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A B S T R A C T

Perceived risk is crucial in designing trustworthy and acceptable vehicle automation systems.
However, our understanding of perceived risk dynamics remains limited, and corresponding
computational models are scarce. This study formulates a new computational perceived risk
model based on potential collision avoidance difficulty (PCAD) for drivers of SAE Level 2
automated vehicles. PCAD quantifies task difficulty using the gap between the current velocity
and the safe velocity region in 2D, and accounts for the minimal control effort (braking
and/or steering) needed to avoid a potential collision, based on visual looming, behavioural
uncertainties of neighbouring vehicles, imprecise control of the subject vehicle, and collision
severity. The PCAD model predicts both continuous-time perceived risk and peak perceived risk
per event. We analyse model properties both theoretically and empirically with two unique
datasets: Datasets Merging and Obstacle Avoidance. The PCAD model generally outperforms
three state-of-the-art models in terms of model error, detection rate, and the ability to accurately
capture the tendencies of human drivers’ perceived risk, albeit at the cost of longer computation
time. Our findings reveal that perceived risk varies with the position, velocity, and acceleration
of the subject and neighbouring vehicles, and is influenced by uncertainties in their velocities.

1. Introduction

Road crashes are a leading cause of injury and death worldwide, resulting in approximately 1.35 million deaths and 20–50 million
non-fatal injuries each year (World Health Organization, 2020). Most traffic accidents arise from human misjudgements (Nadimi
et al., 2016). Specifically, distorted perception of driving risk by human drivers is one of the important causes of road accidents (Eboli
et al., 2017).

Perceived risk captures the level of risk experienced by drivers, which can differ from operational (or actual) risk (Griffin et al.,
2020; Kolekar et al., 2020a). A low perceived risk leads to feeling safe, relaxed, and comfortable, while a high-risk perception
results in cautious behaviour (Griffin et al., 2020). The advent of active safety and driving automation systems has reduced actual
risk, but changes in drivers’ risk perception have been observed. Human drivers will inversely perceive a high level of risk if the
driving automation shows inappropriate driving behaviours, causing decreased trust, low acceptance, and even refusal of vehicle
automation (Xu et al., 2018; Peng et al., 2024). In manual driving, maintaining perceived risk below a specific threshold instigates
driver actions, such as steering and braking (Summala, 1988). Consequently, misperception of risk during automated driving
may lead to driver distrust, unnecessary interventions, and even failure to recognise dangerous situations that require drivers’
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List of notations
Categories Variable∗ Description

Kinematic
and
Geometric
Variables

𝒂𝑖 Acceleration of vehicle 𝑖
𝑑𝑠,𝑛 Distance between the subject (𝑠) and neighbouring (𝑛) vehicles
�̇�𝑠,𝑛 Distance changing rate between the subject (𝑠) and neighbouring (𝑛) vehicles
𝒑𝑖 Position of vehicle 𝑖
𝒑𝑖𝑙 ,𝒑𝑖𝑟 Left and right reference points on vehicle 𝑖 (in this study at the front for the subject and

at the rear for the neighbouring vehicle)
𝒗𝑖 Velocity of vehicle 𝑖
𝛥𝒗𝑖,𝑎 Acceleration-based velocity of vehicle 𝑖 based on the known acceleration
𝛥𝒗𝑖,𝑢 Uncertain velocity of vehicle 𝑖 based on manoeuvre uncertainties
𝒗′𝑖 Perceived velocity of vehicle 𝑖 taking into account 𝒗𝑖, 𝛥𝒗𝑖,𝑢 and 𝛥𝒗𝑖,𝑎
𝜽∗∗𝑠𝑗1 ,𝑛𝑗2 Bearing between reference points on subject (𝑠) and neighbouring (𝑛) vehicles
�̇�𝑠𝑗1 ,𝑛𝑗2 Bearing rate between reference points on subject (𝑠) and neighbouring (𝑛) vehicles
𝜑 Heading angle
𝐗𝑖 State vector of vehicle 𝑖
𝑋, 𝑌 Longitudinal and lateral directions of the coordinate system
𝐿,𝑊 Length and width of a vehicle

Avoidance
Difficulty
Computation

𝑽 Safe velocity set
𝑽 ′ Safe velocity set considering uncertainties and known acceleration
𝒗𝑔 Velocity gap for collision avoidance difficulty derived as distance between 𝒗′𝑠 and 𝑽 ′

𝒗𝑠,𝑽 𝒗𝑠,𝑽 ′ Subject velocity in the safe velocity set 𝑽 and 𝑽 ′

𝑟𝑖 Direction of the uncertain velocity of vehicle 𝑖
 Probability density function of a truncated Gaussian distribution
𝑓𝑏, 𝑏𝑏, 𝑙𝑏, 𝑟𝑏 Forward, backward, left and right bounds of the uncertainty velocity in the probability

density function of a truncated Gaussian distribution
𝑵 Probability density function of a normal Gaussian distribution
 Cumulative distribution function of a normal Gaussian distribution
𝑙 Length of an uncertain velocity vector
 Conditional probability of an uncertain velocity vector

PCAD Model
Components

𝑅𝑃𝐶𝐴𝐷(𝑡) Perceived risk function in PCAD model
𝑖 Perceived velocity function for vehicle 𝑖
 Avoidance difficulty function
 Weighting function

PCAD Model
Parameters

𝜎𝑖,𝑋 , 𝜎𝑖,𝑌 Standard deviations for uncertain velocity distributions of vehicle 𝑖
𝑡𝑖,𝑎 Anticipated time for acceleration-based velocity of vehicle 𝑖
𝛼 The exponent of the Weighting function.
𝛽 The mass ratio 𝛽 = 𝑀𝑛

𝑀𝑠+𝑀𝑛
. 𝑀𝑠 and 𝑀𝑛 represent the mass of the subject (𝑠) and

neighbouring (𝑛) vehicles.
𝑣ref A reference velocity in the weighting function  , which can be a velocity limit under

specific conditions.
* 𝑖 ∈ {𝑠, 𝑛} with 𝑠 representing the subject vehicle and 𝑛 representing the neighbouring vehicle.
** 𝑗1, 𝑗2 represent the numbering of different reference points, which can be 1, 2, 3, ...

ntervention. Therefore, it is essential to understand and quantify drivers’ perceived risk in driving automation and use it to design
riving automation with high technical and perceived safety levels.

A few computational models for perceived risk have been developed, and they can be clustered into two categories: empirical
odels reliant on data, and physical models grounded in first principles. In the first category, Kolekar et al. (2020a) established
driving risk field (DRF) model considering the probability of an event occurring and the event consequence based on drivers’

ubjective risk ratings and steering responses. Ping et al. (2018) used deep learning methods to model perceived risk in urban
cenarios with factors related to the subject vehicle and the driving environment. Our previous study (He et al., 2022) built a
egression-based perceived risk model to explain and compute event-based perceived risk in highway merging and braking scenarios.
mong other factors, the model captures the influence of relative motion with respect to other road users on drivers’ subjective
erceived risk ratings.

Physical perceived risk models typically rely on surrogate measures of safety (SMoS). The minimum time to collision (TTC)
an show the drivers’ threshold of perceived risk when they take last-moment braking actions (Kiefer et al., 2005), while the
nverse TTC represents drivers’ relative visual expansion of an obstacle, which can indicate drivers’ risk perception (Lee, 1976).
dditionally, Kondoh et al. (2008, 2014) further analysed the relationship between drivers’ risk perception regarding the leading
2
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Fig. 1. The coordinate system in the definition.

vehicle and inverse TTC and time headway (THW) in car-following situations. Models using TTC and THW only capture one-
dimensional (1D) interaction and are mainly validated for car following. Attempts have been made to model risk for two-dimensional
(2D) motion based on the driving risk field theory (Wang et al., 2016) and develop collision warning algorithms (Li et al., 2020). This
research line is advanced by the probabilistic driving risk field model (PDRF) (Mullakkal-Babu et al., 2020) by considering motion
probability distributions of other road users and the collision severity to estimate the collision risk. Although the above-mentioned
models estimate the actual collision risk rather than the perceived risk, they are promising to predict human drivers’ risk perception
thanks to the strong connection between the actual risk and the perceived risk.

The existing empirical models can quantify perceived risk in certain scenarios, but their validity across diverse situations remains
an open question and they are not fully explainable. Physical models, while explainable, can compute the actual risk. However, the
mapping between the actual collision risk and perceived risk remains ambiguous and the thresholds of the SMoSs lack empirical
support. Hence, an explainable and empirically underpinned computational perceived risk model is still lacking.

This study has two primary objectives: Objective 1 is to formulate an explainable computational perceived risk model grounded
in the human drivers’ risk perception mechanism applicable to general 2D movements. Objective 2 is to analyse and compare our
new model with existing models both theoretically and empirically. Our model is defined using the gap between the current velocity
and the safe velocity region in 2D. It represents the minimal control effort (braking and/or steering) needed to avoid a potential
collision, considering behavioural uncertainties of neighbouring vehicles and imprecise control of the subject vehicle as well as
collision severity. Our model predicts both continuous-time perceived risk and peak perceived risk per event. We remark that the
proposed model is developed towards the general driver population instead of personalised modelling but can capture individual
differences by tuning model parameters.

The remainder of this paper is structured as follows. We first revisit three computational perceived risk models from literature
in Section 2, and then present the formulation of the new model in Section 3. Properties of the new model and the three baseline
models are presented in Section 4. Perceived risk data, model calibration approach and model performance indices are introduced
in Section 5. The model evaluation results are represented in Section 6 followed by a discussion in Section 7, and conclusions in
Section 8.

2. Related perceived risk models

This section introduces the preliminaries for perceived risk modelling and three baseline models for comparison and performance
evaluation, while referring to Appendix A for details.

2.1. Coordinate system, reference points and vehicle model

All models in this study employ the same coordinate system. The road space is modelled as a flat Euclidean plane. The 𝑋-axis
aligns with the direction of the road, while the 𝑌 -axis is perpendicular to it, oriented counter-clockwise, as illustrated in Fig. 1.
Given our focus on perceived risk based on relative motion, rather than vehicle dynamics, we employ a simple point mass model
incorporating vehicle dimensions. According to the point mass model, the positions, velocities and accelerations of the geometric
centre for both the subject vehicle 𝑠 and a neighbouring vehicle or obstacle 𝑛 are 𝒑𝑠 = [𝑥𝑠, 𝑦𝑠]𝑇 , 𝒑𝑛 = [𝑥𝑛, 𝑦𝑛]𝑇 , 𝒗𝑠 = [𝑣𝑠,𝑋 , 𝑣𝑠,𝑌 ]𝑇 ,
𝒗𝑛 = [𝑣𝑛,𝑋 , 𝑣𝑛,𝑌 ]𝑇 , 𝒂𝑠 = [𝑎𝑠,𝑋 , 𝑎𝑠,𝑌 ]𝑇 , 𝒂𝑛 = [𝑎𝑛,𝑋 , 𝑎𝑛,𝑌 ]𝑇 respectively. The heading angle 𝜑 follows from the vehicle velocity direction
for the point mass model.

Vehicle dimensions are incorporated into the perceived risk models. Fig. 1 illustrates that the leftmost and the rightmost points
in the front side of the subject vehicle and the rear side of the neighbouring vehicle are the reference points in this case. Given
the vehicle’s length 𝐿 and width 𝑊 , in straight driving, the positions of the reference points are 𝒑𝑠𝑙 = 𝒑𝑠 + [𝐿∕2 𝑊 ∕2]𝑇 and
𝒑𝑠𝑟 = 𝒑𝑠 + [𝐿∕2 −𝑊 ∕2]𝑇 for the subject vehicle, 𝒑𝑛𝑙 = 𝒑𝑠 + [−𝐿∕2 𝑊 ∕2]𝑇 and 𝒑𝑛𝑟 = 𝒑𝑠 + [−𝐿∕2 −𝑊 ∕2]𝑇 for the neighbouring
vehicle.
3
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Table 1
Introduction of existing perceived risk models.

