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Abstract
Search and rescue (SaR) is challenging, due to the unknown environmental situation after disasters occur. Robotics has become
indispensable for precise mapping of the environment and for locating the victims. Combining flying and ground robots more
effectively serves this purpose, due to their complementary features in terms of viewpoint and maneuvering. To this end, a
novel, cost-effective framework for mapping unknown environments is introduced that leverages You Only Look Once and
video streams transmitted by a ground and a flying robot. The integrated mapping approach is for performing three crucial
SaR tasks: localizing the victims, i.e., determining their position in the environment and their body pose, tracking the moving
victims, and providing a map of the ground elevation that assists both the ground robot and the SaR crew in navigating the
SaR environment. In real-life experiments at the CyberZoo of the Delft University of Technology, the framework proved very
effective and precise for all these tasks, particularly in occluded and complex environments.

Keywords Search and rescue robotics · Computer vision · Object detection · Pose estimation · Homography estimation ·
State estimation · Terrain mapping

1 Introduction

In recent decades, the number and severity of natural disas-
ters have risen dramatically. Between 1991 and 2005, nearly
90% of disaster-related deaths and 98% of people affected
by disasters belonged to low-income countries [1]. The sur-
vival rate of trapped victims drops from 91% in the first
30min to 36.7% by the end of the second day [2]. Therefore,
it is vital to make search-and-rescue (SaR) operations both
affordable and time-efficient. SaR has become increasingly
augmented with robotics in the last 20 years [3]. Besides
traversing hazardous environments via their sensors, robots
scan their surroundings rapidly and autonomously. In this
paper, we introduce a novel, cost-effective framework for
mapping unknown environments via SaR robots that effec-
tively and efficiently combines the strengths of ground and
flying robots when teaming up for SaR missions (Fig. 1).
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1.1 Motivations

Table 1 shows a qualitative cost comparison for conven-
tional sensors used in SaR robotics. More expensive sensing
approaches, e.g., thermal imaging, may still fail to detect
humans in high-temperature environments, e.g., in case of
fire [4, 5]. The main disadvantage of radar and LiDAR sen-
sors is their very high costs. In addition, the applications of
RGB images are wider, i.e., while radar and LiDAR provide
range information that can be used for obstacle avoidance
or for mapping, images taken by RGB cameras can be used
for computer vision tasks, including detection and tracking
of objects and SaR victims, or extraction of information for
training machine learning algorithms and neural networks
[6–8].

Special sensors, e.g., Doppler-shift sensors for detecting
humans based on the motion of their lungs, their heartbeat,
or typical Doppler signatures of motion may fail in case of
stationary targets or in distinguishing humans from other
moving objects [9–11].

Acoustic sensors in SaR applications can be subject to
various disturbances and noise from the environment. Flying
robots are specially impacted by this issue, because of the
noise that their propellers create [12].
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Table 1 Aqualitative cost comparisonofSaRmedium-segment sensors
based on [6–8, 13–17]

Sensor type Cost

RGB cameras, depth cameras Low

Doppler-shift sensors, acoustic sensors Low

2D radar, 2D LiDAR, thermal imaging Medium

3D radar, 3D LiDAR High

Fig. 1 Combining a flying and a ground robot with their different spec-
ifications and area coverage for mapping unknown environments

A main motivation for using vision-based algorithms that
rely on inputs from standard RGB cameras is the affordabil-
ity of these cameras (see Table 1) and the capability of such
algorithms to perform well in very challenging SaR condi-
tions, thanks to the recent advancements in image processing.
In fact, an improved performance with respect to the state-of-
the-art is achieved by incorporating the latest advancements
in computer vision into the proposed framework. In particu-
lar,YouOnlyLookOnce (YOLO),which is used in this paper,
has emerged as one of the most promising object detection
algorithms and has proven to achieve real-time object detec-
tion with high accuracy levels and reduced computational
resources.

Our main motivations for teaming up flying and ground
robots are the following: On the one hand, with low costs,
flying robots provide access to aerial perspectives and are
able to swiftly cover expansive areas in a short time. Their
imaging quality, however, may be compromised due to the
tilting of their cameras while flying. Moreover, they may fail
to access and perform properly in very confined spaces and
corridors. On the other hand, while ground robots navigate
rugged terrains at a slower pace, with a more restricted field
of view, they excel in precise imaging, accessing confined
spaces, and transporting heavy payloads. Moreover, as it is
illustrated in Fig. 2, the distinct viewpoints that are captured
by flying and ground robots can properly complement each
other.

Fig. 2 Different viewpoints for a flying (left) and a ground (right) robot,
retrieved from [18]

1.2 Background

The majority of the state-of-the-art literature that considers
collaborative teams of flying and ground robots focuses on
the problem of navigation of these robots in SaR environ-
ments (see, e.g., [18, 19]). An important problem in SaR
missions, however, is to map the unknown environment, and
to detect the individuals who are in distress and to estimate
their position and pose [20].

The only papers that have focused on the simultaneous
detection and localization of objects in SaR scenarios, using
YOLO, include [21, 22]. Authors in [21] use the Scale-
Invariant Feature Transform key point matching algorithm in
order to determine the corresponding points in the pictures
that have been taken from different viewpoints. Afterwards,
using a homography matrix, the coordinates are transformed
from one frame to the other. The approach used in [22] dif-
fers in determining the corresponding points within distinct
frames, where trigonometry is used.

With recent advances in deep learning, victim detection
through image processing has gained increased attention.
Convolutional neural networks (CNNs) play a vital role in
such detection methods [23–25]. In particular, the CNN
YOLO has proven to be very effective in object detection
[26]. For instance, in [21] pre-trained deep learning mod-
els based on YOLO are used, in order to detect objects in a
flooded area. Authors in [22] apply YOLOv5 for detecting
and localizing the victims in an outdoor SaR environment. In
[27], YOLOv4-tiny (a compact version of YOLOv4) is used
to detect the victims and their poses.

Moving victims should also be tracked in order to save
them in a timely way. Thus, state estimation methods, e.g.,
the Kalman filter (and more advanced versions including the
extended and unscented Kalman filter), have been proposed
to estimate the trajectory ofmoving victims [28, 29]. Another
crucial piece of information in SaR is the traversability and
elevation of the ground of the terrain. Image processing can
be used for such applications as well. In particular, authors
in [30] present an approach for extracting the ground charac-
teristics (e.g., the roughness, slope, discontinuity, hardness)
from images using neural networks.
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Fig. 3 Road map of the paper

1.3 Main contributions and structure of the paper

We propose new time and cost-efficient approaches for map-
ping unknown SaR environments, based on the fusion of
the knowledge that is deduced from images that are taken
separately, via autonomous flying and ground robots. The
mapping includes localization of and trajectory tracking for
victims, and estimating the ground elevation. The main con-
tributions of this paper are:

1. We extend the pose estimationmodule ofYOLO, in order
to estimate the coordinates of the unobserved key points
of the body of a victim from an image, based on body pro-
portions and symmetry. Accordingly, YOLO is leveraged
to estimate the distance of the victim from the ground
robot.

