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Temporal approximation of stochastic evolution equations
with irregular nonlinearities

Katharina Klioba and Mark Veraar

Abstract. In this paper, we prove convergence for contractive time discretisation schemes for semi-linear
stochastic evolution equations with irregular Lipschitz nonlinearities, initial values, and additive or mul-
tiplicative Gaussian noise on 2-smooth Banach spaces X . The leading operator A is assumed to generate
a strongly continuous semigroup S on X , and the focus is on non-parabolic problems. The main result
concerns convergence of the uniform strong error

E∞
k :=

(
E sup

j∈{0,...,Nk }
‖U (t j ) −U j‖pX

)1/p → 0 (k → 0),

where p ∈ [2, ∞), U is the mild solution, U j is obtained from a time discretisation scheme, k is the step
size, and Nk = T/k for final time T > 0. This generalises previous results to a larger class of admissible
nonlinearities and noise, as well as rough initial data from the Hilbert space case to more general spaces.
We present a proof based on a regularisation argument. Within this scope, we extend previous quantified
convergence results for more regular nonlinearity and noise from Hilbert to 2-smooth Banach spaces. The
uniform strong error cannot be estimated in terms of the simpler pointwise strong error

Ek :=
(

sup
j∈{0,...,Nk }

E‖U (t j ) −U j‖pX
)1/p

,

which most of the existing literature is concerned with. Our results are illustrated for a variant of the
Schrödinger equation, for which previous convergence results were not applicable.

1. Introduction

This paper is concerned with the temporal discretisation of nonlinear stochastic
PDEs driven by multiplicative Gaussian noise. We aim at proving convergence of
time discretisation schemes for such equations, which can abstractly be written as a
stochastic evolution equation of the form

{ dU = (AU + F(U )) dt + G(U ) dWH on [0, T ],
U (0) = u0 ∈ L p(�; X).

(1.1)
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Here, A generates a C0-semigroup (S(t))t≥0 on a 2-smooth Banach space X , WH

is a cylindrical Brownian motion, T > 0, p ∈ [2,∞), and u0 is the initial data.
Besides global Lipschitz continuity, no further regularity assumptions are imposed on
the nonlinearity F and noise G.
Now, our goal is to show pathwise uniform convergence of contractive time discreti-

sation schemes for such irregular nonlinearities and rough initial data, focusing on the
hyperbolic setting. It has been extensively studied in recent years (see [1,2,4,7,10–
12,14–17,19,20,26,29,32,36–39,42,53] and references therein).When passing to the
parabolic setting (i.e. (S(t))t≥0 being an analytic semigroup), regularisation phenom-
ena allow for different proof techniques, resulting in much stronger convergence re-
sults. For details on the parabolic case, we refer to [3,5,6,9,18,25,33–35,40,41,43,44]
and references therein.

1.1. The setting

The error usually considered in the above-mentioned literature on the hyperbolic
case (as well as in the parabolic case) is the pointwise strong error

sup
j∈{0,...,Nk }

E‖U (t j ) −U j‖p, (1.2)

where U denotes the mild solution to (1.1) and (U j )
Nk
j=0 an approximation thereof.

The latter is recursively determined by U 0 = u0,

U j = RkU
j−1 + kRk F(U j−1) + RkG(U j−1)�W j , j = 1, . . . , Nk, (1.3)

for some time discretisation scheme Rk ∈ L(X) that is an approximation of the
semigroup S at time k > 0. Here, Nk = T/k is the number of time grid points,
k = t j − t j−1 is the uniform step size, t j = jk, and �W j = WH (t j ) − WH (t j−1).

It is a natural question to find convergence rates for the uniform strong error

E sup
j∈{0,...,Nk }

‖U (t j ) −U j‖p, (1.4)

since it describes moments of the maximal error in time rather than the maximum
in time of moments of the error. It cannot, however, be controlled by the simpler
pointwise strong error (1.2) without a loss in the rate. Indeed, if the pointwise strong
error converges at rate α > 0, i.e. (1.2) is bounded by CN−αp for some C > 0, then

E sup
j∈{1,...,N }

‖U (t j ) −U j‖p ≤ E

N∑
j=1

‖U (t j ) −U j‖p =
N∑
j=1

E‖U (t j ) −U j‖p

≤ N sup
j∈{1,...,N }

E‖U (t j ) −U j‖p ≤ CN 1−αp. (1.5)

Taking p-th roots, convergence at rate α − 1
p is obtained. Since we have arbitrarily

slow rates α ∈ (0, 1
2 ] and are also interested in the case p = 2, this estimate is not
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strong enough for our purposes. Still, convergence of the whole path can be expected,
as numerical simulations suggest [1,13,52]. Estimates where the supremum is inside
the expectation are usually referred to as maximal estimates, and ample literature is
available on this for general stochastic processes [47].
In [36], convergence rates for (1.4) were obtained for general contractive time

discretisation schemes under structural assumptions on the nonlinearity F and the
noise G in (1.1). Namely, it was assumed that they preserve the spatial regularity of
the argument in the sense of the mapping properties F : Y → Y , G : Y → L2(H,Y )

for a proper subspace Y ↪→ X with additional smoothness, where L2(H,Y ) denotes
the space of Hilbert–Schmidt operators. Moreover, F and G were assumed to be
of linear growth on Y and the initial data to be of the same additional regularity.
Naturally, the question arises whether these assumptions can be relaxed. Clearly, we
cannot expect to preserve the convergence rate because this already fails in the linear
deterministic case. However, it is an open question whether qualitatively, pathwise
uniform convergence holds under weaker assumptions on F and G as well as for
rough initial data from L p(�; X).
The main goal of our paper is to prove that this question can be answered positively,

merely assuming global Lipschitz continuity of F and G on the full space X . In
addition, we show that under the respective conditions, both convergence results with
and without rate extend to the more general setting of 2-smooth Banach spaces (cf.
Subsection 2.1) rather than Hilbert spaces.

1.2. Main result

Before we can state our main result, we require an additional definition. Let X and
Y be 2-smooth Banach spaces such that Y ↪→ X . For α ∈ (0, 1], we say that a time
discretisation scheme R : [0, T ] → L(X), k �→ Rk approximates S to order α on Y
if there is a constant Cα ≥ 0 such that for all x ∈ Y , k > 0, and j ∈ {0, . . . , Nk}

‖(S(t j ) − R j
k )x‖X ≤ Cαk

α‖x‖Y .

Such a time discretisation scheme is called contractive if ‖Rk‖L(X)≤1. We denote
by γ (H, X) the space of γ -radonifying operators from a Hilbert space H to X (cf.
Subsection 2.2), which coincides with the space of Hilbert–Schmidt operators if X is
Hilbert. Our main theorem is as follows.

Theorem 1.1. Let X be a 2-smooth Banach space. Suppose that A generates a C0-
contraction semigroup (S(t))t≥0 on both X and D(A). Let (Rk)k>0 be a contractive
time discretisation scheme on both X and D(A) that approximates S to some order
α ∈ (0, 1] on D(A). Suppose that F : X → X and G : X → γ (H, X) are Lipschitz
continuous. Let T > 0, p ∈ [2,∞), and u0 ∈ L p(�; X). Denote by U the mild
solution to (1.1) on [0, T ]. Let k ∈ (0, T/2] and (U j ) j=0,...,Nk be given by (1.3).
Define the piecewise constant extension Ũ : [0, T ] → L p(�; X) by Ũ (t):=U j for
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t ∈ [t j , t j+1), 0 ≤ j ≤ Nk − 1, and Ũ (T ):=UNk . Then

lim
k→0

∥∥∥∥ sup
t∈[0,T ]

‖U (t) − Ũ (t)‖X
∥∥∥∥
L p(�)

= 0.

Theorem 1.1 follows from Theorem 4.2. The pathwise uniform convergence rates
in the structured setting with additional regularity, which are required in the proof of
the main result, can be found in Theorem 3.8.

Among the schemes covered by Theorem 1.1 and Theorem 3.8 are

• exponential Euler (EE): Rk = S(k);
• implicit Euler (IE): Rk = (1 − k A)−1;
• Crank-Nicolson (CN): Rk = (2 + k A)(2 − k A)−1.

Contractivity of the scheme R on X and D(A) is an immediate consequence of the
contractivity of the semigroup (S(t))t≥0 in the cases (EE) and (IE). For (CN) and other
commonly used schemes, an argument based on functional calculus yields the desired
contractivity. Applications to the Schrödinger equation are contained in themain paper
(see Sect. 5), showing pathwise uniform convergence for general contractive schemes
in a setting inwhich previous results on (EE) [1, Thm. 4.3] or other contractive schemes
[36, Thm. 6.13] are not applicable.
Naturally, in addition to the temporal discretisation investigated here, a space dis-

cretisation is needed for a numerical solution of (1.1). In this paper, the focus lies
on the temporal discretisation in the global Lipschitz setting, since a detailed under-
standing thereof is a quintessential step towards the treatment of locally Lipschitz
nonlinearities. Our result should be seen as a first step, and we plan to continue our
work on uniform strong errors in a locally Lipschitz setting in the near future.

1.3. Method of proof

Previous results on pathwise uniform convergence are only applicable if nonlin-
earity and noise preserve additional regularity, are of linear growth on the space with
additional regularity, and the initial data are pathwise more regular as well. To circum-
vent the problem that this is not the case in our setting, we regularise the nonlinearity,
the noise, and the initial values occurring in (1.1) according to

mF := mR(m, A)F, mG := mR(m, A)G, mu0 := mR(m, A)u0

for some regularisation parameter m ∈ N, where R(m, A):=(m − A)−1 denotes
the resolvent. By construction, mF maps to D(A), mG maps to γ (H, D(A)), and

mu0 ∈ L p(�; D(A)), giving the desired additional regularity in structure with the
more regular space being D(A). Hence, this enables us to apply existing convergence
rate results for the regularised discretisation given by

mU
j :=RkmU

j−1 + kRkmF(mU
j−1) + RkmG(mU

j−1)�Wj , mU
0:=mu0,

(1.6)
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for 1 ≤ j ≤ Nk . They approximate the mild solution mU of the regularised evolution
equation

mU = (AmU + mF(mU )) dt + mG(mU ) dWH (t), mU (0) = mu0 ∈ X. (1.7)

Since the equations considered are in 2-smooth Banach spaces, the results from [36]
have to be generalised beyond the Hilbert space setting. While most of the extension
is straightforward, the stability of the scheme can no longer be obtained by a dilation
argument. Instead, the key ingredient of the proof is a novel maximal inequality for
discrete convolutions based on a martingale argument. Lemma 3.5 illustrates how
martingale (difference) sequences are used in this argument, resulting in stability as
stated in Proposition 3.6 and, ultimately, in pathwise uniform convergence rates, see
Theorem 3.8. It yields convergence of the pathwise uniform discretisation error (1.4)
of the regularised problem as k → 0. Note that this convergence is not uniform in the
regularisation parameter m ∈ N.