Model Regression Perceived Risk Model
(RPR) (He et al., 2022)

Perceived Probabilistic Driving Risk
Field Model (PPDRF) (Mullakkal-Babu
et al., 2020)

Driving Risk Field Model (DRF) (Kolekar
et al., 2020a)

Introduction Event-based model derived from a
simulator experiment involving 18
merging and braking event types on a
2-lane highway.

Perceived Probabilistic Driving Risk
Field Model accounting for behaviour
uncertainties of surrounding vehicles in
2D based on predicted collision
probability and collision severity.

Represents human drivers’ risk
perception as a 2-dimensional field
combining probability and consequence
of an event.

Assumptions ∙ Perceived risk stems from vehicles
directly in front after entering the lane.
∙ Drivers can accurately estimate motion
information.

∙ Uncertainties of neighbouring vehicles
are represented by independent Gaussian
distributions of 2D accelerations.
∙ The subject vehicle maintains the
current acceleration over the prediction
horizon.

∙ Perceived risk is the product of the
probability of a hazardous event and its
severity.
∙ The risk field widens with distance
and decays with lateral and longitudinal
distance.
∙ The height of the perceived risk field
decays as the lateral and longitudinal
distance from the vehicle increases.

Definitions The perceived risk is calculated using
the longitudinal position of the
neighbouring vehicle and the subject
vehicle, along with the current
acceleration of the neighbouring vehicle.
The perceived risk is given as Eq. (A.2).

∙ Total perceived risk is calculated as a
sum of kinetic risk and potential risk as
Eq. (A.3).
∙ Kinetic risk is given by Eq. (A.4),
involving the subject mass, mass ratio,
relative velocity, and estimated collision
probability.
∙ Potential risk is modelled as Eq. (A.6),
involving the subject mass, relative
velocity and the distance to the obstacle.

∙ The overall perceived risk is quantified
as the product of the probability and the
severity of events at different positions
relative to the vehicle as shown
in Eq. (A.7).
∙ The probability field is modelled as a
Gaussian distribution in the lateral
direction in Eq. (A.8)
∙ The height of the probability field is a
function of the longitudinal distance as
shown in Eq. (A.9), and the width of the
probability field increases linearly with
the distance to the obstacle, reflecting
widening of the risk field as shown
in Eq. (A.10).

Risk diagram

2.2. Existing perceived risk models

In this section, we briefly revisit three perceived risk models that are fundamental to understanding driver’s perceived risk in
different driving scenarios. These models, including the Regression Perceived Risk Model (RPR) (He et al., 2022), the Perceived
Probabilistic Driving Risk Field Model (PPDRF) (Mullakkal-Babu et al., 2020), and the Driving Risk Field Model (DRF) (Kolekar
et al., 2020a), offer diverse approaches to quantifying and analysing perceived risk. For a comprehensive overview of these
models, including their key assumptions and mathematical definitions, please refer to Table 1 with more details in Appendix A
and corresponding literature.

Table 2, summarises model features and factors used in risk calculation. RPR and DRF are validated but do not take into account
all factors known to be relevant in risk perception. PPDRF takes into account all listed factors, but its parameters are not based on
empirical data and it has not been validated. Hence, this paper presents the new Potential Collision Avoidance Difficulty (PCAD)
model which is inspired by the three existing models and validates the resulting four models with the two available perceived risk
datasets used to develop and validate the RPR and the DRF model.

3. Potential collision avoidance difficulty model (PCAD)

Our proposed model is grounded in Fuller’s Risk Allostasis Theory which proposes that a feeling of risk can be indicated by the
driving task difficulty (Fuller, 2011) where drivers’ primary driving task is to perform avoidance actions to moderate the perceived
risk to a preferred range (Fuller, 1984). Consequently, we develop a dynamic perceived risk model by quantifying the driving
task difficulty, which computes real-time perceived risk and explains its underlying mechanism. The PCAD model quantifies the
4
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Table 2
Model features and factors used in risk calculation.

RPR PPDRF DRF PCAD

Dimension 1-D 2-D 2-D 2-D
Distance     
Using relative velocity –  –  
Using acceleration   –  
Using subject velocity –    
Considering crash consequence –    
Considering manoeuvre uncertainties –  –  
Usable on curved lanes –    

 indicate ‘‘yes’’ and − indicate ‘‘no’’.

ask difficulty considering the minimal 2D velocity change to avoid a potential collision. The model accounts for the manoeuvre
ncertainties of other road users and the imprecision in the control of the subject vehicle.

In this section, we introduce the primary assumptions and the general structure of the model followed by a detailed explanation
f each component, including the potential collision judgement method and the perceived velocity of a neighbouring vehicle and
he subject vehicle, and a weighting function that considers the collision severity.

.1. Assumptions

To operationalise the model, we adopt several simplifying assumptions:

• Assumption 1: Human drivers perceive risk based on an estimation of the difficulty in avoiding a potential collision according
to their visual perception of the relative motion of the subject vehicle and neighbouring vehicles (Fuller, 1984, 2011; Sivak,
1996). They judge whether a vehicle is on a collision course based on looming (Ward et al., 2015).

• Assumption 2: The known acceleration and manoeuvre uncertainties of neighbouring and subject vehicles cause extra
perceived risk. The latter is presented as an uncertain acceleration following a specific probability distribution. In this study,
we assume a Gaussian distribution with zero means. This is grounded in existing literature. In stable highway driving, the
longitudinal and lateral accelerations of a neighbour follow a Gaussian distribution (Wagner et al., 2016). Specifically, Ko et al.
(2010) observed that in a vehicle field test with GPS, the modelling results of acceleration as a response variable indicated
that it followed a Gaussian distribution. Additionally, Jansson (2005) argued that a constant acceleration model is sufficiently
accurate for tracking vehicle motion. Both the known acceleration and this uncertain acceleration will remain constant in a
short period of time.

– 2a: The known accelerations of the subject and neighbouring vehicles influence perceived risk (Herman et al., 1959;
Sultan et al., 2004; He et al., 2022).

– 2b: The uncertain acceleration of neighbouring vehicles comes from a potential manoeuvre change (e.g., a sudden brake
or steer) (Duan et al., 2013; Ding et al., 2014).

– 2c: The uncertain acceleration of the subject vehicle is caused by imprecise control in steering and throttle/braking,
which is relevant to human drivers’ control ability or driving automation’s performance (Blaauw, 1982).

• Assumption 3: Human drivers perceive higher perceived risk with higher subject vehicle velocity (Kochi et al., 2023).

.2. General structure of PCAD

Let 𝐗𝑠 = (𝒑𝑠, 𝒗𝑠,𝒂𝑠)𝑇 and 𝐗𝑛 = (𝒑𝑛, 𝒗𝑛,𝒂𝑛)𝑇 denote the state of the subject vehicle 𝑠 and the neighbouring vehicle 𝑛 respectively,
ith 𝒑𝑠 and 𝒑𝑛, 𝒗𝑠 and 𝒗𝑛, 𝒂𝑠 and 𝒂𝑛 being the position, velocity and acceleration vectors, and 𝑇 the transpose of a vector. The
CAD is formulated as Eq. (1)

𝑅𝑃𝐶𝐴𝐷(𝑡) = (𝒑𝑠,𝒑𝑛,𝑠(𝐗𝑠,𝐗𝑛),𝑛(𝐗𝑠,𝐗𝑛)) ⋅(𝒗𝑠) (1)

ere,  represents the avoidance difficulty function. This function quantifies the required 2D velocity change to bring the subject
ehicle to the safe velocity region in the velocity domain to avoid a potential collision with the neighbouring vehicle, considering
actors such as their positions, velocities and accelerations. 𝑖 denotes the 2D perceived velocity for vehicle 𝑖 ∈ {𝑠, 𝑛}, thereby
apturing absolute and relative motion of the interacting vehicles. Finally,  is the weighting function, being a power function
ith 𝑣𝑠, which accounts for the influence of the subject vehicle’s speed on perceived risk. Higher speeds generally increase the
erceived risk, as the consequence of a potential collision is more severe.

The perceived velocity function 𝑖 can be represented as

𝒗′𝑖 = 𝑖(𝐗𝑠,𝐗𝑛) = 𝒗𝑖 + 𝛥𝒗𝑖,𝑎 + 𝛥𝒗𝑖,𝑢 (2)

here 𝑖 is the functional operator to compute the perceived velocity 𝒗′𝑖 of the vehicle 𝑖 ∈ {𝑠, 𝑛} by human drivers for perceived
5

isk computation. The perceived velocity combines three components: the velocity 𝒗𝑖 (𝑖 ∈ {𝑠, 𝑛}), an acceleration-based velocity
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𝛥𝒗𝑖,𝑎(𝑖 ∈ {𝑠, 𝑛}) that accounts for the influence of the known acceleration (Assumption 2a) and an uncertain velocity 𝛥𝒗𝑖,𝑢 that
accounts for uncertainties in vehicle motion (Assumption 2b and Assumption 2c). For example, consider a driver who notices
that a car ahead is braking rapidly. The driver might perceive the car’s velocity to be lower than it actually is because the driver
anticipates its future motion based on the acceleration. The uncertain velocity component captures uncertainties in vehicle motion,
such as a neighbouring vehicle suddenly swerving or the subject vehicle’s imprecise control.

3.3. Collision avoidance difficulty function  in deterministic conditions

In this section, the collision avoidance difficulty is formulated to capture part of human drivers’ perceived risk under constant
speed and deterministic motion conditions, and thereby covers Assumption 1. The perceived velocity (2) relaxes to the actual
velocity 𝒗 under such conditions. Uncertainties and acceleration will be incorporated in the next section.

3.3.1. Potential collision judgement of human drivers — Looming detection
A precedent step for collision avoidance is to detect a potential collision based on the current environment information. One

lesson from aircraft pilots is that two aircraft are on a crossing course if they remain at the same bearing1 in their field of view.
Similarly, in road traffic, a neighbouring vehicle lies on a crossing course with a subject vehicle, if its bearing does not change (Ward
et al., 2015; Crashdashes, 2023). Furthermore, if the vehicle is approaching simultaneously, a phenomenon known as looming
prevails. This situation indicates a risk of collision. This is illustrated in Figs. 2(a) and 2(b) where the bearing 𝜃 at which the
ubject vehicle sees the neighbouring vehicle remains constant. To identify this phenomenon and anticipate a potential collision is
eferred to as looming detection.

Our method of looming detection combines the two criteria introduced above, requiring that: (i) the bearing 𝜽 of a neighbouring
vehicle remains constant (see Fig. 2(b)), and (ii) the distance between the two vehicles is decreasing. Fig. 2(b) illustrates the bearing
𝜽 considering each vehicle as a single point, but to detect looming we must also consider vehicle size. Here we approximate vehicle
shape by rectangles and use corners as reference points. In the side impact example in Fig. 2(c) the relevant reference points are
the front left and front right of the subject vehicle and the front left and rear left of the neighbouring vehicle. We consider four
interactions for looming detection. Fig. 2(c) illustrates the four relevant interactions between corners 𝒑𝑠𝑙∕𝒑𝑛𝑙, 𝒑𝑠𝑙∕𝒑𝑛𝑟, 𝒑𝑠𝑟∕𝒑𝑛𝑙, and
𝑠𝑟∕𝒑𝑛𝑟 respectively. From the perspective of the subject vehicle, the left reference point on the neighbouring vehicle moves to the left
anticlockwise), but the right one moves to the right (clockwise). At an intermediate point the heading rate will be zero, representing
collision. Meanwhile, the distance between the two vehicles is decreasing and hence this is a looming case. Alternatively if both
oints would move to the left the subject vehicle would pass at the right, and if both points would move to the right the subject
ehicle would pass at the left.

