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We theoretically investigate the collective excitations of multiple (sub)millimeter-sized ferromagnets mediated
by waveguide photons. By the position of the magnets in the waveguide, the magnon-photon coupling can be
tuned to be chiral, i.e., magnons only couple with photons propagating in one direction, leading to an asymmetric
transfer of angular momentum and energy between the magnets. A large enhancement of the magnon number
population can be achieved at an edge of a long chain of magnets. The chain also supports standing waves with
low radiation efficiency that are inert to the chirality.

DOI: 10.1103/PhysRevB.101.094414

I. INTRODUCTION

Magnetic insulators are promising materials for low-
dissipation information technology with magnons, the ele-
mentary excitation of magnetic order, rather than electrons
[1–4]. The long lifetime of magnons in high-quality magnetic
insulators such as yttrium iron garnet (YIG) [5] are suitable
for data storage, logic, and medium-distance interconnects but
cannot compete with photons in terms of speed and coher-
ence lengths. Coupled magnon-photon systems are therefore
promising for quantum communication over large distances
[6]. The interface to conventional electronics are metal con-
tacts that allow magnons to interact with conduction elec-
trons by interfacial exchange interaction, giving rise to spin
pumping and spin transfer torques [7,8]. Magnons in separate
nanomagnets couple by the long-range dipolar interaction,
giving rise to chiral transport phenomena [9–11].

Strong coherent coupling between photons in high-quality
cavities and spin ensembles such as nitrogen-vacancy centers
in diamond [12,13], rare-earth ions [14,15], and ferromagnets
[16–19] is attractive because of its potential for quantum
memories [20] and transducers. While a (nearly) closed cavity
can have very long photon lifetimes, efficient photon transport
requires an open waveguide, which is the main object of the
present study. Coherent microwave emission from a precess-
ing magnetization of a ferromagnet in a waveguide can be
measured via the additional damping of magnons [21–25] on
top of the intrinsic Gilbert damping. The Larmor precession
of the magnetization couples preferentially to photons with
the same polarization. Due to the tunable ellipticity of the AC
magnetic field, magnets at certain locations in a waveguide
also couple preferentially to photons propagating in one di-
rection. Such a chiral coupling [26] of atoms and quantum
dots with optical photons attracts much attention [27–32].
Microwave devices such as nonreciprocal band rejection fil-
ters operate by placing a ferromagnet on special points in
waveguides with circular polarization [33–35].

Here we study a collection of magnetic particles placed in
a microwave waveguide [23,36,37], as shown in Fig. 1. The
radiation emitted by a magnet typically drives all the other

magnets, leading to an effective long-range dissipative cou-
pling, reminiscent of—but very different from—the coherent
coupling in a closed cavity [20,38]. The coupling mediated
by traveling photons in atomic ensembles [39–44] causes
collective super- and subradiance. Here, we discuss analogous
modes in macroscopic magnonic systems but incorporating
the chirality, which can be probed by microwaves at room
temperature.

We show that magnets can couple chirally to waveguide
photons, leading to nonreciprocal magnon-magnon interac-
tion [27]. For given locations in a waveguide, one magnet can
affect another one without back action [32]. We predict an
imbalance of the magnon population in two spheres of up to
one order of magnitude, which can be significantly enhanced
in a chain of magnets. We study the collective excitations of
up to ∼100 magnets, focusing on superradiant and subradiant
modes, i.e., modes with very high or low radiation efficiency.
We find that the superradiant states [39–43] are well localized
at the edge of the chain [39,45]. In contrast, the lowest subra-
diant states are standing-wave-like and centered in the chain
and are only weakly affected by the chirality of the coupling.
In the accompanying letter [46], we introduce this effect and
focus on the functionality of generating very large magnon
amplitudes at the edges of magnetic chains in a waveguide
and work out its enhancement by chirality. Here we formulate
the theory and observables for the physical properties of
the collective modes for one, two, and many spheres in a
waveguide, such as the microwave transmission spectra.

This paper is organized as follows. We introduce the model
in Sec. II, including the Hamiltonian and photon scattering
matrix for a general waveguide geometry and positions of
the magnets. After a focus on magnon-photon coupling in a
rectangular waveguide in Sec. III, we address the radiative
damping of magnets in Sec. IV. In Sec. V, we discuss the
transmission of a waveguide with two magnetic spheres,
introducing the concept of imbalanced pumping. We derive
collective modes with super- and subradiance in long mag-
netic chains in Sec. VI. Finally, Sec. VII contains a discussion
of the results and conclusions.
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FIG. 1. An ensemble of magnets in a waveguide along the z
direction. The input photon shown by the red arrow experiences
scattering by magnets and its transmission can be used to detect the
magnon dynamics.

II. MODEL

We focus here on magnets that are small enough compared
with the photon wavelength such that only the homogeneous
collective excitation or Kittel mode couples with the mi-
crowave photon [47,48]. We consider a waveguide infinite in
the z direction with a rectangular cross section from (0,0) to
(a, b), as shown in Fig. 1. We assume metallic boundaries,
i.e., the electric field parallel to the surface vanishes. There are
N equivalent magnets with gyromagnetic ratio −γ̃ , saturation
magnetization Ms, and volume Vs . Their centers are at ri =
(ρi, zi ), where ρ = (x, y) is the position in the waveguide’s
cross section.

The dynamics is governed by the Hamiltonian Ĥ = Ĥem +
Ĥm + Ĥint, with electromagnetic contribution

Ĥem =
∫ [

ε0

2
E(r) · E(r) + μ0

2
H(r) · H(r)

]
dr, (1)

the magnetic part

Ĥm = −μ0

∫
[Happ(r)My(r) + Heff (r) · M(r)]dr, (2)

and the magnon-photon interaction

Ĥint = −μ0

∫
H(r) · M(r)dr. (3)

The time dependence is implicit. Here, {E, H} represent the
electric and magnetic fields of the photons in the waveguide,
Heff (r) is the sum of dipolar and exchange interaction [49], M
is the magnetization, ε0 and μ0 are the permittivity and per-
meability of the free space, and Happ(r) is the modulus of the
static applied field along y that saturates the magnetizations.

The Hamiltonian gives the Maxwell equations [26],

∇ × E = −μ0
∂H
∂t

, ∇ × H = ε0
∂E
∂t

,

(4)
∇ · H = −∇ · M, ∇ · E = 0,

and the Landau-Lifshitz equation [49]

∂M
∂t

= −γ̃ μ0M × (H + Heff + Happy). (5)

The electromagnetic fields can be expanded in photon
operators,

H(r) =
∑

λ

∫ ∞

−∞

(
HHH (λ)

k (ρ)eikz p̂(λ)
k + H.c.

) dk√
2π

, (6)

with HHH (λ)
k (ρ) being the eigenmodes for the magnetic field in

the waveguide [26], and similarly for the electric field with
H → E and HHH → EEE . Here k denotes the momentum in the z
direction, and λ represents the mode structure (including the
polarization). The photon operators satisfy the field commu-
tation relations [

p̂(λ)
k , p̂(λ)′†

k′

]
= δ(k − k′)δλλ′ . (7)

The Cartesian components of the eigenmodes HHH (λ)
k (ρ) and

EkEkEk
(λ)(ρ) in a waveguide satisfy the orthonormality relations

[26], ∫ (
H (λ)∗

k,x H (λ′ )
k,x + H (λ)∗

k,y H (λ′ )
k,y

)
dρ = A(λ)

k(
Z (λ)

k

)2 δλλ′ ,

∫
H (λ)∗

k,z H (λ′ )
k,z dρ = γ 2

λ A(λ)
k

k2
(
Z (λ)

k

)2 δλλ′ (TE),

∫ (
E (λ)∗

k,x E (λ′ )
k,x + E (λ)∗

k,y E (λ′ )
k,y

)
dρ = A(λ)

k δλλ′,

∫
E (λ)∗

k,z E (λ′ )
k,z dρ = γ 2

λ A(λ)
k

k2
δλλ′, (TM). (8)

Here, Z (λ)
k = μ0	

(λ)
k /k and k/(ε0	

(λ)
k ) are, respectively,

the impedances for the TE and TM modes [26], A(λ)
k =

h̄	
(λ)
k /(2ε0) and h̄/(2ε0	

(λ)
k ) for the TE and TM modes with

	
(λ)
k being the eigenfrequency and

γ 2
λ = (	(λ)

k

)2
/c2 − k2. (9)

TE (TM), i.e., transverse electric (magnetic) polarization,
refers to the case when the electric (magnetic) field is perpen-
dicular to the z direction. It is noted that these normalizations
are chosen such that the Hamiltonian Eq. (1) satisfies (up to a
constant)

Ĥem =
∑

λ

∫
h̄	

(λ)
k p̂(λ)†

k p̂(λ)
k dk. (10)

We assume the losses in high-quality waveguides to be small
compared to the magnetic dissipation and not important on the
length scale of interest.