The main task consists in proving convergence of the regularisation error both for
the mild solutions to (1.7) and for the discretisations (1.6) as m → ∞ uniformly in
the number of time steps Nk . For the continuous regularisation error, this is achieved
by a combination of a maximal inequality for stochastic convolutions, continuity of
paths of the nonlinearities evaluated at the mild solution, and a classical continuous
Gronwall argument.

An analogous straightforward estimate of the discrete regularisation error fails.
Instead, the maximal inequality for discrete convolutions already used in the stability
proof proves helpful. In addition, a clever splitting of the error is required so that
it can be rewritten in terms of the continuous regularisation error, the discretisation
error of the regularised problem, as well as the full error, i.e. the discretisation error
of the original problem (1.1). The regularisation parameter m ∈ N can then be fixed
large enough such that the first error becomes small, and we already showed uniform
convergence of the second as k → 0. In the end, we thus derive an estimate for the full
error in terms of itself, and we apply a standard discrete Gronwall argument, finally
resulting in the desired convergence statement.

1.4. Overview

• Section2 contains the preliminaries for the rest of the paper.
• In Sect. 3, we extend previous results on pathwise uniform convergence rates
from Hilbert to 2-smooth Banach spaces. In particular, we present a novel sta-
bility proof.

• In Sect. 4, we state and prove the main result on pathwise uniform convergence
of time discretisation schemes in the case of irregular Lipschitz nonlinearity and
noise, which leads to Theorem 1.1.

• Section5 illustrates the results for the nonlinear stochastic Schrödinger equation.
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2. Preliminaries

Throughout the paper, we consider the final time T > 0 to be fixed and denote the
Borel σ -algebra of a Banach space X by B(X). We use the notation f (x) � g(x)
to denote that there is a constant C ≥ 0 such that for all x in the respective set,
f (x) ≤ Cg(x). Furthermore, we fix a probability space (�,F ,P) and a filtration
(Ft )t∈[0,T ] on this probability space. Unless otherwise stated, all random variables
and stochastic processes considered are defined on (�,F ,P). The progressive σ -
algebra on (�,F ,P) is denoted by P .

2.1. 2-smooth Banach spaces

In this paper, we will work in 2-smooth Banach spaces, a generalisation of Hilbert
spaces, which is characterised by a parallelogram inequality instead of a parallelogram
identity as is the case for Hilbert spaces.

Definition 2.1. Let D ≥ 1. A (2, D)-smooth Banach space is a Banach space X for
which for all x, y ∈ X ,

‖x + y‖2 + ‖x − y‖2 ≤ 2‖x‖2 + 2D2‖y‖2.

We call a Banach space 2-smooth if it is (2, D)-smooth for some D ≥ 1.

In the realm of stochastic analysis, this class of spaces plays an important role.
As a consequence of the parallelogram identity, it includes all Hilbert spaces with
D = 1. Furthermore, the spaces L p(μ) are contained in this class for 2 ≤ p < ∞
with D = √

p − 1 [46, Proposition 2.1]. The following simple fact will be used
throughout the paper: If X is (2, D)-smooth and A is a closed linear operator, then
D(A) equipped with the graph norm (‖x‖2 + ‖Ax‖2)1/2 is again (2, D)-smooth.

2.2. γ -radonifying operators

To give sense to stochastic integrals in Banach spaces X that are not Hilbert, the
space of γ -radonifying operators γ (H, X) is required, where H denotes a Hilbert
space. It is obtained as the closure of a subset of the space of γ -summing operators.
In this subsection only, let (γn)n∈N denote a Gaussian sequence, i.e. a sequence of
standard Gaussian random variables.

Definition 2.2. We call a linear operator R : H → X γ -summing if

‖R‖γ ∞(H,X):= sup
(
E

∥∥∥
N∑

n=1

γn Rhn
∥∥∥
2

X

)1/2
< ∞, (2.1)

with the supremum being taken over all finite orthonormal systems {h1, . . . , hN } in H
with N ∈ N. The space of all operators for which (2.1) holds is denoted by γ ∞(H, X).
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The thus-obtained (γ ∞(H, X), ‖ ·‖γ ∞(H,X)) is a normed space, which is contained
in the space of bounded linear operators L(H, X). The inclusion follows immediately
fromconsidering orthonormal systems {h} consisting of a single element. Furthermore,
γ ∞(H, X) is a Banach space.
The space of γ -radonifying operators from H to X is now obtained as the closure

of finite rank operators in the space of γ -summing operators.

Definition 2.3. Let N ∈ N, hn ∈ H , and xn ∈ X for 1 ≤ n ≤ N and define the
operator hn ⊗ xn ∈ L(H, X) by h �→ (hn ⊗ xn)h:=〈hn, h〉H xn . Operators of the
form R = ∑N

n=1 hn ⊗ xn are called finite rank operators, and the space of all such
operators is denoted by FR(H, X). We define the space γ (H, X) of all γ -radonifying
operators as the closure of FR(H, X) in γ ∞(H, X).

Trivially, FR(H, X) ⊆ γ ∞(H, X). As a closed subspace of γ ∞(H, X), γ (H, X)

is a Banach space with the norm ‖ · ‖γ (H,X):=‖ · ‖γ ∞(H,X). For a finite rank operator
R = ∑N

n=1 hn ⊗ xn ∈ γ (H, X) with orthonormal {h1, . . . , hN } ⊆ H , the norm (2.1)
simplifies to

‖R‖2γ (H,X) = E

∥∥∥∥
N∑

n=1

γnxn
∥∥∥
2
.

In case X is a Hilbert space, the norm of R further simplifies to
∑N

n=1 ‖xn‖2. Hence,
by taking the completion, we see that γ (H, X) coincides with the space L2(H, X)

of Hilbert–Schmidt operators for Hilbert spaces X and H . An example for a γ -
radonifying operator in a non-Hilbert space is given by the indefinite integration
operator IT : L2(0, T ) → C[0, T ] defined by f �→ [t �→ ∫ t

0 f (s) ds] for t ∈ [0, T ].
A property of γ (H, X) frequently used in the following is the (left) ideal property.

Proposition 2.4. [[31]], Theorem 9.1.10] Let R ∈ γ ∞(H, X). Let H̃ be another
Hilbert space and X̃ another Banach space. Then for all L1 ∈ L(H̃ , H) and L2 ∈
L(X, X̃), we have L2RL1 ∈ γ ∞(H̃ , X̃) and for all 1 ≤ p < ∞,

‖L2RL1‖γ ∞(H̃ ,X̃)
≤ ‖L2‖L(X,X̃)

‖R‖γ ∞(H,X)‖L1‖L(H̃ ,H)
.

If, moreover, R ∈ γ (H, X), then L2RL1 ∈ γ (H̃ , X̃).

For details on the aforementioned and further properties of γ -radonifying operators,
we refer the reader to [31, Section 9.1].

2.3. Stochastic integration

Let H denote a separable Hilbert and X a 2-smooth Banach space. For a γ -
radonifying operator R ∈ γ (H, X) and a sequence γ = (γn)n∈N of centred i.i.d.
normally distributed random variables, we write

Rγ :=
∑
n∈N

γn Rhn (2.2)
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for an orthonormal basis {hn}n∈N of H . The convergence is in L p(�; X) for p < ∞
and almost surely, independently of the choice of orthonormal basis (see [31, Corollary
6.4.12]). While Rγ depends on the choice of the orthonormal basis, its distribution
does not. The stochastic integrals appearing, for instance, in the mild solution formula
(1.1) are stochastic integrals of operator-valued integrands. Hence, the integrator is an
H -cylindrical Brownian motion rather than a (standard) Brownian motion.
An H -cylindrical Brownian motion is a mapping WH : L2(0, T ; H) → L2(�)

such that

(i) WHh is Gaussian for all h ∈ L2(0, T ; H),
(ii) E(WHh1 · WHh2) = 〈h1, h2〉L2(0,T ;H) for all h1, h2 ∈ L2(0, T ; H),

where we include a complex conjugate onWHh2 in case we want to use a complex H -
cylindricalBrownianmotion.As a shorthandnotation,we letWH (t)h:=WH (1(0,t)⊗h)

for h ∈ H and t ∈ [0, T ]. An H -cylindrical Brownian motion can be regarded as the
infinite-dimensional analogue of a Brownianmotion, in the sense that (WH (t)h)t∈[0,T ]
is a (standard) Brownian motion for each fixed h ∈ H (of norm ‖h‖H = 1). Real-
valued Brownian motions are recovered in the case H = R.

A notion closely related to H -cylindrical Brownianmotions are so-called Q-Wiener
processes. An H -valued stochastic process (W (t))t≥0 is called a Q-Wiener process for
an operator Q ∈ L(H) if W (0) = 0, W has continuous trajectories and independent
increments, andW (t)−W (s) is normally distributed with parameters 0 and (t − s)Q
for t ≥ s ≥ 0. One can show thatW is a Q-Wiener process if and only if there exists an
H -cylindrical Brownian motionWH such that Q1/2WH := ∑

n∈N Q1/2hnWH (t)hn =
W (t) for an orthonormal basis (hn)n∈N of H (cf. (2.2) and note that the series is
independent of the choice of (hn)n∈N).
Stochastic integrals with respect to H -cylindrical Brownian motions or Q-Wiener

processes canbedefined in the senseof Itô integrals. Further properties ofH -cylindrical
Brownian motions, Q-Wiener processes, and details on the Itô integral in Hilbert
spaces can be found in [21]. An overview of stochastic integration in Banach spaces
is contained in [51].
To estimate Itô integralsw.r.t. suchH -cylindricalBrownianmotions, theBurkholder–

Davis–Gundy inequalities are particularly helpful. In the case X is a Hilbert space,
they imply that

(
E sup

t∈[0,T ]

∥∥∥∥
∫ t

0
gs dWH (s)

∥∥∥∥
p

X

)1/p

≤ Bp‖g‖L p(�;L2(0,T ;γ (H,X))) (2.3)

for some constant Bp > 0 for all g ∈ L p(�; L2(0, T ; γ (H, X))). In general (2, D)-
smooth Banach spaces, (2.3) holds with Bp = 10D

√
p. This follows as a special case

of the followingmaximal inequality for stochastic convolutions from [50] based on ear-
lier works on the contractive case in Hilbert spaces [27].We recall that aC0-semigroup
(S(t))t≥0 is said to be quasi-contractive if for some constant λ ≥ 0, ‖S(t)‖ ≤ eλt for
all t ≥ 0.
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Theorem 2.5. [[50]], Theorem4.1] Let (S(t))t≥0 beaquasi-contractiveC0-semigroup
with constant λ > 0 on a (2, D)-smooth Banach space X.
Then for every g ∈ L0

P (�; L2(0, T ; γ (H, X))) the process (
∫ t
0 S(t − s)g(s)

dWH (s))t∈[0,T ] has a continuous modification, which satisfies, for all 0 < p < ∞,

E sup
t∈[0,T ]

∥∥∥∥
∫ t

0
S(t − s)g(s) dWH (s)

∥∥∥∥
p

≤ C p
p,D‖g‖p

L p(�;L2(0,T ;γ (H,X)))
,

with a constant Cp,D depending only on p and D. For 2 ≤ p < ∞, the inequality
holds with Cp,D = 10eλT D

√
p.