In this study, the reference points are chosen at the front left and right on the subject vehicle and the rear left and right on the
eighbouring vehicle (Figs. 1 and 3). This simplification is justified since the datasets used contain only obstacle avoidance events
nd merging events in the front of the subject vehicle.

In our method, the relative bearing rate �̇�𝑠𝑗1 ,𝑛𝑗2 of four pairs of reference points on the subject vehicle and the neighbouring
ehicle is calculated using Eq. (3)2 (see Fig. 2(c) for more details).

�̇�𝑠𝑗1 ,𝑛𝑗2 =

(

𝒑𝑠𝑗1 − 𝒑𝑛𝑗2
)

× (𝒗𝑠𝑗1 − 𝒗𝑛𝑗2 )

‖

‖

‖

𝒑𝑠𝑗1 − 𝒑𝑛𝑗2
‖

‖

‖

2
, 𝑗1, 𝑗2 ∈ {𝑙, 𝑟} (3)

Looming is indicated when the product of the minimum and maximum values of �̇�𝑠𝑗1 ,𝑛𝑗2 is negative (one is positive and one is
egative), as shown in Eq. (4) and Fig. 2(c).

min �̇�𝑠𝑗1 ,𝑛𝑗2 ⋅max �̇�𝑠𝑗1 ,𝑛𝑗2 < 0, 𝑗1, 𝑗2 ∈ {𝑙, 𝑟}, (4)

The second criterion for looming is that the neighbouring vehicle is approaching the subject vehicle. That is, a neighbouring
ehicle may only collide with the subject vehicle if it is getting closer. This is assessed by examining the distance changing rate
etween the two vehicles (centre), defined by Eq. (5) and its derivative in Eq. (6). A negative rate indicates that the neighbouring
ehicle is approaching.

𝑑𝑠,𝑛 =
√

(𝒑𝑠 − 𝒑𝑛)𝑇 (𝒑𝑠 − 𝒑𝑛) (5)

�̇�𝑠,𝑛 =
1
𝑑𝑠,𝑛

(𝒑𝑠 − 𝒑𝑛)𝑇 (𝒗𝑠 − 𝒗𝑛) < 0 (6)

Considering the two criteria, if Eqs. (4) and (6) are satisfied at the same time, the neighbouring vehicle is looming (Fig. 2).
onversely, if Eqs. (4) and (6) are not met simultaneously, the neighbouring vehicle is classified as non-looming (Fig. 3), namely

min �̇�𝑠𝑗1 ,𝑛𝑗2 ⋅max �̇�𝑠𝑗1 ,𝑛𝑗2 ⩾ 0, 𝑗1, 𝑗2 ∈ {𝑙, 𝑟}, (7)

1 We define bearing as the orientation in our field of view at which another object is observed.
2 In straight driving, the velocity of reference points 𝒗𝑖,𝑗 (𝑖 ∈ {𝑠, 𝑛}, 𝑗 ∈ {𝑙, 𝑟}) can be simplified as the vehicle’s linear velocity 𝒗𝑖 (𝑖 ∈ {𝑠, 𝑛}) without considering

ehicle’s yaw rate.
6



Transportation Research Part C 166 (2024) 104751X. He et al.
Fig. 2. An example of looming. The subject vehicle and a neighbouring vehicle are on a crossing course.

or

�̇�𝑠,𝑛 =
1
𝑑𝑠,𝑛

(𝒑𝑠 − 𝒑𝑛)𝑇 (𝒗𝑠 − 𝒗𝑛) ⩾ 0, (8)

Note that we examine four pairs of reference points in Eq. (3) and Eq. (4) for a simpler computation. In general circumstances,
reference points for collision detection are ideally positioned at the four corner points of each vehicle. If the computation capability
permits, we can examine all 16 pairs of reference points for Eq. (3) and Eq. (4). Additionally, Looming detection is directly valid
when the subject vehicle only has translational motion with constant acceleration and thereby follows a straight path. When the
subject vehicle has a yaw rate (�̇�), and follows a curved path the theory still stands based on a conformal mapping.

3.3.2. Collision avoidance difficulty
We define a safe velocity set 𝑽 , which comprises all non-looming subject velocity vectors that meet Eq. (7) and/or (8) based on

the position of the two vehicles 𝒑 , 𝒑 and the velocity of the neighbouring vehicle 𝒗 at the current moment. The safe velocity set
7
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Fig. 3. Two examples of non-looming.

𝑽 is defined in Eq. (9).

∀𝒗𝑠 ∈ 𝑽 ⇒ min �̇�𝑠𝑗1 ,𝑛𝑗2 ⋅max �̇�𝑠𝑗1 ,𝑛𝑗2 ⩾ 0 (𝑗1, 𝑗2 ∈ {𝑙, 𝑟}, ) or �̇�𝑠,𝑛 ⩾ 0, (9)

where the equality holds when 𝒗𝑠 is at the boundary of velocity set 𝑽 .
The collision avoidance difficulty ‖𝒗𝑔‖ is defined as the 2D distance from the current subject velocity 𝒗𝑠 to the nearest point on

the boundary of the safe velocity set 𝑽 , which is the end point of the vector denoted as 𝒗𝑠,𝑽 (Eq. (10)) (see Fig. 4 for an illustration).
Hence, the collision avoidance function  is defined as

‖𝒗𝑔‖ =  = ‖𝒗𝑠,𝑽 − 𝒗𝑠‖ (10)

where 𝒗𝑠,𝑽 is the vector in the safe velocity set 𝑽 , the end point of which is closest to the subject velocity vector 𝒗𝑠, satisfying

𝒗𝑠,𝑽 = argmin
𝒗∈𝑽

‖𝒗 − 𝒗𝑠‖ (11)

𝒗𝑔 represents the vector pointing from the current subject velocity 𝒗𝒔 towards 𝒗𝑠,𝑽 , indicating the direction and magnitude of the
adjustment needed to reach the safe velocity set 𝑽 from the current velocity 𝒗𝒔. If the current subject velocity 𝒗𝑠 already lies within
the safe velocity set 𝑽 , then the velocity gap ‖𝒗𝑔‖ is zero, implying no collision avoidance difficulty.

In this study, the technique of grid search is employed to identify 𝒗𝑔 , ensuring compliance with both Eq. (10) and Eq. (11).

3.4. Perceived velocity function 𝑖 of a neighbouring vehicle and the subject vehicle considering known acceleration and manoeuvre
uncertainties

The collision avoidance difficulty calculated using the actual (deterministic) motion information (i.e., 𝒑𝑖 and 𝒗𝑖) (Eq. (10))
presented in the previous section can already account for most of the perceived risk, which is shown in Section 6 (Figs. 10(e)
and 11(e)). However, these calculations overlook how human drivers process environmental information considering known
accelerations and uncertainties. In this section, we define a perceived velocity function denoted as  shown in Eq. (2) for both the
subject and the neighbouring vehicles. This function is based on a more comprehensive understanding, which outputs a perceived
velocity 𝒗′𝑖 consisting of three components: the actual velocity 𝒗𝑖, the velocity derived from the known acceleration 𝒗𝑖,𝑎 and the
velocity derived from manoeuvre uncertainties 𝒗𝑖,𝑢. The perceived velocity yields an adjusted safe velocity set 𝑽 ′ and thereby a new
velocity gap 𝒗𝑔 .

3.4.1. The perceived velocity
The perceived velocity 𝒗′𝑖 is the final output of perceived velocity function  based on the state of the subject vehicle 𝐗𝑠

= (𝒑𝑠, 𝒗𝑠,𝒂𝑠)𝑇 and the state of the neighbouring vehicle 𝐗𝑛 = (𝒑𝑛, 𝒗𝑛,𝒂𝑛)𝑇 , which consists of the actual velocity 𝒗𝑖, the known
acceleration-based velocity 𝛥𝒗𝑖,𝑎 and the uncertain velocity 𝛥𝒗𝑖,𝑢 as shown in Eq. (2). This integrated perceived velocity function
considers the acceleration and uncertainties, thus contributing to extra perceived risk. Fig. 5 illustrates the relationship between the
8
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Fig. 4. An example to show the collision avoidance difficulty. In this case, the subject vehicle (red) is following a leading vehicle (white, 50m ahead, 𝒗𝑛 = 8.33m∕s)
with a higher velocity (𝒗𝑠 = 16.67m∕s). Eq. (7) and (8) define the safe velocity set 𝑽 as the blue area, e.g., if the current subject velocity is any one of the
elements in 𝑽 (e.g., 𝒗1 and 𝒗2), the neighbouring vehicle (white) is not looming, and the collision avoidance difficulty is zero. In this example, since the subject
vehicle is driving faster than the leading vehicle, the current subject velocity 𝒗𝑠 ∉ 𝑽 , indicating that the neighbouring is looming regarding the subject vehicle.
The distance from the subject velocity 𝒗𝒔 to the safe velocity set 𝑽 (the safety boundary) is 𝒗𝑔 (the red arrow), the length of which is the defined collision
avoidance difficulty.

Fig. 5. The relationship between the actual velocity 𝒗𝑖 the uncertain velocity 𝛥𝒗𝑖,𝑢, the acceleration caused velocity change and the perceived velocity 𝒗′𝑖
(𝑖 ∈ {𝑠, 𝑛}) of the subject vehicle 𝑠 and the neighbouring vehicle 𝑛. In this case, the subject vehicle (red) is passing by a neighbouring vehicle (white). Both
vehicles are decelerating causing acceleration-based velocities 𝛥𝒗𝑠,𝑎 and 𝛥𝒗𝑛,𝑎 (the purple arrows). The uncertain velocities 𝛥𝒗𝑠,𝑢 and 𝛥𝒗𝑛,𝑢 are pointing to each
other. The final perceived velocity 𝒗′𝑠 and 𝒗′𝑛 contain the contribution of the acceleration-based velocity and the uncertain velocity.

actual velocity 𝒗𝑖, the uncertain velocity 𝛥𝒗𝑖,𝑢, the acceleration-based velocity 𝛥𝒗𝑖,𝑎 and the final perceived velocity 𝒗′𝑖 . The perceived
velocity 𝒗′𝑖 is utilised for computing perceived risk. The known acceleration-based velocity 𝛥𝒗𝑖,𝑎 and the uncertain velocity 𝛥𝒗𝑖,𝑢 will
be detailed in Sections 3.4.2 and 3.4.3 below.

3.4.2. The velocity component derived from known acceleration — the acceleration-based velocity
Previous studies have shown that human drivers consider the acceleration of the subject and other vehicles during driving (Her-

man et al., 1959). A collision avoidance behaviour model for drivers achieves 20% more accuracy when the acceleration of other
vehicles is considered (Sultan et al., 2004). For example, the action of braking by a leading vehicle can initially cause perceived risk
to the following subject vehicle, even if the distance between the vehicles does not close rapidly at the initial stage. The perceived
risk may decrease once the subject vehicle also brakes, even as the gap between the vehicles continues to decrease.

To account for the influence of known acceleration (Assumption 2a), we introduce a component to the perceived velocity
(Eq. (2), which reflects human drivers’ anticipation of velocity based on the current known acceleration. We name this component
as acceleration-based velocity represented by Eq. (12).

