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Using Eye-Tracking Data to Predict Situation
Awareness in Real Time During Takeover

Transitions in Conditionally Automated Driving
Feng Zhou , X. Jessie Yang , and Joost C. F. de Winter

Abstract— Situation awareness (SA) is critical to improv-
ing takeover performance during the transition period from
automated driving to manual driving. Although many studies
measured SA during or after the driving task, few studies have
attempted to predict SA in real time in automated driving. In this
work, we propose to predict SA during the takeover transition
period in conditionally automated driving using eye-tracking and
self-reported data. First, a tree ensemble machine learning model,
named LightGBM (Light Gradient Boosting Machine), was used
to predict SA. Second, in order to understand what factors
influenced SA and how, SHAP (SHapley Additive exPlanations)
values of individual predictor variables in the LightGBM model
were calculated. These SHAP values explained the prediction
model by identifying the most important factors and their
effects on SA, which further improved the model performance
of LightGBM through feature selection. We standardized SA
between 0 and 1 by aggregating three performance measures
(i.e., placement, distance, and speed estimation of vehicles with
regard to the ego-vehicle) of SA in recreating simulated driving
scenarios, after 33 participants viewed 32 videos with six lengths
between 1 and 20 s. Using only eye-tracking data, our proposed
model outperformed other selected machine learning models,
having a root-mean-squared error (RMSE) of 0.121, a mean
absolute error (MAE) of 0.096, and a 0.719 correlation coefficient
between the predicted SA and the ground truth. The code is
available at https://github.com/refengchou/Situation-awareness-
prediction. Our proposed model provided important implications
on how to monitor and predict SA in real time in automated
driving using eye-tracking data.

Index Terms— Real-time situation awareness prediction,
takeover, automated driving, eye-tracking measures,
explainability.

I. INTRODUCTION

CONDITIONALLY automated vehicles (i.e., SAE Level
3 [1]) have the potential to improve driving safety

and mobility while allowing drivers to conduct non-driving
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related tasks (NDRTs) [2]. However, as drivers are involved
in NDRTs, they can be out of the control loop for a pro-
longed duration [3], which can significantly reduce their
situation awareness (SA) [4] required to successfully take
over control of the automated vehicle when it reaches its
system limit [5]–[8]. For example, Zeeb et al. [9] found that,
compared to those who were not performing NDRTs, drivers
performing NDRTs before the takeover request exhibited
significantly deteriorated takeover performance, even though
they achieved motor readiness quickly. Braunagel et al. [3],
[10] argued that automated driving systems should be able
to recognize NDRTs (using eye-tracking data with machine
learning models) during conditionally automated driving in
order to measure and monitor driver’s SA during the takeover
transition period. With such prediction and monitoring sys-
tems, appropriate interventions can be introduced to improve
takeover performance [8], [11].

Endsley [4] defined SA as consisting of three levels, namely
1) the perception of environmental elements and events in
time or space, 2) the comprehension of their meaning, and
3) the projection of their status in the future. SA is essential
to ensure a successful takeover transition in conditionally
automated driving. However, little research has attempted
to monitor and predict SA in real time. Existing studies
mainly used standardized tools, such as the situation awareness
global assessment technique (SAGAT) [12] and the situa-
tion awareness rating technique (SART) [13] to measure
SA. While SAGAT is a performance-based tool that asks
participants to answer questions about the three levels of
SA [4], it faces operational challenges in real applications
due to its freeze-probe nature, especially in time-sensitive
scenarios such as takeovers. As a result, SAGAT has rarely
been used in naturalistic driving [14]. As a typical example
of a self-report tool, SART measures the amount of demand
on attentional resources, the supply of attentional resources,
and the understanding of the situation to obtain one’s SA
(i.e., SA = understanding – (demand – supply)) [13]. SART
is usually administered during or after the task is finished.
For example, Petersen et al. [15] used the SART tool after
the task to measure drivers’ SA in automated driving and
found that high SA increased trust in automated driving and
yielded improved performance of NDRTs. However, similar
to SAGAT, SART cannot be used to measure SA in real time
without interfering with the task at hand. Given the importance
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of SA prior to or during the takeover transition, it is important
to assess SA in real time using unobtrusive measures.

Recently, researchers have used eye-tracking data to assess
SA dynamically. Eye-tracking measures are indicators of
visual attention, which in turn is of critical importance to per-
ceiving, comprehending, and projecting the unfolding takeover
process. For example, Young et al. [16] and Molnar [17] found
that the time percentages of eyes-on-the-road were related
to drivers’ SA in naturalistic manual driving and simulated
automated driving, respectively. Yoon and Ji [18] found that
eye-tracking measures, such as the time needed for drivers
to shift their attention from NDRTs and fixate on the road,
played an important role in re-engaging the driving task
during the takeover process. de Winter et al. [19] found that
visual-sampling scores obtained using an eye tracker correlated
more strongly with task performance than freeze-probe scores
acquired via a SAGAT-like method. However, these studies
utilized post-analysis methods and few studies attempted to
predict SA using eye-tracking data in real time.

