
 
 

Delft University of Technology

An Application of Model Seeding to Search-based Unit Test Generation for Gson

Olsthoorn, Mitchell; Derakhshanfar, Pouria; Devroey, Xavier

DOI
10.1007/978-3-030-59762-7_17
Publication date
2020
Document Version
Accepted author manuscript
Published in
Search-Based Software Engineering - 12th International Symposium, SSBSE 2020

Citation (APA)
Olsthoorn, M., Derakhshanfar, P., & Devroey, X. (2020). An Application of Model Seeding to Search-based
Unit Test Generation for Gson. In A. Aleti, & A. Panichella (Eds.), Search-Based Software Engineering -
12th International Symposium, SSBSE 2020 (pp. 239-245). (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12420 LNCS).
Springer. https://doi.org/10.1007/978-3-030-59762-7_17
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-59762-7_17
https://doi.org/10.1007/978-3-030-59762-7_17


An Application of Model Seeding to
Search-based Unit Test Generation for Gson

Mitchell Olsthoorn[0000−0003−0551−6690], Pouria
Derakhshanfar[0000−0003−3549−9019], and Xavier Devroey[0000−0002−0831−7606]

Delft University of Technology, Delft, The Netherlands
m.j.g.olsthoorn@tudelft.nl, p.derakhshanfar@tudelft.nl,

x.d.m.devroey@tudelft.nl

Abstract. Model seeding is a strategy for injecting additional informa-
tion in a search-based test generation process in the form of models,
representing usages of the classes of the software under test. These mod-
els are used during the search-process to generate logical sequences of
calls whenever an instance of a specific class is required. Model seeding
was originally proposed for search-based crash reproduction. We adapted
it to unit test generation using EvoSuite and applied it to Gson, a Java
library to convert Java objects from and to JSON. Although our study
shows mixed results, it identifies potential future research directions.

Keywords: Model seeding · Search-based software testing · Case study

1 Introduction

Over the years, several techniques have been developed to generate unit tests
by applying search-based algorithms to source code. Among the existing tools,
EvoSuite is one of the references in the state-of-the-art for Java unit test gen-
eration [5]. It has been developed and maintained over the years and received
several contributions to improve code coverage and mutation score of the gen-
erated tests or to generate tests for specific purposes. Despite the numerous
improvements, one of the challenges still faced by EvoSuite is the generation
of complex objects with logical (i.e., not random) sequences of method calls.
There exist several strategies to address this challenge partially. Among those,
seeding [7] consists of the injection of additional information that will be used
during the search. For instance, constant values collected from the source code,
and the usage (as-is) of objects collected from an existing test suite.

In their recent study, Derakhshanfar et al. [3] propose to abstract the behavior
of the different classes of the system under test (SUT) using a transition system
model. For each class, one transition system describes the sequences of method
calls previously observed on the instances of that class. They seeded those models
to a search-based crash reproduction algorithm to generate complex objects and
found that it improved the overall crash reproduction rate. Crash reproduction
does not seek to cover all the elements of a class under test (CUT) but rather
to generate a test exercising a specific behavior causing the software to crash.



2 M. Olsthoorn, P. Derakhshanfar, X. Devroey

For unit test generation, the coverage of different elements of a CUT also
requires specific objects that might be difficult to generate randomly. In this
paper, we applied model seeding for unit test generation using EvoSuite on
a set of eight classes from the Gson library. We compare model seeding to the
default configuration of EvoSuite w.r.t. the branch coverage and mutation
scores achieved by the generated tests.

2 Evaluation setup

Classes under test. Gson is a Java serialization and deserialization library
to convert Java Objects into JSON and back.1 It is used as a dependency by
more than 222 000 projects on GitHub. We used Gson v.2.8.7 (5924 LOC) and
selected 8 classes with at least one method (with the exception of the toStr-
ing and equals method) with a cyclomatic complexity above 3: Gson, Json-
Reader, JsonTreeReader, JsonTreeWriter, JsonWriter, LinkedHashTreeMap,
LinkedTreeMap, and TypeAdapters. The overall branch coverage of the existing
manually written tests is 79 %, and the overall mutation score is 75 %.