𝛥𝒗 = 𝒂 ⋅ 𝑡 , 𝑖 ∈ {𝑠, 𝑛} (12)
9
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where 𝛥𝒗𝑖,𝑎 represents the component of perceived velocity caused by known acceleration; 𝒂𝑖 is the current acceleration, and 𝑡𝑖,𝑎 is
an anticipated time for computation that varies for the subject vehicle and the neighbouring vehicle. 𝑡𝑖,𝑎 is determined by calibration.

he impact of 𝑡𝑖,𝑎 duration on the model behaviour depends on the known acceleration direction. If the known acceleration tends
o decrease the gap between two vehicles, a longer anticipated time results in a higher perceived risk output by the model, and vice
ersa.

.4.3. The velocity component derived from manoeuvre uncertainties — the uncertain velocity
Assumption 2b and Assumption 2c specify that manoeuvre uncertainties cause additional perceived risk. For instance, when we

ass by a car in the adjacent lane, we unconsciously shift to the other side of the lane to keep away from the car for safety because
he velocity of the other car can suddenly change (Ding et al., 2014). Accordingly, we define an uncertain velocity perceived by
uman drivers based on the manoeuvre uncertainties as a component of the perceived velocity (Eq. (2)).

The uncertain velocity in human driver’s mind caused by the uncertainties of each vehicle in interaction makes the situation
eing perceived as more dangerous. Fig. 6 shows an example of the uncertain velocity and its influence on the velocity set 𝑽 .

The uncertain velocity exists in all directions on both subject and neighbouring vehicles, but its impact for different directions on
erceived risk varies. We assume that acceleration with a direction reducing the distance between vehicles most strongly increases
erceived risk. Hence we only consider this direction in the perceived risk model, which also reduces computational complexity.
his direction is illustrated in Fig. 5, with a detailed explanation in Appendix D.

Based on the discussion above, we have

𝛥𝒗𝑖,𝑢 = 𝑙 ⋅
𝒑𝑠 − 𝒑𝑛

‖𝒑𝑠 − 𝒑𝑛‖
⋅ 𝑟𝑖, 𝑖 ∈ {𝑠, 𝑛}, 𝑟𝑛 = 1 and 𝑟𝑠 = −1. (13)

where 𝛥𝒗𝑖,𝑢 ( 𝑖 ∈ {𝑠, 𝑛}) is the uncertain velocity; 𝑙 is the length of the uncertain velocity vector which is derived below; 𝒑𝑠−𝒑𝑛
‖𝒑𝑠−𝒑𝑛‖

is a
unit vector pointing from the neighbouring vehicle to the subject vehicle; 𝑟 determines the direction of the uncertain velocity where
𝑟𝑛 = 1 is for the neighbouring vehicle representing the direction from the neighbouring vehicle to the subject vehicle, and 𝑟𝑠 = −1
is for the subject vehicle representing the opposite direction.

According to Assumption 2b and 2c, the manoeuvre uncertainties are presented as an uncertain acceleration, which is assumed
to follow Gaussian distributions as motivated under Assumption 2, and this acceleration will remain constant over a short period
of time. Hence, given a specific duration, the uncertain velocity 𝛥𝒗𝑖,𝑢 ( 𝑖 ∈ {𝑠, 𝑛}) also follows Gaussian distributions. With the
consideration of physical restrictions of the vehicle velocity, the Gaussian is

𝑣𝑖,𝑢,𝑋 ∼ (𝑣𝑖,𝑢,𝑋 |0, 𝜎𝑖,𝑋 , 𝑓𝑏, 𝑏𝑏)

𝑣𝑖,𝑢,𝑌 ∼ (𝑣𝑖,𝑢,𝑌 |0, 𝜎𝑖,𝑌 , 𝑙𝑏, 𝑟𝑏)
(14)

where 𝑣𝑖,𝑢,𝑋 and 𝑣𝑖,𝑢,𝑌 are the uncertain velocity in 𝑋 and 𝑌 directions;  is the probability density function of the uncertain velocity
in each direction. 𝑓𝑏, 𝑏𝑏, 𝑙𝑏, 𝑟𝑏 are the forward, backward, left and right bounds for the uncertain velocity in the density function,
which are set to 50m∕s, −14m∕s, 8.5m∕s and −8.5m∕s respectively in this study (Jazar, 2008). The truncated distribution  becomes

(𝑣𝑖,𝑢,𝑋 |0, 𝜎𝑖,𝑋 , 𝑓𝑏, 𝑏𝑏) =

{

1
𝜎𝑖,𝑋

𝑁(
𝑣𝑖,𝑢,𝑋
𝜎𝑖,𝑋

)

 (
𝑓𝑏−𝑣𝑖,𝑋
𝜎𝑖,𝑋

)− (
𝑏𝑏−𝑣𝑖,𝑋
𝜎𝑖,𝑋

)
, 𝑏𝑏 ⩽ 𝑣𝑖,𝑢,𝑋 ⩽ 𝑓𝑏, 𝑖 ∈ {𝑠, 𝑛}

0, otherwise

(𝑣𝑖,𝑢,𝑌 |0, 𝜎𝑌 , 𝑙𝑏, 𝑟𝑏) =

{

1
𝜎𝑖,𝑌

𝑁(
𝑣𝑖,𝑢,𝑌
𝜎𝑖,𝑌

)

 (
𝑙𝑏−𝑣𝑖,𝑌
𝜎𝑖,𝑌

)− (
𝑟𝑏−𝑣𝑖,𝑌
𝜎𝑖,𝑌

)
, 𝑟𝑏 ⩽ 𝑣𝑖,𝑢,𝑌 ⩽ 𝑙𝑏, 𝑖 ∈ {𝑠, 𝑛}

0, otherwise

(15)

here 𝑁 is the probability density function of the Gaussian distribution and  is its cumulative distribution function.
To obtain the final uncertain velocity, its length and direction should be considered simultaneously. Hence, we use the

athematical expectation of Eq. (13) as the length of the uncertain velocity, which can be calculated as follows

𝐸(‖𝛥𝒗𝑖,𝑢‖) = ∫

+∞

0


(

𝛥𝒗𝑖,𝑢
|

|

|

|

|

𝒑𝑠 − 𝒑𝑛
‖𝒑𝑠 − 𝒑𝑛‖

, 𝑙

)

⋅ 𝑙 𝑑𝑙

= ∫

+∞

0
(𝑣𝑖,𝑢,𝑋 |0, 𝜎𝑖,𝑋 , 𝑓𝑏, 𝑏𝑏) ⋅(𝑣𝑖,𝑢,𝑌 |0, 𝜎𝑖,𝑌 , 𝑙𝑏, 𝑟𝑏) ⋅

1


(

𝒑𝑠−𝒑𝑛
‖𝒑𝑠−𝒑𝑛‖

) ⋅ 𝑙 𝑑𝑙
(16)

This conditional probability is denoted by 

(

𝛥𝒗𝑖,𝑢
|

|

|

|

|

𝒑𝑠−𝒑𝑛
‖𝒑𝑠−𝒑𝑛‖

, 𝑙

)

, representing that an uncertain velocity 𝒗𝑖,𝑢 with length 𝑙 is

on the line connecting the subject vehicle and the neighbouring vehicle. To ensure that this direction-specific probability is
considered, we divide the product of the two probability density functions, (𝑣𝑖,𝑢,𝑋 |0, 𝜎𝑖,𝑋 , 𝑓𝑏, 𝑏𝑏) and (𝑣𝑖,𝑢,𝑌 |0, 𝜎𝑖,𝑌 , 𝑙𝑏, 𝑟𝑏), by the
forementioned conditional probability 

(

𝒑𝑠−𝒑𝑛
‖𝒑𝑠−𝒑𝑛‖

)

. This division effectively normalises the probability densities and allows for the
roper calculation of the mathematical expectation of the length of the uncertain velocity 𝐸(‖𝛥𝒗 ‖).
10
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Fig. 6. An example of the uncertain velocity and its influence on the perceived velocity and the velocity set 𝑽 . The subject vehicle is following a leading vehicle
(50m ahead) with the same velocity 𝒗𝑠 = 𝒗𝑛 = 16.67m∕s and we have the velocity set 𝑽 according to Eq. (9). In all cases, 𝒗𝑠 ∈ 𝑽 indicating that the collision
avoidance difficulty is originally zero. The velocity 𝛥𝒗𝑖,𝑎 is not considered due to zero acceleration. This scenario illustrates that uncertainties can cause drivers
11

to perceive vehicle velocities differently from their actual values, which can increase the perceived difficulty of collision avoidance, and thus, perceived risk.
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Table 3
The key parameters of PCAD model.
Parameters Explanations

𝜎𝑖,𝑋 , 𝜎𝑖,𝑌 Standard deviations for uncertain velocity distributions of the subject (𝑖 = 𝑠) and
neighbouring (𝑖 = 𝑛) vehicles

𝑡𝑖,𝑎 An anticipated time for acceleration-based velocity of the subject (𝑖 = 𝑠) and
neighbouring (𝑖 = 𝑛) vehicles

𝛼 The exponent of the velocity weighting function

Accordingly, the uncertain velocity is

𝛥𝒗𝑖,𝑢 = 𝐸(‖𝛥𝒗𝑖,𝑢‖) ⋅
𝒑𝑠 − 𝒑𝑛

‖𝒑𝑠 − 𝒑𝑛‖
⋅ 𝑟𝑖, 𝑖 ∈ {𝑠, 𝑛}, 𝑟𝑛 = 1 and 𝑟𝑠 = −1. (17)

Note that this uncertain velocity is not the most probable one but it is the probabilistic average in the most dangerous direction.
Although the integral is expressed in an analytical format, integral function is used in MATLAB for numerical evaluation.

3.5. Weighting function 

The subject velocity significantly influences perceived risk, as it affects the accident rate and the consequence of a crash. The
relationship between velocity and crash outcome is related to the kinetic energy (𝐸𝑘 = 1

2𝑚𝑣
2) released during a collision but the

relationship is not a simple linear mapping. A scaling function ranging on [0, 1] is needed to show the relationship between the
subject velocity and perceived risk. Previous studies tried to examine the relationship between the subject velocity and the crash
outcome based on real-world crash data and found that a power function best fits the relationship (Aarts and Van Schagen, 2006).
We employ a power function proposed by Finch et al. (1994) to describe such a relationship:

 = 𝛽
(

‖𝒗𝑠‖
𝑣ref

)𝛼
(18)

here ‖𝒗𝑠‖ is the subject velocity; 𝑣ref is a reference velocity and it can be set as the velocity limit in specific conditions; 𝛼 is the
ower coefficient. This equation also takes into account the mass ratio between neighbouring and subject vehicle. A heavier and
arger vehicle will induce a higher perceived risk as it will yield higher subject vehicle accelerations in case of impact. Building
pon the PPDRF (Mullakkal-Babu et al., 2020) we introduce the additional scaling 𝛽 = 𝑀𝑛

𝑀𝑠+𝑀𝑛
where; 𝑀𝑠 and 𝑀𝑛 are the mass of

he subject vehicle and the neighbouring vehicle. Given a speed limit in a specific scenario and a specific vehicle type, the  ∝ 𝑣𝛼𝑠
anging on [0, 1] if ‖𝒗𝑠‖ stays below 𝑣ref, which can be used as a weight for the final perceived risk based on functions  and  as
hown in Eq. (1).

.6. PCAD model parameters

Table 3 summarises the parameters of the PCAD model to be calibrated. Details regarding the avoidance difficulty function , the
erceived velocity function  , and the weighting function  can be found in Section 3.3, Section 3.4, and Section 3.5, respectively.

. Analytical model properties

This section offers an analysis of the PCAD model and the three baseline models. Table 2 in Section 2.2 summarises model
roperties, covering aspects such as dimension, the usage of distance, relative motion, acceleration, subject speed, manoeuvre
ncertainties, crash consequences, and usability on curved lanes. In summary, PCAD is a comprehensive model based on Risk
llostasis Theory which considers all aspects listed in Table 2. It is a 2-D model capturing both longitudinal and lateral perceived
isk, and can also be used on curved lanes.