In this study, we proposed a machine learning model to
predict SA in takeover transitions based on eye-tracking data
using both LightGBM (Light Gradient Boosting Machine) [20]
and SHAP (SHapley Additive exPlanations) [21], [22]. First,
LightGBM is a tree ensemble method built on gradient boost-
ing decision trees. It grows leaf-wise trees by selecting leaves
with the largest decrease in loss and implements optimized
histogram-based decision trees. Thus, it is exceedingly effi-
cient and effective and was found to perform better than
eXtreme Gradient Boosting (XGBoost) in such application
areas as predicting insurance claims and flight delay, and
ranking web search queries [20]. Second, we used SHAP
(a method that has good mathematical properties, such as
consistency, missingness, and local accuracy [22]) to identify
the most important predictor variables (i.e., feature selection)
to improve the performance of the LightGBM model, and
to explain the effects of these factors on SA by calculating
the contributions of the predictor variables in the LightGBM
model using Shapley values from cooperative game the-
ory [23]. In summary, the contributions of this paper are
described as follows:

• We built an explainable machine learning model with
LightGBM and SHAP to predict driver SA in condi-
tionally automated driving using eye-tracking data with
reasonably high accuracy.

• We identified the most important eye-tracking measures
in predicting SA in conditionally automated driving.

• Our proposed method demonstrated the potential to
measure and monitor SA in real time in condition-
ally automated driving and possibly in other dynamic
environments.

II. RELATED WORK

SA plays a critical role in the decision-making process
across a wide range of applications. In conditionally automated
driving, the vehicle might reach its operational limit during
adverse driving conditions, in which it would request the driver
to take over the driving task within a specific time budget [5].

It is of vital importance for the driver to maintain a good
level of SA or resume his/her SA promptly in order to safely
negotiate the driving scenarios [7], [24].

Measures for SA can be categorized into two types:
subjective and objective measures. The subjective measures
include the SART tool [13], and participant situation aware-
ness questionnaire (PSAQ) [25], and so on. For example,
Petersen et al. [15] used SART to measure drivers’ SA dur-
ing automated driving and found that by providing verbal
information about the driving environment, drivers’ SA was
enhanced and so were their trust in automated driving and
NDRT performance. Karjanto et al. [26] used peripheral LED
strips to provide information on the future action of the
automated vehicle to enhance drivers’ SA, as evidenced by
SART measurements. Self-report tools, such as SART, are
easy to administer. However, participants cannot self-report
information that they are not aware of.

Objective measures include performance and behavioral
measures as well as process indices. SAGAT [12] measures
one’s knowledge about the task by means of freeze-probes.
Although this is one of the most commonly used techniques
in dynamic tasks (e.g., aviation), it has also received criticism
as it interferes with the task [19] and thus is often not the first
choice for takeover studies in automated driving. For example,
Köhn et al. [27] considered SAGAT to measure SA, but
decided against it due to its interruptions of the driving task,
which could counteract the out-of-the-loop problem during the
takeover process. Takeover performance measures, including
takeover time and takeover quality, are also associated with
SA. For example, a low level of SA was associated with a
longer takeover time [28], worse takeover decisions [29], and
worse NDRT performance [15] compared to a high level of
SA. However, a limitation of performance measures is that
they are only available after the takeover maneuver.

How participants process information when performing
tasks can also be used to measure SA. Examples are the mea-
surement of communication patterns, physiological responses,
and visual patterns. Walch et al. [30] suggested that coop-
erative interfaces should be designed in automated vehi-
cles to provide human-machine bi-lateral communication to
increase SA. Hirano et al. [31] examined the effects of music
and verbal communication (i.e., talking to passengers) on
drivers’ SA during partially automated driving and found
no significant improvement in their SA. SA can also be
assessed by participants’ physiological responses, which are
often linked to cognitive constructs, such as drowsiness and
mental workload [32]. For example, Zhou et al. [33], [34] used
physiological measures (e.g., heart rate, heart rate variability,
and respiration rate) to detect participants’ drowsiness and
drowsiness transitions in highly automated driving to indicate
their SA. French et al. [32] applied EEG to measure the three
levels of SA. Zhang et al. [35] found that EEG was sensitive
to changes in SA, and they also summarized the associations
between other physiological measures and SA by reviewing
previous studies.

