = 20). We set τ

p
φ
= 81

µs to synchronize subsequent measurements (sequence duration a multiple of 1/(2X )). c. XY-plane of the NV
Bloch sphere showing the possible phases accumulated in the spin measurement. The NV spin starts along x
and picks up a positive (negative) phase for a pair in |⇑〉 (|⇓〉) and no phase for a pair in a parallel state (|↑↑〉
or |↓↓〉). Reading out along the y-axis distinguishes the 4 pseudo-spin states (colored). d. XY-plane of the NV
Bloch sphere under parity readout. The initial state (y-axis) and the readout axis (y-axis) are identical so that
the parity of pair A and B is measured. e. Measurement sequence to calibrate high-fidelity single-shot readout
and initialization. The top right of each block indicates the number of repetitions. The optimal number of spin
readouts is 30. f. Conditional histograms for 30 spin readouts after initialization in |⇑〉 |⇑〉 (green) and |⇓〉 |⇓〉
(blue). The initialization conditions for the 30 preceding spin readouts are indicated in red. g. Combined
initialization and readout fidelity for |⇑〉 |⇑〉 (green) and |⇓〉 |⇓〉 (blue) for 30 spin readouts. We find an optimum
of F = 98.2(7)% for a threshold of 14 out of 30.



7

154 7. ENTANGLEMENT OF INTRINSICALLY COHERENCE-PROTECTED SPIN PAIRS

in an even parity state (Fig. 7.2e). Then, we apply a spin measurement (30 repetitions)
to herald either |⇑⇑〉 or |⇓⇓〉. Finally we read out the pseudo-spin state with another spin
measurement (30 repetitions). The resulting conditional histograms show well-isolated
distributions (Fig. 7.2f) and an optimization of the measurement threshold (Fig. 7.2g)
yields a combined initialization and readout fidelity of 98.2(7)% for distinguishing these
two states (see section 7.7).

7.4. COHERENCE OF SPIN PAIRS
We now use the developed high-contrast measurements to investigate the coherence of
pair A and B. First, we perform a free-evolution experiment with the NV spin in ms =
−1 (Fig. 7.3a), for which the NV-pair coupling is on. Because the precession frequencyp

X 2 +Z 2 is different for the two pairs (ZA 6= ZB ), this measurement reveals the presence
of the two pairs and characterizes their coupling Z to the NV. From the two frequencies
observed, we extract ZA = 2π · 130(1) Hz and ZB = 2π · 91(2) Hz (see section 7.7). We
obtain the dephasing times from a Fourier transform (Fig. 7.3a): T ∗

2 A = 0.26(2) s and
T ∗

2 B = 0.39(6) s, one to two orders of magnitude longer than for individual 13C spins in
the same environment [14].

Second, we perform the same experiment but with the NV spin in ms = 0, so that
the coupling to the NV is effectively turned off. Now both pairs precess with frequency
X A = XB = 2080.9900(3) Hz (Fig. 7.3b) and a coherent oscillation that extends well past
70 s is observed. To extract the dephasing time, we measure the oscillation amplitude
at various times (Fig. 7.3c). The resulting decay yields T ∗

2 = 1.9(3) minutes (linewidth:
2 mHz), the longest inhomogeneous dephasing time reported for any individually con-
trollable quantum system [12].

To understand the measured dephasing times we add a magnetic-field noise term
∆Z (t ) to the pseudo-spin Hamiltonian:

H = X Îx + (ms Z +∆Z (t ))Îz . (7.2)

The first mechanism that enhances the coherence is the decoherence-protected sub-
space formed by the pseudo-spin states: ∆Z (t ) is given by the fluctuations of the mag-
netic field difference between the two spins. The atomic distance between the spins en-
sures a nearly complete immunity to noise from distant sources, such as the applied
magnetic field and the control signals. The main source of noise is therefore the sur-
rounding 13C spin bath. Hence ∆Z (t ) can be approximated as a Gaussian distribution
with a correlation time τc and variance b2 = 1

4

∑
k (A1

k − A2
k )2, where A1

k (A2
k ) is the dipo-

lar coupling of bath spin k to the first (second) spin of the pair. We calculate the typical
effective noise strength b (∼ 13 Hz) by numerically simulating many spin-bath configu-
rations, and find a reduction of a factor ∼ 2 due to the decoherence-protected subspace.

We first analyze the case of the NV electron spin in ms = −1 (Fig. 7.3a). Because
X À Z À∆Z (t ), the Hamiltonian can be approximated as (see section 7.8)

H = (ω−1 + Z

ω−1
∆Z (t ))Îx , (7.3)

where ω−1 =
p

X 2 +Z 2. The NV ms = −1 state creates a field gradient that slows down
spin flip-flops in the bath (a frozen core). Therefore the noise can be treated as quasi-
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Figure 7.3: Coherence of pair A and B. a. Ramsey measurement with the NV in ms =−1. (Top left) Experimen-
tal sequence. (Top right) Fourier transform of the signal indicating two frequencies. From the data we obtain
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data point corresponds to a Ramsey measurement in ms = 0 of which the amplitude is fitted. We then fit the
amplitude decay over time, obtaining T∗

2 = 113(18) s.
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static. The resulting signal decay is Gaussian [31], as experimentally observed (Fig. 7.3a).
The dephasing time is then given by [31]

T ∗
2 = ω−1

Z

p
2

b
. (7.4)

In this case, the interaction between the spins enhances the coherence by a factor ω−1
Z ≈

20. Using the measured dephasing times T ∗
2 A = 0.26(2) s and T ∗

2 B = 0.39(6) s (Fig. 7.3a) in
equation 7.4, we extract effective noise strengths bA = 2π·13.9(2) Hz and bB = 2π·12.5(4)
Hz. These values are consistent with the inter-pair distance (see section 7.8).