The magnetization M(r) is confined to the magnets that
are much smaller than typical photon wavelengths and waveg-
uide dimensions (usually >1 cm), such that the magnetic
field is a constant inside each magnet. The excitations of
the (linearized) magnetic Hamiltonian are spin waves, or its
quanta, magnons. For magnets with axial symmetry around
the magnetization, the microwaves couple strongly only with
the Kittel mode, i.e., the uniform precession of the magne-
tization, and we disregard other modes in the following. We
quantize the magnetization as [50–52]

Mj,z − iMj,x =
√

2h̄γ̃ Ms

Vs
m̂ j,

Mj,y = Ms − h̄γ̃

Vs
m̂†

j m̂ j, (11)

where m̂ j is the annihilation operator for a Kittel magnon
in the jth magnet with j ∈ {1, . . . , N}. The coefficients are
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chosen to ensure that M j · M j ≈ M2
s and the magnetic Hamil-

tonian Eq. (2), up to a constant due to zero-point fluctuations,
becomes

Ĥm =
N∑

j=1

h̄ω j m̂
†
j m̂ j, (12)

where ω j = γ̃ μ0[Happ(r j ) + Heff (r j )] with Heff = NyHapp for
axially symmetric magnets (Ny is the demagnetization factor).

Inserting Eqs. (6) and (11) into the interaction Hamiltonian
Eq. (3),

Ĥint =
∑

jλ

∫ [
h̄g(λ)

j (k) p̂(λ)
k m̂†

j + H.c.
] dk√

2π
, (13)

with coupling constant

g(λ)
j (k) = μ0

√
γ̃ MsVs

2h̄
eikz j

[
iH (λ)

k,x (ρ j ) − H (λ)
k,z (ρ j )

]
. (14)

The distributed magnets experience different phases when
their distance is not much smaller than the photon wavelength.
We can tune coupling strength and chirality by the position of
the magnets ρ j , see Sec. III.

The effective fields should in principle be computed self-
consistently, since a magnetic sphere can be a significant
perturbation of the electric and magnetic microwave fields
[53]. This problem can be solved semianalytically by Mie
theory in special situations [38]. The hinges and local sources
that address individual spheres also cause interferences that
must be addressed numerically [54]. With the knowledge
that the results will not change qualitatively, we use here a
perturbative approach, by assuming that the driving fields are
those of the unperturbed system.

A. Equations of motion

From the Hamiltonian Ĥ = Ĥem + Ĥm + Ĥint, we obtain
the equation of motion for photons by the Heisenberg equation

d p̂(λ)
k

dt
= −i	(λ)

k p̂(λ)
k − i

∑
j

g(λ)∗
j (k)√

2π
m̂ j . (15)

The solutions are

p̂(λ)
k (t ) = p̂(λ)

k,ine−i	(λ)
k t−

∑
j

ig(λ)∗
j (k)√

2π

∫ t

−∞
m̂ j (τ )e−i	(λ)

k (t−τ )dτ,

(16)

where p̂k (−∞) ≡ p̂(λ)
k,in is the microwave input [55,56]. The

first term is the free evolution and the second term is the (spon-
taneous and stimulated) radiation generated by magnons. The
output field p̂(λ)

k,out = limt→∞ p̂(λ)
k (t )ei	(λ)

k t then reads

p̂(λ)
k,out = p̂(λ)

k,in − i
∑

j

g(λ)∗
j (k)√

2π

∫ ∞

−∞
dτ m̂ j (τ )ei	(λ)

k τ . (17)

The magnon dynamics is governed by equation of motion

dm̂ j

dt
= −iω j m̂ j − D̂int, j − D̂ph, j, (18)

where

D̂int, j = κ j

2
m̂ j + √

κ j N̂ j, (19)

D̂ph, j = i
∑

λ

∫
dk√
2π

g(λ)
j (k) p̂(λ)

k , (20)

equivalent to the linearized Landau-Lifshitz-Gilbert (LLG)
equation. Here the linewidth κ j = 2αGω j, where αG is the
Gilbert damping parameter. Each magnet j is connected to an
intrinsic bath of phonons and other magnons, which generates
the thermal torque D̂int, j . We model this interaction by a
Markovian processes with intrinsic linewidth κ j and white
noise N̂j satisfying 〈N̂j〉 = 0, 〈N̂†

j (t )N̂j (t ′)〉 = n jδ(t − t ′) and

〈N̂j (t )N̂†
j (t ′)〉 = (n j + 1)δ(t − t ′), where

n j =
[

exp

(
h̄ω j

kBT

)
− 1

]−1

(21)

is the thermal occupation of magnons at a global temperature
T . In the absence of coupling between different magnets by a
waveguide, D̂ph, j = 0 and all magnons are Gibbs distributed
at equilibrium [55].

When magnons are coupled by photons, the torque D̂ph, j

can be split as

D̂ph, j (t ) = T̂j (t ) + i
∑

l

∫ t

−∞
dτ �̃ jl (t − τ )m̂l (τ ), (22)

where the first term is generated by the photon input,

T̂j (t ) = i
∑

λ

∫
dk√
2π

g(λ)
j (k) p̂(λ)

k,ine−i	(λ)
k t , (23)

while the second term describes the photon-mediated cou-
pling

�̃ jl (t − τ ) = −i
∑

λ

∫
dk

2π
g(λ)

j (k)g(λ)∗
l (k)e−i	(λ)

k (t−τ ), (24)

which can be interpreted as (real or virtual) (λ, k)-mode pho-
ton emission from magnet l with amplitude g(λ)∗

l (k) followed
by absorption in magnet j with amplitude g(λ)

j (k). The interac-
tion is retarded by the finite light velocity. However, even for
large distances r jl < 1 m, κ jr jl/c < 0.02, where κ j = 2π ×
1 MHz is a typical magnon linewidth, so �̃ jl (t − τ ) decays
much faster than the magnon envelope dynamics. For short
times |t − τ | < r jl/c, the magnons may be assumed to move
coherently m̂l (τ ) ≈ m̂l (t )eiωl (t−τ ). This adiabatic approxima-
tion simplifies Eq. (18) to

dM̂

dt
= −iω̃M̂ − i�M̂ − T̂ − ˆN , (25)

introducing the column vectors for magnetization M̂ =
(m̂1, . . . , m̂N )T , the noise

ˆN = (
√

κ1N̂1, · · · ,
√

κN N̂N )T , (26)

and the (microwave) torque

T̂ ≡ (T̂1, · · · , T̂N )T = i
∑

λ

∫
p̂(λ)

k,ine−i	(λ)
k tG (λ)

k

dk√
2π

, (27)
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with coupling G (λ)
k = (g(λ)

1 (k), . . . , g(λ)
N (k))

T
. A local antenna

such as metal-wire coils close to each sphere [20] can locally
excite or detect its dynamics, leading to the distributed torque
T̂ → T̂ + T̂l , where T̂l = (P̂1, · · · , P̂N )T and P̂i is the local
input amplitude. The elements of the matrices ω̃ and � read

ω̃ jl = δ jl

(
ω j − i

κ j

2

)
, (28)

� jl =
∫ ∞

0
�̃ jl (t )eiωl t dt . (29)

Inserting �̃, we obtain the self-energy

� jl =
∑

λ

∫
dk

2π

g(λ)
j (k)g(λ)∗

l (k)

ωl − 	
(λ)
k + i0+ . (30)

According to Eq. (25), Re� modulates the frequencies of
each magnon by the other magnons (coherent coupling), while
Im� changes the damping (dissipative coupling). We discuss
� in more detail for a rectangular waveguide below.

B. Collective modes

The coupling between magnets by photon exchange in the
waveguide gives rise to collective excitations. In the language
of quantum optics [39–43,55,57,58], Eq. (25) can be inter-
preted as a non-Hermitian Hamiltonian, Ĥeff = h̄M̂ †H̃effM̂ ,
with matrix

H̃eff = (ω̃ + �), (31)

which (without input T̂ ) recovers the Heisenberg equa-
tion [39–43,57]. Master equations lead to an effective non-
Hermitian Hamiltonian by exploiting the Monte Carlo wave-
function method in quantum optics [57]. In general, any two
systems coupled via continuous traveling waves are dissipa-
tively coupled.

The right and left eigenvectors of the non-Hermitian H̃eff

are not the same. Let the right eigenvectors of H̃eff be {ψζ }
with corresponding eigenvalues {νζ } where ζ ∈ {1, . . . , N}
label the collective modes. It is also convenient to define
the right eigenvectors of H̃†

eff as {φζ } with corresponding
eigenvalues {ν∗

ζ }. Without degeneracies, i.e., ∀ζ ζ ′ νζ �= νζ ′ ,

we have biorthonormality ψ
†
ζ φζ ′ = δζζ ′ after normalization.

