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Summary

Mixed-integer models arise in several geodetic problems, including precise positioning
and remote sensing in Global Navigation Satellite Systems (GNSS), as well as deforma-
tion monitoring through Interferometric Synthetic Aperture Radar (InSAR) or fringe
phase observations from Very Long Baseline Interferometry (VLBI). These problems
generally involve two types of unknowns: integer ambiguities a ∈ Zn and real-valued
parameters b ∈ Rp, whose accuracy can be significantly improved by correctly resolving
the ambiguities. However, in some cases, a large number of ambiguity components are
involved and need to be correctly resolved, therefore the ambiguity resolution process
becomes a bottleneck for the computations.

One research question is therefore how to effectively tackle the challenges of high-
dimensional ambiguity resolution and its computational complexity, while ensuring
a successful resolution of the ambiguities. Additionally, a second question arises
regarding whether it is possible to solve this challenging problem in the domain of
real-valued parameters, e.g. positioning coordinates, given that those are usually
the parameters of interest for the user. In response to such questions, this doctoral
dissertation is structured in two main parts: the first one looks at the integer ambiguity
domain, presenting new flexible estimators and algorithms; the second one focuses on
the real-valued parameter domain where the integerness of ambiguities is still taken
into account.

• In Part I, relative to the primal formulation for mixed-integer least-squares
problems, we extend the principle of integer bootstrapping to the vectorial case,
thus introducing the Vectorial Integer Bootstrapping (VIB) estimators. These
VIB solutions are flexible since tailored estimators can be designed based on a
user-chosen partitioning. A comprehensive statistical characterization of these
integer estimators is provided, including properties such as probability bounds
and success-rate approximations.

At this point, by considering a global network estimation for orbit determination
and time synchronization of multi-GNSS constellations, we evaluate VIB solutions
with real world data. Hence, we demonstrate how it is possible to successfully
fix thousands of ambiguity components in a fraction of a second, thus leading
to centimeter-level orbit solutions based on a 14-station global network of well-
distributed ground receivers tracking GPS and Galileo satellites. Results are
then validated showing midnight orbital discontinuity errors at a level of few
centimeters over a 3-month period in 2019.

At last, a new Least-squares AMBiguity Decorrelation Adjustment (LAMBDA)
v4.0 toolbox has been developed, now merging both estimation and evaluation
capabilities, and can be considered an expansion and significant update of the

xxi
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legacy LAMBDA 3.0 (2012) and Ps-LAMBDA 1.0 (2013) software. This free
and open source toolbox aims to become a valuable resource for researchers
and/or practitioners dealing with mixed-integer models in high dimensions. It
introduces a new integer search algorithm and different (classes of) estimators,
providing users with a larger set of tools and functions suitable for various
applications.

• In Part II, we introduce a dual formulation, where the direct computation
of real-valued parameters is performed, and an implicit integer least-squares
problem is solved. For these dual mixed-integer least-squares problems, two
methods of simplifying approximations are introduced, and their quality is
described by a complete distributional analysis of their estimators. Due to the
lack of convexity for dual functions, a globally convergent solution, which has
finite termination with a guaranteed ϵ-tolerance, is proposed and constructed by
combining a branch-and-bound principle with a special convex relaxation.

The performance of dual solutions are therefore evaluated in the context of GNSS
positioning, where a Branch-and-bound INteger-equivariant Global Optimizer
(BINGO) method is described, following a normalization of dual problems, and
each computational step is investigated. In the special case p = 1, an alternative
P1 algorithm is introduced, which outperforms LAMBDA-based solutions and
we demonstrate that its complexity (i.e. number of enumerated solutions) grows
linearly with the ambiguity problem dimensionality. In the context of GNSS,
where carrier-phase data is extremely precise, the computationally convenient
dual approximations are shown to be quasi-optimal solutions to the original
problem. Therefore, these approximations are statistically evaluated by studying
their relation to their primal counterpart problems.

Lastly, the Ambiguity Function (AF) method, developed in the 1980s for GPS
baseline positioning, is studied and some new theory is introduced to provide
the probability model by means of which the AF estimator becomes a maximum
likelihood estimator. A similar branch-and-bound globally convergent approach
is used to ensure optimal solutions, and their nonuniqueness is proved and
discussed. At the end, a systematic comparison between the AF and the ILS
principle is presented, showing how the two methods are fundamentally different,
nonetheless can behave similarly under certain circumstances.

