

Delft University of Technology

Visual Navigation and Optimal Control for Autonomous Drone Racing

Li, S.

DOI
10.4233/uuid:07641fdf-5c87-4417-ad7c-e4232bd49570
Publication date
2020
Document Version
Final published version
Citation (APA)
Li, S. (2020). Visual Navigation and Optimal Control for Autonomous Drone Racing. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:07641fdf-5c87-4417-ad7c-e4232bd49570

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:07641fdf-5c87-4417-ad7c-e4232bd49570
https://doi.org/10.4233/uuid:07641fdf-5c87-4417-ad7c-e4232bd49570

VISUAL NAVIGATION AND OPTIMAL CONTROL FOR
AUTONOMOUS DRONE RACING

VISUAL NAVIGATION AND OPTIMAL CONTROL FOR
AUTONOMOUS DRONE RACING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates,

to be defended publicly on Thursday 12 November 2020 at 12:30 o’clock

by

Shuo LI

Master of Engineering in Navigation, Guidance and Control,
Northwestern Polytechnical University, China

born in Shaanxi, China.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus chairperson
Prof. dr. G. C. H. E. de Croon Delft University of Technology, promotor
Dr. ir. C. C. de Visser Delft University of Technology, copromotor

Independent members:
Dr. J. Martinez-carranza INAOE, Mexico
Prof. D. H. Shim KAIST, South Korea
Prof. dr. P. Campoy U. Politechnica de Madrid, Spain
Dr. J. C. van Gemert Delft University of Technology
Prof. dr. ir. T. Keviczky Delft University of Technology

Reserve member:
Prof. dr. ir. M. Mulder Delft University of Technology

Keywords: Autonomous drone racing, visual navigation, nonlinear model-
predictive control

Printed by: Ipskamp

Front & Back: Yuwen Liu.

Copyright © 2020 by S.Li

ISBN 978-94-6384-175-7

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

This book is for my beloved parents
who are my powerful and secure backing...

CONTENTS

Summary 1

Samenvatting 3

1 Introduction 5
1.1 Background . 5
1.2 Challenges and Previous research . 8

1.2.1 Visual navigation and sensor fusion 8
1.2.2 Guidance and control . 10

1.3 Research questions . 11
1.4 Outline . 13
References . 14

2 Autonomous drone race: A computationally efficient vision-based naviga-
tion and control strategy 21
2.1 Introduction . 22
2.2 System overview . 23
2.3 Vision navigation . 25

2.3.1 Gate detection . 25
2.3.2 Pose estimation . 30
2.3.3 Vision-IMU state estimation . 36

2.4 Control strategy . 40
2.5 Full track experiment setup and result 45
2.6 Conclusion and future work. 47
References . 48

3 In-flight Model Parameter and State Estimation using Gradient Descent for
High-speed Flight 51
3.1 Introduction . 52
3.2 Related work . 53
3.3 Quadrotor model . 54

3.3.1 Dynamic model of quadrotor . 54
3.3.2 IMU misalignment. 56
3.3.3 Aerodynamic model . 56
3.3.4 AHRS bias model. 57
3.3.5 Full model . 59

3.4 State estimation. 59
3.4.1 Vision-based Extended Kalman Filter 59
3.4.2 Vision-based gradient descent method 61

vii

viii CONTENTS

3.5 Experiment setup and result . 63
3.5.1 Experiment setup . 63
3.5.2 Analysis of Vision-based gradient descent method (VGD) 65
3.5.3 Comparison between Vision-based EKF (VEKF), Vision-based gra-

dient descent method (VGD) and Vision-based gradient descent
method with kinematic model(VGD-kinematic) 67

3.6 Conclusion . 69
References . 71

4 Visual Model-predictive Localization for Computationally Efficient Autonomous
Racing of a 72-gram Drone 75
4.1 Introduction . 76
4.2 Problem Formulation and System Description 79

4.2.1 Problem Formulation . 79
4.2.2 System Overview. 79

4.3 Robust Visual Model-predictive Localization (VML) and Control 81
4.3.1 Gate assignment . 82
4.3.2 Visual Model-predictive Localization (VML) 85
4.3.3 Flight Plan and High Level Control 92

4.4 Simulation Experiments . 93
4.4.1 Simulation Setup. 93
4.4.2 Simulation result and analysis . 94

4.5 Real-world Experiments . 100
4.5.1 Processing time of each component 100
4.5.2 Flying experiment without gate displacement 102
4.5.3 Flying experiment with gate displacement 103
4.5.4 Flying experiment with different altitude and moving gate. 104

4.6 Discussion . 106
4.7 Conclusion . 107
References . 107

5 Aggressive Online Control of a Quadrotor via Deep Network Representations
of Optimality Principles 115
5.1 INTRODUCTION . 116
5.2 DESIGN OF THE G&CNET . 117

5.2.1 The dynamical system . 117
5.2.2 The optimisation problem . 118
5.2.3 Network architecture and training 118

5.3 SIMULATION RESULT AND ANALYSIS 119
5.3.1 Stability of Neural Network Controller 119
5.3.2 Differential flatness based aggressive trajectory generation and con-

trol (DiffG&C) . 120
5.3.3 Simulation of the G&CNet Controller 121
5.3.4 Comparison between DiffG&C and G&CNet 121

CONTENTS ix

5.4 EXPERIMENT SETUP AND RESULT. 123
5.4.1 Experiment Setup . 123
5.4.2 Experiment Result . 124

5.5 CONCLUSIONS . 126
References . 126

6 Conclusion 129
6.1 Research questions . 129
6.2 Discussion . 131
6.3 Future work . 132

Acknowledgements 135

Curriculum Vitæ 139

List of Publications 141

SUMMARY

Drones, especially quadrotors, have shown their great value for applications like aerial
photography, object delivery and warehouse inspection. At the same time, with the de-
velopment of Artificial Intelligence (AI), computers can replace humans and even per-
form better than humans in some areas where it was impossible before like the AI pro-
gram Alpha Go which beat the human world champion in Go matches and Alpha star
which was rated above 99.8% human players in the real-time strategy game StarCraft II.
Concerning drones, the question is whether they can fly races completely by themselves
and if they can fly even faster than human pilots’ racing drones?

Although there exist many technologies for drones to fly autonomously in terms of
navigation, guidance and control, autonomous drone racing still sets an enormous chal-
lenge for the robotics community. For example, the most commonly used vision camera
based navigation technologies such as Simultaneous Localization and Mapping (SLAM)
and Visual Inertial Odometry (VIO) suffer motion blur when the drone moves fast and
high computational demand which is scarce onboard the drone. Moreover, the com-
monly used PID controller has no guarantees of optimality while much parameter tuning
is required. Many other challenges like these require new technologies to satisfy more
complex and challenging flying scenarios to challenge humans in drone races.

This thesis attempts to answer the question mentioned above. First of all, this the-
sis presents 2 systematic solutions for autonomous drone racing including navigation,
guidance and control techniques. The solutions are computationally so efficient that
they can run on board of a Bebop 1 quadrotor (made in 2014) without using the GPU and
a cheap 72-gram quadrotor called the ’Trashcan’. With the constraints of the processing
power and cheap onboard sensors, the Bebop can fly through 15 gates in a complex sce-
nario with an average speed of 1.5m/s and the Trashcan can fly through a 4-gate racing
track for 3 laps with an average speed of 2m/s. Both solutions helped the MAVLab, TU
Delft, participate in the IROS autonomous drone racing in 2017 and 2018.

In terms of visual navigation, a computationally efficient gate detection method ’snake
gate’ is developed to detect the racing gate during the flight. Together with a revised
version of Perspective-3-Point (P3P) method, the detection results are used to provide
location information for the drone. A Kalman filter is developed to fuse these detec-
tions with the onboard IMU readings. Unlike the traditional Kalman filter, this version
deduces the velocity from the accelerometers readings by a linear drag model approx-
imation instead of integrating the accelerometers. In this way, the Kalman filter has a
faster convergence rate. Another filtering method, Visual Model-predictive Localization
(VML), is also developed to fuse the vision detections and onboard attitude estimation.
The simulation and real-world flight results show that the VML is more robust to outliers
than the commonly used Kalman filter especially when there are invalid measurements.
Also, the VML is more efficient than the Kalman filter in handling measurement delays.
At last, a gradient descent based parameter estimation method is developed to estimate

1

0
2 SUMMARY

the quadrotor’s aerodynamics coefficients and the Attitude and heading reference sys-
tem (AHRS) biases using the visual measurements and the onboard state predictions.
With the estimated parameters, the quadrotor can have a better state prediction when
no visual measurement is available in some time.

In terms of guidance and control, a novel neural network based nonlinear optimal
controller, G&CNet, is developed to steer the drone to the target with the minimum time.
This G&CNet moves the time-consuming nonlinear controller onboard and can be run
at 200HZ to map the current states and the optimal control policy calculated offboard.
The simulation results show that the flying result is very close to the theoretical nonlinear
optimal control solution. Both simulation and real-world flying results show that it has
faster flights than a commonly used polynomial based trajectory generation and tracking
method.

Last but not least, the methods provided can be generalized to other applications.
For example, for the outdoor flight where the Global Positioning System (GPS) is avail-
able for navigation, the vision measurements can be directly replaced by the GPS signals
in the proposed navigation strategies and they should work directly. For the proposed
G&CNet, it should work in all scenarios where the guidance and control modules are
needed to move the drone from one point to another point. In this way, the proposed
methods allow drones to move faster in a robust way, extending their mission capabili-
ties.

SAMENVATTING

Drones – en in het bijzonder drones met vier propellors - vormen een grote belofte voor
toepassingen zoals luchtfotografie, het afleveren van pakketjes, en het in kaart brengen
van de voorraad in magazijnen. Tegelijkertijd vinden er stormachtige ontwikkelingen
plaats op het gebied van kunstmatige intelligentie (KI), waarbij computers even goed of
beter aan het worden zijn als mensen, ook als het gaat om taken die voorheen als zeer
complex geacht werden voor de computer. Voorbeelden zijn het bordspel “Go”, waar het
computerprogramma AlphaGo de wereldkampioen heeft verslagen, en het computer-
spel “StarCraft II”, waar het computerprogramma Alpha Star sterker genoteerd staat dan
99.8

Alhoewel er veel technieken ontwikkeld zijn voor drones om autonoom te vliegen,
en zowel hun eigen toestand te schatten, hun pad te bepalen en dat pad uit te voeren
met besturingssystemen, representeert drone racen een enorme uitdaging voor de ro-
boticagemeenschap. Bijvoorbeeld, veelgebruikte technieken zoals visuele inertiële odo-
metrie (Visual Inertial Odometry, VIO, in het Engels) en gelijktijdig localiseren en in kaart
brengen (Simultaneous Localization And Mapping, SLAM) hebben veel last van de waas
die ontstaat als een drone sneller gaat vliegen. Bovendien vereisen beide technieken
veel rekenkracht die nou juist schaars is op kleine drones. Voor wat betreft de besturing
zijn veelgebruikte technieken zoals een Proportionele, Integrerende en Differentiërende
(PID) besturing niet zo geschikt; Ze geven geen garantie van een optimaliteit en verei-
sen veel moeite om af te stellen. Vele soortgelijke uitdagingen resulteren erin dat we
voor drone racen nieuwe technologieën moeten ontwikkelen, vooral als we naar meer
en meer complexe racescenario’s gaan.

Dit proefschrift probeert bovenstaande vragen te beantwoorden. Ten eerste presen-
teer ik twee systematische oplossingen voor autonoom drone racen, die alle elementen
bevatten van toestandschatting tot het bepalen en uitvoeren van een pad met bestu-
ringstechnieken. De oplossingen zijn zo efficiënt in termen van rekenkracht, dat ze kun-
nen werken aan boord van een Bebop 1 quadrotor (gemaakt in 2014), zonder de grafi-
sche computer processor (GPU) te gebruiken, en aan boord van een goedkope drone die
“Trashcan” heet en slechts 72 gram weegt. Ondanks de beperkingen aangaande reken-
kracht, energie, en de lage kwaliteit van de goedkope sensoren, kan de Bebop door 15
poortjes vliegen in een complex scenario met een gemiddelde snelheid van 1.5 meter /
seconde. De TrashCan kan drie rondjes vliegen door een circuit bestaande uit vier poort-
jes met een gemiddelde snelheid van 2 meter / seconde. Beide oplossingen hebben aan
de basis gestaan van de deelname van het MAVLab van de TU Delft aan de IROS drone
races in 2017 en 2018.

Voor wat betreft visuele navigatie, heb ik een computationeel efficiënt algoritme,
“snake gate”, ontworpen om poortjes te detecteren tijdens de vlucht. Samen met een
aangepaste versie van P3P leidt dit algoritme tot poortdetecties die op hun beurt locatie-
informatie verschaffen aan de drone. Een Kalman filter is ontwikkeld om de detecties te

3

0
4 SAMENVATTING

combineren met metingen van de inertiële meeteenheid (Inertial Measurement Unit,
IMU). In tegenstelling tot traditionele Kalman filters in dit gebied, worden de versnel-
lingsmetingen niet direct geïntegreerd om snelheden en posities te schatten, maar die-
nen ze om de luchtweerstand te schatten (met een lineair model). Zo convergeert het
Kalman filter sneller. Ik heb ook een andere filtermethode ontwikkeld, waarin visuele
perceptie gecombineerd wordt met een model, en “Visual Model-predictive Localiza-
tion” (VML) geheten. Simulate en echte vluchtresultaten laten zien dat VML robuuster is
tegen foute metingen dan een standaard Kalman filter. Ook gaat VML efficiënter om met
het modelleren van metingsvertragingen. Tenslotte is er een methode ontwikkeld die
parameters van de drone schat, zoals de luchtweerstandconstanten en de constante af-
wijkingen van de versnellingsmeters en toestandschatting. De methode gebruikt de gra-
diënt om schattingsfouten te minimaliseren. Het schatten van deze parameters helpt om
de toestand van de drone (zoals de snelheid) beter te schatten wanneer er geen poortjes
in zicht zijn.

Aangaande besturingssystemen is er een nieuwe optimale besturing ontwikkeld ge-
baseerd op neurale netwerken. De methode, genaamd “GCNet” is ontwikkeld om de
quadrotor – onderhevig aan nonlineaire dynamica – in een minimale tijd naar een doel-
positie toe te sturen. Waar optimale besturing doorgaans veel rekenkracht en rekentijd
vereist, is dit niet het geval voor GCNet: Dit kan op 200Hz gedraaid worden op de Bebop
1 drone, om de huidige toestand om te zetten in de optimale stuurcommando’s. Het neu-
raal netwerk representeert een optimale besturing, die verkregen is door voor de vlucht
uitgebreid te trainen in een computersimulator. De simulatieresultaten laten zien dat de
tijd van het traject van de drone het theoretisch optimale resultaat zeer goed benaderen.
Zowel simulatieresultaten als vluchten in de echte wereld laten zien dat de aanpak re-
sulteert in snellere vluchten dan met een veelvuldig gebruikte methode die polynomen
gebruikt voor het genereren en volgen van een snel pad.

Tenslotte is het belangrijk aan te geven dat de ontwikkelde methoden ook toepasbaar
zijn in een andere context. Zo kunnen voor buitenvluchten de metingen van navigatie-
satellieten gebruikt worden (zoals het Global Positioning System, GPS). De voorgestelde
filters en besturingsmethoden hoeven dan niet aangepast te worden: de metingen die
in de drone race van beeldherkenning komen, kunnen namelijk zonder problemen ver-
plaatst worden door de snelheids- en positiemetingen van GPS. Ook GCNet kan zonder
moeite op andere problemen en systemen worden toegepast, zo lang de drone van één
locatie naar een andere moet bewegen. Op deze manier draagt het proefschrift bij aan
het sneller bewegen en robuuster toestandschatten van drones. Dit breidt de mogelijk-
heden van drones nog verder uit.

1
INTRODUCTION

1.1. BACKGROUND
In recent years, quadrotors have gradually shown their value for applications such as ob-
taining agriculture images [1, 2], picking up and delivering objects [3, 4], power line in-
spection [5] and warehouse inspection [6]. Commercial companies like DJI [7] and Par-
rot [8] launched their customer products, which are smart and user-friendly to users who
have no background in controlling quadrotors. Since then, quadrotors were no longer
expensive tools in specific industry areas or flying robots only in laboratories. They en-
tered people’s lives as aerial photography tools and electronic toys.

Before the quadrotors entered people’s lives, there was a minority group of enthusi-
asts who developed the quadrotors to powerful, agile and sturdy flying platforms (Figure
1.1). Due to the quadrotor’s agile nature, these drones could perform high-speed flights,
aggressive turns and freestyle flips under the control of the pilots. Subsequently, com-
petitions between these enthusiasts appeared. The rules of drone racing are simple: the
pilots steer their drones to fly through windows, gates or avoid obstacles in a certain se-
quence and the fastest wins. The pilots wear First-person View (FPV) goggles to receive
the images transmitted from the onboard camera via radio waves and steer the drone
accordingly. In most cases, in order to fly the drone aggressively with as little delay as
possible, the pilots directly give thrust, roll, pitch and yaw rate commands to the drone
via transmitters. The onboard autopilot will allocate the revolution to each rotor ac-
cording to the received commands. In fact, controlling the quadrotor in this way is not
straightforward for humans because when the sticks are in neutral, the drone keeps its
current attitude instead of going back to level. Thus, to fly a racing drone properly, a
lot of training is required. That is also why commercial companies like DJI provide their
customers with high-level interfaces by which the users can directly control the speed of
the drone or even the position of the drone, which in turn, requires more sensors, high-
performance onboard computing and also loses the flexibility to perform aggressive ma-
neuvers. With the development of drone racing, more and more organized races show up
and become annual e-sport events such as the one held by Drone Racing League (DRL).

5

1

6 1. INTRODUCTION

Human pilots spend time mainly on training their flying skills, designing the hardware
and tuning the parameters to make their flight faster. Initially, these races were seen as a
new popular e-sport but they did not attract much attention of academia.

Figure 1.1: Racing drone, by Richard Bramlette via flickr.com [9]

With the advent of advanced computing abilities and Artificial Intelligence (AI), peo-
ple started to realize that computers can replace humans and even perform better in ar-
eas where it was not possible before, such as Alpha Go [10] which beat the human world
champion in Go matches and Alpha Star [11]which was rated above 99.8% human play-
ers in the real-time strategy game StarCraft II. The games in which humans have been
beaten by AI programs were all closed, simulated environments. The next frontier con-
sists of challenges in robotics, dealing with open, real-world settings. In fact, some years
ago the question arose whether drones can fly races completely by themselves? And can
they fly even faster than human pilots? These questions piqued roboticists’ interest. If
we look back at how human pilots steer the drone through the racing track, we can find
that they use their eyes to sense the environment, the position, velocity and attitude of
the racing drones which is called navigation in the context of control theory. During the
flight, the pilots keep replanning the trajectories that guide the drone through the gates
or avoid the obstacles, which is called guidance. At last, the pilots steer the sticks on
the transmitters to execute the planned trajectories which is called control. These three
parts together make the control loop closed and were studied for many years both in
academia and industry. Hence, robotics scientists thought it was possible to challenge
human pilots who can achieve speeds up to 190km/h, although there were many chal-
lenges to the existing technologies.

To answer the first question mentioned above, the first autonomous drone race was
held by the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
in 2016, South Korea [12]. (Figure 1.2) The rules were the same as for human drone rac-
ing except for that humans could not interfere with the flight, no external equipment
was allowed and all computations had to be done onboard. It was the first attempt of
autonomous drone racing and no participant finished the whole track. The first-place
team, USRG, KAIST and the second-place team MAVLab, TU Delft both passed 10 gates.
But the winner, KAIST, had a faster speed of 0.6m/s [13]. This slow speed, partly due to
the tortuous track and partly due to the still lacking technologies and algorithms, is far

1.1. BACKGROUND

1

7

lower than for human racing drones. However, from the positive side, this autonomous
racing drone has demonstrated the possibility of racing autonomously and pointed out
a new research direction of flying drone race tracks autonomously using only onboard
resources and even faster than human pilots.

(a) The layout of IROS 2016 autonomous drone race
track

(b) Picture of IROS 2016 autonomous drone race
track

Figure 1.2: The layout and a picture of IROS 2016 autonomous drone race track

From this milestone, more research related to autonomous drone racing appeared
and the IROS autonomous drone race has become an annual event for research groups
to compete and communicate their latest research results. Most of them were not ro-
bust enough, computationally expensive or had low flying speed. One of the fastest
examples was created by NASA’s JPL lab who reported their autonomous drone racing
solution obtaining speeds very close to human pilots in their lab [14]. In their research,
a visual-inertial localization and mapping system was used for navigation and an ag-
gressive trajectory connecting waypoints was generated to finish the track [15]. Gao et
al. reported a teach-and-repeat method for autonomous drone race [16]. In their ap-
proach, a global map was built and a time-optimal trajectory was designed a priori. The
drone then tracked the designed trajectories with the state estimation provided by VIO.
For both systems, although the speed is high, when the environments are changed, such
as gate displacement, the systems have to be manually set again. Other studies have
some adaptability to the gate displacement, but the speed is much slower. For example,
the winner of IROS 2017 autonomous drone race, INAOE, flew through 9 gates with the
speed of 0.7m/s which is slightly faster than the previous year’s winner [17]. They used
SLAM for navigation and the detections of the gates were used to correct the drift. Jung
et al. developed a convolution neural network (CNN) to detect the racing gates which is
more robust than the classic color-filter based approach [18]. Although no exact flying
speed was reported, from the released flying experiment video, it can be seen that the
drone still had a low speed. Loquercio et al. [19] finished the track with the speed of
3m/s. Instead of using CNN to detect the racing gate, they used CNN to map onboard
images to desired waypoints and speed. A visual-inertial odometry was used for state
estimation in their apporoach. In IROS 2018 Autonomous drone race, the winner, RPG
lab from UZH, pushed the boundary of the autonomous drone race’s average speed to

1

8 1. INTRODUCTION

2m/s [20]. They used a CNN to predict the position of the gate and based on the pre-
diction, a model predictive controller (MPC) was employed to steer the drone through
the gate with fast speed. Although their approach was faster and adaptive to the gate
displacement, the algorithms had to be run on high-performance and relatively heavy
platforms such as Intel UpBoard and Qualcomm Snapdragon Flight platform. As one of
the few early research groups focusing on autonomous drone race, the MAVLab, TU Delft
also developed an approach addressing robustness, flying speed and computational ef-
ficiency. My thesis work consists of contributions to this approach, as further laid out in
this thesis. For example, a commercial Bebop 1 quadrotor flew through 15 gates with a
speed of 1.5m/s in a complex environment. Also, we created a 72g quadrotor able to fly
the race track with an average speed of 2m/s and the maximum speed of 2.6m/s.

1.2. CHALLENGES AND PREVIOUS RESEARCH

Similar to flying a drone autonomously in other scenarios, navigation, guidance and
control are all essential to autonomous racing drones. But there are three challenges
to this scenario. Firstly, in the indoor environment, the racing drone needs to navigate
without a Global Positioning System (GPS) signal while detecting the racing gates is also
required. Secondly, all the computation has to be done onboard while the weight of
the racing drone should be limited to have fast and safe flights, which in turn, requires
efficient navigation algorithms with light-weight sensors. Thirdly, to achieve fast flying
speed, optimal guidance methods, advanced control techniques and accurate quadrotor
aerodynamics models are needed. This section will discuss the previous work on these
three aspects.

1.2.1. VISUAL NAVIGATION AND SENSOR FUSION

Navigation in the context of control is defined by the establishment of the current and
future states including position, velocity and attitude, etc. In the outdoor environment,
GPS is the most commonly used navigation equipment for drones [21–24]. However,
most indoor environments and many parts of the urban canyon remain without access
to GPS [25]. Thus, motion capture systems such as VICON and Opti-track systems, which
can provide position measurements with the precision of millimeters, are often used
to replace GPS in the indoor environment [26–29]. However, the high price, occlusion
of the obstacles in the flying area and complex installation/calibration procedure limit
the use of such systems. An alternative solution is to use ultra-wideband (UWB) range
measurements to replace the motion capture systems [30–32]. This approach is cheap
and has the precision of centimeters but still only gives positioning in a limited, known
area. For many applications, it is unacceptable to rely on the installation of such external
equipment.

In terms of navigation using only onboard sensors, simultaneous localization and
mapping (SLAM) and visual inertial odometry (VIO) are the most commonly used meth-
ods. In general, SLAM jointly estimates the feature positions and the camera/IMU pose
that together form the state vector, whereas VIO does not include the features in the
state but still utilizes the visual measurements to impose motion constraints between
the camera/IMU poses [33]. In addidion, compared to SLAM, VIO does not perform loop

1.2. CHALLENGES AND PREVIOUS RESEARCH

1

9

closure. SLAM/VIO can be used with different sensor setups, for example, laser scanners.
Bachrach et al. [34] used a laser rangefinder to map the environment and navigate the
drone while the computations were done off-board. Shen et al. [35] implemented SLAM
with a laser range finder using only onboard resources. Bry et al. [36] first collected a
3D map of the environment before the flight and the map was then used for the nav-
igation of the drone. Although laser scanners can provide satisfying navigation results,
their heavy weight, fragile components [37] and high price make them unsuitable for the
drone race scenario. Alternative sensors that can be used for SLAM/VIO are cameras, in-
cluding stereo cameras and monocular cameras. Fraundorfer et al. [38] used a stereo
camera onboard to build a map and explore the unknown environment. Weiss et al. [39]
used a single camera to build a 3D map of the environment and navigate the drone. Al-
though SLAM/VIO with onboard cameras have been widely used for indoor navigation,
they are still not ideal for autonomous drone racing because of standard cameras’ rela-
tive long latency, blur when performing aggressive maneuver and most importantly, high
demand of onboard computational resources, which requires a heavier computational
unit and subsequently limits the speed of the racing drone. Event cameras are an alter-
native sensor to classic visual navigation, which output brightness changes in the form
of a stream of asynchronous “events" instead of intensity frames[40]. They have a very
high dynamic range, do not suffer from motion blur, and provide measurements with a
latency as low as one microsecond [41]. At the same time, due to its different sensing
technique with conventional cameras, traditional image processing methods can not be
directly used. They also have more significant noise compared to conventional cameras
[42]. With these advantages and challenges, event camera based SLAM/VIO has been
studied by multiple research groups and is still active [43–46].

SLAM/VIO is designed to work in general environments with the cost of heavy com-
putational demand but this generality is not always necessary. In some situations, de-
tecting specific features can significantly decrease the computational burden for visual
navigation. Also, detecting targets for navigation is required in some applications such
as autonomous landing on a known landing pad. Li et al. [47] used a downward-looking
monocular camera to detect two LED markers to navigate a quadrotor to land on a mov-
ing ground robot. Eberli et al. [48] also used a downward-looking camera to detect a
circular blob for taking off. Wenzel et al. [49] used an infrared (IR) camera to track a T-
shaped 3D-pattern of infrared lights for navigation. Meier et al. [50] used a marker board
full of unique markers whose positions are known prior for navigation. Although these
methods require much less computational resources, the simple features of the mark-
ers and the static background make the detection less challenging. At the same time,
downward-looking cameras with static makers can limit the flying range of the drone.
Falanga et al. [51] used a forward-looking camera to detect a narrow gap and then the
detections were used to navigate the drone through the gap with high speed. However,
the narrow gap had a black-and-white rectangular pattern which made the detection
easier.

In terms of sensor fusion on drones, in most cases, the position measurement from
only one source, like onboard cameras or laser range finders, is not enough. They are
either in low frequency or noisy. In worse cases, they have outliers which may lead to
unstable behaviors of the drone. On the other hand, onboard IMUs have less noise and

1

10 1. INTRODUCTION

can measure some drone states in high frequency. However, they have biases that lead to
state prediction divergence in a short time. Thus, sensor fusion or state estimation tech-
niques are needed to take advantage of both sensors to provide high frequency, smooth
and unbiased state estimation. It is indisputable that the Kalman filter and its vari-
ants are the most commonly used sensor fusion/state estimation method in the fields
of robotics and aerospace. For nonlinear systems, the Extended Kalman filter (EKF) [52]
is the standard technique for state estimation [53–55]. However, the EKF uses first-order
linearization to approximate the nonlinear system which introduces large errors. Thus,
the Unscented Kalman Filter (UKF) was developed to address this problem by using a de-
terministic sampling approach [56] and it is also widely used on quadrotors [57–60]. The
UKF has, however, the limitation that it does not apply to general non-Gaussian distribu-
tions [61]. Another commonly used filter is the particle filter which increases estimating
accuracy with a much higher computational expense. Due to the limited computation
capacity, it is not commonly used onboard drones in real-time applications.

1.2.2. GUIDANCE AND CONTROL

As stated before, guidance and control are essential for quadrotors. Guidance is defined
by generating reference trajectories on a high level. In this thesis, to make it more spe-
cific, we interpret the word guidance as generating the waypoints or position/velocity
trajectory references that guide the quadrotor to the desired position. To some extent,
reference trajectories can be seen as moving waypoints. Currently, real-time trajectory
generation, the feasibility and the optimality of the trajectories are still the main topics
of the research of guidance in robotics. Control is usually defined by generating actua-
tors’ commands to track the desired reference trajectories or arrive at the desired targets
based on current states. These two terms are always discussed together. However, in tra-
ditional approaches, they are usually designed separately, that is, reference trajectories
are first generated and then the controllers are designed to tracked the generated trajec-
tories. In recent years, optimal control theory based methods, which can design both
reference trajectories and control input signals simultaneously, gradually emerged due
to the increase in computation power. Some of them have already shown their feasibility
in the real world. However, there is still much space for improvement and it is still an
active area in the robotics community.

The simplest guidance method is just a waypoint in 3D space followed by a pure feed-
back controller to steer the drone to the target [22, 28]. This way is straightforward and
simple. In fact, it sends a step reference to the controller. In many cases, it can be compe-
tent for the task, especially for hover tasks or the tasks where the maneuver is not aggres-
sive. However, it does not consider any dynamics property of the drones and transfers
all the burden to the controller. If the controller is not well designed or tuned, the drone
may experience actuator saturation, overshoot, oscillation and even loose stability. Fur-
thermore, this strategy has no guarantee of the time/energy optimality. Other methods
like generating trajectories by a low-pass filter or connecting points by polynomials can
produce continuous and smooth trajectories. However, lacking dynamics models in the
trajectory generation phase makes these methods have no essential difference with the
’waypoint’ method. To track the reference trajectory, a multiple-loop cascaded structure
is always used. For the attitude loop, a large number of controllers were developed. For

1.3. RESEARCH QUESTIONS

1

11

example, linear controllers such as PID and LQR controllers [62, 63] have been proved
to be efficient and stable by many real world flights. Nonlinear attitude controllers like
the backstepping controller and sliding-mode controller were also developed to address
the nonlinearity of the quadrotor [64]. Smeur et al. [23, 65] developed an adaptive in-
cremental nonlinear dynamic inversion (INDI) controller to reduce the dependency on
the drone’s model. To track the desired trajectories, outer-loop controllers usually re-
ceive the difference between the desired position and current estimated position and
output the desired attitude or acceleration signal to the inner-loop controller. Similar to
the inner-loop controllers, PID [60], backstepping [66] and INDI [23] controllers, etc. are
also commonly employed to track the reference.

Another commonly used guidance and control method for drones is the differential
flatness based method which explores the drone’s dynamics model while designing the
trajectory [26]. Basically, the quadrotor’s inputs can be written as nonlinear functions of
the position trajectories, heading trajectories and their derivatives. In other words, if a
drone’s trajectories are determined, its inputs (four rotors’ speed for quadrotors) to exe-
cute these trajectories can be calculated analytically. Thanks to this property, during the
trajectory generation phase, the inputs of the drones can be minimized and guaranteed
to be within the constraints. At the same time, time can be allocated for each segmen-
tation on the trajectories to adjust the aggressiveness of the flight. Mellinger et al. [26]
and Bry et al. [36] designed the trajectories based on this theory, which can guide the
drone to fly through a thrown circular hoop and a complex indoor environment aggres-
sively. Faessler et al. [67] took the quadrotor’s aerodynamics model into consideration
to design the trajectories and also used the calculated inputs as feed-forward terms to
the controller. Then, a feedback controller was added to compensate for model inaccu-
racy. It turned out that their method could track the aggressive reference trajectories with
higher accuracy. Although the differential flatness based method can guide the drone to
fly with high speed, it still cannot guarantee time optimality. In other words, the drones
are still not flying at their limits.

In terms of optimality (minimum time or minimum energy), the essential way to
solve this guidance and control problem is to use optimal control theory, which consid-
ers the drone’s model and outputs the optimal trajectories and inputs at the same time.
However, finding a theoretical optimal control solution of a non-linear system is infea-
sible and finding a suboptimal solution numerically requires a considerable amount of
time [68, 69] and outputs a feed-forward solution, which makes it unsuitable for real-
time implementations. There are two directions to apply this optimal control theory
onboard. The first one is to decouple and linearize the system, which can result in an-
alytical optimal solutions [70, 71] but can lead to an inaccurate representation of the
system, which may lead to a suboptimal solution. The other direction is to use the sub-
optimal solution directly. For example in Geisert’s work [72], they used the result of the
first iteration of the optimization, which is suboptimal but fast to compute. It is notice-
able that both ways sacrifice the optimality to reduce the calculation time.

1.3. RESEARCH QUESTIONS
Before the start of this work, there was no research on autonomous drone racing. Al-
though a large body of research has focused on navigation, guidance and control of the

1

12 1. INTRODUCTION

quadrotor, they still have their limitations for autonomous drone races which require
robust and stable systems to fly fast in complex environments using only onboard re-
sources. This leads to the first research question:

RESEARCH QUESTION 1

How does a drone fly through a racing track fully autonomously using only
onboard resources?

During the flight, the drone may lose position measurements for a short time. A com-
mon approach is to use pure state prediction to provide state estimation. However, due
to the inaccuracy of the drone’s model, the prediction will diverge quickly. To keep the
drone flying during the measurement loss, it is important to estimate an accurate aero-
dynamic model and the sensors’ error model to minimize the divergence. Nevertheless,
different drones have different aerodynamic models and one sensor may behave differ-
ently at different time within a day and even during the flight. Modeling the aerody-
namics and the sensors before take off is inconvenient and unrealistic especially in the
competition arena. Hence, the second research question can be raised:

RESEARCH QUESTION 2

How well can the drone estimate its aerodynamics parameters together with
its AHRS biases during flight with the help of the vision information?

In complex racing environments, vision measurements are not always reliable. Vi-
sion measurements are usually in low frequency compared to the onboard IMU mea-
surements, which can lead to slow convergence of the Kalman filter. Detection outliers
are also not a small probability event especially in the racing track where gates are simi-
lar. A classic Kalman filter does not have the mechanism to handle these outliers prop-
erly which can lead to the states "jumping" to the outliers. Mahalanobis distance is al-
ways used as Kalman filter’s outlier rejection index. It works well in most cases. However,
when the estimated states’ variances are large and an outlier appears, for example, after
a long time prediction, the Kalman filter has a high chance to jump to the outlier. The
worst case is that the Kalman filter will reject the subsequent true positive detections
and then diverge. Also, vision algorithms always have significant delays. To have bet-
ter state estimation results, compensating for the delay is also necessary. The common
delay compensation method used by Kalman filter requires substantial computational
resources which are scarce on the drone. This result in the third research question:

1.4. OUTLINE

1

13

RESEARCH QUESTION 3

How does a moving horizon based method compare to a Kalman filter in the
drone race setting?

If the above questions are answered, we should push the boundary one step further
that is to increase the racing drones’ speed since the final target of this research is to
demonstrate the technology that the drone can not only finish the track autonomously
but also with fast speed and even faster than human pilots. This then culminates in the
last research question:

RESEARCH QUESTION 4

What are the properties of a neural-network-based imitation of a (close-to)
time-optimal control policy?

1.4. OUTLINE

To answer the questions raised above, this thesis has 4 chapters to address each question
respectively and 1 chapter to conclude them. They are organized as follows.