Second, we analyze the case with the NV electron spin in ms = 0, for which the ms Z Îz

term is turned off. Since X À ∆Z (t ), the Hamiltonian (Eq. 7.2) can be approximated as
[32]

H = X Îx + ∆Z 2(t )

2X
Îx . (7.5)

The eigenenergies are now first-order insensitive to ∆Z (t ): the spin pair forms a clock
state, a second mechanism that suppresses the noise (X À ∆Z (t )). Note that, the clock
state in this system does not require a specific magnetic field value, due to the decoherence-
protected subspace.

The decoherence-protected subspace and clock state alone cannot yet explain the
observed ms = 0 dephasing. In particular, for quasi-static noise (τc À X /b2) the coher-
ence would be limited to ∼ 10 s. However, the increased coherence, in combination with
the lack of a frozen core for ms = 0, unlocks a regime in which the nuclear-spin bath fluc-
tuations become relatively fast (τc ¿ X /b2). A mathematically equivalent Hamiltonian
was analysed theoretically by Dobrovitski et al. [32]. The resulting time constant is

T ∗
2 = 4X 2

b4τc .
(7.6)

This dependence on the correlation time τc reveals a third mechanism, similar to mo-
tional narrowing [32], that further enhances the coherence. Inserting the parameters of
pair A and B, obtained from the ms =−1 measurement, and a typical value for τc ∼ 0.1 s
[15], inhomogeneous dephasing times of ∼ 100 s are predicted, providing an explanation
for the observed values. In conclusion, the long dephasing time observed, 4-5 orders of
magnitude beyond the value for an individual 13C spin in the same environment, is due
to a simultaneous combination of three physical phenomena: a decoherence-protected
subspace, a clock state and a mechanism similar to motional narrowing.

To further elucidate the different physical regimes that play a role, we investigate Pair
C (Fig. 7.1). Due to the larger separation, this pair has a smaller X = 2π ·188.33(2) Hz and
larger Z = 2π·2802(2) Hz. We developed initialization and single-shot readout, as well as
complete control over this pair (see section 7.8). Importantly, because Z À X the clock
state can be effectively switched on (ms = 0) and off (ms =−1).

For ms = 0, the situation is similar as for pair A and B and we find T ∗
2 = 0.6(1) s (Fig.

7.6). The reduced T ∗
2 compared to Pairs A and B is explained by the smaller coupling

X , which makes the clock state less effective. For ms = −1, the clock state is turned
off. The noise term ∆Z (t ) now affects the eigenfrequencies directly and linearly. We find
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T ∗
2 = 18(1) ms with Gaussian decay, which does not show a significant improvement over

an individual spin. We thus recover the case of an unprotected spin in a quasistatic noise
bath. This is further confirmed by the observation that the coherence can be extended
by a spin echo (T2 = 0.3(2) s) and that relaxation is frozen (T1 À 10 s, see Fig. 7.6).

7.5. ENTANGLEMENT OF TWO SPIN PAIRS
Finally, we demonstrate the potential of the spin pairs as qubits by demonstrating an
entangled state between the pseudo-spins of pairs A and B. We create entanglement
through subsequent projective measurements of the YY and ZZ pseudo-spin parity and
select outcomes 〈Y Y 〉 = +1 and 〈Z Z 〉 = −1 (Fig. 7.4a). The resulting state is 1p

2
(|⇑⇓〉+

|⇓⇑〉). This state is identical to a 4-spin entangled state 1p
2

(|↑↓↓↑〉+ |↓↑↑↓〉) that encodes

two qubits of information in long-lived pseudo-spin states.
To characterize the resulting state we first measure parity oscillations by varying the

evolution time t (Fig. 7.4a). The observed frequency is 4.20(4) kHz, which equals 2X , as
expected (Fig. 7.4b). We use this result to calibrate the time t to measure 〈Y Y 〉 and 〈Z Z 〉,
and we find 105 and 225 µs respectively. To determine the state fidelity, we additionally
need to measure 〈X X 〉. We implement the required basis rotations through dynamical
decoupling sequences with the NV spin in an eigenstate (for z-rotations) and waiting
times (for x-rotations) (Fig. 7.4a). Figure 7.4c shows the measured three pseudo-spin
parity operators, which yield an entangled state fidelity of 74(2)% (not corrected for mea-
surement infidelity). This result highlights the high-quality initialization, control and
measurements obtained over the spin pairs. Additionally, the realized non-destructive
parity measurements are a key primitive for quantum error correction [24].

7.6. CONCLUSION AND OUTLOOK
In conclusion, we have developed complete control over multiple nuclear-spin pairs.
These spin pairs provide extremely long-lived quantum states, because they are intrin-
sically robust to decoherence due to a remarkable combination of three physical phe-
nomena: decoherence-protected subspaces, clock states and motional narrowing. This
natural coherence protection makes spin pairs promising qubits for a variety of appli-
cations, including quantum sensing [13] and quantum information processing [14]. In
particular, due to the small effective coupling to the electron, they might provide robust
quantum memories for optically connected quantum networks [17, 22]. Such spin pairs
are available at practically any NV center, and are naturally found in a wide variety of
other materials. Therefore, our results reveal a new, promising, and abundantly avail-
able resource for quantum science and technology.