Eye movement patterns enabled by eye trackers are also
widely used to indicate SA. In driving safety research, many
crashes happen because drivers fail to look at the right objects
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at the right time or fail to project what the next move will
be [36]. In a study in which participants had to watch six dials
with moving pointers, de Winter et al. [19] found that visual-
sampling scores (defined as the percentage of pointer threshold
crossings for which participants fixated on the dial, within a
threshold of 0.5 s of the threshold crossing) correlated better
with task performance than SAGAT. Yang et al. [37] found
that participants’ visual scanning patterns, particularly eyes-
on-road time had a marginally significant effect on takeover
quality, i.e., the more one glanced on the road, the better one’s
SA tended to be. Braunagel et al. [38] found that eyes-on-
road gazes alone could be used to predict takeover readiness
with about 60% accuracy. Lu et al. [39] used eye-tracking
measures, including net dwell time proportion in four different
areas of interest and glance frequency on three mirrors (one
rear-view and two side mirrors) to gain a deeper understanding
of how participants resumed SA as a function of time during
the takeover process. One of the merits of eye-tracking data
is that it can be unobtrusively collected in real time, which
provides the potential to monitor drivers’ SA continuously in
automated driving. Although driver state monitoring in driving
has been widely studied using eye-tracking and other data [40],
few researchers have attempted to monitor and predict SA in
automated driving using eye-tracking data.

III. DATASET

We used the dataset collected in [41] with 32 participants
(29 males, 3 females) between 22 and 29 years old (M =
24.2, SD = 1.8). Each participant viewed 33 videos created
using Prescan 8.0.0 (TASS International, The Netherlands)
at 1080p with a frame rate of 20 H z. The lengths of the
videos ranged from 1 to 20 s (1, 3, 6, 9, 12, or 20 s)
featuring a conditionally automated vehicle from a driver’s
perspective in a three-lane driving scenario with a total number
of 5 or 6 vehicles. All vehicles were randomly selected from
13 colors and 10 vehicle models. There were one to two
vehicles in each lane and two to four vehicles in front of the
ego-vehicle. Each vehicle was driving at one of three constant
speeds, i.e., 80, 100, or 120 km/h, and there were zero to three
vehicles driving at 80 km/h, one to three vehicles driving at
100 km/h, and one to three vehicles driving at 120 km/h.
The ego-vehicle was always driving 100 km/h. The farthest
distance between the ego-vehicle and other vehicles was
50-80 m. No vehicles performed lane changing in the videos.

Of all the driving scenarios, 16 required the participant to
take over control from the automated vehicle due to a vehicle
decelerating at 5 m/s2 at the start of the video. Because of
the dynamic constraints, such hazards would only be shown
in videos with lengths of 1, 3, 6, and 9 s. The hazardous
vehicle was standing still during the last second of the video.
At the end of the video, the hazardous vehicle was 19-22 m
away from the ego-vehicle. After having watched the video,
the participant was required to select the correct maneuver
decision to avoid a collision. The decision options were ‘Evade
left’, ‘Evade right’, ‘Brake only’, and ‘No need to take over’.

In order to create the ground truth of SA of the participants,
three performance measures in recreating the driving scenarios
were used, namely 1) the absolute difference between the

true number of vehicles and the placed number of vehicles
in the driving scenario, 2) the error percentage of the distance
between correctly placed vehicles and the true vehicles nor-
malized to a scale from 0% (perfect placement) to 100% (worst
placement), and 3) total speed difference between correctly
placed vehicles and the true vehicles, calculated by comparing
the speed difference (equal, faster, or slower) between the ego-
vehicle and others. Due to the different units involved in the
performance measures, we normalized all the three error scores
inversely into a scale from 0 to 1 and placed equal weights to
create a global SA score between 0 (worst SA) and 1 (perfect
SA). Because the ground truth of SA was a continuous variable
normalized between 0 and 1, we modeled the SA prediction
as a regression problem below.

To collect eye-tracking data of the participants, an EyeLink
1000 Plus (SR Research, Canada) eye tracker was used.
It recorded participants’ eye movements at a sampling rate
of 2000 H z, and was located 35 cm in front of the 24-inch
monitor. All the eye-tracking measures and other related
predictor variables used as the input of the machine learning
model are summarized in Table I. The first 12 measures
are non-eye-tracking measures. In order to obtain the eye-
tracking measures, we used the algorithms based on our
previous study [42]. We used a minimum fixation duration of
40 ms to detect fixations (the minimum fixation observed was
93 ms) and a minimum speed threshold of 2000 pi xels/s,
a minimum duration of 15 ms, and a maximum duration
of 150 ms to detect saccades. In order to calculate pupil
diameter, pupil areas were first preprocessed with a moving
mean filter with a window size of 100 samples, and then
blinks were identified using a threshold of 200 ms. The pupil
areas were interpolated linearly for the blinks, and then a
median filter was applied before pupil areas were converted
to pupil diameter. We selected these eye-tracking measures as
predictor variables mostly as a data-driven approach with the
help of studies mentioned above. We did not include fixation
duration measures for individual areas of interest because
they were highly correlated with the number of fixations in
the respective areas of interest, except for the road, which
was highly correlated with the overall mean fixation duration.
In this research, we will compare two types of prediction
models, i.e., 1) the model that used all the measures and 2)
the model that only used eye-tracking measures.

IV. PREDICTING SA WITH LIGHTGBM AND SHAP

A. LightGBM

We used LightGBM [20] to predict SA as a regression
problem. LightGBM is an exceedingly efficient and effective
ensemble machine learning model built on gradient boosting
decision trees. It predicted SA by adding a large number of
decision trees sequentially as follows:

ŷ0
i = 0

ŷ1
i = f1(xi ) = ŷ0

i + f1(xi )

. . .