For an intuitive understanding, we visualise the perceived risk variations of the four models in a 2-D coordinate system describing
he relative position of a neighbouring vehicle. As demonstrated in Fig. 7, perceived risk varies with different relative velocities
Fig. 7(b)), different decelerations (Fig. 7(c)), and different subject velocities (Fig. 7(d)). Fig. 7(a) provides the legend for these
iagrams.

The PCAD model indicates that perceived risk amplifies as an object or neighbouring vehicle nears the subject vehicle,
emonstrating a sharp rise both longitudinally and laterally. The non-linear relationship caused by non-linear looming detection

in PCAD prevails in the other three typical models but is described by different functions such as Gaussian (i.g., the lateral risk in
PPDRF and DRF), Exponential (i.g., the potential risk in PPDRF), logarithmic (i.g., the risk in RPR) and Quadratic functions (i.g.,
the longitudinal risk in DRF). Note that RPR cannot capture perceived risk in the lateral direction since it is only defined in the
same traffic lane.

PCAD shows that human drivers perceive more risk when approaching an object faster. Compared to the other three models,
PCAD and PPDRF can output different perceived risk values facing different relative velocities (Fig. 7(b)). RPR and DRF do not
include velocity information of the neighbouring vehicles or objects.
12
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Reacting to neighbouring vehicles’ velocity changes (e.g., braking) is a common task in daily driving. PCAD can clearly describe
ffects on perceived risk (Fig. 7(c)) where 𝑎𝑛 = −8m∕s2 leads to the highest perceived risk and 𝑎𝑛 = 0 causes the lowest perceived risk.
PR and PPDRF also capture effects of acceleration but DRF cannot indicate the change of perceived risk caused by a neighbouring
ehicle’s deceleration due to a lack of acceleration information in the model.

The subject velocity significantly influences perceived risk. In Fig. 7(d), PCAD demonstrates that, given the same following gap,
uman drivers perceive more risk with a higher subject velocity, which is similar to PPDRF and DRF. However, RPR does not contain
ubject speed information in the model and cannot capture the perceived risk variance in this condition.

. Model evaluation method

To conduct a comparative evaluation of the proposed model and the baseline models, model calibration with empirical data is
ndispensable. This section details the experimental datasets, calibration method, and performance indices for the models.

.1. Dataset introduction

We employ two datasets for model calibration and evaluation. The first dataset (Dataset Merging) was collected in our previous
imulator experiment where the subject automated vehicle reacts to merging and hard-braking vehicles. The experiment simulated
8 merging event types with different merging distances and braking intensities on a 2-lane highway (He et al., 2022). Fig. 8 shows
n example of the simulated events during the experiment. The participants were asked to monitor the scenario as fall-back ready
rivers for an SAE Level 2 automated vehicle. They used a pressure sensor on the steering wheel to provide perceived risk ratings
rom 0–10 continuously in the time domain (see the lower row in Fig. 8), which are the continuous perceived risk data. After each
vent, the participants were also asked to give a verbal perceived risk rating from 0–10 regarding the previous event, which is
he discrete event-based perceived risk data. The corresponding kinematic data (e.g. position, speed and acceleration of the subject
ehicle and neighbouring vehicles) were collected simultaneously.

The second dataset (Dataset Obstacle Avoidance) includes drivers’ verbal perceived risk ratings (i.e., unlimited numbers) and
teering angle signals when the participants face static obstacles suddenly appearing in front the subject vehicle driving at 25m∕s
n manual driving mode (Kolekar et al., 2020b). Fig. 9 shows the distribution of the obstacles. The corresponding vehicle kinematic
ata and the positions of the obstacles were recorded at the same time.

The following reference data is utilised for model calibration:

• Dataset Merging: the event-based perceived risk rating and the peak of the continuous perceived risk in specific events
• Dataset Obstacle Avoidance: the event-based perceived risk, and the peak of steering wheel angle in specific events

Figs. B.14 and B.15 in Appendix B illustrate the kinematic data from the two datasets, along with the continuous risk predicted
y PCAD.

.2. Model calibration

While our aim is to develop general models considering the average characteristics of all participants, we cannot ignore the
nfluence of group features and scenarios. To optimise performance, we perform a dataset-level calibration of parameters for all
odels. We have 𝑅𝑀𝑆𝐸𝑖 defined as

𝑅𝑀𝑆𝐸𝑞 =

√

∑𝐾
𝑘=1

(

�̂�𝑘 − 𝑦𝑘
)2

𝐾
(19)

Here, 𝑅𝑀𝑆𝐸𝑞 denotes the root mean square error between the collected perceived risk data and the model output. For Dataset
Merging, 𝑞 = 𝑒𝑣𝑒𝑛𝑡 and 𝑞 = 𝑝𝑒𝑎𝑘 represent the 𝑅𝑀𝑆𝐸 for event-based perceived risk and the peak of continuous perceived risk
respectively; for Dataset Obstacle Avoidance, 𝑞 = 𝑒𝑣𝑒𝑛𝑡 and 𝑞 = 𝑝𝑒𝑎𝑘 denote the 𝑅𝑀𝑆𝐸 for event-based perceived risk and the
maximum steering wheel angle separately. In Eq. (19), �̂�𝑘 represents the model output, while 𝑦𝑘 refers to the perceived risk rating.

he variable 𝑘, which falls within the set of 1, 2, 3,… , 𝐾, represents the event number in the specific dataset. 𝐾 signifies the number
f available events in different datasets, with 𝐾 = 414 for Dataset Merging and 𝐾 = 2496 for Dataset Obstacle Avoidance. Note
hat the first sample point of the kinematic data when the obstacle suddenly appears in Dataset Obstacle Avoidance is used for the
alibration since the participants were asked to give a verbal perceived risk rating as soon as the obstacle appeared.

The calibration aims to minimise ∑

𝑅𝑀𝑆𝐸𝑞 for all models by tuning the key model parameters based on perceived risk and
orresponding kinematic data. Given the variability in perceived risk data ranges across the two datasets and the differing output
anges of the four models, min–max feature scaling is employed to normalise both perceived risk data and model outputs to a
niform range of [0, 10]. This normalisation facilitates direct comparison and calibration, as encapsulated in Eq. (20).

�̂�𝑘 =
𝑧𝑘 − 𝑧min
𝑧max − 𝑧min

× 10 (20)

where �̂�𝑘 represents the scaled value, either model output or perceived risk data. For model outputs, 𝑧max and 𝑧min are the global
aximum and minimum values across all outputs for a specific model per dataset. In contrast, for perceived risk ratings within the
ataset Obstacle Avoidance, the scaling is conducted individually for each participant, reflecting the participant-specific range of
13



Transportation Research Part C 166 (2024) 104751X. He et al.
Fig. 7. The effect of relative velocity (b), the acceleration of the neighbouring vehicle (c) and the subject velocity (d) with legend in (a).
14
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Fig. 7. (continued).

ratings. This distinction is crucial, as it allows for the individual scaling of perceived risk ratings in the Dataset Obstacle Avoidance
due to its unrestricted numerical range and participant-specific variation, while maintaining a universal scaling framework for model
outputs and the already bounded ratings with the range [0, 10] in Dataset Merging.

This scaling approach ensures that both participant-specific variations in perceived risk assessment and the diverse output ranges
of different models are appropriately normalised for accurate calibration and comparison.

5.3. Performance indicators

We use five indicators to evaluate the model performance: Correlation, Model error, Detection rate, Computation cost, and Linear
Time Scaling Factor.

∙ Correlation The predicted perceived risk has to be correlated with the event-based perceived risk. We use R-Square to
quantify how well model outputs fit the real perceived risk. Since the perceived risk output by the models is linearly rescaled
to 0–10 (Eq. (20)), different ranges of perceived risk data or model outputs have no influence on R-Square in our case.

∙ Model error We use Root Mean Squared Error (RMSE) to quantify a model’s overall Model error, which is the same as the
model calibration criterion (Eq. (19)). This indicator reflects the model’s ability to compute the overall perceived risk in a
certain dataset. A model with a smaller 𝑅𝑀𝑆𝐸 can more accurately predict the overall perceived risk for a given scenario.
15
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Fig. 7. (continued).

Fig. 8. The experiment where Dataset Merging was collected. Upper row: Video stream of a merging with hard braking event simulated in the experiment.
Lower row: Corresponding perceived risk values indicated by a participant with the pressure sensor.
16
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Fig. 9. Dataset Obstacle Avoidance, with stationary obstacle positions from Kolekar et al. (2020b).

∙ Detection rate The Detection rate represents the model’s ability to detect an event’s risk that is also perceived by human
drivers. We defined Detection rate as in Eq. (21)

𝑅𝑑𝑒𝑡 =
𝐾𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝐾𝑒𝑣𝑒𝑛𝑡

× 100% (21)

where 𝐾𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 represents the number of events where the model manages to detect the risk with non-zero output; 𝐾𝑒𝑣𝑒𝑛𝑡
is the total number of the events where human drivers gave perceived risk ratings in a certain dataset with 𝐾𝑒𝑣𝑒𝑛𝑡 = 414
for Dataset Merging and 𝐾𝑒𝑣𝑒𝑛𝑡 = 2496 for Dataset Obstacle Avoidance. In this study, every event carries a ’risk’ due to
experimental settings, which simulate scenarios where some level of risk is always present. Consequently, the detection of an
event, reflected by a non-zero output, implies the recognition of this risk. Therefore, a higher detection rate correlates with
better model performance, as it indicates the model’s consistent ability to recognise the presence of risk in every event.

∙ Computation cost It is essential that all models possess real-time risk computation capability, so the computation cost is
critical. More complex models may offer a better performance in other aspects such as model errors but tend to take longer
to compute. We define the computation cost as the model’s computation time per computation step. If the time consumption
per computation step exceeds the on-board computation capability, it means that the computation of perceived risk cannot
be completed in real-time.

The above metrics validate the event-based perceived risk. We also compared the continuous perceived risk measured for Dataset
Merging. However, we observed that participants pressed the button following a fixed pattern regardless of the actual real-time risk
level. This suggests that the timing of their responses was more likely influenced by the given instructions and their interpretation,
rather than reflecting a valid measure of continuous perceived risk over time. Consequently, these responses, although appearing
as a ’continuous perceived risk’, do not offer reliable time-domain information. Due to this lack of time-domain validation, we have
chosen not to report on the validation of continuous perceived risk.

6. Model evaluation results

In this section, we illustrate the applicability of the four models and evaluate their performance with the performance indicators
introduced previously regarding the two datasets.

6.1. Model calibration results

The calibration is performed separately for the two datasets. According to the model structure and dataset features, the calibrated
parameters are listed in Table 4.

6.2. Performance evaluation results

We test the four models using both datasets including the perceived risk data and the corresponding kinematic data with the
calibrated parameters shown in Table 4. The following sections present different aspects of performance.
17
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6.2.1. Correlation
The correlation between predicted and measured event-based perceived risk data plays a crucial role in assessing the performance

f risk assessment models. This is particularly important given the uncertainty in defining the unit of perceived risk. Fig. 10 and
ig. 11 display the correlation between the predicted perceived risk and event-based perceived risk for Dataset Merging and Dataset
bstacle Avoidance respectively. The adjusted R-Square is calculated based on the averaged event-based perceived risk across the

ame event type ( in Figs. 10 and 11).
In both datasets, the PCAD model demonstrates a superior correlation with event-based perceived risk data compared to other

odels. Furthermore, the regression models RPR and DRF exhibit strong performance in Dataset Merging and Dataset Obstacle
voidance, respectively, for which they were originally developed.