2. YOLO is employed in streams captured from a flying
and a ground robot, along with a localization algorithm,
in order to map the detected points into real-world coor-
dinates, and to fuse them using a Kalman filter, in order
to estimate and track the trajectory of a moving victim.

3. An algorithm is proposed for estimating the elevation of
the terrain, using YOLO and homography estimation.

Real-life case studies have been designed and performed in
order to validate the three approaches explained above.

The rest of the paper is organized as follows. Section2
explains the proposed methodologies. Section3 describes
the setup and implementation of the case studies that have
been carefully designed to validate the developed approaches
using real-world data. Then the results of the case studies are
presented and discussed. Finally, Sect. 4 concludes the paper
and provides suggestions for relevant future research (Fig.
3).

Fig. 4 YOLOv8n output for front (left-hand plot) and top (right-hand
plot) views of a victim

2 Proposedmethods

This section is structured in four parts, each explaining one
SaR task. The first two parts will address the pose estimation
and the victim localization. The third part will address the
victim tracking approach using a Kalman filter. The last part
will address the terrain elevation mapping. These four tasks
are achieved by teaming up flying and ground robots.

Our methods are based on YOLOv8n [31], since it signif-
icantly speeds up the class detection process and maintains
high accuracy. In a single pass through a neural network,
YOLO identifies both the bounding boxes and the proba-
bilities for objects to belong to specific given classes. In
particular, YOLOv8n (i.e., the nano version model) is cho-
sen, since it is faster than other models. For training, the
Common Objects in COntext (COCO) dataset, comprising
330,000 diverse images, has been used. From these images,
200,000 are annotated for object detection, segmentation,
and captioning tasks across 80 object categories. Annota-
tions encompass bounding boxes, segmentation masks, and
captions, that enhance the precision and versatility of the
model.

Figure 4 shows the output of YOLOv8n for the front and
top views of a victim. The bounding boxes are drawn around
the detected object, and a confidence score from [0, 1] is
attributed to each class for that object.

2.1 Pose estimation

This section explains how the pose estimation of the vic-
tims works. In order to precisely locate the victims and to
estimate their (health/physical) status, awareness about the
body pose of the victim is needed. YOLOv8n-Pose has been
trained for pose estimation on a COCO dataset, which con-
tains 200,000 images labeled with 17 key body points [31].
Figure5 shows the output of YOLOv8n-Pose for the front
view of a victim. The body key points, given in a pre-defined
order, include: nose, eyes, ears, shoulders, elbows, hands,
hips (the two side points), knees, and feet. These labels are
recorded in a list, which we call list “L”. Some of these key
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Algorithm 1Determining the position of all the missing key
points
1: L: An ordered list of nkeypoint key point labels (i.e., nose, eyes, ears,

shoulders, elbows, hands, hips, knees, feet)
2: K : An ordered list, with the same size and order as L, including the

positions corresponding to the key points that are detected within a
captured image, with K [i] the i th coordinate pair in list K

3: niteration: Pre-set number of iterations of the algorithm
4: i and k: Index variables
5: estimate_keypoint(·, ·): A function that receives as input the list K

and the index i corresponding to an element in K that is empty, and
assigns as output a pair of coordinates to fill in the empty element
K [i]

6: for k ← 1 to niteration do
7: for i ← 1 to nkeypoint do
8: if K [i] is None then
9: K [i] ← estimate_keypoint(K , i)
10: end if
11: end for
12: end for

13: return K

Fig. 5 YOLOv8n-Pose is
extended to perform pose
estimation, where based on the
previous output of the
algorithm, the positions of the
body key points are estimated

pointsmay not be visible in or detectable from the images that
are received from a SaR robot, while their position is impor-
tant for the estimation of the pose and distance of the victim
from the robot. Therefore, YOLOv8n-Pose was extended to
locate the missing key points, in order to make the pose esti-
mation module robust to occlusions. Figure6 showcases the
output of the extendedmodelwhenever somebody key points
are occluded.

Algorithms 1 and 2 have been developed to estimate the
position (i.e., the x and y coordinates) of the key points that
are missing from an image: Algorithms 1 (lines 7–11) loops
through the entire list K of the positions of the key points, that
has initially been deduced from an image. This loop assesses
whether or not any positions are missing within list K . For
those key points that have not been detected by YOLOv8 in
the image, a function estimate_keypoint(·, ·) has been
developed (the details are given in Algorithm 2) in order to
determine the position of that missing key point and to fill in
the empty element in list K . Note that since Algorithm 2 runs
within Algorithm 1, we have not repeated, in Algorithm 2,
the same definitions that are used in both algorithms.

Functionestimate_keypoint(·, ·) (seeAlgorithm2)
receives K and the index i of the element that is missing from
K , and determines the position of themissing key points. The

Algorithm 2 Function estimate_keypoint(·, ·)
Input: K , i
1: ndependency[i]: Number of all sets of dependencies that have been

defined for key point K [i]
2: R[i]: An ordered list composed of ndependency[i] sets, each including

one set of the dependencies of key point K [i]
3: W[i]: A list composed of ndependency[i] sets of weights for the depen-

dency key points, where the order of the sets and the order of the
elements within each set are the same as in R[i]

4: W[i, j, �]: The weight that is deduced from the �th element within
the j th set of W[i]

5: D[i, j, �]: The position of the �th key point within the j th set for list
R[i] where this position is deduced from list K

6: nset[i, j]: Number of the key points within the j th set of the depen-
dencies of key point K [i]

7: j : An index variable
8: w: An auxiliary variable
9: b: A binary variable

10: K [i] ← (0, 0), w ← 0, j ← 1
11: while j < ndependency[i] do
12: b ← True
13: for � ← 1 to nset[i, j] do
14: if D[i, j, �] is None then
15: b ← False
16: break
17: else
18: K [i] = K [i] + W [i, j, �] · D[i, j, �]
19: w = w + W [i, j, �]
20: end if
21: end for
22: if b then
23: break
24: end if
25: j ← j + 1
26: end while

27: if j = nset[i, j] then
28: return “CANNOT LOCATE MISSING KEY POINT!!”

29: else
30: K [i] ← K [i]/ω
31: end if
32: return K [i]

algorithm needs the position of the other key points that the
position of a missing key point directly depends on. Those
key points are called the “dependencies” of the key point.
For instance, using the body proportions, the position of the
missing key point, the right elbow, can be estimated based
on the positions of the dependency key points, the right hand
and right shoulder. Alternatively, using the body symmetry
the position of the right elbow may be estimated using the
positions of the two shoulders and the left elbow. Thus, for
each key point, more than one list of dependencies may exist
(e.g., in the given example both sets {right hand; right shoul-
der} and {right shoulder; left shoulder; left elbow} belong to
the set of dependencies of Key point “right elbow”).