ŷ j
i =

j∑
k=1

fk(xi ) = ŷ j−1
i + f j (xi ), (1)
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TABLE I

PREDICTOR VARIABLES USED IN PREDICTING SITUATION AWARENESS

where xi = [xi1, xi2, . . . , xi P ], 1 ≤ i ≤ N, N = 32 × 33 =
1056 is the i -th input vector of all the predictor variables,
P = 28 (or 16) is the total number of the (eye-tracking related)
predictor variables in Table I, N is the total number of the
samples in the dataset, ŷ j

i is the predicted SA for xi at j -th
iteration, and f j is the j -th trained decision tree. The algorithm
used this process to minimize the objective function as follows,
i.e.,

L j (θ) =
n∑
i

l(yi , ŷ j
i ) +

N∑
j=1

�( f j ), (2)

where l(yi , ŷ j
i ) is the loss function, being a combination

of mean squared error and mean absolute error. The regu-
larization term was used to reduce overfitting of the model
by controlling its complexity. LightGBM used two strategies
to improve the efficiency and effectiveness of the original
gradient boosting decision trees. First, in the training process,
in order to increase the efficiency of splitting the input recur-
sively based on the information gain of the input, LightGBM
utilized a leaf-wise method based on the so-called gradient-
based one-side sampling (GOSS) strategy. It only kept the
input with the most contributions to the information gain

with large gradients and abandoned the input with small
gradients randomly. Second, LightGBM bundled features that
were nearly exclusive to each other to improve the efficiency
and effectiveness of the model. We set the hyperparameters of
the model as follows, without fine-tuning in the training and
testing process: ’boosting_type’: ’goss’, ’objective’: ’regres-
sion’, ’metric’: ’l2’, ’l1’, ’num_leaves’: 100, ’learning_rate’:
0.05, ’bagging_freq’: 5, ’early_stopping_rounds’: 100, and
’num_boost_round’: 5000.

B. SHAP

SHAP [43] explains a machine learning model with desir-
able mathematical foundation, namely 1) local accuracy,
2) missingness, and 3) consistency. It defines the explanation
model g(x�) as a linear addition of the input variables to
interpret the original function f (x) as follows:

f (x) = g(x�) = ϕ0 +
P∑

p=1

ϕpx �
p, (3)

where P is the total number of input variables, ϕ0 is the bias
when all input variables are not existing, x = hx(x�) with
the mapping function, hx, and ϕp ∈ R is the contribution to
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the prediction of the p-th input variable. For local accuracy,
whenever x = hx(x�), the explanation model, g(x�), equals to
the original function, f (x). For missingness, when the input
variable is missing, it will have no impact on the model
prediction, i.e., x �

p = 0 → ϕp = 0, which is satisfied in
Eq. (3). For consistency, it means that for any two functions,
f and f �, if f �

x (z
�) − f �

x (z
� \ p) ≥ fx (z�) − fx (z� \ p),

then ϕp( f �, x) ≥ ϕp( f, x), where fx (z�) = f (hx (z�)), z ∈
{0, 1}P , z \ p indicates z p = 0. In order for this to hold,
the only solution, based on the Shapley value [23] obtained
from coalitional game theory, is

ϕp( f, x) =
∑
z�⊆x�

|z�|! (P − |z�| − 1)!
P! ( fx(z�) − fx (z� \ p)),

(4)

where |z�| is the number of non-zero variables in z�, which is
a subset of x�, i.e., z� ⊆ x�. Eq. (4) calculates the Sharpley
value, i.e., ϕp , which indicates its fair contribution to the
prediction of the p-th input variable. According to [43],
the solution to Eq. (4) is known as SHAP values, i.e., fx (z�) =
f (hx(z�)) = E[ f (z)|z�

S], where z�
S is the non-zero set of z�.

It thus provides unique additive feature importance measure
and satisfies the three properties described above.

We used SHAP to 1) identify the importance of individual
predictor variables (also used for feature selection in the
LightGBM model) globally, 2) explain the main effects of
important predictor variables on SA, and 3) explain indi-
vidual prediction instances by identifying the contributions
of individual predictor variable-value sets. However, it is
computationally intensive to calculate SHAP values because
of the exponential complexity in Eq. (4). For tree ensembles,
such as LightGBM, a more efficient algorithm was proposed
by Lundberg et al. [44] with O(T L D2) time, where T is the
number of the trees, L is the number of maximum leaves in
any tree, and D = logL.

V. RESULTS

A. Prediction Results

We used 10-fold cross-validation to examine the perfor-
mance of LightGBM, which was compared with other regres-
sion models. We used three performance measures, including
RMSE, MAE, and correlation coefficient between the pre-
dicted SA and the ground truth, defined as follows:

RM SE =
√∑N

i=1

(
yi − ŷi

)2

N
, (5)

M AE =
∑N

i=1 |yi − ŷi |
N

, (6)

Corr. =
∑N

i=1(ŷi − ¯̂y)(yi − ȳ)√∑N
i=1(ŷi − ¯̂y)2

∑N
i=1(yi − ȳ)2

, (7)

where N is the total number of the samples in the dataset, yi

is the i -th value of SA samples, ŷi is the i -th predicted SA,
ȳ is the mean value of all the SA samples, and ¯̂y is the mean
value of all the predicted SA results.