7.7. METHODS

7.7.1. SAMPLE AND NV CENTER
The experiments are performed on a naturally occurring NV centre at 3.7 K. The dia-
mond was homoepitaxially grown using chemical vapor deposition and cleaved along
the 〈111〉 axis (Element Six). There is a natural abundance (1.1%) of 13C. The NV centre
was selected on the absence of strongly coupled 13C spins exceeding 500 kHz hyperfine
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Figure 7.4: Entanglement of pair A and B. a. Experimental sequence. A parity readout block implements
a measurement of 〈Z Z 〉 in the pseudo-spin basis (Fig. 7.2d). We can thus initialize the entangled state

1p
2
|⇑⇓〉 + |⇓⇑〉 by measuring 〈Y Y 〉 and 〈Z Z 〉 consecutively. We select on > 14/20 and < 1/4 counts in the

initialization steps. We measure the nonzero correlators by doing pseudo-spin rotations (dashed boxes) be-
fore a 〈Z Z 〉 parity measurement. b. Parity oscillations show a frequency of 4.20(4) kHz (∼ 2X ). For 〈X X 〉 no
oscillation is observed as the pseudo-spin eigenstates are along x. c. Measurement of the three nonzero cor-
relators of the entangled state. The entangled state fidelity is F = (1−〈Z Z 〉+ 〈Y Y 〉+ 〈X X 〉)/4 = 74(2)%. The
results have not been readout corrected.

coupling, but without any other criteria on the spin environment or spin pairs.
The NV electron spin has a dephasing time of T ∗

2 = 4.9(2) µs and a spin echo time of
T2 = 1.182(5) ms. The electron relaxation (T1 > 1 h) at this temperatures is negligible [3].
We measure the NV spin state in a single shot using spin-selective optical readout. The
readout fidelities are 0.905(2) (0.986(2)) for the ms = 0 (ms = −1) state with an average
fidelity of F = 94.6%.

7.7.2. INITIALIZATION AND SINGLE-SHOT READOUT FIDELITY

In general, there is an optimum in the number of readouts and the corresponding thresh-
olds used. Independent of the type of pair (A and B or C) and the type of sequence (spin
or parity), the approach we take to optimize the readout is the same. First, we initialize
the two states that we want to optimally distinguish. We will call those states |a〉 and |b〉
for now. Even if the initialization is a two-step process (Fig. 7.2e), the last step is used to
either initialize in |a〉 or |b〉. For the last initialization step we generally use k repetitions
and we denote the number of counts recorded in those repetitions as N (k). The initial-
ization is then defined by N (k) > Na and N (k) < Nb where Na and Nb are the thresholds
we set for the initialization.
In the readout step, we use m repetitions and obtain N (m) counts. Two histograms are
obtained in the readout step (Fig. 7.2e), one corresponding to each initialized state. The
histogram at high counts (green in Fig. 7.2f) corresponds to |a〉 and the histogram at low
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counts (blue in Fig. 7.2f) corresponds to |b〉. To optimally distinguish these states, we
sweep a threshold T and obtain the total fidelity as

F = F|a〉+F|b〉
2

= 1

2
P (N (m) ≥ T |N (k) > Na)

+ 1

2
P (N (m) < T |N (k) < Nb)

(7.7)

In Fig. 7.2g the fidelities of the individual states F|a〉 and F|b〉 are plotted for a varying
threshold T . This is done for a varying number of readouts m to find the optimal num-
ber of readouts and corresponding threshold.
It is important to note that the obtained fidelities are combined initialization and read-
out fidelities, because we do not correct for any infidelity in the initialization. To min-
imise the infidelity due to initialization we use strict thresholds Na and Nb , but it cannot
be guaranteed that the intialisation infidelity is negligible.

7.7.3. DATA ANALYSIS
The Ramsey data in Fig. 7.3a is fitted to

exp
(−(t/T )n)

[cos
(
2π f A t +φA

)+cos
(
2π fB t +φB

)
] (7.8)

We obtain T = 0.53(4) s, n = 2.1(4), f A = 9.07(6) Hz and fB = 7.0(1) Hz. We used an
artificial detuning of 10 Hz with respect to 2086 Hz. Using f =p

(X 2 + Z 2) and X = 2π ·
2080.9900(3) Hz, the values for f A and fB can be used to obtain ZA = 2π ·130(1) Hz and
ZB = 2π·91(2) Hz. To extract the dephasing times we fit the Fourier transform in Fig. 7.3a
to

a + A exp
(−( f + f A)2/2σ2

A

)
(7.9)

+B exp
(−( f + fB )2/2σ2

B

)
(7.10)

We find σA = 0.88(6) Hz and σB = 0.57(9) Hz which gives T ∗
2 A = 0.26(2) s and T ∗

2 B =
0.39(6) s.
The Ramsey data in Fig. 7.3b is fitted to

exp
(−(t/T )n)

cos
(
2π f t +φ)

(7.11)

We obtain T = 98(44) s, n = 0.5(4) and f = 0.2400(3) Hz. We used an artificial detuning
of 0.25 Hz with respect to 2081 Hz. Therefore we obtain X = 2π ·2080.9900(3) Hz. The
Fourier transform is fitted to

a + A exp
(−( f + f0)2/2σ2

0

)
(7.12)

We obtain f0 = 0.2402(3) Hz and σ0 = 0.0074(3) Hz.
The data in Fig. 7.3c is fitted to exp(−(t/T )n) obtaining T = 113(18) s and n = 0.23(2).
The data in Fig. 7.4b is fitted to a + A cos

(
2π f +φ)

. We obtain f = 4.20(4) kHz.



7

160 7. ENTANGLEMENT OF INTRINSICALLY COHERENCE-PROTECTED SPIN PAIRS

7.8. SUPPLEMENTARY INFORMATION

7.8.1. PSEUDO-SPIN HAMILTONIAN

The Hamiltonian for two 13C spin- 1
2 particles in the vicinity of an NV center can be writ-

ten as:
H =ωL I 1

z +ωL I 2
z +ms A1 · I1 +ms A2 · I2 +HD . (7.13)

where ωL = γc B is the 13C spin Larmor frequency, I are the spin- 1
2 operators, ms =

{−1,0,+1} are the NV electron spin states and A is the NV-carbon hyperfine interaction
vector. HD is the dipolar interaction between two 13C spins:

HD = µ0γcγc

4π|r12|3
[I1 · I2 − 3

|r12|2
(I1 · r12)(I2 · r12)], (7.14)

where µ0 is the vacuum permeability, γc is the 13C gyromagnetic ratio, r12 is the vector
between the two 13C atoms and θ12 the angle between the magnetic field axis and the
pair axis. For a large magnetic field (γc B À µ0γcγc