In Chapter 2, we present a full system strategy of flying a Bebop 1 commercial drone
through the racing track autonomously with an average speed of 1.5m/s. In this chapter,
we will first discuss a novel gate detection method ’Snake gate detection’ for detecting
the racing gates. Next, a Kalman filter is introduced to fuse the detection results with an
onboard IMU to provide state estimation. Next, two control strategies used in the race
will be discussed. At last, an experiment in which the drone flew through 15 gates in a
complex environment will be presented. In fact, this work is one of the earliest research
in the autonomous drone race field. It was the lightest and one of the fastest autonomous
racing drone at that time.

Chapter 3 will discuss a gradient-descent based method which estimates the quadro-
tor’s aerodynamic parameters and onboard AHRS biases during the flight. We first dis-
cuss the reason for the AHRS biases and introduce its model. Then, a gradient descent
method is used to minimize the error between the predicted states and the observations.
At last, the estimated result is used to compensate for the subsequent pure state predic-
tion. The result shows that the proposed method can significantly increase the accuracy
of the prediction. This method can be used in the autonomous drone race to increase
the state prediction’s accuracy when the gate detections are not available.

In Chapter 4, we present another systematic strategy of the autonomous drone race
including a new localization method called visual model-predictive localization (VML)
and the control strategy. The proposed VML is proved to be more robust to the outliers
than a commonly used Kalman filter by simulation. It is also capable of handling vision
delays with high efficiency. At last, we also show the real-world flight of a 72g tiny drone

1

14 REFERENCES

which flew through the racing track with an average speed of 2m/s and the maximum
speed of 2.6m/s. It is the smallest and one of the fastest autonomous racing drones in
the world. The proposed VML method helped the MAVLab, TU Delft win the first prize
(1 million dollars) in the first Alpha Pilot autonomous drone race in 2019.

Chapter 5 addresses the onboard optimal control problem of the quadrotor. As it was
stated above, classic optimal control methods are too heavy to run onboard. To solve this
problem, we designed an optimal trajectory library consisting of hundreds of thousands
of trajectories and corresponding control policies with different initial states. Then, a
neural network was trained to map the states and the optimal control policy. The trained
neural network could run onboard to calculate the optimal control policy to steer the
drone to the target. In this way, we moved the nonlinear optimal controller onboard with
high update frequency. The simulation results show that the resulting flying trajectories
were very close to the theoretical optimal result. The real-world flying trajectories were
also very close to the simulated optimal trajectories.

In Chapter 6, we conclude our work that it is possible the drones can race by them-
selves in complex racing environments with high speed with the proposed navigation
and control methods. However, the speed of the autonomous racing drone is still slower
than human pilots. At the end, we point out the future possible directions for further
speed improvement.

REFERENCES
[1] A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C. Rossi, D. Sanz, and J. Valente,

Aerial remote sensing in agriculture: A practical approach to area coverage and path
planning for fleets of mini aerial robots, Journal of Field Robotics 28, 667 (2011).

[2] P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss, Uav-based crop and
weed classification for smart farming, in 2017 IEEE International Conference on
Robotics and Automation (ICRA) (IEEE, 2017) pp. 3024–3031.

[3] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, Cooperative grasping and
transport using multiple quadrotors, in Distributed autonomous robotic systems
(Springer, 2013) pp. 545–558.

[4] S. Kim, S. Choi, and H. J. Kim, Aerial manipulation using a quadrotor with a two
dof robotic arm, in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IEEE, 2013) pp. 4990–4995.

[5] G. Zhou, J. Yuan, I.-L. Yen, and F. Bastani, Robust real-time uav based power line
detection and tracking, in 2016 IEEE International Conference on Image Processing
(ICIP) (IEEE, 2016) pp. 744–748.

[6] A. Eudes, J. Marzat, M. Sanfourche, J. Moras, and S. Bertrand, Autonomous and
safe inspection of an industrial warehouse by a multi-rotor mav, in Field and Service
Robotics (Springer, 2018) pp. 221–235.

[7] A. Schroder, M. Renker, U. Aulenbacher, A. Murk, U. Boniger, R. Oechslin, and
P. Wellig, Numerical and experimental radar cross section analysis of the quadro-
copter dji phantom 2, in 2015 IEEE Radar Conference (IEEE, 2015) pp. 463–468.

REFERENCES

1

15

[8] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, The navigation and control tech-
nology inside the ar. drone micro uav, IFAC Proceedings Volumes 44, 1477 (2011).

[9] R. Bramlette, Dsc_0352r, (2016), online; accessed December 14, 2019.

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of
go with deep neural networks and tree search, nature 529, 484 (2016).

[11] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et al., Grandmaster level in starcraft ii using
multi-agent reinforcement learning, Nature 575, 350 (2019).

[12] H. Moon, Y. Sun, J. Baltes, and S. J. Kim, The IROS 2016 Competitions [Competi-
tions], IEEE Robotics & Automation Magazine 24, 20 (2017).

[13] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, A direct visual servoing-based frame-
work for the 2016 iros autonomous drone racing challenge, Journal of Field Robotics
35, 146 (2018).

[14] A. Good, Drone race: Human versus artificial intelligence, https://www.nasa.
gov/feature/jpl/drone-race-human-versus-artificial-intelligence
(2017).

[15] B. Morrell, M. Rigter, G. Merewether, R. Reid, R. Thakker, T. Tzanetos, V. Rajur, and
G. Chamitoff, Differential flatness transformations for aggressive quadrotor flight, in
Robotics and Automation (ICRA), 2018 IEEE International Conference on Robotics
and Automation (IEEE, 2018) pp. 5204–5210.

[16] F. Gao, L. Wang, K. Wang, W. Wu, B. Zhou, L. Han, and S. Shen, Optimal trajectory
generation for quadrotor teach-and-repeat, IEEE Robotics and Automation Letters
(2019).

[17] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A. Simovic,
D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, et al., Challenges and implemented tech-
nologies used in autonomous drone racing, Intelligent Service Robotics , 1 (2019).

[18] S. Jung, S. Hwang, H. Shin, and D. H. Shim, Perception, guidance, and navigation for
indoor autonomous drone racing using deep learning, IEEE Robotics and Automa-
tion Letters 3, 2539 (2018).

[19] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza,
Deep drone racing: Learning agile flight in dynamic environments, arXiv preprint
arXiv:1806.08548 (2018).

[20] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scara-
muzza, Beauty and the beast: Optimal methods meet learning for drone racing, in
2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp.
690–696.

https://www.flickr.com/photos/rbbramlette/29775190435/in/photostream/
http://dx.doi.org/10.1109/MRA.2016.2646090
https://www.nasa.gov/feature/jpl/drone-race-human-versus-artificial-intelligence
https://www.nasa.gov/feature/jpl/drone-race-human-versus-artificial-intelligence

1

16 REFERENCES

[21] C.-S. Y. C.-S. Yoo and I.-K. A. I.-K. Ahn, Low cost gps/ins sensor fusion system for uav
navigation, in Digital Avionics Systems Conference, 2003. DASC’03. The 22nd, Vol. 2
(IEEE, 2003) pp. 8–A.

[22] C. De Wagter, R. Ruijsink, E. J. Smeur, K. G. van Hecke, F. van Tienen, E. van der
Horst, and B. D. Remes, Design, control, and visual navigation of the delftacopter
vtol tail-sitter uav, Journal of Field Robotics 35, 937 (2018).

[23] E. J. Smeur, M. Bronz, and G. C. de Croon, Incremental control and guidance of
hybrid aircraft applied to a tailsitter unmanned air vehicle, Journal of Guidance,
Control, and Dynamics , 1 (2019).

[24] J. L. Crassidis, Sigma-point kalman filtering for integrated gps and inertial naviga-
tion, IEEE Transactions on Aerospace and Electronic Systems 42, 750 (2006).

[25] A. Bachrach, S. Prentice, R. He, and N. Roy, Range–robust autonomous navigation
in gps-denied environments, Journal of Field Robotics 28, 644 (2011).

[26] D. Mellinger and V. Kumar, Minimum snap trajectory generation and control for
quadrotors, in Robotics and Automation (ICRA), 2011 IEEE International Conference
on (IEEE, 2011) pp. 2520–2525.

[27] D. Mellinger, N. Michael, and V. Kumar, Trajectory generation and control for pre-
cise aggressive maneuvers with quadrotors, The International Journal of Robotics
Research 31, 664 (2012).

[28] E. J. Smeur, G. C. de Croon, and Q. Chu, Cascaded incremental nonlinear dynamic
inversion for mav disturbance rejection, Control Engineering Practice 73, 79 (2018).

[29] G. Tang, W. Sun, and K. Hauser, Learning trajectories for real-time optimal control
of quadrotors, in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE, 2018) pp. 3620–3625.

[30] M. W. Mueller, M. Hamer, and R. D’Andrea, Fusing ultra-wideband range measure-
ments with accelerometers and rate gyroscopes for quadrocopter state estimation,
in 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2015) pp. 1730–1736.

[31] D. Hoeller, A. Ledergerber, M. Hamer, and R. D’Andrea, Augmenting ultra-
wideband localization with computer vision for accurate flight, IFAC-PapersOnLine
50, 12734 (2017).

[32] A. K. Raja and Z. Pang, High accuracy indoor localization for robot-based fine-grain
inspection of smart buildings, in Proceedings of the IEEE International Conference
on Industrial Technology, Vol. 2016-May (2016) pp. 2010–2015.

[33] G. Huang, Visual-inertial navigation: A concise review, in 2019 International Con-
ference on Robotics and Automation (ICRA) (IEEE, 2019) pp. 9572–9582.

REFERENCES

1

17

[34] A. Bachrach, R. He, and N. Roy, Autonomous flight in unknown indoor environ-
ments, International Journal of Micro Air Vehicles 1, 217 (2009).

[35] S. Shen, N. Michael, and V. Kumar, Autonomous multi-floor indoor navigation
with a computationally constrained mav, in 2011 IEEE International Conference on
Robotics and Automation (IEEE, 2011) pp. 20–25.

[36] A. Bry, C. Richter, A. Bachrach, and N. Roy, Aggressive flight of fixed-wing and
quadrotor aircraft in dense indoor environments, The International Journal of
Robotics Research 34, 969 (2015).

[37] S. Hrabar, An evaluation of stereo and laser-based range sensing for rotorcraft un-
manned aerial vehicle obstacle avoidance, Journal of Field Robotics 29, 215 (2012),
arXiv:10.1.1.91.5767 .

[38] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, and
M. Pollefeys, Vision-based autonomous mapping and exploration using a quadrotor
mav, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IEEE, 2012) pp. 4557–4564.

[39] S. Weiss, D. Scaramuzza, and R. Siegwart, Monocular-slam–based navigation
for autonomous micro helicopters in gps-denied environments, Journal of Field
Robotics 28, 854 (2011).

[40] D. Gehrig, M. Gehrig, J. Hidalgo-Carrió, and D. Scaramuzza, Video to events: Bring-
ing modern computer vision closer to event cameras, arXiv preprint arXiv:1912.03095
(2019).

[41] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, High speed and high dynamic
range video with an event camera, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (2019).

[42] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leuteneg-
ger, A. Davison, J. Conradt, K. Daniilidis, et al., Event-based vision: A survey, arXiv
preprint arXiv:1904.08405 (2019).

[43] D. Weikersdorfer, R. Hoffmann, and J. Conradt, Simultaneous localization and
mapping for event-based vision systems, in International Conference on Computer
Vision Systems (Springer, 2013) pp. 133–142.

[44] H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza, Evo: A geometric
approach to event-based 6-dof parallel tracking and mapping in real time, IEEE
Robotics and Automation Letters 2, 593 (2016).

[45] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, The event-
camera dataset and simulator: Event-based data for pose estimation, visual odome-
try, and slam, The International Journal of Robotics Research 36, 142 (2017).

http://dx.doi.org/10.1002/rob.21404
http://arxiv.org/abs/10.1.1.91.5767

1

18 REFERENCES

[46] H. Kim, S. Leutenegger, and A. J. Davison, Real-time 3d reconstruction and 6-
dof tracking with an event camera, in European Conference on Computer Vision
(Springer, 2016) pp. 349–364.

[47] W. Li, T. Zhang, and K. Kühnlenz, A vision-guided autonomous quadrotor in an air-
ground multi-robot system, in 2011 IEEE International Conference on Robotics and
Automation (IEEE, 2011) pp. 2980–2985.

[48] D. Eberli, D. Scaramuzza, S. Weiss, and R. Siegwart, Vision based position control for
mavs using one single circular landmark, Journal of Intelligent & Robotic Systems
61, 495 (2011).

[49] K. E. Wenzel, A. Masselli, and A. Zell, Automatic take off, tracking and landing of a
miniature uav on a moving carrier vehicle, Journal of intelligent & robotic systems
61, 221 (2011).

[50] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys, Pix-
hawk: A micro aerial vehicle design for autonomous flight using onboard computer
vision, Autonomous Robots 33, 21 (2012).

[51] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, Aggressive quadrotor
flight through narrow gaps with onboard sensing and computing using active vision,
in Robotics and Automation (ICRA), 2017 IEEE International Conference on (IEEE,
2017) pp. 5774–5781.

[52] B. Anderson and J. B. Moore, Optimal filtering, (1979).

[53] S. Weiss, M. W. Achtelik, M. Chli, and R. Siegwart, Versatile distributed pose estima-
tion and sensor self-calibration for an autonomous mav, in 2012 IEEE International
Conference on Robotics and Automation (IEEE, 2012) pp. 31–38.

[54] A. Santamaria-Navarro, G. Loianno, J. Solà, V. Kumar, and J. Andrade-Cetto, Au-
tonomous navigation of micro aerial vehicles using high-rate and low-cost sensors,
Autonomous robots , 1 (2018).

[55] K. D. Sebesta and N. Boizot, A real-time adaptive high-gain ekf, applied to a quad-
copter inertial navigation system, IEEE Transactions on Industrial Electronics 61,
495 (2014).

[56] E. A. Wan and R. Van Der Merwe, The unscented kalman filter for nonlinear estima-
tion, in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Com-
munications, and Control Symposium (Cat. No. 00EX373) (Ieee, 2000) pp. 153–158.

[57] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, Estimation, control, and plan-
ning for aggressive flight with a small quadrotor with a single camera and imu, IEEE
Robotics and Automation Letters 2, 404 (2017).

[58] R. He, R. He, S. Prentice, S. Prentice, N. Roy, and N. Roy, Planning in information
space for a quadrotor helicopter in a GPS-denied environments, in Robotics and Au-
tomation, 2008. ICRA 2008. IEEE International Conference on, 2007 (2008) pp. 1814–
1820.

REFERENCES

1

19

[59] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, Vision-based state estimation and
trajectory control towards high-speed flight with a quadrotor. in Robotics: Science
and Systems, Vol. 1 (Citeseer, 2013).

[60] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier,
K. Sun, A. Zhu, J. Delmerico, et al., Fast, autonomous flight in gps-denied and clut-
tered environments, Journal of Field Robotics 35, 101 (2018).

[61] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. A. Wan, The unscented particle
filter, in Advances in neural information processing systems (2001) pp. 584–590.

[62] S. Bouabdallah, A. Noth, and R. Siegwart, Pid vs lq control techniques applied to
an indoor micro quadrotor, in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Vol. 3 (IEEE, 2004) pp. 2451–
2456.

[63] S. Tijmons, M. Karásek, and G. de Croon, Attitude control system for a lightweight
flapping wing mav, Bioinspiration & biomimetics 13, 056004 (2018).

[64] S. Bouabdallah and R. Siegwart, Backstepping and sliding-mode techniques applied
to an indoor micro quadrotor, in Proceedings of the 2005 IEEE international confer-
ence on robotics and automation (IEEE, 2005) pp. 2247–2252.

[65] E. J. Smeur, Q. Chu, and G. C. de Croon, Adaptive incremental nonlinear dynamic
inversion for attitude control of micro air vehicles, Journal of Guidance, Control, and
Dynamics (2015).

[66] P. Adigbli, J.-b. Mouret, and S. Doncieux, Nonlinear attitude and position control of
a micro quadrotor using sliding mode and backstepping techniques, (2007).

[67] M. Faessler, A. Franchi, and D. Scaramuzza, Differential flatness of quadrotor dy-
namics subject to rotor drag for accurate tracking of high-speed trajectories, IEEE
Robotics and Automation Letters 3, 620 (2017).

[68] F. Morbidi, R. Cano, and D. Lara, Minimum-energy path generation for a quadro-
tor uav, in 2016 IEEE International Conference on Robotics and Automation (ICRA)
(IEEE, 2016) pp. 1492–1498.

[69] M. Hehn, R. Ritz, and R. D’Andrea, Performance benchmarking of quadrotor systems
using time-optimal control, Autonomous Robots 33, 69 (2012).

[70] M. Hehn and R. D’Andrea, Quadrocopter trajectory generation and control, IFAC
proceedings Volumes 44, 1485 (2011).

[71] O. Santos, H. Romero, S. Salazar, O. García-Pérez, and R. Lozano, Optimized discrete
control law for quadrotor stabilization: Experimental results, Journal of Intelligent
& Robotic Systems 84, 67 (2016).

[72] M. Geisert and N. Mansard, Trajectory generation for quadrotor based systems using
numerical optimal control, in 2016 IEEE international conference on robotics and
automation (ICRA) (IEEE, 2016) pp. 2958–2964.

2
AUTONOMOUS DRONE RACE: A
COMPUTATIONALLY EFFICIENT

VISION-BASED NAVIGATION AND

CONTROL STRATEGY

This chapter is based on the following article:
Li S, Ozo MM, De Wagter C, de Croon GC. Autonomous drone race: A computationally efficient vision-based
navigation and control strategy. Robotics and Autonomous Systems. 2020 Nov 1;133:103621.

21

2

22
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

2.1. INTRODUCTION
First person view (FPV) drone racing has been a popular sport in recent years, where
the pilots have to control the drones to fly through gates decorated by LED lights at fast
speed. In the field of robotics, drone racing has raised the question: how can drones be
designed to fly races by themselves, possibly faster than human pilots? To start answer-
ing this question, the world’s first autonomous drone race was held in 2016 [1]. In this
drone race, the drones were asked to fly through square, orange gates in a predefined
sequence using onboard resources. To increase the level of challenge for gate detection,
unlit gates were used in the race. The rules were simple: the one who flies furthest will
win the race, and if two drones arrive at the same gate or complete the full track, the
fastest time counts. The winner of the 2016 race (the team from KAIST) flew through 10
gates (the distance is around 50m) within 86s [2] and the winner of the 2017 race (the
team from INAOE) flew through 9 gates (60m) within 194s, which are much slower than
the FPV drone race players. Compared to the FPV drone race, the task of autonomous
drone race is more challenging because the drone has to navigate, perceive, plan and
control all by itself using only scarce onboard resources, representing a considerable
challenge for areas such as artificial intelligence and control.

Autonomous drone racing can be seen in the more general context of high-speed
flight. In fact, before the autonomous drone race, there are several on flying through
circles or gaps. To the best of our knowledge, the first research on quadrotor’s flying
through circles is [3]. In their work, the drone can fly through a thrown circle and three
fixed circles with fast speed. In [4], the drone can fly through a tilted narrow gap. In both
studies, a VICON motion capture system is used to provide the state estimation for the
drone and the position of the gap or circles is known a priori. Lyu et al. [5] use an onboard
camera to detect the gap and the drone could navigate itself through the gate. But the
image processing is done off-board. In their experiment, the background of the gap is
a white wall which makes the gap to be detected relatively easily. Loianno et al. [6] for
the first time use onboard resources to detect a window, plan the trajectory and control
the drone to fly through a window. In their work, visual inertial odometry (VIO), which is
computationally quite expensive for our drone, is used to provide the state estimation to
the drone. In Falanga et al.’s [7] work, a drone with a fish-eye camera can detect a black
and white gap and design a trajectory through the gap using only onboard resources.
In [8], deep-learning-based optical flow is used to find any arbitrary shaped gap with
an NVIDIA Jetson TX2 GPU. But the drone has to execute a fixed sideways translational
motion to detect the gap before going through it, which slows down the drone. The
studies above aim at motion planning, object detection or onboard perception, so in
most of these studies only one gap is flown through and there is no solution on how to
fly through the next gate after passing through the previous one.

Multiple studies have focused directly on autonomous drone racing, designing a
strategy that will allow to fly an entire trajectory. In [9], a simulated drone learns how
to minimize the time spent to finish the race track, by learning from two different PID
controllers. Although an interesting approach, it ignores several of the real-world as-
pects of drone racing, such as restricted onboard computation or how to deal with ac-
celerometer biases. NASA’s Jet Propulsion Laboratory has developed an autonomous
racing drone controlled by AI, which can fly almost as fast as the racing drones con-

2.2. SYSTEM OVERVIEW

2

23

trolled by expert human FPV pilots.[10, 11] They use VIO for navigation which is compu-
tationally relatively expensive. Kaufmann et al. develop a strategy that combines a con-
volutional neural network (CNN) and minimum jerk trajectory generation.[12] In their
work, an in-house quadrotor with an Intel UpBoard and a Qualcomm Snapdragon Flight
Kit which is used for VIO, is used as the platform. In [2], a systematic solution for the
IROS autonomous drone race 2016 is presented. In their work, an NVIDIA Jetson TK1
single-board computer and a stereo camera are used for a visual servoing task. They fi-
nally passed through 10 gates within 86s and won the race. We will use their result as a
benchmark to compare our research result.

In this paper, we present a solution for autonomous drone racing, which is compu-
tationally more efficient than the solutions discussed above. For the gate detection, a
novel light-weight algorithm, “snake gate detection”, is described and analyzed in de-
tail in Section 2.3. Instead of using a common, purely vision-based perspective-n-point
(PnP) algorithm, we combine the onboard attitude estimate with the gate detection re-
sult to determine the position of the drone. We show that this is more robust than the
PnP method. Then, a novel Kalman filter is introduced that uses a straightforward drag
model to estimate the velocity of the drone. Two control strategies to control the drone
to go through the gate and find the next gate are discussed in Section 2.4. In Section 2.5,
flight tests are performed with a Parrot Bebop 1 drone, by replacing the Parrot firmware
with our Paparazzi autopilot code. All algorithms run in real-time on the limited Parrot
P7 dual-core CPU Cortex A9 processor, and no hardware changes are required as the vi-
sion algorithms use the frontal camera and other sensors already present in the Bebop.
The flight experiments are done in a complex and narrow environment (a showroom dis-
playing aircraft components in the basement of Aerospace Engineering, TU Delft).1 The
result shows that the drone can fly through a sequence of 15 gates autonomously using
only onboard resources in a very complex environment with a velocity of up to 1.5m/s.

2.2. SYSTEM OVERVIEW
The quadrotor hardware used as experiment platform in this work is a commercially
available Parrot Bebop 1 (Figure 2.1). However, all Parrot software was replaced by own
computer vision, own sensor drivers and own navigation and control using the Paparazzi-
UAV open-source autopilot project [13]. Only the Linux operating system was kept. The
most important characteristics are listed in Table 2.1. It should be noted that the image
from the front camera as used by our autopilot in this work is only 160×350 pixels and
all the processing for the drone race takes place on the Parrot P7 dual-core CPU Cortex 9
(max 2GHz), although the Bebop is equipped with a quad core GPU.

The structure of the system is shown in Figure 2.2. For visual navigation, a novel
algorithm, snake gate detection, is implemented to detect the gates. It outputs the coor-
dinates of detected gates’ corners, which are then sent to the pose estimation block. In
pose estimation block, the coordinates of the gate corners on the image plane would be
projected to 3D space, which provides the relevant position between the drone and the
gate. For attitude and heading reference system (AHRS), a classic complementary filter
[14] is employed. At last, the position measured by the front camera, attitude estimation

1The video of the experiment is available at: https://youtu.be/bwF0TAjC8iI

2

24
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

Figure 2.1: The Parrot Bebop 1 is used as experiment platform. The software is replaced by the Paparazzi UAV
open-source autopilot project

Table 2.1: List of onboard sensors used in the experiment

camera a 6 optical elements and 14 Mega pixels sensor
a vertical stabilization camera (not used in this work)

processor Parrot P7 dual-core CPU cortex 9 (max 2GHz)
IMU MPU 6050

sonar < 8m

from AHRS and IMU measurement are fused by a Kalman filter to provide a position
estimate.

Figure 2.2: The structure of the autonomous system

In terms of control, when the target gate is in the field of view, a PD controller (Con-
trol block in Figure 2.2) is used to steer the drone to align with the center of the gate. After
passing through the gate or there is no gate in the field of view, a prediction-based feed-
forward control scheme is employed to steer the drone to the next gate, which will be
further explained in Section 2.4. An adaptive incremental nonlinear dynamic inversion
(INDI) controller is used as low-level attitude controller [15].

The race track can be divided into two parts. The first part is the approaching gate
part where the target gate can be used by the drone for navigation. The other one is after
gate part, which starts from the point where the drone passing through the gate and

2.3. VISION NAVIGATION

2

25

ends at the point where the drone can see the next gate. The different race tracks can
be seen as the different combination of these two parts. Thus, at first , due to the space
restriction of our experimental environment, we simplify the race track to a two gates
track which can be seen in Figure 2.3. Most of our experiments are done and analyzed in
this simplified race track with the ground truth measurement provided by Opti-track. At
last, the system is moved to a more complex and realistic drone race track to be verified.

3.5
m

3m

𝑥

𝑦

𝑧

Figure 2.3: A simplified race track

2.3. VISION NAVIGATION
In the FPV drone race, gates are usually decorated with LEDs in order to be easily rec-
ognized by drone pilots. Drone pilots can then use the gates to navigate themselves to
approach the gates. Inspired by FPV drone race, in our research, we also use gates for
navigation since their simple shape and relatively large size make them relatively easy
to be extracted and their projection on the image plane can provide information such
as position and attitude of the drone. In this section, we first present an efficient gate
detection method to extract the four corners of the gate on the image plane. Next, the
position of the four corners of the gate is projected to 3D space combining AHRS reading.
At last, a Kalman filter providing position estimation by fusing the vision measurement,
the IMU measurement and the onboard AHRS reading is discussed.

2.3.1. GATE DETECTION
Gate detection can be accomplished by multiple different computer vision methods,
such as Viola and Jones[16], Hough transform[17] and deep learning[18, 19]. In this ar-
ticle, we propose a novel gate detection algorithm called snake gate detection which is
lightweight and easy to be implemented onboard.

We search the gates based on their colors on an distorted image because the undis-
tortion procedure for each image can slow down the whole detection procedure (Figure
2.4). Luckily, our detection method can still work properly on this distorted image. The
search starts by randomly sampling [20] in the original image. If a random point P0 hits
the target color (gate’s color), we continue searching ’up and down’ to find points P1 and
P2. It should be noted that this search can search along the edge of the oblique bar of the

2

26
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

gate (Figure 2.4). To prevent that the algorithm may find some small color blocks which
have the same color as the gate, we introduce a threshold, which is called the minimum
length threshold σL . If ‖P1−P2‖ <σL , this search would be terminated. Then, we use P1

and P2 as start points respectively to search ’left and right’ to find P3 and P4. Similar to
the vertical search, the horizontal search can also search along the oblique bar and the
result would be checked by σL to ensure that the detection is not too small and hence
unlikely to be a gate. The algorithm can be found in Algorithm 1. It should be noted that
while smallσL may lead to acceptance of some small detections which in most cases are
false positive detections, large σL can lead to the result that some gate in the image are
rejected. The selection of σL will be discussed later in this section.

(a) If the gate is continuous on image plane,
snake gate detection algorithm should find
all four corners P1, P2, P3 and P4

(b) When the gate is not continuous on im-
age plane, first a square S1, S2, S3 , S4 with
minimum length including P1, P2, P3 , P4
is found. Four small squares centering at Si
are then found. In these small squares, a his-
togram analysis helps to refine our estimate
of the gate’s corners in the image

Figure 2.4: An example of snake gate detection.

If the gate’s image is continuous in the image plane and the gates’ edges are smooth,
snake gate detection should find all four points (Figure 2.4.(a)). However, due to varying
light conditions, some parts of the gate may get overexposure or underexposed which
may lead to color deviation. For example, in Figure 2.4.(b), part of the lower bar gets
overexposed. In this case, P4 will not reach the real gate’s corner. Hence, a refining pro-
cess is employed to find the real gate’s corner. To refine the detection, a square with min-
imum length including four points is firstly obtained (Red square in Figure 2.4). Then
four small squares centering at Si are found (Four gray square in Figure 2.4.(b)). The raw
detection is refined by finding the centroid of the patch around each rough corner.

In one image, in most cases, the number of detected gates Nd is larger than the num-
ber of real gates in the image Ng . It can be caused by duplicated samples on the same
gate, which are true positive detections and do not affect the performance of navigation.
The other reason for Nd > Ng is the false positive detections, which affects the accuracy

2.3. VISION NAVIGATION

2

27

of navigation significantly and should be eliminated. Here, another threshold, color fit-
ness thresholdσc f , is introduced to help decrease the number of false positive detection.

c f = Nc

N
(2.1)

where Nc is the total number of pixels on the polygon whose color is target color and
N is the number of pixels on the polygon.

Only the gates whose c f > σc f will be accepted as detected gates. Similar to mini-
mum length threshold σL , the selection of σc f also affects the detection accuracy signif-
icantly.

Algorithm 1 snake gate detection

1: procedure SNAKEGATEDETECTION(i mag e)
2: for i = 1:maxSample do
3: P0 = randomPoint()
4: if isTargetColor(P0,i mag e) then
5: [P1,P2] = searchUpDown(P0,i mag e)
6: if ‖P1 −P2‖ >σL then
7: P3 = searchLeftRight(P1,i mag e)
8: P4 = searchLeftRight(P2,i mag e)
9: if ‖P1 −P3‖ >σL OR ‖P2 −P4‖ >σL then

10: [S1,S2,S3,S4] = findMinimalSquare(P1,P2,P3,P4)
11: detectedGate = refineCorner(S1,S2,S3,S4)
12: if checkColorFitness(detectedGate) >σc f then
13: return detectedGate
14: end if
15: end if
16: end if
17: end if
18: end for
19: end procedure

To evaluate the performance of the snake gate detection algorithm, 600 onboard im-
ages with/without gate are used to test the algorithm (Figure 2.5). The ROC curve with
varying σL is shown in Figure 2.6. It should be noted that the detection is done 10 times
with one σL to obtain the statistical result. The x-axis of ROC curve is average of false
positive detection per image and the y-axis is true positive rate. To make the trend in
Figure 2.6(a) clearer, we enlarge local part of the ROC curve by using logarithm coor-
dinate system in Figure 2.6(b). From ROC curve, it can be seen that when σL is small
(σL < 15), the number of the false positive detections decreases significantly while σL

increases without sacrificing TPR.That is because σL helps to reject the small detections
caused by small color blocks of the environment. WhenσL > 35, however, TPR decreases
sharply, the reason is that σL is too large to accept true positive detections. σL = 25 can
give the optimal option with low FPs/image and almost highest TPR. Then, with σL = 25
, we draw another ROC curve with varying σc f , which is shown in Figure 2.7. It can be

2

28
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

Algorithm 2 search in vertical direction (search in horizontal direction is similar)

1: procedure SEARCHUPANDDOWN(P0, i mag e)
2: P1 = P0, P2 = P0, done = f al se
3: while !done do
4: if isTargetColor(P1.x,P1.y −1) then
5: P1.y = P1.y −1
6: else if isTargetColor(P1.x −1,P1.y −1) then
7: P1.x = P1.x −1
8: P1.y = P1.y −1
9: else if isTargetColor(P1.x +1,P1.y −1) then

10: P1.x = P1.x +1
11: P1.y = P1.y −1
12: else
13: done = tr ue
14: end if
15: end while
16: done = f al se
17: while !done do
18: if isTargetColor(P2.x,P1.y +1) then
19: P2.y = P2.y +1
20: else if isTargetColor(P2.x −1,P1.y +1) then
21: P2.x = P2.x −1
22: P2.y = P2.y +1
23: else if isTargetColor(P1.x +1,P1.y +1) then
24: P2.x = P2.x +1
25: P2.y = P2.y +1
26: else
27: done = tr ue
28: end if
29: end while
30: return P1, P2

31: end procedure

seen that with increasing σc f , false positive detections decrease without significantly
decreasing of TPR.

In autonomous drone race 2017, we tuned σL through experimental trial-and-error
and accept the detection with highest color fitness, from which, the ROC point is plotted
by red circle in Figure 2.6 and Figure 2.7. It is remarkably close to the optimal thresholds
one would pick, given this more extended analysis. Please note that the algorithm used
in the 2017 drone race only accepted the gate with the highest color fitness, and not
every gate that was over the color threshold. It should also be noted that the method
described above can be used for tuning σL and σc f automatically. However, manually
labeling and running snake gate detection on the dataset for each set of parameters is
time-consuming especially when the drone needs to be deployed in a new racing track

2.3. VISION NAVIGATION

2

29

(a) Ture positive detection (b) Ture positive detection and
false positive detection

(c) False negative detection

50 100 150 200 250 300

20

40

60

80

100

120

140

160

(d)

50 100 150 200 250 300

20

40

60

80

100

120

140

160

(e)

50 100 150 200 250 300

20

40

60

80

100

120

140

160

(f)

Figure 2.5: Examples of the snake gate detection results. The first row are original onboard images with detec-
tion results. The second row are corresponding masks

with limited preparing time.

It should be noted that the true positive rate in above figures is the statistical result
on the entire dataset. In order to evaluate how good or bad a true positive rate of 0.46
is, one has to take additional factors into account. Importantly, the distance between
the drone and the gate can significantly affect the detection. Figure 2.8 shows how the
true positive rate changes with the change of distance between the gate and the drone.
It is very clear that when the drone gets closer to the gate, the snake gate detection has a
higher true positive rate, reaching 70% at close distances.

Figure 2.9 shows the detection result while the drone approaches the gate. In the
beginning, the distance between the drone and the gate is large which leads to false neg-
ative detections. Once the drone starts detecting the gate, it can detect the gate most of
times. However, there still exist some false negative detections. But these false negative
detections could be handled by filters which will be explained in details next section.

When the drone is close to the gate (< 1m), only part of the gate can be seen. In
this scenario, snake gate detection will not detect the gate. A second detection called
histogram gate side detection is employed to replace snake gate detection when the po-
sition estimate from the Kalman filter is < 1m (Figure 2.10). This detection algorithm
accumulates the number of target color pixels by each column. Then two peaks of the
histogram which represent two sidebars of the gate can be found. Later, the position of
these two bars can be used by pose estimation to extract relative position between the
gate and the drone.

2

30
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

0 2 4 6 8 10 12 14

FPs/image

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

T
ru

e
 P

o
s
it
iv

e
 r

a
te

Algorithm used in drone race 2017

(a)

10-2 10-1 100 101

FPs/image

0.3

0.35

0.4

0.45

0.5

0.55

T
ru

e
 P

o
s
it
iv

e
 r

a
te

Algorithm used in drone race 2017

(b)

Figure 2.6: The ROC curve with the change of σL .

2.3.2. POSE ESTIMATION
When a gate with known geometry is detected, its image can provide the pose informa-
tion of the drone. The problem of determining the position and orientation of a cam-
era given its intrinsic parameters and a set of n correspondences between 3D points
and their 2D projections is called Perspective-n-Point (PnP) problem [21]. In our case,
4 coplanar control points (gate corners) are available which leads to a unique solution
[22]. However, PnP is sensitive to the mismatches of 3D points and 2D points which
in our case is inevitable because the vibration and complex environment. Therefore,
these methods are usually combined with RANSAC scheme to reject noise and outliers.
Unfortunately, the fact that only four corner points are available on one gate limits the
effectiveness of such a scheme. In this section, a novel algorithm combining gate detec-

2.3. VISION NAVIGATION

2

31

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

FPs/image

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

T
ru

e
 P

o
s
it
iv

e
 r

a
te

Algorithm used in drone race 2017

Figure 2.7: ROC curve with σL = 25 and varying σc f

<2m 2m-3m 3m-4m 4m-5m 5m-6m >6m

distance to gate [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
P

R

Figure 2.8: When the drone approaches the gate, true positive rate becomes larger because of larger and clearer
gate on image plane

tion result and the onboard AHRS attitude estimation will be derived to provide the pose
estimation of the drone.