Recall that for p < 1, the expression on the right is only a seminorm of g. Consid-
ering S as the trivial semigroup, we recover continuity of Itô’s isomorphism. In the
case p = 2, H = R, and X Hilbert, it is even an isometry known as Itô’s isometry.

2.4. A version of the Rosenthal–Burkholder inequality

On the fixed probability space (�,F ,P), we consider a finite filtration (F j )
	
j=0,

	 ∈ N, and denote by EF j :=E(· | F j ) the conditional expectation with respect to F j .
For an X -valued martingale (Mj )

	
j=0 with respect to (F j )

	
j=0, we denote by (d j )

	
j=1

its difference sequence defined by d j :=Mj −Mj−1. Furthermore, let the non-negative
random variables M


j (for 0 ≤ j ≤ 	) and d

j and s j (M) (for 1 ≤ j ≤ 	) be given by

M

j := max

0≤i≤ j
‖Mi‖, d


j := max
1≤i≤ j

‖di‖, s j (M):=
( j∑
i=1

EFi−1‖di‖2
)1/2

,

and set M
 := M

	 , d


 := d

	 , and s(M) := s	(M).

We call a mapping V : � → L(X) such that ω �→ V (ω)x is strongly measurable
for all x ∈ X a random operator on X and a random contraction on X if, additionally,
its range consists of contractions. A sequence of random operators (Vj ) j∈N on X is
said to be strongly predictable in case each Vj x is strongly F j−1-measurable for all
x ∈ X .
An adapted X -valued sequence (ξ j )

	
j=1 is called conditionally symmetric given

(F j )
	
j=0 if for all 1 ≤ j ≤ 	 the random variables ξ j and −ξ j are conditionally

equi-distributed given F j−1, i.e. for all Borel sets B ∈ B(X) it holds that

EF j−11{ξ j∈B} = EF j−11{−ξ j∈B}.

Recently, in [50, Theorem 3.1] an extended version of Pinelis’s version of the
Rosenthal–Burkholder inequality (see [46])was proven.An alternative approachbased
on Bellman function techniques was found in [54].

Theorem 2.6. [[50]], Theorem3.1] Let X be a (2, D)-smooth Banach space. Suppose
that (M̃ j )

	
j=0 is an adapted sequence of X-valued random variables, (Mj )

	
j=0 is an X-

valued martingale with difference sequence (d j )
	
j=1, (Vj )

	
j=1 is a sequence of random



   43 Page 10 of 34 K. Klioba and M. Veraar J. Evol. Equ.

contractions on X that is strongly predictable, and assume that we have M̃0 = M0 = 0
and

M̃ j = Vj M̃ j−1 + d j , j = 1, . . . , 	.

Then, for all 2 ≤ p < ∞ we have

‖(M̃)∗‖p ≤ 30p‖d∗‖p + 40D
√
p‖s(M)‖p.

If, moreover, (Mj )
	
j=0 has conditionally symmetric increments, then

‖(M̃)∗‖p ≤ 5p‖d∗‖p + 10D
√
p‖s(M)‖p.

2.5. Approximation of semigroups

A fundamental part of the approximation of solutions to a stochastic evolution
equation entails the temporal approximation of a semigroup by a scheme. The ap-
proximation behaviour is quantified as follows.

Definition 2.7. Let X be a Banach space. An L(X)-valued scheme is a function
R : [0,∞) → L(X). We denote Rk :=R(k) for k ≥ 0. Let Y be a Banach space
that is continuously and densely embedded into X . If A generates a C0-semigroup
(S(t))t≥0 on X , an L(X)-valued scheme R is said to approximate S to order α > 0
on Y or, equivalently, R converges of order α on Y if for all T > 0 there is a constant
Cα ≥ 0 such that

‖(S( jk) − R j
k )u‖X ≤ Cαk

α‖u‖Y
for all u ∈ Y , k > 0, and j ∈ N such that jk ∈ [0, T ]. An L(X)-valued scheme R is
said to be contractive if ‖Rk‖L(X) ≤ 1 for all k ≥ 0.

Henceforth, the index for norms in the space X will be omitted. In the linear deter-
ministic case, the following schemes approximate S to different orders:

• exponential Euler (EE): Rk = S(k), any order α > 0 on X ;
• implicit Euler (IE): Rk = (1 − k A)−1, order α ∈ (0, 1] on D((−A)2α);
• Crank–Nicolson (CN): Rk = (2+k A)(2−k A)−1, orderα ∈ (0, 2]onD((−A)3α/2),

provided that R is contractive.

Note that contractivity of (S(t))t≥0 implies sectoriality of−A and thus the fractional
powers (−A)β exist for β > 0. As many commonly used schemes, (IE) and (CN) can
be written as Rk = r(−k A) for some function r : C+ → C, where r(−k A) is defined
via the H∞-calculus of −A.

Common choices for the space Y in Definition 2.7 are domains of fractional powers
of the negative of the generator A of the semigroup. An important property of these
spaces is their embedding into the real interpolation spaces with parameter ∞. That
is, for α > 0

D(Aα) ↪→ DA(α,∞), (2.4)

where DA(α,∞) denotes the real interpolation space (X, D(A))α,∞. See [45,49] for
details on real interpolation spaces.
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2.6. Gronwall-type lemmas

We need the following variants of the classical Gronwall inequality from [36, Lem-
mas 2.5 and 2.6] in the continuous and the discrete version based on [28, Proposition
5].

Lemma 2.8. Let φ : [0, T ] → [0,∞) be a continuous function and let α, β ≥ 0 be
constants. If

φ(t) ≤ α + β
( ∫ t

0
φ(s)2ds

)1/2
, for t ∈ [0, T ],

then

φ(t) ≤ α(1 + β2t)1/2 exp
(1
2

+ 1

2
β2t

)
, for t ∈ [0, T ].

Lemma 2.9. Let (ϕ j ) j≥0 be a nonnegative sequence and α, β ≥ 0. If

ϕ j ≤ α + β
( j−1∑

i=0

ϕ2
i

)1/2
for j ≥ 0,

then

ϕ j ≤ α(1 + β2 j)1/2 exp
(1
2

+ 1

2
β2 j

)
for j ≥ 0.

3. Convergence rates on 2-smooth Banach spaces

We consider the stochastic evolution equation with multiplicative noise

{ dU = (AU + F(t,U )) dt + G(t,U ) dWH on [0, T ],
U (0) = u0 ∈ L p

F0
(�; X)

(3.1)

for 2 ≤ p < ∞, T > 0, and A generating a C0-semigroup (S(t))t≥0 of contractions
on a 2-smooth Banach space X . In this section, we extend the pathwise uniform
convergence rates obtained in [36] for contractive time discretisation schemes on
Hilbert spaces to 2-smooth Banach spaces. In particular, this includes a generalisation
of the well-posedness and stability results used for the main error estimate in Theorem
3.8.

The following assumption ensures well-posedness of the stochastic evolution equa-
tion (3.1).

Assumption 3.1. Let X be a (2, D)-smooth Banach space for some D ≥ 1 and let
p ∈ [2,∞). Let F : � × [0, T ] × X → X , F(ω, t, x) = F̃(ω, t, x) + f (ω, t) and
G : � × [0, T ] × X → γ (H, X), G(ω, t, x) = G̃(ω, t, x) + g(ω, t) be strongly
P ⊗B(X)-measurable and such that F̃(·, ·, 0) = 0 as well as G̃(·, ·, 0) = 0. Suppose
that
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(a) (global Lipschitz continuity on X) there exist constants CF ,CG ≥ 0 such that
for all ω ∈ �, t ∈ [0, T ] and x, y ∈ X , it holds that

‖F̃(ω, t, x) − F̃(ω, t, y)‖ ≤ CF‖x − y‖,
‖G̃(ω, t, x) − G̃(ω, t, y)‖γ (H,X) ≤ CG‖x − y‖,

(b) (integrability) f ∈ L p
P (�; L1(0, T ; X)) and g ∈ L p

P (�; L2(0, T ; γ (H, X))).

Note that Assumption 3.1 implies linear growth of F and G, i.e. for all ω ∈ �,
t ∈ [0, T ], and x ∈ X ,

‖F̃(ω, t, x)‖ ≤ CF‖x‖ and ‖G̃(ω, t, x)‖γ (H,X) ≤ CG‖x‖.

Well-posedness shall be understood in the sense of existence and uniqueness of
mild solutions to (3.1).

Definition 3.2. A U ∈ L0
P (�;C([0, T ]; X)) is called a mild solution to (3.1) if a.s.

for all t ∈ [0, T ]

U (t) = S(t)u0 +
∫ t

0
S(t − s)F(s,U (s)) ds +

∫ t

0
S(t − s)G(s,U (s)) dWH (s).

As a shorthand notation, we write

‖ f ‖p,q,Z :=‖ f ‖L p(�;Lq (0,T ;Z)), |||g|||p,q,Z :=‖g‖L p(�;Lq (0,T ;γ (H,Z)))

for p ∈ [2,∞), q ∈ [1,∞], and Z ⊆ X . The following well-posedness result is an
extension of [36, Thm. 4.3] to 2-smooth Banach spaces.

Theorem 3.3. Suppose that Assumption 3.1 holds for some p ∈ [2,∞). Let A be the
generator of a C0-contraction semigroup (S(t))t≥0 on X and let u0 ∈ L p

F0
(�; X).

Then (3.1) has a unique mild solution U ∈ L p(�;C([0, T ]; X)). Moreover, there is
a constant C ≥ 0 depending only on p, D, T , CF , and CG such that

‖U‖L p(�;C([0,T ];X)) ≤ C
(
1 + ‖u0‖L p(�;X) + ‖ f ‖p,1,X + |||g|||p,2,X

)
.

Proof. The statement follows from an application of the contraction mapping theorem
to the fixed point functional

�v(t):=S(t)u0 +
∫ t

0
S(t − s)F(s, v(s)) ds +

∫ t

0
S(t − s)G(s, v(s)) dWH (s)

in the adapted subspace of L p(�;C([0, δ]; X)), as shown in [36, Thm. 4.3] for Hilbert
spaces X . In order to apply the methods used in [36], we replace the space of Hilbert–
Schmidt operators L2(H, X) by the space of γ -radonifying operators γ (H, X) and
applying the maximal inequality from Theorem 2.5 instead of the Burkholder–Davis–
Gundy inequality. �
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Under a linear growth assumptionon F andG ona2-smoothBanach spaceY embed-
ding into X , the problem (3.1) is alsowell-posed on Y , as the following straightforward
extension of [36, Thm. 4.4] illustrates.