4π|r12|3 ) this can be approximated as:

HD = X (3I 1
z I 2

z − I1 · I2) (7.15)

X = µ0γcγc

8π|r12|3
(1−3cos2θ12). (7.16)

SinceωL = γc B is large compared to the dipolar (X ) and hyperfine couplings (A1, A2)
the antiparallel states |↑↓〉 and |↓↑〉 form an isolated subspace in which we define a pseudo-
spin 1

2 as |⇑〉 = |↑↓〉 and |⇓〉 = |↓↑〉 [3, 10, 11, 26]. The Hamiltonian in this subspace is given
by [10, 26]

H = X Îx +ms Z Îz . (7.17)

Z originates from the difference of the hyperfine couplings of the two spins to the NV
electron spin, and is given by [26]

Z = Z∥+Z⊥ = A1
∥− A2

∥+
(A1

⊥)2 − (A2
⊥)2

γc B
, (7.18)

where A∥ and A⊥ are the parallel and perpendicular hyperfine couplings between the
NV and the spins of the pair. B is the magnetic field along the NV-axis.

7.8.2. PAIR C CONTROL
Pair C has a dipolar coupling of X = 2π · 188.33(2) Hz and a hyperfine gradient of Z =
2π ·2802(2) Hz. Therefore we have Z À X , in contrast to the nearest neigbour pairs de-
scribed in the main text for which X À Z . This has two important implications. First, for
ms =−1, Z is now the dominant term in the pair frequency ω1 =

p
X 2 +Z 2 and thus sets

the location of the resonance in Fig. 7.1b. Second, the effective NV-pair interaction dur-
ing a resonant dynamical decoupling sequence becomes SNV

z Ix , a conditional rotation
of the pair pseudo-spin around the x-axis [3].

As in the main text, we implement two different sequences to projectively measure
pair C, see Fig. 7.5. The spin readout sequence (Fig. 7.5a) allows one to distinguish the
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pseudo-spin states 1p
2

(|⇑〉± |⇓〉). The parity readout sequence can distinguish between

the parallel and antiparallel subspace of the pair. The measurements can be used to
intialize and readout the spin pair. We obtain high fidelity inialization and readout by
repeteadly applying these sequences.

For spin pairs with Z À X , the timing of repeated sequences is complicated by the
fact that the evolution frequencies and the eigenstates differ significantly between ms =
0 and ms = −1. Here, we mitigate this by minimizing the NV readout time (RO, ∼ 5 µs)
and applying a fast reset of the NV spin (SP, ∼ 100 µs), so that the time spent in ms =−1
is minimized. Additionally, the pair is projected into an eigenstate of ms = 0 evolution,
and therefore there is no timing requirement after the SP, and we simply concatenate
subsequent measurements.

For pairs A and B (X À Z ), dynamical decoupling sequences are required to realize
universal single-qubit control for the pseudo spins (Fig. 7.4). For pair C (Z À X ) single-
qubit operations can be obtained by letting the system evolve freely. Evolution with the
NV electron spin in ms = 0 implements a rotation around the x-axis, and evolution un-
der ms = −1 realizes a rotation around the z-axis. Note that the rotation in ms = −1 is
not exactly around the z-axis (i.e., around a slightly tilted axis) because Z is finite. In
principle, this can be taken into account and optimized for but this is not done here.

=
τ τ2τ

π π Np/2

parity

SzIx

NV readoutNV-pair interaction

=
τ τ2τ

πx– 
1
2π π Ns/2

RO SP
spin

XIx
SzIx

NV readoutNV-pair interaction
a b

RO SP
πy– 

1
2 πx– 

1
2πx– 

1
2

XIx+msZIz XIxXIx+msZIz

x

y RO axis

x

y RO axis

c d

+ -

+

-

Figure 7.5: Sequences for Pair C measurements. a. Sequence to readout the spin state of pair C. The NV
readout block (RO) reads out the NV state and the spin pump (SP) re-initializes the NV in ms = 0. During the
NV readout and spin pump, the NV can spend an unknown time in ms = −1 which causes dephasing of the
pair spin. To minimize this effect, we use a fast readout and spin pump. Note that this is not necessary for the
parity readout. Ns = 8. b. Sequence to measure the parity of the two spins that make up pair C. Np = 14. c. XY-
plane of the NV Bloch sphere during the NV-pair interaction in a. The NV picks up a positive or negative phase
depending on the spin state of the pair and no phase when the pair is in the parallel subspace. d. XY-plane of
the NV Bloch sphere during the NV-pair interaction in b.
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7.8.3. COHERENCE AND RELAXATION OF PAIR C
For pair C the clock state can be turned on (ms = 0) and off (ms = −1) by changing the
NV spin state. We measured the pseudo-spin dephasing time T ∗

2 , the spin echo time
T2 and the relaxation time T1 for both electron spin states, see Fig. 7.6. Using 10 parity
initializations and selecting on > 7/10 counts we first initialize the pair in the antiparallel
subspace. Then 7 spin readouts are used to initialize 1p

2
(|⇑〉+|⇓〉) (> 4/7) or 1p

2
(|⇑〉−|⇓〉)

(< 3/7). In Fig. 7.6 blue data corresponds to initialization in 1p
2

(|⇑〉+ |⇓〉) and green data

corresponds to initialization in 1p
2

(|⇑〉 − |⇓〉). The evolution sequence depends on the

measurement performed and is inset in Fig. 7.6b-g. We use 6 spin-readout repetitions
to readout the final spin state (calibrated to maximize the fidelity). The coherence and
relaxation results are summarised in Table 7.1.

ms =−1 ms = 0
T ∗

2 (s) 0.018(1) 0.6(1)
T2 (s) 0.3(2) 0.7(1)
T1 (s) > 10 3.6(7) / 0.9(2)

Table 7.1: Pair C coherence and relaxation. Summary of the coherence and relaxation measurements for pair
C. The corresponding data is shown in Fig. 7.6. The two numbers for T1 in ms = 0 correspond to the blue and
green fit in Fig. 7.6g respectively.