Learning the models. We followed Derakhshanfar et al.’s [3] approach
and generated our models using the existing source code and tests of the Gson
library. For each class used in the project, each time an object is created, we
collected the sequence of methods called on this object. For that, we statically
analyzed the source code of Gson and dynamically executed (a heavily instru-
mented version of the) existing test cases. The models are then learned from the
collected call sequences using a 2-gram inference. Learning the models is a one-
time operation. Models are then seeded to the different executions of EvoSuite.
In total, we collected 328 models for 328 different classes. The average number of
states is 7 and the average number of transitions is 15. We rely on the implemen-
tation of Derakhshanfar et al. [3] to collect call sequences and learn the different
models, and on EvoSuite-RAMP,2 a customized version of EvoSuite [5] for
unit test generation.

Configurations. Model seeding works either online or offline. In the offline
mode, during the initialization of the search, for each model, EvoSuite-RAMP
creates a fixed number of objects by selecting abstract behaviors from the model.
For each selected abstract behavior, it instantiates the object, calls the corre-
sponding methods, and adds the result to an object pool. Whenever an object is
required, the search process copies (with a defined probability p_object_pool)
one object and its method calls from this object pool. Additionally, during the
initialization of the population, EvoSuite-RAMP can also copy (with a de-
fined probability seed_clone) an instance of the CUT (as-is) from the object
pool and use it as a plain (initial) test. In the online mode, objects are created
during the search process using the same procedure. The main difference with
the offline mode is that the objects are created on demand, slightly overload-
ing the search process. For our evaluation, we used the online mode as it does
1 https://github.com/google/gson
2 https://github.com/STAMP-project/evosuite-ramp

https://github.com/google/gson
https://github.com/STAMP-project/evosuite-ramp


An Application of Model Seeding to Search-based Unit Test Generation 3

not overload the initialization and generates only objects required by the search
(and therefore leaves more budget for the search itself). We used probabilities
p_object_pool = 0.3, and seed_clone = 0.3, following Derakhshanfar et al. [3].

To select abstract behaviors, EvoSuite-RAMP supports random selection,
corresponding to random walks in the models, and dissimilarity selection, try-
ing to increase diversity in the selected behaviors. For our evaluation, we used
random selection as it gave slightly better results in our initial trial.

In our evaluation, we compare unit test generation with model seeding acti-
vated (model s.) to the default EvoSuite configuration (default). For both con-
figurations, we used DynaMOSA [6] with the default set of objectives (i.e., bran-
ch, line, weak mutation, input, output, method, and exception coverage) and a
search budget of 180 seconds. Additionally, we deactivated model seeding after
90 seconds to increase exploration. We ran our evaluation (1600 runs) on a server
with 12 CPU cores @ 3.50 GHz. The total execution time for unit test generation
took around 40 minutes. Our replication package is available on Zenodo [4].

Data analysis. For each class under test, we compare the generated test
suites w.r.t. their branch coverage (reported by EvoSuite-RAMP) and their
mutation score, computed using Pit v1.4.3 [1] with ALL mutation operators acti-
vated. The total execution time for the mutation analysis of the 1600 generated
test suites took around 2 days. We used the the non-parametric Wilcoxon Rank
Sum test (α = 0.05) for Type I error, and the Vargha-Delaney statistic Â12 to
evaluate the effect size between model s. and default.

3 Results

Figure 1 presents the branch coverage and mutation score of the test suites
generated using the default and model s. configurations. On average, the highest
branch coverage is achieved by the default configuration for the class JsonTree-
Reader with 92.04 %. The lowest branch coverage is, on average, also achieved
by the default configuration for the class TypeAdapters with 50.04 %. For the
mutation score, the highest average mutation score is achieved by the model
s. configuration for the TypeAdapters class with a score of 93.75 %, and the
lowest average mutation score is also achieved by model s. configuration on the
LinkedHashTreeMap class with an average of 35.91 %.