Thus, the dependencies for all the key points in list
L (which includes all the nkeypoint key point labels) are
defined a-priori in nkeypoint lists called “R[r ]”, which, for
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Fig. 6 Extended YOLOv8n-Pose for locating the missing key points
(shown in white) based on typical body proportions and symmetry

r ∈ {1, . . . , nkeypoint}, is composed of ndependency[r ] sets of
dependencies for key point r in list L.Moreover, a list “W[r ]”
with a similar number of sets and elements within each set
as in R[r ] is pre-defined and includes the weights that the
algorithm associates with each corresponding dependency
key point within R[r ] (see lines 1–3 in Algorithm 2). For the
given example, suppose that the order of the right elbow in
list L is 8. Then, as an example, R[8] = { {right hand; right
shoulder}, {right shoulder; left shoulder; left elbow} } and
W[8] = { {0.5; 0.5}, {0.2; 0.4; 0.4} }. These weights are used
to compute the position of a missing key point, based on a
weighted average of the positions of the dependencies of that
missing key points.

Note that the procedure of determining the positions of
the missing points should better be run in more than only
one iteration. This is because the positions that have been
determined per iteration for the missing key points may be
the positions of the dependency key points of other missing
key points that could not be positioned in that iteration. Thus,
the next iterations will help to position those key points as
well. This is why in line 6 of Algorithm 1, a loop of niteration

iterations has been designed. In the real-life experiments in
the CyberZoo, the number of the iterations, niteration, was
set to 10, which was deemed sufficient to determine all the
missing key points.

Note that when a list or parameter is always fixed, we have
used a regular font for the corresponding notations, whereas
for varying lists and for other variables we have used an italic
font.

Remark 1 For unconventional body poses (e.g., when one
arm is stretched and the other arm is bent), for symmetri-
cal parts of the body (e.g., for the left and right arms), the
algorithm considers the most reliable estimate of the posi-
tion of one of the two parts (e.g., the estimate for the right
arm) from the image. For the other part (in this case the left
arm), a virtual symmetrical body part is considered and the
coordinates are estimated accordingly (similarly to the right-
hand side plot in Fig. 6). Thus, whether or not a human has
a conventional pose does not impact the performance of the
algorithms.

2.2 Victim localization

In this part of the methodology, determining the position of
the victims from the ground and aerial images is explained.
Localizing the victims autonomously via robots requires
homography and distance estimation, as explained next.
Homography estimation
An indispensable method for mapping image pixels into
real-world coordinates, especially when dealing with planar
surfaces, is homography estimation. In our research, homog-
raphy estimation serves as a valuable auxiliary method that
facilitates the transformation of 2D image points into their
corresponding real-world coordinates relative to the robot
platforms. The homography transformation of 2D points is
performed using a 3× 3 homography matrix H, given by:

H =
⎡
⎣
h̃11 h̃12 h̃13
h̃21 h̃22 h̃23
h̃31 h̃32 1

⎤
⎦

which implies that 8 parameters (3 rotational, 3 translational,
2 scalars) should be identified, requiring a system of 8 equa-
tions. These equations are generated by choosing 4 reference
points, for which the corresponding x and y coordinates in
both the camera view and the augmented view are known.
Consider a set P = {(xi , yi ) for i = 1, . . . , nH} of nH points
co-planar in the camera view, and the corresponding set in the
augmented view, i.e., P ′′ = {(x ′′

i , y′′
i ) for i = 1, . . . , nH}.

The points within set P may be selected arbitrarily. However,
considering points that aremore distant fromone anotherwill
help with the precision of the approach that will be explained
next. This is because by selecting points that are farther from
one another, a larger portion of the image frame is consid-
ered in the calibration. Furthermore, such a selection helps
the algorithm to be more robust to errors in the estimation of
one or a few of the reference points. Thus, the most effi-
cient approach is to select the four corners of the image
frame. For translation of the positions of these points into
their corresponding real-world positions, a reference object
may be placed at a known position with respect to the global
reference frame, such that the object appears in the corner
of the image. This procedure can be done in a laboratory
before deployment in a real SaR setting because the calibra-
tion refers to the robot and to the orientation of its camera,
and not to any external factors. Therefore, changing the x
and y coordinates of the robot position or the yaw angle of
the robot will not affect the calibration. Only a change in the
tilt angle would require a different calibration of the system.

The following direct linear transform is used to obtain 2
linear equations per point:

[
xi yi 1 0 0 0 −xi x ′′

i −yi x ′′
i −x ′′

i
0 0 0 xi yi 1 −xi y′′

i −yi y′′
i −y′′

i

]
·
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[
h̃11 h̃12 . . . h̃32 1

]� = 0 (1)

Alternatively, with more than 4 reference points the esti-
mation of the homography matrix H transforms into an
optimization problem that should determine an optimal
homography matrix H∗ that minimizes a defined cost func-
tion, which typically includes the algebraic sum, across all
reference points, of the geometric distances between the pro-
jected points (x̃ ′′

i , ỹ′′
i ) obtained using the candidate H, and

the actual corresponding points (x ′′
i , y′′

i ) in the map view.
GivenH, a point (xi , yi ) in the camera view is transformed

into (x ′′
i , y′′

i ) in the augmented view, using the following
equation from [21]:

[
x ′′
i /λ y′′

i /λ λ
]� = H

[
xi yi 1

]�
(2)

with λ a scaling factor that ensures the transformed points
maintain their relative positions after the transformation.
Distance estimation
Knowing the distance of a detected victim from the ground
robot is crucial in SaR. Under a simplified pinhole camera
model, the distance d of a detected victim from the camera
of the ground robot, is given via:

d = sreallfocal

simage (3)

with sreal the real-world size of the victim (where knowing the
position of the victim allows the robot to have amore realistic
estimation of sreal for the victim), lfocal the focal length of
the camera, and simage the size of the victim in the image.
It is assumed that the camera is calibrated. Note that lfocal

is usually provided by the manufacturer, or is alternatively
computed from the height H image and width W image of the
image in pixels, and the horizontal FOVh and vertical FOVv

fields of view of the camera (see Fig. 7). We have:

lfocal = H image

2 tan
(
FOVv
2

) = W image

2 tan
(
FOVh
2

)

Two sources of position measurement are obtained from
the ground and the flying robot (see Fig. 8). Each measure-
ment is computed by vector summation of the position of the
robot and the position of the victim relative to that robot. The
position of the robots is generally measured via a position-
determination system, e.g., via GPS. The position of the
victim relative to each robot can be computed using (2) and
(3).