Since we are using a fish-eye camera, a calibration procedure should be done first
[23]. Then, the camera can be simplified as a pinhole camera model (Figure 2.11). Ac-
cording to the similar triangle principle, we have

[
xC

P′
yC

P′

]
=

[
f 0
0 f

] xC
P

zC
P

yC
P

zC
P

 (2.2)

2

32
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

2 4 6 8 10 12 14 16 18
False Negative

True Positive

2 4 6 8 10 12 14 16 18

number of frame

False Negative

True Positive

Figure 2.9: While the drone approaches the gate, there still exist some false negatives which may caused by
light condition and distortion.

Figure 2.10: When the drone is close to the gate, only a part of the gate can be seen. A histogram of target color
in x axis is employed. Two side bars can be found by the two peaks of the histogram

Assume that each pixel’s size is dx and length dy and the principle points’ coordinate
is (Cx ,Cy), we could transfer the pinhole model 2.2 to

[
u
v

]
=

[f
dx

0

0 f
dy

] xc
P

zc
P

yc
P

zc
P

+
[

Cx

Cy

]
(2.3)

To write the pinhole model 2.3 in homogeneous coordinates, we have

u
v
1

=
 fx 0 Cx

0 fy Cy

0 0 1

xc
P

zc
P

yc
P

zc
P

1

 (2.4)

where fx = f /dx , fy = f /dy . u, v ,Cx and Cy are in pixel unit. From Figure 2.11, it can

be seen that the 3D point P , the image point P
′

and the focal point Oc are on one line.
Thus, the direction of the light ray from Oc to P can be described by a bearing vector v

2.3. VISION NAVIGATION

2

33

Figure 2.11: A pinhole camera model. Oc is the focal point and the origin of camera frame Oc Xc Yc Zc . f is the

focus. Oi Xi Yi Zi is image frame. P is a 3D point in space and P
′

is its image point on image plane

which can be expressed in camera frame by

v =
vc

x
vc

y

vc
z

=
(u −Cx)/ fx

(v −Cy)/ fy

1

 (2.5)

To express vector v in earth frame, we introduce 2 rotation matrices ℜB
C and ℜE

B . ℜB
C

is the rotation matrix from camera frame C to body frame B which is a fixed matrix. ℜB
C

is the rotation matrix from body frame B to earth frame E consist of three Euler angle
ψ, θ and φ, which can be measured from onboard AHRS system. Thus, bearing vector v
could be expressed in the Earth frame E by

v =
vE

x
vE

y

vE
z

=ℜE
BℜB

C

vc
x

vc
y

vc
z

 (2.6)

A line passing through point P with direction v can be written as

L(p,v) = p+λv,λ ∈ [−∞,+∞] (2.7)

The perpendicular distance D(t;p,v) of a point t to line L(p,v) is

D(t;p,v) = ∥∥(p− t)− ((p− t)T v)v
∥∥

2 (2.8)

2

34
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

According to the pinhole model, 4 light rays with bearing vectors vi from four corners
of the gate should intersect at the focal point t (Figure 2.12), which is the position of the
drone. The bearing vectors can be calculated by the four points’ images on the image
plane and camera’s intrinsic parameters. This intersection point could be calculated
analytically. However, due to the detection error of the gate’s corners, bearing vectors
can be wrongly calculated, for example, in Figure 2.12 four light rays do not intersect at
one point.(gray line) Thus, there is no analytical solution of camera’s position. Instead of
finding analytical solution of camera’s position, a numerical solution is found that finds
a point whose distance to the four light rays is minimum. Hence, estimating the position
of the drone can be converted to an optimization problem that finds an optimal point t
which has minimal distance to 4 light rays, which can be expressed mathematically by

min
t

4∑
i=1

D(t;pi ,vi) (2.9)

which is a least squares problem.

Figure 2.12: Four light rays from four corners of the gate with bearing vector vi , which could be calculated by
four corner’s images on image plane and camera’s intrinsic parameters, should intersect at focal points. (red
line) However, wrong bearing vectors from wrong detections could make the light rays not intersect at one
point.

When the drone is close to the gate, only two sidebars can be detected by the his-
togram method. With the position of bars on the image plane, the pose of the drone
can be estimated by geometrical principle. In Figure 2.13, α1 and α2 are calculated by
the position of the image of two bars on image plane and intrinsic parameters. Then we
have

γ=π
2
−α2

r1

sinγ
= gs

sin(α1 +α2)

xh =r1 cosα1

yh = gs

2
− r1 sinα1

(2.10)

2.3. VISION NAVIGATION

2

35

Figure 2.13: The top view of the position of the drone and the gate

where gs is the length of the gate. Hence, based on the detection of the histogram
peaks in the image (corresponding to α1 and α2), we can deduce the lateral position of
the camera with respect to the gate (xh and yh).

A simulation is done to test the performance of our algorithm and compare it with
a standard PnP method. For simulation, artificial gates are created, which are projected
onto a virtual pinhole camera image. Since gate detections contain image noise and
outliers, a set of real gate detections are compared with ground truth data. Based on this
test the vision method experiments will therefore contain image noise with a standard
deviation of 3.5 pixels. The Root Mean Squared Error (RMSE) is used to evaluate the
performance of both algorithms. The result is shown in Figure 2.14 where each point
represents a thousand trails of the position estimation algorithm in the presence of pixel
noise. It can be seen that the error varies mainly as a function of distance to the gate.
The LS method uses prior knowledge of the attitude and heading of the vehicle to obtain
a more accurate position estimate. To study the effect of attitude error, noise with a
variance of 0, 5 and 15 degrees is added to the attitude and heading estimates. It is clear
from the figure that the LS method has far higher accuracy in RMSE compared to the PnP
method, even in the presence of relatively large noise in the attitude estimate.

Also, the histogram position estimation method is evaluated in simulation. Similar
to the LS method, pixel noise with a standard deviation of 3.5 is introduced. Figure 2.15
shows the results of the position RMSE in the horizontal plane in x and y-direction. The
experiment is performed with a heading angle of -30, 0 and 30 degrees. From the figure,
it can be observed that the position error of this method is relatively low. However, in
reality, the method is only effective up to a maximum distance of 1.5 meters, due to the
possible background color leading to spurious histogram peaks that are hard to filter out.

2

36
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

0 1 2 3 4

Distance to gate [M]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
 R

M
S

E
 [

M
]

P3p

LS var 0 deg

LS var 5 deg

LS var 15 deg

(a)

0 1 2 3 4

Distance to gate [M]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y
 R

M
S

E
 [

M
]

P3p

LS var 0 deg

LS var 5 deg

LS var 15 deg

(b)

0 1 2 3 4

Distance to gate [M]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Z
 R

M
S

E
 [

M
]

P3p

LS var 0 deg

LS var 5 deg

LS var 15 deg

(c)

Figure 2.14: Simulation result of P3P and LS method. With the incrementation of the distance between the
drone and the gate, both methods’ error increase. However, LS method has much less error than P3P.

0 0.5 1 1.5 2

Distance to gate [M]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

X
 R

M
S

E
 [
M

]

-30 deg

0 deg

30 deg

(a)

0 0.5 1 1.5 2

Distance to gate [M]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Y
 R

M
S

E
 [
M

]

-30 deg

0 deg

30 deg

(b)

Figure 2.15: X and Y histogram position RMSE as function of distance to the gate

2.3.3. VISION-IMU STATE ESTIMATION

In order to close the control loop, state estimation is essential since the measurements
(in our case, distance from vision, acceleration and angular velocity from IMU) are in-
evitably noisy and biased. A common approach for state estimation is the Kalman filter
and its variants such as extended Kalman filter(EKF), Unscented Kalman Filter(UKF) and
Particle filtering. In the field of UAVs, 15-states (position x, velocity v, attitudeφ and IMU
bias b) Kalman filter is used commonly in many scenarios. It first integrates angular rate
to gain rotation matrix from body to earth ℜE

B . Next, ℜE
B is used to rotate acceleration

measured by the accelerometer to earth frame. Then, the acceleration will be integrated
twice to gain the position. And finally, position measurement will be used to correct the
position prediction. Usually, UAVs’ onboard IMUs are low-cost MEMS which suffer from
biases and noise severely. During the prediction phase, the bias of accelerometer is inte-
grated twice which may cause the prediction to deviate from the real position over time.
If the position measurement has a relatively high frequency, the deviation of the position
prediction could be corrected before it diverges. At the same time, the bias of IMU could
also be estimated as states in the system and it should converge in short time. However,
in our case, position measurements come from onboard image processing which has a
low rate of around 20 HZ and the drone may cover significant durations without vision

2.3. VISION NAVIGATION

2

37

measurements. In this case, position prediction may deviate largely before new position
measurement comes. Thus, the bias estimation converges slowly. In this section, we
adopt the drone’s aerodynamics model to the prediction model in Kalman filter which
has a better performance than classic 15-states Kalman filter.

The kinematics of the drone can be described by

Ẋ = V (2.11)

To express V in body frame, we haveẋE

ẏE

żE

=ℜE
B (φ,θ,ψ)

vB
x

vB
y

vB
z

 (2.12)

where,xE , yE , zE are the drone’s position in earth frame E . vB
x , vB

y , vB
z are the drone’s

velocity in body frame B . One property of the onboard accelerometer is that it measures
specific force Fs in body frame B instead of vehicle’s acceleration. The specific force in ZB

direction is mainly caused by thrust T under the assumption that the thrust of quadrotor
is aligned with ZB . The force acting on XB and YB can be caused by many factors, for
instance, blade flapping, profile drag, and translational drag. But they could be approxi-
mated as a linear function, assuming that the indoor environment has no wind [24]:[

aB
x

aB
y

]
=

[
kx 0
0 ky

][
vB

x
vB

y

]
(2.13)

where kx and ky are drag coefficient which could be identified off-line. With this prop-
erty, the accelerometer can actually provide the information of velocity of the drone by[

vB
x

vB
y

]
=

[
kx 0
0 ky

]−1 [
am

x −bx
a

am
y −by

a

]
(2.14)

where am
x and am

y are the measurement of accelerometer. bx
a and by

a are the bias of
accelerometer. Combine equation 2.12 and equation 2.14, we haveẋE

ẏE

żE

=ℜE
B (φ,θ,ψ)

kx 0 0
0 ky 0
0 0 1

−1 am
x −bx

a
am

y −by
a

vB
z

 (2.15)

In equation 2.15, the bias only needs to be integrated once to predict the position
of the drone instead of being integrated twice in original 15-states Kalman filter, which
could help to decrease the error of prediction.

As mentioned above, the onboard AHRS system is a complementary filter, which on
a low level fuses accelerometer and gyro data to estimate the attitude of the drone. It can
directly provide the attitude estimation to the outer loop. The AHRS fusing only IMU
data may introduce a bias to the attitude estimation. In this paper, we assume that this
low level attitude estimation bias can be neglected. Hence, AHRS and accelerometer
reading can be used as inputs to propagate the prediction model 2.15.

2

38
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

According to Newton’s laws of motion, the motion of the drone can be described asv̇B
x

v̇B
y

v̇B
z

=ℜB
E

0
0
g

+
am

x −bx
a

am
y −by

a

am
z −bz

a

−
p

q
r

×
vB

x
vB

y

vB
z

 (2.16)

where g is gravity factor and p, q,r are angular velocity in body frame B measured
by the gyro. Since in equation 2.15, body velocity has already had measurements from
the accelerometer, in equation 2.16, we omit the first 2 equations and only leave the last
equation combining with 2.14, which results

v̇B
z = am

z −bz
a + g cosθcosφ+q

am
x −bx

a

kx
−p

am
y −by

a

ky
(2.17)

With the assumption that gyro’s bias is small, which can be neglected and the ac-
celerometer’s bias changes slowly,

ḃa =
ḃx

a
ḃy

a

ḃz
a

=
0

0
0

 (2.18)

Combining equation 2.15, equation 2.17 and equation 2.18, we have the process
model for EKF as:

ẋ = f(x,u) (2.19)

with states and inputs defined by

x = [xE , yE , zE , vB
z ,bx

a ,by
a ,bz

a]T (2.20)

u = [φ,θ,ψ, am
x , am

y , am
z , p, q]T (2.21)

Then, a standard EKF predict/update procedure will be done to estimate the states,
which can be found in Appendix.

To evaluate the performance of the visual navigation method described in this sec-
tion, a flight test with a simplified two-gates track where the drone flies through two
gates cyclically is done (Figure 2.3). A first experiment aims to gather onboard data to
be analyzed off-line. Hence, Opti-track system is used to provide accurate position mea-
surements to make the loop closed. It should be noted that only in straight parts, the
gate is in the drone’s filed of view and the snake gate detection algorithm is done on-
board, while the pose estimation and EKF are done off-board. The outer-loop controller
is a PD controller combining Opti-track measurements to steer the drone to align with
the center of the gate. In the arc parts, the gates are no longer available for navigation
and the drone navigates itself to fly along an arc only by state prediction without the in-
volvement of Opti-track, which will be explained in details in next section. The filtering
result is shown in Figure 2.16. During the straight part (purple vision measurements),
the EKF runs state prediction and measurement update loop and the estimated states
curves (red) coincide with ground truth curves (blue) well. The error distributions be-
tween estimated states and ground-truth states are shown in Figure 2.17. All histograms

2.3. VISION NAVIGATION

2

39

are centered around 0 error. But there are still a few estimation errors above 0.2m in
both x error and y error distribution which explains the fact that a few arcs end up at
points which are more than 0.5m from target endpoint, which could be seen in next sec-
tion. To make readers clearer to the experiment set up and result, a 3D ground truth and
estimation result can be found in Figure 2.18

25 30 35 40

Time [sec]

-2

0

2

4

6

X
 p

o
si

tio
n

 [
M

]

X position

X position Optitrack

X position estimate

Arc prediction

Vision measurements

(a)

25 30 35 40

Time [sec]

0

1

2

3

Y
 p

o
si

tio
n

 [
M

]

Y position

Y position Optitrack

Y position estimate

Arc prediction

Vision measurements

(b)

25 30 35 40

Time [sec]

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Z
 p

o
si

tio
n

 [
M

]

Z position

Z position Optitrack

Z position estimate

Sonar height

(c)

25 30 35 40

Time [sec]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Z
 b

o
d

y
ve

lo
ci

ty
 [

M
/s

]
Z body velocity

Optitrack Z body velocity

Z body velocity estimate

(d)

Figure 2.16: Extended Kalman filter result. The straight part flight is done with Opti-track. The vision pose
estimation is done onboard. The arc part is done only by state prediction without the involvement of Opti-
track.

(a) (b) (c)

Figure 2.17: Extended Kalman filter error distribution

2

40
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

0
4

0.5

1

1.5

6

2

Z
 p

o
s
iti

o
n
 [
M

]

2
4

2.5

3D position

Y position [M]

3

X position [M]

2

3.5

0
0

-2-2

Position Optitrack

Position estimate

Figure 2.18: Experiment setup. The drone takes off from the ground and flies an oval cyclically. In straight parts,
Opti-track is used to help the drone align with the gates, while vision detection is done onboard for logging. In
the arc parts, a feed-forward control with state prediction is employed, which explains the reason the arcs end
up at slightly different points.

2.4. CONTROL STRATEGY
Like classic control strategy of quadrotor, our control system is also divided into a inner-
loop controller which stabilizes attitude of the quadrotor and a outer-loop controller
which steers the quadrotor along the desired trajectory. For the inner-loop controller, an
INDI controller is employed on-board[15].

For outer-loop control, we have two different control strategies for straight parts and
arc parts respectively (Figure 2.19). During the straight part where the drone faces the
gate and the gate is available for visual navigation, a PD controller is used to command a
roll maneuver to steer the drone to align with the center of the gate while the pitch angle
is fixed to a certain degree θ0 and the heading is fixed to the same direction as the gate.

φc =−kp ŷ −kd ˙̂y

θc = θ0

ψc = 0◦
(2.22)

where subscript c means command and position y is defined in local frame whose
origin is fixed at the center of the gate.

At the point the drone flies through the gate, no position measurement is available.
Thus, the outer-loop controller has to be switched to a pure feed-forward controller re-
lying on state prediction to turn a coordinated arc which ends in front of the next gate.
To derive the control law in the arc, we first introduce body fixed earth frame F (Figure
2.20) whose origin OF is at the mass point of the drone, X F is along the heading of the
drone, Z F points to the earth. In other words, the only non-zero Euler angle from E to F
is yaw which is the same with the drone’s yaw angle. To express Newton second law in F
we have

2.4. CONTROL STRATEGY

2

41

Arc parts (feed-forward controller)

Detection

Straight parts (PD controller)

Figure 2.19: Two control strategies used in the experiment. When the drone faces the gates (straight parts), A
PD controller combined with the Kalman filter is used to steer the drone to align with the gate. After passing
through the gate, the drone switches to a feed-forward controller to fly an arc which ends in front of the next
gate.

�

��

��

��

��

��
��

��

��
��

Figure 2.20: Body fixed earth frame F whose origin OF is at the mass point of the drone, X F is along the heading
of the quadrotor, Z F points to the earth. The rotation matrix from E to F is ℜF

E (ψ). The rotation matrix from B

to F is ℜF
B (φ,θ)

∂v

∂t

∣∣∣
F
+Ω×v = F (2.23)

where ∂v
∂t

∣∣∣
F

is the derivative of v in F , F is the force acting on the drone and Ω is

angular velocity of Frame F with respect to earth frame E . During the arc, the drone’s
heading is supposed to be tangent to the arc to maintain a zero sideslip turn, the angular
velocity of F with respect to E should be

Ω=
0

0
ψ̇

=

 0
0

vF
x

r

 (2.24)

To express equation 2.23 in scalar form, we have

2

42
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY
∂vF

x
∂t
∂vF

y

∂t
∂vF

z
∂t

=ℜF
E

0
0
g

+ℜF
B

0
0
T

+
aF

x
aF

y

aF
z

−

 0
0

vF
x

r

×
vF

x
vF

y

vF
z

 (2.25)

where T is the thrust of the drone andaF
x

aF
y

aF
z

=ℜF
B

kx 0 0
0 ky 0
0 0 kz

ℜB
F

vF
x

vF
y

vF
z

 (2.26)

During the arc, we would like to keep the altitude not changed, which in this frame

means at the same height as at the start of the arc. Thus to make
∂vF

z
∂t = 0 in equation

2.25, we can have

T = −g −aF
z

cosθcosφ
(2.27)

In the arc,
∂vF

y

∂t should be enforced to 0, substitute equation 2.27 to the second line of
equation 2.25, we have,

φc = tan−1
(aF

y − vF
x

2

r)cosθ

−g −aF
z

(2.28)

Similar to the straight part, pitch command θc is also fixed to a certain value. To
conclude, during the arc maneuver, the control inputs are

ψc (t) = ∫ t
0

vF
x (t)
r d t

φc (t) = tan−1 (aF
y (t)− vF

x (t)
2

r)cosθc (t)

−g−aF
z (t)

θc (t) = θ0

(2.29)

The flight test result can be found in Figure 2.21. The drone enters the arc at red
points and starts feed-forward control with the control strategy in equation 2.29. In a
feed-forward arc maneuver, θc = −5◦, r = 1.5m and each arc takes around 2s. Before
entering the arc, the drone is steered by the feedback control strategy in equation 2.22.
At the same time, visual navigation is running to estimate the states of the drone which
also tells the drone where to start to turn an arc. Thus in each lap, red points are slightly
different from each other which is caused by filtering error. It could also be seen that
the endpoints (yellow points) of arc maneuver has a distribution with larger variance
compared to that at entry points. It is mainly because that state prediction in principle
is an integration based method, which may be highly affected by the accuracy of initial
states. In table 2.2, it is clear that the error at entry point in the x direction is much less
than the one in the y direction. As a result, the error in the y axis at the endpoints is
larger than that in the x axis. This error can also be caused by model inaccuracy and
the disturbance during the arcs. Thus, the pure feed-forward control strategy is only

2.4. CONTROL STRATEGY

2

43

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

X position [M]

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Y
 p

o
si

tio
n
 [
M

]

Arc accuracy

Optitrack

Arc entry

Arc exit

Figure 2.21: The flight test result of feed-forward control.The start points of the arcs (red points) slightly differ
from each other because of the filter error. The end points of the arcs have a larger variance because the arc
maneuvers are based on state prediction which is affected by model accuracy and initial state estimation.

Table 2.2: Feed-forward control accuracy distribution

Axis Entry speed variance σv Position error variance σx

X 0.0043m/s 0.0296m
Y 0.0106m/s 0.8087m

effective for short time durations. In our case, 2s is enough to steer the drone to the next
gate where visual navigation is available and feedback control strategy can be switched
on again.

After the arc, the drone will detect the gate again and the detection will correct the
filtering error. Thus, there will be a jump in the filtering result (Figure 2.22). For the feed-
back controller, the control target is to steer the drone to y = 0. In fact, this is a simple
step signal tracking or a way-point tracking problem. Simulations are done to check the
feasibility of the proposed controller to steer the drone through the gate. The simplified
drone model is

ẋ = vx

ẏ = vy

v̇y = g tanφ+ky vy

(2.30)

where x and y are the position of the drone and vy is the velocity of the drone in y di-
rection. In this model, we neglect z because in the real-world flight, the altitude is con-
trolled by a separate controller which can keep the altitude to be a constant. vx is the
input of the model because in our real-world experiment setup, θ is set to be a constant
which leads to a constant velocity in x direction. φ is another input of the model. A PD
controller is employed to steer the drone to y = 0 by φ= kv (kp (0− y)− vy), where kp = 1

2

44
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

Filtered position

Ground-truth position

Detection

Figure 2.22: During the arc maneuver, the drone will not detect the gate. Thus, the state estimation is purely
based on the prediction (red arc). However, due to the model inaccuracy and the sensors’ bias, the predicted
trajectory will diverge from the ground-truth trajectory (blue curve). After the turn, the drone will detect the
gate again and the estimated position will jump to the ground-truth position. In fact, although there is a jump
in the state estimation (red curve), the real-world trajectory should be continued (blue curve).

and kv = 2. The simulation result can be found in Figure 2.23

4 2 0 2 4 6
x[m]

3

2

1

0

1

2

3

y[
m

]

(a) vx = 1.5m/s

4 2 0 2 4 6 8
x[m]

3

2

1

0

1

2

3

y[
m

]

(b) vx = 2m/s

Figure 2.23: The simulation result of the drone’s passing through the gate. Whether the drone can pass through
the gate depends on its initial position x0, y0 and its forward speed vx . In each figure, 10000 simulations are
done with different initial points x0 ∈ [−5m,0m], y0 ∈ [−3m,3m]. The area to the left of the black curve is the
set of the points, from which the drone can pass through the gate. Obviously, when the forward speed gets
larger, the feasible initial points become less.

Figure 2.23 is the simulation result with the forward speed vx = 1.5m/s and vx =
2m/s. In each figure, 10,000 trajectories are simulated with their own initial points x0 ∈
[−5m,0m], y0 ∈ [−3m,3m]. The points to the left of the black curves are the initial points
from which the drone can pass through the gates. It can be seen that when the drone’s
speed gets higher, the number of the feasible initial points gets smaller. In other words,
the drone needs more distance to adjust its position to pass through the gate. In our
real-world experiment set up, for example, the forward speed is around 1.5m/s and the
position error in y axis is 0.8m as shown in Table 2.2. The drone needs a margin of 2m in
x direction to steer itself through the gate safely.

2.5. FULL TRACK EXPERIMENT SETUP AND RESULT

2

45

2.5. FULL TRACK EXPERIMENT SETUP AND RESULT

In the previous sections, we have discussed the proposed visual navigation method and
control strategies and the results of the experiments designed to verify our method in
laboratory environment. In this section, we integrate all subsystems and move to a more
challenging and realistic environment, a showroom in the basement of the Faculty of
Aerospace Engineering, TU Delft where many aircraft components are displayed, to test
the performance of our method. In this showroom, we placed five 1m ×1m gates in the
corridor which is surrounded by dense showcases and aircraft components such as air-
craft flaps, rudders, yokes and so on. The five gates are shown in Figure 2.24. Compared
to the IROS 2017 autonomous drone racing, this track has smaller gates, much denser
obstacles and the background of the gates is complex which in all put many challenges
for the drone to fly the whole track fully autonomously.

(a) The first gate of the track (b) The second gate of the track

(c) The third and fourth gate of the track (d) The fifth gate of the track

(e) Onboard snake gate detection (f) Onboard histogram detection

Figure 2.24: Five gates are placed in a dense obstacle track. The gates are placed in narrow corridors and are
surrounded by dense obstacles such as aircraft flaps, rudders and yokes. The first two row images are the
environment around the gates and the last row are the onboard images with detection results.

2

46
2. AUTONOMOUS DRONE RACE: A COMPUTATIONALLY EFFICIENT VISION-BASED

NAVIGATION AND CONTROL STRATEGY

In this track, the drone takes off from ground and flies through the whole track with
θ = −5◦ or θ = −7◦, which lead to the forward speed to be around 1.5m/s and 1.8m/s
respectively, which is faster than the winner in autonomous drone race in 2016 who flew
through 10 gates with 86s [2], whose velocity is around 0.5m/s. The onboard images and
the flight result can be found in Figure 2.24 and Figure 2.25.

Figure 2.25: 3 independent flight trajectories in the basement. It should be noted that these trajectories are the
position estimation result of the flight instead of ground-truth trajectories.

The environment is not equipped with a ground truth position system, therefore only
estimated data is available. However, analyzing the estimated trajectory does give an in-
sight of the flight and estimation performance in general. It can be observed that during
some parts of the track some rapid changes in position occur. These jumps in position
estimate occur once the next gate is first detected after a long period without seeing a
gate. During this period the position estimation only relies on the integration of the drag
based velocity. Errors in this prediction introduce an accumulating drift in the position
estimate, which is corrected when a gate detection is available again. After the correc-
tion, the lateral position controller has enough time to steer the drone through the gate.

During the experiments, although in most cases the drone can pass through the gate,
there are still some failure cases (the drone crashes to the gate). They are caused by non-

2.6. CONCLUSION AND FUTURE WORK

2

47

detection of the gates or very late detection when the drone is already very close to the
gate. In these two scenarios, the drone has to control itself purely based on prediction
or the drone has no time to adjust its position. In our basement experiment, the poor
quality of the onboard images leads to these non-detection problems. In terms of the
open-loop control strategy, with the estimated linear aerodynamic model, we find that
the control performance is very accurate in a short time. For example, after the second
gate, there is a pole that is close to the arc (Figure 2.25), but the drone never crashed into
this pole.

2.6. CONCLUSION AND FUTURE WORK
In this paper, we present a systematic scheme to accomplish the task of autonomous
drone racing, as held by IROS in 2017. In our work, a novel and computationally effi-
cient gate detection method is implemented onboard a Parrot Bebop 1 drone with all
algorithms executed at 20 HZ frequency. With the detected gates, we employ a pose es-
timation scheme combining onboard AHRS estimation, which has higher accuracy than
the commonly used P3P method. Then a more efficient Kalman filter is implemented
onboard which converges faster than a traditional 15-states Kalman filter. In terms of
the control strategy, a prediction-based feed-forward control strategy is used to control
the drone to fly in the short time intervals without position measurements. And finally,
the whole system is tested in a showroom with dense showcases and aircraft compo-
nents. In this flight test, the average speed reached 1.5m/s which is higher than the
speeds exhibited at the autonomous drone races in 2016 and 2017.

There are multiple directions for future work. For instance, the visual process is
essentially based on color detection. Higher robustness in the visual processing may
be reached by employing machine learning methods in computer vision. Also, a PD-
controller is used to steer the drone through the gate, which makes the trajectory sub-
optimal and can on the long term lead to overshoot. This can be improved, e.g., by utiliz-
ing optimal control methods. We hope that such future improvements will allow further
augmenting the flight speed, hopefully approaching human pilot performance.

APPENDEX: EXTENDED KALMAN FILTER
(1) Predict states based on equation 2.19

x̂k|k−1 = x̂k−1 + f(x̂k−1,uk−1)T (2.31)

(2) Linearize and discretize the system

Fk−1 =
∂

∂x
f(x(t),u(t))|x(t)=x̂k−1

Φk|k−1 ≈ I+Fk−1T

Hk = ∂

∂x
h(x(t))|x(t)=x̂k|k−1

(2.32)

(3) Calculate prediction covariance matrix Pk|k−1

Pk|k−1 =Φk|k−1Pk−1Φ
T
k|k−1 +Qk−1 (2.33)

2

48 REFERENCES

where Qk−1 is system noise covariance matrix.
(4) Calculate Kalman gain and update prediction.

δx̂k = Kk
{

Zk −h[x̂k|k−1,k]
}

Kk = Pk|k−1HT
k [Hk Pk|k−1HT

k +Rk]−1

x̂k = x̂k|k−1 +δx̂k

(2.34)

where Rk is sensor noise covariance matrix.

(5) Update the covariance matrix of state estimation error

Pk = (I−Kk Hk)Pk/k−1(I−Kk Hk)T +Kk Rk KT
k (2.35)

REFERENCES
[1] H. Moon, Y. Sun, J. Baltes, and S. J. Kim, The IROS 2016 Competitions [Competi-

tions], IEEE Robotics & Automation Magazine 24, 20 (2017).

[2] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, A direct visual servoing-based frame-
work for the 2016 iros autonomous drone racing challenge, Journal of Field Robotics
35, 146 (2018).

[3] D. Mellinger and V. Kumar, Minimum snap trajectory generation and control for
quadrotors, in 2011 IEEE International Conference on Robotics and Automation
(IEEE, Shanghai, 2011) pp. 2520–2525.

[4] D. Mellinger, N. Michael, and V. Kumar, Trajectory generation and control for pre-
cise aggressive maneuvers with quadrotors, The International Journal of Robotics
Research 31, 664 (2012).

[5] E. Lyu, Y. Lin, W. Liu, and M. Q.-H. Meng, Vision based autonomous gap-flying-
through using the micro unmanned aerial vehicle, in 2015 IEEE 28th Canadian Con-
ference on Electrical and Computer Engineering (CCECE) (IEEE, 2015) pp. 744–749.

[6] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, Estimation, control, and plan-
ning for aggressive flight with a small quadrotor with a single camera and imu, IEEE
Robotics and Automation Letters 2, 404 (2017).

[7] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, Aggressive quadrotor
flight through narrow gaps with onboard sensing and computing using active vision,
in 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2017) pp. 5774–5781.

[8] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermüller, and Y. Aloimonos, Gapflyt: Ac-
tive vision based minimalist structure-less gap detection for quadrotor flight, IEEE
Robotics and Automation Letters 3, 2799 (2018).

[9] G. Li, M. Mueller, V. Casser, N. Smith, D. L. Michels, and B. Ghanem, Teaching
uavs to race with observational imitation learning, arXiv preprint arXiv:1803.01129
(2018).

http://dx.doi.org/10.1109/MRA.2016.2646090
http://dx.doi.org/ 10.1109/ICRA.2011.5980409

REFERENCES

2

49

[10] A. Good, Drone race: Human versus artificial intelligence, https://www.nasa.
gov/feature/jpl/drone-race-human-versus-artificial-intelligence
(2017).

[11] B. Morrell, M. Rigter, G. Merewether, R. Reid, R. Thakker, T. Tzanetos, V. Rajur, and
G. Chamitoff, Differential flatness transformations for aggressive quadrotor flight, in
Robotics and Automation (ICRA), 2018 IEEE International Conference on Robotics
and Automation (IEEE, 2018) pp. 5204–5210.

[12] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza,
Deep drone racing: Learning agile flight in dynamic environments, arXiv preprint
arXiv:1806.08548 (2018).

[13] B. Gati, Open source autopilot for academic research-the paparazzi system, in Amer-
ican Control Conference (ACC), 2013, IEEE (IEEE, Washington, DC, USA, 2013) pp.
1478–1481.

[14] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel, A Complementary Filter for
Attitude Estimation of a Fixed-Wing UAV, (2008) pp. 22–26.

[15] E. J. Smeur, G. C. De Croon, and Q. Chu, Gust disturbance alleviation with incre-
mental nonlinear dynamic inversion, in IEEE International Conference on Intelli-
gent Robots and Systems, Vol. 2016-Novem (2016) pp. 5626–5631.

[16] P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple fea-
tures, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition. CVPR 2001 1, I (2001).

[17] J. Illingworth and J. Kittler, A survey of the hough transform, Computer Vision,
Graphics and Image Processing 44, 87 (1988).

[18] S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detec-
tion with region proposal networks, Nips , 91 (2015).

[19] S. Jung, H. Lee, S. Hwang, and D. H. Shim, Real time embedded system framework for
autonomous drone racing using deep learning techniques, in 2018 AIAA Information
Systems-AIAA Infotech@ Aerospace (2018) p. 2138.

[20] G. De Croon, C. De Wagter, B. Remes, and R. Ruijsink, Sub-sampling: real-time
vision for micro air vehicles, Robotics and Autonomous Systems 60, 167 (2012).

[21] M. Bujnak, Z. Kukelova, and T. Pajdla, A general solution to the p4p problem for
camera with unknown focal length, in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on (IEEE, 2008) pp. 1–8.

[22] M. A. Abidi and T. Chandra, A new efficient and direct solution for pose estimation
using quadrangular targets: Algorithm and evaluation, IEEE transactions on pat-
tern analysis and machine intelligence 17, 534 (1995).

https://www.nasa.gov/feature/jpl/drone-race-human-versus-artificial-intelligence
https://www.nasa.gov/feature/jpl/drone-race-human-versus-artificial-intelligence
http://dx.doi.org/ 10.1109/ACC.2013.6580045
http://dx.doi.org/ 10.1109/ACC.2013.6580045
http://dx.doi.org/ 10.1109/CVPR.2001.990517
http://dx.doi.org/ 10.1109/CVPR.2001.990517
http://dx.doi.org/10.1016/S0734-189X(88)80033-1
http://dx.doi.org/10.1016/S0734-189X(88)80033-1
http://dx.doi.org/ 10.1109/TPAMI.2016.2577031

2

50 REFERENCES

[23] P. Dhane, K. Kutty, and S. Bangadkar, A generic non-linear method for fisheye cor-
rection, International Journal of Computer Applications 51 (2012).

[24] J. Svacha, K. Mohta, and V. Kumar, Improving quadrotor trajectory tracking by com-
pensating for aerodynamic effects, in Unmanned Aircraft Systems (ICUAS), 2017 In-
ternational Conference on (IEEE, 2017) pp. 860–866.

3
IN-FLIGHT MODEL PARAMETER

AND STATE ESTIMATION USING

GRADIENT DESCENT FOR

HIGH-SPEED FLIGHT

This chapter is based on the following article:
Li S, De Wagter C, de Visser CC, Chu QP, de Croon GC. In-flight model parameter and state estima-
tion using gradient descent for high-speed flight. International Journal of Micro Air Vehicles. 2019
Mar;11:1756829319833685.

51

3

52
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

3.1. INTRODUCTION
Quadrotors have received considerable attention in recent years thanks to their mechan-
ical simplicity and good maneuverability combined with hover properties. They have of-
fered new possibilities in a variety of fields like aerial photography, inspection and even
transportation. With recent advances in on-board computation and sensor technology,
aggressive maneuvering has come within reach of many applications. To further stimu-
late aggressive and fast flight, autonomous drone racing is gaining interest. The first ever
autonomous drone race was held by the International Conference on Intelligent Robots
and Systems (IROS) in 2016 [1]. A track consisting of gates had to be flown autonomously
in a pre-specified order. The robot had to achieve this as fast as possible, while only re-
lying on onboard sensors and processing. Figure 3.1 illustrates the setup of the 2016
indoor track.

Figure 3.1: The map of the IROS 2016 drone race. In this drone race, the UAVs have to fly through orange gates
in a pre-specified order as fast as possible.