φ
†
ζ is a left eigenvector of H̃eff . The nonuniqueness of the

normalization condition does not affect the observables.
Defining matrices L = (φ1, . . . , φN ) and R = (ψ1, . . . ,

ψN ) in terms of left and right eigenvectors, biorthonormality
R†L = L †R = IN , where IN is the N × N identity matrix,
leads to

ω̃ + � = RνL †, (32)

with matrix elements νi j = (ν1, . . . , νN )δi j . Defining

α̂ζ = φ
†
ζ M̂ , (33)

α̂ζ annihilates a quasiparticle in a collective mode with “wave
function” ψζ . Substituting Eq. (32) into Eq. (25) leads to the
equation of motion

dα̂ζ

dt
= −iνζ α̂ζ − τ̂ζ − N̂ζ , (34)

where

τ̂ζ = φ
†
ζ T̂ ; N̂ζ = φ

†
ζ

ˆN . (35)

The magnetization follows from the right eigenvectors:

M̂ (t ) =
∑

ζ

α̂ζ (t )ψζ . (36)

C. Photon scattering matrix

The coupled set of magnets leads to collective excitations
that affect the transmission and reflection of input photons
with frequency ωin. The ensemble average 〈· · ·〉 of input mode
λ is 〈

p̂(λ)
k,in

〉 = √
2πAλδ(k − kλ), (37)

where Aλ is the amplitudes of the incoming microwave field
and kλ is the positive wave vector satisfying 	

(λ)
kλ

= ωin.

	
(λ)
k = 	

(λ)
−k and we assume that kλ is unique, which is sat-

isfied in the absence of spatial modulations. The average of
the torque Eq. (35) acting on mode ζ :

〈τ̂ζ 〉 = i
∑

λ

Aλe−iωintA (λ)
ζ+ . (38)

The absorption coefficients,

A (λ)
ζ± ≡ φ

†
ζ G

(λ)
±kλ

, (39)

are a linear combination of g(λ)
j ’s with weights given by the left

eigenvector. We argue below that the latter may be localized
to only a few magnets, such that a local coupling constant can
dominate the global absorption.

The average amplitude of mode ζ follows from Eq. (34).
In the steady state,

〈α̂ζ (t )〉 =
∑

λ

Aλe−iωint
A (λ)

ζ+
ωin − νζ

. (40)

Mode ζ is resonantly excited when ωin = Reνζ with spectral
broadening Imνζ . The photon output Eq. (17) is

〈
p̂(λ)

k,out

〉 = 〈p̂(λ)
k,in

〉− i
∑

ζ

E (λ)
ζ±

∫
α̂ζ (τ )ei	(λ)

k τ dτ√
2π

, (41)

with + (-) sign for k > 0 (k < 0), while the emission coeffi-
cient

E (λ)
ζ± ≡ G (λ)†

±kλ
ψζ (42)

is a linear combination of couplings g(λ)
j weighted by the right

eigenvector. When the latter is localized, emission is governed
by a few magnetic moments and couplings between them.

The coherent output,〈
p̂(λ)

k,out

〉 = √
2π
∑
λ′

[S(λλ′ )
12 δ(k − kλ) + S(λλ′ )

22 δ(k + kλ)]Aλ′ ,

(43)
contains a transmission

S(λλ′ )
12 (ωin ) = δλλ′ − i

v(λ)(kλ)

N∑
ζ=1

E (λ)
ζ+ A

(λ′)
ζ+

ωin − νζ

(44)
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and a reflection amplitude

S(λλ′ )
11 (ωin ) = − i

v(λ)(kλ)

N∑
ζ=1

E (λ)
ζ− A

(λ′)
ζ+

ωin − νζ

, (45)

with photon group velocity

v(λ)(k) = ∣∣d	
(λ)
k

/
dk
∣∣. (46)

S21 and S22 can be found, respectively, from S11 and S12

by the substitution A (λ)
ζ+ → A (λ)

ζ− . The (interband) scattering
amplitudes resonate at N eigenfrequencies of the collective
magnetic modes.

This result can be derived as well from scattering theory
[59–62].

III. RECTANGULAR WAVEGUIDE

We discuss here the coupling matrix � for a rectangular
waveguide with a cross section from (0,0) to (a � b, b), with
a detailed derivation in Appendix A. We use transverse mode
indices λ ≡ {nx, ny, σ }, in which integers nx, ny � 0 are the
number of nodes of magnetic (or electric) field in the x and
y directions, and σ ∈ {TE, TM} denotes the polarization. The
photon dispersion is [26]

	
(λ)
k = c

√
k2 + γ 2

λ , (47)

where γλ ≡
√

(γ (λ)
x )2 + (γ (λ)

y )2 with γ (λ)
x = πnx/a and

γ (λ)
y = πny/b, does not depend on polarization index σ .

The diagonal elements of the coupling � j j in Eq. (30)
represent self-interaction that shifts the frequencies by a small
amount (Re� j j � ω j as shown below) and describe the radia-
tive damping Im� j j , see Sec. IV. The nondiagonal elements
�i �=l couple different magnets. With g̃(λ)

j (k) = −ig(λ)
j (k)e−ikz j ,

where Img̃(λ)
j (k) = 0 (see Appendix A), we obtain an effective

coupling

� jl =
Imk(λ)

l =0∑
λ

⎧⎪⎨
⎪⎩

−i �L+�R
2 − δω

(λ)
j , j = l

−i�Reik(λ)
l (z j−zl ), z j > zl

−i�Leik(λ)
l (zl −z j ), z j < zl ,

(48)

that is modulated by geometric phase factors. As discussed
in Appendix A in more detail, the contribution from evanes-
cent fields generated by nonresonant higher-frequency cavity
modes is disregarded, which is allowed when |k(λ)

l ||z j − zl | �
1. With waveguide cross sections of the order of centimeters,
the magnets should be separated by at least a few millimeters.

Here, the frequency shift for magnet j by the photon band
λ reads

δω
(λ)
j = γμ0MsVskc

ab
sin2 (γ (λ)

x x j
)

cos2 (γ (λ)
y y j

)
, (49)

where kc is an upper cutoff for the wave numbers, which is
typically governed by high-frequency losses in the bound-
aries. For typical electron relaxation time in copper, τel =
50 fs (	c ∼ 2π × 20 THz) [63], kc = 2π/(τelc) ∼ 105 m−1,
and δω

(λ)
j � 2π × 100 MHz for a ∼ b ∼ 2 cm and the sphere

radius of 0.5 mm, which is much smaller than the Kittel
mode frequency ω j ∼ 2π × 10 GHz. The intermagnet cou-

pling (suppressing various indices)

�R = g̃(λ)
j

(
k(λ)

l

)
g̃(λ)

l

(
k(λ)

l

)
v(λ)
(
k(λ)

l

) , (50)

with group velocity Eq. (46)

v(λ)(k) = c2|k|/	(λ)
k , (51)

and (positive) wave number of the photons emitted by the lth
magnet is

k(λ)
l =

√
ω2

l /c2 − γ 2
λ . (52)

The summation in Eq. (48) is limited over the λ’s for which
k(λ)

l is real, i.e., the frequency of the lth magnet is larger than
the λ-band edge. �L is obtained from �R by k(λ)

l → −k(λ)
l .

For our rectangular waveguide, the couplings between
magnets mediated by the TM and TE photons are

g̃(λ)
j

(± k(λ)
l

)|TM = Gl

γ (λ)
y

γλ

sin
(
γ (λ)

x x j
)

cos
(
γ (λ)

y y j
)

(53)

and

g̃(λ)
j (±k(λ)

l )|TE = Gl
ck(λ)

l

ω j

γ (λ)
x

γλ

cos
(
γ (λ)

y y j
)

×
[

− sin
(
γ (λ)

x x j
)± γ 2

λ

k(λ)
l γ

(λ)
x

cos
(
γ (λ)

x x j
)]

,

(54)

respectively, where

Gl =
√

γ̃ μ0MsVsωl

ab
. (55)

For the TE modes, the magnon-photon coupling depends
on the direction of propagation. The chirality g̃(λ)

j (k(λ)
l )|TE �=

g̃(λ)
j (−k(λ)

l )|TE is caused by a magnetic field that is not linearly
polarized, as indicated for the {nx = 1, ny = 0} mode in Fig. 2.
When z j > zl and the jth magnet is located at a position x j ,
satisfying

cot

(
πx j

a

)
= −

√
a2ω2

l

π2c2
− 1, (56)

the magnon-photon coupling is fully chiral � jl = 0, so the
lth magnet does not affect the jth one. The coupling is also
nonreciprocal, i.e., one magnet feels the dynamics of another,
but not the other way around.