7.8.4. SPECTROSCOPY AND CONTROL OF THE COMPLETE HILBERT SPACE
Most of the work presented is focused on initializing, controlling and measuring the
states in the antiparallel subspace of spin pairs, i.e. |↑↓〉 and |↓↑〉. Here we demonstrate
that the entire Hilbert space of the spin pairs can be controlled by additionally driving
the single-spin-flip transitions.

We focus on pair C. The parity sequence distinguishes between the parallel and an-
tiparallel subspaces (Fig. 7.5). To reveal the transitions between the subspaces, we ini-
tialize the pair in the antiparallel subspace, apply a radio frequency (RF) pulse with vari-
able frequency with the NV electron spin in ms = −1, and finally readout the subspace
state using a parity measurement (Fig. 7.7b). If the frequency of the RF pulse is reso-
nant with a single-spin transition of the pair, the spin pair changes its subspace, which
is reflected in the final NV electron spin state.

The result is shown in Fig. 7.7c. We observe four transitions corresponding to the four
possibilities to flip from an antiparallel state to a parallel state: |↑↓〉 → |↓↓〉, |↓↑〉 → |↑↑〉,
|↑↓〉 → |↑↑〉 and |↓↑〉 → |↓↓〉. The corresponding transition frequencies are ω1 ± X and
ω2 ±X (Fig. 7.7a).

From the result in Fig. 7.7c we extract ω1 = 429.314(5) kHz and ω2 = 432.122(7) kHz.
Since the frequency of a single spin in ms =−1 is ω−1 ≈ωL − A∥, we obtain A1

∥ = 2826(5)

Hz and A2
∥ = 18(7) Hz. Note that these values assume that A⊥ is of similar magnitude,

so that it can be neglected. The frequencies observed are close to the characteristic 13C
Larmor frequency (ωL = 432.140 kHz), further corroborating our assignment of 13C-13C
pairs as the source of the signals. These results also reveal that it is possible to selectively
initialize, control and measure individual carbon spins that have a negligible coupling to
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Figure 7.6: Coherence and relaxation of pair C. a. Sequence used to initialize the pair C spin state. First, 10
parity readouts (> 7/10) initialize the pair in the antiparallel subspace. Then 7 spin readouts initialize the pair
in 1p

2
(|⇑〉+ |⇓〉) (> 4/7, blue data) and 1p

2
(|⇑〉− |⇓〉) (< 3/7, green data). The evolution sequence is given as

insets in the corresponding measurements. Finally 6 spin readouts are used to readout the spin state. Figure

b,c are fitted to a + A exp−(t/T )n
cos

(
2π f t +φ)

and figure d,e,g to a + A exp−(t/T )n
. b. Ramsey measurement

in ms = −1. T∗
2 = 0.018(1) s, n = 1.4(2) and f = 2808(1) Hz. An articial detuning was applied. c. Ramsey

measurement in ms = 0. T∗
2 = 0.6(1) s, n = 0.7(1) and f = 188.33(2) Hz. An articial detuning was applied.

d. Spin echo measurement in ms = −1. T2 = 0.3(2) s and n = 0.6(2). e. Spin echo measurement in ms = 0.
T2 = 0.7(1) s and n = 1.3(3). f. Relaxation measurement in ms = −1. g. Relaxation measurement in ms = 0.
T1 = 3.6(7) s and n = 0.8(2) for the blue data ( 1p

2
(|↑↓〉− |↓↑〉)). T1 = 0.9(2) s and n = 1.0(2) for the green data

( 1p
2

(|↑↓〉+ |↓↑〉)).
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the NV by using the coupling to neighbouring spins. In this case, spin 2 has a negligible
coupling to the NV (18(7) Hz), so that it overlaps in precession frequency with the entire
background spin bath. Nevertheless, it can be accessed selectively by using the NV to
detect the pseudo-spin dynamics (i.e. flip-flops) with spin 1.

ω1+ X

ω2- X

ω2+X

ω1- X

parity

π π

 

parity

2

Prepare Sequence Measure

1

RF

ωL
ω1+ Xω1- X ω2- X ω2+X
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c

Figure 7.7: Spectroscopy and control of the complete pair Hilbert space. a. Level diagram for pair C with the
electron spin in ms =−1. ω1 (ω2) is the frequency of the first (second) spin of the pair in ms =−1. b. Sequence
used to access the parallel subspace. First, the pair is initialized in the antiparallel subspace, then an RF pulse
with the NV in ms = −1 is applied to flip one of the spins, and finally the subspace population is measured.
c. Result of the measurement described in b. Four transitions are observed corresponding to the marked
transitions in a. The green dashed line corresponds to ωL = 432.140 kHz. We fit the data to four Lorentzians
and extract ω1 = 429.314(5) kHz, ω2 = 432.122(7) kHz. For the left (right) dip we also obtain X = 2π · 184(3)
(2π ·194(4)) Hz.
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8
CONCLUSIONS AND OUTLOOK

In this thesis, we focused on three main research themes. First, we developed novel meth-
ods for quantum sensing and atomic-scale imaging of the nuclear-spin environment cou-
pled to the NV center electron spin. This spin environment provides a model system for
imaging of single molecules or structures outside the diamond, but also a promising quan-
tum register. Second, we designed and implemented novel methods for high-fidelity con-
trol of this spin-environment. Third, we utilized this precise understanding and control
for applications in quantum information processing such as the generation of entangled
states and quantum error correction. In this chapter, we will give an overview of the fu-
ture research avenues which are within immediate reach as a result of the work described
in this thesis. Afterwards, we will address the bigger picture, i.e., how to move towards
atomic-scale imaging of individual structures or molecules outside the diamond, and
how to move towards implementing large-scale quantum computations with spins in di-
amond.
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8.1. SUMMARY OF THE RESULTS
In this thesis, we developed novel methods to control complex nuclear-spin systems
coupled to the electron spin of an NV center in diamond, and used this for quantum
sensing and quantum information processing applications. These well-controlled large
spin systems may also form the building blocks of a large-scale quantum network. Here
we give a summary of the results presented in the thesis organized by chapter.