Autonomous indoor drone racing brings many new challenges to the fields of quadro-
tor navigation and control. One initial challenge is the navigation without any exter-
nal positioning system like Vicon, Optitrack or GPS. Typical approaches to this problem
make use of on-board cameras and use Visual-Inertial Odometry to integrate position.
This type of algorithms rely on integrating inertial information, tracking visual features
over several frames and solving an optimization problem to retrieve the most likely so-
lution. In autonomous drone racing, on top of this position estimation algorithm, gate
detection is often needed when the position of gates is not precisely known, or when
gates contain moving parts—as is the case in the IROS competitions. With the limited
computational resources of small indoor drones, to achieve the fast speeds needed in
drone racing, this paper proposes a navigation solution based solely on gate detection,
augmented with inertial measurements and an aerodynamic model. To cope with the
sometimes sparse and noisy non-Gaussian visual observations, we formulate the navi-
gation solution as an optimization problem. We then solve it using a gradient descent
method. The resulting method provides online estimation of the quadrotor position, ve-
locity and inertial biases using less computational resources than traditional Visual In-
ertial Odometry. The proposed approach also estimates aerodynamic properties of the

3.2. RELATED WORK

3

53

quadcopter—which become increasingly important in the case of fast aggressive control.
Finally, the approach scales favorably with increasing flight speeds as it keeps perform-
ing well even with very few position updates. As a comparison, we use the Kalman filter,
which is currently still the default choice for navigation. Since the Extended Kalman fil-
ter is significantly less computationally complex than the Unscented Kalman filter [2], in
this paper we select the Extended Kalman filter as a benchmark. We compare the results
with Extended Kalman filter, which is shown to be much more sensitive to visual outliers
or other non-Gaussian effects.

In Related work, an overview of studies on aerodynamics modeling and state estima-
tion methods is given. Section Quadrotor model, will describe the quadrotor model pa-
rameters that will be solved. Section State estimation proposes two different approaches
for the the visual state estimation. First a classic 15-state Extended Kalman Filter (EKF) is
developed as benchmark. Then the novel FMINCON-based gradient descent optimiza-
tion method is proposed to solve the model parameters and states. In Section Exper-
iment setup and result, both algorithms are compared on flight test data and Section
Conclusion summarizes the conclusions.

3.2. RELATED WORK
Several researchers have already proposed aerodynamics models for quadrotors [3–7].
The main object of their studies is to derive a nonlinear quadrotor aerodynamics model
to improve the control performance by compensating for the nonlinear terms. In some
studies, a detailed aerodynamic model is analyzed through theory and fitted by experi-
mental data [3]. Simplified aerodynamic models are also established from experiments
[5, 6]. It should be noted that their models are all obtained off-line using external mea-
surements, such as GPS, VICON and thrust test beds. Aerodynamic models can also be
combined with on-board measurements, for instance from computer vision [8], in order
to better estimate the velocity of the drone on-line. In this article, we employ a simplified
aerodynamic model in the trajectory estimation exactly for this purpose.

Quadrotor control heavily relies on attitude estimation from an attitude and heading
reference system (AHRS). This system is typically based on inertial sensors (accelerome-
ters and gyroscopes), but also relies on orientation sensors (magnetometer) and/or po-
sitioning sensors (GPS, Vicon) to estimate inertial sensor biases and compensating for
long term drift. Sensor biases become increasingly important as the drone will have to
fly longer or temporarily perform feedforward control maneuvers in the absence of sen-
sor measurements. Hence, for drone racing, it is important to estimate them accurately.
Here we briefly discuss the sensors and then the filtering employed in estimating both
attitude and position or velocity on MAVs.

Most systems intended for outdoor environments utilize the magnetometer and GPS-
measurements [9–13]. The indoor equivalent is the use of a motion tracking system such
as Vicon or Optitrack [14]. In many applications - like autonomous drone racing, it is
required to have accurate state estimation without the help of external systems. The
necessary position or velocity measurements can be obtained from multiple sensors.
One early option is to use laser scanners [15, 16]. But a laser scanner contains sensitive
optics and mirrors, which are susceptible to shock and vibration problems [17]. An-
other choice for on-board navigation is RGB-D devices [18–20]. The main drawback of

3

54
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

these RGB-D devices is that their maximum depth perception range is limited to a few
meters [21, 22]. This is why light-weight and inexpensive on-board cameras which are
more robust to vibration and shock, have attracted interest of researchers for the navi-
gation of drones. Generally, visual odometry (VO) algorithms [23] using a stereo camera
or monocular camera are used for estimation of the MAV’s translation and rotation be-
tween frames [24–28]. However, generic visual odometry approaches necessitate detect-
ing features, matching corresponding features and estimating motions, which leads to a
heavy demand for on-board computational resources and low-frequency estimation. In
the meantime, aggressive maneuvers may introduce blur into generic visual odometry
and seriously affect the accuracy of estimation. Moreover, in complicated environments
like drone racing, dynamic spectators may also interfere visual odometry. Less generic
but computationally efficient methods are employed in some specific environments, for
instance, using detection of known visual markers to determine position [29, 30]. How-
ever, these methods can not cope with other generic environments.

Concerning filtering, with white-Gaussian position measurement, Kalman filter and
its variants are widely used. It is well-known that nonlinearities in the state update or ob-
servation equations can be handled by an Extended Kalman Filter (EKF) [11, 12, 22, 31]
and that heavy nonlinearities are often handled better by an Unscented Kalman Filter
(UKF) [30, 32, 33]. Also, there are factor graph based smoothing methods which can
handle nonlinearity and allows multi-rate, asynchronous, and possibly delayed mea-
surements, which have similar performance with an EKF [34, 35]. We hypothesize that
when these measurements get sparser, and their noise distribution moves further away
from the Gaussian distribution, it will be better to estimate the attitude, heading, and
trajectory in general as an optimization problem that uses more data at a time. In par-
ticular, we want to optimize the trajectory and parameters such as sensor biases, given
a specified time-window with the corresponding sensor measurements, control inputs,
and knowledge of the aerodynamic model. Our approach will be explained below, start-
ing with our dynamic quadrotor model.

3.3. QUADROTOR MODEL

3.3.1. DYNAMIC MODEL OF QUADROTOR
Before deriving the dynamic model for quadrotor, two reference frames are introduced.
(Figure 3.4)

• Earth frame E . The origin of the local tangent earth frame is on the ground, the
x-axis xE points to north, the y-axis yE points east and the z-axis zE points down.

• Body frame B . The origin of the body frame is at the center of mass. Its x-axis xB

is in the symmetry plane of the drone and points forward. Its z-axis zB also lies in
the symmetry plane and points downward. The y-axis yB is directed to the right,
perpendicular to the symmetry plane.

The relative relation between two frames can be expressed by three successive rota-
tions along three axes. In this paper, we use z− y −x sequence to rotate one frame to the
other. The corresponding angle of rotation is defined by φB

E ,θB
E and ψB

E which are also

3.3. QUADROTOR MODEL

3

55

called Euler angles. Given the Euler angles between the two frames, the rotation matrix
between two frames can be expressed by

ℜB
E =

[CθCψ CθSψ −Sθ
SφSθCψ−CφSψ SφSθSψ+CφCψ SφCθ

CφSθCψ+SφSψ CφSθSψ−SφCψ CφCθ

]
(3.1)

in which CX and SX denote the cosine and sine of X respectively The control of
the quadrotor is often divided in to two loops which can be independently developed;
namely a high level translation loop and a faster low-level attitude loop. For the attitude
loop, the inputs of the system are the four rotor speeds and the output consists of the
three Euler angles. For the translation loop, the inputs of system are three Euler angles
and the output is position. Since quadrotor attitude control is a well developed topic, in
this work we only derive the translational model and have used INDI from [36] as inner-
loop.

According to Newton’s laws of motion, the motion of quadrotor can be described as

mV̇ = mg+F (3.2)

where m is mass of the drone, g is gravity vector and F is the specific force vector. The
change in position can be described by the kinematic equation:

Ẋ = V (3.3)

In equation 3.2, the specific force F can be expressed in Body frame B as

FB =
F B

x
F B

y

F B
z

 (3.4)

Gravity acting on the center of mass and expressed in Earth frame is

mgE = m

0
0
g

 (3.5)

Combining all forces yields the equations of motion in inertial frameẋ
ẏ
ż

=
vx

vy

vz

v̇x

v̇y

v̇z

=
0

0
g

+ℜE
B

aB
x

aB
y

aB
z

(3.6)

where aB
x

aB
y

aB
z

=
F B

x
F B

y

F B
z

/m (3.7)

3

56
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

In the system above, we have six states x = [x, y, z, vx , vy , vz]T and four inputs u = [φ,θ,ψ, aB
z]T.

In equation 3.6, the specific force is a nonlinear function of velocity, attitude, angular
rates and other factors. It can be expressed as F = fa(V,φ,θ,ψ, ...). This system is a multi-
ple input multiple output nonlinear system.

3.3.2. IMU MISALIGNMENT

Figure 3.2: When a quadrotor hovers, usually the average attitude of the quadrotor and reading of the AHRS
are not zero. This is caused by the misalignment of both the IMU and the rotors

Equation 3.6 reveals that rotation matrix ℜB
E is an essential part of the model. How-

ever, in the real world, many aspects can contribute to attitude estimation errors. A first
reason is the misalignment of the IMU (See Figure 3.2). Assembly inaccuracy can cause
the measurements of the IMU to differ from the real states in body frame. Rotor mis-
alignment can also affect the performance of quadrotor. In an ideal quadrotor, the four
rotors should be perpendicular to xB O yB plane. In practice however, due to installation
errors or deformation of rotors or axes, the thrust produced by the rotors is not perfectly
perpendicular to the xB O yB plane.

Both factors lead to non-zero required attitude during hover: φB
E 6= 0◦ and θB

E 6= 0◦.
In order to model this misalignment error, we introduce a new frame. The IMU frame I
is an orthogonal frame whose three axis coincide with three axes of the accelerometers.
The rotation between the IMU frame I and the body frame B can be described by Euler
angles ΦB

I = [φB
I ,θB

I ,ψB
I]T. The rotation matrix between the IMU frame I and the body

frame B is ℜB
I (ΦB

I). Since the IMU frame is physically attached to the body frame, we
have the assumption

φ̇B
I (t) = 0

θ̇B
I (t) = 0

ψ̇B
I (t) = 0

(3.8)

3.3.3. AERODYNAMIC MODEL
There are many factors that can affect the quadrotor’s aerodynamics. Some examples
are the quadrotor’s velocity V, its angle of attack α, the thrust T, the rotor speed ω, the
angular velocity q and so on. Accurate and complete quadrotors models can be com-
plicated and nonlinear [37–40]. Moreover, accurate modeling also requires many more
parameters to be estimated and this leads to heavier computations. In the context of
autonomous drone racing we opted for a faster approach using a minimal model that
covers the most important aerodynamic effects which is a simplified linear drag model,

3.3. QUADROTOR MODEL

3

57

hereby maximizing the yield for a given computational load. In particular, many drag
factors—such as induced drag, translation drag and blade flapping drag—can be approx-
imated as linear functions of body velocity vb

x and vb
y with the assumption that wind is

still and the velocity is below 4m/s [41, 42]. This results in the following simple lumped
parameter model: {

aB
x = Kx vB

x

aB
y = Ky vB

y
(3.9)

where [
vB

x
vB

y

]
=ℜB

E (3;3)

[
vx

vy

]
(3.10)

aB
x ,aB

y are the acceleration caused by drag in the body frame. Kx , Ky are first-order
drag coefficients in body frame coordinates B and have units 1/s.

3.3.4. AHRS BIAS MODEL
When positioning information is available, the mainstream approach for estimating at-
titude is merging information from gyro, accelerometer and the positioning system. For
instance, the classic 15 state Kalman filter uses accelerometer and gyro measurements to
predict states along with GPS measurement updates. It can provide non-biased optimal
attitude by estimating the gyro and accelerometer biases as states.

When no continuous external positioning information is available, like in our exper-
iment, a compromise is to neglect kinematic accelerations in the attitude filter. In this
case, the biases of accelerometers can not be estimated.

In the case of attitude determination with constant sensor biases and small angles,
the Kalman gain in the Kalman filter typically converges to an almost constant value.
To avoid the computational overhead of computing the Kalman gain, complementary
filters can be used with very similar results. The structure of the complementary atti-
tude determination filter implemented in this work can be found in Figure 3.3. In Fig-
ure 3.3, Ωm = [pm , qm ,rm] are the gyro measurements. am = [am

x , am
y , am

z] contains the
accelerometer measurements and

R′ = (1 tanθ sinφ tanθcosφ
0 cosφ −sinφ

0 sinφ
cosθ

cosφ
cosθ

)
(3.11)

𝑘" +
𝑘$
𝑠 𝑹'

1
𝑠

在此处键入公式。𝒈* = 𝑹,*
0
0
−𝑔

在此处键入公式。𝜿 =
𝒈*

𝒈*

𝒂 =
𝒂2
𝒂2 𝒂×𝜿

𝜴𝒎
+

Figure 3.3: Complementary filter for attitude determination.

3

58
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

Figure 3.3 shows that the gyroscopes are integrated and the accelerometer is used
as feedback to determine attitude. The high frequency vibrations and centripetal forces
which are measured by the accelerometers cancel out on the long term when no con-
stant non-zero accelerations are present. On the long term, the resulting attitude esti-
mation therefore converges to:[

φ̂a(t)
θ̂a(t)

]
=

 arctan
−am

x
−am

z

arctan
−cos φ̂a (t)am

x
−am

z

 (3.12)

where am
x , am

y and am
z are measurements of the accelerometer in three axes.

The gyroscopes measure angular velocity in the three axes of the body frame.Because
they are integrated, even small biases cause drift over time, and in this filter the gyro
biases bg = [bp ,bq ,br]T are accounted for by the kI /s term in the filter.

Accelerometers unfortunately also suffer from biases, which is denoted by ba = [bax ,bay ,baz]T ,
for instance caused by temperature changes. Fortunately, the biases of the accelerome-
ters only change slowly. Everything combined, the AHRS has an erroneous representa-
tion of where earth is, which is referred to as coordinate frame E

′
and is shown in Fig-

ure 3.4. The AHRS attitude is then defined as the rotation between E
′

and I and is de-
noted asΦI

E ′ = [φI
E ′ ,θ

I
E ′ ,ψ

I
E ′]

T. The corresponding rotation matrix is written as ℜI
E ′ (Φ

I
E ′).

The rotation between the real earth E and E
′

can be expressed by three Euler angles

ΦE
′

E = [φE
′

E ,θE
′

E ,ψE
′

E]T. Based on the assumption that the AHRS error changes slowly, we
can assume

φ̇E
′

E (t) ≈ 0

θ̇E
′

E (t) ≈ 0

ψ̇E
′

E (t) ≈ 0

(3.13)

With this assumption, on the short term the rotation matrix ℜE
′

E (ΦE
′

E) is a constant
matrix.

Figure 3.4: AHRS estimation errors can be represented by an erroneous Earth reference frame E
′
.

Four reference frames have been introduced, namely E , E
′
, I and B . The rotation

matrix ℜB
E in equation 3.6 can now be expressed as

ℜB
E (ΦB

E) =ℜB
I (ΦB

I)ℜI
E ′ (Φ

I
E ′)ℜE

′
E (ΦE

′
E) (3.14)

3.4. STATE ESTIMATION

3

59

where ℜB
I (ΦB

I) and ℜE
′

E (ΦE
′

E) are constant matrices and ℜI
E ′ (Φ

I
E ′) represents the atti-

tude as determined by the AHRS.

3.3.5. FULL MODEL
Combining equation 3.6, equation 3.9 and equation 3.14 we obtain the full model as

ẋ =

vx

vy

vz0

0

g

+ℜE
B

 0

0

aB
z

+

Kx 0 0

0 Ky 0

0 0 0

ℜB
E

vx

vy

vz

ℜB

E (ΦB
E) =ℜB

I (ΦB
I)ℜI

E ′ (Φ
I
E ′)ℜE

′
E (ΦE

′
E)

ℜE
B =ℜB

E
T

aB
z = am

z −baz

(3.15)

The model in equation 3.15 contains the following parameters, which are assumed
to be constant over short periods of time:

Θ= [Kx ,Ky ,baz ,φE
′

E ,θE
′

E ,ψE
′

E ,φB
I ,θB

I ,ψB
I]T (3.16)

3.4. STATE ESTIMATION
To estimate the states of the model from the Quadrotor model section, two approaches
are derived. As a benchmark, an Extended Kalman filter (EKF) is developed. Secondly, a
novel gradient descent based optimization method to estimate the states is proposed.

3.4.1. VISION-BASED EXTENDED KALMAN FILTER
The attitude determination Kalman filter uses the inertial sensors as inputs to predict
the states of the system, then uses different observations to revise the predictions. When
the system is linear, observable and the noise is white Gaussian, then it can be mathe-
matically proven that the Kalman filter provides the optimal solution. If the system is
nonlinear, it can be linearized at every time step, which is referred to as the Extended
Kalman filter. A classic 15-state EKF is implemented as found in Gross’s work,[43] the
difference being that we use vision measurements instead of GPS as positioning infor-
mation. The following states are used:

X = [x, y, z]T

V = [vx , vy , vz]T

Φ= [φ,θ,ψ]T

ba = [bax ,bay ,baz]T

bg = [bp ,bq ,br]T

(3.17)

3

60
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

with as inputs

Ωm = [pm , qm ,r m]T

am = [am
x , am

y , am
z]T

(3.18)

and as observation

y = h(x) =
x

y
z

 (3.19)

The process equation is

Ẋ = V

V̇ = g+ℜE
B (am +ba)

Φ̇=ℜ′
(Ωm +bg)

ḃa = 0

ḃg = 0

(3.20)

This forms a standard nonlinear system expression

ẋ
′ = f(x

′
,u) (3.21)

where x
′ = [X,V,Φ,ba ,bg]T and

f(x
′
,u) =

V

g+ℜB
E (am +ba)

ℜ′
(Ωm +bg)

0
0

 (3.22)

The Extended Kalman filter follows 5 steps:
(1) Predict the states based on equation 3.20

X̂k|k−1 = X̂k−1 + f(X̂k−1,uk−1)T (3.23)

where T is sampling time.
(2) Linearize and discretize the system

Fk−1 =
∂

∂x
f(x(t),u(t))|x(t)=x̂k−1

Φk|k−1 ≈ I+Fk−1T

Hk = ∂

∂x
h(x(t))|x(t)=x̂k−1

(3.24)

(3) Propagate the covariance matrix Pk|k−1

3.4. STATE ESTIMATION

3

61

Pk|k−1 =Φk|k−1Pk−1Φ
T
k|k−1 +Qk−1 (3.25)

where Qk−1 is system noise covariance matrix.
(4) Calculate the Kalman gain and update the prediction.

δX̂k = Kk
{

Zk −h[X̂k|k−1,k]
}

Kk = Pk|k−1HT
k [Hk Pk|k−1HT

k +Rk]−1

X̂k = X̂k|k−1 +δX̂k

(3.26)

where Rk is sensor noise covariance matrix.

(5) Update the covariance matrix of the state estimation error

Pk = (I−Kk Hk)Pk/k−1(I−Kk Hk)T +Kk Rk KT
k (3.27)

3.4.2. VISION-BASED GRADIENT DESCENT METHOD
According to the gate detection algorithm we used in IROS 2016 autonomous drone
race, the vision-based position used as observation in the Kalman filter (Equation 3.19)
has very non-Gausian noise, which can significantly affect the estimation accuracy of
Kalman filters. The vision measurement model will be discussed later. Therefore the
state prediction is rewritten as a parameter optimization problem in the form of a trajec-
tory matching problem.

Unlike the Kalman filter which estimates continuously varying states like pitch and
roll for any moment in time, the proposed gradient descent using the model from equa-
tion 3.15 in essence estimates corrections on top of attitude estimates provided by an
external complementary attitude filter.

Since most model parameters like drag and AHRS error are integrated twice to arrive
at position, observing the trajectory over a period of time allows for extremely fine ob-
servations of these parameters. For instance, a sub degree attitude error is hard to iden-
tify in noisy raw accelerometer measurements. However integrating the consequence of
this small angle error, which causes a percentage of gravity to be erroneously double-
integrated in the lateral position after several seconds, becomes very easily observable.

The observed trajectory is obtained from the vision pipeline and expressed as a list
of n noisy measurements. The predicted trajectory is based on integrating the model
presented in equation 3.15 using attitude from the AHRS and given a set of model pa-
rameters Θ̂. The resulting trajectory becomes:

F(Θ) =
∫ t

0
f(Θ,u(t), t)d t =

x̂(Θ,u(t), t)
ŷ(Θ,u(t), t)
ẑ(Θ,u(t), t)

v̂x (Θ,u(t), t)
v̂y (Θ,u(t), t)
v̂z (Θ,u(t), t)

 (3.28)

The error between the predicted integrated trajectory and the vision measurements
is found as

3

62
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

1

-2

2

z
[m

]

-1

0

x[m]

1

3
2

2

y[m]

13
0

-1
End

Start

fitted

Opti-track

Figure 3.5: A gradient descent method optimizes a set of parametersΘ to best fit a predicted trajectory through
a measured trajectory (blue). During the fitting phase, the gradient descent method converges to the ground-
truth trajectory.

J (Θ) =
n∑

i=i

∥∥∥∥∥∥
x̂(Θ,u(ti), ti)

ŷ(Θ,u(ti), ti)
ẑ(Θ,u(ti), ti)

−
xm

i
ym

i
zm

i

∥∥∥∥∥∥ (3.29)

where xm
i , ym

i , zm
i are position measurements obtained from onboard computer vi-

sion. Now the state estimation has become a nonlinear parameter optimization problem
that finds a set of optimal parametersΘ? to minimize the value of J (Θ) which can be ex-
pressed as

min
Θ

J (Θ)

s.t . ẋ(t) = f(x(t),u(t))
(3.30)

To solve the problem formulated by equation 3.30, we can apply many types of non-
linear optimization methods to find the optimal parameters Θ?. In this paper, we pro-
pose the gradient descent method, which is iteratively searching for optimal values in
negative gradient direction until it finds the minimum point:

Θk+1 =Θk +α∇J (Θk) (3.31)

where α is learning rate and

∇J (Θk) =
[

∂
∂Θ1

J (Θ) · · · ∂
∂Θn

J (Θ)
]T |Θ=Θk (3.32)

is the gradient of J (Θ).
Figure 3.5 shows an example of the gradient descent approach. The propagation

in time of the model from equation 3.15 for various parameters Θ is compared to the

3.5. EXPERIMENT SETUP AND RESULT

3

63

ground-truth measured by a passive external positioning system. The gradient descent
starts with an initial guess ofΘ0, and gradually gets the predicted trajectory closer to the
real trajectory until an optimal set Θ? is found. In this example, we directly use Opti-
track data as measurements which better illustrate how the predicted trajectories con-
verge to the ground-truth trajectory (measured by Opti-track).

3.5. EXPERIMENT SETUP AND RESULT

3.5.1. EXPERIMENT SETUP
In order to study the performance of state estimation methods, a hippodrome shaped
track is used with end circles with radius of 1.5m and straights of 3m as shown in Fig-
ure 3.6. Onboard flight data is recorded while flying without computer vision but based
on optitrack position. The data is then analyzed in MATLAB. A Bebop 1 (Figure 3.7) from
Parrot is used as experiment platform. It is equipped with three gyros, three accelerom-
eters, one sonar, one barometer, a front camera and a bottom camera. Only the front
camera and IMU are used and the original stock flight-code in the drone is replaced by
open-source software from the Paparazzi-UAV project [44]. The AHRS runs on-board
and consists of the complementary filter discussed in previous section. The flight time
of the test runs is about 100s and the average flight velocity is about 1.8m/s, resulting in
about 15 circles of the hippodrome. An overview of data gathered is presented in Table
3.1.

Figure 3.6: The top view of the experiment track.

During the IROS 2016 autonomous drone race, we used the bebop 1 onboard camera
to detect the gates and provide the position measurements for navigation. In this work,
however, noisy vision measurements are generated simulating on-board vision-based
gate detections with various levels of accuracy. Along the straight part trajectory, n ran-
dom points Pi are randomly sampled (15 < n < 20, i ∈ [1,n]). For each sampled point Pi ,
we calculate the distance between Pi and the gate which is denoted by x̂i −xg . Then, the
noise ∆Pi is generated depending on the distance to the gate that ∆Pi is larger when the
gate is further away. Finally, ∆Pi is added to Pi to get the simulated measurements Pv

i .

3

64
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

Figure 3.7: The Parrot Bebop 1 hardware is used as experiment platform. All flight code is replaced with open-
source Paparazzi-UAV flight code.

Table 3.1: Data gathered during the experiment

Parameter Symbol Frequency (Hz) Source
acceleration âm 512 IMU
angular velocity p̂m 512 IMU
attitude Φ̂m 512 AHRS
position x̂m 120 Opti-track
velocity v̂m 120 Opti-track
altitude zm 512 sonar

This process can be described by equation 4.34

Pv
i = Pm

i +∆Pi

∆Pi ∼ N(0,Si)

Si =
σ2

i 0 0
0 σ2

i 0
0 0 σ2

i

σi = 0.1(x̂i −xg)

(3.33)

The test flights consist of two distinct phases which are shown in Figure 3.6.

• During the straight part (blue line), the gates are in the field of view of the quadro-
tor and vision-based position measurements are available. The vision-based EKF
can run both prediction and update loops. The vision-based gradient descent
method searches for parametersΘ that make the prediction best fit the noisy mea-
surements.

• During the arc (purple line), no position measurements are available but an open-
loop coordinated turn is performed. The vision-based EKF can only rely on model

3.5. EXPERIMENT SETUP AND RESULT

3

65

x
 [
m

]

3.5

3

2

1.5

1

0

y [m]
32.5

2.5

0.5

Opti-track trajectory

vision measurement

Figure 3.8: Based on the vision measurement model (equation 4.34), simulated vision measurement points
(red) are generated around the real trajectory (blue). During the autonomous drone race, only the visual mea-
surement points are available.

prediction and the gradient descent method uses the last estimated parameters
and on-board inertial data to propagate the states of the quadrotor. This phase
must be limited in time as the open-loop integration is diverging as can be seen in
Figure 3.9.

The test track is designed to resemble an autonomous drone race track, where it is
not possible to keep gates in sight at all times. When using fast gate detection as sole
means of position information, some maneuvers need to be performed open-loop. But
even when gates are in-sight, better model prediction allows the estimation of more ac-
curate trajectories through the noisy visual data. Therefore, as a performance index we
selected the prediction error ∆ f at the final point of the open-loop arc to evaluate the
performance of both algorithms.

∆ f =
∥∥∥∥[

x f

y f

]
−

[
x̂ f

ŷ f

]∥∥∥∥ (3.34)

where x f and y f , which are from Opti-track, form the ground truth of the end point
of the arc, while x̂ f and ŷ f are the filter prediction of the end point.

3.5.2. ANALYSIS OF VISION-BASED GRADIENT DESCENT METHOD (VGD)
In this section, we use the on-board flight data and generated vision measurements to
analyze the Vision-based gradient descent method (VGD) using a MATLAB implemen-
tation of gradient descent, FMINCON.

The performance of the gradient descent method is affected by the size of the train-
ing data. It is important to investigate how the size of the dataset used to search for Θ?

affects the estimation performance. We use the notation γ (1 É γ É 5) to represent the
size of the history used by FMINCON. In other words, γ is the number of straight lines
whose corresponding vision measurement is used by FMINCON. Too short γ will con-
tain very few visual measurements and the approach is at risk of over-fitting the gate

3

66
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

x
 [

m
]

00.511.522.53

y [m]

Opti-track trajectory

estimated trajectory

Figure 3.9: When vision measurements are not available, the quadrotor can only rely on model predictions
based on model information and inertial data. This prediction will diverge in time. The better the model
prediction is, the smaller the end point prediction error ∆ f becomes.

𝛾 = 2 𝜏 = 3

𝜏 = 2𝛾 = 2

∆'(
(

∆'(
)

𝑡

𝑥

Straight trajectory

Arc trajectory

Vision measurement

Estimated trajectory

1

2

3

1
2 3

4

Figure 3.10: Example test flight data showing the x position in function of time and illustrating the prediction
strategy when γ= 2. First, the data of straight lines 1 and 2 is used to estimate Θ?. Then the identified model
parameters are used to predict the second turn. Finally, the final point error after the second arc 2

2∆ f is cal-
culated. Here, subscript 2 means the data from 2 straight lines is used and superscript 2 means second arc’s
trajectory prediction is used. This procedure is repeated by using data of straight lines 2 and 3 and predicting
the trajectory of third arc and so forth.

detection noise. Too long γ will violate the constant parameter constraint like for in-
stance equation 3.13. Figure 3.10 shows an example where γ = 2. For each step, we use
an array of flight data and vision measurements of size γ in FMINCON to search for Θ?.
Then,Θ? is used to estimate the trajectory of next arc, which is given by id τ (1 É τÉ 15).
Finally the final point error τγ∆ f can be calculated using equation 3.34:

τ
γ∆ f =

∥∥∥∥[
x f

y f

]
−

[
x̂ f

ŷ f

]∥∥∥∥ (3.35)

The stopping criteria used in the FMINCON optimization is:

‖J (Θk)− J (Θk−1)‖
‖J (Θk)‖ É 10−4 (3.36)

3.5. EXPERIMENT SETUP AND RESULT

3

67

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Final point error τγ∆ f in function of γ for various
parts of the run τ

1 2 3 4 5

5

10

15

20

25

30

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

(b) Number of FMINCON iterations based on
stopping criteria (equation 3.36) in function of γ
for various parts of the run τ

Figure 3.11: Influence of the history length γ on the prediction accuracy τ
γ∆ f and required number of itera-

tions.

With different combinations of τ and γ, a set of 70 τ
γ∆ f is gathered. The prediction

accuracy results, τγ∆ f , and the number of iterations based on the stopping criteria from
equation 3.36 are shown in Figure 3.11.

Figure 3.11 (a) shows the prediction accuracy τ
γ∆ f as a function of the history length

γ. Each gray dot represents an individual arc estimation τ on another part of the data
while the blue dots give the average for a given γ. Similarly, in Figure 3.11 (b) the re-
quired number of iterations based on the stopping criteria is shown. The figures show
that the prediction error τγ∆ f keeps decreasing up to γ= 4. This means that fitting more
than one straight part helps improving the accuracy of state estimation. Figure 3.11 (b)
shows that the average number of iterations is about 19 and the maximum is only 25,
which means this vision-based gradient descent method quickly converges and is not
very computationally expensive.

3.5.3. COMPARISON BETWEEN VISION-BASED EKF (VEKF), VISION-BASED

GRADIENT DESCENT METHOD (VGD) AND VISION-BASED GRADIENT

DESCENT METHOD WITH KINEMATIC MODEL(VGD-KINEMATIC)
In this section, in order to show the different performance of the gradient descent be-
tween the kinematic model and model from equation 3.15, we introduce a new method
called Vision-based gradient descent method with kinematic model (VGD-kinematic).
This method has the same principle as VGD except that it is using a kinematic model
3.37 as prediction model.

Ẋ = V

V̇ = g+ℜE
B (am +ba)

Φ̇=ℜ′
(Ωm +bg)

(3.37)

3

68
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

In this case, the parameters to be estimated are the bias of accelerometers and gyros,
which can be written as

Θ= [bax ,bay ,baz ,bp ,bq ,br]T (3.38)

To compare the performance of the of three methods, all three methods are tested
using the same on-board data and the same generated vision measurements. In both
VGD and VGD-kinematic, γ was set to 3, which means that the flight data of the last 3
straights is used in the estimation of Θ?. Note that during the first two arcs of the flight,
there is not yet enough flight data, and γ will be smaller than 3.

The resulting full flight is shown in Figure 3.13. In Figure 3.13, the orange dots are
the generated vision measurements from the straight parts of the track. The magenta
curve is the estimation result of the VEKF. In the VEKF, R = di ag ([2.52,2.52,2.52]),Q =
di ag ([(2e−6,2e−6,5e−6,e−5,5e−6,3e−5,3e−8,3e−9,3e−9,0,0,0,0,0,0]) and P0 = 10×
I15×15. The blue curve is the estimation result of the VGD and the red curve is the result of
VGD-kinematic. To test the sensitivity of the VGD and the VGD-kinematic algorithm, the
initial parameters Θ0 are selected randomly within some ranges which can be found in
Table 3.2. It can be seen that while the VEKF clearly converges to the measurements. The
long prediction horizon combined with few and noisy measurement updates challenges
the filter to its limit. On the other hand, the VGD managed to find parameters that fit
the model very well through the noisy measurements and is not sensitive to the initial
parameters. Even large measurement noise does not affect the prediction too much as
the dynamics of the quadrotor can not explain them.

Table 3.2: The range ofΘ0 in VGD and VGD-kinematic

Θ0 Range Θ0 Range
K 0∗ [−1,0] φ∗∗0 [−3◦,3◦]
b0

a [−1m/s2,1m/s2] θ∗∗0 [−3◦,3◦]
b0

g [−3◦/s,3◦/s] ψ∗∗0 [−3◦,3◦]

The final point prediction error τγ∆ f after each turn of the three algorithms is shown

in Figure 3.12. The VEKF requires several laps (3th arc, or about 20s of flight) to converge
to sub-meter prediction accuracy. During the rest of the flight, the EKF can predict the
180 degree turns with a final point prediction error of around 0.5m. The VGD-kinematic
uses the derived kinematic model as prediction model and utilizes multiple vision mea-
surements for parameter estimation. It has similar performance when compared with
the VEKF. Overall, the VGD, which uses the same measurements as the VGD-kinematic
but performs a bias and aerodynamics model estimation, is shown to find the best esti-
mates of all parameters. It even find good model parameters for the first arc, using only
1 straight line’s flight data. During the whole flight, τγ∆ f of the VGD is kept around 0.2m.

3.6. CONCLUSION

3

69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arc number

0

1

2

3

4

5

6

7

EKF

VGD

VGD-kinematic

Figure 3.12: The final point error τγ∆ f when using the VEKF, VGD and VGD-kinematic. The VGD has the most

stable performance and least τγ∆ f compared to the EKF and VGD-kinematic

3.6. CONCLUSION
Accurate state and parameter estimation is essential for quadrotor control, especially
when they perform aggressive maneuver. However, in the environment where only sparse
and noisy position measurements are available, a classic Kalman filter can struggle to
provide accurate state and model parameter estimation results. In this paper, we pre-
sented a novel method that only uses sparse vision measurements to estimate the AHRS
error and select aerodynamic parameters of the quadrotor using a gradient descent method.
The experiment result shows that our vision-based gradient descent method could in-
crease the accuracy of state estimation when compared to a classic Kalman filter in en-
vironments where only sparse noisy position measurements are available.

3

70
3. IN-FLIGHT MODEL PARAMETER AND STATE ESTIMATION USING GRADIENT DESCENT

FOR HIGH-SPEED FLIGHT

(a) Position estimation

(b) Velocity estimation

20 30 40 50 60 70 80 90 100

-0.4

-0.2

0

0.2

20 30 40 50 60 70 80 90 100

-0.2

0

0.2

0.4

20 30 40 50 60 70 80 90 100

time [s]

-0.2

-0.1

0

0.1

(c) Estimation of accelerometer bias

20 30 40 50 60 70 80 90 100

-0.2

0

0.2

20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

20 30 40 50 60 70 80 90 100

time [s]

-0.4

-0.2

0

0.2

(d) Estimation of gyro bias

Figure 3.13: Comparison of the position and velocity estimation results of the EKF and the FMINCON based
gradient descent method using inertial sensors and discrete low frequency noise vision based position mea-
surements from gate detections.

REFERENCES

3

71

REFERENCES
[1] H. Moon, Y. Sun, J. Baltes, and S. J. Kim, The IROS 2016 Competitions [Competi-

tions], IEEE Robotics & Automation Magazine 24, 20 (2017).

[2] J. N. Gross, Y. Gu, M. B. Rhudy, S. Gururajan, and M. R. Napolitano, Flight-test
evaluation of sensor fusion algorithms for attitude estimation, IEEE Transactions on
Aerospace and Electronic Systems 48, 2128 (2012).