When tuning the magnon frequency to below the bottom of
all λ bands except for the lowest TE10 mode (the TE00 mode
does not exist), i.e.,

π

a
<

ωl

c
<

{
π

b
,

2π

a

}
, (57)

we can freely tune the chirality. Figure 2 shows a snapshot of
the magnetic field for the lowest TE10 mode propagating along
the −z direction. For modes along the z direction, the local el-
lipticity is reversed. Solving Eq. (56) with ωl = (2/

√
3)cπ/a,

magnon-photon coupling is fully chiral for magnets on the
green and red dotted line. The chirality vanishes on the center
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FIG. 2. Snapshot of the spatial distribution of the AC magnetic
field of the lowest TE10 mode in a rectangular waveguide propagating
along the −z direction. The arrows indicate the direction and their
lengths the modulus of the field. The latter is also indicated by
the color shading, from zero (dark blue) to the maximum value
(dark red). The vector field of modes in the opposite (not shown)
is reversed. The green and red (black) dotted lines indicate the
locations at which the magnon-photon coupling is chiral (nonchi-
ral) for magnon frequency tuned to ωl = (2/

√
3)cπ/a. On the red

(green) line, the magnon mode only couples to photons with positive
(negative) linear momentum.

(black dotted) line and is partially chiral everywhere else.
Spectral overlap with TM photons at higher frequencies would
reduce the chirality.

IV. MICROWAVE EMISSION
BY MAGNETIZATION DYNAMICS

Analogous to the spin pumping [7,8,64], the transfer of
energy and angular momentum from magnons to photons
implies radiative damping. In a waveguide, this can be much
larger than the intrinsic damping of a high-quality magnet
such as YIG [21–23]. Radiative damping also exists in free
space, as derived in Appendix B, but in the waveguide we can
control its magnitude.

A. Radiative damping

In this section, we focus on a single magnet with (Kit-
tel) frequency ωm. The magnon lifetime broadening δω =
2(αG + αr )ω, where αG is the Gilbert damping parameter and
[see Eq. (48)] [62,65–67]

αr = −Im�

ωm
=
∑

λ

|g(λ)(k(λ) )|2 + |g(λ)(−k(λ) )|2
2c2k(λ)

, (58)

where

k(λ) =
√

ω2
m

c2
−
(

πnx

a

)2

−
(

πny

b

)2

. (59)

We are mainly interested in the radiative damping of the
lowest TE10 mode of a rectangular waveguide. The mode
amplitude and the associated radiative damping do not de-
pend on the y coordinate. Results are plotted in Fig. 3 for
ωm = (2/

√
3)cπ/a, where a = 1.6 cm, b = 0.6 cm, a mag-

netic sphere with radius rs = 0.6 mm and intrinsic Gilbert
damping αG = 5 × 10−5 [23] for two frequencies. αr depends
strongly on x, but weaker when close to the special position of
chiral coupling, i.e., x = a/3 and 2a/3 at ωm = (2/

√
3)cπ/a.

 4
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 10

 12

 14

 16

 18

 0  0.2  0.4  0.6  0.8  1

α r
/α

G

x/a

a=1.6 cm
b=0.6 cm
rs=0.6 mm

ωm/c=(2/ 3⎯√ )π/a, αr
αf

ωm/c= π3⎯√ /a, αr

FIG. 3. Position-dependent radiative damping αr scaled by the
intrinsic Gilbert damping αG of a YIG sphere by the TE10 mode
of a rectangular waveguide for two magnetic frequencies ωm. The
parameters including a are specified in the text. The free space
radiative damping α f from Appendix B is also given (for the larger
ωm = (2/

√
3)cπ/a).

The radiative dissipation in the waveguide can be much larger
than the viscous Gilbert damping as well as the radiative
damping in free space [21], see Appendix B, Eq. (B7):

α f = γ̃ μ0MsVsω
2
m

6πc3
. (60)

α f scales like ω2
m, and it can become larger than αr at higher

frequencies, because the photon density of states is suppressed
by the waveguide.

The broadening of the ferromagnetic resonance is not so
sensitive to g’s chirality, but the transmission is. In the λ =
{1, 0, TE} mode, the scattering matrix in Eqs. (44) and (45)
reduces to

S12(ωin ) = ωin − ωm + iαGωm + i(�L − �R)/2

ωin − ωm + iαGωm + i(�L + �R)/2
, (61)

where

�R ≡ |g(λ)(k(λ) )|2
v(λ)(k(λ) )

, �L ≡ |g(λ)(−k(λ) )|2
v(λ)(k(λ) )

. (62)

and αrωm = (�L + �R)/2. When �L = �R, the transmission
amplitude drops at the resonance ωin = ωm to a small value
∼αGωm/�R. However, for full chirality with �R = 0, the
magnet does not absorb photons traveling towards the right
and the waveguide is transparent. When �L = 0, on the other
hand the transmission probability is still unity, but the phase
is shifted by π .

B. Spatial chirality of dipolar field emission

The AC magnetic field in the waveguide emitted by a
dynamical magnetic moment can be expressed by the linear
response [8,64],

Hr
α (r, t ) = −μ0

∫
dr′dt ′χαβ (r − r′, t − t ′)Mβ (r′, t ′), (63)
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where the nonlocal inverse susceptibility χαβ is a correlation
function of the photon magnetic field Ĥ:

χαβ (r − r′, t − t ′) = i�(t − t ′)〈[Ĥα (r, t ), Ĥβ (r′, t ′)]〉. (64)

For the present system,

χαβ (ρ, z, ρ′, z′; t − t ′)

= i�(t − t ′)
∑

λ

∫
H (λ)

k,α
(ρ)H (λ)∗

k,β
(ρ′)

× eik(z−z′ )−i	(λ)
k (t−t ′ ) dk

2π
. (65)

Disregarding the small damping, Mβ (r′, t ′) = Mβ (r′)eiωm (t−t ′ )

and

Hr
α (r, t ) = μ0

∑
λ

∫
dr′
∫

dk

2π
H (λ)

k,α
(ρ)H (λ)∗

k,β
(ρ′)

× eik(z−z′ ) 1

ωm − 	
(λ)
k + i0+ Mβ (r′, t ). (66)

This expression still includes the evanescent field by the sum
over all (resonant and nonresonant) cavity modes. By contour
integration over k for z > z′,

Hr>
α (r, t ) = − iμ0

∑
λ

1

v(kλ)
H (λ)

kλ,α
(ρ)

×
∫

H (λ)∗
kλ,β

(ρ′)Mβ (r′, t )eikλ(z−z′ )dr′, (67)

and for z < z′,

Hr<
α (r, t ) =iμ0

∑
λ

1

v(kλ)
H (λ)

−kλ,α
(ρ)

×
∫

H (λ)∗
−kλ,β

(ρ′)Mβ (r′, t )e−ikλ(z−z′ )dr′. (68)

We argue in the Appendices that the sum over distance modes
can be disregarded since it causes only corrections very close
to the magnet. Figure 4 illustrates the drastic effect of chirality
by a snapshot of the emitted magnetic field (normalized to
the maximum modulus and disregarding the evanescent wave
corrections) by a magnet on a chiral (a) and nonchiral line (b)
in the cavity.

The self-interaction magnetic field (for equilibrium mag-
netization along y)

H̃ (r)
α∈{x,z}(r, t ) = μ0Vs

2ωm

∑
λ

1

v(kλ)

× (|Hkλ,α (ρ)|2 + |H−kλ,α (ρ)|2)dMα (r, t )

dt
,

(69)

is out-of-phase with the local magnetization and therefore
acts like an additional and anisotropic Gilbert damping torque
[21,22,24,25].

The linear response formulation [8,64] helps to under-
stand the radiative damping: The precessing magnetization
in a magnet radiates dipolar magnetic field that is out-
of-phase with the magnetization. The self-interaction leads
to a Gilbert dampinglike torque. This may be interpreted
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FIG. 4. Real-space magnetic field Eq. (66) (normalized to its
maximum modulus and without near-field corrections) radiated by a
magnetic sphere on a chiral [(a)] and nonchiral [(b)] line. The crosses
indicate its position. The Kittel mode is tuned to ωm = 2

√
3cπ/a at

which the photon wavelength λ = 5.54 cm.

in terms of pumping of energy and angular momentum
into the microwave field. By substituting the linearized LLG
equation [49],

dMα

dt
= εαβδMβ

(
− γ̃ μ0Heff,δ + γ̃ μ0H̃ (r)

δ + αG

Ms

dMδ

dt

)
,

(70)
and the radiative damping is anisotropic:

α
(r)
δ={x,z} = μ2

0Vs

2ωm

∑
λ

γ̃ Ms

v(kλ)

(|Hkλ,δ (ρ)|2 + |H−kλ,δ (ρ)|2).
(71)

Linearizing Eq. (70) and substituting Mα ∝ e−iωt yields

iωMx + (γ̃ μ0Heff,y − iωα(r)
z − iωαG)Mz = 0,

(72)
iωMz − (γ̃ μ0Heff,y − iωα(r)

x − iωαG)Mx = 0,

and the quadratic equation

ω2 + iωγ̃μ0Heff,y
(
α(r)

x + α(r)
z + 2αG

)− (γ̃ μ0Heff,y)2 = 0.