For each class, we compared the coverage and mutation score of the generated
test suites. The configuration model s. achieved significant better results (α ≤
0.05) for three classes (with two small and one large Â12 magnitudes). It performs
worse compared to the default configuration for two classes (with one small and
one medium Â12 magnitudes). For the mutation score, the model s. configuration
performed significantly better (α ≤ 0.05) on three classes (with two small and
one large Â12 magnitudes). The default configuration performed better for two
classes (with one small and one medium Â12 magnitudes).

In general, our results are mixed. The model s. configuration can lead to
an improvement of the mutation score with, in general, a lower variability than
the default configuration. The most interesting class of our evaluation is the



4 M. Olsthoorn, P. Derakhshanfar, X. Devroey

●

● ●

●●

●

●

●

●

●

●

●

● ●●

Branch coverage Mutation score

G
so

n

Js
on

R
ea

de
r

Js
on

Tr
ee

R
ea

de
r

Js
on

Tr
ee

W
rit

er

Js
on

W
rit

er

Li
nk

ed
H

as
hT

re
eM

ap

Li
nk

ed
Tr

ee
M

ap

Ty
pe

Ad
ap

te
rs

G
so

n

Js
on

R
ea

de
r

Js
on

Tr
ee

R
ea

de
r

Js
on

Tr
ee

W
rit

er

Js
on

W
rit

er

Li
nk

ed
H

as
hT

re
eM

ap

Li
nk

ed
Tr

ee
M

ap

Ty
pe

Ad
ap

te
rs

0.00

0.25

0.50

0.75

C
ov

er
ag

e Conf.
default

model s.

Fig. 1. Coverage of the tests generated using the default and model s. configurations.

JsonReader class for which model s. achieves a significantly worse branch cov-
erage (p-value = 4.98 × 10−15) with a large magnitude (Â12 = 0.180) than
default, but, in the same time, also achieves a significantly better (p-value =
9.26 × 10−25) mutation score, also with a large magnitude (Â12 = 0.92). We
focus our discussion on the JsonReader class.

4 Discussion and future work

Code complexity and model generation. From analyzing the project using
CodeMR,3 we see that the JsonReader class is the most complex class of the
project with a very-high complexity rate and a Weighted Method Count (WMC)
of 359 for 891 lines of code (LOC). Complex code is a well-known challenge for
search-based testing algorithms.

At the same time, the model generated from the collected call sequences for
JsonReader is highly connected with an average degree (i.e., the average number
of incoming and outgoing transitions per state) of 9.0, 252 transitions for only
28 states, and a BFS height of 6 (i.e., number of levels when navigating the
model using a breadth-first search algorithm). This permissiveness of the model
tends to indicate that the usages are not well captured and that the model
can provide only limited guidance. Future research will investigate the usages of
other learning approaches (including higher-values of n for the n-gram inference)
3 https://www.codemr.co.uk

https://www.codemr.co.uk


An Application of Model Seeding to Search-based Unit Test Generation 5

1642 
(25.3%)

280 
(4.3%) 37 

(0.6%)

107 
(1.6%)

3917 
(60.4%)

477 
(7.4%)

25 
(0.4%)

Manual Default

Model s.

Fig. 2. Combined mutation analysis of the JsonReader class with the number and
percentage of mutants killed by the manually written, model s., and default test suites.

to better reflect the usages of the classes. Additionally, the models are created
from the source code and the existing tests. We followed the procedure defined
by Derakhshanfar et al. [3] with the same assumption that the existing tests are
representative of valid usages of the classes (for crash reproduction). However,
this assumption might not be right for unit testing. Therefore, future research
will investigate other sources of call sequences, like projects using Gson, as well
as including information about object and parameter values for those calls.

Mutation analysis. To further investigate the mutants killed by the gener-
ated tests, we performed a combined mutation analysis on the JsonReader class.
For that, we used all the tests generated out of the 10 rounds of execution and the
manually written tests from the JsonReaderTest and JsonReaderPathTest test
suites. Figure 2 presents the number of mutants killed, grouped by the source of
the test suite. Mutants killed by more than one test suite coming from different
sources are placed at intersections in the diagram.