Fig. 7 The vertical (left) and the horizontal (right) FOVs of a camera,
where γ represents the angle between the camera and the victim, with
a subscript ‘v’ and ‘h’ for, respectively, the vertical and the horizontal
cases

Fig. 8 Victim location per time step: Vector sum of the (flying or
ground) robot position, and the relative position of the victim and the
robot

2.3 Victim tracking

In this part of the methodology, we explain in detail how
the trajectory of a moving victim is tracked through the
images that are taken by the ground and aerial robots.

State estimation is a fundamental requirement in sev-
eral SaR contexts since it enables one to make inferences
about the states of a dynamic system based on noisy sen-
sor measurements. Our primary objective of state estimation
is to infer the trajectory of a moving victim after being
detected.AKalmanfilter, using amodel of the victimmotion,
is employed to fuse the measurements of the two robots.
Such models of the victim motion in disaster situations are
available in the literature (see, e.g., [32]). By incorporat-
ing knowledge of how the victim’s trajectory is expected to
evolve over time, the Kalman filter makes predictions about
the future states of the victim and generates a continuous and
coherent trajectory according to the model. The state estima-
tion approach is explained next.
State transition model
The state transition model describes how the states of a sys-
tem evolve over time. In the discrete time, the evolution of
the state vector, xk = [xk, yk, ẋk, ẏk]�, including the posi-
tion and the velocity of the victim in a 2D space at time step
k, is via the following state-space equation, which is a gen-
eral form of a dynamic model for the victim motion that has
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been simplified via linearization and excluding the influence
of external forces:

xk+1 = Fxk (4)

with F the state transition matrix. In real life, the actual state
xk may be unavailable, and thus estimated sequentially via
(4). A hat symbol is used to represent the estimated states.
Observation model
The observation model relates the noisy or uncertain mea-
surements xmk = [xmk , ymk , ẋmk , ẏmk ]� obtained from the
sensors of the robots to the actual states of the system per
time step via:

xmk = Oxk (5)

withOthe observation matrix. The Kalman filter operates in
two main steps, prediction and update, explained next. The
superscript− for a variable indicates the variable before being
updated.
Prediction step
At time step k, the most recent estimated state x̂−

k is updated
(details are given next) to x̂k and is then used by the Kalman
filter to estimate the future state of the system, i.e.:

x̂−
k+1 = Fx̂k (6)

The error covariance matrix P−
k+1 (which indicates how

uncertain the state prediction is) is estimated by propagating
the current updated error covariance matrix, Pk , through the
state transition model and by adding the noise matrix,Q, i.e.:

P−
k+1 = FPkF� + Q (7)

Update step
At time step k+1, when newmeasurements are obtained, the
state predicted at time step k for time step k + 1 is updated
to improve the certainty. First, the Kalman gain Kk+1 is
obtained, based on the error covariance prediction matrix,
P−
k+1, the observation matrix,O, and the measurement noise

covariance matrix, R, via:

Kk+1 = P−
k+1O�(OP−

k+1O� + R)−1 (8)

The Kalman gain reflects the relative importance of the pre-
diction and the measurements.

Next, the state x̂−
k+1 predicted at time step k via (6) is

updated using the Kalman gain and the difference of the
actual measurements obtained from the sensors at time step
k + 1 and the predicted value for the measurements using
x̂−
k+1 and (5), i.e.:

x̂k+1 = x̂−
k+1 + Kk+1(xmk+1 − Ox̂−

k+1) (9)

Similarly, the error covariance matrix is updated at time
step k + 1 to incorporate the reduced uncertainty. We have:

Pk+1 = (I − Kk+1O)P−
k+1 (10)

Smoothening filter
In order to refine and smoothen the output of the Kalman
filter, an exponential moving average filter is employed that
assigns exponentially decreasing weights to older estima-
tions. This allows the filter to adapt more quickly to recent
changes in themeasurements, while incorporating past infor-
mation. The smoothening for time step k is performed via:

x̂EMA
k = α x̂k + (1 − α)x̂EMA

k−1 (11)

where x̂EMA
k is the smoothened state estimate and α is the

smoothening factor of the exponential moving average fil-
ter. Larger values for α result in higher weights for recent
changes.

2.4 Terrain elevationmap

In the last part of the methodology, we explain how the
ground and aerial robots will collaboratively determine the
ground elevation of the terrain.

First, the flying robot carries and drops a standard object
with a known shape and size on a point where the terrain
elevation is to be estimated. Then, the distance of the ground
robot from this object is sent via the flying robot (by leverag-
ing homography estimation and trigonometry) to the ground
robot. Alternatively, the ground robot estimates its relative
distance to the object using (3). This distance, together with
the coordinates of the ground robot, is used by the robot to
determine the expected position (blue point in Fig. 9) of the
object, assuming a flat ground. Then, from the image the
camera of the ground robot captures, the real point (shown
in red in Fig. 9) that the object touches the ground. The pixel
distance between these two points is used for the estimation
of the ground elevation.

When the object sits close to the ground robot or at a
high elevation, the object is perceived as smaller, and thus,
the distance is perceived as larger than it is (see Fig. 10).
This impacts the estimated terrain elevation. Tomitigate this,
depending on the geometry of the object, it is possible to take
its width as a reference, since the width is only distorted in
extreme scenarios.

Remark 2 The approach introduced in this section for ter-
rain elevation mapping is mainly meant to be performed
randomly, on a large scale, within the first stages of map-
ping the environment. In other words, a group of drones will
be deployed to drop standard objects, not necessarily tennis
balls, but, for instance, more flexible objects with possibly an
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Fig. 9 In determining the terrain elevation, the flying robot drops a
standard object with a known size in the desired place. The ground robot
then receives via the flying robot its distance to the dropped object, or
else estimates this distance using (3). This information is used by the
ground robot to determine the point (shown in blue) that the object
would touch the ground if the ground were flat, using (3). Then via
its camera, the ground robot captures sight of the point (shown in red)
that the object actually touches the ground. The pixel distance between
these two points is used to compute the elevation of the ground (shown
in green) (color figure online)

Fig. 10 When the object sits close to the ground robot, as in a and c, or
is at a high elevation, as in b and d, partial occlusion is more significant.
In the image a dground = 1 m, e = 25 cm, b dground = 1 m, e = 75 cm,
c dground = 3 m, e = 25 cm, d dground = 3 m, e = 75 cm

adhesive texture that are more suitable for simplifying their
placement on a non-smooth ground. After a large number of
such objects have been distributed around the environment,
the ground robots will be deployed to detect these objects and
the corresponding elevation of the ground underneath them,
as a part of mapping the unknown environment. Therefore,
no precision in locating these objects via the flying robots in
the environment is in general required. In case such precision
is needed for some reasons, as it was mentioned, an adhesive
material may be used to place the object more precisely. In
such a case, the movements and altitude of the flying robots
should also more precisely be controlled.