• In chapter 3, we demonstrated a record-long coherence time of the NV center elec-
tron spin (1.5 seconds)—the longest coherence time for single electron spins in the
solid state—by precise understanding of (and decoupling from) the interactions
with individual 13C nuclear spins and 13C-13C nuclear spin pairs in the environ-
ment.

• In chapter 4, we used the NV center as a single-spin quantum sensor to demon-
strate atomic-scale magnetic resonance imaging of a cluster of 27 13C nuclear spins
in diamond. This experiment provides a proof-of-principle towards the magnetic
imaging of single molecules or complex spin structures, an outstanding goals in
the field of quantum sensing.

• In chapter 5, we developed the NV center and its surrounding 13C nuclear spin
environment as a promising quantum register with exceptional coherence prop-
erties. We demonstrated a fully connected 10-qubit register with high-fidelity con-
trol, coherence times up to one minute, and genuine multipartite entanglement of
up to 7 qubits.

• In chapter 6, we utilized multiple non-destructive parity measurements to demon-
strate fault-tolerant encoding of a complete logical qubit. We showed that fault-
tolerant encoding significantly outperforms non-fault-tolerant schemes. After-
wards, we demonstrated fault-tolerant manipulations of the logical qubits by ap-
plying a set of transversal (fault-tolerant) gates.

• In chapter 7, we introduced 13C-13C nuclear-spin pairs as novel qubits with ex-
traordinary coherence properties. We demonstrated high-fidelity control, single-
shot readout, and entanglement of these pairs. Furthermore, we demonstrated a
record-long inhomogeneous dephasing time (T ∗

2 = 1.9(3) minutes)—the longest
reported for any individually controllable quantum system.
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8.2. NEAR-TERM AVENUES AND PROJECTS

8.2.1. IMPROVED CONTROL OF THE NUCLEAR-SPIN QUBITS

To push the capabilities of this quantum system forward, enabling more complex pro-
tocols, it is important to overcome the dominant limitations for local operations in the
quantum register. In particular, this performance is currently most limited by two-qubit
gate fidelities, cross-talk between different qubits, and the slow logical gate blocks.

In chapter 4, we have already demonstrated the characterization and atomic-scale
imaging of our quantum system and its spin environment with high accuracy, which
already gives a compact way to describe the full system Hamiltonian. Therefore, this
could—in principle—enable simulating this system with high accuracy. Such accurate
simulations of the system could be used to develop optimal gate designs that take into
account the rest of spin environment and mitigate their effects [1]. Furthermore, when
making larger sequences that involve multiple gate operations (and echoes) on many
qubits, cross-talk between the spins has a significant effect. One could use such simula-
tions to find the optimal parameters to improve the performance of the whole sequence
and to minimize these cross talks. For example, by designing echo sequences that mini-
mize the effects of nuclear-nuclear couplings (see chapter 6).

Additionally, we have seen in chapter 5 that some of the two-qubit gates are mainly
limited by a relatively short dephasing time (T ∗

2 ) of the nuclear spins. This can be signif-
icantly enhanced by polarizing the other nuclear-spin with which they strongly couple.
This can be done by the ‘MBI’ or ‘swap’ methods presented earlier or by using other
techniques such as dynamic nuclear polarization [2]. Another approach would be to in-
troduce novel two-qubit gate designs that protect both the electron and nuclear spins
from decoherence using echoes (i.e., limited by T2 for both electron and nuclear spins
rather than T ∗

2 ).

Another key challenge is that the time of the logical gate cycles are relatively long.
This long time is mainly limited by the slow single- and two-qubit gate operations on
the nuclear spins. Significant improvements are expected by using by using higher RF
powers. However, this will require efficient ways to filter out the background noise from
the RF amplifiers which is currently a significant limitation [3]. Additionally, a better
method to deliver the RF signals to the sample without direct heating of the sample is
required; for example, using an off-chip RF coil may be advantageous [4].

Another promising avenue is to develop gate schemes that can address multiple spins
in parallel. For example, multi-tone RF pulses can be used to perform single-qubit ro-
tations on multiple nuclear spins simultaneously. Additionally, the DDRF gate design
presented in chapter 5 combined with multi-tone RF pulses might be adapted to per-
form parallel two-qubit gates, greatly speeding up operations.

8.2.2. MULTIPLE ROUNDS OF QUANTUM ERROR CORRECTION

Overcoming the limitations discussed in the previous section, a better encoding of the
fault-tolerant logical qubits presented in chapter 6 can be realized. Additionally, the
quality of the stabilizer measurements used for error syndrome extraction will be im-
proved. Therefore, we expect to be able to run a full error-correction cycle on an en-
coded logical qubit, including active feedback [5], which can then be further extended
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by applying multiple rounds of error correction (see Fig. 8.1).

Figure 8.1: Towards active fault-tolerant quantum error correction of a continuously encoded logical qubit. Af-
ter fault-tolerant encoding of a logical qubit, fault-tolerant operations or computations can be applied (com-
pute). A full round of fault-tolerant error-syndrome measurements can then be applied to detect errors, which
can be corrected through a real-time feedback process (via a classical control layer). Multiple rounds of com-
puting, error detection, and error correction can be applied on the logically-encoded qubit.

Furthermore, the proposed improvements in control methods might lead to high-
fidelity control of more qubits. This may enable exploring other error correction codes,
such as Steane’s [[7,1,3]] code with a flag [6], or the smallest fault-tolerant surface code
[[9,1,3]] [7].