.2.2. Model error
As discussed in Section 5.3, the Root Mean Square Error (𝑅𝑀𝑆𝐸) is an indicator of the overall Model error. Table 5 presents

the RMSE values for all four models across the two datasets.
The 𝑅𝑀𝑆𝐸 values (both event and peak) reveal that the PCAD model achieves a comparable performance level to the regression

models (e.g., RPR in Dataset Merging and DRF in Dataset Obstacle Avoidance), albeit with a slightly larger model error. In
Dataset Merging, the lower 𝑅𝑀𝑆𝐸 values for PCAD and RPR suggest better performance, as these models directly incorporate the
neighbouring vehicle’s acceleration. In Dataset Obstacle Avoidance, the lower 𝑅𝑀𝑆𝐸 values for PCAD and DRF indicate superior
performance, as these models also consider lateral perceived risk, resulting in reduced model error when applied to a 2-D dataset
(Table 5). The PPDRF model was originally designed to evaluate actual collision risk in traffic, and was not previously calibrated
or validated. We now performed such a calibration and demonstrate moderate performance in both datasets.

6.2.3. Detection rate
As per Eq. (21), the detection rates for the four models across both datasets are presented in Table 5. In Dataset Merging,

the merging vehicle primarily poses longitudinal risk in the same lane. Consequently, all models are capable of detecting dangerous
events, regardless of whether they are 1-D or 2-D models. However, in Dataset Obstacle Avoidance, the obstacles are dispersed across
a 2-D plane. As a result, only models that account for lateral risk can effectively identify dangerous vehicles outside the forward
path. This leads to a lower detection rate for the RPR model, while the other three models are able to recognise all dangerous events
that human drivers also perceive as risky. Note that Fig. 11 displays outputs with marginal values that appear to be zero but are,
in fact, detected by PPDRF.

6.2.4. Computation cost
Table 5 presents the computation cost for different models, tested on a workstation with an Intel Core i7-8665U 1.9 GHz processor

and 8 GB RAM. Generally, models that take more factors into account require longer computation times. In both datasets, RPR is
the fastest model, as it only involves logarithmic calculations.

In Dataset Merging, PCAD is the most time-consuming model since it relies on a grid search to identify the optimal velocity gap
vector to the safe velocity region. PPDRF requires spatial overlap computations and multiple integrals over variations of acceleration
probability density function in the overlap area, making it a time-intensive process. Although DRF involves discretising a 2D area
of an object or a vehicle with a grid and summing the risk values over each grid cell to obtain the final perceived risk, its overlap
computations are simpler than those of PPDRF, as the risk field and severity field are static and no motion prediction of neighbouring
vehicles is needed.

In Dataset Obstacle Avoidance, PPDRF takes less time than DRF and PCAD, as it only computes potential risk, which is a simpler
process compared to the kinetic risk computation in Dataset Merging.

6.2.5. Summary of model performance evaluation
Based on the results discussed above, we utilise radar charts to illustrate the performance of each model across various aspects,

as shown in Fig. 12. Generally, PCAD demonstrates strong performance in terms of overall model error, R-square, and detection rate.
However, the primary drawback of PCAD is its high computation cost, which results from its complexity. The regression models
(i.e., RPR in Dataset Merging and DRF in Obstacle Avoidance) exhibit the best performance in their respective datasets. We remark
that the advantage of PPDRF in capturing the manoeuvre uncertainties of the surrounding vehicles vanishes in the second dataset
due to the specific experimental setting. As a result, the PPDRF models used in the two datasets are two different models. This
largely explains the poor performance of PPDRF, albeit it clearly showed advantages in the analytical model properties.

It is worth mentioning that PCAD demonstrates excellent and consistent performance across both datasets. We also conducted
cross-validation between the two datasets, in which the four models and their parameters were calibrated using one dataset and
then used to predict perceived risk in the other dataset. PCAD performs quite well even without re-calibration where as seen in
Table C.6, Figs. C.16–C.18 in Appendix C, PCAD maintains its strong performance in cross-validation. Additionally, this suggests
that the calibration process has a low risk of overfitting, further highlighting the robustness of the PCAD model.
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Table 4
Calibrated parameters for all models.

Model Parameters Explanation Values for
dataset
merging

Values for
dataset
obstacle
avoidance

PCADa

𝜎𝑛,𝑋 The standard deviation in 𝑋 of the velocity Gaussian of a neighbouring vehicle (m∕s) 4.28 /
𝜎𝑛,𝑌 The standard deviation in 𝑌 of the velocity Gaussian of a neighbouring vehicle (m∕s) 3.86 /
𝜎𝑠,𝑋 The standard deviation in 𝑋 of the velocity Gaussian of the subject vehicle (m∕s) 0.80 6.58
𝜎𝑠,𝑌 The standard deviation in 𝑌 of the velocity Gaussian of the subject vehicle (m∕s) 1.70 1.20
𝑡𝑠,𝑎 The anticipated time for the acceleration-based velocity of the subject vehicle (s) 0.13 /
𝑡𝑛,𝑎 The anticipated time for the acceleration-based velocity of a neighbouring vehicle (s) 0.01 /
𝛼 The exponent of the power function in velocity weighting function 0.52b /

RPR
𝐶0 The intercept in the regression model 12.10 20.70
𝐶1 The coefficient of gap to the leading vehicle −3.70 −3.68
𝐶2 The coefficient of leading vehicle’s braking intensity −0.36 /

PPDRF
�̃�𝑥 The standard deviation of longitudinal acceleration distribution of neighbouring vehicle (m∕s2) 2.01 /
�̃�𝑦 The standard deviation of lateral acceleration distribution of neighbouring vehicle (m∕s2) 0.02 /
𝐷 The steepness of descent of the potential field / 0.14

DRFc

𝑠 The steepness of the height parabola of the risk field 0.15 0.005
𝑡𝑙𝑎 Human driver’s preview time (s) 1.20 8.12
𝑚 The rate of the risk field width expanding 3.98 × 10−8 3.66 × 10−4

𝑐 The initial width of the DRF (m) 0.45 1.10

a The experimental design of two datasets, featuring only one category of obstacle or other road users, means that the mass ratio 𝛽 remains constant. Consequently,
in the calibration phase, this ratio is set to 1.
b This is the calibrated value regarding the specific dataset. Due to the lack of subject velocity change, 𝛼 has limited influence on Dataset Merging. 𝛼 ranging
on [0, 2.5] leads to an R-square ranging on [0.80, 0.90]. For Dataset Obstacle Avoidance, 𝛼 was set to 0 since it almost has no influence. Additionally, the 𝑣ref
in the weighting function  was set to 27.78m∕s for Dataset Merging and 25m∕s for Dataset Obstacle Avoidance.
c The best performance for DRF was obtained when the subject velocity 𝒗𝑠,𝑋 in Eq. (A.9) was fixed to its initial value 27.78m∕s when the vehicle decelerated
for Dataset Merging. For Dataset Obstacle Avoidance, the subject velocity 𝒗𝑠,𝑋 was a constant 25m∕s.

Table 5
Model performance represented by the performance indicators.

Dataset Performance indicators PCAD RPR PPDRF DRF

Dataset Merging

𝑅𝑀𝑆𝐸𝑒𝑣𝑒𝑛𝑡 2.25 2.18 2.76 2.58
𝑅𝑀𝑆𝐸𝑝𝑒𝑎𝑘 3.41 3.39 3.73 3.35
Adjusted R-Square 0.90 0.90 0.90 0.67
Detection rate 1.00 1.00 1.00 1.00
Computation cost (ms)a 2.79 1.77 × 10−4 6.14e 1.30

Dataset Obstacle Avoidance

𝑅𝑀𝑆𝐸𝑒𝑣𝑒𝑛𝑡 2.27 3.20 3.34 2.17
𝑅𝑀𝑆𝐸𝑝𝑒𝑎𝑘 2.71 3.84 4.02 2.61
Adjusted R-Square 0.90 0.38 0.50 0.90
Detection rate 1.00 0.09d 1.00 1.00
Computation cost (ms)b 6.70c 2.01 × 10−4 1.08 × 10−2 1.22

a The average value of computing 124614 steps.
b The average value of computing 349440 steps.
c PCAD consumed more time in Dataset Obstacle Avoidance because the searching algorithm worked in a larger searching area to find the velocity gap 𝒗𝑔 .
d Only the vehicles directly in front of the vehicle can be detected by RPR, which leads to a low detection rate. See Kolekar et al. (2020b) for more experiment
details.
e PPDRF consumed much more time in Dataset Merging because the model contains numerical integration when facing moving vehicles.

7. Discussion

In this paper, we present a computational perceived risk model based on the Risk Allostasis Theory (Fuller, 1984, 1999, 2011),
capturing task difficulty using the gap between the current velocity and the safe velocity region in 2D. Our model quantifies event-
based perceived risk and the peak of continuous perceived risk in both longitudinal and lateral directions. We validated the model
on two datasets of human drivers’ perceived risk and compared its performance with three baseline perceived risk models. Our work
contributes to addressing the challenge of perceived risk computation for SAE Level 2 driving automation, while also illustrating
the mechanisms underlying human drivers’ risk perception.

Traditional perceived risk models consider collision probability and the collision consequence (Näätänen and Summala, 1976),
such as DRF and PPDRF, while our PCAD model is developed based on the concept of potential collision judgement using
looming, which originates from aerospace and maritime experience (Ward et al., 2015). PCAD demonstrates superior performance
in estimating perceived risk in various driving conditions, aligning with the argument of McKenna (1982), Rundmo and Nordfjærn
(2017) that drivers are incapable of monitoring infrequent event probabilities, thus supporting the underlying theory of PCAD.
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Fig. 10. Predicted and measured event-based perceived risk in Dataset Merging. ‘‘#’’ indicates individual event-based perceived risk and ‘‘ ’’ indicates the
averaged event-based perceived risk across the same event type, for which the Adjusted R-Square is also given.

The demonstrated superior performance of our PCAD model unveils new insights into perceived risk. Firstly, PCAD considers
all motion information in Table 2, highlighting the importance of position, velocity, and acceleration for risk perception. Secondly,
the models that can capture lateral risk lead to a higher detection rate in Dataset Obstacle Avoidance, indicating that perceived
risk is 2-D and human drivers perceive the risk from all directions in a 2-D plane. Thirdly, manoeuvre uncertainties of the subject
vehicle and other road users cause extra perceived risk, which is supported by Kolekar et al. (2020b) and Ding et al. (2014). Lastly,
20
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Fig. 11. Predicted and measured event-based perceived risk in Dataset Obstacle Avoidance. ‘‘#’’ indicates individual event-based perceived risk and ‘‘ ’’ indicates
the averaged event-based perceived risk across the same event type. Note that in (c), there are many dots with small values but non-zero, indicating that they
are actually detected by PPDRF.
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Fig. 12. Radar charts of model performance indicators in two datasets.

perceived risk is a dynamic concept and varies with the changing traffic conditions as illustrated in Fig. 7, which presents the
perceived risk variations in three distinct driving conditions (i.g., different relative velocities, subject velocities and accelerations).
This observation motivates the need for models, such as the proposed PCAD model, which can adjust to varying driving scenarios
even without recalibration.

It is plausible that drivers associate trucks with higher threats compared to cars, and tend to maintain greater distances
accordingly. Our model incorporates this by adjusting perceived risk levels to the mass ratio. Furthermore, the distance between
reference points on neighbouring vehicles also affects the model’s output. A larger vehicle like a heavy truck will have reference
points that are farther apart, resulting in a smaller safe velocity set and consequently, a higher perceived risk. Our model can thus
explain the cautious behaviour when driving around trucks, which can lead to more realistic assessment of perceived risk.