Theorem 3.4. Let X and Y be (2, D)-smooth Banach spaces, Y ↪→ X, and as-
sume A generates a C0-contraction semigroup (S(t))t≥0 on both X and Y . Let p ∈
[2,∞), u0 ∈ L p

F0
(�; Y ), and let Assumption 3.1 hold. Additionally, suppose that

f ∈ L p
P (�; L1(0, T ; Y )), g ∈ L p

P (�; L2(0, T ; γ (H,Y ))), F : �×[0, T ]×Y → Y ,
G : � × [0, T ] × Y → γ (H,Y ), and there are LF , LG ≥ 0 such that for all ω ∈ �,
t ∈ [0, T ], and x ∈ Y ,

‖F̃(ω, t, x)‖Y ≤ LF (1 + ‖x‖Y ), ‖G̃(ω, t, x)‖γ (H,Y ) ≤ LG(1 + ‖x‖Y ).

Under these conditions, the unique mild solution U ∈ L p(�;C([0, T ]; X)) to (3.1)
is in L p(�;C([0, T ]; Y )) and there is a constant C ≥ 0 depending only on p, D, T ,
LF , LG, and Y such that

‖U‖L p(�;C([0,T ];Y )) ≤ C
(
1 + ‖u0‖L p(�;Y ) + ‖ f ‖p,1,Y + |||g|||p,2,Y

)
.

Having established well-posedness, we now turn to stability. Let Rk : X → X be a
time discretisation scheme with time step k > 0 on a uniform grid {t j = jk : j =
0, . . . , Nk} ⊆ [0, T ] with final time T = tNk > 0 and Nk = T

k ∈ N being the number
of time steps. We consider the temporal approximations of the mild solution to (3.1)
given by U 0:=u0 and

U j :=RkU
j−1 + kRk F(t j−1,U

j−1) + RkG(t j−1,U
j−1)�Wj (3.2)

withWiener increments�Wj :=WH (t j )−WH (t j−1) (see (2.2)). The above definition
of U j can be reformulated as the discrete variation-of-constants formula

U j = R j
k u0 + k

j−1∑
i=0

R j−i
k F(ti ,U

i ) +
j−1∑
i=0

R j−i
k G(ti ,U

i )�Wi+1 (3.3)

for j = 0, . . . , Nk .
The following stability result is a generalisation of [36, Prop. 5.1] to 2-smooth

Banach spaces. This requires replacing the dilation argument in the original proof by
a martingale one based on Theorem 2.6, which is the subject of the following lemma.

Lemma 3.5. Let X be a (2, D)-smooth Banach space, N ∈ N with N ≤ Nk, and
Q : � × [0, T ] → γ (H, X) be such that Qi :=Q(·, ti ) ∈ L p(�; γ (H, X)) is Fti -
measurable for 0 ≤ i ≤ N − 1. Suppose that (Rk)k>0 is contractive. Then there is a
constant Bp,D ≥ 0 depending on p and D such that

∥∥∥∥ max
0≤ j≤N

∥∥∥
j−1∑
i=0

R j−i
k Qi�Wi+1

∥∥∥
∥∥∥∥
p

≤ Bp,D

(
k
N−1∑
i=0

‖Qi‖2L p(�;γ (H,X))

)1/2
.
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Proof. The bound follows from an application of Theorem 2.6 as illustrated in Step 1
and a simplification of the two terms emerging in Steps 2 and 3.

Step 1. Define M̃ j := ∑ j−1
i=0 R j−i

k Qi�Wi+1 and Mj := ∑ j
i=1 RkQi−1�Wi for 0 ≤

j ≤ N . Further, define d j :=Mj − Mj−1 and Vj :=Rk for all 1 ≤ j ≤ N . Then M̃0 =
M0 = 0 by construction and (M̃ j )

N
j=0 is adapted because Qi is Fti - and thus also

Ft j−1 -measurable and �Wi+1 is Fti+1 - and thus also Ft j -measurable. Furthermore,
(Mj )

N
j=0 is an X -valued martingale with conditionally symmetric increments since it

is adapted and for 0 ≤ 	 ≤ j ≤ N

E(Mj |Ft	 ) =
j∑

i=1

RkQi−1E(�Wi |Ft	 ) =
	∑

i=1

RkQi−1�Wi = M	

by independence of�Wi ofFt	 for all i ≥ 	+1. Consequently, (d j )
N
j=1 is amartingale

difference sequence, and Theorem 2.6 is applicable. It yields the bound

∥∥∥∥ max
0≤ j≤N

∥∥∥
j−1∑
i=0

R j−i
k Qi�Wi+1

∥∥∥
∥∥∥∥
p

= ‖(M̃)∗‖p ≤ 5p‖d∗‖p + 10D
√
p‖s(M)‖p,

(3.4)

where d∗ = max1≤ j≤N ‖d j‖ and s(M)2 = ∑N−1
i=0 E(‖Mi+1 − Mi‖2 | Fti ).

Step 2. To simplify the first term, we first apply the triangle inequality and Doob’s
maximal inequality [30, Thm. 3.2.2] before rewriting the Wiener increments as sto-
chastic integrals to apply Itô’s isomorphism as in Theorem 2.5. Lastly, making use of
Minkowski’s inequality in L p/2(�), contractivity of Rk , and the dominated conver-
gence theorem in L p(�), it follows that

‖d∗‖p =
∥∥∥ max
1≤ j≤N

‖Mj − Mj−1‖
∥∥∥
p

≤ 2‖M∗‖p ≤ 2p

p − 1
‖MN‖p

= 2p

p − 1

∥∥∥∥
N−1∑
i=0

∫ tN

0
1(ti ,ti+1](s)RkQi dWH (s)

∥∥∥∥
L p(�;X)

≤ 2pCp,D

p − 1

∥∥∥∥
( ∫ tN

0

∥∥∥
N−1∑
i=0

1(ti ,ti+1](s)RkQi

∥∥∥
2

γ (H,X)
ds

)1/2∥∥∥∥
p

= 2pCp,D

p − 1

∥∥∥∥
N−1∑
i=0

∫ ti+1

ti
‖RkQi‖2γ (H,X) ds

∥∥∥∥
1/2

p/2

≤ 2pCp,D

p − 1

(
k
N−1∑
i=0

∥∥‖Qi‖2γ (H,X)

∥∥
p/2

)1/2 = 2pCp,D

p − 1

(
k
N−1∑
i=0

‖Qi‖2L p(�;γ (H,X))

)1/2
.

(3.5)
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Step 3. Using that the Wiener increments �Wi+1 are independent of Fti and have
variance ti+1 − ti = k, we can bound the remaining term ‖s(M)‖p in (3.4) by

‖s(M)‖p =
∥∥∥∥
( N−1∑

i=0

E
(‖RkQi�Wi+1‖2 | Fti

))1/2∥∥∥∥
p

≤
∥∥∥∥
( N−1∑

i=0

‖RkQi‖2γ (H,X)E(|�Wi+1|2 | Fti )
)1/2∥∥∥∥

p

=
∥∥∥∥k

N−1∑
i=0

‖RkQi‖2γ (H,X)

∥∥∥∥
1/2

p/2
≤

(
k
N−1∑
i=0

‖Qi‖2L p(�;γ (H,X))

)1/2
. (3.6)

The statement of the theorem is obtained with Bp,D = 10p2(p−1)−1Cp,D+10D
√
p

from inserting (3.5) and (3.6) in (3.4). �

Proposition 3.6. Let X be a (2, D)-smooth Banach space, p ∈ [2,∞) and u0 ∈
L p(�; X). Suppose that Assumption 3.1 holds and that (Rk)k>0 is contractive. Then
the discrete solution (3.2) obtained using (Rk)k>0 is stable. More precisely, for all
T > 0 there exists a constant CT independent of Nk such that

∥∥∥∥ max
0≤ j≤Nk

‖U j‖
∥∥∥∥
p

≤ CT
(‖ f ‖p,∞,X + |||g|||p,∞,X + ‖u0‖L p(�;X)

)
< ∞.

Proof. Let N ∈ {0, . . . , Nk} and ϕN :=‖max0≤ j≤N ‖U j‖‖p. Then, the variation-of-
constants formula (3.3) and contractivity of Rk allow us to bound

ϕN ≤ ‖u0‖L p(�;X) + k
N−1∑
i=0

∥∥∥∥ max
0≤ j≤i

‖F(t j ,U
j )‖

∥∥∥∥
p

+
∥∥∥∥ max
0≤ j≤N

∥∥∥∥
j−1∑
i=0

R j−i
k G(ti ,U

i )�Wi+1

∥∥∥∥
∥∥∥∥
p
.

(3.7)

Invoking linear growth of F̃ and pathwise continuity of f for the second term, we
obtain the bound

k
N−1∑
i=0

∥∥∥ max
0≤ j≤i

‖F(t j ,U
j )‖

∥∥∥
p

≤ k
N−1∑
i=0

(
CF

∥∥∥ max
0≤ j≤i

‖U j‖
∥∥∥
p

+ ‖ f ‖p,∞,X

)

= tN ‖ f ‖p,∞,X + CFk
N−1∑
i=0

ϕi ≤ T ‖ f ‖p,∞,X + CF
√
T

(
k
N−1∑
i=0

ϕ2
i

)1/2
,

(3.8)
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where we have used the Cauchy–Schwarz inequality in the last step.
To the last term in (3.7), we apply Lemma 3.5 with Qi :=G(ti ,Ui ) for 0 ≤ i ≤ N −1,
which together with linear growth of G̃ yields
∥∥∥∥ max
0≤ j≤N

∥∥∥∥
j−1∑
i=0

R j−i
k G(ti ,U

i )�Wi+1

∥∥∥∥
∥∥∥∥
p

≤ Bp,D

(
k
N−1∑
i=0

‖G(ti ,U
i )‖2L p(�;γ (H,X))

)1/2

≤ Bp,D

(
k
N−1∑
i=0

(|||g|||p,∞,X + CG‖Ui‖L p(�;X)

)2)1/2

≤ √
2Bp,D

√
T |||g|||p,∞,X + √

2Bp,DCG

(
k
N−1∑
i=0

ϕ2
i

)1/2
.

(3.9)

Inserting (3.8) and (3.9) in (3.7) followed by an application of the discrete version of
Gronwall’s inequality from Lemma 2.9 results in

ϕ2
N ≤ √

Cee
Ce/2

(‖u0‖L p(�;X) + T ‖ f ‖p,∞,X + √
2Bp,D

√
T |||g|||p,∞,X

)

with Ce:=1+C2
F tN +2B2

p,DC
2
GtN , which implies the desired statement for N = Nk ,

noting that tNk = T . �
Under the assumption of additional regularity in the structure of F andG and smooth

initial data u0, pathwise uniform convergence rates are obtained.Wewould like to draw
the reader’s attention to the difference in notation to Sect. 4: As no additional regularity
in the structure of nonlinearity and noise is assumed in that section, the following error
estimate from Theorem 3.8 does not apply toU but only to its regularised counterpart

mU . This is the subject of Corollary 4.6.