8.2.3. ATOMIC-SCALE IMAGING BEYOND 27 SPINS
The work presented in chapter 4 has enabled the atomic-scale imaging of a 27-nuclear-
spin cluster in the vicinity of an NV center. Imaging more spins surrounding the NV
center (i.e., inside the diamond) will enable yet more precise description of the system
Hamiltonian and can also provide a resource for other applications such as quantum
simulations (see section 8.2.4). Moreover, imaging larger and more complex structures
will necessitate the development of more generalized control techniques as required for
imaging samples outside the diamond.

In our previous work (chapter 4), the spectral range close to the 13C Larmor fre-
quencies was not studied extensively. We believe that the number of spins that can
be detected and imaged can be significantly extended by careful systematic studies of
this spectral range but also introducing completely new methods that enable to image
more complex and larger systems. For example, by using dynamic nuclear polarization
techniques, such as the PulsePol sequence [2, 8], more spins with weaker couplings to
the NV electron spin could be initialized. Additionally, it might be possible to use well-
controlled nuclear spins to polarize or readout other spins in their vicinity that are more
difficult to directly control via the NV center.

Optimized sampling of the measurements and adaptive algorithms based on real-
time structure analysis can further reduce the total number of required measurements
[9, 10]. Additionally, we have recently introduced deep learning methods to efficiently
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analyze dynamical decoupling spectroscopy signals [11] and extract the hyperfine cou-
pling parameters with high accuracy. These methods can be further explored to analyze
the multi-dimensional spectroscopy data used for the imaging task [10, 12], which could
lead to efficient analysis of even larger systems.

8.2.4. QUANTUM SIMULATIONS USING SPINS IN DIAMOND

Analog quantum simulators are special purpose quantum devices used to study cer-
tain physical phenomena or dynamics of particular system Hamiltonians. These devices
would have the potential to unravel many important problems in physics, such as elec-
tron transport in magnetic materials, high-temperature superconductivity and out-of-
equilibrium phases of matter [13]. These simulators have been demonstrated in several
experimental platforms such as trapped atoms [14, 15] and ions [16], an ensemble of
nitrogen-vacancy centers [17], superconducting qubits [18], and quantum dots [19, 20].

Our 27-nuclear-spin 13C cluster provides a promising new platform for such quan-
tum simulators [8]. The dipolar couplings between the 13C nuclear spins naturally realise
an interacting spin model. By using the hyperfine shift from the NV electron spin to sep-
arate the nuclear spin precession frequencies, flip-flops are strongly suppressed and the
Hamiltonian becomes that of the Ising model [8]. It might be possible to use additional
selective RF pulses to engineer different Hamiltonians, providing opportunities to study,
for example, the ‘driven Ising model’: a periodic Floquet system that exhibits novel phys-
ical phenomena such as many body localisation and discrete time crystals [21, 22].

8.3. ATOMIC-SCALE IMAGING OF SAMPLES OUTSIDE DIAMOND
As discussed in chapter 4, magnetic resonance imaging (MRI) of individual molecules or
complex spin structures is one of the exciting prospects in the field of quantum sensing
[23–26]. Potential future applications include determination of protein structures and
other biological samples [27, 28] but also imaging of solid-state systems such as two-
dimensional materials [29, 30], accurate characterization of quantum information pro-
cessing and quantum simulation systems [31–34]. While our work has demonstrated this
capability on a model system of 27-nuclear-spin cluster in the vicinity of an NV center
quantum sensor, the aim now is to extend this capability to samples outside the dia-
mond.

There are a few challenges to address before such an ambitious goal can be achieved.
First, to image samples outside the diamond, near-surface NV centers are needed. How-
ever, the properties of the NV centers degrades as they get closer to the surface [35]. This
degradation shows up in both the coherence properties (due to paramagnetic surface
spins) [35–37] and decreased fluorescence contrast (due to charge state dynamics of the
NV center) [38]. These two factors limit the sensitivity of near-surface NV centers as
quantum sensors [24, 28]. Recently, there has been a remarkable progress towards im-
proving these coherence properties by using careful etching techniques [28] or by driv-
ing the paramagnetic surface environment [36, 37]; however surface engineering might
remain important for nano- and atomic-scale sensing applications [38].

The second challenge is how to isolate the samples under study, which is more de-
manding in the case of single molecules or proteins. Promising techniques include em-
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bedding the molecules or the proteins in a spin-free matrix layer [33, 39] or to use immo-
bilization techniques [33, 40]. It is noteworthy that the obtained spectral resolution will
be generally limited by the coherence (i.e., linewidth) of the spins in the studied sample.
In most cases this is mainly due to coupling to other spins in the environment [34, 41],
which can be overcome by using homo- or hetero-nuclear decoupling techniques tech-
niques that decouple the target spins from their environment [34, 41, 42].

The third challenge is to develop spectroscopy and imaging methods that efficiently
retrieve the desired structure. What methods are best or most promising is a non-trivial
discussion, because the methods might be heavily sample dependent. Promising exper-
imental approaches are weak-measurement techniques [43, 44], two-dimensional spec-
troscopy methods [9, 10, 45, 46], double echo techniques [34, 47, 48], methods based
on dynamic nuclear polarization [2, 43], methods that use reporter spins [49], or com-
binations thereof. Additionally, new data analysis methods are required to speed up the
experimental acquisition and computational analysis, and to optimally extract the de-
sired information. Here, progress has already been made in the form of machine learn-
ing based techniques [10–12], sparse sampling of multidimensional spectra [9, 50], and
Bayesian inference methods [51]. Further exploration of such methods might lead to a
more efficient analysis.