We note that our model has limitations. There is only one traffic object considered in this study. If multi-road users or even
infrastructure is added, PCAD still has the potential to estimate perceived risk. In that case, we need to compute the potential
collision avoidance difficulty for multiple neighbouring vehicles considering them simultaneously. Based on this we can calculate
the comprehensive safe velocity set and derive the total perceived risk.

The PCAD model’s identification of the minimal velocity change 𝒗𝑔 does not account for drivers’ tendency to assign different
weights to braking and steering based on the driving experience and situational complexity. This anisotropic weighting in driver’s
decision-making is not captured by the current model. Exploring this difference presents a potential opportunity to improve the
PCAD model to more accurately simulate real-world driver behaviour and improve its applicability in safety-critical scenarios.

It is important to acknowledge that integrating advanced motion prediction techniques into models assessing collision avoidance
and perceived risk undoubtedly enhances their predictive accuracy. Our model, within its current scope, incorporates aspects of
motion prediction through the inclusion of acceleration-based velocity and uncertain velocity, offering a simplified but effective
approach to understanding driving dynamics. The primary objective of this research has been to establish a foundational model
capable of predicting perceived risk via collision avoidance difficulty. This aim has shaped our methodological choices, balancing
model complexity with practical applicability. While there are limitations associated with the simplified approach to motion
prediction, these do not diminish the contributions of our work. Instead, they highlight areas for future research and development,
suggesting paths for incorporating more advanced motion prediction methodologies to further enhance the model’s precision and
usefulness in studies on perceived risk.

Regarding perceived risk data, Dataset Merging covers human driver’s perceived risk with SAE Level 2 driving automation where
drivers need to monitor the system and environment and be ready to intervene. This makes this data suitable to assess perceived
safety when using automation, but the lateral risk is not systematically explored. Dataset Obstacle Avoidance explores human drivers
perceived risk data in 2-D, including lateral perceived risk. However, this dataset is collected from human-automation transitions
(i.g., human drivers’ taking-over process in this case), which may cause bias in automated driving conditions. Additionally, the
objects in the experiment are fixed and suddenly displayed during driving. The additional perceived risk caused by surprise cannot
be ignored.

Dataset Merging measured perceived risk on a scale from 0 to 10 for no to very high risk, while Dataset Obstacle Avoidance
captured perceived risk as a non-negative real number without predetermined upper limit. To facilitate comparison, all results from
Dataset Obstacle Avoidance and all models were scaled to 0–10 to match the scale used in Dataset Merging. More specific scales
of perceived risk can be developed for experimental studies, including factors such as accident risk and severity, and the driver’s
tendency or need to intervene and overrule the driving automation.

To further advance perceived risk modelling, we recommend collecting more perceived risk data in various scenarios through
online surveys with videos, simulator experiments and on-road observations. Such additional data can help to assess the validity
of the PCAD model also in multi-vehicle interactions, and infrastructure interactions including curve negotiation. Additional data
22
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can also serve to examine perceived risk at different driving automation levels. Moreover, internal HMIs have positive effects in
reducing human drivers’ perceived risk and the perceived risk modelling will be further improved to capture different internal HMI
conditions (Kim et al., 2024; Jouhri et al., 2023). Our PCAD model can also be used as a cost function, a constraint, or a reference
of perceived risk in driving automation decision making, trajectory planning, or controller design, enhancing trust (Hu and Wang,
2021) and acceptance.

8. Conclusions

In this study, we have formulated, calibrated, and validated a novel computational perceived risk model, and compared
ts performance with three well-established models across two different datasets. Our findings reveal valuable insights into the
nderstanding and quantification of perceived risk in various driving situations. The key conclusions drawn from our analysis are as
ollows: (1) Driving task difficulty serves as an effective indicator of perceived risk; (2) Perceived risk is two-dimensional, originating
rom both longitudinal and lateral directions, and exhibits a non-linear increase as the distance to surrounding vehicles decreases;
3) Incorporating uncertainties in the model is crucial for an accurate representation of perceived risk; (4) Perceived risk is dynamic
nd changes with driving conditions.
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ppendix A. Related perceived risk models

.1. Regression Perceived Risk Model (RPR)

The Regression Perceived Risk model (RPR) is an event-based perceived risk model derived from our previous simulator
xperiment, where 18 merging events with various merging distances and braking intensities on a 2-lane highway were simulated.
PR predicts human drivers’ event-based perceived risk ratings ranging from 0–10 regarding merging events based on the
orresponding kinematic data from the simulator drive.

The RPR model builds on several assumptions:

• Perceived risk stems from the vehicles directly in front of the subject vehicle, which means the merging vehicles cause perceived
risk only after entering the current lane.

• Drivers can accurately estimate the motion information (e.g., relative position, velocity, acceleration, etc.) with the human
23

sensory system.
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The initial model can predict event-based perceived risk (He et al., 2022), as shown in Eq. (A.1)

𝑅𝑅𝑃𝑅_𝑒𝑣𝑒𝑛𝑡 = 9.384 − 2.473 ⋅ ln(𝑔𝑎𝑝𝑚𝑖𝑛) − 0.038 ⋅ 𝑌 𝐷𝐿 − 0.201 ⋅ 𝐵𝐼𝑚𝑎𝑥 + 0.470 ⋅ 𝐺𝐸𝑁 (A.1)

where 𝑅𝑅𝑃𝑅_𝑒𝑣𝑒𝑛𝑡 is the event-based perceived risk ranging from 0–10; 𝑔𝑎𝑝𝑚𝑖𝑛 is the minimum clearance in metres to the leading
vehicle during an event; 𝑌 𝐷𝐿 represents the years with a valid driving licence; 𝐵𝐼𝑚𝑎𝑥 denotes the maximum braking intensity (m∕s2)
of the merging vehicle; 𝐺𝐸𝑁 represents the gender of the participants with 𝐹𝑒𝑚𝑎𝑙𝑒 = 1 and 𝑀𝑎𝑙𝑒 = 0. The model coefficients were
originally calibrated based on a perceived risk dataset (He et al., 2022), detailed in Section 5.1.

We extend the model to compute real-time perceived risk by replacing 𝑚𝑖𝑛_𝑔𝑎𝑝 and 𝑚𝑎𝑥_𝐵𝐼 with the real-time values. 𝑌 𝐷𝐿 and
𝐺𝐸𝑁 are omitted since they remain constant for a certain group of participants, and can be accounted for by the intercept. In this
way, RPR is formulated in the continuous time domain as

𝑅𝑅𝑃𝑅(𝑡) = 𝐶0 + 𝐶1 ⋅ ln(𝑥𝑛(𝑡) − 𝑥𝑠(𝑡)) + 𝐶2 ⋅ 𝑎𝑛,𝑋 (𝑡) (A.2)

where 𝑥𝑛(𝑡) and 𝑥𝑠(𝑡) are the real-time longitudinal position (m) of the neighbouring vehicle and the subject vehicle; 𝑎𝑛,𝑋 (𝑡) is the
current acceleration (m∕s2) of the neighbouring vehicle, which is the braking intensity in this model; According to the simulator
experiment settings (He et al., 2022), the validity range of the model is that 𝑥𝑛(𝑡) − 𝑥𝑠(𝑡) < 33m and −8m∕s2 ⩽ 𝑎𝑛,𝑋 (𝑡) ⩽ −2m∕s2.
Verification is required for the model outside this range. For enhanced performance, we recalibrate parameters 𝐶0, 𝐶1 and 𝐶2 using
two datasets.

A.2. Perceived Probabilistic Driving Risk Field Model (PPDRF)

Perceived Probabilistic Driving Risk Field Model (PPDRF) enhances the Probabilistic Driving Risk Field Model (PDRF) (Mullakkal-
Babu et al., 2020) by accounting for diverse traffic scenarios and driver individuality. The model is inspired by artificial potential
field used in driving automation (Wang et al., 2016; Li et al., 2020; Ni, 2013). PDRF estimates collision risk by considering
potential risk from non-moving vehicles/objects and kinetic risk from other road users. The former accounts for collision energy and
probability with stationary obstacles, while the latter involves spatial overlap with neighbouring vehicles using predicted positions
and stochastic accelerations. In stable highway driving, the longitudinal and lateral accelerations of a neighbour follow a Gaussian
distribution (Wagner et al., 2016; Ko et al., 2010). However, due to uncertainties and behavioural deviations, human drivers perceive
risk differently, leading to a bias between objective and perceived risk. To address this, we introduce assumptions to extend PDRF
into PPDRF for predicting perceived risk.

• The future acceleration in longitudinal and lateral directions of neighbouring vehicles follows independent Gaussian distribu-
tions with the current acceleration as the mean value, remaining constant over the prediction horizon;

• The subject vehicle maintains the current acceleration over the prediction horizon;

The two assumptions simplify road users’ motion.
In PPDRF model, human drivers, at time 𝑡, perceive a total risk as a combination of kinetic risk and potential risk as follows

𝑅𝑃𝑃𝐷𝑅𝐹 (𝑡) = 𝑅𝑛,𝑠(𝑡) + 𝑅𝑜,𝑠(𝑡) (A.3)

The kinetic risk in PPDRF concerning moving neighbouring vehicles is given by

𝑅𝑛,𝑠(𝑡) = 0.5𝑀𝑠𝛽
2
|

|

𝛥𝑣𝑠,𝑛(𝑡 + 𝜏)|
|

2 ⋅ �̃�(𝑛, 𝑠 ∣ 𝑡) (A.4)

where 𝑅𝑛,𝑠(𝑡) is the kinetic collision risk between the subject vehicle 𝑠 and a neighbouring vehicle 𝑛 in Joules at time 𝑡. 𝛽 = 𝑀𝑛
𝑀𝑠+𝑀𝑛

denotes the mass ratio. 𝑀𝑠 and 𝑀𝑛 are the mass of the subject vehicle and the neighbouring vehicle. 𝛥𝑣𝑠,𝑛(𝑡+𝜏) is the relative velocity
etween the subject vehicle and the neighbouring vehicle at time 𝑡 + 𝜏. �̃�(𝑛, 𝑠 ∣ 𝑡) is the collision probability to the neighbouring
ehicle estimated by drivers ranging on [0, 1].

The collision probability �̃�(𝑛, 𝑠 ∣ 𝑡) to the neighbouring vehicle estimated by human drivers is constructed as Eq. (A.5).

�̃�(𝑛, 𝑠 ∣ 𝑡) = 
(

𝛥𝑥(𝑡) − 𝛥𝑣𝑋 (𝑡)𝜏
0.5𝜏2

∣ 𝜇𝑋 (𝑡), �̃�𝑋

)

⋅
(

𝛥𝑦(𝑡) − 𝛥𝑣𝑌 (𝑡)𝜏
0.5𝜏2

∣ 𝜇𝑌 (𝑡), �̃�𝑌

)

(A.5)

here  is the assumed Gaussian collision probability density function (Fig. A.13). 𝜇𝑋 (𝑡) and 𝜇𝑌 (𝑡) represent the mean values for
longitudinal and lateral acceleration distribution, while �̃�𝑋 and �̃�𝑌 are the respective standard deviations. The relative spacing and
velocities between the subject and neighbouring vehicles are denoted as 𝛥𝑥(𝑡), 𝛥𝑦(𝑡), 𝛥𝑣𝑋 (𝑡), and 𝛥𝑣𝑌 (𝑡). PPDRF evaluates collision
robability using multiple values of 𝜏 = 0.5 s, 1 s, 2 s, 3 s, with the model employing all these values to maximise the computed collision
robability. Using the constant acceleration assumption, the predicted position of the subject vehicle and stochastic positions of
eighbouring vehicles are calculated over a prediction horizon. Spatial overlap and collision predictions are determined accordingly.
he actual �̃�(𝑛, 𝑠 ∣ 𝑡) is obtained through integration over the expected accelerations.