Assumption 3.7. Let X,Y be 2-smooth Banach spaces such that Y ↪→ X continu-
ously, and let p ∈ [2,∞). Let F : � × [0, T ] × X → X, F(ω, t, x) = F̃(ω, t, x) +
f (ω, t) and G : � × [0, T ] × X → γ (H, X),G(ω, t, x) = G̃(ω, t, x) + g(ω, t) be
strongly P ⊗ B(X)-measurable and such that F̃(·, ·, 0) = 0 as well as G̃(·, ·, 0) = 0.
Suppose that

(a) (global Lipschitz continuity on X) there exist constants CF ,CG ≥ 0 such that
for all ω ∈ �, t ∈ [0, T ], and x, y ∈ X , it holds that

‖F̃(ω, t, x) − F̃(ω, t, y)‖ ≤ CF‖x − y‖,
‖G̃(ω, t, x) − G̃(ω, t, y)‖γ (H,X) ≤ CG‖x − y‖,

(b) (Hölder continuity with values in X) for some α ∈ (0, 1], with [·]α denoting the
Cα-seminorm,

Cα,F := sup
ω∈�,x∈X

[F(ω, ·, x)]α < ∞, Cα,G := sup
ω∈�,x∈X

[G(ω, ·, x)]α < ∞,

(c) (Y -invariance) F : � × [0, T ] × Y → Y and G : � × [0, T ] × Y → γ (H,Y )

are strongly P ⊗B(Y )-measurable, f ∈ L p
P (�;C([0, T ]; Y )), and g ∈ L p

P (�;
C([0, T ]; γ (H,Y ))),
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(d) (linear growth on Y ) there exist constants LF , LG ≥ 0 such that for all ω ∈
�, t ∈ [0, T ], and x ∈ Y , it holds that

‖F̃(ω, t, x)‖Y ≤ LF (1 + ‖x‖Y ), ‖G̃(ω, t, x)‖γ (H,Y ) ≤ LG(1 + ‖x‖Y ).

Along the lines of the proof of [36, Thm. 6.3] in the Hilbert space case, we obtain
the following error estimate in 2-smooth Banach spaces.

Theorem 3.8. Suppose that Assumption 3.7 holds for some α ∈ (0, 1] and p ∈
[2,∞). Let A be the generator of a C0-contraction semigroup (S(t))t≥0 on both X
and Y . Let (Rk)k>0 be a time discretisation scheme that is contractive on X and Y .
Assume R approximates S to orderα onY . Suppose that Y ↪→ DA(α,∞) continuously
if α ∈ (0, 1) or Y ↪→ D(A) continuously if α = 1. Let u0 ∈ L p

F0
(�; Y ). Denote by

U the mild solution of (3.1) and by (U j ) j=0,...,Nk the temporal approximations as
defined in (3.2). Then for Nk ≥ 8 there are constants C1,C2,C3,C4 ≥ 0 independent
of k such that

∥∥∥∥ max
0≤ j≤Nk

‖U (t j ) −U j‖
∥∥∥∥
p

≤ C1k + C2k
1/2 +

(
C3 + C4 log

(T
k

))
kα.

In particular, the approximations (U j ) j converge at ratemin{α, 1
2 } up to a logarithmic

correction factor as k → 0.

As in the Hilbert space case, the logarithmic factor is not required if the exponential
Euler method is used, which is given by Rk = S(k).

Remark 3.9. Provided that the semigroup (S(t))t≥0 has a dilation, the error bound
from Theorem 3.8 extends to the full time interval [0, T ]. More precisely, for a piece-
wise constant extension Ũ : [0, T ] → L p(�; X) of (U j ) j=0,...,Nk , there is a constant
C ≥ 0 such that

∥∥∥∥ sup
t∈[0,T ]

‖U (t) − Ũ (t)‖
∥∥∥∥
p

≤ Ck1/2 + C
(
1 + log

(T
k

))
kα (3.10)

under the assumptions of Theorem 3.8 and an additional integrability assumption on f
and g. If the time discretisation scheme used is the splitting scheme, i.e. Rk = S(k) for
k > 0, the optimal rate (1 + √

log(T/k))k1/2 can be obtained in (3.10). It is optimal
as it coincides with the modulus of continuity of the Brownian motion. The proof
of (3.10) carries over verbatim from the Hilbert space case, given the dilation of the
semigroup. For further details, we refer to [36, Section 6.3].

There are two main cases known in which semigroups on non-Hilbert spaces have
a dilation: positive semigroups on L p-spaces for 2 < p < ∞ [23] and (analytic)
semigroups whose generator admits an H∞-calculus of angle less than π

2 [24].
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4. Pathwise uniform convergence for irregular nonlinearities

Our aim is to prove pathwise uniform convergence of contractive time discretisation
schemes for nonlinear stochastic evolution equations of the form

dU = (AU + F(t,U )) dt + G(t,U ) dWH (t), U (0) = u0 ∈ L p(�; X) (4.1)

with t ∈ [0, T ], T > 0, on a 2-smooth Banach space X with norm ‖ · ‖, where WH

is an H -cylindrical Brownian motion for some Hilbert space H , and p ∈ [2,∞). The
operator A is assumed to generate a contractive C0-semigroup (S(t))t≥0 on X . The
main novelty of our paper lies in not assuming further regularity in the structure of the
nonlinearity or the noise. That is, we merely assume that F : � × [0, T ] × X → X
and G : � × [0, T ] × X → γ (H, X) and impose no further conditions on the images
F(� × [0, T ] × Y ) for some Y ↪→ X or even on F(� × [0, T ] × X) being proper,
more regular subspaces of X . Moreover, we allow rough initial data u0 ∈ L p(�; X).
Further assuming progressive measurability and global Lipschitz continuity of F and
G as detailed in Assumption 4.1, we have the existence of the unique mild solution to
(4.1) given by a fixed point of

U (t) = S(t)u0 +
∫ t

0
S(t − s)F(s,U (s)) ds +

∫ t

0
S(t − s)G(s,U (s)) dWH (s)

(4.2)

for t ∈ [0, T ], cf. Theorem 3.3.
For timediscretisation,weemploy a contractive timediscretisation scheme R : [0,∞)

→ L(X) with time step k > 0 on a uniform grid {t j = jk : j = 0, . . . , Nk} ⊆ [0, T ]
with final time T = tNk > 0 and Nk = T

k ∈ N being the number of time steps. As in
the previous section, the discrete solution is given by U 0:=u0 and

U j :=RkU
j−1 + kRk F(t j−1,U

j−1) + RkG(t j−1,U
j−1)�Wj (4.3)

for j = 1, . . . , Nk with Wiener increments �Wj :=WH (t j ) − WH (t j−1).
We summarise the conditions imposed on F and G.

Assumption 4.1. Let X be a (2, D)-smooth Banach space for some D ≥ 1 and let
p ∈ [2,∞). Let F : � × [0, T ] × X → X and G : � × [0, T ] × X → γ (H, X) be
strongly P ⊗ B(X)-measurable. Suppose that

(a) (global Lipschitz continuity) there exist constants CF ,CG ≥ 0 such that for all
ω ∈ �, t ∈ [0, T ], and x, y ∈ X , it holds that

‖F(ω, t, x) − F(ω, t, y)‖ ≤ CF‖x − y‖,
‖G(ω, t, x) − G(ω, t, y)‖γ (H,X) ≤ CG‖x − y‖,

(b) (linear growth) there exist constants LF , LG ≥ 0 such that for all ω ∈ �, t ∈
[0, T ], and x ∈ X , it holds that

‖F(ω, t, x)‖ ≤ LF (1 + ‖x‖), ‖G(ω, t, x)‖γ (H,X) ≤ LG(1 + ‖x‖),
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(c) (Hölder continuity) for some α ∈ (0, 1],

Cα,F := sup
ω∈�,x∈X

[F(ω, ·, x)]α < ∞, Cα,G := sup
ω∈�,x∈X

[G(ω, ·, x)]α < ∞.

Note that Hölder continuity of F as stated above implies pathwise uniform conti-
nuity. Condition (c) can be weakened to the existence of some α ∈ (0, 1] such that

sup
x∈X

sup
0≤s≤t≤T

F(·, t, x) − F(·, s, x)
(t − s)α

∈ L p(�)

and likewise for G, i.e. pathwise Hölder continuity uniformly in x ∈ X is sufficient
together with existence of p-th moments of the Hölder seminorms. Assumption 4.1
implies Assumption 3.1 with F̃ :=F − F(·, ·, 0), f :=F(·, ·, 0), and likewise for G,
whence (4.1) has a unique mild solution. Compared to Assumption 3.1, only condition
(c) is added. Under these assumptions, we obtain the main result of this paper on
pathwise uniform convergence of the temporal approximations.

Theorem 4.2. Suppose that Assumption 4.1 holds for some p ∈ [2,∞) and α ∈
(0, 1]. Further, suppose that A generates a C0-contraction semigroup on both X and
D(A), and let u0 ∈ L p

F0
(�; X). Let (Rk)k>0 be a time discretisation scheme that is

contractive on both X and D(A) and that approximates S to order α on D(A). Denote
by U the mild solution of (4.1) and by (U j ) j=0,...,Nk the temporal approximations as
defined in (4.3). Define the piecewise constant extension Ũ : [0, T ] → L p(�; X) by
Ũ (t):=U j for t ∈ [t j , t j+1), 0 ≤ j ≤ Nk − 1, and Ũ (T ):=UNk . Then

lim
k→0

∥∥∥∥ sup
t∈[0,T ]

‖U (t) − Ũ (t)‖
∥∥∥∥
p

= 0. (4.4)

The main ingredient of the proof of this theorem consists of regularising the non-
linearity, the noise, and the initial values by

mF := mR(m, A)F, mG := mR(m, A)G, mu0 := mR(m, A)u0 (4.5)

for m ∈ N. By construction, mF maps to D(A), mG maps to γ (H, D(A)), and

mu0 ∈ L p(�; D(A)), giving the desired additional regularity in structure. Assumption
4.1 also implies existence and uniqueness of the mild solution mU of the regularised
problem

mU = (AmU + mF(mU )) dt + mG(mU ) dWH (t), mU (0) = mu0 ∈ X (4.6)

for m ∈ N. It is given by a fixed point of

mU (t) = S(t)mu0 +
∫ t

0
S(t − s)mF(mU (s)) ds +

∫ t

0
S(t − s)mG(mU (s)) dWH (s).

The following proposition lists useful properties of the regularised quantities.
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Proposition 4.3. Let Assumption 4.1 hold and let m F, mG, mu0 be as defined in (4.5)
for m ∈ N. Suppose that A generates a C0-contraction semigroup (S(t))t≥0. Let
u0 ∈ L p

F0
(�; X). Then the following statements hold.

(a) (D(A)-invariance) mF : � × [0, T ] × D(A) → D(A) and mG : � × [0, T ] ×
D(A) → γ (H, D(A)) are strongly P ⊗ B(D(A))-measurable and mu0 ∈
L p
F0

(�; D(A)).
(b) (uniform Lipschitz continuity) There are CF ,CG ≥ 0 such that for all m ∈ N,

ω ∈ �, t ∈ [0, T ], and x, y ∈ X, it holds that

‖mF(ω, t, x) − mF(ω, t, y)‖ ≤ CF‖x − y‖,
‖mG(ω, t, x) − mG(ω, t, y)‖γ (H,X) ≤ CG‖x − y‖.