[3] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, Quadrotor Helicopter Flight
Dynamics and Control: Theory and Experiment, in AIAA Guidance, Navigation and
Control Conference and Exhibit (American Institute of Aeronautics and Astronau-
tics, Reston, Virigina, 2007).

[4] Haomiao Huang, G. Hoffmann, S. Waslander, and C. Tomlin, Aerodynamics and
control of autonomous quadrotor helicopters in aggressive maneuvering, in 2009
IEEE International Conference on Robotics and Automation (IEEE, 2009) pp. 3277–
3282.

[5] M. Bangura and R. Mahony, Nonlinear Dynamic Modeling for High Performance
Control of a Quadrotor, in Proceedings Australasian Conference on Robotics and Au-
tomation (2012).

[6] J. Svacha, K. Mohta, and V. Kumar, Improving quadrotor trajectory tracking by com-
pensating for aerodynamic effects, in 2017 International Conference on Unmanned
Aircraft Systems (ICUAS) (IEEE, 2017) pp. 860–866.

[7] J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel, Nonlinear feedback control of
Quadrotors exploiting First-Order Drag Effects, in IFAC World Congress (Toulouse,
France, 2017) in IFAC world congress, Toulouse 2017.

[8] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, The navigation and control tech-
nology inside the ar. drone micro uav, IFAC Proceedings Volumes 44, 1477 (2011).

[9] C.-S. Y. C.-S. Yoo and I.-K. A. I.-K. Ahn, Low cost gps/ins sensor fusion system for uav
navigation, in Digital Avionics Systems Conference, 2003. DASC’03. The 22nd, Vol. 2
(IEEE, 2003) pp. 8–A.

[10] A. K. Brown, Gps/ins uses low-cost mems imu, IEEE Aerospace and Electronic Sys-
tems Magazine 20, 3 (2005).

[11] E. Shi, An improved real-time adaptive kalman filter for low-cost integrated gps/ins
navigation, in Measurement, Information and Control (MIC), 2012 International
Conference on, Vol. 2 (IEEE, 2012) pp. 1093–1098.

[12] H. Lopes, E. v. Kampen, and Q. Chu, Attitude determination of highly dynamic
fixed-wing uavs with gps/mems-ahrs integration, in AIAA Guidance, Navigation,
and Control Conference (2012) p. 4460.

http://dx.doi.org/10.1109/MRA.2016.2646090

3

72 REFERENCES

[13] D. B. Kingston and R. W. Beard, Real-time attitude and position estimation for small
uavs using low-cost sensors, in AIAA 3rd unmanned unlimited technical conference,
Workshop and exhibit (sn, 2004) pp. 2004–6488.

[14] D. Mellinger and V. Kumar, Minimum snap trajectory generation and control for
quadrotors, in Robotics and Automation (ICRA), 2011 IEEE International Conference
on (IEEE, 2011) pp. 2520–2525.

[15] A. Bry, C. Richter, A. Bachrach, and N. Roy, Aggressive flight of fixed-wing and
quadrotor aircraft in dense indoor environments, The International Journal of
Robotics Research 34, 969 (2015).

[16] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess,
M. Suppa, and D. Burschka, Toward a fully autonomous UAV: Research platform
for indoor and outdoor urban search and rescue, IEEE Robotics and Automation
Magazine 19, 46 (2012).

[17] S. Hrabar, An evaluation of stereo and laser-based range sensing for rotorcraft un-
manned aerial vehicle obstacle avoidance, Journal of Field Robotics 29, 215 (2012),
arXiv:10.1.1.91.5767 .

[18] R. G. Valenti, I. Dryanovski, C. Jaramillo, D. P. Ström, and J. Xiao, Autonomous
quadrotor flight using onboard rgb-d visual odometry, in Robotics and Automation
(ICRA), 2014 IEEE International Conference on (IEEE, 2014) pp. 5233–5238.

[19] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin, D. Maturana,
D. Fox, and N. Roy, Estimation, planning, and mapping for autonomous flight us-
ing an RGB-D camera in GPS-denied environments, The International Journal of
Robotics Research 31, 1320 (2012).

[20] C. Sampedro, H. Bavle, A. Rodríguez-Ramos, A. Carrio, R. A. S. Fernández, J. L.
Sanchez-Lopez, and P. Campoy, A fully-autonomous aerial robotic solution for the
2016 international micro air vehicle competition, in Unmanned Aircraft Systems
(ICUAS), 2017 International Conference on (IEEE, 2017) pp. 989–998.

[21] C. Mostegel, A. Wendel, and H. Bischof, Active monocular localization: Towards
autonomous monocular exploration for multirotor MAVs, in 2014 IEEE International
Conference on Robotics and Automation (ICRA) (IEEE, 2014) pp. 3848–3855.

[22] S. Huh, D. H. Shim, and J. Kim, Integrated navigation system using camera and gim-
baled laser scanner for indoor and outdoor autonomous flight of uavs, in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on (IEEE, 2013)
pp. 3158–3163.

[23] D. Nistér, O. Naroditsky, and J. Bergen, Visual odometry, in Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Soci-
ety Conference on, Vol. 1 (Ieee, 2004) pp. I–I.

http://dx.doi.org/ 10.1109/MRA.2012.2206473
http://dx.doi.org/ 10.1109/MRA.2012.2206473
http://dx.doi.org/10.1002/rob.21404
http://arxiv.org/abs/10.1.1.91.5767

REFERENCES

3

73

[24] F. Andert, N. Ammann, J. Puschel, and J. Dittrich, On the safe navigation problem
for unmanned aircraft: Visual odometry and alignment optimizations for uav posi-
tioning, in Unmanned Aircraft Systems (ICUAS), 2014 International Conference on
(IEEE, 2014) pp. 734–743.

[25] R. Strydom, S. Thurrowgood, and M. V. Srinivasan, Visual odometry: autonomous
uav navigation using optic flow and stereo, in Australasian Conference on Robotics
and Automation (ACRA) (Australian Robotics and Automation Association, 2014)
pp. 1–10.

[26] I. F. Mondragón, M. A. Olivares-Méndez, P. Campoy, C. Martínez, L. Mejias, I. F.
Mondragón, M. A. Olivares-Méndez, P. Campoy, ·. C. Martínez, and L. Mejias, Un-
manned aerial vehicles UAVs attitude, height, motion estimation and control using
visual systems, Auton Robot 29, 17 (2010).

[27] L. Rodolfo García Carrillo, A. Enrique Dzul López, R. Lozano, C. Pégard, L. R. Gar-
cía Carrillo, R. Lozano, and A. E. Dzul López, Combining Stereo Vision and Inertial
Navigation System for a Quad-Rotor UAV, J Intell Robot Syst 65, 373 (2012).

[28] J. Martínez-Carranza and A. Calway, Efficient visual odometry using a structure-
driven temporal map, in Robotics and Automation (ICRA), 2012 IEEE International
Conference on (IEEE, 2012) pp. 5210–5215.

[29] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, Aggressive quadrotor
flight through narrow gaps with onboard sensing and computing using active vision,
in Robotics and Automation (ICRA), 2017 IEEE International Conference on (IEEE,
2017) pp. 5774–5781.

[30] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, Estimation, control, and plan-
ning for aggressive flight with a small quadrotor with a single camera and imu, IEEE
Robotics and Automation Letters 2, 404 (2017).

[31] J. S. Jang and D. Liccardo, Small uav automation using mems, IEEE Aerospace and
Electronic Systems Magazine 22, 30 (2007).

[32] J. L. Crassidis, Sigma-point kalman filtering for integrated gps and inertial naviga-
tion, IEEE Transactions on Aerospace and Electronic Systems 42, 750 (2006).

[33] P. Zhang, J. Gu, E. E. Milios, and P. Huynh, Navigation with imu/gps/digital compass
with unscented kalman filter, in Mechatronics and Automation, 2005 IEEE Interna-
tional Conference, Vol. 3 (IEEE, 2005) pp. 1497–1502.

[34] S. Lange, N. Sünderhauf, and P. Protzel, Incremental smoothing vs. filtering for sen-
sor fusion on an indoor uav, in Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on (IEEE, 2013) pp. 1773–1778.

[35] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, Factor graph based incremen-
tal smoothing in inertial navigation systems, in Information Fusion (FUSION), 2012
15th International Conference on (IEEE, 2012) pp. 2154–2161.

http://dx.doi.org/10.1007/s10514-010-9183-2
http://dx.doi.org/10.1007/s10846-011-9571-7

3

74 REFERENCES

[36] E. J. Smeur, Q. Chu, and G. C. de Croon, Adaptive incremental nonlinear dynamic
inversion for attitude control of micro air vehicles, Journal of Guidance, Control, and
Dynamics (2015).

[37] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, Quadrotor helicopter
flight dynamics and control: Theory and experiment, in Proc. of the AIAA Guidance,
Navigation, and Control Conference, Vol. 2 (2007) p. 4.

[38] M. Bangura, R. Mahony, et al., Nonlinear dynamic modeling for high performance
control of a quadrotor, in Australasian conference on robotics and automation (2012)
pp. 1–10.

[39] S. Sun, C. C. de Visser, and Q. Chu, Quadrotor gray-box model identification from
high-speed flight data, Journal of Aircraft 56, 645 (2019).

[40] S. Sun and C. de Visser, Aerodynamic model identification of a quadrotor subjected
to rotor failures in the high-speed flight regime, IEEE Robotics and Automation Let-
ters 4, 3868 (2019).

[41] J. Svacha, K. Mohta, and V. Kumar, Improving quadrotor trajectory tracking by com-
pensating for aerodynamic effects, in Unmanned Aircraft Systems (ICUAS), 2017 In-
ternational Conference on (IEEE, 2017) pp. 860–866.

[42] M. Faessler, A. Franchi, and D. Scaramuzza, Differential flatness of quadrotor dy-
namics subject to rotor drag for accurate tracking of high-speed trajectories, IEEE
Robotics and Automation Letters 3, 620 (2017).

[43] J. N. Gross, Y. Gu, M. B. Rhudy, S. Gururajan, and M. R. Napolitano, Flight-test
evaluation of sensor fusion algorithms for attitude estimation, IEEE Transactions on
Aerospace and Electronic Systems 48, 2128 (2012).

[44] B. Gati, Open source autopilot for academic research-the paparazzi system, in Amer-
ican Control Conference (ACC), 2013, IEEE (IEEE, Washington, DC, USA, 2013) pp.
1478–1481.

http://dx.doi.org/ 10.1109/TAES.2012.6237583
http://dx.doi.org/ 10.1109/TAES.2012.6237583
http://dx.doi.org/ 10.1109/ACC.2013.6580045
http://dx.doi.org/ 10.1109/ACC.2013.6580045

4
VISUAL MODEL-PREDICTIVE

LOCALIZATION FOR

COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A

72-GRAM DRONE

This chapter is based on the following article:
Li S, van der Horst E, Duernay P, De Wagter C, de Croon GC. Visual model-predictive localization for compu-
tationally efficient autonomous racing of a 72-g drone. Journal of Field Robotics. 2020 Jun 1.

75

4

76
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

4.1. INTRODUCTION
Drones, especially quadrotors, are transformed by enthusiasts in spectacular racing plat-
forms. After years of development, drone racing has become a major e-sports, where the
racers fly their drones in a preset course at high speed. It was reported that an experi-
enced first person view (FPV) racer can achieve speeds up to 190km/h when sufficient
space is available. The quadrotor itself uses an inertial measurement unit (IMU) to de-
termine its attitude and rotation rates, allowing it to execute the human’s steering com-
mands. The human mostly looks at the images and provides the appropriate steering
commands to fly through the track as fast as possible. The advance in research areas
such as computer vision, artificial intelligence and control raises the question: would
drones not be able to fly faster than human pilots if they flew completely by themselves?
Until now, this is an open question. In 2016, the world’s first autonomous drone race
was held at IROS 2016 [1], which became an annual event trying to answer this question
(Figure 4.1).

We focus on developing computationally efficient algorithms and extremely light
weight autonomous racing drones that have the same or even better performance than
currently existing larger drones. We believe that these drones may be able to fly faster,
as the gates will be relatively larger for them. Moreover, a cheap, light-weight solution
to drone racing would allow many people to use autonomous drones for training their
racing skills. When the autonomous racing drone becomes small enough, people may
even practice with such drones in their own home.

(a) IROS 2016 drone race track (b) IROS 2017 drone race track (c) IROS 2018 drone race track

Figure 4.1: The IROS autonomous drone race track over the years 2016 - 2018 (a-c). The rules have always been
the same. Flight is to be fully autonomous, so there can be no human intervention. The drone that passes
through most subsequent gates in the track wins the race. When the number of passed gates is the same, or
the track is fully completed, the fastest drone wins the race.

Autonomous drone racing is indebted to earlier work on agile flight. Initially, quadro-
tors made agile maneuvers with the help of external motion capture systems [2, 3]. The
most impressive feats involved passing at high speeds through gaps and circles. More re-
cently, various researchers have focused on bringing the necessary state estimation for
these maneuvers onboard. Loianno et al. plan an optimal trajectory through a narrow
gap with difficult angles while using Visual Inertial Odometry (VIO) for navigation [4].
The average maximum speed of their drone can achieve 4.5m/s. However, the position
of the gap is known accurately a priori, so no gap detection module is included in their
research. Falanga et al. have their research on flying a drone through a gap aggressively
by detecting the gap with fully onboard resources [5]. They fuse the pose estimation

4.1. INTRODUCTION

4

77

from the detected gap and onboard sensors to estimate the state. In their experiment,
the platform with a forward-facing fish-eye camera can fly through the gap with 3m/s.
Sanket et al. develop a solution for a drone to fly through arbitrarily shaped gaps without
building an explicit 3D model of a scene, using only a monocular camera [6].

Drone racing represents a larger, even more challenging problem than performing
short agile flight maneuvers. The reasons for this are that: (1) all sensing and computing
has to happen on board, (2) passing one gate is not enough. Drone races can contain
complex trajectories through many gates, requiring good estimation and (optimal) con-
trol also on the longer term, and (3) depending on the race, gate positions can change,
other obstacles than gates can be present, and the environment is much less controlled
than an indoor motion tracking arena.

One category of strategies for autonomous drone racing is to have an accurate map
of the track, where the gates have to be in the same place. One of the participants of the
IROS 2017 autonomous drone race, the Robotics and Perception Group, reached gate
8 in 35s. In their approach, waypoints were set using the pre-defined map and VIO was
used for navigation. A depth sensor was used for aligning the track reference system with
the odometry reference system. NASA’s JPL lab report in their research results that their
drone can finish their race track in a similar amount of time as a professional pilot. In
their research, a visual-inertial localization and mapping system is used for navigation
and an aggressive trajectory connecting waypoints is generated to finish the track [7].
Gao et al. come up with a teach-and-repeat solution for drone racing [8]. In the teach-
ing phase, the surrounding environment is reconstructed and a flight corridor is found.
Then, the trajectory can be optimized within the corridor and be tracked during the re-
peating phase. In their research, VIO is employed for pose estimation and the speed can
reach 3m/s. However, this approach is sensitive to changing environments. When the
position of the gate is changed, the drone has to learn the environment again.

The other category of strategies for autonomous drone race employs coarser maps
and is more oriented on gate detection. This category is more robust to displacements
of gates. The winner of IROS 2016 autonomous drone race, Unmanned Systems Research
Group, uses a stereo camera for detecting the gates [9]. When the gate is detected, a way-
point will be placed in the center of the gate and a velocity command is generated to steer
the drone to be aligned with the gate. The winner of the IROS 2017 autonomous drone
race, the INAOE team, uses metric monocular SLAM for navigation. In their approach,
the relative waypoints are set and the detection of the gates is used to correct the drift of
the drone [10]. Li et al. combine gate detection with onboard IMU readings and a sim-
plified drag model for navigation [11]. With their approach, a Parrot Bebop 1 (420g) can
use its native onboard camera and processor to fly through 15 gates with 1.5m/s along a
narrow track in a basement full of exhibits. Kaufmann et al. use a trained CNN to map
the input images to the desired waypoint and the desired speed to approach it [12]. With
the generated waypoint, a trajectory through the gate can be determined and executed
while VIO is used for navigation. The winner of the IROS 2018 autonomous drone race,
the Robotics and Perception Group, finished the track with 2m/s [13]. During the flight,
the relative position of the gates and a corresponding uncertainty measure are predicted
by a Convolutional Neural Network (CNN). With the estimated position of the gate, the
waypoints are generated, and a model predictive controller (MPC) is used to control the

4

78
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

drone to fly through the waypoints while VIO is used for navigation.
From the research mentioned above, it can be seen that many of the strategies for au-

tonomous drone racing are based on generic, but computationally relatively expensive
navigation methods such as VIO or SLAM. These methods require heavier and more ex-
pensive processors and sensors, which leads to heavier and more expensive drone plat-
forms. Forgoing these methods could lead to a considerable gain in computational ef-
fort, but raises the challenge of still obtaining fast and robust flight.

In this paper, we present a solution to this challenge. In particular, we propose a Vi-
sual Model-predictive Localization (VML) approach to autonomous drone racing. The
approach does not use generic vision methods such as VIO and SLAM and is still robust
to gate changes, while reaching speeds competitive to the currently fastest autonomous
racing drones. The main idea is to rely as much as possible on a predictive model of the
drone dynamics, while correcting the model and localizing the drone visually based on
the detected gates and their supposed positions in the global map. To demonstrate the
efficiency of our approach, we implement the proposed algorithms on a cheap, com-
mercially available smart-camera called “Jevois” and mount it on the “Trashcan” racing
drone. The modified Trashcan weighs only 72g and is able to fly the race track with the
speed up to 2.6m/s. The vision-based navigation and high-level controller run on the
Jevois camera while the low-level controller provided by the open source Paparazzi au-
topilot [14, 15] runs on the Trashcan. To the best of our knowledge, the presented drone
is the smallest and one of the fastest autonomous racing drone in the world. Figure 4.2
shows the weight and the speed of our drone in comparison to the drones of the winners
of the IROS autonomous drone races.

0

0.5

1

1.5

2

2.5

ve
lo

ci
ty

 [m
/s

]

2600g

120g

480g

60g

950g

76g 72g 17g

0.6m/s
0.7m/s

2.0m/s 2.0m/s

winn
er

 o
f 2

01
6

Opt
ica

l fl
ow

Gat
e

de
te

cti
on

winn
er

 o
f 2

01
7

SLA
M

Gat
e

de
te

cti
on

winn
er

 o
f 2

01
8

VIO
CNN

ou
r a

pp
ro

ac
h

VM
L

Gat
e

de
te

cti
on

0

500

1000

1500

2000

2500

3000

w
ei

gh
t [

g]

Take off weight
Core processor weight
Average speed

Figure 4.2: The weight and the speed of the approach proposed in this article and the winners’ of IROS au-
tonomous drone race. All weights are either directly from the articles or estimated from online specs of the
used processors.

4.2. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

4

79

4.2. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

4.2.1. PROBLEM FORMULATION
In this work, we will develop a hardware and a software system that the flying platform
can fly through a drone race track fully autonomously with high speed using only on-
board resources. The racing track setup can be changed and the system should be adap-
tive to this change autonomously.

For visual navigation, instead of using SLAM or VIO, we directly use a computation-
ally efficient vision algorithm for the detection of the racing gate to provide the position
information. However, implementing such a vision algorithm on low-grade vision and
processing hardware results in low frequency, noisy detections with occasional outliers.
Thus, a filter should be employed to still provide high frequency and accurate state esti-
mation. In Section 4.3, we first briefly introduce the ’Snake Gate Detection’ method and
a pose estimation method used to provide position measurements. Then, we propose
and analyze the novel visual model-predictive localization technique that estimates the
drone’s states within a time window. It fuses the low-frequency onboard gate detections
and high-frequency onboard sensor readings to estimate the position and the velocity of
the drone. The control strategy to steer the drone through the racing track is discussed.
The simulation result in Section 4.4 shows the comparison between the proposed fil-
ter and the Kalman filter in different scenarios with outliers and delay. In Section 4.5,
we will introduce the flying experiment of the drone flying through a racing track with
gate displacement, different altitude and moving gate during the flight. In Section 4.6,
the generalization and the limitation of the proposed method are discussed. Section 4.7
concludes the article.

4.2.2. SYSTEM OVERVIEW
To illustrate the efficiency of our approach, we use a small racing drone called Trashcan
(Figure 4.3). This racing drone is designed for FPV racing with the Betaflight flight con-
troller software. In our case, to fly this Trashcan autonomously, we replaced Betaflight
by the Paparazzi open source autopilot for its flexibility of adding custom code, stable
communication with the ground for testing code and active maintenance from the re-
search community. In this article, the Paparazzi software only aims to provide a low level
controller. The main loop frequency is 2kHz. We employ a basic complementary filter
for attitude estimation and the attitude control loop is a cascade control including a rate
loop and an attitude loop. For each loop, a P-controller is used. The details of Trashcan’s
hardware can be found in Table 4.1

Table 4.1: The specifications of Trashcan’s hardware

Weight 48g (with the original camera)
Size 98mm ×98mm ×36mm

Motor TC0803 KV15000
MCU STM32F4 (100MHZ)

Receiver FrSky D16

For the high level vision, flight planning and control tasks, we use a light-weight

4

80
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

(a) (b)

Figure 4.3: The flying platform. The Jevois is mounted on the Trashcan. The Trashcan provides power to the
Jevois and they communicate with each other by the MAVLink protocol. The weight of the whole platform is
only 72g .

smart camera (17g) called Jevois, which is equipped with a quad core ARM Cortex A7
processor and a dual core Mali-400 GPU. In our experiment, there are two threads run-
ning on the Jevois, one of which is for vision detection and the other one is for filtering
and control (Figure 4.4(a)). In our case, the frequency of detecting gates ranges from
10HZ to 30HZ and the frequency of filtering and control is set to 512HZ. The Gate de-
tection thread processes the images in sequence. When it detects the gate it will send a
signal telling the other thread a gate is detected. The control and filtering thread keeps
predicting the states and calculating control command in high frequency. It uses a novel
filtering method, explained in Section 4.3, for estimating the state based on the IMU and
the gate detections.

The communication between the Jevois and Trashcan is based on the MAVLink pro-
tocol with a baud rate of 115200. Trashcan sends the AHRS estimation with a frequency
of 512HZ. And the Jevois sends the attitude and altitude commands to Trashcan with
a frequency of 200HZ. The software architecture of the flying platform can be found in
Figure 4.4(b).

In Figure 4.4(b), the Gate detection and Pose estimation module first detects the gate
and estimates the relative position between the drone and the gate. Next, the relative
position will be sent to the Gate assignment module to be transferred to global position.
With the global position measurements and the onboard AHRS reading, the proposed
VML filter fuses them together to have accurate position and velocity estimation. Then,
the Flight plan and high level controller will calculate the desired attitude commands to
steer the drone through the whole track. These attitude commands will be sent to the
drone via MAVLink protocol. On the Trashcan drone, Paparazzi provides the low level
controller to stabilize the drone.

4.3. ROBUST VISUAL MODEL-PREDICTIVE LOCALIZATION (VML) AND CONTROL

4

81

⋮

Gate detection thread Control and filtering thread

MAVLink_receiver()𝜙#$, 𝜃'$, 𝜓#$

VML_predict()

𝜙#$, 𝜃#$,𝜓#$

Gate_detected = true

∆�̅�$ ∆𝑦-$
if(Gate_detected)
VML_correct()
Gate_detected = false

Controller()

𝜙./0 , 𝜃./0 , 𝜓./0

MAVLink_send()

Log()

(a) The two threads structure running on Jevois. For the gate detection
thread, the frequency of gate detection ranges from 10HZ to 30HZ while
the frequency of control and filtering thread is 512HZ

Paparazzi Rotor
Mixing

𝐾"#$%

𝐾&'

𝐾#$$($)*%

𝐾+

−

−

Controller VML Vision
detection

MAVLink

∆�̅�0 ∆𝑦20𝑥30 𝑦30 𝑣356 𝑣376
𝝓9:*

𝑧9:*

𝝓<

𝑧̂ 𝑣3+

𝒒?
𝒒9:*

𝑣+9:*

𝑴

𝐹

Jevois

(b) The software architecture of the UAV platform. The vision detection, filtering and control are all running
on Jevois. Paparazzi provides the low level controller to stabilize the drone

Figure 4.4: The architectures of the software on Jevois and the software of the whole flying platform

4.3. ROBUST VISUAL MODEL-PREDICTIVE LOCALIZATION (VML)
AND CONTROL

State estimation is an essential part of drones’ autonomous navigation. For outdoor
flight, fusing a GPS signal with onboard inertial sensors is a common way to estimate
the pose of the drone [16]. However, for indoor flight, a GPS signal is no longer available.
Thus, off-board cameras [17], Ultra Wide Band Range beacons [18] or onboard cameras
[19] can be used to provide the position or velocity measurements for the drone. The

4

82
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

accuracy and time-delay of these types of infrastructure setups differ from each other.
Hence, the different sensing setups have an effect on what type of filtering is best for each
situation. The most commonly used state estimation technique in robotics is the Kalman
filter and its variants, such as the Extended Kalman filter [20–22]. However, the racing
scenario has properties that make it challenging for a Kalman filter. Position measure-
ments from gate detections often are subject to outliers, have non-Gaussian noise, and
can arrive at a low frequency. This makes the typical Kalman filter approach unsuitable
because it is sensitive to outliers, is optimal only for Gaussian noise, and can converge
slowly when few measurements arrive. In this section, we will propose a visual model-
predictive localization technique which is robust to low-frequency measurements with
significant numbers of outliers. Subsequently, we will also present the control strategy
for the autonomous drone race.

4.3.1. GATE ASSIGNMENT
In this article, we use the “snake gate detection” and pose estimation technique as in Li
et al. [11]. The basic idea of snake gate detection is searching for continuing pixels with
the target color to find the four corners of the gate. Subsequently, a perspective n-point
(PnP) problem is solved, using the position of the four corners in the image plane, the
camera’s intrinsic parameters, and the attitude estimation to solve the relative position
between the drone and the i th gate at time k, ∆x̄i

k = [∆x̄i
k ,∆ȳ i

k]. Figure 4.5 shows this
procedure, which is explained more in detail in [11]. In most cases, when the light is
even and the camera’s auto exposure works properly, the gate in the image is continuous
and the Snake gate detection algorithm can detect the gate correctly. However, after an
aggressive turn, such as a turn to a window, the camera cannot adapt to the new light
condition immediately. In this case, Snake gate detection usually cannot detect the gate.
Another failure case is that due to the uneven light condition or the similar color in the
background, Snake gate detection may get interfered with. These situations make the
searching stop in the middle of the bar or stop at the background pixels. Although we
have some mechanism to prevent these false positive detections, there is still a small
chance that a false positive happens. The negative effect is that outliers may appear
which leads to a challenge for the filter and the controller.

Since for any race a coarse map of the gates is given a priori (cf. Figure 4.1), the
position and the heading of gate i , xi

g = [xi
g , y i

g ,ψi
g] can be known roughly (Figure 4.6).

We use the gates’ positions to transfer the relative position ∆x̄i
k measured by camera to

a global position x̄k = [x̄k , ȳk] by equation 4.1. In equation 4.1, xi
g , y i

g and ψi
g are the

position of the gate i which are known from the map.[
x̄k

ȳk

]
=

[
xi

g

y i
g

]
+

[
cosψi

g −sinψi
g

sinψi
g cosψi

g

][
∆x̄i

k
∆ȳ i

k

]
(4.1)

Here, we assume that the position of the gate is fixed. Any error experienced in the
observations is then assumed to be due to estimation drift on the part of the drone.
Namely, without generic VIO, it is difficult to make the difference between drone drift
and gate displacements. If the displacements of the gates are moderate, this approach
will work: after passing a displaced gate, the drone will see the next gate, and correct its
position again. We only need a very rough map with the supposed global positions of

4.3. ROBUST VISUAL MODEL-PREDICTIVE LOCALIZATION (VML) AND CONTROL

4

83

(a) Snake gate detection. From one
point on the gate P0, the Snake gate
detection method first searches up and
down, then left and right to find all the
four corners of the gate

(b) When the four points of the gate are
found, The relative position between the
drone and the gate is calculated with the
points’ position, the camera’s intrinsic pa-
rameters and the current attitude estimation

Figure 4.5: The Snake gate detection method and pose estimation method [11]

the gates (Figure 4.6). Gate displacements only become problematic if after passing gate
i the gate i +1 would not be visible when following the path from the expected positions
of gate i to gate i +1.

Gates’ ground truth position

Gates’ position on the map

Drone’s ground truth trajectory

Drone’s estimated trajectory

𝑥"

𝑦"

𝑥$

𝑦$

𝜓$&

Figure 4.6: The gates are displaced. The drone uses the gate’s position on the map to navigate. After passing
through the first gate, it will use the second gate’s position on the map for navigation. After seeing the second
gate, the position of the drone will be corrected.

At the IROS drone race, gates are identical, so for our position to be estimated well,

4

84
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

we need to assign a detection to the right gate. For this, we rely on our current estimated
global position x̂k = [x̂k , ŷk]. When a gate is detected, we go through all the gates on the
map using equation 4.1 to calculate the predicted position x̄i

k = [x̄i
k , ȳ i

k]. Then, we calcu-

late the distance between the predicted drone’s position x̄i
k and its estimated position x̂k

at time tk by

∆d i
k =

∥∥∥x̄i
k − x̂k

∥∥∥
2

(4.2)

After going through all the gates, the gate with the predicted position closest to the
estimated drone position is considered as the detected gate. At time tk , the measure-
ment position is determined by

j = argmin
i

∆d i
k

x̄k = x̄ j
k

(4.3)

∆�

∆�

(��
�, ��

�, ��
�)

gates

predicted position

real position

flight plan

(��

, ��

, ��

)

(��
�, ��

�, ��
�)

detected gate

(�̅

, ��

)

(�̅
�, ��

�) (�̅
�, ��

�)

(a) It iterates through all gates, evaluating where
the drone would be if it was observing those gates.
The position closest to the current global position
is chosen as the right observation.

∆��

(�̅�
�, �	�

�)

(�

�, �

�, �

�)

(�

�, �

�, �

�)

(�

�, �

�, �

�)

(�̅�
�, �	�

�)

(�̅�
�, �	�

�)

∆��

(b) The drone detects other gate instead of the one
to be flew through. This still helps state estimation,
as the observed gate indeed gives an estimate clos-
est to the current estimated global position.

Figure 4.7: In most cases the drone will detect the next gate in the race track. However, the proposed gate
assignment strategy also allows to exploit detections of other gates.

The gate assignment technique can help us obtain as much information on the drone’s
position as possible when a gate is detected. Namely, it can also use detections of other
gates than the next gate, and allows to use multiple gate detections at the same time in
order to improve the estimation. Still, this procedure will always output a global coordi-
nate for any detection. Hence, false positive or inaccurate detections can occur and have
to be dealt with by the state estimation filter.

4.3. ROBUST VISUAL MODEL-PREDICTIVE LOCALIZATION (VML) AND CONTROL

4

85

4.3.2. VISUAL MODEL-PREDICTIVE LOCALIZATION (VML)
The racing drone envisaged in this article has a forward-looking camera and an Inertial
Measurement Unit (IMU). As explained in the previous section, the camera is used for
localization in the environment, with the help of gate detections. Using a typical, cheap
CMOS camera will result in relatively slow position updates from the gate detection, with
occasional outliers. The IMU can provide high-frequency, and quite accurate attitude
estimation by means of an Attitude and Heading Reference System (AHRS). The acceler-
ations can also be used in predicting the change in translational velocities of the drone.
In traditional inertial approaches, the accelerations would be integrated. However, for
smaller drones the accelerometer readings become increasingly noisy, due to less possi-
ble damping of the autopilot. Integrating accelerometers is ‘acceleration stable’, mean-
ing that a bias in the accelerometers that is not accounted for can lead to unbounded
velocity estimates. Another option is to use the accelerometers to measure the drag on
the frame, which - assuming no wind - can be easily mapped to the drone’s translational
velocity (cf. [11]). Such a setup is ‘velocity stable’, meaning that an accelerometer offset
of drag model error would lead to a proportional velocity offset, which is bounded. On
really small vehicles like the one we will use in the experiments, the accelerometers are
even too noisy for reliably measuring the drag. Hence, the proposed approach uses a pre-
diction model that only relies on the attitude estimated by the AHRS which is an indirect
way of using the accelerometer. It uses the attitude and a constant altitude assumption
to predict the forward acceleration, and subsequently velocity of the drone. The model
is corrected from time to time by means of the visual localization. Although the IMU
is used for estimating attitude, it is not used as an inertial measurement for updating
translational velocities. This leads to the name of the method; Visual Model-predictive
Localization (VML), which will be explained in detail in this subsection.

PREDICTION ERROR MODEL

As mentioned above, the attitude estimated from the AHRS is used in the prediction of
the drone’s velocity and position. However, due to the AHRS bias and the model inaccu-
racy, the prediction will diverge from the ground truth over time. Fortunately, we have
visual gate detections to provide position information. This vision-based localization
will not integrate the error over time but it has a low frequency. Figure 4.8 is a sketch
of what the onboard predictions and the vision measurements look like. The red curve
is the prediction result diverging from the ground truth curve because of AHRS biases.
The magenta dots are the low frequency detections which distribute around the ground
truth. The error between the prediction and measurements can be modeled as a linear
function of time which will be explained later in this section. When the error model is
estimated correctly, it can be used to compensate for the divergence of the prediction to
obtain accurate state estimation.

Assuming that there is no wind, and knowing the attitude, we can predict the acceler-
ation in the x and y axis. Figure 4.9 shows the forces the drone experiences. T ∗∗ denotes
the acceleration caused by the thrust of the drone. It provides the forward acceleration
together with the pitch angle θ. D∗∗ denotes the acceleration caused by the drag which is
simplified as a linear function of body velocity. [23]

4

86
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

Prediction point

𝑡"𝑡"#$𝑡"#% 𝑡"#& 𝑡"#' 𝑡"#(𝑡"#)𝑡"#* 𝑡"#+ 𝑡"#,

𝑥

Ground truth Prediction Detection Time window

∆𝑥"#%
/ ∆𝑥"

/
∆𝑥"#$

/

∆𝑥"#)
/

∆𝑥"#(
/∆𝑥"#'

/
∆𝑥"#&

/

∆𝑥"#,
/

∆𝑥"#+
/

∆𝑥"#*
/

�̅�"

�̅�"#$
�̅�"#)

�̅�"#(
�̅�"#'�̅�"#&

�̅�"#%�̅�"#,
�̅�"#+�̅�"#*

𝑥"#*
/

𝑥"#+
/

𝑥"#,
/

𝑥"#%
/

𝑥"#&
/

𝑥"#'
/

𝑥"#(
/ 𝑥"#)

/
𝑥"#$
/

𝑥"
/

Figure 4.8: Illustrative sketch of the time window t ∈ [tk−q , tk]. At the beginning of this time window, the
difference between the ground truth and the prediction is∆xk−q and∆vk−q . The prediction can be done with
high frequency AHRS estimates. The vision algorithm outputs low frequency unbiased measurements. The
prediction curve deviates more and more from the ground truth curve over time because of the AHRS bias and
model inaccuracy.

{
DB

x = cx vB
x

DB
y = cy vB

y
(4.4)

where c∗ is the drag coefficient.

�

�

��
� ��

�

��
�

��
�

��
�

��
�

�

	�
�

	�
�

	�
�

Figure 4.9: Free body diagram of the drone. v∗∗ (t) is the velocity of the drone. The superscript E denotes north-
east-down (NED) earth frame while B denotes body frame. T∗∗ is the acceleration caused by thrust and D∗∗ is
the acceleration caused by the drag, which is a linear function of the body velocity. g is the gravity factor and
c is the drag factor which is positive. θ(t) is the pitch angle of the drone. It should be noted that since we use
NED frame, θ < 0 when the drone pitches down.