Fig. 11 CyberZoo including the reference frame, where the origin cor-
responds to the center of the laboratory field

3 Case studies

This section explains the setup, implementation, and results
of real-life experiments that were conducted at the CyberZoo
of the Delft University of Technology, in order to validate our
proposed approaches. In the experiments, challenging scenes
that encompass occlusions and the temporary unavailability
of the sensors have also been generated.

3.1 Setup of the experiments

The experimentswere conducted at theCyberZooof theDelft
University of Technology (see Fig. 11), a research and test
laboratory that embeds a 10×10m2 synthetic turf surrounded
by safety nets, for protecting the participants and robots dur-
ing the experiments. Furthermore, the experimental facilities
at the CyberZoo are equipped with twelve high-tech cameras
and Motive, a software platform designed to control motion
capture systems for various tracking applications. By placing
markers asymmetrically in a rigid body, it is possible to track
them using Motive to obtain their position, velocity, and 3D
orientation (pitch, roll, and yaw).

The drone used in the experiments was a Parrot Bebop 2
(see the right-hand side photo in Fig. 12). Parrot Bebop 2 is
a small quadcopter that measures 382mm in front, 328mm
on either side and 89mm in height. It weighs 500g and has
a 2700 mAh battery. Depending on the circumstances, the
drone can fly continuously for up to 25min on this battery
power. The 14MP front camera on Parrot Bebop 2 can record
1080p video at 30 fps. The drone is also equipped with a
bottom camera used to estimate the velocity of the drone.
This built-in camera is not suited for video recording. Thus,
a 14MPbottomcamera,which can also record 1080pvideo at
30 fps was attached to the bottom of the drone. The drone has
its ownWiFi network, allowing the drone to connect to other
devices. It boasts a dual-core processor operating at 500MHz
per core, orchestrating seamless flight control and navigation.
Complemented by a quad-core GPU, the drone efficiently
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Fig. 12 Parrot Jumping Sumo (left) and Parrot Bebop 2 (right)

processes video and image data and ensures smooth and high-
quality visuals.

As for the ground robot, the Parrot Jumping Sumo (see the
left-hand side photo in Fig. 12), which is a compact, wheeled
ground robot, was used. Displaying a movable base with two
independently driven wheels, Parrot Jumping Sumo mea-
sures 185mm in length, 150mm in width, and 110mm in
height. Weighs 180g, and features a 550 mAh battery that
grants an operational time of up to 20min. The robot can
perform horizontal and vertical jumps up to 80cm, and incor-
porates a wide-angle camera providing 480 p at 15 fps. Just
like Parrot Bebop 2, Parrot Jumping Sumo is equipped with
its ownWiFi network, allowing it to connect to other devices.
Parrot Jumping Sumo is powered by anARMCortex A9 pro-
cessor running at a clock speed of around 1 GHz, facilitating
swift and responsive execution of commands and sensor data
processing, enabling agile movements and interactions.

Overall, the autonomy of the robots, the sufficient qual-
ity of their cameras, and their affordability, ready-to-use
nature, and user-friendly interfaces make them suitable for
this research. The processing of the images and videos was
performed via an external computer that was equipped with
an Intel Core i7-1185G7 processor, part of the 11th genera-
tion, operating at a base frequency of 3.0 GHz and reaching
up to 4.8 GHz with Turbo Boost capability. It boasted 16 GB
of LPDDR4x RAM and integrated Intel Iris Xe Graphics.
The storage was facilitated by a 512 GB PCIe NVMe SSD.
The operating system utilized was Ubuntu 20.04.6 LTS. The
source codeswere composed using Python, owing to its com-
patibility with external code, versatility, and robust libraries.

3.2 Experiments for distance estimation via ground
images

A collection of images of various body poses from vol-
unteer participants were collected. In order to represent a
general population, the participants were selected to have
diverse physical characteristics, e.g., different heights, and
shoulder-to-shoulder and shoulder-to-elbow distances. The
experiments included 24 participants of 12 different nation-
alities. The reference values used for the height, shoulder-
to-shoulder distance, and shoulder-to-elbow distance were
selected based on [33] and are given in Table 2.

The corresponding measurements were also gathered
from the participants, in order to gain awareness of how

Table 2 Measurements and reference values for the participants

Measurement Reference [m] μ [m] σ [m]

Height 1.7000 1.7538 0.0732

Shoulder-to-shoulder 0.3800 0.4075 0.0398

Shoulder-to-elbow 0.3000 0.3054 0.0218

Fig. 13 Theparticipantswere asked to take specificposes for the ground
vehicle camera. The images were captured systematically from varying
distances of 1.5 m and 3m. The sequence of the poses encompasses a
standing facing the camera, b standing in profile, c standing back to the
camera, d sitting facing the camera, e sitting in profile, f lying on the
side facing the camera, and g lying face-up

closely they matched the reference values. Larger devia-
tions from the reference values in the participant sample are
expected to yield larger errors. The average value, μ, and
standard deviation, σ , for these measurements are also given
in Table 2. For height, shoulder-to-shoulder distance, and
shoulder-to-elbow distance, the average values are, respec-
tively, 3.16%, 7.24%, and 1.80% larger than their reference
values, whereas the corresponding standard deviations are,
respectively, 4.17%, 9.77%, and 7.14% of their average val-
ues. Thus, the measurements from the participants matched
the reference values relatively closely, with the shoulder-to-
shoulder distance the least reliable measurement in terms of
both the average value and the standard deviation. While the
average value for the shoulder-to-elbow distance was closer
to the reference value than that for the height, the worst-case
measurement was still less reliable than that of the height
due to its increased standard deviation. On grounds of the
challenge of determining these distances precisely in a con-
ventional SaR scenario, the algorithm privileges using the
height, shoulder-to-shoulder distance, and shoulder-to-elbow
distances owing to their decreasing absolute values.

Each participant was asked to take 7 different poses for
the camera (see Fig. 13): standing facing the camera, stand-
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Fig. 14 Themotorized rotating standmakes the volleyballmove in a cir-
cle with constant angular velocity ω = 6 rpm. During the experiments,
the flying and ground robots captured video streams of the movement
of the volleyball in an unobstructed environment (left) and in a cluttered
environment (right). The radius of the trajectory of the volleyball was
adjustable

Fig. 15 The flying robot carried and dropped a tennis ball where the
elevation of the terrainwas to be estimated. The ground robot positioned
itself in an adequate perspective, in order to estimate the elevation

ing in profile, standing back to the camera, sitting facing
the camera, sitting in profile, lying on the side facing the
camera, and lying face-up. These poses have been repeated
for distances of 1.5 m and 3m from the ground robot. The
experiments thus generated 14 images per participant and
336 images in total. All imageswere post-processed using the
extended YOLOv8n-Pose, to predict the bounding boxes and
the location of the key points. The key points are augmented
by leveraging typical body proportions and body symmetry
as described in Sect. 2.1. This ensured that all key points were
estimated even when some body parts were not detected or
captured by the camera. The distance between the key points
were then inserted into (3) to determine the distance of the
participant from the ground robot in pixels, and to compare
this with a reference real-world value for that distance. As
different poses distort different key point distances, the cam-
era frame distance substituted in the equation depended on
the pose. When the participant was standing or lying on the
floor, the distance between the feet and the head was com-
pared against a reference value for the human height. When
the participant was sitting facing the camera or in profile,
the shoulder-to-shoulder distance or the shoulder-to-elbow
distance was compared to the reference values, respectively.