(73)
Therefore,

αeff
G (ω) ≈ αG + (α(r)

x + α(r)
z

)
/2 = αG + αr (ω),

consistent with the equation of motion approach. The
full damping tensor can in principle be reconstructed by
computing the dependence of α

(r)
δ on the magnetization di-

rection.
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V. MAGNON HYDROGEN MOLECULE

The interaction is nonlocal since the photons emitted by
one magnet are reabsorbed by another magnet, which is
a basically classical phenomenon (see Appendix C), even
though we derived it by the Heisenberg equations of motion
in Sec. II A and discussed in more detail for a rectangu-
lar waveguide in Sec. III. The classical electrodynamics in
Appendix C becomes tedious for multiple magnets, so we
focus in the following on the quantum description of two
magnets, turning to the magnet chain in Sec. VI.

A. Collective mode

We consider the transmission of a single waveguide mode
with input amplitude Aλ and frequency ωin. In the following,
we suppress the mode index λ, i.e., Aλ = A, S12 ≡ S(λλ)

12 , v ≡
v(λ)(kλ). k ≡ kλ is the wave vector of the incoming photons
and G = (g1, g2)T ≡ G (λ)

kλ
is the vector of couplings g j of the

jth magnet.
The two spheres are oriented along the waveguide with

ρ1 = ρ2 and d = z2 > z1 = 0. The magnetic input field am-
plitude at the spheres differs by the phase kd . According to
Sec. III,

G = −ig0(1 eikd )T , (74)

where g0 is real. The frequency shift and radiative damping of
the resonances in both magnets are the same and we absorb
them into the complex frequencies ω1, ω2. The Hamiltonian
matrix then reads

H̃eff = ω̃ + �

=
(

ω1 − iαGω1 − i �L+�R
2 −i�Leikd

−i�Reikd ω2 − iαGω2 − i �L+�R
2

)
.

(75)

We assume ω1 ≈ ω2 ≈ ωin, but allow them to vary in a
window small enough that �(ω1) ≈ �(ω2) ≈ �(ωin ).

As discussed in Sec. II B, the eigenvectors of ω̃ + �,
namely, {ψ+, ψ−}, with corresponding eigenvalues {ν+, ν−}
and eigenvectors of (ω̃ + �)†, namely, {φ+, φ−} contain rele-
vant information of the observables. Here

ν+ + ν− = (ω2 + ω1)(1 − iαG) − i(�L + �R),
(76)

ν+ − ν− =
√

(ω2 − ω1)2(1 − iαG)2 − 4�L�Re2ikd ,

correspond to two resonant frequencies and linewidths. As-
suming 1 − iαG ≈ 1,

ψ± ≈ X±

(
� ±

√
�2 − 4�L�Re2ikd

2i�Reikd

)
,

(77)

φ± ≈ Y±

(
2i�Re−ikd

� ∓
√

�2 − 4�L�Re−2ikd

)
,

with the detuning ω2 − ω1 = �. The normalization factors

X±Y ∗
± = ±i

4�Reikd
√

�2 − 4�L�Re2ikd
(78)

are chosen such that φ
†
±ψ± = 1.

The absorption coefficient [Eq. (39)]

A± = φ
†
±G

= −ig0Y
∗
±eikd [� − 2i�R ∓

√
�2 − 4�L�Re2ikd ], (79)

and the excited magnetization can be written as

〈M̂ 〉 = 〈α̂+(t )〉ψ+ + 〈α̂−(t )〉ψ−, (80)

with amplitudes [Eq. (40)]

〈α̂±(t )〉 = Ae−iωint A±
ωin − ν±

. (81)

B. Directional pumping of magnons

For zero detuning, the resonant input ωin = ω1 = ω2 = ωm

drives the magnetization of each sphere into a coherent state
〈m̂〉 with some thermal noise, see Sec. II C. The ratio of the
coherent amplitudes,

�
�=
∣∣∣∣ 〈m̂1〉
〈m̂2〉

∣∣∣∣ =
√

�L

�R

∣∣∣∣ 〈α+〉X+ − 〈α−〉X−
〈α+〉X+ + 〈α−〉X−

∣∣∣∣, (82)

does not depend on time. With Eq. (81),

� =
∣∣∣∣2αGωm + �R + �L(1 − 2e2ikd )

2αGωm + �L − �R

∣∣∣∣. (83)

�2 is the ratio of the coherent magnon numbers (also refer to
the results of the master equation below).

The imbalanced excitation � � 1 without chirality, i.e.,
when �L = �R = �: � = |1 + 2�(1 − e2ikd )/(2αGωm)| is
caused by the direction of the feed and depends strongly on
the parameters. When �R → 0 and �L � αGωm, we obtain
the universal � ≈ √

5 − 4 cos(2kd ). When kd = nπ/2 with
n being odd integer, � = 3, and a ratio of the excited magnon
numbers of �2 ≈ 9. When �L = �R − 2αGωm, |〈m̂2〉| = 0
and � diverges, magnet 2 cannot be excited because the
input and emitted photons from the other magnet interfere
destructively. This limit can be realized by shifting the mag-
nets in the waveguide and/or tuning the applied field. We
summarize these features in Fig. 5 in terms of the magnon
number imbalance �2 in two magnets with fixed distance
oriented along z and as a function of position in the waveguide
cross section.

Magnons can also be excited locally by small local an-
tennas with negligible crosstalk [1–4,9,10]. An imbalanced
magnon excitation can be detected by the same antenna, as
pioneered in the cavity experiment [20]. We can model local
drives by adding source terms to the equation of motion
Eq. (25),

d〈M̂ 〉
dt

= −i(ω̃ + �)〈M̂ 〉 +
(

〈P̂1(t )〉
〈P̂2(t )〉

)
, (84)

where P̂i are the local magnetic field amplitudes and we
ignored the dissipation caused by the local antennas for sim-
plicity. When 〈P̂i(t )〉 = iPe−iωint , where P is real,

� =
∣∣∣∣�L + �R + 2αGωm − 2�Leikd

�L + �R + 2αGωm − 2�Reikd

∣∣∣∣. (85)
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FIG. 5. Magnon number imbalance �2 in a magnonic hyfrogen
molecule in a waveguide, calculated as function of position by
Eq. (83). The arrows indicate the positions of the chiral line. Note
that �2 is largest on the nonchiral lines at x = 0, a/2 and a. This is a
geometrical effect that is suppressed for longer chains (see text).

In contrast to the waveguide drive discussed above, the exci-
tation is balanced when �L = �R. � �= 1 then requires chiral
coupling, e.g., when �R = 0, �2 ≈ 5 − 4 cos(kd ) � 9. This
imbalance is caused by the pumping of the first magnet by the
second magnet without back action.

The coherent and dissipative components of the coupling
emerge in the equation of motion from the commutator of
the Hamiltonian with the magnon operator. Their different
physical meanings can be understood best by the master equa-
tion [32,55,57,58]. To this end, we divide the non-Hermitian
Hamiltonian into the Hermitian ĤH and non-Hermitian ĤnH

parts as

Ĥeff = (Ĥeff + Ĥ†
eff )/2 + (Ĥeff − Ĥ†

eff )/2, (86)

with the first and second terms representing the Hermitian and
non-Hermitian parts, respectively. For the magnon hydrogen
molecule,

ĤH =∑i=1,2 ωim̂
†
i m̂i + i �12+�∗

21
2 m̂†

1m̂2 + i �21+�∗
12

2 m̂1m̂†
2, (87)

ĤnH = −i
∑

i=1,2
δωm

2 m̂†
i m̂i + �12−�∗

21
2 m̂†

1m̂2 + �21−�∗
12

2 m̂†
1m̂2,

(88)

with δωm = �R + �L + 2αGωm, �12 = −i�Leikd and �21 =
−i�Reikd . The coherent and dissipative contribution cause dif-
ferent collective dampings [32,55,57,58]. The master equation
for the density operator of magnon ρ̂ [32,55,57,58],