According to Newton’s second law in xoz plane,[
aE

x (t)
aE

z (t)

]
=

[
0
g

]
+ℜE

B (θ)

[
0

T B
z (t)

]
+ℜE

B (θ)DℜB
E (θ)

[
vE

x (t)
vE

z (t)

]
(4.5)

Expand equation 4.5, we have

4.3. ROBUST VISUAL MODEL-PREDICTIVE LOCALIZATION (VML) AND CONTROL

4

87

{
aE

x (t) = sinθ(t)T B
z (t)− vE

x (t)c

aE
z (t) = cosθ(t)T B

z (t)+ g − vE
z (t)c

(4.6)

where ℜB
E (θ) is the rotation matrix and D =

[−c 0
0 −c

]
is the drag coefficient matrix.

If the altitude is kept the same as in the IROS drone race, we have{
T B

z (t) = −g
cosθ(t)

aE
x (t) =−g tanθ(t)− vE

x (t)c
(4.7)

Since the model in the y axis has the same form as in the x axis, the dynamic model
of the quadrotor can be simplified as

ẋ(t) = vE
x (t)

ẏ(t) = vE
y (t)

v̇E
x (t) =−g tanθ(t)− vE

x (t)c

v̇E
y (t) = g tanφ(t)− vE

y (t)c

(4.8)

where x(t) and y(t) are the position of the drone, and φ is the roll angle of the drone.
In equation 4.8, the movement in x and y axis is decoupled. Thus we only analyze the
movement in the x axis. The result can be directly generalized to the y axis. The nominal
model of the drone in x axis can be written by

ẋn(t) = Axn(t)+Bun(t) (4.9)

where xn(t) =
[

xn(t)
vn

x (t)

]
,A =

[
0 1
0 −c

]
, B =

[
0
−g

]
and un = tan(θ). The superscript n de-

notes the nominal model. Similarly, with the assumption that the drag factor is accurate,
the prediction model can be written as

ẋp (t) = Axp (t)+Bup (t) (4.10)

where xp (t) =
[

xp (t)
v p

x (t)

]
and up = tan(θ+θb). θb is the AHRS bias and is assumed to

be a constant in short time. Consider a time window t ∈ [tk−q , tk], the states of nominal
model at time tk are

xn
k = (I+ATs)q xn

k−q +
q∑

i=1
(I+ATs)i−1BTs un

k−i (4.11)

where Ts is the sampling time. The predicted states of model 4.10 are

xp
k = (I+ATs)q xp

k−q +
q∑

i=1
(I+ATs)i−1BTs up

k−i (4.12)

Thus, the error between the predicted model and nominal model can be written as

4

88
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

∆xp
k = (I+ATs)q

[
xp

k−q −xn
k−q

]
+

q∑
i=1

(I+ATs)i−1Ts Bub (4.13)

where ub = (up
k−i −un

k−i) is the input bias which can be considered as a constant in a
short time. In equation 4.13,

(I+ATs)i =
1 Ts

i∑
j=1

(1− cTs) j−1

0 (1− cTs)i

 (4.14)

Since the sampling time Ts is small, (Ts = 0.002s in our case), we can assume

(I+ATs)i ≈
[

1 i Ts

0 1

]
(4.15)

Hence, equation 4.13 can be approximated by

∆xp
k ≈ (I+ATs)q

[
xp

k−q −xn
k−q

]
+

q∑
i=1

[
1 i Ts

0 1

]
Ts Bub (4.16)

≈
[

1 qTs

0 1

][
∆xp

k
∆v p

k

]
+

[
q q(q+1)

2 Ts

0 q

]
Ts Bub (4.17)

Expanding equation 4.17, we have{
∆xp

k ≈∆xp
k−q +qTs∆v p

x k−q − q(q+1)
2 T 2

s g ub

∆v p
k ≈∆v p

x k−q −qTs g ub
(4.18)

Actually, qTs = tk − tk−q is the time span of the time window. If we neglect T 2
s term,

we can have the prediction error at time tk

∆xp
k ≈∆xp

k−q + (tk − tk−q)∆v p
k−q (4.19)

Thus, within a time window, the state estimation problem can be transformed to a
linear regression problem with model equation 4.19, where β̂= [∆xp

k−q ,∆v p
k−q]T are the

parameters to be estimated. From equation 4.19, we can see that in a short time window,
the AHRS bias does not affect the prediction error. The error is mainly caused by the ini-
tial prediction error ∆xp

k−q . Furthermore, velocity error ∆v p
k−q can cause the prediction

error to diverge over time. If the time window is updated frequently, model 4.19 can re-
main accurate enough. Hence, in this work, we focus on the main contributors to the
prediction error and will not estimate the bias term. The next step is how to efficiently
and robustly estimate ∆xp

k−q and ∆v p
k−q .

In this simplified linear prediction error model, we use the constant altitude assump-
tion to approximate the thrust T B

z on the drone, which may lead to inaccuracy of the
model. During the flight, this assumption may be violated by aggressive maneuvers in
z axis. However, if the maneuver in z axis is not very aggressive and the time window is
small (in our case less than 2s), the prediction error model’s inaccuracy level can be kept

4.3. ROBUST VISUAL MODEL-PREDICTIVE LOCALIZATION (VML) AND CONTROL

4

89

in an acceptable range. In the simulation and the real-world experiment shown later,
we will show that although the altitude of the drone changes 1m in 2s, the proposed fil-
ter can still have very high accuracy with this assumption. Another way to improve the
model accuracy is to estimate the thrust by fusing the accelerometer readings and rotor
speed together, which needs the establishment of the rotors’ model. It should also be
noted that we neglect T 2

s term in equation 4.18 to have a linear model. To increase the
model accuracy, the prediction error model can be a quadratic model. In our case, since
the time window is small, the linear model is accurate enough.

PARAMETER ESTIMATION METHOD

The classic way for solving the linear regression problem based on equation 4.19 is to use
the Least Square Method (LS Method) with all data within the time window and estimate
the parameters β̂.

β̂= (XTX)−1XTY (4.20)

where

β̂=
[
∆xp

k−q ∆v p
k−q

]T
,X =

1 tk−q − tk−q

1 tk−q+1 − tk−q
...

...
1 tk − tk−q

 ,Y =

xp

k−q − x̄k−q

xp
k−q+1 − x̄k−q+1

...
xp

k − x̄k

The LS Method in equation 4.20 can give optimal unbiased estimation under the

assumption of zero-mean Gaussian residuals. However, if there exist outliers in the
time window t ∈ [tk−q , tk], they will be considered equally during the estimation pro-
cess. These outliers can significantly affect the estimation result. Thus, to exclude the
outliers, we employ random sample consensus (RANSAC) to increase the performance
[24]. In a time window t ∈ [tk−q , tk], we first calculate the prediction error ∆xp

k−q,k =
{∆xp

k−q+i |∆xp
k−q+i = xp

k−q+i − x̄k−q+i ,0 ≤ i ≤ q} and time difference ∆t = {∆ti |∆ti = ti −
tk−q ,0 ≤ i ≤ q}. For each iteration i , the subsets of ∆xp

k−q,k and ∆tk−q,k are randomly

selected, which are denoted by ∆xs
k−q,k and ∆ts

k−q,k . The size of the subset ns can be

calculated by ns = qσs , where σs is the ratio of sampling. We use subsets ∆xs
k−q,k and

∆ts
k−q,k to estimate the parameters β̂i (Figure 4.10).

When β̂i is estimated, it will be used to calculate the total prediction error εi of the
all the data in the time window ti ∈ [tk−q , tk] by

εi =
k∑

j=k−q
ε j (4.21)

where

ε j =
{∥∥∥∆v p

k−q i
(∆t j −∆tk−q)+∆xp

k−q i
−∆xp

j

∥∥∥
2

, if ε j <σth

σth , otherwise
(4.22)

4

90
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

Δ�� Δ�� Δ�� Δ�� Δ�� Δ�� Δ�	 Δ�
 Δ��

Δ�� Δ�� Δ�� Δ��

Δ��,�

Δ��,�

Δ��,�
�

Δ��,�
�

LS Method

���

∆��
�
∆��

�
∆��

�
∆��

�
∆��

�
∆��

�
∆�	

�
∆�

�
∆��

�

∆��
�
∆��

�
∆��

�
∆��

�

Figure 4.10: In the i th iteration, the data in the time window t ∈ [t1, t9] will be randomly sampled into ∆ts
k−q,k

and ∆xs
k−q,k . Then LS Method (equation 4.20) will be used to estimate the parameters β̂i . In this example,

σs = 0.4, which means that ns = 9×0.4 ≈ 4 samples should be sampled.

In the process of equation 4.21, if ε j is larger than a threshold σth , it counts the

threshold as the error. After all the iterations, the parameters β̂i which has the least
prediction error will be selected to be the estimated parameters for this time window
ti ∈ [tk−q , tk]. The pseudo-code of this Basic RANSAC Fitting (BRF) method can be found
in Algorithm 4.

With the Basic RANSAC Fitting (BRF) method, the influence of the outliers is reduced,
but it has no mechanism to handle the peak in velocity estimation (PiVE). For example, in
time window ti ∈ [tk−q , tk], BRF can estimate the optimal parameters β̂with the minimal

error. However, sometimes it will set ∆v p
k−q to unrealistically high values. This happens

when there are few detections in the time window, which may result in the inaccurate
estimation of the parameters. In reality, the drone flies at maximum speed 3m/s, so the
velocity prediction error at the start of time window tk−q should not be too large. To

avoid PiVE, we add a penalty factor/prior matrix P to limit ∆v p
k−q in the fitting process.

The loss function can be written as

J (β̂) = ∥∥Xβ̂−Y
∥∥2

2 + β̂TPβ̂ (4.23)

where

P =
[

px 0
0 pv

]
(4.24)

is the penalty factor/prior matrix. To minimize the loss function, we take derivatives
of J (β̂) and let it be 0

∂J (β̂)

∂β̂
= 2XTXβ̂−2XTY+Pβ̂+PTβ̂= 0 (4.25)

Then we have the estimated parameters by

β̂= (XTX+P)−1XTY (4.26)

We call the use of equation 4.26 inside the RANSAC fitting the Prior RANSAC fitting
(PRF). Compared to equation 4.20, PRF has the penalty factor/prior matrix P in it. By

4.3. ROBUST VISUAL MODEL-PREDICTIVE LOCALIZATION (VML) AND CONTROL

4

91

tuning matrix P we can add the prior knowledge to the parameter distribution. For ex-
ample, in our case ∆v p

k−q should not be high. Thus, we can increase pv in P to limit the

value of ∆v p
k−q .

To conclude, in this part we propose 3 methods for estimating the parameters β̂. The
first one is the LS Method which considers all the data in a time window equally. The
second method is Basic RANSAC Fitting method (BRF), which has the mechanism to
exclude the outliers. And the third one is Prior RANSAC Fitting method (PRF), which
can not only exclude the outliers but also take into account the prior knowledge to avoid
PiVE. In the next section, we will discuss and compare these 3 methods in simulation to
see which one is the most suitable for our drone race scenario.

PREDICTION COMPENSATION

After the error model (equation 4.19) is estimated in time window k, the error model can
be used to compensate the prediction by[

x̂k+i

v̂k+i

]
=

[
xp

k+i
v p

k+i

]
−

[
1 tk+i − tk−q

0 1

][
∆xp

k−q

∆v p
k−q

]
(4.27)

Also, at each prediction step, the length ∆T = tk − tk−q of the time window will be
checked, since the simplified model 4.19 is based on the assumption that the time span
of the time window ∆T is small. If ∆T is larger than the allowed maximum time window
size∆Tmax , the filter will delete the oldest elements until∆T <∆Tmax . The pseudo-code
of the proposed VML with LS Method can be found in Algorithm 5 and Algorithm 6.

COMPARISON WITH KALMAN FILTER

When it comes to state estimation or filtering technique, it is inevitable to mention the
Kalman filter which is the most commonly used state estimation method. The basic idea
of the Kalman filter is that at time tk−1, it first predicts the states at time tk with its error
covariance Pk|k−1 to have prior knowledge of the states at tk .

X̂k|k−1 = X̂k−1 + f(X̂k−1,uk−1)Ts

Fk−1 =
∂

∂x
f(x(t),u(t))|x(t)=x̂k−1

Φk|k−1 ≈ I+Fk−1T

Hk = ∂

∂x
h(x(t))|x(t)=x̂k

Pk|k−1 =Φk|k−1Pk−1Φ
T
k|k−1 +Qk−1

(4.28)

When an observation arrives, the Kalman filter uses an optimal gain Kk which is a
combination of the prior error covariance Pk+1|k and the observation’s covariance Rk to
compensate the prediction, which as a result, leads to the minimum error covariance Pk .

δX̂k = Kk
{

Zk −h[X̂k|k−1,k]
}

Kk = Pk|k−1HT
k [Hk Pk|k−1HT

k +Rk]−1

X̂k = X̂k|k−1 +δX̂k

Pk = (I−Kk Hk)Pk/k−1(I−Kk Hk)T +Kk Rk KT
k

(4.29)

4

92
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

According to [25], a Kalman filter is a least square estimation made into a recursive
process by combining prior data with coming measurement data. The most obvious
difference between the Kalman filter and the proposed VML is that VML is not a recursive
method. It does not estimate the states at tk only based on the last step states x̂k−1.
It estimates the states considering the previous prediction and observations in a time
window.

In the VML approach, we use least square method within a time window, which looks
similar to the least square estimation method. However, there are two major differences
between the two methods. The first one is that in the proposed VML, the prediction
information is fused to the VML. Secondly and most importantly, we estimate the pre-
diction error model β̂ instead of estimating all the states in the time window as in the
least square method. In Section 4.4, we will introduce Kalman filter’s different variants
for outliers and delay and compare them with VML in estimation accuracy and compu-
tation load in detail.

4.3.3. FLIGHT PLAN AND HIGH LEVEL CONTROL
With the state estimation method explained above, to fly a racing track, we employ a
flight plan module which sets the waypoints that guide the drone through the track and
a two-loop cascade P-controller to execute the reference trajectory (Figure 4.11).

𝑹(𝜓)𝒌&
'∗𝑲&∗

Drone	
Dynamics

Flight
Plan

𝜓 < = 𝜓 >

𝑥>, 𝑦>

𝑧>, 𝜓>
𝑣D< , 𝑣E<𝑥F , 𝑦F 𝑣DF , 𝑣EF

−−
𝜙< , 𝜃<

𝜓< , 𝑧<

𝑥J

𝑧K = 𝑧>

𝐷MN>O

𝐷PQRM<S_Q&

𝜓> = U 𝑘>(𝜓W
Q& −𝜓X)𝑑𝑡

𝑣JD 𝑣JE𝑦J𝑥J 𝑦J
𝑧̂ 𝜓X

Change heading

Change waypoint

Figure 4.11: The Flight plan module generates the waypoints for the drone to fly the track. When the distance
between the drone and the current waypoint d < Dtur n , the drone starts to turn to the next waypoint while
still approaching the current waypoint. When d < Dswi tch_w p , the drone switches the current waypoint to the
next one. The cascade P-controller is used for executing the reference trajectory from the flight plan module.
The attitude and rate controllers are provided by the Paparazzi autopilot. kr is a positive constant to adjust the
speed of the drone’s yawing to the setpoint. In the real world experiment and simulation, we set kr = 1.

Usually, the waypoint is just behind the gate. When the distance between the drone
and the waypoint is less than a threshold D tur n , the gate can no longer be detected by
our method, and we set the heading of the drone to the next waypoint. This way, the
drone will start turning towards the next gate before arriving at the waypoint. When the
distance between the drone and the waypoint is within another threshold Dswi tch_w p ,
the waypoint switches to the next point. With this strategy, the drone will not stop at
one waypoint but already start accelerating to the next waypoint, which can help to save

4.4. SIMULATION EXPERIMENTS

4

93

time. The work flow of flight plan module can be found in Algorithm 7.
We employ a two-loop cascade P controller (equation 4.30) to control the drone to

reach the waypoints and follow the heading reference generated from the flight plan
module. The altitude and attitude controllers are provided by the Paparazzi autopilot,
and are both two-loop cascade controllers.

Φc (k) = RψKv (Kx (xr (k)− x̂(k))− v̂(k)) (4.30)

whereΦc (k) = [θc (k),φc (k)]T, Rψ =
[

cos(ψ) sin(ψ)
−sin(ψ) cos(ψ)

]
, Kv =

[
kv x 0

0 kv y

]
, Kx =

[
kx 0
0 ky

]
, xr (k) =

[xr (k), y r (k)]T, x̂(k) = [x̂(k), ŷ(k)]T, v̂(k) = [v̂x (k), v̂y (k)]T.

4.4. SIMULATION EXPERIMENTS

4.4.1. SIMULATION SETUP

To verify the performance of VML in the drone race scenario, we first test it in simulation
and then use an Extended Kalman filter as benchmark to compare both filters to see
which one is more suitable in different operation points. We first introduce the drone’s
dynamics model used in the simulation.

ẋ
ẏ
ż

=
vx

vy

vz

v̇x

v̇y

v̇z

=
0

0
g

+ℜE
B

0
0
T

+ℜE
B KℜB

E

vx

vy

vz

φ̇

θ̇

ψ̇

Ṫ

=

kφ(φc −φ)
kθ(θc −θ)

kψ(ψc −ψ)
kT (T c −T)

(4.31)

where (x, y, z) is the position of the drone in the Earth frame. v∗ is the velocity of
the drone. g is the gravity factor. T is the acceleration caused by the thrust force. φ,
θ, ψ are the three Euler angles of the body frame. And ℜE

B is the rotation matrix from
the Body frame to the Earth frame. K = di ag ([−0.5,−0.5,0]) is the simplified first or-
der drag matrix, where the values are based on a linear fit of the drag based on real-
world data with the Trashcan drone. ℜE

B KℜB
E [vx vy vz]T is the acceleration caused by

other aerodynamics. The last four equations are the simplified first order model of the
attitude controller and thrust controllers where the proportional feedback factors are
kφ = 6, kθ = 6,kψ = 5,kT = 3. Thus, the model 4.31 in the simulation is a 10 states
x = [x, y, z, vx , vx , vx ,φ,θ,ψ,T]T and 4 inputs u = [φc ,θc ,ψc ,T c]T nonlinear system. In
this simulation, we use the same flight plan module and high-level controllers discussed
in Section 4.3 (Figure 4.11) to generate a ground truth trajectory through a 4-gate square
racing track. In this track, we use different height to test if the altitude change affects the
accuracy of the VML.

4

94
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

Table 4.2: The map of the simulated racing track

Gate ID x[m] y[m] z[m] ψ[◦]

1 4 0 −1.5 0
2 4 4 −2.5 90
3 0 4 −1.0 180
4 0 0 −1.5 270

With the ground truth states, next step is to generate the sensor reading. In the real
world, AHRS estimation outputs biased attitude estimation because of the accelerator’s
bias. To model AHRS bias, we have a simplified AHRS bias model[

φb

θb

]
=

[
cosψ sinψ
−sinψ cosψ

][
BN

BE

]
(4.32)

where φb and θb are the AHRS biases on φ and θ. BN and BE are the north and east
bias caused by the accelerometer bias, which can be considered as constants in short
time. From real-world experiments, they are less than 3◦. Thus, the AHRS reading can
be modelled by [

φ̄k

θ̄k

]
=

[
φk

θk

]
+

[
cosψ sinψ
−sinψ cosψ

][
BN

BE

]
+

[
εφ
εθ

]
(4.33)

where ε∗ ∼ N (0,σ∗) is the AHRS noise and in our simulation we will set σ∗ = 0.5◦,
BN = −2◦, BE = 1◦. For vision measurements generation, we first determine the seg-
ment [u, v] of the trajectory where the drone can detect the gate. Then, we calculate the
number of the detection by nv = tu−tv

fv
, where fv is the detection frequency. Next, we

randomly select nv points between u and v to be vision points. For these points, we
generate detection measurement by[

x̄k

ȳk

]
=

[
xk

yk

]
+

[
εx

εy

]
(4.34)

In equation 4.34, ε∗ ∼ N (0,σ∗) is the detection noise and σ∗ = 0.1m In these nv vi-
sion points, we also randomly select a few points as outlier points, which have the same
model with equation 4.34 but σ∗ = 3m. In the following simulations, the parameters are
the same with the value mentioned in this section if there is no statement. The simulated
ground truth states and sensor measurements are shown in Figure 4.12.

4.4.2. SIMULATION RESULT AND ANALYSIS

COMPARISON BETWEEN EKF, BRF AND PRF WITHOUT OUTLIERS

We employ an EKF as benchmarks to compare the performance of our proposed filter.
The details of the EKF can be found in the Appendix. We first do the simulation in only
one operation point, where fv = 30HZ, σ∗ = 0.1m and the probability of outliers Pout =
Noutl i er s /Ndetect i on = 0. At this operation point, three filters are run separately. The
result is shown in Figure 4.13.

4.4. SIMULATION EXPERIMENTS

4

95

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x[m]

0

0.5

1

1.5

2

2.5

3

3.5

4

y[
m

]

ground truth
vision

(a) Generated ground truth states and vision
measurements in x − y plane

0 1 2 3 4 5 6 7 8 9
-5

0

5

x[
m

]

ground truth
vision

0 1 2 3 4 5 6 7 8 9
-5

0

5

y[
m

]

0 1 2 3 4 5 6 7 8 9
time [s]

-2.5

-2

-1.5

-1

z[
m

]

(b) Generated ground truth position and vision
measurements

Figure 4.12: In the simulation, the ground truth states are first generated (blue curve). Then, vision measure-
ments and AHRS readings are generated. It can be seen clearly that the bias of AHRS readings changes with
the heading, as on a real drone. Namely, the offset in φ and θ changes when theψ changes. This phenomenon
is modeled by equation 4.32. In this simulation fv = 30HZ,σx =σy =σz = 0.1m

.

0 1 2 3 4 5 6 7 8 9
-1

0

1

2

3

4

5

GT
Vision
EKF
BRF
PRF

0 1 2 3 4 5 6 7 8 9
-1

0

1

2

3

4

5

(a) Position estimation of EKF, BRF and PRF

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

GT
EKF
BRF
PRF

0 1 2 3 4 5 6 7 8 9
-3

-2

-1

0

1

2

3

(b) Velocity estimation of EKF, BRF and PRF

Figure 4.13: The filtering result of EKF, BRF and PRF. fv = 50H Z and σx =σy = 0.1. When there are no outliers,
EKF, BRF and PRF’s estimating result all converge to ground truth value. In velocity estimation, however, EKF
has longer startup period than VML and BRF shows peaks. To limit this overfitting, in PFR, we add a prior

matrix P =
[

0 0
0 0.3

]
and the velocity’s peak is significantly smoothed and is closer to the ground truth velocity.

When there are no outliers, all three filters can converge to the ground truth value.
However, the EKF has a longer startup period and BRF overfits after turning, leading to
unlikely high velocity offsets (the peaks in Figure 4.13b)). This is because, after the turn,
the RANSAC buffer is empty. When the first few detections come into the buffer, the

4

96
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

RANSAC has a larger chance to estimate inaccurate parameters. In PRF, however, we add

a prior matrix P =
[

0 0
0 0.3

]
to limit the value of ∆v and the number of the peaks in the

velocity estimation is significantly decreased. At the same time, the velocity estimation
is closer to the ground truth value.

0 10 20 30 40 50 60 70 80 90 100

detection frequency[HZ]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

EKF
BRF
PRF

(a) Estimation error of the filters with different de-
tection frequencies.

5 15 25 35 45 55 65 75 85 95

detection frequency[HZ]

0

0.05

0.1

0.15

0.2

0.25

ca
lc

ul
at

io
n

tim
e

[s
]

EKF prediction
EKF correction
BRF prediction
BRF correction
PRF prediction
PRF correction

(b) Calculation time of the filters.

Figure 4.14: The simulation result of the filters. It can be seen that when the detection frequencies are below
20H Z , the EKF performs better than BRF and PRF. However, when the detection frequencies are higher than
20H Z , BRF and PRF start performing better than the EKF. In terms of computation time, the EKF is affected
by the detection frequency slightly while the computation load of BRF and PRF increase significantly higher
detection frequencies

To evaluate the estimation accuracy of each filter, we first introduce a variable, aver-
age estimation error γ, to be an index of the filter’s performance:

γ=
√∑N

i=1(x̂i −xi)2 + (ŷi − yi)2

N
(4.35)

where N is the number of the sample points on the whole trajectory. x̂ and ŷ are the
estimated states by the filter. x and y are the ground truth positions generated by the
simulation. γ captures how much the estimated states deviate from the ground truth
states. A smaller γ indicates a better filtering result.

We use running time to evaluate the computation efficiency of each filter. It should
be noted that since we need to store all the simulation data for visualization and MAT-
LAB has no mechanism of passing pointers, data accessing can take much computation
time. Thus, we only count the running time of the core parts of the filters, which are the
prediction and the correction.

The results are shown in Figure 4.14. In the simulation, the time-window in BRF and
PRF is set to be 1s and 5 iterations are performed in the RANSAC procedure. For each
frequency, the filters are run 10 times separately and their average γ and running time
are calculated. It can be seen in Figure 4.14(a) that when the detection frequency is larger

4.4. SIMULATION EXPERIMENTS

4

97

than 30 HZ, BRF and PRF perform close to the EKF. In terms of calculation time, the EKF
is heavier than BRF and PRF when the frequency is lower than 40H Z . It is because that
during the prediction phase, the EKF not only predicts the states but also calculates the
Jacobian matrix and the prior error covariance Pk|k−1 by high frequency while BRF and
PRF only do the state prediction. However, when the detection comes, the EKF does
the correction by several matrix operations while BRF and PRF do the RANSAC which
is much heavier. This explains why the EKF’s computation load is only slightly affected
by the detection frequency but BRF and PRF’s computation load increases significantly
with higher detection frequency.

COMPARISON BETWEEN EKF, BRF AND PRF WITH OUTLIERS

When outliers appear, the regular EKF can be affected significantly. Thus, outlier rejec-
tion strategies are always used within an EKF to increase its robustness. A commonly
used method is using Mahalanobis distance between the observation and its mean as
an index to determine whether an observation is an outlier [26, 27]. Thus, in this sec-
tion, we implement an EKF with outlier rejection (EKF-OR) as a benchmark to compare
the outlier rejection performance of BRF and PRF. The basic idea for the EKF-OR is that
the square of the observation’s Mahalanobis distance is Chi-square distributed. Hence,
when the observation arrives, its Mahalanobis distance will be calculated and checked
whether it is within a threshold χα. If it is not, this observation will be rejected.

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

6

8

GT
Vision
EKF-OR
BRF
PRF

0 1 2 3 4 5 6 7 8 9
-5

0

5

10

(a) When outliers appear, EKF-OR, BRF and PRF
can reject them.

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

6

8
GT
Vision
EKF-OR
BRF
PRF

0 1 2 3 4 5 6 7 8 9
-10

-5

0

5

10

(b) After a long time of pure prediction, EKF-OR
has large error covariance. Once it meets an out-
lier, it has a high chance to jump to it. As a con-
sequence, the later true positive detections are be-
yond the threshold χα and EKF-OR will treat them
as outliers

Figure 4.15: In most cases, EKF-OR, BRF and PRF can reject the outliers. But after a long time of pure predic-
tion, EKF-OR is very vulnerable to the outliers while BRF and PRF still perform well.

Two examples of the filters’ rejecting outliers are shown in Figure 4.15. The first figure
shows a common case that the three filters can reject the outliers successfully. However,
in some special cases, EKF-OR is vulnerable to the outliers. In Figure 4.15(b), for in-
stance, after a long time of pure prediction, the error covariance Pk|k−1 becomes large.

4

98
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

Once EKF-OR meets an outlier, it has a high chance to jump to it. The subsequent true
positive detections will be treated as outliers and EKF-OR starts diverging. At the same
time, BRF and PRF are more robust to the outliers. The essential reason is that for EKF-
OR, it depends on its current state estimation (mean and error covariance) to identify
the outliers. When the current state estimation is not accurate enough, like the long-
time prediction in our case, EKF-OR loses its ability to identify outliers. In other words, it
tends to trust whatever it meets. The worse situation is that after jumping to the outlier,
its error covariance become smaller which, as a consequence, leads to the rejection of
the coming true positive detections. However, for BRF and PRF, outliers are determined
in a time window including history. Thus, after long time of prediction, when BRF and
PRF meet an outlier, they will judge it considering the detections in the past. If there is no
other detection in the time window, they will wait for enough detections to make a deci-
sion. With this mechanism, BRF and PRF become more robust than EKF-OR especially
when EKF-OR’s estimation is not accurate.

0 10 20 30 40 50 60 70 80 90 100

detection frequency[HZ]

-30

-20

-10

0

10

20

30

40
EKF-OR
BRF
PRF

(a) Estimation error of the EKF-
OR, BRF and PRF with different de-
tection frequencies

10 20 30 40 50 60 70 80 90

detection frequency[HZ]

0

0.5

1

1.5

2
EKF-OR
BRF
PRF

(b) Partial enlarged drawing of (a)

5 15 25 35 45 55 65 75 85 95

detection frequency[HZ]

0

0.05

0.1

0.15

0.2

0.25

0.3

ca
lc

ul
at

io
n

tim
e

[s
]

EKF-OR prediction
EKF-OR correction
BRF prediction
BRF correction
PRF prediction
PRF correction

(c) Calculation time of the filters

Figure 4.16: The estimation error of EKF-OR, BRF and PRF and their calculation time with outliers. EKF-OR
has some chance (15%) to diverge, which leads to the high estimation error.

Figure 4.16 shows the estimation error and the calculation time of the three filters.
As we stated before, although EKF-OR has the mechanism of dealing with the outliers, it
still can diverge due to the outliers in some special cases. Thus, in Figure 4.16(a) EKF-OR
has large estimation error when the detection frequency is both low and high. In terms of
calculation time, it can be seen that it has no significant difference with the non-outlier
case.

FILTERING RESULT WITH DELAYED DETECTION

Image processing and visual algorithms can be very computationally expensive for run-
ning onboard a drone, which can lead to significant delay [20, 28]. Many visual navi-
gation approaches ignore this delay and directly fuse the visual measurements with the
onboard sensors, which sacrifices the accuracy of the state estimation. A commonly
used approach for compensating this vision delay is a modified Kalman filter proposed
by Weiss et al. [20]. The main idea of this approach, called EKF delay handler (EKF-DH),
is having a buffer to store all sensor measurements within a certain time. At time tk , a vi-

4.4. SIMULATION EXPERIMENTS

4

99

sion measurement corresponding to the states at earlier time ts arrives. It will be used to
correct the states at time ts . Then, the states will be propagated again from ts to tk (Figure
4.17(a)). Although updating the covariance matrix is not needed according to [20], this
approach still requires updating history states whenever a measurement arrives, which
can be computationally expensive especially when the delay and the measurement fre-
quency get larger. In our case, we need to use the error covariance for outlier rejections, it
is necessary to update the history error covariance matrices, which in turn increases the
computation load further. At the same time, for VML, when the measurement arrives,
it will first be pushed into the buffer. Then, the error model will be estimated within
the buffer/time window. With the estimated parameter β̂, the prediction at tk can be
corrected directly without the need of correcting all the states between ts and tk (Figure
4.17(b)). Thus, the computational burden will not increase when the delay exists.

Correct states at 𝑡"

𝑡" 𝑡#
Correct states until 𝑡#

(a) The sketch of the EKF-DH proposed
in [20]. When the measurement arrives
at tk , EKF-DH first corrects the corre-
sponding states at ts and then updates
the states until tk .

Push to the buffer

𝑡" 𝑡#

Estimate 𝛽% Correct states at 𝑡#

(b) The sketch of VML’s mechanism of handling delay.
When the measurement arrives, it will be pushed to
the buffer with the corresponding states. Then, the er-
ror model will be estimated by the RANSAC approach.
At last, the estimated model will be used to compen-
sate the prediction at tk . There is no need to update
all the states between ts and tk

Figure 4.17: The sketches of EKF-DH and VML’s handling delay mechanism.

Figure 4.18 shows an example of the simulation result of the three filters when both
outliers and delay exist. In this simulation, the visual delay is set to be 0.1s. It can be seen
that although there is a lag between the vision measurements and the ground-truth, all
the filters can estimate accurate states. However, EKF-DH requires much more compu-
tation effort. Figure 4.19 shows the estimation error and the computation time of the
three filters.

In Figure 4.19, we can see that the computation load of EKF-DH increases signifi-
cantly due to its mechanism of handling delay. Unsurprisingly, EKF-DH is still sensitive
to some outliers while BRF and PRF can handle the outliers.

4

100
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

0 1 2 3 4 5 6 7 8 9
-10

-5

0

5

10

GT
Vision
EKF-DH
BRF
PRF

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

6

8

(a) Position estimation of the three filters with
outliers and delay

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

6

GT
EKF-DH
BRF
PRF

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

(b) Velocity estimation of the three filters with
outliers and delay

Figure 4.18: An example of the performance of the three filters when outliers and delay exist.

0 10 20 30 40 50 60 70 80 90 100
detection frequency[HZ]

-20

-10

0

10

20

30

40

50

EKF-DH
BRF
PRF

(a) Estimation error of the
EKF-DH, BRF and PRF with
different detection frequen-
cies

10 20 30 40 50 60 70 80 90
detection frequency[HZ]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 EKF-DH
BRF
PRF

(b) Partial enlarged drawing
of (a)

5 15 25 35 45 55 65 75 85 95
detection frequency[HZ]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ca
lc

ul
at

io
n

tim
e

[s
]

EKF-DH prediction
EKF-DH correction
BRF prediction
BRF correction
PRF prediction
PRF correction

(c) Calculation time of the
filters

Figure 4.19: The estimation error of EKF-DH, BRF and PRF and their calculation time with outliers and delay.

4.5. REAL-WORLD EXPERIMENTS

4.5.1. PROCESSING TIME OF EACH COMPONENT

Before testing the whole system, we first test on the ground how much time the Snake
gate detection, the VML-prediction, the VML-correction and the controller take when
running on a Jevois smart camera. On the ground, we set an orange gate in front of a
Jevois camera and calculate the time that each component takes. For each image, for
example, we start timing when a new image arrives and the Snake gate detection is run.
Then, we stop timing when the snake gate finishes. For the VML and the controller,
we use the same strategy to calculate processing time. In this test, the vision detection
frequency is 15HZ and the number of RANSAC iterations in VML is set to 5. Figures 4.20
shows the timing statistics for each component on the Jevois. It can be seen that outliers
happen during the testing process, which can be caused by system interrupts. Thus, we
first exclude the outliers by the Interquartile Range Method [29] and then provide the
statistics for each component. The result can be found in Figure 4.21 and Table 4.3.

4.5. REAL-WORLD EXPERIMENTS

4

101

Vision

10

20

30

40

50

60

70

80

pr
oc

es
sin

g
tim

e[
m

s]

Control

0

2

4

6

8

10

Prediction

0

2

4

6

8

10

12

14

Correction

0

2

4

6

8

10

12

14

Figure 4.20: The statistical result of the four components’ (vision, control, prediction and correction) process-
ing time

15 20 25 30 35
processing time of each image [ms]

0

100

200

300

400

500

nu
m

be
r o

f i
m

ag
es

(a) Histogram of the vision’s processing
time

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
processing time of each control loop [ms]

0

1000

2000

3000

4000

5000

nu
m

be
r o

f l
oo

ps

(b) Histogram of the controller’s process-
ing time

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
processing time of each prediction loop [ms]

0

1000

2000

3000

4000

5000

nu
m

be
r o

f l
oo

ps

(c) Histogram of the VML-prediction’s
processing time

0.0 0.5 1.0 1.5 2.0
processing time of each correction loop [ms]

0

100

200

300

400

500

600

nu
m

be
r o

f l
oo

ps

(d) Histogram of the VML-correction’s
processing time

Figure 4.21: The histograms of each component’s processing time without outliers

Table 4.3: Statistics for VML’s components’ processing time without outliers

mean[ms] std[ms] max[ms] min[ms] outlier rate

Vision 23.2 4.2 36.0 11.3 6.7%
Controller 0.03 0.02 0.08 0.01 6.4%

VML-prediction 0.03 0.02 0.09 0.01 7.5%
VML-correction 0.90 0.39 2.25 0.02 2.1%

4

102
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

From Table 4.3, it can be seen that vision takes much more time than the other three
parts. Please note though that the snake gate computer vision detection algorithm is
already a very efficient gate detection algorithm. In fact, it has tunable parameters, i.e.,
the number of samples taken per image for the detection (3000 in the current setup),
which allow the algorithm to run even much faster at the cost of having less accuracy
(see [11] for more details). The main gain in time in the approach presented in this
article is that we do not employ VIO and SLAM, which would take substantially more
processing. However, as the Snake gate detection provides relatively low-frequency and
noisy position measurements, the VML needs to run in high frequency and cope with
the detection noise to still provide accurate estimation for the controller.