3.3 Experiments for tracking amoving object

The main aim of this set of experiments was to track the
movement of a real-world object by leveraging the video
streams of the ground and flying robots. Due to the limited
space at the experimental facility and the need to compare
the obtained movement trajectory with a ground truth, a pre-
cise trajectory had to be replicated. Therefore, a volleyball
was taken as the moving object to be tracked. The volleyball
was attached to a rod, tied to a 360-degree motorized rotating
stand. By moving the rod, it was possible to manipulate the
radius of the trajectory. Themotorized rotating stand allowed
for adjustable angles of rotation, directions of rotation, and
angular velocities. During the experiments, different obsta-
cles were placed around the trajectory of the volleyball to
occlude both the aerial and the ground views of the motion
(see Fig. 14).

In all the experiments, the center of rotation was placed
at the center of the CyberZoo, i.e., at (x, y) = (0, 0). The
ground robot was kept static at (0,−3), and the flying robot
hovered with an altitude of 3m, as closely as possible above
the center of the CyberZoo. It was crucial to keep the alti-
tude of the flying robot approximately constant, so that the
homography matrix H does not regularly need to be cali-
brated. Correcting a frame manually took 10s on average.
The videos that were being processed had a length of around
30s. The frame rate was 15 fps for the ground robot and
30 fps for the aerial robot. This editing step was done before
feeding the videos to the algorithm.

Remark 3 In order to reduce the computational errors in the
estimation of the trajectory of the victim that are sourced from
the relative motion of the robots or from the tilting motion
of the aerial robot, a GPS may be used on the robots. With a
GPS, the position of the robots with respect to a fixed refer-
ence point (e.g., the center of rotation of the volleyball in the
case studies) is obtained precisely and the relative distance of
the robot and themoving target is corrected accordingly.This,
however, may not be feasible in complex SaR applications.
Moreover, using GPS on various robots increases the costs of
SaR robotics (which contradicts the main goal of this paper,
i.e., to propose a framework that also suits low-income coun-
tries). Therefore, an alternative option, that was also used in
our case studies, is to apply a video editing software, e.g.,
the daVinci Resolve, which allows editing the frames and to
ensure that the center of rotation of the volleyball is placed
in the center of each frame.

Throughout the experiments, the angular velocity and the
direction of the rotation were kept constant at 6 rpm coun-
terclockwise. Five main settings were tested: r = 0.75 m,
r = 1.00 m, and r = 1.25 m in an unobstructed environ-
ment, r = 1.25m in a cluttered environment for the flying
robot only, and r = 1.25m in a totally cluttered environment.
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Fig. 16 Average values, standard deviations, and extremum for estimation of the distance for 1.5 m (left) and 3m (right) ground truth distances

Fig. 17 Average relative errors for a 1.5 m and 3m distance to the
ground robot across all the participants and for an arbitrarily chosen
participant

For each experiment, both video streams were post-
processed frame by frame and off-board on an external
laptop, using YOLOv8n. For the ground robot, (2) and (3)
were employed to determine the position of the volleyball in
the reference frame depicted in Fig. 11. For the flying robot,
(2) was sufficient to determine the position of the volleyball.
Since the ground andflying robots recorded videos at, respec-
tively, 15 fps and 30 fps, the frames were aligned before
inputting the measured locations to the Kalman filter. The
Kalman filter was updated at 30 fps, i.e., without any mea-
surements from the ground robot in half of the updates, due to
the halved frame capture rate. The estimated trajectory was
compared with the ground truth per setting.

3.4 Experiments for estimation of the ground
elevation

In these experiments, the flying robot carried and dropped a
signaling object where the elevation of the terrain was to be
determined. A remote air-dropping system was incorporated
into the setup and a thrower was attached to the bottom of
the flying robot. Whenever the object needed to be released,
a remote control was manually operated. Even though the
maximum payload of the airdrop system is 750g, weights
above 150g seriously jeopardize flight stability. Therefore, a

tennis ball weighing 58g was selected as the signaling object
and boxeswith varying heightswere used tomodel the terrain
elevation (see Fig. 15). The ground robot was positioned at
different distances from the signaling object and 12 images
were captured via the camera of the ground robot for dis-
tances 1, 2, 3, 4m and for elevations 25, 50, 75cm. These
imageswere then processed off-board, considering 2 options:
First, the ground robot estimated the terrain elevation on its
own, as explained in Sect. 2.4. Second, the ground vehicle
received its distance from the tennis ball via the flying robot.

3.5 Results and discussions

Next, we present and discuss the results of our experiments.

3.5.1 Results for distance estimation via ground images

After batch-processing the images, the average, maxi-
mum, and minimum distances, along with their upper and
lower dispersion, were obtained. Only 5 of 336 images (i.e.,
less than 1.5%), did not result in detecting a human above a
confidence threshold of 20%. For the rest, the results were
divided based on the body pose and the distance from the
camera (see Fig. 16).

From the plots, the distance to the camera appeared to
have the largest impact when the participant was standing.
When the person was closer to the camera, the results were
promising given the proximity to the ground truth, the small
upper and lower dispersion, and the non-substantial errors in
the extremum. For larger distances, however, these metrics
degraded. When the participant was sitting or lying on the
floor, the pattern seemed to be consistent, regardless of the
distance of the participant to the ground camera. A possible
explanation is the lens distortion (i.e., the optical anomalies
in camera lenses that result in deviations from ideal light
projection), since this effect is not considered in modeling a
simplified pinhole camera.