∂t ρ̂ = i[ρ̂, ĤH] +
∑

i

δωm

2
L̂iiρ̂ + i

�12 − �∗
21

2
L̂12ρ̂

+ i
�21 − �∗

12

2
L̂21ρ̂, (89)

in which Li j ρ̂ = 2m̂ j ρ̂m̂†
i − m̂†

i m̂ j ρ̂ − ρ̂m̂†
i m̂ j is a relaxation

operator (Lindblad super-operator), while δωm and i(�12 −
�∗

21)/2 are the self- and collective decay rates, respectively.
For perfect chiral coupling �21 = 0 and at resonance, the
master equation in the rotating frame and m̂(t ) = m̃e−iωint

gives for the slowly varying envelopes m̃1,2,

∂

∂t

(〈m̃1〉
〈m̃2〉

)
=
(−δωm/2 −i�12

0 −δωm/2

)(〈m̃1〉
〈m̃2〉

)
+ (−iP − iP), (90)

where the average 〈Ô(t )〉 = 〈Ôρ̂(t )〉, and

∂

∂t

⎛
⎜⎜⎜⎜⎝

〈m̃†
1m̃1〉

〈m̃†
2m̃2〉

〈m̃†
1m̃2〉

〈m̃1m̃†
2〉

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎝

iP −iP 0 0
0 0 iP −iP
0 −iP iP 0

−iP 0 0 iP

⎞
⎟⎠
⎛
⎜⎜⎝

〈m̃1〉
〈m̃2〉
〈m̃†

1〉
〈m̃†

2〉

⎞
⎟⎟⎠+

⎛
⎜⎝

−δωm 0 −i�12 i�∗
12

0 −δωm 0 0
0 �∗

12 −δωm 0
0 0 0 −δωm

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

〈m̃†
1m̃1〉

〈m̃†
2m̃2〉

〈m̃†
1m̃2〉

〈m̃1m̃†
2〉

⎞
⎟⎟⎟⎟⎠. (91)

The coherent amplitude and associated magnon number (accumulation) obey different equations. P drives the coherent amplitude
via Eq. (90), while the dissipative coupling in Eq. (91) causes collective damping of the magnon numbers. It can be easily shown
that the master equation approach is equivalent to the input-output theory: Eqs. (90) and (91) recover the previous results for �

and �2 in Eq. (85).

VI. MAGNON CHAIN

The imbalance of the magnon distribution is enhanced when more magnets are added to the waveguide. Let us consider a chain
of N identical magnets at equal distance z j+1 − z j = d (0 < j < N ) located on a line parallel to the wave guide. Such systems
have already realized when N = 7 in a closed cavity [20]. We study the eigenvectors and eigenvalues of the non-Hermitian
matrix

H̃eff =

⎛
⎜⎜⎜⎜⎜⎝

ωm − iαGωm − i �R+�L
2 −i�Leikd −i�Le2ikd . . . −i�Le(N−1)ikd

−i�Reikd ωm − iαGωm − i �R+�L
2 −i�Leikd . . . −i�Le(N−2)ikd

−i�Re2ikd −i�Reikd ωm − iαGωm − i �R+�L
2 . . . −i�Le(N−3)kd

...
...

...
. . .

...
−i�Rei(N−1)kd −i�Rei(N−2)kd −i�Rei(N−3)kd . . . ωm − iαGωm − i �R+�L

2

⎞
⎟⎟⎟⎟⎟⎠, (92)
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where we dropped the TE10 mode index λ and

k =
√

ω2
m

c2
−
(

π

a

)2

. (93)

The photons emitted by magnet j to the right are in our
perturbative and adiabatic approach seen equivalently and
instantaneously by all magnets on the right but with a phase
factor eik|z j−zl |, and analogously for the magnets to the left.

The photon-mediated interaction generates a band struc-
ture with generalized Bloch states labeled ζ ∈ {1, . . . , N}
with right eigenvectors {ψζ } and corresponding eigenvalues
{νζ }:

(νζ − H̃eff )ψζ = 0. (94)

The real part of νζ is the resonance frequency of the ζ mode
and the imaginary part its lifetime. The eigenvectors of H̃†

eff ,
φζ with eigenvalue ν∗

ζ are related to ψζ by a parity-time
reversal operation when the spectrum is not degenerate, which
is the case for the simple chain considered here. Let T be the
complex conjugation and

P =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎠ (95)

exchanges the magnets 1 ↔ N , 2 ↔ N − 1 and so on, akin
to the inversion operation. However, P does not act on the
waveguide and is therefore not a parity operator of the whole
system. Clearly, P2 = T 2 = 1. P interchanges �L↔R in
Eq. (92), which is equivalent to the transpose operation, i.e.,
H̃T

eff = PH̃effP, while H̃†
eff = PT H̃effT P and

H̃†
effPT ψζ = ν∗

ζ PT ψζ , (96)

implying that

φζ = PT ψζ . (97)

We chose a normalization

ψT
ζ Pψζ = 1, (98)

such that φ
†
ζ ψζ = 1. Thus, we can describe the dynamics in

terms of only the right eigenvectors ψζ .
The magnets interact with the photons (again suppressing

indices) by the phase vector

G = −i
√

�Rv(1, eikd , . . . , ei(N−1)kd )T . (99)

The emission amplitude Eζ = G †ψζ = i
√

�Rvψ̃ζ (k), where
we defined the discrete Fourier transform

ψ̃ζ (k) = (1, e−ikd , . . . , e−i(N−1)kd )T ψζ . (100)

The absorption amplitude Aζ = φ
†
ζ G is related to the emis-

sion by

Aζ = ei(N−1)kdEζ . (101)

The global transmission [cf. Eq. (44)]

S12(ωin ) = 1 − i�Rei(N−1)kd
∑

ζ

ψ̃2
ζ (k)

ωin − νζ

, (102)

is governed by the right eigenvectors. The total coherent
magnetization of the array

〈M̂ (t )〉 = A
√

�Rve−iωint ei(N−1)kd
∑

ζ

ψ̃ζ (k)

ωin − νζ

ψζ (103)

is proportional to the amplitude of the incoming photons A
(introduced in Sec. II C).

Magnons can be flexibly excited and detected by local
antennas that interact only with one magnet [20]. With local
input at frequency ωin, 〈T̂l (t )〉 = ie−iωint (P1, P2, · · · , PN )T ,

〈M̂ (t )〉 = −i
∑

ζ

(Pψζ )T 〈T̂l (t )〉
ωin − ω̃m − γζ

ψζ . (104)

Note that (Pψζ )T = (ψζ,N , ψζ,N−1, · · · , ψ1). When an edge
state ζ∗ exists, say on the right with large ψζ,N , the an-
tenna array with controlled phase difference φ, i.e., 〈T̂l (t )〉 =
exp[−iRe(γζ∗ )t]iP(1, eiφ, · · · , ei(N−1)φ )T , can excite a large
magnetization at the right edge, where it can be detected by
the same local antenna as pointed out in the accompanying
letter [46].

We see that the excitation of magnetization is determined
by the eigenvectors ψζ and their eigenvalues νζ , which are
studied numerically and analytically below, with special at-
tention for superradiant and subradiant modes, i.e., those with
the largest and smallest radiation rates, respectively.

A. Numerical results

We present and analyze numerical results for the collective
modes of the dissipatively coupled magnon chain. As before,
a = 1.6 cm, b = 0.6 cm, rs = 0.6 mm, and αG = 5 × 10−5

[23]. Typically, ωm/c = √
3π/a corresponding to the photon

momentum k = √
2π/a, so only the lowest TE10 mode con-

tributes. The magnetic chain is parallel to the waveguide and
shifted from the chiral line to modulate the chirality �R/�L =
1, 0.5, 0.25, where �L/(2π ) ∈ (0, 20) MHz. We choose N =
80 magnetic spheres and kd = 3π/5. So d = a/(5

√
3) ≈

0.6 cm and the total length of the magnon chain is Nd ≈
48 cm. This is longer than our choice in the accompanying
letter [46] and experimentally impractical, but the results are
not qualitatively different and emphasize our message.

Figure 6 is a plot of the imaginary (�ζ ) and real (Eζ ) parts
of νζ − ωm as a function of mode number ζ , scaled by the
local dissipation rate �a = αGωm + (�L + �R)/2. The mode
numbers ζ = {1, 2, ..., N} are ordered by magnitudes of �ζ .

When �R = �L (nonchiral case) and ζ ≈ 80 (ζ � 10),
the decay rates are larger (smaller) than the local �a, indi-
cating superradiance (subradiance). The decay rates of the
most superradiant states ∼�aN/4 can simply be enhanced by
increasing the number of magnets. The decay of the most
subradiant states ∼�aζ

2/N3 [39–43] are found at the lower
band edge. The value of the magnon energy shifts Eζ in the
inset of Fig. 6 are enhanced to a peak around the boundary
between sub- and superradiance (�ζ ≈ �a). Eζ and �ζ don’t
have a simple functional relationship, which is reflected by the
oscillations (peaks) that look erratic for small mode numbers.
The energy shift of the most subradiant states is very small
but it can be as large as ∼10�a for the superradiant ones,
roughly proportional to the number of magnets. The largest
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FIG. 6. Imaginary (�ζ ) and real (inset, Eζ ) parts of the eigen-
values (νζ − ωm ) of the non-Hermitian Hamiltonian [Eq. (92)],
scaled by the individual damping rate �a . kλd = 3π/5 and N = 80.
�R/�L = 1, 0.5 and 0.25, respectively. Eζ oscillates as a function of
ζ and �ζ in a nonsystematic manner.

energy shift 2π × 100 MHz is still small compared to ωm,

which justifies the on-shell approximation for �L and �R.
Eζ oscillates with ζ between positive and negative values. A
chiral coupling with �R/�L = 0.5 and 0.25 does not strongly
change the above features, such the decay rates of the most
subradiant states ∼�aζ

2/N3.
The intensity distributions |ψζ, j |2 of modes ζ = 1, 2, 80

over the chain j = {1, 2, · · · , N} are shown in Fig. 7. When
�R = �L for the nonchiral case, the most superradiant state
is enhanced at both edges of the magnon chain (the red
solid curve). The most subradiant states are standing waves
∼| sin(ζπ j/N )| delocalized over the whole chain, but have
small amplitudes at the edges (see the inset of Fig. 7).