TABLE II

PERFORMANCE OF THE SELECTED MACHINE LEARNING MODELS WITH
ALL THE PREDICTOR VARIABLES

TABLE III

PERFORMANCE OF THE SELECTED MACHINE LEARNING MODELS WITH
ONLY EYE-TRACKING RELATED PREDICTOR VARIABLES

Table II shows the comparative performance of the selected
regression models with all the 28 predictor variables in Table I
and across the three performance measures (RMSE, MAE,
and correlation coefficient), we found that LightGBM had
the best performance, where LightGBM (all) included all the
predictor variables and LightGBM (best) included only the
top 14 predictor variables selected by SHAP (see Fig. 1a
and Fig. 2a). Table III shows the comparative performance
of selected regression models with all the 16 eye-tracking
related predictor variables in Table I and across the three
performance measures (RMSE, MAE, and correlation coef-
ficient), we found that LightGBM had the best performance,
where LightGBM (all) included all the eye-tracking related
predictor variables and LightGBM (best) included only the
top 9 predictor variables selected by SHAP (see Fig. 1b and
Fig. 2b). Note that in order to obtain the best performance,
we sequentially selected one variable at a time from the
most important one to the less important ones. Fig. 1 shows
how the performance changes when more predictor variables
were included in the LightGBM model. As shown in Fig. 1,
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Fig. 1. Performance of the LightGBM models when predictor variables were
sequentially selected from the most important one to the less important ones:
(a) All predictor variables; (b) Only eye-tracking related predictor variables.
Note that the error bar was the standard error obtained in the ten-fold cross-
validation process.

after the first several predictor variables were included in
the model, the performance seemed stabilized. This might be
because the variables included were from the most important
one to the least important ones in terms of their contributions
to predicting SA. As a result, in Fig. 1a, the top 14 predictor
variables (see Fig. 2a) were selected when the model had the
best performance as shown in Table II; in Fig. 1b, the top 9
(see Fig. 2b) predictor variables were selected when the model
had the best performance as shown in Table III.

B. SHAP Explanation
1) Feature Importance: We computed the SHAP values in

the same unit space as SA during the training and testing (i.e.,
10-fold cross-validation) process of LightGBM. For each fold,
we used 10% of the test data to calculate the SHAP values,
and this process was repeated 10 times so that each sample
(i.e., xi in Eq.(1)) in the dataset was calculated. Fig. 2 shows
the importance of the predictor variables with their global
impact,

∑N
i=1 |ϕip |, (i.e., the sum of the absolute SHAP values

of all the instances of the p-th variable) on the LightGBM
(best) prediction model, where Fig. 2a shows the results when
all the predictor variables were included in the LightGBM
model in Table II and Fig. 2b shows the results when only
eye-tracking related variables were included in the LightGBM
model in Table III. In each figure, each dot indicates one SHAP

Fig. 2. Importance ranking of the predictor variables in the LightGBM model
(best) produced by SHAP as shown in Table II and Table III: (a) When all
the predictor variables were included and (b) when only eye-tracking related
variables were included.

value, i.e., ϕip for one specific variable, and the figure has
four aspects that can help interpret it: 1) The colors changing
from blue (low) to red (high) indicate the value of the variable
changing from low to high; 2) the horizontal axis shows the
SHAP values with regard to the baseline value, indicating
the effects (positive values increase SA, while negative values
decrease SA) of the predictor variables on SA; 3) the vertical
axis sorts the importance of the predictor variables (those at
the top are more important than those below. For example,
the most important is videoLength followed by correctDeci-
sion in Fig. 2a) by their global impacts on SA, i.e.,

∑N
i=1 |ϕip |;

and 4) the shape of the horizontal violin plot of each predictor
variable shows the distributions of the samples of that variable
in the dataset.

2) Main Effects of Predictor Variables on SA: In order
to understand the effects of important predictor variables on
SA, we showed the main effect plots produced by SHAP
in Figs. 3 and 4. We plotted them in a series of box plots
(the left y axis) to show the variations of SHAP values and
histograms (the right y axis) to show sample distributions
of the variables in the dataset. In order to create box plots
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Fig. 3. The main effects of the top 14 most important predictor variables on SA. Note that the x-axis of the figure shows the values of the predictor variables,
and the figure has two y-axes. The left y-axis indicates the SHAP values (i.e., the contributions to predicting SA). The box plots corresponding to the x-axis
and the left y-axis indicate the main effects of the predictor variables on predicting SA. The right y-axis indicates the number of samples. The histogram
corresponding to the x-axis, and the right y-axis shows the distributions of the dataset. This also applies to Fig. 4 below.

for continuous variables, we grouped their values into an
appropriate number of bins based on their distributions. For
example, for the variable decisionTime, we discretized it into
18 bins, consistent with its histogram. Note that Fig. 3 was
produced using the LightGBM (best) model in Table II and
Fig. 4 was produced using the LightGBM (best) in Table III.
We also calculated Pearson’s product-moment or Spearman’s

Rho rank-order correlation coefficients between the continu-
ous or nominal predictor variables and their SHAP values,
which indicate the individual contributions of variable-value
sets to SA.