The worst cases appeared when the distance was esti-
mated in excess, rather than in defect. This is compatible
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Table 3 Performance metrics
for different setups and
trajectories (G: Ground robot
alone; F: Flying robot alone; G
& F: Collaboration of both
robots)

r (m) RMSE/r (%) [−] Extreme deviation [m] Area ratio (%) [−]
G F G & F G F G & F G F G & F

0.75 77.218 89.492 88.090 1.5811 1.5600 1.5600 39.769 97.895 96.557

1.0 93.440 79.492 85.697 2.1608 1.7575 1.9561 64.832 86.568 93.551

1.25 95.028 62.681 79.992 3.4031 1.7921 2.3525 55.183 26.980 65.447

1.25-obstacles 95.028 100.946 98.035 3.4031 3.6800 2.4621 55.183 37.896 78.164

Fig. 18 Estimated object trajectories for r = 0.75 m, with ground robot alone (left), flying robot alone (middle), and collaboration of both robots
(right)

Fig. 19 Estimated object trajectories for r = 1.0 m, with ground robot alone (left), flying robot alone (middle), and collaboration of both robots
(right)

with the fact that the participants were, on average, taller than
the reference values, which increases the estimated distance.
Therefore, the reference values should be adapted depending
on the average height of the participating people.

Remark 4 When the height of the victims is considered as
the reference value for determining their distance from the
ground robot, errors may occur especially whenever the
height of a victim varies significantly from the values that
have been used in the calibration. In fact, the distance of a

person with a significantly larger height may by mistake be
estimated smaller than it really is and vice versa. In order to
mitigate such errors, instead of the height, the relative dis-
tance between other key points of the body that is not subject
to significant variations among different people may be con-
sidered, e.g., the relative distance of the eyes or other key
points in the face.

The standing poses appeared to be, on average, the least
prone to errors. While their error pattern changed signifi-

Fig. 20 Estimated object trajectories for r = 1.25 m, with ground robot alone (left), flying robot alone (middle), and collaboration of both robots
(right)
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Fig. 21 Estimated object trajectories for r = 1.25 m when obstacles were placed in the sight of the aerial robot, with ground robot alone (left),
flying robot alone (middle), and collaboration of both robots (right)

cantlywith the distance from the camera, the average distance
remained close to the ground truth. Sitting and lying poses
appeared to be more challenging. In fact, whenever the par-
ticipants have a wider range of motion and poses where a
smaller measurement is taken to compare against the refer-
ence (e.g., shoulder-to-shoulder distance as opposed to the
height) are more prone to uncertainties. For instance, the
participants stood still in a similar fashion while standing.
However, while sitting, they placed their legs more openly or
closely, and curved their back to different extents. The same
goes for lying positions, where the participants tilted their
bodies and stretched their arms and legs to different degrees.

The average relative errors of the estimated distances per
pose across all participants and for an arbitrarily chosen par-
ticipant are given in Fig. 17. As expected, the curves kept
the same pattern except for the standing poses. Moreover,
the sitting and lying poses generally displayed larger rela-
tive errors, than the standing poses. The slight discrepancy
in the pattern for the standing poses is because the faces of
some participants standing 1.5 m from the camera were not
captured in the image. Thus, the position of their faces was
estimated by the algorithm, giving rise to larger errors. Nev-
ertheless, sitting in profile and lying face-up still appeared to
be the most challenging cases.

The average across all poses for the relative errors is
13.73% and 9.67% for ground truth distances of, respec-
tively, 1.5 m and 3m. This 4.06% discrepancy was because
the participants did not always place themselves in the exact
expected distance from the ground robot. These slight dis-
placements of a few centimeters have a larger impact on the
average relative errors when the distance is smaller. Assum-
ing that this is the only external source of the error, the
misplacement amounts on average to 12.18 cm. This implies
that the actual relative error resulting from the algorithm itself
ranges from around 4% to 10%.

Indeed, most of the relative errors lie between < 1% to
12%. Moreover, the relative errors appear to have no or neg-
ligible correlation with the distance from the camera. For the
arbitrarily chosen participant, the relative error is suspected
to arise from the physical discrepancies of the participant,
as well as the slight deviations from the desired pose. The

Fig. 22 The algorithm draws the red point where the tennis ball touches
the ground, the blue point where the tennis ball would touch the ground
if the ground was flat, and the line connecting these points. The reduced
quality of the image is because the ground robot captured it while mov-
ing

participant had a height of 1.83 m, shoulder-to-shoulder dis-
tance of 40cm, and a shoulder-to-elbow distance of 31cm,
which are, respectively, 7.65%, 5.26%, and 3.33% above the
reference values. Therefore, poses that rely on the height of
the participant, i.e., poses 1, 2, 3, 6, 7, are more prone to
errors compared to other poses.

Finally, the average relative errors were shown to be
distance-independent, which means that the absolute errors
varied linearly with the distance from the camera. The rela-
tive errors varied from < 1% to > 20%, depending on the
pose and the physical characteristics of the participant. In
10 runs of the algorithm, the 336 images needed 83.38 s to
93.43 s to be processed, averaging to 0.248 s to 0.278 s per
image.

3.5.2 Results for tracking a moving object

The volleyball trajectories obtained after analyzing the
videos were compared with the ground truth, based on var-
ious performance metrics, including the root mean square
error (RMSE), extreme deviation, and area ratio. The RMSE
shows how close the estimated volleyball trajectories are on
average to the ground truth trajectories. Extreme deviation
spots where these estimates and the ground truth stray the
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Fig. 23 Distance distribution (top, left) and relative errors (top, right), elevation distribution (bottom, left) and relative errors (bottom, right), solely
by the ground robot

farthest. The area ratio reflects the percentage of the area
enclosed by the ground truth that is also covered by the esti-
mated trajectory, thus the match between the overall shapes.
Considering the three metrics provides a more comprehen-
sive insight about how accurate the estimations are. Using a
volleyball instead of a human increased the difficulty of the
tracking task for the flying robot, due to the smaller size and
a less distinctive pattern of movement. Thus, in the presence
of a cluttered environment with shadows, the flying robot
had difficulty detecting the volleyball. The analysis was per-
formed for a turning radius of r = 0.75, 1.0, 1.25 m with
unobstructed views for both the flying and the ground robots,
and for r = 1.25 m with obstacles placed for only for the
flying robot.

The performance metrics for cases with only the ground
robot, only the flying robot, and both robots are shown in
Table 3, where the best performance per metric and scenario
are shown with bold fonts. Moreover, Figs. 18, 19, 20 and 21
illustrate the estimated trajectories for r = 0.75, 1, 1.25 m
and for r = 1.25 m with obstacles placed for the flying robot

only. As expected, themetrics were degradedwith increasing
the radius of the trajectory in cluttered environments.

From Table 3, the RMSE for the 4 scenarios with the col-
laborating robot lies between the RMSE when the robots are
used solely. However, not the same robot always performed
the best. In fact, the standalone performance of these robots
depended on their measurements, making it impractical to
predict beforehand robots should be applied to an unknown
scenario. Therefore, using a collaborative team of a ground
and a flying robot is the most promising for handling an
unknown scenario.