In summary, through the mathematical advancements, enhanced algorithms and
estimators introduced in the new LAMBDA 4.0 toolbox, this dissertation provides
theoretical and practical tools for the GNSS and non-GNSS communities tackling
mixed-integer least-squares problems. These contributions are fundamental for ad-
dressing the high-dimensional challenges anticipated in future signals and systems,
particularly in larger global networks with stricter timeliness requirements. Further-
more, the introduction of a dual formulation provides a new landscape of advanced
solutions, which can also be extended to ‘constrained’ dual problems where additional
constraints are applied to real-valued parameters. This will be an important subject
of study, especially in safety-critical applications.



Samenvatting (in Dutch)

Mixed-integer modellen komen voor in verschillende geodetische problemen, waaronder
nauwkeurige positiebepaling en remote sensing met Global Navigation Satellite Sys-
tems (GNSS), evenals deformatiemonitoring met behulp van Interferometric Synthetic
Aperture Radar (InSAR) of fase-waarnemingen van Very Long Baseline Interferometry
(VLBI). Deze problemen bevatten over het algemeen twee typen onbekenden: geheel-
tallige meerduidigheden a ∈ Zn en reële parameters b ∈ Rp, waarbij de nauwkeurigheid
van de geschatte parameters aanzienlijk kan worden verbeterd door de geheeltallige
meerduidigheden correct op te lossen. In sommige gevallen zijn echter veel meerdui-
digheidscomponenten betrokken die correct moeten worden opgelost, waardoor het
proces van meerduidigheidsoplossing een knelpunt wordt in de berekeningen.

Een belangrijke onderzoeksvraag is daarom hoe de uitdagingen van hoogdimensio-
nale meerduidigheidsoplossing en de bijbehorende rekencomplexiteit effectief kunnen
worden aangepakt, terwijl tegelijkertijd een succesvolle oplossing van de meerdui-
digheden wordt gegarandeerd. Daarnaast rijst de vraag of het mogelijk is om dit
uitdagende probleem op te lossen in het domein van de reële parameters, bijvoorbeeld
de cooordinaten in geval van plaatsbepaling, aangezien dit meestal de parameters
van belang zijn voor de gebruiker. Als antwoord op deze vragen is dit proefschrift
gestructureerd in twee hoofdonderdelen: het eerste onderdeel richt zich op het domein
van gehele meerduidigheden, waarbij nieuwe flexibele schatters en algoritmen worden
gepresenteerd; het tweede onderdeel richt zich op het domein van reële parameters
waarbij de geheeltalligheid van de meerduidigheden nog steeds in aanmerking wordt
genomen.

• In Deel I, dat betrekking heeft op een primale formulering voor mixed-integer
kleinste kwadraten problemen, breiden we het principe van geheltallige bootstrap-
ping uit naar het vectoriële geval, waarmee we de Vectorial Integer Bootstrapping
(VIB) schatters introduceren. Deze VIB-oplossingen zijn flexibel omdat op maat
gemaakte schatters kunnen worden ontworpen op basis van een door de ge-
bruiker gekozen opdeling. Een uitgebreide statistische karakterisering van deze
geheeltallige schatters wordt verstrekt, inclusief eigenschappen zoals waarschijn-
lijkheidsgrenzen en benaderingen van het succespercentage.

Vervolgens evalueren we VIB-oplossingen met echte data op basis van een
globale netwerkschatting voor de baanbepaling en tijdsynchronisatie van multi-
GNSS-constellaties. Hiermee laten we zien hoe het mogelijk is om duizenden
meerduidigheden binnen een fractie van een seconde succesvol op te lossen, wat
leidt tot baanoplossingen op centimeter-niveau op basis van een wereldwijd
netwerk van 14 goed verdeelde grondontvangers die GPS- en Galileo-satellieten
volgen. De resultaten worden vervolgens gevalideerd door het aantonen van
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xxiv Samenvatting

discontinuiiteitsfouten van enkele centimeters die om middernacht optreden, over
een periode van drie maanden in 2019.

Ten slotte is er een nieuwe Least-squares AMBiguity Decorrelation Adjustment
(LAMBDA) v4.0 toolbox ontwikkeld, die zowel schattings- als evaluatiecapacitei-
ten samenvoegt, en kan worden beschouwd als een uitbreiding en belangrijke
update van de legacy LAMBDA 3.0 (2012) en Ps-LAMBDA 1.0 (2013) soft-
ware. Deze gratis en open-source toolbox is bedoeld als waardevolle bron voor
onderzoekers en/of praktijkmensen die te maken hebben met mixed-integer
modellen in hoge dimensies. Het introduceert een nieuw geheel zoekalgoritme en
verschillende (klassen van) schatters, waarmee gebruikers een grotere set tools
en functies krijgen die geschikt zijn voor verschillende toepassingen.