Partially chiral coupling does not affect the amplitude
distributions of the most subradiant states. The symmetric
distribution of the most superradiant states relative to the
center of the chain �R = �L becomes increasingly skewed,
i.e., the dynamics is enhanced at one edge only. Particularly,
when �R < �L (�R > �L), the edge state is localized at the
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FIG. 7. Intensity distributions of magnons |ψζ, j |2 in magnetic
spheres labeled by j for the most superadiant and subradiant (inset)
states for chiralities �R/�L = 1, 0.5, and 0.25, respectively.

left (right) side. When the radiation to the left is stronger
than to the right, the magnets on the left side experience more
radiation. On the other hand, the magnets in the middle of the
chain are part of a standing wave with destructive interference
in the average. A larger chirality �R/�L consequently mainly
affects the edge states.

B. Analytical analysis

The rich features of the collective motion in the most-
sub- and superradiant states can be accessed analytically in
some special limits [40]. To this end, we search for linear
combinations of the magnon operators α̂ that satisfy dα̂/dt =
−iνα̂ + (noise) as discussed in Sec. II B.

We can rewrite the equation of motion for the magnetiza-
tion, Eq. (25), as

d

dt
(m̂1, m̂2, · · · , m̂δ )T = −iH̃eff (m̂1, m̂2, · · · , m̂δ )T . (105)

Inserting Eq. (92) for the magnon chain leads to

−
(

dm̂δ

dt

)
c

= �R + �L

2
m̂δ + �R

∑
j<δ

eikd (δ− j)m̂ j

+�L

∑
j>δ

eikd ( j−δ)m̂ j . (106)

where we dropped the noise term and the self-interaction
∝iωm̂δ that only contributes a constant, but does not affect
the eigenmodes. Inserting a trial Bloch state with complex
momentum κ ,

m̂δ → �̂κ = 1√
N

N∑
j=1

eiκz j m̂ j (107)

into Eq. (106) leads to(
d�̂κ

dt

)
c

= −iωκ�̂κ − �Lgκ�̂k + �Rhκ�̂−k, (108)

with complex dispersion relation

ωκ = −i
�R

2

1 + ei(κ+k)d

1 − ei(κ+k)d
+ i

�L

2

1 + ei(κ−k)d

1 − ei(κ−k)d
, (109)

and “leakage” parameters

gκ = 1

1 − ei(κ−k)d
, hκ = ei(κ+k)Nd

1 − ei(κ+k)d
. (110)

Equation (108) is a closed equation for the unknown κ . Only
when the terms gκ , hκ in Eq. (108) vanish is �̂κ a proper
solution. The leakage and reflection at the edges mixes �̂κ

with the plane waves �̂k and �̂−k , which renders the problem
nontrivial.

In general, the field operator α̂ should be a superposition of
frequency-degenerate Bloch waves. For the simple chain, two
states with κ and κ ′ should suffice, provided

ωκ = ωκ ′ , (111)

which leads to (�R − �L + 2ωκ )/(�R + �L + 2ωκ ) =
−ei(κ ′+κ )d . Trying α̂ = gκ ′�̂κ − gκ�̂κ ′ gives(

dα̂

dt

)
c

= −iωκα̂ + �R(gκ ′hκ − gκhκ ′ )�̂−k, (112)
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which is the desired equation when

gκhκ ′ = gκ ′hκ . (113)

Equation (113) is an N th-order polynomial equation in eiκζ d

with N roots. Since we have N magnets and modes in the
noninteracting limits, its solutions cover all eigenvalues of
the interacting system. Equations (111) and (113) suffice to
determine the complex unknown variables κ and κ ′. The wave
function and energies of collective mode can then be expanded
as α̂ζ =∑ j φ

∗
ζ , j m̂ j and with

α̂ = 1√
N

N∑
j=1

(gκ ′eikz j − gκeik′z j )m̂ j, (114)

we obtain

φ∗
j = gκ ′eikz j − gκeik′z j . (115)

Using the relation between the left and right eigenvectors
[Eq. (97)], φ∗ = Pψ ,

ψ j ∝ gκ ′eiκzN− j − gκeiκ ′zN− j , (116)

ν = ω̃m + ωκ, (117)

with z j = ( j − 1)d and the normalization of ψζ is given by
Eq. (98). For �L = �R, we find κ ′ = −κ [40].

The imaginary part of ωκ = ωκ ′ corresponds to the radia-
tive damping of the mode ζ . The superradiant modes with
Imωκ � �R, �L are near κ ≈ ±k, i.e., complex momenta κ =
k0 + η and κ ′ = −k0 + η′ with small complex numbers η and
η′, which have to be calculated numerically. The imaginary
part of η and η′ are reciprocal skin depths of the edge states
addressed in Sec. VI A.

Near the minima of ωκ , around say κ = κ∗, we expect
subradiant modes. Minimizing Eq. (109) leads to

κ∗d = arcsin
�R − �L√

�2
R + �2

L − 2�R�L cos(2kd )

− arctan
�R − �L

(�R + �L ) tan(kd )
. (118)

The arcsin is a two-valued function and hence we search for
two extremal points in the first Brillouin zone [−π/d, π/d].
κ∗ and the corresponding κ ′

∗ do not yet satisfy the eigenvalue
Eq. (113). Trying κ = κ∗ + δ and κ ′ = κ∗ − δ leads to

e2iδNd = cos(κ∗d ) − cos[(k + δ)d]

cos(κ∗d ) − cos[(k − δ)d]
. (119)

For |δd| � 1,

δ ≈ ξπ

Nd

[
1 − i

N

sin(kd )

cos(κ∗d ) − cos(kd )

]
, (120)

where ξ = {1, 2, · · · }, leading to eigenfunctions

ψξ, j ≈ −2i
eiκ∗zN− j

1 − ei(κ∗−k)d
sin(δξ zN− j ),

ωξ = ωκ∗ + sin(kd )

cos(κ∗d ) − cos(kd )

�R(δξ d )2/2

1 − cos[(k + κ∗)d]
,

(121)

that are symmetric even for chiral coupling, because subradi-
ant modes do not efficiently couple to the waveguide. These
results also explain the standing-wave feature and scaling law
of the radiative lifetime of these states.

VII. DISCUSSION AND CONCLUSION

In conclusion, we find and report the consequences of
chiral and dissipative coupling of small magnets to guided
microwaves. We predict a rich variety of physical phenomena,
such as directional photon emission and magnon imbalanced
pumping and super(sub)radiance of collective magnon modes.
Polarization-momentum locking of the electromagnetic field
inside a rectangular waveguide and conservation of angu-
lar momentum are the physical mechanisms behind chiral
magnon-photons interaction. Chirality can be tuned via the
positions of the magnetic spheres inside the waveguide and
applied static magnetic fields. We develop the theory start-
ing with a single magnet and demonstrate strong radiative
damping. Loading the waveguide with two or more magnets
causes nonreciprocal tunable coupling between different mag-
netic spheres. We predict chirality-dependent large magnon
amplitudes at the edges of long chains with superradiance. We
also reveal subradiant eigenstates, which are standing waves
with small amplitude at the edges, that depend only weakly
on chirality and therefore scale as different systems without
chirality [39–44].

The magnetic chain in a waveguide is also a platform
to study non-Hermitian physics [68–72]. The rich magnon-
photon dynamics suggests several lines of future research.
Tunable waveguides allow manipulation of the local density
of photon states and linewidth for each collective mode [23],
while arrangements of the magnetic spheres into rings, lat-
tices, or random geometry promise a “magnon chemistry.”
Some non-Hermitian Hamiltonians may result in topologi-
cal phases, a hot topic in condensed-matter physics [45,73–
76]. The non-Bloch-wave behavior of eigenstates of a chiral
magnon-photon system can cause a non-Hermitian skin effect
and a non-Bloch bulk-boundary correspondence. The non-
linear dynamics of a chiral versus nonchiral magnon-photon
system can be accessed by the photon statistics of the waveg-
uide to specify the entanglement of sub- and superradiant
states [43].
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APPENDIX A: DISSIPATIVE COUPLING

Here we derive the radiative damping and dissipative cou-
pling between identical magnets in a rectangular waveguide
by photons in both TM and TE modes by explicitly calculating
Eq. (30). For simplicity, we drop the explicit dependence on λ

and k, i.e., 	 ≡ 	λ
k and g j ≡ gλ

j (k).