Fig. 3 shows the main effects of the selected top 14 predictor
variables (see Fig. 2a). The most important predictor variable
in Fig. 3 is videoLength (r = .798, p = .000), and five
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Fig. 4. The main effects of top 9 most important predictor variables related to eye-tracking measures on SA. Note that box plots correspond to the left y
axis in SHAP values, indicating the main effects (positive ones increased SA while negative ones decreased SA) while the histograms correspond to the right
y axis, indicating the distribution of the samples of each predictor variable.

different lengths were included in the dataset. Compared to
others, videos of 1 s reduced participants’ SA by 0.02 to
0.09, while videos of other lengths increased participants’ SA
overall. However, there was not much difference in influencing
SA among the videos whose lengths were longer than 3 s.
The second most important variable is correctDecision (r =
.292, p = .000). Compared to the trials in which participants
did not make decisions (“0” in the figure), those in which
participants made correct decisions had better SA. The third
variable is decisionTime (r = −.763, p = .000), where a
shorter decision time was associated with better SA. The
fourth variable is difficulty (r = −.746, p = .000). The more
difficult to rebuild the driving scenario, the lower the levels
of SA the participants had. The fifth variable is the number
of fixations on backMirror (r = .745, p = .000). The more
fixation numbers on the rear-view mirror, the better SA was.
The majority of the participants had 10 or fewer fixations.
The sixth variable is drivingFrequency (r = −.678, p =
.000) and, generally speaking, it was negatively correlated
with SA. Those who did not have any driving experience
(“6” in the figure) had worse SA than others. The seventh
variable is pupilMean (r = .158, p = .000). There was
no straightforward relationship between the average pupil
size and SA, possibly due to individual differences, such as

sensitivity to light from the videos [41]. The eighth variable is
decisionMade (r = −.768, p = .000). Those who decided to
take over from automated driving (“1” in the figure) increased
their SA more than others. The ninth variable is fMean (r =
.286, p = .000). Although there was an overall trend that the
longer the fixation duration, the better the SA, one should
be cautious because the majority of the fixation duration was
below 1120 ms. The tenth variable is age (r = −.376, p =
.000), which showed a V-shape relationship between age and
SA. However, one should be cautious about interpreting it
due to the small range of ages and the uneven distribution in
the dataset. The eleventh variable is the number of fixations
on the road (r = −.771, p = .000). The more one fixated
on the road, the lower one’s SA was. This might be because
the participants needed to examine the mirrors to obtain an
overall understanding of the driving scenarios and the more
one fixated on the road, the less one fixated on the mirrors.
The twelfth variable pupilChange (r = −.226, p = .000)
appeared to have a similar pattern with pupilMean, with no
straightforward relationships with SA. The thirteenth is danger
(r = −.450, p = .000), which tended to be negatively
correlated with SA. The last one is fMax (r = .013, p = .677),
i.e., the maximum fixation duration. It looked similar to fMean
to some degree, but the majority of the samples were more
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Fig. 5. Explaining individual instances using (a) LightGBM (best) model
in Table II with the top 14 predictor variables and (b) LightGBM (best) model
in Table III with the top 7 predictor variables related to eye-tracking data.

widely spread than fMean. However, this is the only variable
that did not have a significant correlation with its SHAP
values.

Fig. 4 shows the main effects of the selected top 9 predictor
variables (see Fig. 2b). The first (backMirror, r = .753, p =
.000), second (pupilMean, r = −.232, p = .000), third (fMax,
r = .378, p = .000), sixth (road, r = −.740, p = .000),
and seventh (fMean, r = .410, p = .000) variables are
also shown in Fig. 3. The model captured similar patterns
between these predictor variables and SA, indicating its good
consistency of SHAP in explaining LightGBM models. Other
than these, the fourth is fStd (r = .300, p = .000), i.e., the
standard deviation of fixation duration, which seemed to
have a similar pattern with fMean and a similar distribution
with fMax. The fifth variable is pupilStd (r = .636, p =
.000), which seemed to be positively correlated with SA.
The eighth variable is sAmpMean (r = −.477, p = .000),
i.e., the average value of saccade amplitudes, which turned
out to be negatively correlated with SA. The ninth variable
is sAmpStd (r = .518, p = .000), i.e., the standard devia-
tion of saccade amplitudes, which had a positive correlation
with SA.