• In Deel II introduceren we een duale formulering, waarbij de directe berekening
van reële parameters wordt uitgevoerd en een impliciet geheeltallig kleinste
kwadraten (integer least-squares, ILS) probleem wordt opgelost. Voor deze
duale mixed-integer kleinste kwadraten problemen worden twee methoden voor
vereenvoudigde benaderingen geïntroduceerd, en de kwaliteit wordt beschreven
door een volledige analyse van de kansverdelingen van de schatters. Vanwege
het gebrek aan convexiteit voor duale functies, wordt een globaal convergerende
oplossing, met een eindige beëindiging en gegarandeerde ϵ-tolerantie, voorgesteld
en geconstrueerd door een branch-and-bound-principe te combineren met een
speciale convexe relaxatie.

De prestaties van duale oplossingen worden vervolgens geëvalueerd in de context
van GNSS plaatsbepaling, waarbij een Branch-and-bound INteger-equivariant
Global Optimizer (BINGO) methode wordt beschreven, gebaseerd op een norma-
lisatie van duale problemen, en waarbij elke rekenslag wordt onderzocht. In het
speciale geval p = 1 wordt een alternatief P1-algoritme geïntroduceerd, dat beter
presteert dan op LAMBDA gebaseerde oplossingen, en we tonen aan dat de
complexiteit ervan (dat wil zeggen het aantal gesommeerde oplossingen) lineair
groeit met de dimensie van het meerduidigheidsprobleem. In de context van
GNSS, waar fasedata van de draaggolven uiterst nauwkeurig gemeten wordt,
wordt de quasi-optimaliteit van de berekeningstechnisch handige duale benade-
ringen aangetoond. Vervolgens worden deze benaderingen statistisch geëvalueerd
door de relatie met hun primale tegenhangers te bestuderen.

Ten slotte wordt de Ambiguity Function (AF) methode, ontwikkeld in de jaren
‘80 voor relatieve GPS plaatsbepaling, bestudeerd en wordt een nieuwe theorie
geïntroduceerd om het waarschijnlijkheidsmodel te bepalen waarmee de AF-
schatter een maximum likelihood schatter wordt. Een vergelijkbare branch-
and-bound benadering die globaal convergeert wordt gebruikt om optimale
oplossingen te garanderen, en de niet-uniciteit wordt bewezen en besproken. Tot
slot wordt een systematische vergelijking gepresenteerd tussen de AF- en de
ILS-principes, waarbij wordt aangetoond hoe de twee methoden fundamenteel
verschillend zijn, maar onder bepaalde omstandigheden vergelijkbaar kunnen
optreden.



Samenvatting xxv

Samenvattend biedt dit proefschrift, door de wiskundige vooruitgangen, verbeterde
algoritmen en schatters geïntroduceerd in de nieuwe LAMBDA 4.0-toolbox, theoreti-
sche en praktische tools voor de GNSS- en niet-GNSS-gemeenschappen die worstelen
met mixed-integer least-squares problemen. Deze bijdragen zijn essentieel voor het
aanpakken van de hoog-dimensionale uitdagingen die worden verwacht bij toekomstige
signalen en systemen, met name in grotere wereldwijde netwerken met strengere
tijdigheidseisen. Bovendien opent de introductie van een duale formulering een nieuw
landschap van geavanceerde oplossingen, die ook kunnen worden uitgebreid naar ’ge-
construeerde’ duale problemen, waarbij extra beperkingen worden toegepast op reële
parameters. Dit zal een belangrijk studieonderwerp zijn, vooral in veiligheidskritieke
toepassingen.
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Introduction

1.1 Background

In several geodetic applications, we often deal with a mixture of unknown parameters
having integer and real values. The mixed-integer models are therefore of great interest
for the geodetic community since they can be found in many different fields, such
as Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry
(VLBI), Interferometric Synthetic Aperture Radar (InSAR), as well as other specific
applications, e.g. acoustic waves for underwater navigation (Viegas and Cunha, 2007),
or detection in Multiple-Input Multiple-Output (MIMO) communication systems
(Damen et al., 2003).

In 1993, mixed-integer least-squares problems were examined by Teunissen (1993) and a
primal orthogonal decomposition was introduced, which created the foundations for the
Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method (Teunissen,
1995), in use since then. Although initially defined in the context of Global Positioning
System (GPS) double-difference carrier-phase data, i.e. ultra precise but biased by an
integer number of cycles, the method quickly gained popularity in different fields of
geodesy, in particular the ones dealing with mixed-integer least-squares problems.