Regarding the extreme deviations from the ground truth,
the flying robot produced the best results, whenever its view
was unobstructed. This is because the camera of the flying
robot has a larger fps, capturing points closer to each other,
which prevents large errors by the Kalman filter. Neverthe-
less, when the view of the flying robot was obstructed, due
to the missing measurements the estimated trajectory devi-
ated significantly from its ground truth. Therefore, for an
unknown SaR scenario, including the ground robot next to
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Fig. 24 Elevation distribution (left) and relative errors (right), assuming that the flying robot provides a precise estimation of the distance for the
ground robot

the flying robot can significantly improve the estimations for
tracking a moving object.

For the area ratio, the team of both flying and ground
robots stood out themost. The figures show that the estimated
trajectories remained close circular shapes. For r = 1.25 m
with an unobstructed view, the metric degraded since none of
the robots detected the volleyball in the first instants. Thus,
the volleyball was assumed to be at the center of the Cyber-
Zoo, impacting the final shape of the estimated trajectory of
the volleyball. These findings are supported by the results
presented in Sect. 3.

In 10 runs of a 10s video for the ground view, it took
between 19.41 s and 22.30 s to obtain the trajectories. Simi-
larly, it took between 20.16 s and 22.68 s to process the aerial
videos. For the team of robots, the procedure took between
36.68 s and 42.19 s. This is the time that the algorithm takes to
process the edited videos, excluding the time that is needed to
edit them. The editing has been done in advance, as addressed
in Sect. 3.3.

3.5.3 Results for estimation of the ground elevation

Unless specified, the algorithm assumed by default that the
flying robot did not provide assistance in the elevation esti-
mation. An example of the output of the algorithm is shown
in Fig. 22. In this frame, the ground distance of the point,
for which the elevation should be estimated, from the ground
robot is 2m and the elevation is 20cm. The algorithm esti-
mates a distance of 2.091 m and an elevation of 18.13 cm,
indicating relative errors of, respectively, 4.55% and 9.35%.

Figure 23 illustrates the distribution of the measurements
and relative errors for different distance and elevation val-
ues, when the ground robot had to estimate the elevation
alone. From the top left plot, the distribution of the distance
estimated by the ground robot follows the perfect estimate
closely. For smaller (larger) distances, the algorithm slightly

overestimates (underestimates) the distance. This may be
related to lens distortion, reduced resolution for larger dis-
tances, or the need for more precise calibration for larger
distances. The curves for the relative errors show inverse
trends, i.e., while the relative errors for the distances tend
to increase with decreasing the distance, the relative errors
for the terrain elevation tend to increase with increasing the
distance, and more specifically, with decreasing the eleva-
tion. Both of these trends are according to the expectation.
For smaller distances, any deviation from reality has a higher
impact on the relative error of the estimated distance. Since
the estimate for the elevation depends on the estimate for
the distance, the errors for the elevation are a consequence
of both error sources. Even though for larger distances, the
relative errors for the distance typically decrease, the abso-
lute errors slightly increase as shown in the figure. This error
propagates and has a higher impact on the elevation relative
error when the elevation is small. As shown in the 3D graphs,
the relative errors for the distance range from around 2% to
25%, whereas the elevation relative errors range from around
0% to 35%.

Figure 24 shows the elevation distribution and relative
errors for the same scenarios as before, this time with the
assistance of the flying robot in providing the distance val-
ues. Although the median values for the estimates of the
terrain elevation did not change, the dispersion of the ele-
vations around the mean value was significantly reduced. In
this layout, the average relative errors were also notoriously
mitigated. Except for one data point, the relative errors were
lower than 13% in all instances. The data point correspond-
ing to an elevation of 25cm and a distance of 4m appears to
be an outlier, where nearly no error was mitigated. This may
be because the homography matrix responsible for mapping
the distance into real-world coordinates was calibrated using
reference points up to distances of 3m.
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Finally, in 10 runs, the processing of the images took on
average between 0.54 s and 0.62 s.

4 Conclusions and future research

We leveraged the complementary capabilities of flying
and ground robots, in order to deliver affordable, effec-
tive solutions based on image processing for unknown SaR
environments. In particular, the following SaR tasks were
considered: estimating the location and distance of a human
from the ground robot based on the images captured by the
robot, tracking the trajectory of a moving object by apply-
ing data fusion and a Kalman filter, and estimating the terrain
elevation. In order to ensure a simplistic setup with low hard-
ware costs, these tasks are performed via visual depiction
only, through images and videos.

We performed real-life experiments in order to validate
the proposed approaches, which are founded on You Only
Look Once (YOLO). The experiments proved the efficiency
of the proposed methods in the accurate estimation of the
position of humans in various poses from their images. In
fact, the average relative errors remained mainly below 10%.
In tracking the trajectory of amoving object, the advantage of
deploying a collaborative team of a flying and a ground robot
was evident, especially in properly re-generating the overall
shape of the trajectory. Furthermore, this setup is more fault-
safe in keeping a low rootmean square error and in preventing
large deviations from the ground truth, especially in cluttered
environments. In fact, for the widest trajectory simulated and
in the presence of obstacles to the aerial view, compared to
the best-performing robot, the collaboration of the robots
resulted in a reduction of 28% in the extreme deviation from
the true trajectory, and an increase of 42% in the area covered
ratio. Finally, the estimation of the terrain elevationwas prone
to two primary sources of error: error in the estimation of the
distance and error in the subsequent elevation estimation. The
distance estimation inaccuracies stem from simplified cam-
era models and low image resolution, which impact object
detection, compounded by occasional object occlusion. The
elevation errors result from poor homography calibration in
specific regions, which is exacerbated by the double applica-
tion of the simplified camera model. Without the assistance
of the flying robot in providing the distance of the human
from the ground robot, the relative errors in estimation of the
terrain elevation were up to 35% in some cases. This error
was reduced to less than 13%when the flying robot estimated
the distance for the ground robot.

In summary, these results represent notable progress in
leveraging visual data and robotic capabilities for SaR. Since
calibrating the homography matrix is expected to improve
with the number of reference points, which slows down the
computations, it is crucial to investigate the optimal number

of reference points that provides a trade-off between accuracy
and computational burden. Furthermore, the results hint that
implementing a simplified pinhole camera model may result
in significant errors. Thus, including a more realistic camera
model that captures optical phenomena, e.g., lens distortion
and parallax, is worth looking into. As an extension to the
current work, the proposed algorithm for locating the vic-
tims should also be validated for non-conventional poses of
the victims that are much different from the 7 poses that have
been shown in Fig. 16 and that are not common in the COCO
dataset. Moreover, it will be advantageous to make the fly-
ing robot autonomously capable of identifying the regions
of interest for scanning, in collaboration with the ground
robot. This may require further interaction and exchange of
data/information between the two robots. Finally, validating
our proposed approaches in various real-life SaR scenarios,
where a combination of pose estimation, victim localization,
victim tracking, and terrain elevationmapping should be con-
ducted, is a topic for further future work.
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