3) Explaining Individual Instances: SHAP can also explain
individual instances in the dataset to show the contributions
of each variable-value set. For the two LightGBM (best)
models in Table II and Table III, one specific example for
each model is shown in Fig. 5. In Fig. 5a, the expected value
E[ f (x)] = 0.708 is the baseline SA value produced from the
model and the dataset. The specific values in the individual
instances increased (those in red) or decreased (those in blue)
the predicted SA, through their own contributions. Those in
blue, including “road = 26, difficulty = 79, decisionTime =
2.833, pupilMean = 3.513 and 5 other features”, decreased the
predicted SA, while those in red, including “backMirror = 7,
pupilChange = 0.49, videoLength = 20, correctDecision =
1, fMean = 406”, increased the predicted SA. The final
predicted SA was 0.695, while the ground truth SA was
0.747. For the same instance, in Fig. 5b, the baseline value
is E[ f (x)] = 0.711, which was slightly larger than that in
the previous model. Those in blue, including “road = 26,
pupilMean = 3.513, sAmpStd = 280.5, pupilStd = 0.1444,
sAmpMean = 3.513”, decreased the predicted SA while those
in red, including “backMirror = 7, fStd = 491.7, fMean =
406.0”, increased the predicted SA. The final predicted SA
was 0.727, while the ground truth SA was 0.747. Note that
the amounts increased or decreased by the same variable in
these two models could be different. For example, in Fig. 5a
and Fig. 5b, “backMirror = 7” increased the predicted SA
by 0.02 and 0.04 while “road = 26” decreased the predicted
SA by 0.03 and 0.02 with respect to the baseline SA value,
respectively. These differences illustrate the effects and impor-
tance of the variables in each model. Variables listed at the top
were more important than those listed below. For example,
“backMirror = 7” was the most important variable when
predicting SA with eye-tracking data alone in this instance
in Fig. 5b. However, the individual importance ranking in each
instance can be different from the global importance ranking,
as shown in Fig. 2.

VI. DISCUSSIONS

A. Predicting SA

In this study, we aimed to predict SA using eye-tracking
data and other data using LightGBM and SHAP in the
takeover process in conditionally automated driving. First, SA
was measured by recreating the driving scenario during the
takeover process. This approach was validated in [41] through
performance measures concerning car placement, distance, and
speed to indicate participants’ SA levels. This measurement
of SA is similar to the SAGAT technique [12] in terms of
recreating the driving scenarios in the virtual environment.
However, one limitation of the current study is the ecological
validity of the experiment since the data were collected in
a low-fidelity setup (i.e., watching videos on a computer
monitor).

Second, we found that the LightGBM (best) model that used
the top 14 predictor variables in Table II performed better
than the LightGBM (best) model that used the top 9 eye-
tracking related predictor variables in Table III. It is reasonable
that when the model included predictor variables that directly
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related to SA [41], such as videoLength, correctDecision,
decisionTime, and difficulty, it performed better as compared
to when the model only had eye-tracking data as input.
However, the major advantage of a model that only takes eye-
tracking data as input is its potential to monitor and measure
drivers’ SA in real time without interfering with the task
that the driver is performing. We used JupyterLab 2.1.5 with
Python 3.8 for 10-fold cross-validation (including training
and testing) for the optimal model (with nine eye-tracking
measures, sample size = 1056), which took about 0.853 s on
a MacBook Pro 13 (2.3 GHz Quad-Core Intel Core i7, 16 GB
3733 MHz LPDDR4X). Thus, predicting one sample took less
than 1 ms.

Third, we can possibly improve the performance of the
model in the future when more data are available, such
as behavioral (e.g., reaction time, eyes-on-road time) and
physiological data (e.g., EEG), which were correlated with
SA in previous studies [32], [35], [37], [45]. Thus, during
conditionally automated driving, drivers’ SA might be moni-
tored and measured in a non-intrusive way, and appropriate
interventions may be provided when necessary in order to
improve takeover performance.

B. Explaining SA Prediction
In this study, we used SHAP to explain the LightGBM

model by showing both the main effects of the most important
predictor variables (see Figs. 3 and 4) and individual explana-
tions (see Fig. 5). First, for main effects, some of our results
were consistent with those found in [41]. For example, videos
of 1 s resulted in impaired SA, decision accuracy was only
weakly to moderately associated with SA, driving frequency
was positively correlated with SA, and decision time was
negatively correlated with SA.

Second, more importantly, we built a prediction model
with only eye-tracking data. We explored three types of eye-
tracking measures: fixations, pupil diameter, and saccades.
It seems that fixations were the most important in predicting
SA, followed by pupil diameter and saccades. For exam-
ple, both fixation numbers on the rear-view mirror (i.e.,
backMirror) and roads were selected in the model. Participants
were found to view the rear-view mirror first to get an
overall picture of the driving scenario [41] and the more
fixation numbers on it, the better their SA. Rensink [46]
showed that fixations were necessary to encode visual short-
term memory by integrating sensory features into coherent
object representations, which could be further transformed into
long-term memory, especially when there were a sufficient
number of fixations [47]. Thus, when participants fixated
more on relevant areas of interests, they remembered the
driving scenarios better so that they had better SA. Moore and
Gugerty [48] also found that SA was positively associated with
the number of fixations to relevant areas of interest, which is
consistent with our finding regarding the number of fixations
on the rear-view mirror. However, a larger number of fixations
on the road decreased SA, which might be explained by the
competitive relation between attention allocation between the
rear-view mirror and the road. Moreover, an excessive number
of fixations was found to be associated with difficulty in

gathering information when the task demands and/or visual
complexity were high [49]. This finding might explain why
SA decreased or leveled when the number of fixations on the
road was greater than 6 and when the number of fixations on
the rear-view mirror was greater than 11.