In the context of GNSS, these models are highly attractive, since after resolving for
the carrier-phase integer ambiguities, it is possible to make use of the millimiter-level
precision of phase data. Therefore, this starts acting as ultra-precise pseudo-range
measurement, which can be used for precise positioning (Teunissen, 2020), time and
frequency transfer (Mi et al., 2023), atmosphere remote sensing (Lu et al., 2018),
and carrier-phase attitude determination (Giorgi, 2011). All these applications rely
on the successful resolution of carrier-phase ambiguities; however, in some cases,
the computational burden represents a major bottleneck to the process of Integer
Ambiguity Resolution (IAR).
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The high dimensionality issue is further exacerbated in the case of network processing,
where multiple GNSS receivers might track up to hundreds of satellites; see De Jonge
(1998), Ge et al. (2006), and Brack (2019). With the availability of multi-frequency
systems and the deployment of additional constellations for Positioning, Navigation,
and Timing (PNT), including the ones foreseen in low Earth orbit (Wang et al., 2024;
Xu et al., 2024), new solutions for tackling High-Dimensional Ambiguity Resolution
(HDAR) problems are required nowadays.

Some simple strategies were available in the last decades, such as well-known widelaning
approaches (Blewitt, 1989; Cocard and Geiger, 1992), however limited to specific
combinations of signals, or in other cases applicable only to differenced observations.
For dense network processing, LAMBDA methods have already been shown to be
highly efficient for problems with up to hundreds of ambiguity components; see Li and
Teunissen (2011). With LAMBDA, a landscape of different solutions was introduced,
along with different classes of estimators (Teunissen, 2003), thus supporting both the
GNSS and non-GNSS communities dealing with mixed-integer problems.

However, today larger networks of globally distributed receivers are being processed,
and IAR problems can easily involve thousands of components (Strasser, 2022). New
solutions to high-dimensional problems are therefore required and with primary
attention to real-valued parameters, given that those are usually the parameters of
interest for the user. These important aspects will be discussed in this contribution,
so providing GNSS examples, but starting here with a more general definition of
mixed-integer models.
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1.2 Brief review of mixed-integer models

Given y ∈ Rm as the vector of observables, with its variance-covariance matrix as
Qyy ∈ Rm×m, we consider the linear mixed-integer model (Leick et al., 2015):

E {y} = Aa + Bb, D {y} = Qyy (1.1)

where E {·} and D {·} refer respectively to the expectation and the dispersion operator,
while the integer and real-valued parameters are respectively given as a ∈ Zn and
b ∈ Rp, with the full-rank design matrix given by [A, B] ∈ Rm×(n+p). We assume
y ∼ Nm (E {y} , D {y}), a m-dimensional normally distributed vector, and we seek a
least-squares solution following the orthogonal decomposition (Teunissen, 1998):

∥y −Aa−Bb∥2
Qyy

= ∥ê∥2
Qyy

+ F(a, b) (1.2)

where ||x||2Q = xT Q−1x, and with ê = P ⊥
[A,B]y = y− (Aâ + Bb̂) being the least-squares

residual vector, where ∥ê∥2
Qyy

is not a function of a and b. In the context of GNSS,
we generally refer to ambiguity (integer) and baseline (real-valued) parameters, see
Verhagen (2005) for additional information. We refer to Table 1.1 for an overview of
the relevant quantities considered in this dissertation.

Table 1.1: Overview of relevant quantities considered for mixed-integer models

Quantity Integer parameters Real-valued parameters

Vector of unknowns a ∈ Zn b ∈ Rp

Design matrix A ∈ Rm×n B ∈ Rm×p

Left inverse matrix A+ =
(
AT Q−1

yy A
)−1

AT Q−1
yy B+ =

(
BT Q−1

yy B
)−1

BT Q−1
yy

Projection matrix
onto R(·) PA = AA+ PB = BB+

Projection matrix
onto R(·)⊥ P ⊥

A = Im − PA P ⊥
B = Im − PB

Auxiliary matrix Ā = P ⊥
B A B̄ = P ⊥

A B

Covariance matrix Qâb̂ = −A+BQb̂b̂ Qb̂â = −B+AQââ

Variance matrix Qââ =
(
ĀT Q−1

yy Ā
)−1

Qb̂b̂ =
(
B̄T Q−1

yy B̄
)−1

Variance matrix
(conditioned) Qâ(b) =

(
AT Q−1

yy A
)−1

Qb̂(a) =
(
BT Q−1

yy B
)−1

Float estimator â = Ā+y b̂ = B̄+y

Float estimator
(conditioned)

â(β) = â−Qâb̂Q−1
b̂b̂

(
b̂− β

)
≡ A+(y −Bβ),∀β ∈ Rp

b̂(α) = b̂−Qb̂âQ−1
ââ (â− α)

≡ B+(y −Aα),∀α ∈ Zn

*R(·) refers to range space.
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From Eq.(1.2), we can observe that the minimizers of ∥y −Aa−Bb∥2
Qyy

are those of
the objective function F : Zn × Rp→ R, expressed here as

F(a, b) =


F1(a, b) def== ∥â− a∥2

Qââ
+
∥∥∥b̂(a)− b

∥∥∥2

Qb̂(a)

(primal)

F2(a, b) def==
∥∥∥b̂− b

∥∥∥2

Qb̂b̂

+ ∥â(b)− a∥2
Qâ(b)

(dual)
(1.3)

with the ‘primal’ and ‘dual’ formulations introduced respectively by Teunissen (1993)
and by Teunissen and Massarweh (2024). We will now briefly summarize these two
formulations.