4.5.2. FLYING EXPERIMENT WITHOUT GATE DISPLACEMENT

Figure 4.22: The picture of the Trashcan flying the track where the gates are displaced. The average speed is
2m/s and the maximum speed is 2.6m/s.

Figure 4.23 shows the flying result of the drone flying the track without gate displace-
ment. The position of the 4 gates is listed in Table 4.4. In Table 4.4, xg and yg are the
position of the gates in the real world and x̃g and ỹg are their position on the map. In
this situation, they are the same. The aim of this experiment is to test the filter’s perfor-
mance with sufficient detections. Thus, the velocity is set to be 1.5m/s to give the drone
more time to detect the gate. In Figure 4.23, the blue curve is the ground truth data from
Optitrack motion capture system and the yellow curves are the filtering results. From
the flying result, it can be seen that the filtered results are smooth and coincide with the
ground truth position well. During the period when the detections are not available, the
state prediction is still accurate enough to navigate the drone to the next gate. When the
drone detects the next gate, the filter will correct the prediction. In this situation, the
divergence of the states is only caused by the prediction drift. It should also be noted
that when the outliers appears at 84s, the filter is not affected by them because of the
RANSAC technique in the filter.

4.5. REAL-WORLD EXPERIMENTS

4

103

Table 4.4: The position of the gates without displacement

gate ID xg [m] yg [m] x̃g [m] ỹg [m]

1 5 0 5 0
2 6.5 5 6.5 5
3 1 7 1 7
4 0 1 0 1

50 55 60 65 70 75 80 85 90
-5

0

5

10

x
[m

]

Ground truth
Filtered result
measurements

50 55 60 65 70 75 80 85 90
time [s]

-2

0

2

4

6

8

y
[m

]

Figure 4.23: The flying result of the drone flying the track without the gate displacement.

4.5.3. FLYING EXPERIMENT WITH GATE DISPLACEMENT
In this section, we test our strategy under a difficult condition where the drone flies
faster, the gates are displaced and the detection frequency is low. The real gate positions
and their position on the map are listed in Table 4.5 and shown in Figure 4.24(a). Gates
are displaced between 0 and 1.5m from their supposed positions. The dashed orange
lines in Figure 4.24(a) denote the gate positions on the map while the solid orange lines
denote the real gate positions which are displaced from the map. Figure 4.24(b) shows
the flight data of the first lap. The orange solid gates are the ground truth positions of
the gates. The yellow curve is the filtered position based on the gates’ positions on the
map (orange dashed gates). In other words, the yellow curve is where the drone thinks it
is based on the knowledge of the map. After passing through one gate, when the drone
detects the next gate, the filter will start correcting the filtering error from the prediction
error and the gate displacement.

The whole flight result is shown in Figure 4.25. From the result, it can be seen that the
drone can fly the track for 3 laps with an average speed of 2m/s and a maximum speed of
2.6m/s while an experienced pilot flies the same drone in the same track with an average
speed of 2.7m/s after several runs of training. Figure 4.25(a) is the filtering result of the
position. It should be noted that the filtering result does not coincide with the ground

4

104
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

truth curve because of the displacement of the gates. The pose estimation is based on
the gates’ position on the map. When the gates are displaced, the drone still thinks they
are at the position which the map indicates. After the turn, when the drone sees the next
gate, which is displaced, it will attribute the misalignment to the prediction error and
correct the prediction by means of new detections. With this strategy, our algorithm is
robust to the displacement of the gates.

Gates’ ground truth position

Gates’ position on the map

Flight plan

𝑥

𝑦

1m
4m

1.
5m

1m 4m 1m1m

1m

(a) The map of the race track
where the gates in the real world
are displaced.

(b) The flying data of the first lap.

Figure 4.24: The experiment where the gates are displaced. When the drone sees the next gate after passing
through one gate, the filter will start correcting the error caused by the prediction drift and the gate’s displace-
ment. Thus, there is a jump in the filtering result.

Table 4.5: The position of the gates with displacement

gate ID xg [m] yg [m] x̃g [m] ỹg [m]

1 5 0 4 0
2 6.5 5 5 5
3 1 7 1 6
4 0 1 0 1

4.5.4. FLYING EXPERIMENT WITH DIFFERENT ALTITUDE AND MOVING GATE
We also show a more challenging trace track where the height of the gates varies from
0.5m to 2.5m. Also, during the flight, the position of the second gate (2.5m) is changed
after the drone passes through it. In the next lap, the drone can adapt to the changing
position of the gate (Figure 4.26).

The flight result is shown in Figure 4.27. In this flight, the waypoints are not changed
and the gates are deployed without any ground truth measurement. Thus, the estimated
position does not coincide with the ground-truth position. It should be noted that the

4.5. REAL-WORLD EXPERIMENTS

4

105

15 20 25 30 35 40 45 50 55 60 65
-5

0

5

10
x

[m
]

Ground truth
Filtered result
measurements

15 20 25 30 35 40 45 50 55 60 65
time [s]

-10

-5

0

5

10

y
[m

]

(a) The position estimation result. It should be
noted that the position estimation curve does
not coincide with the ground truth curve coming
from our motion capture system because the gate
displacements.

15 20 25 30 35 40 45 50 55 60 65
time[s]

-4

-2

0

2

4

v
x
 [m

/s
]

Ground truth
Filtered result

15 20 25 30 35 40 45 50 55 60 65
time[s]

-4

-2

0

2

4

v
y [m

/s
]

(b) The velocity estimation result of VML

Figure 4.25: The result of flying the track with the gate displacement.

(a) After the drone passes through the second
gate, the gate is moved.

(b) In the next lap, the drone can adapt to the
changing position of the gate and fly through it.

Figure 4.26: The flying experiment where the heights of the gates vary from 0.5m to 2.5m. During the flight,
the position of the second gate is changed.

height difference between the second gate and the third gate is 2m. With this altitude
change which violates the constant altitude assumption for the prediction error model,
the proposed VML is still accurate enough to navigate the drone through the gate.

From the real flight result, we can see that the VML performs well and can navigate
the drone through the racing track with high speed even though the gates are displaced.
Also, this strategy does not need computationally expensive methods like generic VIO
and SLAM. This allows it to be run on a very light-weight flying platform.

4

106
4. VISUAL MODEL-PREDICTIVE LOCALIZATION FOR COMPUTATIONALLY EFFICIENT

AUTONOMOUS RACING OF A 72-GRAM DRONE

50 55 60 65 70 75 80 85 90 95 100
-4

-2

0

2

4

6

8

x
[m

]

Ground truth
Filtered result
measurements

50 55 60 65 70 75 80 85 90 95 100
time [s]

-5

0

5

10

y
[m

]

Figure 4.27: The flying result of the drone flying the track with different height and the gate’s position changing.

4.6. DISCUSSION
In this paper, we proposed a novel state estimation method called Visual Model-predictive
Localization which provides navigation information for a 72 gram autonomous racing
drone. The algorithm’s properties were thoroughly studied in simulation and the feasi-
bility of real-world implementation was shown in challenging real world experiments.
Although in this paper VML is used for a specific drone race scenario, this method can
be directly used for navigation in other more general scenarios where the sensors have
low frequency, temporary failure, outliers and delays. For example, our approach can be
directly adopted into an outdoor environment where position measurements are pro-
vided by a GPS signal that has a delay, temporary failures and outliers. Just as in our
drone race experiments, the proposed approach should be more reliable than a Kalman
filter. For indoor flight, we used a common linear drag model for state prediction which
does not need a lot of effort and precise equipment to identify. Outdoor flight would
require adaptations to this model, for instance such as the ones explained in, e.g., [30].

We implemented our approach by adding a cheap smart camera Jevois to a tiny rac-
ing drone Trashcan. With very limited carrying capacity and more complex aerodynam-
ics properties, it is still demonstrated that this light-weight flying platform has the ability
to finish the drone race task autonomously. Compared to a regular size racing drone,
the Trashcan has more complex aerodynamics and is more sensitive to disturbances.
On the other hand, it has faster dynamics which can make maneuvers more agile. More
importantly, it is much safer than a regular size racing drone, which may even allow for
flying at home. In any case, the present approach represents another direction of the
autonomous drone race, which does not need high performance and heavy onboard
computers. Also, without computationally expensive navigation methods such as SLAM
and VIO, the proposed approach is still able to make the drone navigate autonomously
with relatively high speed.

However, the proposed approach still has its limitations. First of all, in this approach,

4.7. CONCLUSION

4

107

we don’t estimate the thrust. Instead, we use a non-changing altitude assumption to ap-
proximate the thrust to derive the prediction error model. The simulation and real world
experiments have shown that violating this assumption still results in accurate estima-
tion. However, when the racing track will contain more considerable height changes, it
may become desirable to estimate the thrust with a model, in order to have a more ac-
curate error model and increase the estimation accuracy, especially in more aggressive
flight.

Secondly, the current detection method is sensitive to light conditions. Most failures
are caused by the non-detection of the gate. This is a major bottleneck of increasing
the speed of the flight. In the future, we will design a gate detection method using deep
learning methods to detect the gate in a more complex environment. This deep net can
then run on the GPU of the Jevois. Also, higher speeds could be attainable.

Thirdly, in this paper, we mainly focus on the navigation part of the drone. The guid-
ance is only a way-point based method and the controller is a PID controller. To make
the drone fly faster, optimal guidance and control methods are needed [31–33]. Another
direction is to explore joint estimation for navigation. This will become very useful when
one assumes that gates are mostly not displaced. Then, over multiple laps, the drone can
get a better idea of where the gates are.

In the future, with the high speed development of computational capacity, when
more reliable gate detection and online optimal control are implemented onboard, the
speed of this autonomous racing drone can certainly be increased significantly. Com-
pared to regularly sized drones, this tiny flying platform will be able to perform faster
and more agile flight. At that time, the proposed VML approach will still be suitable for
providing stable state estimation for the drone.

4.7. CONCLUSION
In this paper, we presented an efficient Visual Model-predictive Localization (VML) ap-
proach to autonomous drone racing. The approach employs a velocity-stable model
that predicts lateral accelerations based on attitude estimates from the AHRS. Vision is
used for detecting gates in the image, and - by means of their supposed location in the
map - for localizing the drone in the coarse global map. Simulation and real-world flight
experiments show that VML can provide robust estimates with sparse visual measure-
ments and large outliers. This robust and computationally very efficient approach was
tested on an extremely lightweight flying platform, i.e., a Trashcan racing drone with a
Jevois camera. In the flight experiments, the Trashcan flew a track of 3 laps with an av-
erage speed of 2m/s and a maximum speed of 2.6m/s. To the best of our knowledge, it
is the world’s smallest autonomous racing drone with a weight 6 times lighter than the
currently lightest autonomous racing drone setup, while its velocity is on a par with the
currently fastest autonomously flying racing drones seen at the latest IROS autonomous
drone race.

REFERENCES
[1] H. Moon, Y. Sun, J. Baltes, and S. J. Kim, The iros 2016 competitions [competitions],

IEEE Robotics & Automation Magazine 24, 20 (2017).

4

108 REFERENCES

[2] D. Mellinger and V. Kumar, Minimum snap trajectory generation and control for
quadrotors, in Robotics and Automation (ICRA), 2011 IEEE International Conference
on (IEEE, 2011) pp. 2520–2525.

[3] D. Mellinger, N. Michael, and V. Kumar, Trajectory generation and control for pre-
cise aggressive maneuvers with quadrotors, The International Journal of Robotics
Research 31, 664 (2012).

[4] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, Estimation, control, and plan-
ning for aggressive flight with a small quadrotor with a single camera and imu, IEEE
Robotics and Automation Letters 2, 404 (2017).

[5] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, Aggressive quadrotor
flight through narrow gaps with onboard sensing and computing using active vision,
in Robotics and Automation (ICRA), 2017 IEEE International Conference on (IEEE,
2017) pp. 5774–5781.

[6] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermüller, and Y. Aloimonos, Gapflyt: Ac-
tive vision based minimalist structure-less gap detection for quadrotor flight, IEEE
Robotics and Automation Letters 3, 2799 (2018).

[7] B. Morrell, M. Rigter, G. Merewether, R. Reid, R. Thakker, T. Tzanetos, V. Rajur, and
G. Chamitoff, Differential flatness transformations for aggressive quadrotor flight, in
Robotics and Automation (ICRA), 2018 IEEE International Conference on Robotics
and Automation (IEEE, 2018) pp. 5204–5210.

[8] F. Gao, L. Wang, K. Wang, W. Wu, B. Zhou, L. Han, and S. Shen, Optimal trajectory
generation for quadrotor teach-and-repeat, IEEE Robotics and Automation Letters
(2019).

[9] S. Jung, S. Cho, D. Lee, H. Lee, and D. H. Shim, A direct visual servoing-based frame-
work for the 2016 iros autonomous drone racing challenge, Journal of Field Robotics
35, 146 (2018).

[10] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A. Simovic,
D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, et al., Challenges and implemented tech-
nologies used in autonomous drone racing, Intelligent Service Robotics , 1 (2019).

[11] S. Li, M. Ozo, C. De Wagter, and G. de Croon, Autonomous drone race: A com-
putationally efficient vision-based navigation and control strategy, arXiv preprint
arXiv:1809.05958 (2018).

[12] E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza,
Deep drone racing: Learning agile flight in dynamic environments, arXiv preprint
arXiv:1806.08548 (2018).

[13] E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scara-
muzza, Beauty and the beast: Optimal methods meet learning for drone racing, in
2019 International Conference on Robotics and Automation (ICRA) (IEEE, 2019) pp.
690–696.

REFERENCES

4

109

[14] B. Gati, Open source autopilot for academic research-the paparazzi system, in Amer-
ican Control Conference (ACC), 2013, IEEE (IEEE, Washington, DC, USA, 2013) pp.
1478–1481.

[15] G. Hattenberger, M. Bronz, and M. Gorraz, Using the paparazzi uav system for scien-
tific research, in International Micro Air Vehicle Competition and Conference 2014,
edited by G. de Croon, E. van Kampen, C. D. Wagter, and C. de Visser (Delft, The
Netherlands, 2014) pp. 247–252.

[16] L. V. Santana, A. S. Brandao, and M. Sarcinelli-Filho, Outdoor waypoint navigation
with the ar. drone quadrotor, in 2015 International Conference on Unmanned Air-
craft Systems (ICUAS) (IEEE, 2015) pp. 303–311.

[17] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R. D’Andrea,
A platform for aerial robotics research and demonstration: The flying machine arena,
Mechatronics 24, 41 (2014).

[18] M. W. Mueller, M. Hamer, and R. D’Andrea, Fusing ultra-wideband range measure-
ments with accelerometers and rate gyroscopes for quadrocopter state estimation,
in 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2015) pp. 1730–1736.

[19] K. McGuire, G. De Croon, C. De Wagter, K. Tuyls, and H. Kappen, Efficient opti-
cal flow and stereo vision for velocity estimation and obstacle avoidance on an au-
tonomous pocket drone, IEEE Robotics and Automation Letters 2, 1070 (2017).

[20] S. Weiss, M. W. Achtelik, M. Chli, and R. Siegwart, Versatile distributed pose estima-
tion and sensor self-calibration for an autonomous mav, in 2012 IEEE International
Conference on Robotics and Automation (IEEE, 2012) pp. 31–38.

[21] A. Santamaria-Navarro, G. Loianno, J. Solà, V. Kumar, and J. Andrade-Cetto, Au-
tonomous navigation of micro aerial vehicles using high-rate and low-cost sensors,
Autonomous robots , 1 (2018).

[22] J. N. Gross, Y. Gu, M. B. Rhudy, S. Gururajan, and M. R. Napolitano, Flight-test
evaluation of sensor fusion algorithms for attitude estimation, IEEE Transactions on
Aerospace and Electronic Systems 48, 2128 (2012).

[23] M. Faessler, A. Franchi, and D. Scaramuzza, Differential flatness of quadrotor dy-
namics subject to rotor drag for accurate tracking of high-speed trajectories, IEEE
Robotics and Automation Letters 3, 620 (2017).

[24] M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography, Communi-
cations of the ACM 24, 381 (1981).

[25] G. T. Diderrich, The kalman filter from the perspective of goldberger—theil estima-
tors, The American Statistician 39, 193 (1985).

http://dx.doi.org/ 10.1109/ACC.2013.6580045
http://dx.doi.org/ 10.1109/ACC.2013.6580045
http://dx.doi.org/ 10.4233/uuid:ef248460-783a-4894-bc3b-668304715a60

4

110 REFERENCES

[26] G. Chang, Robust kalman filtering based on mahalanobis distance as outlier judging
criterion, Journal of Geodesy 88, 391 (2014).

[27] Z. Li, G. Chang, J. Gao, J. Wang, and A. Hernandez, Gps/uwb/mems-imu tightly cou-
pled navigation with improved robust kalman filter, Advances in Space Research 58,
2424 (2016).

[28] E. van Horssen, J. van Hooijdonk, D. Antunes, and W. Heemels, Event-and deadline-
driven control of a self-localizing robot with vision-induced delays, IEEE Transac-
tions on Industrial Electronics (2019).

[29] G. Upton and I. Cook, Understanding statistics (Oxford University Press, 1996).

[30] L. Sikkel, G. de Croon, C. De Wagter, and Q. Chu, A novel online model-based wind
estimation approach for quadrotor micro air vehicles using low cost mems imus, in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE, 2016) pp. 2141–2146.

[31] D. Tailor and D. Izzo, Learning the optimal state-feedback via supervised imitation
learning, Astrodynamics 3, 361 (2019).

[32] S. Li, E. Ozturk, C. De Wagter, G. C. de Croon, and D. Izzo, Aggressive online con-
trol of a quadrotor via deep network representations of optimality principles, arXiv
preprint arXiv:1912.07067 (2019).

[33] G. Tang, W. Sun, and K. Hauser, Learning trajectories for real-time optimal control
of quadrotors, in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE, 2018) pp. 3620–3625.

APPENDEX

KALMAN FILTER’S PREDICTION MODEL

[
ẋ

ẏ

]
=

[
vx

vy

]
[

v̇x

v̇y

]
=

[
cosψm −sinψm

sinψm cosψm

]
{

[
−g sinθ

g cosφ

]
+

[
kx 0

0 ky

][
cosψm sinψm

−sinψm cosψm

][
vx

vy

]
}[

ḂN

ḂE

]
=

[
0

0

]
[
φ

θ

]
=

[
φm

θm

]
+

[
cosψm sinψm

−sinψm cosψm

][
BN

BE

]
(4.36)

The inputs of the system 4.36 is the AHRS reading u = [φm ,θm ,ψm]T. The states of
the Extended Kalman filter are X = [x, y, vx , vy ,BN ,BE]T. With the standard Extended
Kalman filter procedure list below, the states of the system can be estimated.

REFERENCES

4

111

PSEUDOCODES

Algorithm 3 gate_assignment

1: Input:∆x̄k ,∆ȳk

2: Output:x̄k , ȳk

3: for i = 1; i <= g ate_number s; i ++ do
4: x̄i

k = cosψi
g∆x̄k − sinψi

g∆ȳk +xi
g

5: ȳ i
k = sinψi

g∆x̄k +cosψi
g∆ȳk + y i

g

6: ∆d i
k = (x̄i

k − x̂k)2 + (ȳ i
k − ŷk)2

7: end for
8: j = argmini ∆d i

k

9: x̄k = x̄ j
k

10: ȳk = ȳ j
k

Algorithm 4 Basic RANSAC Fitting

1: Input:∆xp
k−q,k ,∆t

2: output:β̂=
[
∆xp

k−q ,∆v p
k−q

]
3: for i = 1; i <= i ter ati ons; i ++ do
4: sample_id = r andom_i nteg er s(k −q,k,ns)
5: ∆ts =∆t[sample_id]
6: ∆xs

k−q,k =∆xp
k−q,k [sample_id]

7: [∆xp
k−q i

,∆v p
k−q i

] = l i near _r eg r essi on(∆ts ,∆xs
k−q,k)

8: for j = k −q ; j < k; j ++ do

9: ε j =
∥∥∥∆v p

k−q i
(∆t j −∆tk−q)+∆xp

k−q i
−∆xp

j

∥∥∥
2

10: if ε j >σth then
11: εi+=σth

12: else
13: εi+= ε j

14: end if
15: end for
16: if εi < εmi n then
17: εmi n = ε
18: ∆xp

k−q =∆xp
k−q i

19: ∆v p
k−q =∆v p

k−q i
20: end if
21: end for

4

112 REFERENCES

Algorithm 5 Visual Model-predictive Localization

1: while true do
2: tk+i = cur r ent_t i me
3: xp

k += v p
x k Ts

4: y p
k += v p

y k
Ts

5: v p
x k+= (−g tanθ− cv p

x k)Ts

6: v p
y k

+= (g tanφ− cv p
y k

)Ts

7: clear _ol d_el ement s_i n_queue()
8: if flagNewPoseEstimation then
9: queue. f r ont ++

10: queue.time[queue. f r ont] = tk+i

11: queue.xp
k [queue. f r ont] = xp

k
12: queue.yp

k [queue. f r ont] = y p
k

13: queue.x̄[queue. f r ont] = x̄k

14: queue.ȳ[queue. f r ont] = ȳk

15: queue.si ze ++
16: if queue.si ze > N f i t then
17: [∆xp

k−q ,∆vx
p
k−q ,∆y p

k−q ,∆vy
p
k−q] = f i l ter _cor r ect ()

18: tk = tk+i

19: end if
20: end if
21: x̂k = xp

k −∆xp
k−q + (tk+i − tk)∆vx

p
k−q

22: ŷk = y p
k −∆y p

k−q + (tk+i − tk)∆vy
p
k−q

23: v̂x k = v p
x k −∆vx

p
k−q

24: v̂y k = v p
y k

−∆vy
p
k−q

25: end while

REFERENCES

4

113

Algorithm 6 filter_correct

1: Output:∆xp
k−q ,∆vx

p
k−q ,∆y p

k−q ,∆vy
p
k−q

2: for i = 1; i <= queue.si ze; i ++ do
3: ∆ti = queue.time.[newest_i tem_i d]−queue.time[i]
4: ∆xp

i = queue.xp [i]−queue.x̄[i]

5: ∆yp
i = queue.yp [i]−queue.ȳ[i]

6: end for
7: [∆xp

k−q ,∆vx
p
k−q] = l i near _r eg r essi on(∆t,∆xp)

8: [∆y p
k−q ,∆vy

p
k−q] = l i near _r eg r essi on(∆t,∆yp)

Algorithm 7 f l i g ht_pl an

1: Output:xr , y r , zr ,ψr

2: if (x̂k −wpx [w ay poi nt_i d])2 + (ŷk −wpy [w ay poi nt_i d])2 < Dswi tch_w p then
3: w ay poi nt_i d ++
4: end if
5: if (x̂k −wpx [w ay poi nt_i d])2 + (ŷk −wpy [w ay poi nt_i d])2 < D tur n then
6: ψsp = wpψ[w ay poi nt_i d +1])
7: rcmd = kr (ψsp −ψr)
8: ψr+= rcmd

9: end if
10: xr = wpx [w ay poi nt_i d])
11: y r = wpy [w ay poi nt_i d])
12: zr = wpz [w ay poi nt_i d])
13: ψr =ψr e f

5
AGGRESSIVE ONLINE CONTROL OF

A QUADROTOR VIA DEEP NETWORK

REPRESENTATIONS OF OPTIMALITY

PRINCIPLES

This chapter is based on the following article:
Li S, Öztürk E, De Wagter C, de Croon GC, Izzo D. Aggressive online control of a quadrotor via deep network
representations of optimality principles. In2020 IEEE International Conference on Robotics and Automation
(ICRA) 2020 May 31 (pp. 6282-6287). IEEE.

115

5

116
5. AGGRESSIVE ONLINE CONTROL OF A QUADROTOR VIA DEEP NETWORK

REPRESENTATIONS OF OPTIMALITY PRINCIPLES

5.1. INTRODUCTION
A major challenge in the field of drone control is to achieve aggressive autonomous
flight. In terms of control, much research focuses on designing controllers which can
track a reference guidance trajectory also when considering unmodeled dynamics, non-
linearities and disturbances which become significant when the maneuver of the drone
gets aggressive [1–4]. In terms of guidance, multiple methods varying from a simple
setpoint to high order polynomial trajectory generation methods have shown their fea-
sibility in guiding a quadrotor to the desired target including some time optimality prin-
ciples.

Two fundamentally different approaches are used to obtain aggressive quadrotor tra-
jectories. The first one is differential flatness based trajectory generation and control
[5, 6]. This method is able to generate aggressive trajectories for quadrotors (based on
a minimum-time polynomial guidance), and hence it is widely used in real quadrotor
flights. However, the resulting trajectory can be far from being truly time optimal.

The second approach uses optimal control theory to find and fly a trajectory that
incorporates the required optimality principles. Due to the time-consuming nature of
this calculation, this method is unsuitable for an online implementation [7, 8]. Several
methods have been proposed to address this, where the most common is to represent
the system dynamics as a series of simpler linear systems with analytical solutions [9, 10].
Unfortunately, this simplification can lead to an inaccurate representation of the nonlin-
ear response of the system and can thus negatively impact performance. An alternative
approach is to find and use, on-board, a sub-optimal solution instead. For example, by
using the result of the first iteration of a nonlinear programming (NLP) solver [11] which,
although incomplete, is faster to compute.

In recent years, leveraging significant advances in machine learning techniques and
in particular in artificial neural networks, a number of new methods have been proposed
relevant to the aggressive control of quadrotor trajectories. Reference trajectories have
been optimized using DNNs [12], waypoint tracking has been achieved by means of rein-
forcement learning [13] and trajectory tracking using RBFNN [14]. Tang et al. [15] com-
bine both optimal control and machine learning. Their experimental results have shown
that a trained neural network can predict an optimal trajectory to the target point, which
can then be tracked using PID control. This work is an important step towards online
optimal control, however the main computation is done on a workstation (i.e. not on-
board) and, since a PID controller is introduced to track the reference, there are delays
during the tracking as a result of which the controls may violate the constraints due to
the feedback term. In a different context (i.e. spacecraft landing and mass optimal con-
trol) Sanchez et al. [16] successfully introduced the use of imitation learning of optimal
controls to train DNNs capable of safely steering the system to desired target positions.
Following that work, Tailor and Izzo [17] made an extensive study of the technique on
simulated drone dynamics and Izzo et al. [18] introduced the term G&CNets (guidance
and control networks) to refer to these networks and showed how to study the stability
of the resulting trajectories analytically via differential algebraic techniques.

In this chapter, extending previous work on G&CNets, we present an approach for the
on-board optimal control problem of a quadrotor that does not need a PID controller to
track the trajectory and we test it during real flights. In our approach, 250,000 optimal

5.2. DESIGN OF THE G&CNET

5

117

trajectories are generated offline. Then, a G&CNet—which is a neural network trained to
learn this dataset—is computed. Instead of predicting an optimal trajectory as the work
in [15], G&CNet predicts the required optimal thrust directly which will be transferred
to the optimal pitch rate acceleration and sent to the controller, and thus can be seen in
the context of non-Linear MPC. Since the work of [15] is difficult to reproduce, we made
the comparison between G&CNet and the differential flatness based trajectory genera-
tion and control (DiffG&C) in simulation. The simulation results show that the proposed
G&CNet can guide the drone to the target points much faster while satisfying optimality
principles. Finally, the developed G&CNet and DiffG&C controllers are verified in real-
world flight tests where the results show that the on-board G&CNet can guide the drone
to the target with a resulting real-time trajectory that is very close to the theoretical op-
timal solution.

5.2. DESIGN OF THE G&CNET
5.2.1. THE DYNAMICAL SYSTEM

𝜃

𝑢#

𝑢$𝑣&

𝑣'

𝑥

𝑧
𝑞

Figure 5.1: Axis definition

Specifying the state of a quadrotor in the xoz plane as

x = [
x z vx vz θ q

]
(5.1)

as defined in Figure 5.1, the dynamical model for which we compute the optimal
control is:

f(x,u) =

ẋ = vx

ż = vz

v̇x =−
[

uΣ
∆F
m +2

F
m

]
sinθ−βvx

v̇z =−
[

uΣ
∆F
m +2

F
m

]
cosθ+ g0 −βvz

θ̇ = q
q̇ = L

Iy y
∆F (u2 −u1)

(5.2)

where ∆F = F −F = 0.59 N is the range of the thrust magnitude, F = 2.35 N is the
maximum thrust, F = 1.76 N is the minimum thrust, β = 0.5 is the drag coefficient,
m = 0.389 kg is the quadrotor mass, L = 0.08 m is the length of the quadrotor, Iyy =
0.001242 kg m2 is the moment of inertia about the y-axis, u = [u1,u2] ∈ [0,1] are the left
and right throttles respectively, and uΣ = (u1 +u2).

5

118
5. AGGRESSIVE ONLINE CONTROL OF A QUADROTOR VIA DEEP NETWORK

REPRESENTATIONS OF OPTIMALITY PRINCIPLES

5.2.2. THE OPTIMISATION PROBLEM
The cost function we need to minimise for the optimal controls is:

J (ε, t f ,u(t)) = (1−ε)t f +ε
∫ t f

0
(u1(t)2 +u2(t)2)dt (5.3)

where ε ∈ [0,1] is a hybridisation parameter. When ε= 0, the cost function is exactly
time-optimal, and when ε= 1, the cost function is exactly power-optimal. With this pa-
rameter we are able to generate datasets from time-optimal to power-optimal continu-
ously. Similar to the weighting factor of [19], we set ε close to zero (ε= 0.2) to improve the
numerical convergence of the problem and avoid difficult to track control profiles. We
trained two networks for ε= 0.5 and ε= 0.2 in order to compare how well the quadrotor
is able to track and execute the optimal controls with differing degrees of aggressiveness.
As we are more interested in time-optimal guidance and control, the dataset and train-
ing details focus only on the ε = 0.2 controller, but the same arguments and methods
apply to the ε= 0.5 controller.

minimize
u,t f

J (ε, t f ,u(t))

subject to ẋ = f(x,u), ∀t

x(0) = x0

x(t f) = 0

(5.4)

Using a direct transcription and collocation method (Hermite-Simpson transcrip-
tion), the trajectory optimisation problem is transformed into an NLP problem [19].
The AMPL modelling language was used to specify the NLP problem which was then
solved via SNOPT, an SQP NLP solver. Solving for 250,000 trajectories with initial states,
x0, drawn uniformly from x0 ∈ [−10,10] m, z0 ∈ [−10,10] m, vx0 ∈ [−5,5] m s−1, vz0 ∈
[−5,5] m s−1, θ0 ∈ [−π/3,π/3] rad, and ω0 ∈ [−0.01,0.01] rad s−1, we obtain a database of
state-control pairs of the form:

κi =
(
x(i)

j ,u(i)
j

)K

j=1
where

x(i)
1 = x(i)

0 ,x(i)
J = 0 i = 1, ..., M

(5.5)

where i indexes the trajectories and K = 81 is the number of grid points in the Hermite-
Simpson transcription [19]. We solved for 250,000 trajectories of which 214,210 con-
verged, and following an 80-10-10 split, these trajectories were split into training, val-
idation and test sets. Overall, this translates to 13,880,808 state-control pairs that the
network was trained on, and 1,735,101 that the network was tested on.

5.2.3. NETWORK ARCHITECTURE AND TRAINING
We construct neural network architectures in the same manner as [19] with 3 layers, 100
hidden units with softplus activation functions, and sigmoid activation functions for the
output controls.

Thus we train on the loss function:

l = ∥∥N (x)−u∗∥∥2 (5.6)

5.3. SIMULATION RESULT AND ANALYSIS

5

119

with a minibatch size of 256 and a starting learning rate of 10−3 using the Adam opti-
mizer. For further details on network training and construction, refer to [19]. From this
training, the ε= 0.2 network was able to achieve a mean absolute error (MAE) of 0.0105
for u1 and 0.0107 for u2 on the training set, and a MAE of 0.0108 for u1 and 0.0109 for u2

on the test set.

5.3. SIMULATION RESULT AND ANALYSIS
In this section, we analyse the theoretical performance of the proposed optimal con-
troller. First we discuss the simulated stability characteristics of the G&CNet(ε = 0.2)
controller. Then we introduce the aforementioned DiffG&C as a benchmark controller.
Finally, we detail the simulation of both methods and present a comparison between
simulations.

5.3.1. STABILITY OF NEURAL NETWORK CONTROLLER

Figure 5.2: Pitch (top) and the left thrust (bottom) during a G&CNet driven trajectory simulated with control
delays of 0ms, 18ms and 36ms. The vertical dashed lines show the initial and final time of the true optimal
trajectory. The horizontal dashed lines show the target final states: θ(t f) = 0.0 and u1(t f) = uhover.

One of the foremost important things is the stability of any controller used on the
quadrotor as an unstable controller can lead to failure. The primary stability concerns
arise due to the fact that in a real quadrotor there is a measurable delay between the
computation of the controls, the state given to the controller and the controller response
which arises due to factors such as the time taken to compute the state, and the inertia
of the rotors. This delay can be modeled by a fixed time between the command and the
execution of the control command:

u(t) =N (x(t −τ)) (5.7)

where τ is the time delay. Using the methods developed in [18], we find that the sta-
bility margin of the G&CNet(ε = 0.2) controller is τs = 63.8ms. Although this stability

5

120
5. AGGRESSIVE ONLINE CONTROL OF A QUADROTOR VIA DEEP NETWORK

REPRESENTATIONS OF OPTIMALITY PRINCIPLES

margin is high, it mostly provides information as to the hovering stability of the quadro-
tor, but we are more interested in the general stability during flight. Figure 5.2 shows the
effect of an increasing time delay on the G&CNet(ε= 0.2) controller left thrust and pitch
for delays of τ = 0ms, τ = 18ms and τ = 36ms. Here we see that, as the delay increases,
the controller becomes increasingly unstable up to the point where it is no longer able
to track the optimal trajectory nor hover in the final state.

5.3.2. DIFFERENTIAL FLATNESS BASED AGGRESSIVE TRAJECTORY GENERA-
TION AND CONTROL (DIFFG&C)

A commonly used aggressive trajectory generation method is to use high order polyno-
mials P (t) = pTt to connect the initial point, the waypoints and the final point [5, 6].
Thanks to the differential flatness properties of the quadrotor, the thrust on each ro-
tor can be directly related to the 4th order derivative of the position curves u = f(p, t)
[5, 20]. In particular, in this method, we use the same kinematics model as the reference
[20] with Bebop’s drag coefficient (D = diag(−β,−β,−β)), mass m = 0.389 kg and length
L = 0.08 m.

ẋ = v

v̇ = g+T+RTDRv

Φ̇= R′q
(5.8)

where thrust T = [0,0,T]T and body rate q = [p, q,r]T are the inputs of the system
with the assumption that the low-level acceleration controller and rate controller can
track the reference well. Equation 5.9 is used to check the feasibility of the thrust each
rotor can provide.

q̇ = I−1(τ−q× Iq) (5.9)

From the computed polynomial trajectory, the body rate q and the rotor thrusts can
be determined. For a given arrival time t f , the best trajectory connecting two states is
the one with minimal snap. By decreasing the arrival time t f until the constraints are
violated, the polynomial trajectory with minimum arrival time and minimal snap can be
found.

min
t f

{
min

p

∫ t f

0
P (4)(t)dt } = min

t f
{min

p
pTQp

}
(5.10)

s.t. Ap = b (5.11)

f(p, t) < c (5.12)

where (5.10) is the optimization target, the integral of the 4th order derivative of the
polynomial which can be written as a quadratic form. Equation 5.11 is the constraints of
the polynomial and (5.12) gives the input constraints. The readers are referred to [6] for
the detailed derivation of matrix Q. The algorithm is listed below

The feed-forward control inputs are computed from the polynomial trajectories and
a feedback PID controller is used to compensate for disturbance. The readers are re-
ferred to [20] for further details on the controller implementation.