(c) (linear growth on D(A)) For all m ∈ N, there are constants LF,m, LG,m ≥ 0
such that for all ω ∈ �, t ∈ [0, T ], and x ∈ Y , it holds that

‖mF(ω, t, x)‖D(A) ≤ LF,m(1 + ‖x‖D(A)),

‖mG(ω, t, x)‖γ (H,D(A)) ≤ LG,m(1 + ‖x‖D(A)).

(d) (pointwise convergence) As m → ∞, m F and mG converge pointwise to F and
G, respectively. Moreover, mu0 → u0 in L p(�; X) as m → ∞.

Proof. (a) Continuity of F(ω, t, ·) : X → X follows fromAssumption 3.1(a) for all
ω ∈ �, t ∈ [0, T ], and thus also continuity as a mapping F(ω, t, ·) : D(A) →
X . From the identity AR(m, A) = mR(m, A) − I and continuity of the re-
solvent on X , we obtain continuity of R(m, A) : X → D(A). Consequently,

mF(ω, t, ·) : D(A) → D(A) is continuous. Hence, strong P ⊗
B(D(A))-measurability of mF : � × [0, T ] × D(A) → D(A) follows from
strong P ⊗ B(X)-measurability as stated in Assumption 3.1. Likewise, strong
P ⊗B(D(A))-measurability of mG can be derived. Lastly, since R(m, A) maps
to D(A) and u0 ∈ L p

F0
(�; X), it holds that mu0 ∈ L p

F0
(�; D(A)).

(b) First, we recall a folklore result from semigroup theory [22, Thm. II.1.10(iii)]:
For contraction semigroups, the norm of the resolvent R(λ, A) is bounded by
‖R(λ, A)‖L(X) ≤ (Re λ)−1 for all Re λ > 0. Hence, ‖mR(m, A)‖L(X) ≤ m ·
1
m = 1 is contractive. Together with this observation, Lipschitz continuity of
F and G implies uniform Lipschitz continuity of mF and mG with the same
Lipschitz constant, respectively.

(c) By assumption, F is of linear growth on X . Linear growth of mF on D(A) with
LF,m = (2m + 1)LF follows from the identity AR(m, A) = mR(m, A) − I ,
observing that

‖mF(ω, t, x)‖D(A) = ‖mAR(m, A)F(ω, t, x)‖ + ‖mR(m, A)F(ω, t, x)‖
≤ ‖m[mR(m, A) − I ]F(ω, t, x)‖ + ‖F(ω, t, x)‖
≤ (2m + 1)‖F(ω, t, x)‖ ≤ (2m + 1)LF (1 + ‖x‖).

Linear growth of mG with LG,m = (2m + 1)LG follows analogously.
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(d) It suffices to prove that mR(m, A) → I in the strong operator topology as
m → ∞. Since A is densely defined and closed as the generator of a C0-
semigroup, this follows from [22, Lemma 3.4].

�

For a comprehensive discretisation error analysis, we start by investigating the
continuous regularisation error. The following lemma will prove helpful in doing so
for Z ∈ {X, γ (H, X)} and with ψ chosen based on the nonlinearity F or noise G.

Lemma 4.4. Let Z be a Banach space, ψ : � × [0, T ] → Z have continuous paths
almost surely and assume that

sup
t∈[0,T ]

‖ψ(·, t)‖Z ∈ L p(�).

Let Rn, R ∈ L(Z), n ∈ N, be such that Rn → R strongly as n → ∞. Then

lim
n→∞

∥∥∥ sup
t∈[0,T ]

‖(Rn − R)ψ(·, t)‖Z
∥∥∥
p

= 0.

Proof. By continuity of paths of ψ , the set ψ(ω, [0, T ]) ⊆ Z is compact for a.e.
ω ∈ �. Since by assumption Rn converges to R in the strong operator topology, [22,
Proposition A.3] yields uniform convergence of Rn to R on compact sets in Z as
n → ∞ for a.e. ω ∈ �. Hence,

sup
t∈[0,T ]

‖(Rn − R)ψ(ω, t)‖Z −−−→
n→∞ 0 for a.e. ω ∈ �.

Due to the assumed integrability of the supremum of ψ in time, the desired statement
follows from dominated convergence in L p(�). �

Lemma 4.5. [Convergence of continuous regularisation] Suppose that Assumption
4.1 holds for some p ∈ [2,∞). Suppose that A generates a C0-contraction semigroup
(S(t))t≥0 on X and let u0 ∈ L p

F0
(�; X). Denote by U the mild solution of (4.1) and

by mU the mild solution of (4.6) with mF, mG, mu0 as defined in (4.5) for m ∈ N.
Then

lim
m→∞

∥∥∥∥ sup
t∈[0,T ]

‖U (t) − mU (t)‖
∥∥∥∥
p

= 0. (4.7)

Proof. Let mV :=U − mU and τ ∈ [0, T ]. Then, mV is given by

mV (t) = S(t)[u0 − mu0] +
∫ t

0
S(t − s)[F(s,U (s)) − mF(s, mU (s))] ds

+
∫ t

0
S(t − s)[G(s,U (s)) − mG(s, mU (s))] dWH (s),
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which implies

m E1(τ ) :=
∥∥∥∥ sup
t∈[0,τ ]

‖mV (t)‖
∥∥∥∥
p

≤
∥∥∥∥ sup
t∈[0,τ ]

‖S(t)[u0 − mu0]‖
∥∥∥∥
p

+
∥∥∥∥ sup
t∈[0,τ ]

∫ t

0
‖S(t − s)[F(s,U (s)) − m F(s, mU (s))]‖ ds

∥∥∥∥
p

+
∥∥∥∥ sup
t∈[0,τ ]

∥∥∥∥
∫ t

0
S(t − s)[G(s,U (s)) − mG(s, mU (s))] dWH (s)

∥∥∥∥
∥∥∥∥
p

=:E1,1(τ ) + E1,2(τ ) + E1,3(τ ).

We proceed to bound the terms individually. For the initial value term, contractivity of
S, strong convergence of mR(m, A) to I on X , and dominated convergence in L p(�)

yield the existence of m0 ∈ N such that for all m ≥ m0,

E1,1(τ ) ≤ ‖u0 − mu0‖L p(�;X) = ‖[I − mR(m, A)]u0‖L p(�;X) <
ε

3
. (4.8)

Next, we estimate

E1,2(τ ) ≤
∥∥∥∥

∫ τ

0
‖F(s,U (s)) − mF(s,U (s))‖ ds

∥∥∥∥
p

+ CF

∥∥∥∥
∫ τ

0
‖U (s) − mU (s)‖ ds

∥∥∥∥
p

≤ τ

∥∥∥∥ sup
s∈[0,τ ]

‖F(s,U (s)) − mF(s,U (s))‖
∥∥∥∥
p

+ CF

∫ τ

0

∥∥∥∥ sup
r∈[0,s]

‖mV (r)‖
∥∥∥∥
p
ds

using contractivity of S and uniform Lipschitz continuity of mF . By Theorem 3.3,
U almost surely has continuous paths. Combined with continuity of F in time and
space as follows from Assumption 4.1, this implies that ψ : � × [0, T ] → X ,
ψ(ω, t):=F(ω, t,U (t)) also has continuous paths almost surely. Furthermore, lin-
ear growth and Theorem 3.3 imply

∥∥∥∥ sup
s∈[0,τ ]

‖F(s,U (s))‖
∥∥∥∥
p

≤ LF (1 + ‖U‖L p(�;C([0,T ];X))) < ∞.

Hence, Lemma 4.4 applied to ψ on Z = X with Rn = nR(n, A) and R = I yields
the existence of m1 ∈ N such that for all m ≥ m1,

∥∥∥∥ sup
s∈[0,τ ]

‖F(s,U (s)) − mF(s,U (s))‖
∥∥∥∥
p

<
ε

3T
.

In conclusion, for m ≥ m1 the Cauchy–Schwarz inequality yields

E1,2(τ ) <
ε

3
+ CF

∫ τ

0
mE1(s) ds ≤ ε

3
+ CFT

1/2
( ∫ τ

0
mE1(s)

2 ds
)1/2

. (4.9)
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Via the maximal inequality from Theorem 2.5, the triangle inequality in L p(�; L2

(0, τ ; γ (H, X))), uniformLipschitz continuity of mG, and Fubini’s theoremwe obtain

E1,3(τ ) ≤ Cp,D

∥∥∥
( ∫ τ

0
‖G(s,U (s)) − mG(s, mU (s))‖2γ (H,X) ds

)1/2∥∥∥
p

≤ Cp,D

∥∥∥
( ∫ τ

0
‖G(s,U (s)) − mG(s,U (s))‖2γ (H,X) ds

)1/2∥∥∥
p

+ Cp,DCG

∥∥∥
∫ τ

0
‖U (s) − mU (s)‖2 ds

∥∥∥
1/2

p/2

≤ Cp,Dτ 1/2
∥∥∥∥ sup
s∈[0,T ]

∥∥G(s,U (s)) − mG(s,U (s))
∥∥

γ (H,X)

∥∥∥∥
p

+ Cp,DCG

(∫ τ

0

∥∥∥∥ sup
r∈[0,s]

‖U (r) − mU (r)‖
∥∥∥∥
2

p
ds

)1/2

.

By the left ideal property of γ (H, X), see Proposition 2.4, the resolvent R(m, A)

extends to a linear and bounded operator on γ (H, X) form ∈ ρ(A). Hence, arguing as
for the nonlinear terms, Lemma 4.4 with Z = γ (H, X) and ψ(ω, t) = G(ω, t,U (t))
yields the existence of m2 ∈ N such that for all m ≥ m2,

∥∥∥∥ sup
s∈[0,T ]

‖G(s,U (s)) − mG(s,U (s))‖γ (H,X)

∥∥∥∥
p

<
ε

3Cp,DT 1/2 .

Hence, for m ≥ m2

E1,3(τ ) ≤ ε

3
+ Cp,DCG

( ∫ τ

0
mE1(s)

2 ds
)1/2

. (4.10)

Altogether, we deduce from (4.8), (4.9), and (4.10) that

mE1(τ ) ≤ ε + βp,D,T

( ∫ τ

0
mE1(s)

2 ds
)1/2

with βp,D,T :=CFT 1/2 +Cp,DCG . An application of the continuous version of Gron-
wall’s inequality from Lemma 2.8 yields

mE1(τ ) ≤ ε · (1 + β2
p,D,T τ)1/2 exp

(1
2

+ 1

2
β2
p,D,T τ

)
.