1.2.1 Primal mixed-ILS formulation

In the primal mixed-ILS formulation we consider F1(a, b), and a three-step approach
(Teunissen, 1995) can be adopted, i.e.

1) Float solution, where integerness of ambiguities is discarded and the float
estimators â ∈ Rn and b̂ ∈ Rp are computed via standard least-squares;

2) Ambiguity resolution, where we obtain a fixed ambiguity estimator ǎ = Ia (â)
given the mapping function Ia : Rn → Zn for the ILS estimator;

3) Fixed solution, where real-valued parameters b̂ ∈ Rp are conditionally updated
onto the fixed ambiguities, thus leading to b̌ = b̂ (ǎ).

Notice that no constraints exist on the real-valued parameters, and the ambiguity-
fixed solution will be given by b̂(a) for a ∈ Zn. Thus, the primal objective function
P : Zn→ R is defined here as

P(a) = min
b∈Rp
F1(a, b) = F1

(
a, b̂(a)

)
= ∥â− a∥2

Qââ
(1.4)

and the (primal) mixed-ILS solution for the ambiguities is given by

ǎ = arg min
a∈Zn

P(a) = arg min
a∈Zn

∥â− a∥2
Qââ

(1.5)

following the least-squares (float) estimation of a and b. It is possible to efficiently re-
solve the integer ambiguities using the recent LAMBDA 4.0 toolbox implementation,
see Massarweh et al. (2025), given the â-vector and Qââ-matrix as inputs.

1.2.2 Dual mixed-ILS formulation

In the dual mixed-ILS formulation we consider F2(a, b), and the dual objective function
D : Rp → R can be defined as

D(b) = min
a∈Zn

F2(a, b) = F2 (ǎ(b), b) =
∥∥∥b̂− b

∥∥∥2

Qb̂b̂

+ ∥â(b)− ǎ(b)∥2
Qâ(b)

(1.6)
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and the (dual) mixed-ILS solution for the parameters is given by

b̌ = arg min
b∈Rp
D(b) = arg min

b∈Rp

(∥∥∥b̂− b
∥∥∥2

Qb̂b̂

+ ∥ϵ̌(b)∥2
Qâ(b)

)
(1.7)

with the (conditioned) ambiguity residuals ϵ̌(b) = â(b)− ǎ(b), for

ǎ(b) = arg min
a∈Zn

∥â(b)− a∥2
Qâ(b)

(1.8)

that resembles the expression in Eq.(1.5). However, in the dual formulation, we make
use of Qâ(b) ≤ Qââ since Qââ −Qâ(b) ≡ Qâb̂Q−1

b̂b̂
Qb̂â ≥ 0, and the distribution of the

conditioned float ambiguity estimator is given by

â(β) ∼ Nn

(
a + ∆a(β), Qâ(b)

)
(1.9)

so it is normally distributed around a + ∆a(β), with the ambiguity bias

∆a(β) = Qâb̂Q−1
b̂b̂

(
β − E{b̂}

)
, β ∈ Rp (1.10)

and given that b̂ is an unbiased estimator, then E{b̂} = b (true vector). This dual
formulation will be extensively discussed and analyzed in Chapter 5.

1.2.3 A primal-dual relationship

In the primal formulation, we can consider the concept of pull-in regions, i.e. subsets of
Rn where float vectors are mapped to the corresponding integer. For integer estimators,
these regions cover the entire space Rn without gaps, while being translational invariant
over the integers. For instance, the rounding pull-in regions are hyper-cubes where all
float solutions are mapped to the same integer via a simple rounding operator.

In the dual formulation, we notice that potential integer candidates are those whose
pull-in region is crossed by the conditioning hyperplane, i.e. â(β) = â−Qâb̂Q−1

b̂b̂
(b̂−β),

which can be illustrated in Rn as shown with Figure 1.1 for p = 2, n = 3. On the
left panel, the conditioned hyperplane is illustrated in the ambiguity domain given
||b̂− β||Qb̂b̂

≤ R0, hence bounded by a magenta ellipse also depicted in the parameter
domain, see right panel. Therefore, different real-valued parameters might belong to
different pull-in regions. These regions depend on the estimators in use, e.g. simple
rounding for Figure 1.1, and have been highlighted with colors in the illustration.