094414-12



CHIRAL COUPLING OF MAGNONS IN WAVEGUIDES PHYSICAL REVIEW B 101, 094414 (2020)

The magnetic field of the TM modes [26]

Hx =
√

2h̄	
μ0ab

γy

γ
sin(γxx) cos(γyy),

(A1)
Hy = −

√
2h̄	
μ0ab

γx

γ
cos(γxx) sin(γyy),

with both nx, ny > 0, and of the TE modes

Hz = −i
√

ηh̄	

μ0ab
cγ
	

|k|
k cos(γxx) cos(γyy),

Hx = −
√

ηh̄	

μ0ab
c|k|
	

γx

γ
sin(γxx) cos(γyy), (A2)

Hy = −
√

ηh̄	

μ0ab
c|k|
	

γy

γ
cos(γxx) sin(γyy),

in which η = 2 − δnx,0 − δny,0 and at least one nx, ny > 0.
According to Eq. (14),

gTM
j = i

√
γ̃ μ0MsVs	

ab

γy

γ
eikz j sin(γxx j ) cos(γyy j ) (A3)

and

gTE
j = i

√
ηγ̃μ0MsVs	

ab

c|k|
	

γx

γ
eikz j cos(γyy j )

×
[

− sin(γxx j ) + γ 2

kγx
cos(γxx j )

]
. (A4)

At large |k|, these couplings increase proportionally to
√|k|

because the magnetic field scales with the square-root of the
photon energy. The magnon-magnon coupling in Eq. (30) then
becomes

� jl = γ̃ μ0MsVs

ab

∑
nx,ny

sin(γxx j ) cos(γyy j )

× sin(γyxl ) cos(γyyl )

(
γ 2

y

γ 2
ITM + γ 2

x

γ 2
ITE

)
, (A5)

where the Iσ summarize the TM and TE contributions. Here

ITM =
∫

	eik(z j−zl )

ωl − 	 + i0+
dk

2π
. (A6)

The ultraviolet divergence for z j = zl can be removed by in-
troducing a cutoff momentum kc that parametrizes dissipation
in the metal boundaries at high frequencies:

ITM| j=l =
∫ ∞

−∞

dk

2π

ωl

ωl − 	 + i0+ − 2kcδ jl . (A7)

Using the Cauchy’s relation 1/(x + i0+) = P (1/x) −
iπδ(x), where P is the principle value,

ITM| j=l = −iω2
l /(c2kl ) − 2kc, (A8)

where kl =
√

ω2
l /c2 − γ 2 with ωl � γ c. The divergence of

the imaginary part at the band edge ωl ≈ cγ is a harmless van
Hove singularity.

When z j > zl and γ |z j − zl | > 1, the photon mode with
negative wave number is evanescent and cannot affect another
magnet that is not in immediate proximity. The integral then
simplifies to

ITM|z j>zl =
∫ ∞

−∞

dk

2π

	eik(z j−zl )

ωl − 	 + i0+ ≈ iω2
l eikl (z j−zl )

c2kl
,

consistent with Ref. [26], Sec. IV B, and our numerical cal-
culations. The restriction 2π (z j − zl ) � min{a, b} (or kl (z j −
zl ) > 1) requires that for our system z j − zl � 0.2 cm for
min{a, b} ∼ 1 cm, which we assume to be the case in the
following. For z j < zl , a similar result holds with z j − zl →
zl − z j .

For TE modes,

ITE =
∫

dk

2π

c2eik(z j−zl )

	(ωl − 	 + i0+)

[
− k + γ 2

γx
cot(γxx j )

]2

.

(A9)

We obtain

ITE| j=l = −i
1

kl

[
k2

l + γ 4

γ 2
x

cot2(γxx j )

]
− 2kc. (A10)

When γ |z j − zl | > 1,

ITE|z j−zl = −i
eikl |z j−zl |

kl

[
− kl + γ 2

γx
cot(γxx j )

]2

. (A11)

APPENDIX B: FREE-SPACE RADIATION DAMPING

Here we drive the radiation damping of the Kittel mode of a
single magnet in free space addressed in Sec. II. The magnetic
field can be expanded:

H(r) =
∑

σ

∫
d3k

(
√

2π )3

√
h̄	k

2μ0
eσ

k (eik.r p̂k + e−ik.r p̂†
k ). (B1)

The frequency 	k = ck and the two polarization vectors are

e1
k = (kz, 0,−kx )√

k2
x + k2

z

, e2
k = kyk − k2y

k
√

k2
x + k2

z

. (B2)

The coupling with a magnet with equilibrium magnetization
along y:

gσ
k =

√
μ0	k

2

γ MsVs

2

(
ieσ

k,x − ieσ
k,z

)
. (B3)

The broadening of the ferromagnetic resonance is given by
Fermi’s golden rule [analogous to Eq. (58)],

�ω =
∑

σ

∫
d3k

(2π )2
δ(ωm − 	k )

∣∣gσ
k

∣∣2, (B4)

where ωm is the magnon frequency. |gσ
k|2 can be simplified by

the relations

∣∣ie1
k,x − e1

k,z

∣∣2 = 1,
∣∣ie2

k,x − e2
k,z

∣∣2 = k2
y

k2
. (B5)

In polar coordinates, with ky = k cos θ :

�ω

ωm
= γμ0MsVsω

2
m

4c3

∫
sin θdθdφ

(
1 + cos2 θ

)
, (B6)

= γμ0MsVsω
2
m

3πc3
. (B7)

This result agrees with theory and experiments on mm-sized
spheres [21,22].
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APPENDIX C: CLASSICAL DESCRIPTION
OF MAGNET-MAGNET COUPLING

Here we formulate the nonlocal dissipative coupling of the
magnetization dynamics in a waveguide by the classical LLG
equation. We can incorporate the dynamic magnetic fields
H̃r

2→1 and H̃r
1→2 between two magnetic spheres as [8]

dM1,α

dt
= −γμ0εαβδM1,βH eff

1,δ + γμ0εαβδM1,βH̃ r
2→1,δ

+ αG + αr
1,δ

M1,s
εαβδM1,β

dM1,δ

dt
, (C1)

dM2,α

dt
= −γμ0εαβδM2,βH eff

2,δ + γμ0εαβδM2,βH̃ r
1→2,δ

+ αG + αr
2,δ

M2,s
εαβδM2,β

dM2,δ

dt
. (C2)

The magnetic fields from Eq. (68) read for z1 > z2,

H̃ r
2→1,δ (r1, t ) = −i

μ0Vs

v(kω )
Hkω,δ (ρ1)H ∗

kω,η(ρ2)M2,η

× eikω (z1−z2 ), (C3)

H̃ r
1→2,δ (r2, t ) = −i

μ0Vs

v(kω )
H−kω,δ (ρ2)H ∗

−kω,η(ρ1)M1,η

× eikω (z1−z2 ), (C4)

with kω = 1
c

√
ω2 − c2γ 2

λ . The in-phase and out-of-phase
components contribute fieldlike and dampinglike torques, re-

spectively. In high quality waveguides, we can tune them by
the positions of the two magnets.

Linearizing the coupled LLG equations and neglecting the
small intrinsic Gilbert damping αG yields (summation on η =
{x, z})

ωM1,x − (iγμ0Heff,1 + ωαr
1,z )M1,z − JzηM2,η = 0,

ωM1,z + (iγμ0Heff,1 + ωαr
1,x )M1,x + JxηM2,η = 0,

ωM2,x − (iγμ0Heff,2 + ωαr
2,z )M2,z − PzηM1,η = 0, (C5)

ωM2,z + (iγμ0Heff,2 + ωαr
2,x )M2,x + PxηM1,η = 0,

where

Jδη = γμ2
0VsMs

v(kω )
Hkω,δ (ρ1)H ∗

kω,η(ρ2)eikω (z1−z2 ),

Pδη = γμ2
0VsMs

v(kω )
H−kω,δ (ρ2)H ∗

−kω,η(ρ1)eikω (z1−z2 ). (C6)

In the rotating wave approximation and weak coupling, we
recover the equation for the eigenmodes, Eq. (76),

(iJzx − iJxz + Jxx + Jzz )(iPzx − iPxz + Pxx + Pzz )/4

+ (ω − ω1 + iω1α
r
1

)(
ω − ω2 + iω2α

r
2

) = 0, (C7)

where ωi = γμ0Heff,i and αr
i = (αr

i,x + αr
i,z )/2. While equiv-

alent, this method becomes tedious when considering many
coupled magnetic spheres.
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