We see that between 7.8 % and 8 % of the mutants are killed only by a
generated test suite. Additionally, we see that between 62 % and 64.7 % of the
mutants are killed by both manually written and automatically generated tests,
which tends to confirm that effort on testing can be reduced using automated
approaches. Figure 2 also shows that the largest amount of mutants only killed
by EvoSuite (7.4 %) are killed both by the default and the model s. config-
urations. This tends to indicate that the randomness of the evolution process
helps to explore new areas of the search space, compared to manually written
tests. We also see that 25 mutants are killed only by the model s. configuration,
and 37 mutants are killed only by the default configuration. Finally, from figs. 1
and 2, we see that the default configuration achieves a significantly lower muta-
tion score, compared to model s., but kills a larger diversity of mutants (at least
once) when the 10 test suites are merged together.

Test case understandability. In this case study, we only consider the
functional properties (i.e., branch coverage and mutation score) of the gener-



6 M. Olsthoorn, P. Derakhshanfar, X. Devroey

ated tests. Recent studies have investigated other aspects of generated tests, like
the readability and understandability by a developer [2]. We believe that, by
generating objects with common usages, model seeding can contribute to im-
proving test case readability and understandability. From the manual analysis
of the test cases killing 25 mutants only killed by the model s. configuration, we
could retrace the usages of the JsonReader class observed in the test case in the
usage model of the class. The confirmation that having such usages in the test
cases helps in reading and understanding them is left for future work.

5 Conclusion

In this case study, we applied model seeding for unit test generation using
EvoSuite-RAMP on eight classes from the Gson library. We compared model
seeding to the default configuration of EvoSuite. Overall, results are mixed. Us-
ing model seeding can lead to an improvement of branch coverage and mutation
score in some cases. We also discussed several aspects of model seeding for unit
test generation and identified potential future research directions regarding the
collection of call sequences and generation of the models, and the usage of model
seeding to improve the understandability of automatically generated tests.

Acknowledgement. This research was partially funded by the EU Horizon
2020 ICT-10-2016-RIA “STAMP” project (No.731529).

References

1. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.: PIT: a prac-
tical mutation testing tool for Java. In: ISSTA ’16. pp. 449–452. ACM (2016).
https://doi.org/10.1145/2931037.2948707

2. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to
improve unit tests. pp. 107–118 (2015). https://doi.org/10.1145/2786805.2786838

3. Derakhshanfar, P., Devroey, X., Perrouin, G., Zaidman, A., Deursen, A.: Search-
based crash reproduction using behavioural model seeding. Softw. Test. Verif. Re-
liab. 30(3), e1733 (may 2020). https://doi.org/10.1002/stvr.1733

4. Derakhshanfar, P., Olsthoorn, M., Devroey, X.: Replication package of An Appli-
cation of Model Seeding to Search-based Unit Test Generation for Gson (Jul 2020).
https://doi.org/10.5281/zenodo.3963956

5. Fraser, G., Arcuri, A.: EvoSuite: Automatic Test Suite Generation for
Object-Oriented Software. In: ESEC/FSE ’11. p. 416. ACM (2011).
https://doi.org/10.1145/2025113.2025179

6. Panichella, A., Kifetew, F.M., Tonella, P.: Automated Test Case Gen-
eration as a Many-Objective Optimisation Problem with Dynamic Selec-
tion of the Targets. IEEE Trans. on Softw. Eng. 44(2), 122–158 (2018).
https://doi.org/10.1109/TSE.2017.2663435

7. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit
test generation. Softw. Test. Verif. Reliab. 26(5), 366–401 (aug 2016).
https://doi.org/10.1002/stvr.1601

https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/2786805.2786838
https://doi.org/10.1002/stvr.1733
https://doi.org/10.5281/zenodo.3963956
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1002/stvr.1601