Note that the hyperplane’s orientation in the ambiguity domain is mainly driven by
the covariance matrix Qâb̂ ∈ Rn×p, while an equivalence can be seen in Eq.(1.3), since
the equality F1(a, b) ≡ F2(a, b) implies that

∥â− a∥2
Qââ

+
∥∥∥b̂(a)− b

∥∥∥2

Qb̂(a)b̂(a)

≡
∥∥∥b̂− b

∥∥∥2

Qb̂b̂

+ ∥â(b)− a∥2
Qâ(b)â(b)

(1.11)

where the left and the right side focus on the minimization problem in the ambiguity
domain and in the real-valued parameter domain, respectively.
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Figure 1.1: An illustrative example is shown for p = 2, n = 3, involving both the integer ambiguity
domain (left) and the real-valued parameter domain (right). The conditioned hyperplane, centred in
b̂ and limited to a disk of a certain radius R0, is represented by a magenta line, while a few selected
pull-in regions have been highlighted using colors. The intersection of different pull-in regions with
the magenta disk is then depicted in the real-valued parameter domain.

1.3 Research objectives and contribution

In this thesis work, we advance the theoretical and practical understanding of (linear)
mixed-integer models through an investigation of ambiguity resolution strategies,
focusing first on the domain of integer ambiguities a ∈ Zn, then on the domain of
real-valued parameters b ∈ Rp. The two approaches are, respectively, defined by a
primal and a dual formulation, representing two complementary perspectives of the
same mathematical problem, but some important differences exist. Therefore, in
this two-part contribution, we first explore flexible solutions in the integer ambiguity
domain, followed by new solutions in the real-valued parameter domain.

This study analyzes two cases (see Figure 1.2):

1. In the primal case, the high dimensionality n of the ambiguities represents a
computational bottleneck for the integer ambiguity resolution process, especially
when dealing with large GNSS network processing. With the advent of multi-
GNSS/multi-frequency constellations, real-time providers of satellite corrections
might deal with hundreds or even thousands of ambiguity components, which
need to be successfully resolved within a short time. Meanwhile, for other GNSS
applications, different requirements could be defined, where users might want
to limit the probability of wrongly fixing the ambiguities, e.g. in safety-critical
applications, or to compute minimum mean squared errors of user coordinates,
e.g. in high-accuracy positioning.
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In response to these needs, the current contribution formulates a new flexible
Vectorial Integer Bootstrapping (VIB) estimator, as extension of the (scalar)
bootstrapping principle. This VIB solution offers quasi-optimal performance,
while it is suitable for tackling high-dimensional ambiguity resolution problems,
such as the ones arising in the context of Orbit Determination and Time Synchro-
nization (ODTS) with global networks (Montenbruck and Steigenberger, 2020).
Some efficient implementations are investigated and provided to the community
in a newly designed LAMBDA toolbox that introduces also different (classes of)
estimators suitable for the different user applications. Both estimation and eval-
uation capabilities are integrated into a single, extensively documented software
package, which is ready to be used in existing GNSS or non-GNSS software.

2. In the dual case, the focus shifts to real-valued parameters, which are often the
parameters of interest for the users. Classical methods, such as the Ambiguity
Function method were introduced in the 1980s, see Counselman and Gourevitch
(1981), and were originally adopted, e.g., to tackle GPS baseline relative posi-
tioning. However, a rigorous study of solutions in the parameter domain has
not been performed yet - to the best of our knowledge - and heuristic solutions
are frequently preferred despite lacking a statistical foundation, so exposing
theoretical gaps in their statistical characterization. Therefore, the ambiguity
search in the parameters’ domain represents still an open challenge.

With this contribution, we introduce a dual formulation for mixed-integer models,
which complements the primal formulation originally introduced by Teunissen
(1993). This novel formulation focuses on the computation of real-valued pa-
rameters b ∈ Rp, such that an implicit ILS problem is solved directly in the
p-dimensional domain of b. A rigorous description of its distributional statistics
is established, along with the introduction of globally convergent solutions based
on easier-to-compute approximations. For the special case p = 1, a highly effi-
cient algorithm is presented, with a computational complexity growing linearly
with the dimensionality n. Lastly, the connection between dual ILS solutions
and classical methods is analyzed in this work, thereby addressing long-standing
theoretical research gaps in GNSS ambiguity resolution.