5.3. SIMULATION RESULT AND ANALYSIS

5

121

Algorithm 8 The pseudocode of DiffG&C

1: procedure DIFF_CONTROL_GUIDANCE(t f ,b,c)
2: while f(p, t) < c do . check feasibility
3: p∗ = p
4: t f = t f −∆t .minimise time
5: minp pTQp s.t. Ap = b . gradient descent
6: end while
7: return t f , p∗
8: end procedure

(a) A simulated trajectory using G&CNet(ε= 0.1). (b) Force of the front rotors and the rear rotors
along the simulated trajectory.

Figure 5.3: An example simulation of G&CNet(ε = 0.2). In each simulation step, the controller receives
x,z,vx ,vz ,θ,q and outputs the thrust command of the front rotors and the rear rotors. The desired total thrust
T and rate acceleration q̇ are calculated by (5.13) and sent to model 5.2 for integration.

We only investigate the movement in the xoz plane by setting any movement in the y
direction to 0. This way, the model given by (5.8) can be simplified to the model in (5.2).

5.3.3. SIMULATION OF THE G&CNET CONTROLLER
In this simulation, we use the model from (5.2) as our dynamical model with the rate ac-
celeration q̇ and total thrust T as the inputs. The reason is that on the real drone, there
are different low-level controllers which can track the thrust and the rate acceleration ac-
curately, one of which is the incremental nonlinear dynamic inversion controller (INDI)
[1]. We calculate the desired thrust and rate acceleration command from the G&CNet
controller outputs using Eq. (5.13){

q̇cmd = (u2−u1)∆F L
Iy y

Tcmd = (u1+u2)∆F+2F
m

(5.13)

5.3.4. COMPARISON BETWEEN DIFFG&C AND G&CNET
In this section, a comparison is made in simulation between DiffG&C and G&CNet. The
time required by the drone to reach the target is used to derive a performance index. In
each trial, the initial position of the drone is set to be [x0, z0] = [0m,2.5m] and the same
target x f ∈ [1,10], z f ∈ [0,5] is set for both controllers. To quantify the performance of a

5

122
5. AGGRESSIVE ONLINE CONTROL OF A QUADROTOR VIA DEEP NETWORK

REPRESENTATIONS OF OPTIMALITY PRINCIPLES

(a) ε= 0.5 (b) ε= 0.2

Figure 5.4: Comparison of arrival time between DiffG&C and G&CNet. Despite power optimality being
weighted equally to time optimality, G&CNet(ε= 0.5) can, in most cases, steer the drone to the target points in
less time than DiffG&C (the black line shows the region border where G&CNet outperforms DiffG&C). On the
other hand, G&CNet(ε= 0.2) is always faster than DiffG&C.

method, we introduce an index σ:

σ=
t Di f f G&C

f − tG&C Net
f

t Di f f G&C
f

(5.14)

where t∗f is the arrival time of each controller. When σ > 0, the G&CNet controller

is faster than DiffG&C and vice versa. Figure 5.4 gives the simulation results of multiple
target points with ε = 0.2 and ε = 0.5. From Figure 5.4(a), it can be seen that, in most
cases, G&CNet(ε= 0.5) has a shorter arrival time than DiffG&C outside the region delin-
eated by the black border, and in this region the arrival time is within 10% of DiffG&C. As
seen in Figure 5.4(b), with G&CNet(ε = 0.2), the arrival time is always shorter and up to
60% faster than DiffG&C.

Figure 5.5 shows a comparison plot of the trajectories and controls of DiffG&C, G&CNet
(ε = 0.5) and G&CNet(ε = 0.2). It can be seen that all three controllers reach the target,
but the control profiles and arrival times differ significantly. With DiffG&C, due to the
polynomial representation of trajectories, the quadrotor inputs cannot be fully utilised,
and thus the time-optimality cannot be guaranteed. On the other hand, G&CNets are
able to saturate the inputs and arrive at a similar or smaller time.

5.4. EXPERIMENT SETUP AND RESULT

5

123

(a) (b)

Figure 5.5: An example of comparison between DiffG&C and G&CNet(ε= 0.5) when x f = 5, z f = 2.5.

5.4. EXPERIMENT SETUP AND RESULT
In this section we show the experimental setup for real-world flights and the flight per-
formance of each method.

5.4.1. EXPERIMENT SETUP

To verify the proposed G&CNet, we use a commercial Parrot Bebop 1 as our flying plat-
form (Figure 5.6). The software is fully replaced by an open-source autopilot, Paparazzi-
UAV. This autopilot provides full access to the raw sensor data and rotor commands. In
this experiment, the position and velocity feedback are from Opti-track motion capture
system. The attitude estimation is from an on-board complementary filter, which is in-
evitably biased. The angular rate estimation is from the on-board gyroscope. The control
architecture is shown in Figure 5.7. For G&CNet, the lateral movement and heading are
controlled by the original outer-loop PID controller and inner-loop INDI controller to
keep y = 0 andψ= 0◦. The maneuver on the vertical plane is taken over by the proposed
G&CNet. In each control update, G&CNet receives the state estimations and outputs
the desired pitch acceleration q̇ and the thrust T . For the benchmark DiffG&C, after the
trajectory is generated, the desired angular rate q can be directly calculated. Then a feed-
back controller is used to compensate the deviation caused by the model inaccuracy, and
the state estimation bias.

In the real-world flight tests, we test 3 controllers which are DiffG&C, G&CNet(ε =
0.5) and G&CNet(ε = 0.2) respectively. For each controller, the start position is set to
be x0 = [0m,1.5m]T and 3 targets which are x1

f = [5m,2.5m]T,x2
f = [5m,1.5m]T and x3

f =

Figure 5.6: A Parrot Bebop 1 is used as the flying platform. The original autopilot is fully replaced by an open-
source autopilot called Paparazzi UAV.

5

124
5. AGGRESSIVE ONLINE CONTROL OF A QUADROTOR VIA DEEP NETWORK

REPRESENTATIONS OF OPTIMALITY PRINCIPLES

PD 𝐾"

𝜓$ = 0

𝑦$ = 0

𝜙)

𝑝)
𝑟)

𝐾, Rotor
Mixing Dynamics

G&CNet
𝑥$ 𝑧$

�̇�)
𝑇

�̇�) �̇�)
𝜴

Opti-track AHRS Gyro Gyro

Opti-track
AHRS
Gyro

INDI𝑦3

𝑣35

𝜙6 𝜓6 𝑝3 �̃� 𝑝3 𝑞3 �̃�

�̃� 𝑣38

𝑣39

𝑥3 𝜃6 𝑞3

INDI

(a) The control structure of G&CNet. A PD con-
troller and an INDI controller are used to keep the
quadrotor at y = 0m and ψ= 0◦.

𝜓" = 0

𝑝&
𝑟&

Rotor
Mixing Dynamics

𝑥" 𝑧" 𝜴

𝑣,- 𝜙/𝑥,

�̃�

𝑣,1 𝜃/

𝑞,

𝑦" = 0
Trajectory
Generator

𝑥& 𝑡 ,𝑧&(𝑡)

𝑦& 𝑡 = 0
𝜓& 𝑡 = 0

Feed-forward
controller

Feed-back
controller

𝑞&
INDI

𝑇
Δ𝑟&

Δ𝑝& Δ𝑞&

+

Opti-track
AHRS

𝑦, �̃� 𝜓/𝑣,<

Gyro
𝑝,

DiffG&C

(b) The control structure of DiffG&C. The feed-
forward signal is directly computed from gener-
ated trajectories. A feedback controller is used to
correct for deviations.

Figure 5.7: The control structure of the proposed G&CNet and the benchmark DiffG&C.

[5m,0.5m]T are set to be tested. For each target, we have 10 independent flights. To
evaluate the performance of one controller, we have 2 indices which are average arrival
time ∆t̄∗ and average tracking error ∆x̄∗ defined by

∆t̄∗ =
∑N

i ∆t i∗
N

(5.15)

∆x̄∗ =
∑N

i=1

∑ni
j=1

∥∥∥x̂i , j
∗ −xi , j

r ∗
∥∥∥∑N

i=1 ni
(5.16)

where ∆t i∗ is the arrival time of i th flight of method ∗. N is the number of the flight

of one controller, which is 10 in our case. x̂i , j
∗ is the position of i th flight’s j th sample

measured by the Opti-track system. xi , j
r ∗ is the corresponding position reference. It

should be noted that in DiffG&C, xr is the reference trajectory while in G&CNet, it is the
simulated trajectory.

5.4.2. EXPERIMENT RESULT
The experiment is set up as described in the previous section and we have 90 flights in
total (3 controllers × 3 targets × 10 flights, depicted in Figure 5.8). The average arrival
time is listed in Table 5.1 and the average tracking error is listed in Table 5.2.

Table 5.1: Average arrival time ∆t̄∗ to targets xi
f

Controller x1
f x2

f x3
f

DiffG&C 2.63s ±0.05s 2.18s ±0.02s 2.10s ±0.04s
G&CNet(0.5) 2.36s ±0.02s 2.20s ±0.02s 2.13s ±0.01s
G&CNet(0.2) 1.96s ±0.03s 1.88s ±0.03s 1.91s ±0.04s

From Table 5.1, it can be seen that when the target is set to x1
f , G&CNet(ε = 0.5)

reaches the target in a shorter time DiffG&C, whereas for targets x2
f and x3

f , it is on par
with the benchmark. On the other hand, G&CNet(ε = 0.2) always reaches the target in

5.4. EXPERIMENT SETUP AND RESULT

5

125

(a) DiffG&C (b) GCNet(ε= 0.5)

(c) GCNet(ε= 0.2)

Figure 5.8: The real-world flight data of different controllers to different targets

faster time. These experimental results confirm the simulation results that were ob-
tained in Section 5.3.

In terms of tracking error, DiffG&C has the smallest tracking error ∆x̄ followed by
G&CNet(ε= 0.5), and finally G&CNet(ε= 0.2). We find that G&CNet(ε= 0.5) outperforms
G&CNet(ε = 0.2) in terms of the tracking error. This can be attributed to the fact that a
lower ε corresponds to a more aggressive trajectory and, in turn, a high-frequency high
amplitude changes of the inputs. As mentioned in Section 5.2, this is difficult for the
quadrotor to track due to the inertial properties of its rotors.

5

126 REFERENCES

Table 5.2: Average tracking error ∆x̄∗ to targets xi
f

Controller x1
f x2

f x3
f

DiffG&C 0.06m 0.07m 0.07m
G&CNet(ε= 0.5) 0.13m 0.09m 0.10m
G&CNet(ε= 0.2) 0.17m 0.15m 0.28m

5.5. CONCLUSIONS
We have proposed G&CNet as a novel online optimal controller for quadrotors that re-
moves the need for expensive real-time optimal trajectory generation by learning a deep
neural representation of the optimal state-control mapping. We have demonstrated,
both in simulation and with real-world flight tests, that G&CNets are not only feasible
for this purpose, but also competitive with a commonly used method, DiffG&C. Our re-
sults indicate that a G&CNet weighting equally power and time optimality (ε= 0.5) is, at
worst, 10% slower than DiffG&C and faster most of times while a G&CNet aggressively
biased towards time optimality (ε= 0.2) is always considerably faster by up to 60%.

There are many avenues of exploration available. Future work can focus on adding
the actuator model into the optimal control problem thus eliminating the issue of diffi-
cult to track bang-bang controls for the rotors. A further extension of our work would be
to implement the optimal control problem in the full 3-dimensional model thus poten-
tially adding more interesting manoeuvre capabilities to the quadrotor. Additionally, the
network could be trained to achieve a nonzero velocity in the final state in preparation
for consecutive manoeuvres.

REFERENCES
[1] E. J. Smeur, Q. Chu, and G. C. de Croon, Adaptive incremental nonlinear dynamic

inversion for attitude control of micro air vehicles, Journal of Guidance, Control, and
Dynamics (2015).

[2] E. Tal and S. Karaman, Accurate tracking of aggressive quadrotor trajectories us-
ing incremental nonlinear dynamic inversion and differential flatness, in 2018 IEEE
Conference on Decision and Control (CDC) (IEEE, 2018) pp. 4282–4288.

[3] S. Sun, C. C. de Visser, and Q. Chu, Quadrotor gray-box model identification from
high-speed flight data, Journal of Aircraft 56, 645 (2019).

[4] S. Sun and C. de Visser, Aerodynamic model identification of a quadrotor subjected
to rotor failures in the high-speed flight regime, IEEE Robotics and Automation Let-
ters 4, 3868 (2019).

[5] D. Mellinger and V. Kumar, Minimum snap trajectory generation and control for
quadrotors, in Robotics and Automation (ICRA), 2011 IEEE International Conference
on (IEEE, 2011) pp. 2520–2525.

REFERENCES

5

127

[6] A. Bry, C. Richter, A. Bachrach, and N. Roy, Aggressive flight of fixed-wing and
quadrotor aircraft in dense indoor environments, The International Journal of
Robotics Research 34, 969 (2015).

[7] M. Hehn, R. Ritz, and R. D’Andrea, Performance benchmarking of quadrotor systems
using time-optimal control, Autonomous Robots 33, 69 (2012).

[8] F. Morbidi, R. Cano, and D. Lara, Minimum-energy path generation for a quadro-
tor uav, in 2016 IEEE International Conference on Robotics and Automation (ICRA)
(IEEE, 2016) pp. 1492–1498.

[9] M. Hehn and R. D’Andrea, Quadrocopter trajectory generation and control, IFAC
proceedings Volumes 44, 1485 (2011).

[10] O. Santos, H. Romero, S. Salazar, O. García-Pérez, and R. Lozano, Optimized discrete
control law for quadrotor stabilization: Experimental results, Journal of Intelligent
& Robotic Systems 84, 67 (2016).

[11] M. Geisert and N. Mansard, Trajectory generation for quadrotor based systems using
numerical optimal control, in 2016 IEEE international conference on robotics and
automation (ICRA) (IEEE, 2016) pp. 2958–2964.

[12] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig, Deep neural networks
for improved, impromptu trajectory tracking of quadrotors, in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (IEEE, 2017) pp. 5183–5189.

[13] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, Control of a quadrotor with reinforce-
ment learning, IEEE Robotics and Automation Letters 2, 2096 (2017).

[14] S. Li, Y. Wang, J. Tan, and Y. Zheng, Adaptive rbfnns/integral sliding mode control
for a quadrotor aircraft, Neurocomputing 216, 126 (2016).

[15] G. Tang, W. Sun, and K. Hauser, Learning trajectories for real-time optimal control
of quadrotors, in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE, 2018) pp. 3620–3625.

[16] C. Sánchez-Sánchez and D. Izzo, Real-time optimal control via deep neural net-
works: study on landing problems, Journal of Guidance, Control, and Dynamics 41,
1122 (2018).

[17] D. Tailor and D. Izzo, Learning the optimal state-feedback via supervised imitation
learning, Astrodynamics (2019), 10.1007/s42064-019-0054-0.

[18] D. Izzo, D. Tailor, and T. Vasileiou, On the stability analysis of deep neural net-
work representations of an optimal state-feedback, arXiv e-prints , arXiv:1812.02532
(2018), arXiv:1812.02532 [cs.NE] .

[19] D. Tailor and D. Izzo, Learning the optimal state-feedback via supervised imitation
learning, arXiv e-prints , arXiv:1901.02369 (2019), arXiv:1901.02369 [cs.LG] .

http://dx.doi.org/ 10.1007/s42064-019-0054-0
http://arxiv.org/abs/1812.02532
http://arxiv.org/abs/1901.02369

5

128 REFERENCES

[20] M. Faessler, A. Franchi, and D. Scaramuzza, Differential flatness of quadrotor dy-
namics subject to rotor drag for accurate tracking of high-speed trajectories, IEEE
Robotics and Automation Letters 3, 620 (2017).

6
CONCLUSION

6.1. RESEARCH QUESTIONS

Recall the first research question raised in the introduction:

RESEARCH QUESTION 1

How does a drone fly through a racing track fully autonomously using only
onboard resources?

In Chapter 2, a systematic strategy for autonomous drone racing was presented and
tested in real world. A commercial Bebop 1 quadrotor was used as the flying platform
to demonstrate the proposed strategy. Firstly, a gate detection method ’snake gate’ was
developed and an analysis of the Snake gate detection’s performance was discussed in
detail. Next, a Kalman filter fusing the visual detections and onboard IMU readings was
developed. The flying results showed that the proposed Kalman filter can provide accu-
rate state estimation. Then, two controllers were designed for the drone to fly through
the racing track. The first one was a basic PD controller which was used when there are
gates in the drone’s field of view. The other controller was used to steer the drone to fly
an arc to approach the next gate. Finally, the whole system was tested in a showroom
full of aircraft components. The drone could successfully fly through 15 gates with an
average speed of 1.5m/s in such a complex environment.

The second research question is proposed as

129

6

130 6. CONCLUSION

RESEARCH QUESTION 2

How well can the drone estimate its aerodynamics parameters together with
its AHRS biases during flight with the help of the vision information?

In Chapter 3, a parameter estimation method was proposed to estimate the aerody-
namic coefficients and AHRS biases during the flight. Firstly, the cause of AHRS biases
was discussed in detail and then a model of the AHRS biases was established. Next, a
gradient descent method was developed to minimize the error between the predicted
trajectory and the visual detections. In this way, the AHRS biases and the aerodynamics
coefficients can be estimated at the same time. Finally, the proposed method was tested
with real flight data. The result showed that with 19 iterations, the proposed method had
the final point prediction error of 0.2m while the EKF had the final point prediction error
of 0.5m.

The third research question is

RESEARCH QUESTION 3

How does a moving horizon based method compare to a Kalman filter in the
drone race setting?

In Chapter 4, a 72-gram autonomous racing drone was developed as the flying plat-
form for autonomous drone racing. It is a combination of a cheap smart camera Jevois
and a light-weight quadrotor Trashcan. In this chapter, a novel state estimation method
VML was proposed. It estimates the error model between the model prediction and vi-
sual measurements in a short-time window (moving horizon). The model is then used
to compensate for the model prediction in the future to provide accurate state estima-
tion. The simulation result showed that when outliers existed, a commonly used Kalman
filter had 15% chance to diverge while the proposed VML did not diverge. And in terms
of handling vision delays, the proposed VML needed less than 0.2s for one simulation
while the Kalman filter needed up to 0.8s in the MATLAB implementation. Finally, the
proposed method and hardware were tested in the real world. The drone flew through
a four-gate racing track by 3 laps with an average speed of 2m/s and a peak speed of
2.6m/s.

Finally, the last research question is raised as

RESEARCH QUESTION 4

What are the properties of a neural-network-based imitation of a (close-to)
time-optimal control policy?

6.2. DISCUSSION

6

131

In Chapter 5, a neural network based optimal controller, G&CNet was developed to
control the quadrotor to the target point with minimum time. The G&CNet was trained
based on 250,000 optimal trajectories. It maps the current states of the drone and the
corresponding optimal control policy. The simulation result showed that the flying result
of the G&CNet is very close to the theoretical optimal solution. Both simulation and real-
world flying results showed that it has faster flight than a commonly used polynomial
based trajectory generation and tracking method.

6.2. DISCUSSION
At the beginning of this work, autonomous drone racing had never been studied by
any research group. Thanks to the first autonomous drone racing, the IROS 2016 au-
tonomous drone racing, this topic has attracted many researchers’ attention. After sev-
eral year of development, it gradually has become a new research topic in robotics com-
munity and multiple groups have performed research on it. The work presented in
this thesis is the four years’ research result on this topic since the first autonomous
drone race. It covers the most essential parts of flying a drone through racing tracks
autonomously including vision, navigation and control. This research aims to provide
a solution for autonomous drone racing with robust, accurate and efficient navigation
guidance and control algorithms. Compared to other work in the drone race filed, the
methods proposed in this thesis are so computationally efficient that can run on a tiny
quadrotor without the need of high-performance computers and expensive sensors. Thus,
the proposed methods in this thesis can decrease the cost of autonomous racing drones
significantly, which is more friendly to users. In addition, as demonstrated in Chapter 4,
the proposed methods are able to run on a cheap 72g tiny quadrotor, which is much safer
than common racing drones and even allows for flying at home. In fact, the techniques
presented in this thesis are not only for such a specific target. They can be transferred to
other applications easily.

In Chapter 2, we presented a light-weight visual navigation algorithm. One essen-
tial part of this navigation algorithm is the detection method called ’Snake gate’ which
is used to detect the colored squares. This algorithm is so computationally efficient that
it can run on a Bebop 1 (made in 2014) without any help of the GPU to provide position
measurements. The other essential part of the navigation algorithm is a novel Kalman fil-
ter which uses the accelerometers’ reading to deduce the quadrotor’s velocity. Together
with the proposed control methods, the proposed visual navigation method can be used
not only for autonomous drone racing but also in other industrial applications like nav-
igation in a warehouse. In this way, the high cost of installing motion capture systems
like VICON can be saved.

In Chapter 3, an onboard parameter estimation method was proposed. In fact, AHRS
biases exist on each quadrotor while their aerodynamics differs from each other. It is un-
wise to calibrate the IMUs frequently and estimate the aerodynamics for each quadrotor.
Because, on one hand, this process is time-consuming. If more accurate calibration or
model is required, some other external equipment like a precise turntable or motion
tracking system is needed, which is not always available in the flying area. On the other
hand, the biases of IMUs vary due to multiple factors like temperature, humidity and air
pressure. They can even change during one flight. Thus, estimating the AHRS biases and

6

132 6. CONCLUSION

aerodynamics online can be a more efficient way to increase the state estimation accu-
racy and control performance. The proposed method can be used together with other
position measurements instead of the detection of the gates in our case. For example, in
outdoor flights, GPS measurements can be used to replace the vision detections in the
proposed method to estimate the AHRS bias and the quadrotor’s dynamics.

A novel state estimation method, VML, is proposed in Chapter 4. The proposed algo-
rithm is more robust to outliers and more efficient in handling vision delays compared to
the commonly used Kalman filters, especially when there is a short time when no mea-
surement is available. It is easy to see that the proposed method can be generalized to
other navigation scenarios where there are delays, temporary failures and outliers in the
measurements. For example, in outdoor flight, the vision measurements can be replaced
by GPS measurements directly, which also has delays, outliers and temporary failures.
The proposed VML should work as well to provide robust and stable state estimation as
in the drone race scenario.

Last but not least, the proposed G&CNet in Chapter 5 moves nonlinear optimal con-
trol problem onboard. Obviously, this controller is not only designed for autonomous
drone racing. It is a general control method which guides and steers a quadrotor from
any point to the target point. This G&CNet is lightweight enough to run on a Bebop 1
quadrotor. Thus, there is no doubt that it can also run on other more powerful drones.
Furthermore, it should be able to use in any other quadrotor applications where the
guidance and control modules are needed to steer the quadrotor from one point to an-
other point when the accurate state estimation is provided by the navigation module.

6.3. FUTURE WORK
Although the work presented in this thesis provides a systematic solution for autonomous
drone racing as one of the most computationally efficient and fastest autonomous drone
racing solutions, it is still not as fast as human pilots’ racing drones. There is still much
space for improvement.

Regarding visual detection, although the proposed Snake gate detection is success-
fully used for four years’ autonomous drone racing, it still has its shortcomings. For ex-
ample, when the light conditions change, the color threshold has to be retuned manually,
which is not very straight-forward and time-consuming. Also, when the light is uneven
which leads to incorrect exposure, the pixel searching in the Snake gate detection can
stop at the middle of the bar, which leads to false negative detections. At last, the snake
gate detection does not work when part of the gate is obscured. Thus, a more robust gate
detection technique should be developed. One research direction can be deep learning
based object recognition techniques. With enough training data (labeled images), the
neural network should be able to detect the racing gate onboard regardless of what the
light condition is. It should also be able to detect the gates when parts of them are ob-
scured.

In terms of guidance and control, the proposed G&CNet only works in the vertical
plane and the final target is to hover at one point. In order to use the G&CNet in real
applications, a 3D version has to be developed. Thus, the optimal policy dataset has to
be regenerated with a full state model. Furthermore, the final target point should not
be velocity zero. There should be more final states so that the quadrotor can change its

6.3. FUTURE WORK

6

133

target smoothly during the flight. What follows is how to increase the optimization speed
and avoid local minima. Moreover, when the new dataset is generated, the structure of
the neural network may need to be adjusted to learn the dataset accurately.

Finally, the proposed VML and G&CNet are verified separately. It will be very inter-
esting to combine them together in a real drone race scenario once the 3D version of
the G&CNet is established. At the same time, robust, close-to-time-optimal flight would
then get in reach even of small, cheap quadrotors.

ACKNOWLEDGEMENTS

This thesis is the result of my four years’ work at the MAVLab of Control and Simulation
department at TU Delft. It was a great honor for me to be a part of this fantastic team. At
the MAVLab, I grew up from a student who lived in the simulation world to a researcher
who could make his ideas fly in the air. It is obvious that this thesis could never have
come out without the help from my colleagues including my supervisors, my PhD fel-
lows, the engineers at the lab and the master students who worked with me. I would like
to thank you all for the help, the strict requirements and the encouragement you gave
me.

First I would like to thank my promotor Guido de Croon. I can still remember the
sunny afternoon you asked me if I wanted to join your drone race team. From that mo-
ment, we worked together to win the IROS autonomous drone races although I haven’t
brought you a gold medal. But you taught me a lot on how to do research, how to read
papers and how to solve problems. The countless scenes you worked with me late at the
Cyberzoo until being kicked out, debugged the code in hotel rooms, fixed the code until
the last minute of the competitions always inspired me to bravely face the challenges
both in my academic life and daily life. Thank you for teaching me how to be an inde-
pendent scientist, inspiring me with new ideas and encouraging me when I got stuck in
my research.

My thanks also go to my co-promotor Coen de Visser. Although my research didn’t
progress in the direction you originally designed, it was you who introduced me to the
area of drones, which opened a door for me to a new fantasy world. Without your patient
guidance, I could not have entered the robotics world so smoothly. I still remember that
you told me ‘We are colleagues.’ which helped me discuss or argue on equal terms with
my supervisors or other researchers including you. Thank you for your kindness which
made my first far-from-home year easy and smooth.

To Christophe De Wagter, you are such a magic Doraemon for me! You always had
ideas from your magic pocket. It seems that whenever we have questions, we only need
to shout out ‘We have our Christophe!’ and you will jump out to save us. I remember
I once asked you how you knew so much. Your answer was ‘I keep learning!’ which
inspires me until now. Thank you for your help during my PhD. I hope one day I can be
others’ Doraemon like you.

I sincerely thank Max Mulder and Qiping Chu. Thank you for interviewing me and
giving me such a valuable chance to have research here. To Max, thank you for moni-
toring my progress which ensured I was always on the correct track and thank you for
teaching me sailing although I still cannot do it well. To Ping, thank you for your advice
on my research and thank you for the random talk at the coffee corner which made me
feel like talking to elders at home.

To Erik van der Horst, I sincerely express my thanks to you. Your restless working
guaranteed my tiny drone to fly in the air. We spent endless evenings at the lab soldering

135

6

136 6. CONCLUSION

chips, testing drones and eating delivery food while discussing the true meaning of life.
I am so honoured to have you be the witness of the tiny drone flying through the gate for
the first time. I can not imagine how my research life would have been without such an
experienced engineer.

I want to thank Dario Izzo, Ekin Öztürk and Dharmesh Tailor at the European Space
Agency (ESA). Thank you for collaborating with me on our project. I value the experience
working with the ESA and I appreciate your receptions at the canteen and bar.

To Michaël Ozo, you joined our team at a hard time. Thank you for your patience in
making the optical flow code back to life, which helped us continue on drone racing. I felt
so lucky to work with you. Your kindness and patience always inspire me to keep going
forward. I still remember our adventures in Daejeon, South Korea and Vancouver where
we debugged the code in a luxury hotel in the city center of Vancouver. I will not forget
the fantasy self-driving tour in Vancouver just two days after we lost the competition.

I also want to thank the people at the MAVLab who are a crowd of such amazing peo-
ple. We, PhD students at the lab, have seen too many failures and frustrated faces. But
that is one important part of our lives, isn’t it? I have also witnessed countless success
moments like HannWoei’s autonomous landing, Sjoerd’s autonomous Delfly, Ewoud’s
INDI controller, Kirk’s event-based landing, Kimberly’s swarm pocket drones, Mario’s
leader and follower, Diana’s flapping wing, Tom’s obstacle avoidance, Shushuai’s on-
board localization, Federico’s drone racing and Yingfu’s deep learning based visual nav-
igation, etc. To Sven, I left the lab shortly after you joined, I didn’t witness your flying
by myself but I believe you will have your shining time shortly. I am so proud of us that
we, as scientists, push the boundary of human knowledge a little forward and I believe
contributions like ours will finally improve people’s quality of life. My thanks also go to
the researchers and engineers at the lab who are Matěj Karásek, Julien Dupeyroux, Bart
Remes, Nilay Sheth, Freek van Tienen, Roland Meertens, Kevin van Hecke, Bart Slinger,
etc. Thank you for the help and the fun you gave me.

I enjoyed my four years time in the Netherlands where I had a lot of friends around
me. Feijia Yin and Xiaodong Guo, I don’t know how to express my thanks to you. But
thank you for your advice, help and the happy time we spent together. Linfeng Gou and
Chuan Lin, we became good friends since we took the same flight to the Netherlands. It
was our first time going abroad and throwing ourselves into such a strange place totally
different from home. We helped each other in the Netherlands and I believe we will
never forget this one year. Hongxiao Guo, my flatmate, I still remember two frustrated
PhDs cheered each other up in the living room after the failures in their respective labs.
But fortunately, we have gone through it! Ye Zhang and Yingzhi Huang, I cannot forget
you served me my first dinner when I was far from home for the first time, which made
me relax and feel at home. Xuerui Wang and Sihao Sun, thank you for inviting me to join
your hotpot many times which I appreciate. My thanks also go to other friends who are
Lei Yang, Ye Zhou, Zhou Nie, Bo Sun, Ying Yu, Cheng Liu, Peng Lu, Junzi Sun, Wei Fu, etc.

Please let me thank my PhD fellows at Control Simulation group who are Annemarie
Landman, Dyah Jatiningrum, Tommaso Mannucci, Sophie Armanini, Daniel Friesen,
Jaime Junell, Sarah Barendswaard, Dirk van Baelen, Kasper van der El, Emmanuel Sunil,
Paolo Scaramuzzino, etc. Thank you for the interesting talk at the coffee corner!

Last but not least, I sincerely express my thanks to my parents, Yuanye Li and Yaping

6.3. FUTURE WORK

6

137

Liu. Thank you for your selfless love and support. Without you, I would never have
thought about doing a PhD abroad. Thank you for the long phone calls when I was
stuck in my research for a long time. And thank you for your support which gave me
the courage to move forward. You are always my powerful backing!

CURRICULUM VITÆ

Shuo LI

11-09-1990 Born in Shaanxi, China.

EDUCATION
2009–2013 BSc in College of Astronautics

Northwestern Polytechnical University

2013–2016 MSc in College of Astronautics
Northwestern Polytechnical University

2015–2020 Ph.D. in Aerospace Engineering
Delft University of Technology
Thesis: Visual Navigation and Optimal Control for Au-

tonomous Drone Racing
Promotor: Prof. dr. G. C. H. E. de Croon

AWARDS
2016 Second prize in IROS autonomous drone race

ACADEMIC ACTIVITIES
Reviewer for Journal of Field Robotics

Reviewer for International Conference on Robotics and Automation (ICRA)

Reviewer for IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

139

LIST OF PUBLICATIONS

5. Li S., van der Horst, E., Duernay, P., De Wagter, C., de Croon, G. C, Visual model-predictive lo-
calization for computationally efficient autonomous racing of a 72-g drone, Journal of Field
Robotics (2020).

4. Li, S., Ozo, M. M., De Wagter, C., de Croon, G. C., Autonomous drone race: A computationally
efficient vision-based navigation and control strategy, Robotics and Autonomous Systems
(2020).

3. Li, S., Öztürk, E., De Wagter, C., de Croon, G. C., Izzo, D., Aggressive online control of a
quadrotor via deep network representations of optimality principles, 2020 IEEE International
Conference on Robotics and Automation (ICRA) 6282-6287 (2020).

2. Li, S., De Wagter, C., de Visser, C. C., Chu, Q. P., de Croon, G. C. H. E. In-flight model param-
eter and state estimation using gradient descent for high-speed flight, International Journal
of Micro Air Vehicles (2019).

1. Moon, H., Martinez-Carranza, J., Cieslewski, T., Faessler, M., Falanga, D., Simovic, A., Scara-
muzza, D., Li, S., Ozo, M., De Wagter, C. and de Croon, G., Challenges and implemented
technologies used in autonomous drone racing, Intelligent Service Robotics (2019).

141

https://doi.org/10.1002/rob.21956
https://doi.org/10.1002/rob.21956
https://doi.org/10.1016/j.robot.2020.103621
https://doi.org/10.1016/j.robot.2020.103621
http://dx.doi.org/10.1109/ICRA40945.2020.9197443
http://dx.doi.org/10.1109/ICRA40945.2020.9197443
https://doi.org/10.1177/1756829319833685
https://doi.org/10.1177/1756829319833685
https://doi.org/10.1007/s11370-018-00271-6

	Summary
	Samenvatting
	Introduction
	Background
	Challenges and Previous research
	Visual navigation and sensor fusion
	Guidance and control

	Research questions
	Outline
	titleReferences

	Autonomous drone race: A computationally efficient vision-based navigation and control strategy
	Introduction
	System overview
	Vision navigation
	Gate detection
	Pose estimation
	Vision-IMU state estimation

	Control strategy
	Full track experiment setup and result
	Conclusion and future work
	titleReferences

	In-flight Model Parameter and State Estimation using Gradient Descent for High-speed Flight
	Introduction
	Related work
	Quadrotor model
	Dynamic model of quadrotor
	IMU misalignment
	Aerodynamic model
	AHRS bias model
	Full model

	State estimation
	Vision-based Extended Kalman Filter
	Vision-based gradient descent method

	Experiment setup and result
	Experiment setup
	Analysis of Vision-based gradient descent method (VGD)
	Comparison between Vision-based EKF (VEKF), Vision-based gradient descent method (VGD) and Vision-based gradient descent method with kinematic model(VGD-kinematic)

	Conclusion
	titleReferences

	Visual Model-predictive Localization for Computationally Efficient Autonomous Racing of a 72-gram Drone
	Introduction
	Problem Formulation and System Description
	Problem Formulation
	System Overview

	Robust Visual Model-predictive Localization (VML) and Control
	Gate assignment
	Visual Model-predictive Localization (VML)
	Flight Plan and High Level Control

	Simulation Experiments
	Simulation Setup
	Simulation result and analysis

	Real-world Experiments
	Processing time of each component
	Flying experiment without gate displacement
	Flying experiment with gate displacement
	Flying experiment with different altitude and moving gate

	Discussion
	Conclusion
	titleReferences

	Aggressive Online Control of a Quadrotor via Deep Network Representations of Optimality Principles
	INTRODUCTION
	DESIGN OF THE G&CNET
	The dynamical system
	The optimisation problem
	Network architecture and training

	SIMULATION RESULT AND ANALYSIS
	Stability of Neural Network Controller
	Differential flatness based aggressive trajectory generation and control (DiffG&C)
	Simulation of the G&CNet Controller
	Comparison between DiffG&C and G&CNet

	EXPERIMENT SETUP AND RESULT
	Experiment Setup
	Experiment Result

	CONCLUSIONS
	titleReferences

	Conclusion
	Research questions
	Discussion
	Future work

	Acknowledgements
	Curriculum Vitæ
	List of Publications