The required statement follows by setting τ = T . �

The regularised discrete solution obtained by applying the contractive time discreti-
sation scheme as in (4.3) is given by the variation-of-constants formula:

mU
j :=R j

k mu0 + k
j−1∑
i=0

R j−i
k m F(ti , mU

i ) +
j−1∑
i=0

R j−i
k mG(ti , mU

i )�Wi+1

(4.11)
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for j = 0, . . . , Nk .
The next error investigated is the numerical discretisation error for the regularised

problem, where we make use of the fact that mF and mG are mapping into spaces
with additional regularity. By means of the regularisation, we are now in the position
to apply the results from Sect. 3.

Corollary 4.6. (Convergence of regularised discretisation) Suppose that Assumption
4.1 holds for some p ∈ [2,∞) and α ∈ (0, 1]. Further, suppose that A generates
a C0-contraction semigroup on both X and D(A), and let u0 ∈ L p

F0
(�; X). Let

(Rk)k>0 be a time discretisation scheme that is contractive on both X and D(A) and
that approximates S to order α on D(A). Let m ∈ N. Denote by mU the mild solution
of (4.6) with mF, mG, mu0 as defined in (4.5) and by (mU j ) j=0,...,Nk the temporal
approximations as defined in (4.11). Then,

lim
k→0

∥∥∥∥ max
0≤ j≤Nk

‖mU (t j ) − mU
j‖

∥∥∥∥
p

= 0. (4.12)

Proof. First, we note that, as X , D(A) is a 2-smooth Banach space, see Subsection 2.1.
Global Lipschitz continuity of mF, mG on X , D(A)-invariance, and linear growth on
D(A) as stated in Assumption 3.7(a), (c), and (d) were already proven in Proposition
4.3. Hölder continuity of mF and mG as in Assumption 3.7(b) follows immediately
from the respective Assumption 4.1(c) on F and G. Lastly, mu0 = mR(m, A)u0 ∈
L p
F0

(�; D(A)) due to the regularising property of the resolvent.

Hence, Theorem 3.8 is applicable to mU and its discretisation (mU j ) j=0,...,Nk with
Y = D(A), nonlinearity mF , and noise mG. It yields the desired convergence, even
with a rate depending on the Hölder continuity in time of F and G. �
Note that the convergence of the regularised discretisation is not uniform in the

regularisation parameter m ∈ N. This leads to additional challenges in the proof of
the main result, which we now pass to.

Proof of Theorem 4.2. Let �t�:=t j for t ∈ [t j , t j+1), 0 ≤ j ≤ Nk − 1, and �T �:=T .
Then∥∥∥∥ sup

t∈[0,T ]
‖U (t) − Ũ (t)‖

∥∥∥∥
p

≤
∥∥∥∥ sup
t∈[0,T ]

‖U (t) −U (�t�)‖
∥∥∥∥
p

+
∥∥∥∥ max
0≤ j≤Nk

‖U (t j ) −U j‖
∥∥∥∥
p
.

Theorem 3.3 implies pathwise continuity of the mild solution U . Clearly, U is also
uniformly continuous on [0, T ], which togetherwith dominated convergence in L p(�)

yields convergence of the first term to 0 as k → 0. It remains to show convergence of
the discretisation error. To this end, let N ∈ {0, . . . , Nk} and fix some m ∈ N to be
determined later. We further decompose the discretisation error at the first N + 1 grid
points into three parts

E(N ) :=
∥∥∥∥ max
0≤ j≤N

‖U (t j ) −U j‖
∥∥∥∥
p

≤
∥∥∥∥ max
0≤ j≤N

‖U (t j ) − mU (t j )‖
∥∥∥∥
p

+
∥∥∥∥ max
0≤ j≤N

‖mU (t j ) − mU
j‖

∥∥∥∥
p

+
∥∥∥∥ max
0≤ j≤N

‖mU j −U j‖
∥∥∥∥
p

=: mE1(N ) + mE2(N ) + mE3(N ). (4.13)
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Note that mE1(N ) → 0 uniformly in N as m → ∞ as a consequence of Lemma 4.5.
Moreover, mE2(Nk) → 0 as k → 0 follows from Corollary 4.6. It remains to bound
the remaining term mE3(N ). This will be done in terms of mE1(Nk) and mE2(Nk),
which converge in the desired manner, and E(i), 0 ≤ i ≤ N − 1, which is dealt with
using a Gronwall argument as illustrated in Step 1. The bound itself will be obtained
in Step 2 of the proof.
Claim. Let ε > 0. We claim that there exist m0 = m0(ε) ∈ N and C = C(p, D, F,

G, T ) ≥ 0 such that for m ≥ m0,

mE3(N ) ≤ ε

2
+ C[mE1(Nk) + mE2(Nk)] + C

(
k
N−1∑
i=0

E(i)2
)1/2

. (4.14)

Step 1.We show that the claim suffices to prove the convergence of E(Nk) as k → 0.
Indeed, noting that mEi (N ) ≤ mEi (Nk) for i = 1, 2, we conclude from (4.13) that

E(N ) ≤ ε

2
+ (C + 1)[mE1(Nk) + mE2(Nk)] + C

(
k
N−1∑
i=0

E(i)2
)1/2

.

An application of Gronwall’s inequality from Lemma 2.9 results in

E(N ) ≤
(ε

2
+ (C + 1)[mE1(Nk) + mE2(Nk)]

)
(1 + C2tN )1/2 exp

(
1 + C2tN

2

)

for all m ≥ m0. By Lemma 4.5, there exists m1 ∈ N such that

mE1(Nk) ≤
∥∥∥∥ sup
t∈[0,T ]

‖U (t) − mU (t)‖
∥∥∥∥
p

≤ ε

2(C + 1)

for all m ≥ m1 and Nk ∈ N. Fix some m ≥ max{m0,m1}. Then

E(N ) ≤ (
ε + (C + 1)mE2(Nk)

)
(1 + C2T )1/2 exp

(
1 + C2T

2

)
.

Corollary 4.6 gives mE2(Nk) → 0 as Nk → ∞ or, equivalently, k → 0. Since ε > 0
was chosen arbitrarily, we conclude E(Nk) → 0 as k → 0, which proves the desired
convergence statement.
Step 2.We proceed to prove the claim (4.14) from Step 1. The error can be divided

into an initial value part, a nonlinear part, and a noise part according to

mE3(N ) =
∥∥∥∥ max
0≤ j≤N

‖mU j −U j‖
∥∥∥∥
p

≤
∥∥∥∥ max
0≤ j≤N

‖R j
k (mu0 − u0)‖

∥∥∥∥
p

+
∥∥∥∥ max
0≤ j≤N

∥∥∥∥k
j−1∑
i=0

R j−i
k [F(ti ,U

i ) − mF(ti , mU
i )]

∥∥∥∥
∥∥∥∥
p

+
∥∥∥∥ max
0≤ j≤N

∥∥∥∥
j−1∑
i=0

R j−i
k [G(ti ,U

i ) − mG(ti , mU
i )]�Wi+1

∥∥∥∥
∥∥∥∥
p

=: E3,1 + E3,2 + E3,3, (4.15)
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where the dependence E3,	 = E3,	(N ,m, k) for 	 = 1, 2, 3 is omitted in the notation.
We bound all three terms individually. First, we observe that by contractivity of Rk

and pointwise convergence of mR(m, A) → I , there exists m2 ∈ N such that for all
m ≥ m2

E3,1 ≤ ‖mu0 − u0‖L p(�;X) = ‖(mR(m, A) − I )u0‖L p(�;X) <
ε

6
. (4.16)

Second, we consider the nonlinear part of the error. For 0 ≤ j ≤ N and 0 ≤ i ≤ j−1,
we estimate

‖R j−i
k [F(ti ,U

i ) − mF(ti , mU
i )]‖

≤ ‖F(ti ,U
i ) − F(ti ,U (ti ))‖ + ‖F(ti ,U (ti )) − mF(ti ,U (ti ))‖

+ ‖mF(ti ,U (ti )) − mF(ti , mU (ti ))‖ + ‖mF(ti , mU (ti )) − mF(ti , mU
i )‖

≤ CF‖U (ti ) −Ui‖ + ‖F(ti ,U (ti )) − mF(ti ,U (ti ))‖
+ CF‖U (ti ) − mU (ti )‖ + CF‖mU (ti ) − mU

i‖, (4.17)

where in the last step we have used uniform Lipschitz continuity of mF and F . The
reason for splitting the error thisway is that the difference between F and its regularised
counterpart mF is evaluated in the values U (ti ) of the mild solution at the time grid
points. Since the mild solution has continuous paths, this enables us to apply Lemma
4.4 as seen in the proof of Lemma 4.5. This yields uniform convergence, in particular
uniformly in the number of time steps. Summing over i , multiplying by k, taking the
maximum over all j and taking norms in L p(�), we conclude from Minkowski’s
inequality in L p(�) that

E3,2 =
∥∥∥∥ max
0≤ j≤N

∥∥∥∥k
j−1∑
i=0

R j−i
k [F(ti ,U

i ) − mF(ti , mU
i )]

∥∥∥∥
∥∥∥∥
p

≤ CF

∥∥∥∥k
N−1∑
i=0

‖U (ti ) −Ui‖
∥∥∥∥
p

+ CF

∥∥∥∥k
N−1∑
i=0

‖U (ti ) − mU (ti )‖
∥∥∥∥
p

+ CF

∥∥∥∥k
N−1∑
i=0

‖mU (ti ) − mU
i‖

∥∥∥∥
p

+
∥∥∥∥k

N−1∑
i=0

‖F(ti ,U (ti )) − mF(ti ,U (ti ))‖
∥∥∥∥
p

≤ CFk
N−1∑
i=0

E(i) + CFT [mE1(Nk) + mE2(Nk)] + T

∥∥∥∥ sup
t∈[0,T ]

‖F(t,U (t)) − mF(t,U (t))‖
∥∥∥∥
p
.

As demonstrated in detail in the proof of Lemma 4.5, Lemma 4.4 yields the existence
of m3 ∈ N such that for all m ≥ m3,∥∥∥∥ sup

t∈[0,T ]
‖F(t,U (t)) − mF(t,U (t))‖

∥∥∥∥
p

<
ε

6T
.

Consequently, from Cauchy–Schwarz’s inequality it follows that for all m ≥ m3,

E3,2 ≤ CF
√
T

(
k
N−1∑
i=0

E(i)2
)1/2 + CFT [mE1(Nk) + mE2(Nk)] + ε

6
. (4.18)
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To bound the last term E3,3 in (4.15), we apply Lemma 3.5 with Qi :=G(ti ,Ui ) −
mG(ti , mUi ). This yields

E3,3 ≤ Bp,D

(
k
N−1∑
i=0

∥∥‖[G(ti ,U
i ) − mG(ti , mU

i )]‖γ (H,X)

∥∥2
p

)1/2

with Bp,D :=10D
√
p( 10p

2

p−1 + 1) recalling that Cp,D = 10D
√
p. As for the non-

linear terms in (4.17), we split the term ‖G(ti ,Ui ) − mG(ti , mUi )‖γ (H,X) in such
a way that the difference of G and mG is evaluated at U (ti ) rather than the dis-
crete approximations Ui or mUi . After an application of the triangle inequality in
	2({0, . . . , N − 1}; L p(�; γ (H, X))) this results in

E3,3 ≤ Bp,D

[
CG

(
k
N−1∑
i=0

‖U (ti ) −Ui‖2L p(�;X)

)1/2

+ CG

(
k
N−1∑
i=0

‖U (ti ) − mU (ti )‖2L p(�;X)

)1/2 + CG

(
k
N−1∑
i=0

‖mU (ti ) − mU
i‖2L p(�;X)

)1/2

+
(
k
N−1∑
i=0

∥∥‖G(ti ,U (ti )) − mG(ti ,U (ti ))‖γ (H,X)

∥∥2
p

)1/2]

≤ Bp,D

[
CG

(
k
N−1∑
i=0

E(i)2
)1/2 + CG

√
T [mE1(Nk) + mE2(Nk)]

+ √
T

∥∥∥∥ sup
t∈[0,T ]

‖G(t,U (t)) − mG(t,U (t))‖γ (H,X)

∥∥∥∥
p

]
.