Ultimately, this dissertation takes a step further toward the establishment of a
unified framework for solving mixed-integer least-squares problems. At the same
time, we release a free and open-source new LAMBDA 4.0 toolbox1 in support to
many applications, e.g. for multi-GNSS/multi-frequency models arising in Precise
Point Positining Real-Time Kinematics (PPP-RTK) network estimation (Teunissen
and Khodabandeh, 2015), frequency-varying carrier phase signals (Khodabandeh and
Teunissen, 2023), and in support of the future deployment of mega-constellations in
low Earth orbit (LEO) for Positioning-Navigation-Timing (PNT). Although mainly
focused on GNSS applications, many contributions of this thesis are applicable to
non-GNSS problems described by (linear) mixed-integer models of Eq.(1.1).

1Available at http://pntlab.tudelft.nl/LAMBDA, see Massarweh et al. (2025).

http://pntlab.tudelft.nl/LAMBDA
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1.4 Outline of the thesis

This doctoral thesis is organized in a two-part structure (see Figure 1.2). In Part I,
we present Chapters 2, 3 and 4 pertaining to the primal formulation, thus looking at
the n-dimensional ambiguity domain. In Part II, we introduce Chapters 5, 6, 7 and 8
related to the dual formulation proposed with this contribution, and we focus on the
p-dimensional domain of real-valued parameters. Lastly, in Chapter 9, we summarize
the conclusions and provide some recommendations for future work.

Part II: Dual formulation 

ℱ2 𝑎, 𝑏 = 𝑏 − 𝑏
𝑄𝑏 𝑏 

2
+ 𝑎 𝑏 − 𝑎 𝑄𝑎 𝑏 𝑎 𝑏

2  

Part I: Primal formulation 

ℱ1 𝑎, 𝑏 = 𝑎 − 𝑎 𝑄𝑎 𝑎 
2 + 𝑏 𝑎 − 𝑏

𝑄𝑏 𝑎 𝑏 𝑎

2
 

Introduction  

(Chap. 1) 

Conclusions 

(Chap. 9) 

Vectorial 

IB Theory 

(Chap. 2) 

Vectorial IB 

for ODTS 

(Chap. 3) 

LAMBDA 

4.0 Toolbox 

(Chap. 4) 

Dual ILS 

Theory 

(Chap. 5) 

AFM  

Theory 

(Chap. 8) 

Dual P1 

Algorithm 

(Chap. 6) 

Dual BINGO 

Algorithm 

(Chap. 7) 

Figure 1.2: Graphical outline of this thesis.

1.4.1 Content per chapter

• Chapter 2 introduces the theory of Vectorial Integer Boostrapping (VIB),
including the mathematical definition of VIB pull-in regions, probability bounds
and success rate. A performance ordering is presented with respect to legacy
integer estimators, such as IR, IB and ILS, and a few examples are provided,
e.g., in the context of GNSS regional network estimation.

This chapter refers to the following publication:
Teunissen PJG, Massarweh L, and Verhagen S (2021). Vectorial integer boot-
strapping: flexible integer estimation with application to GNSS. In Journal of
Geodesy 95, 99. https://doi.org/10.1007/s00190-021-01552-2

https://doi.org/10.1007/s00190-021-01552-2
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• Chapter 3 considers the application of VIB estimators in Orbit Determination
and Time Synchronization (ODTS) problems, based on global networks. First,
the impact of ambiguity resolution is examined with respect to different net-
work sizes, then a few different VIB-based implementations are presented and
numerically assessed using GROOPS software, based on real-world data from
14 well-distributed ground stations. Finally, ODTS results for GPS and Galileo
constellations are validated over a 3-month period in 2019.

This chapter refers to the following publication:
Massarweh L, Strasser S, and Mayer-Gürr T (2021). On vectorial integer
bootstrapping implementations in the estimation of satellite orbits and clocks
based on small global networks. In Advances in Space Research, 68(11), 4303-
4320. https://doi.org/10.1016/j.asr.2021.09.023

• Chapter 4 presents the new LAMBDA 4.0 toolbox implementation, i.e. free
and open-source software for integer estimation, validation, and success rate
evaluation. This major update introduces new algorithms, including an improved
search strategy with a one-order reduction in the computational time, along
with new (classes of) estimators: VIB, IAB and BIE. Moreover, it integrates
estimation and evaluation capabilities, respectively based on LAMBDA 3.0
(2012) and Ps-LAMBDA 1.0 (2013) software, further enhanced here for tackling
high-dimensional ambiguity resolution problems.

This chapter refers to the following publication:
Massarweh L, Verhagen S, and Teunissen PJG (2025). New LAMBDA toolbox
for mixed-integer models: estimation and evaluation. In GPS Solutions 29, 14.
https://doi.org/10.1007/s10291-024-01738-z

• Chapter 5 introduces the dual mixed-integer least-squares theory, thus describ-
ing a dual formulation that deals with the direct computation of real-valued
parameters in mixed-integer (linear) models. It establishes an equivalence with
the primal formulation, which is used to determine the distributional properties
of newly defined dual estimators. Two easy-to-compute approximations for
dual problems are considered, based on an approximate weight matrix and an
approximate integer map. Finally, a globally convergent method with finite
termination is proposed and its three main constituents are outlined.