The potential risk posed to vehicle 𝑠 by a static object 𝑜 can be modelled as

𝑅𝑜,𝑠(𝑡) = 0.5𝑘𝑀
(

𝛥𝑣𝑠,𝑜(𝑡)
)2

⋅max
(

𝑒−|𝑟𝑠,𝑜|∕𝐷, 0.001
)

(A.6)

here 𝑅𝑜,𝑠(𝑡) denotes the potential risk caused by the static object 𝑜; 𝑀 denotes the mass of 𝑠; |
|

𝑟𝑠,𝑜|| = ‖𝒑𝑠 − 𝒑𝑛‖ is the distance
2
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etween the subject vehicle 𝑠 and the non-moving object 𝑜; 𝑉𝑠,𝑜 denotes the relative velocity; 0.5𝑘𝑀(𝑉𝑠,𝑜) represents the expected
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Fig. A.13. The acceleration distribution of the neighbouring vehicle and the relative spacing between the subject vehicle and the neighbouring vehicle.

crash energy scaled by the parameter 𝑘, with range [0–1], which is set to 1 in this study representing the neighbour is immovable;
the term 𝑒−|𝑟𝑠,𝑜|∕𝐷 is the collision probability ranging between [0–1], where 𝐷 determines the steepness of descent of the potential
field, varying among different drivers.

It is noteworthy that 𝑅𝑃𝑃𝐷𝑅𝐹 (𝑡) represents a probabilistic energy value, and can attain up to 3 × 104 J under stable motorway
driving conditions (Mullakkal-Babu et al., 2020).

A.3. Driving risk field model (DRF)

The DRF represents human drivers’ risk perception as a 2D field, combining the probability (probability field) and consequence
(severity field) of an event (Kolekar et al., 2020a), the product of which provides an estimation of driver’s perceived risk. The DRF
model was derived from a simulator experiment involving obstacle avoidance with 77 obstacles distributed on a 2D plane in front of
the subject vehicle. During each drive, one obstacle was randomly chosen and suddenly appeared, after which participants needed
to steer to avoid the obstacle and gave a non-negative number indicating required steering effort. Based on the position information
of the obstacles, the maximum steering angle, and the subjective ratings, the DRF model was fitted to the data, and thereby it is
essentially an empirical model. The DRF is based on the following assumptions:

• Perceived risk is the product of the probability of a hazardous event occurring estimated by drivers and the event severity;
• The perceived risk field widens as the longitudinal distance from the subject vehicle increases;
• The height of the perceived risk field decays as the lateral and longitudinal distance from the vehicle increases;

The DRF model quantifies overall perceived risk as

𝑅𝐷𝑅𝐹 (𝑡) =
∑

𝑝(𝑥(𝑡), 𝑦(𝑡)) ⋅ 𝑠𝑒𝑣(𝑡) (A.7)

where 𝑝(𝑥(𝑡), 𝑦(𝑡)) is the probability of an event happening at position (𝑥(𝑡), 𝑦(𝑡)); 𝑠𝑒𝑣(𝑡) is the severity field of events. Specifically, in
straight drive, the probability field can be simplified as

𝑝(𝑥(𝑡), 𝑦(𝑡)) = ℎ ⋅ exp
(

−𝑦(𝑡)2

2𝜎2

)

(A.8)

ℎ = 𝑠 ⋅
(

𝑥(𝑡) − 𝑣𝑠,𝑋 (𝑡) ⋅ 𝑡𝑙𝑎
)2 (A.9)

𝜎 = 𝑚 ⋅ 𝑥(𝑡) + 𝑐 (A.10)

where the subject vehicle is at the origin (0, 0) with ℎ and 𝜎 representing the height and the width of the Gaussian at longitudinal
position 𝑥(𝑡); 𝑠 defines the steepness of the height parabola; 𝑡𝑙𝑎 is the human driver’s preview time (s); 𝑚 defines the widening rate
of the 2D probability field; 𝑐 is the quarter width of the subject vehicle (m). 𝑣𝑠,𝑋 (𝑡) is the subject vehicle’s velocity (m/s). The lateral
cross-section of the 2D probability field is a Gaussian. Note that the height of the Gaussian ℎ and the width 𝜎 are separately modelled
as a parabola and linear function of longitudinal distance 𝑥 in front of the subject vehicle.

The severity field of the events in this study can be defined as

𝑠𝑒𝑣(𝑡) =

{

𝐶𝑠𝑒𝑣, (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝐴𝑂 ,
0, (𝑥(𝑡), 𝑦(𝑡)) ∉ 𝐴𝑂 .

(A.11)

where 𝐶𝑠𝑒𝑣 is the severity value that is set empirically and 𝐴𝑂 represents a neighbouring vehicle’s spatial area.

Appendix B. PCAD time history output

This Appendix presents the PCAD time history outputs in Dataset Merging (Fig. B.14) and Dataset Obstacle Avoidance (Fig. B.15).
25
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Fig. B.14. PCAD historical output in merging and hard braking events.
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Fig. B.15. PCAD historical output in obstacle avoidance events.
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Table C.6
Model performance indicators for the cross-validation.

Dataset Performance indicators PCAD RPR PPDRF DRF

Dataset Merging (with
parameters calibrated with
Dataset Obstacle Avoidance)

𝑅𝑀𝑆𝐸𝑒𝑣𝑒𝑛𝑡 2.37 7.72 4.86 5.14
𝑅𝑀𝑆𝐸𝑝𝑒𝑎𝑘 3.73 8.29 5.14 5.79
Adjusted R-Square 0.79 0.88 0.20 0.00
Detection rate 1.00 1.00 1.00 1.00
Computational cost (ms) 3.25 2.09 × 10−4 1.03 × 10−2 1.01

Dataset Obstacle Avoidance
(with parameters calibrated
with Dataset Merging)

𝑅𝑀𝑆𝐸𝑒𝑣𝑒𝑛𝑡 2.28 3.20 3.48 3.19
𝑅𝑀𝑆𝐸𝑝𝑒𝑎𝑘 2.73 3.84 3.93 3.87
Adjusted R-Square 0.90 0.38 0.11 0.42
Detection rate 1.00 0.09 1.00 1.00
Computational cost (ms) 5.58 1.98 × 10−4 7.28 1.82

Fig. C.16. Radar chart of model performance indicators for the cross-validation.

Appendix C. Cross validation

This Appendix presents the model performance in cross-validation between the two datasets. See Table C.6, Figs. C.16–C.18.

Appendix D. Explanation of the uncertain velocity direction

In this Appendix, we explain why the line connecting the subject vehicle and the neighbouring vehicle is selected as the direction
of the uncertain velocity.

With the uncertain velocity and the perceived velocity derived from acceleration, Eqs. (3) and (6) are changed to

�̇�′𝑠𝑗1 ,𝑛𝑗2 =

(

𝒑𝑠𝑗1 − 𝒑𝑛𝑗2
)

× (𝒗′𝑠𝑗1 − 𝒗′𝑛𝑗2 )

‖

‖

‖

𝒑𝑠𝑗1 − 𝒑𝑛𝑗2
‖

‖

‖

2

=

(

𝒑𝑠𝑗1 − 𝒑𝑛𝑗2
)

×
[

(𝒗𝑠𝑗1 + 𝛥𝒗𝑠,𝑎 + 𝛥𝒗𝑠,𝑢) − (𝒗𝑛𝑗2 + 𝛥𝒗𝑛,𝑎 + 𝛥𝒗𝑛,𝑢)
]

‖

‖

‖

𝒑𝑠𝑗1 − 𝒑𝑛𝑗2
‖

‖

‖

2

̇ ̇ ̇

(D.1)
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= 𝜽𝑠𝑗1 ,𝑛𝑗2 + 𝛥𝜽𝑠𝑗1 ,𝑛𝑗2 ,𝑎 + 𝛥𝜽𝑠𝑗1 ,𝑛𝑗2 ,𝑢, 𝑗1, 𝑗2 ∈ {𝑙, 𝑟}
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Fig. C.17. Validation results in Dataset Merging with model parameters calibrated based on Dataset Obstacle Avoidance. ‘#’ indicates raw event-based perceived
risk and ‘ ’ indicates the averaged event-based perceived risk across the same event type.

and

�̇�′𝑠,𝑛 =
1
𝑑𝑠,𝑛

(𝒑𝑠 − 𝒑𝑛)𝑇
(

𝒗′𝑠 − 𝒗′𝑛
)

= 1
𝑑𝑠,𝑛

(𝒑𝑠 − 𝒑𝑛)𝑇
[

(𝒗𝑠 + 𝛥𝒗𝑠,𝑎 + 𝛥𝒗𝑠,𝑢) − (𝒗𝑛 + 𝛥𝒗𝑛,𝑎 + 𝛥𝒗𝑛,𝑢)
]

= �̇�𝑠,𝑛 + �̇�𝑛,𝑎 + �̇�𝑠,𝑛,𝑢

(D.2)

where 𝒗′𝑠 = 𝒗𝑠 +𝛥𝒗𝑠,𝑎 +𝛥𝒗𝑠,𝑢 and 𝒗′𝑛 = 𝒗𝑛 +𝛥𝒗𝑛,𝑎 +𝛥𝒗𝑛,𝑢 are the perceived velocity with the uncertain velocity 𝛥𝒗𝑠,𝑢 and 𝛥𝒗𝑛,𝑢 for the
subject vehicle and the neighbouring vehicle respectively.

In order to make the situation more dangerous, the uncertain velocity has to create a situation that is opposite to Eq. (9) namely

min �̇�𝑠𝑖,𝑛𝑗,𝑢 ⋅max �̇�𝑠𝑖,𝑛𝑗,𝑢 ⩽ 0 (𝑖, 𝑗 ∈ {𝑙, 𝑟}, ) and �̇�𝑠,𝑛,𝑢 < 0, (D.3)

where all relative bearing rate and the distance changing rate are only caused by the uncertain velocity.
Comparing with Eq. (9), the optimal direction for the uncertain velocity based on Eq. (D.2) to create a negative distance changing

rate should be
⎡

⎢

⎢

⎢

⎣

𝜕�̇�𝑠,𝑛,𝑢
𝜕𝑣𝑠,𝑋,𝑢

𝜕�̇�𝑠,𝑛,𝑢
𝜕𝑣𝑠,𝑌 ,𝑢

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝜕�̇�′𝑠,𝑛
𝜕𝑣𝑠,𝑋,𝑢

𝜕�̇�′𝑠,𝑛
𝜕𝑣𝑠,𝑌 ,𝑢

⎤

⎥

⎥

⎥
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(D.4)

where 𝛥𝒑 = 𝒑 − 𝒑 , 𝛥𝒑 = 𝒑 − 𝒑 .
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Fig. C.18. Validation results in Dataset Obstacle Avoidance with model parameters calibrated based on Dataset Merging. ‘#’ indicates raw event-based perceived
risk and ‘ ’ indicates the averaged event-based perceived risk across the same event type.

Eq. (D.4) means that the distance direction is the optimal for the uncertain velocity of the subject vehicle and the neighbouring
vehicle to create a negative distance changing rate in Eq. (D.3).

Simultaneously, the uncertain velocity should not cause extra relative bearing rate which makes the situation less dangerous. In
other words, the uncertain velocity should follow the normal direction of the relative bearing rate gradient. Hence, the direction
should be
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(D.5)

which are exactly the directions shown in Eq. (D.4). That means the distance direction is the optimal direction for the uncertain
velocity to create a negative distance changing rate and in the meantime not to cause less perceived risk.

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.trc.2024.104751. A video
representing the dynamics of the proposed model PCAD in a traffic event can be found via this link https://doi.org/10.4121/
3ad2db22-ea82-4436-8df5-ebbbdb4aeec6.
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