8.4. QUANTUM NETWORKS FOR DISTRIBUTED QUANTUM COM-
PUTING

Building large-scale quantum computers will ultimately require methods to increase the
number of qubits to millions while being able to connect or entangle them. While inte-
grating such a large number of qubits on one device or setup is a significant challenge
for all existing experimental platforms, a promising path towards scaling is to take a
modular approach. The key idea is to make modules comprising a smaller number of
qubits which can be connected through a so-called quantum network to build a larger
system [52? –56]. This approach is inherently scalable to large sizes by connecting many
copies of independent modules, thus avoiding the challenges of a single large structure
of ever increasing complexity. Recent theoretical proposal have shown that universal
fault-tolerant quantum computations are possible over such a network [54, 55].

The key requirements for building such a quantum network are availability of the
basic building module (a quantum register or a quantum node) with high fidelity local
operations, well-isolated quantum memories that can be used to store quantum infor-
mation while creating remote links, and an efficient interface with flying qubits (such
as photons or phonons) to connect and entangle remote nodes. Some of these key ele-
ments have been demonstrated in a variety of platforms (trapped ions and atoms [57–
61], quantum dots [62–64], superconducting qubits [65], optomechanical systems [66],
and spins in diamond [3, 67–72].

The NV center in diamond is currently among the most advanced platforms to build
such a networks [72, 73]. Deterministic entanglement delivery between distant network
nodes has been demonstrated [67]. Moreover, control over nuclear-spins in the vicinity
provides good quantum registers with high fidelity control [3, 71] as well as opportunity
for well isolated memories [70]. This has led to the demonstration of some key network
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Figure 8.2: Towards distributed quantum computing with diamond quantum networks. Constructing quan-
tum networks with optically active defect centers (such as the NV center in diamond) is a promising approach
for large-scale distributed quantum computing. Such a network would consist of multiple nodes that each
contain several qubits to store and process quantum states, and that are connected together through optical
entanglement links based on photons. Figure credit: C. E. Bradley.

protocols such as quantum teleportation [74] and entanglement distillation [75].

Despite this remarkable progress, there are still some important challenges to over-
come before a large scale quantum network can be created. First, the optical entangle-
ment success rate is slow and mainly limited by the small fraction of emitted photons
in the NV zero-phonon line [72]. This zero-phonon line emission can—in principle—be
enhanced by coupling the NV center to an optical cavity [76–78]. Second, this entangle-
ment generation process is probabilistic, which means that it has to be repeated several
times until a successful entanglement between the remote nodes is created. However,
during entanglement generation process, present nuclear-spin quantum network mem-
ories decohere at a faster rate than that at which entanglement is created. So, we have
to find better methods to protect these memories during the entanglement generation
process. In the next sections, we will discuss potential solutions.

8.4.1. ROBUST QUANTUM MEMORIES FOR ENTANGLEMENT GENERATION

A key open challenge is to develop quantum memories that can reliably store quantum
states during the creation of an entanglement link to other parts in the network. As the
entanglement generation process is probabilistic, the process has to be repeated several
times until a link is created. Therefore, these quantum memories require long coher-
ence times and excellent isolation from the rest of the system during these attempts. 13C
nuclear spins are good candidates for these memories as they have very long coherence
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times (chapter 5). However, due to the stochastic dynamics of the electron spin during
the optical entanglement attempts and the hyperfine coupling—which depends on the
electron spin state—the 13C nuclear spins suffer from dephasing which often limits the
useful number of entanglement attempts [70, 79].

A promising approach to overcome this challenge is to encode the quantum infor-
mation in a decoherence-protected subspace of two or more nuclear spins to reduce the
effective coupling strengths [70]. Our detailed characterization (chapter 4 can help find
such nuclear-spin candidates that would be suitable for this task. Additionally, strongly
coupled 13C-13C pairs studied and controlled throughout this thesis (chapters 3, 7) can
serve as natural candidates for this task. For example, pairs A and B studied in chapter
7 could be excellent candidates for this as their evolution frequencies have a very small
dependence on the electron spin state (< 2 Hz), and therefore they are expected to be
very robust for entanglement generation attempts.

Another approach to achieve efficient quantum memories for entanglement is to use
isotopically purified samples (i.e., 13C concentration much less than the 1.1% natural
abundance). For such samples, the coupling strengths between the NV electron spin
and the controllable 13C spins can be very small (< 100 Hz). These weakly coupled 13C
spins would therefore be more robust for entanglement generation attempts.

8.4.2. OPTICAL CAVITIES AND OTHER DEFECT CENTERS

As discussed earlier, one of the main challenges for building large-scale quantum net-
works using the NV center is that the optical entanglement rate is limited by the small
fraction of coherent photons emitted (and collected) in the zero-phonon line [72]. This
coherent photon emission can, in principle, be enhanced by coupling the NV center to
an optical cavity, making use of the Purcell effect [78]. However, the challenge is that the
NV center is not very well suited for integration with nanophotonic cavities because of
the first order sensitivity of its optical properties to local charge fluctuations, resulting
from its structural symmetry; this leads to high spectral diffusion of NV centers close
to surfaces [80]. An alternative promising approach relies on coupling the NV centers
embedded in microns-thin membranes to fiber-based free space cavities [76–78].

Alternatively, other defect centers that have more favourable optical properties and
that are more compatible for integration with nanophotonic structures could be used
[81, 82]. Promising candidates include negative and neutral charge state group IV color
centers in diamond such as silicon-vacancy (SiV) centers in diamond [83–86], tin-vacancy
centers in diamond [87], and Germanium-vacancy centers in diamond [88]; or defect
centers in other materials such as silicon carbide [89]. The main challenge for these sys-
tems though is to combine the good optical properties with good spin properties, and to
enable access to high-fidelity controllable quantum registers and memories. The recent
progress, however, suggests that this might be possible [81, 82].

Importantly, the control methods developed in this thesis can likely be extended to
these new defect centers. For example, one could use the atomic-scale imaging exper-
iments to develop a good understanding of the nuclear-spin environment in these sys-
tems which may enable a well-controlled quantum register. Strongly coupled nuclear-
spin pairs are also expected to surround such defects and those could be used as excel-
lent memories during entanglement generation attempts.
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