We recall from the proof of Lemma 4.5 that the left ideal property of γ (H, X) allows
us to apply Lemma 4.4 on Z = γ (H, X). We infer that there is m4 ∈ N such that for
all m ≥ m4 the bound

∥∥∥∥ sup
t∈[0,T ]

‖G(t,U (t)) − mG(t,U (t))‖
∥∥∥∥
p

<
ε

6Bp,D
√
T

holds. Thus, for m ≥ m4,

E3,3 ≤ Bp,DCG

(
k
N−1∑
i=0

E(i)2
)1/2

+ Bp,DCG
√
T [mE1(Nk) + mE2(Nk)] + ε

6
.

(4.19)

Inserting the bounds (4.16), (4.18), and (4.19) into (4.15) proves the claim (4.14) with
C :=max{√T , 1}· (CF

√
T + Bp,DCG) andm0:=max{m2,m3,m4}. This finishes the

proof. �
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5. Application to the stochastic Schrödinger equation

To illustrate the convergence results from Sect. 4, we consider the stochastic
Schrödinger equation with a potential and linear multiplicative noise

{ du = −i(� + V )u dt − iu dW on [0, T ],
u(0) = u0

(5.1)

and its nonlinear variant with φ : C → C and ψ : C → C,

{ du = −i(�u + Vu + φ(u)) dt − iψ(u) dW on [0, T ],
u(0) = u0

(5.2)

in Rd for d ∈ N. Here, {W (t)}t≥0 is a square integrable K-valued Q-Wiener process,
K ∈ {R,C}, with respect to a normal filtration (Ft )t≥0, V is a K-valued potential,
u0 is anF0-measurable random variable, and T > 0. Pathwise uniform convergence
of contractive time discretisation schemes is known for this equation for sufficiently
regular V , Q, and u0, and convergence rates are at hand ( [36, Thm. 6.12, 6.13], [1,
Thm. 5.5]). We aim at relaxing the regularity conditions imposed on the potential V
as well as the covariance operator Q and allowing for rough initial data u0, while
maintaining pathwise uniform convergence.
Let σ ≥ 0 and write L2 = L2(Rd), L∞ = L∞(Rd), and Hσ = Hσ (Rd). We will

also be using the Bessel potential spaces Hσ,q = Hσ,q(Rd), which coincide with the
classical Sobolev spaces W σ,q(Rd) if σ ∈ N and q ∈ (1,∞). For details on these
spaces, we refer the interested reader to [8,49].
We are concerned with covariance operators Q ∈ L(L2) of trace class. More pre-

cisely, we assume that for an orthonormal basis (hn)n∈N of L2, the covariance operator
decomposes as

Q =
∑
n∈N

λn(hn ⊗ hn) with
∑
n∈N

λn = Cλ < ∞,

sup
n∈N

(‖hn‖L∞ + ‖hn‖Hσ,d/σ

)
< ∞ (5.3)

for some constant Cλ ≥ 0. For σ = 0, Hσ,d/σ should be interpreted as L∞. The con-
ditions (5.3) are equivalent to Q1/2 ∈ L(L2, L∞ ∩ Hσ,d/σ ). While the last condition
constitutes an additional regularity assumption on Q, still a wide range of operators is
covered due to the Sobolev index of Hσ,d/σ being 0. In particular, Hσ,d/σ -regularity
does not result in any Hölder regularity, not even continuity.
The following theorem on the linear Schrödinger equation covers among others the

case σ = 0.More general nonlinearities can be treated when restricting considerations
to only the case σ = 0, see Theorem 5.2.

Theorem 5.1. Let d ∈ N, σ ∈ [0, d
2 ), and p ∈ [2,∞). Assume that V ∈ L∞ ∩ Hσ, d

σ

and u0 ∈ L p
F0

(�; Hσ ). Suppose that the covariance operator Q ∈ L(L2) satisfies
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(5.3). Let (Rk)k>0 be a time discretisation scheme that is contractive on Hσ and
Hσ+2. Assume R approximates S to some order α ∈ (0, 1] on Hσ+2. Denote by U the
mild solution of the linear stochastic Schrödinger equation with multiplicative noise
(5.1) and by (U j ) j=0,...,Nk the temporal approximations as defined in (4.3). Define the
piecewise constant extension Ũ : [0, T ] → L p(�; X) by Ũ (t):=U j for t ∈ [t j , t j+1),
0 ≤ j ≤ Nk − 1, and Ũ (T ):=UNk . Then

lim
k→0

∥∥∥∥ sup
t∈[0,T ]

‖U (t) − Ũ (t)‖Hσ

∥∥∥∥
p

= 0. (5.4)

Proof. Let X :=Hσ . The semigroup generated by A = −i� is contractive on both X
and D(A) = Hσ+2 [1, Lemma 2.1]. We claim that Assumption 4.1 is satisfied for
F(ω, t, u):=− iVu andG(ω, t, u):=− iMuQ1/2 withMu denoting the multiplication
operator associated to u. At first, we show Lipschitz continuity of F on X . Let q1 =
2d

d−2σ and q2 = d
σ
. Then 1

q1
+ 1

q2
= 1

2 and q1 < ∞ because d > 2σ . By classical
Sobolev and Bessel potential space embeddings [8, Thm. 6.5.1], Hσ embeds into Lq1 .
Hence, an application of the product estimate [48, Prop. 2.1.1] yields:

‖F(u)‖Hσ = ‖V · u‖Hσ � ‖V ‖Hσ,q2 ‖u‖Lq1 + ‖V ‖L∞‖u‖Hσ

� (‖V ‖Hσ,d/σ + ‖V ‖L∞)‖u‖Hσ (5.5)

for u ∈ Hσ , i.e. linear growth of F . Lipschitz continuity of F follows from the above
considerations, noting that F is linear.

Next, Lipschitz continuity and linear growth of G are to be derived from the trace
class condition of Q. Set H = L2 and let Q = ∑

n∈N λn(hn ⊗ hn) with (hn)n∈N and
λn as in (5.3). Since Hσ is a Hilbert space, it suffices to consider Hilbert–Schmidt
norms. Using the product estimate from (5.5) in the inequality marked with (∗), we
calculate

‖G(u)‖2L2(L2,Hσ )
= ‖MuQ

1/2‖2L2(L2,Hσ )
=

∑
n∈N

‖uQ1/2hn‖2Hσ =
∑
n∈N

λn‖u · hn‖2Hσ

(∗)

�
∑
n∈N

λn(‖hn‖Hσ,d/σ + ‖hn‖L∞)2‖u‖2Hσ

≤ Cλ sup
n∈N

(‖hn‖Hσ,d/σ + ‖hn‖L∞
)2‖u‖2Hσ .

Linearity ofG yields Lipschitz continuity ofG. In conclusion, Assumption 4.1 is satis-
fied. Hence, Theorem 4.2 is applicable and yields the desired convergence
statement. �

Note that the convergence can be arbitrarily slow. More precisely, in the general
case, there is no α > 0 such that

∥∥∥∥ sup
t∈[0,T ]

‖U (t) − Ũ (t)‖Hσ

∥∥∥∥
p

≤ kα.
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Previous results yielding a convergence rate [36, Theorem 6.3] are not applicable
in the setting of Theorem 5.1. Clearly, rough initial data prohibits an application of
quantified results. However, even for smooth initial data, a convergence rate is out of
reach due to the lack of regularity of the potential V and the covariance Q. Since the

embedding Hσ ↪→ L
2d

d−2σ and the product estimate [48, Prop. 2.1.1] are sharp, there
is no σ̃ > σ such that F or G are mappings of linear growth on H σ̃ . Consequently,
the smoother space required for a convergence rate cannot be found in the setting of
this section.

To cover proper nonlinearities as in (5.2), estimates of the form

‖ψ(u) − ψ(v)‖Hσ � ‖u − v‖Hσ (u, v ∈ Hσ ) (5.6)

are required to show Lipschitz continuity of G. Estimates of this kind are out of reach
for σ > 0 in the general case, see [36, p. 30]. In particular, Nemytskij maps are not
Lipschitz on Hσ for any σ > 0.

Theorem 5.2. Let d ∈ Nand p ∈ [2,∞). Assume that V ∈ L∞ andu0 ∈ L p
F0

(�; L2).

Suppose that the covariance operator Q ∈ L(L2) satisfies (5.3). Let (Rk)k>0 be a
time discretisation scheme that is contractive on L2 and H2. Assume R approximates
S to some order α ∈ (0, 1] on H2. Let φ,ψ : C → C be Lipschitz continuous and
such that φ(0) = ψ(0) = 0. Denote by U the mild solution of the nonlinear sto-
chastic Schrödinger equation with multiplicative noise (5.2) and by (U j ) j=0,...,Nk the
temporal approximations as defined in (4.3). Define the piecewise constant extension
Ũ : [0, T ] → L p(�; X) by Ũ (t):=U j for t ∈ [t j , t j+1), 0 ≤ j ≤ Nk − 1, and
Ũ (T ):=UNk . Then

lim
k→0

∥∥∥∥ sup
t∈[0,T ]

‖U (t) − Ũ (t)‖L2

∥∥∥∥
p

= 0. (5.7)

Naturally, the result extends to non-vanishing σ in specific cases where Lipschitz
continuity on Hσ is known.

Proof. We show that Theorem 4.2 is applicable with F(ω, t, u):= − i(Vu + φ(u))

and G(ω, t, u):= − iMψ(u)Q1/2 on X = L2. Analogously to the proof of Theorem
5.1, we obtain the bound

‖G(u) − G(w)‖L2(L2,L2) �
√
2Cλ supn∈N ‖hn‖L∞‖ψ(u) − ψ(w)‖L2

≤ √
2CλCψ supn∈N ‖hn‖L∞‖u − w‖L2

for u, w ∈ L2, from which we can deduce Lipschitz continuity of G. Linear growth of
G follows from G(0) = 0. In the same way, one can see that F(u) = −i(Vu + φ(u))

is Lipschitz and of linear growth on L2. The statement directly follows from Theorem
4.2. �
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