The general patterns of fixation duration measures (e.g.,
fMax, fStd, fMean) were similar in that the larger these values,
the better SA. Fixation duration is known to be positively
associated with the number of targets and dynamic memory
load (within and above the limit of working memory capac-
ity) [50]. Participants with a longer fixation duration were able
to remember more vehicles (and also their location and speed).
Furthermore, Lu et al. [39] also indicated that participants
were able to accurately estimate the total number of vehicles
up to six in videos up to 20 s. Therefore, the vehicles to be
remembered in order to recreate the driving scenarios did not
exceed the capacity of the working memory of the participants.
This might explain the significant positive association between
fixation duration and SA. However, the association was of
moderate strength (correlation coefficients smaller than 0.5).
It was also observed that the distributions of these measures
were similar to exponential distributions, which dramatically
reduced the sample sizes as their values increased. Therefore,
one should be cautious about interpreting the associations
when the values are large.

For the pupil diameter, pupilMean was more important
than pupilStd, although pupilStd was found to be moderately
correlated with its SHAP values. Meghanathan et al. [50]
found that pupil diameter represented the number of targets
only when it exceeded the capacity of working memory, and
the fact that participants needed to identify up to six vehicles
was not beyond the capacity of working memory [39]. This,
to some extent, might explain that pupilMean did not have a
strong linear relationship with its SHAP values. In addition,
pupil diameter is associated with other factors too, including
individual differences and lighting fluctuations [35], [41].
However, we did not find any studies reporting the associ-
ation between pupilStd and SA. More research is needed to
understand the role of pupil diameter in SA.

The saccade measures had a similar pattern as the
pupil measures (pupilMean vs. sAmpMean and pupilStd vs.
sAmpStd). Saccades are indicative of attention shifts in visual
search and scanning [51]. Consistent with previous find-
ings [52], saccade amplitudes were found to be negatively
correlated with SA, indicating when the scan paths were
shorter without searching across the driving scenario, it was
more likely that participants identified the vehicle information
more easily. Our results indicate that when participants were
scanning the driving scenario with larger saccade amplitude
variations (i.e., high sAmpStd), they had a higher level of SA.
This finding might be related to thorough visual search patterns
to reduce errors.

Third, we also examined the contributions of each variable-
value sets to individual instance prediction in Fig. 5. Note
the global importance of the predictor variables might not
always be consistent with contributions to individual instances.
We found the top three most important factors were “road =
26, difficulty = 29, and backMirror = 7” in Fig. 5a and
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“backMirror = 7, road = 26, and fStd = 491.7” in Fig. 5b.
Their effects on increasing and decreasing SA from the
expected value of SA showed how the final prediction was
reached.

In summary, SHAP was able to successfully explain a
tree-based ensemble machine learning model, LightGBM, and
helped us identify the most important factors in predicting SA
and their effects on SA. Such domain knowledge, as extracted
from the black-box driver SA prediction models, can poten-
tially help design human-machine systems to optimize the joint
performance in conditionally automated driving. Furthermore,
drivers can potentially calibrate their trust levels in automated
vehicles and help accept and adopt them in the long run.

VII. CONCLUSION AND FUTURE WORK

We aimed to predict SA using both LightGBM and SHAP
during the takeover process in conditionally automated driving.
By comparing with other selected machine learning models,
LightGBM had the best performance by selecting the most
important predictor variables identified by SHAP. The model
that only took eye-tracking related predictor variables had
reasonably good performance, with RMSE = 0.121, MAE =
0.096, and correlation coefficient = 0.719 when SA was
aggregated using three performance measures (i.e., vehicle
placement, distance, and speed estimation) and normalized
between 0 and 1. Moreover, we identified the main effects
of the selected predictor variables. Such domain knowledge
can help us build real-time SA prediction models using non-
intrusive eye-tracking measures.

We acknowledge that the data collection was conducted in
a low-fidelity setup. In the future, researchers should replicate
the experiment in high-fidelity driving simulators or natural-
istic driving to see if similar results can be obtained. More
measures related to eye-tracking (e.g., blink rate, nearest
neighbor index [35]) and other physiological and behavioral
data can be included to see if performance can be improved.
The participants involved in data collection were mainly
engineering students with an unbalanced gender ratio. Future
studies should recruit more participants with a large age range
and a balanced gender ratio.
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