This chapter refers to the following publication:
Teunissen PJG, Massarweh L (2024). Primal and dual mixed-integer least-
squares: distributional statistics and global algorithm. In Journal of Geodesy
98, 63. https://doi.org/10.1007/s00190-024-01862-1

https://doi.org/10.1016/j.asr.2021.09.023
https://doi.org/10.1007/s10291-024-01738-z
https://doi.org/10.1007/s00190-024-01862-1
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• Chapter 6 considers dual mixed-integer least-squares problems in the case
of scalar real-valued parameters (p = 1). An ad hoc ‘P1’ algorithm is intro-
duced, including geometrical insights, and it is demonstrated how the algorithm’s
complexity grows linearly with the ambiguity dimensionality n. A higher compu-
tational efficiency is demonstrated with respect to LAMBDA, and its potential
quasi-optimal statistical performance is discussed.

This chapter refers to the following publication:
Massarweh L, Teunissen PJG (2024). An efficient ‘P1’ algorithm for dual mixed-
integer least-squares problems with scalar real-valued parameters. In Journal of
Applied Geodesy. https://doi.org/10.1515/jag-2024-0076

• Chapter 7 investigates the performance of the dual formulation, focusing on
the unconstrained dual problem, where real-valued parameters are freely defined
in Rp for the general case p ≥ 1. A globally convergent solution, namely the
Branch-and-bound INteger-equivariant Global Optimizer (BINGO), is examined,
relying on a branch-and-bound principle with lower bounds derived via a specific
convex relaxation. Computational trade-offs are numerically evaluated, each
step is extensively discussed, and finally, the ambiguity fixing performance is
assessed in the context of GNSS models.

• Chapter 8 introduces new theoretical developments for the classical GNSS
Ambiguity Function (AF) method, providing a probabilistic model for the AF
estimator, which is defined here as maximum likelihood estimator. The globally
convergent algorithm used for the (approximate) dual formulation is adapted to
the AF objective function by means of a dedicated convex lower bound, ensuring
a unique global minimum with a guaranteed ϵ-tolerance. Lastly, a systematic
comparison is made between the AF and ILS principles, showing that they are
fundamentally different, even if they may still exhibit similarities under certain
conditions.

This chapter will be published as:
Teunissen PJG, and Massarweh L (2024). Theory for the Ambiguity Func-
tion Method: Probability Model and Global Solution. In Journal of Geodesy
(submitted).

• Chapter 9 summarizes the conclusions of this research, and provides recom-
mendations for future work.

https://doi.org/10.1515/jag-2024-0076
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2
Vectorial Integer Bootstrapping:
Flexible Integer Estimation with

Application to GNSS

In this contribution we extend the principle of integer bootstrapping (IB) to a vectorial form
(VIB). The mathematical definition of the class of VIB-estimators is introduced together
with their pull-in regions and other properties such as probability bounds and success-rate
approximations. The vectorial formulation allows sequential block-by-block processing of the
ambiguities based on a user-chosen partitioning. In this way, flexibility is created, where for
specific choices of partitioning, tailored VIB estimators can be designed. This wide range
of possibilities is discussed, supported by numerical simulations and analytical examples.
Further guidelines are provided, as well as the possible extension to other classes of estimators.

This chapter has been published as: Teunissen, P.J.G., Massarweh, L., and Verhagen, S. (2021).
Vectorial integer bootstrapping: flexible integer estimation with application to GNSS. In Journal of
Geodesy 95, 99. https://doi.org/10.1007/s00190-021-01552-2
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2.1 Introduction

Global navigation satellite system (GNSS) ambiguity resolution is the process of
resolving the unknown integer ambiguities of the observed carrier phases. Once
they are successfully resolved, advantage can be taken of the mm-level precision of
the carrier-phase measurements, thereby de facto turning them into ultra-precise
pseudo-ranges. The practical importance of this becomes clear when considering
the great variety of current and future GNSS models to which integer ambiguity
resolution applies. A comprehensive overview of these GNSS models, together with
their applications in surveying, navigation, geodesy and geophysics, can be found in
textbooks such as (Strang and Borre, 1997; Teunissen and Kleusberg, 1998; Kaplan
and Hegarty, 2006; Misra and Enge, 2006; Hofmann-Wellenhof et al., 2008; Borre and
Strang, 2012; Leick et al., 2015; Teunissen and Montenbruck, 2017; Morton et al.,
2021).

In the current theory of integer ambiguity resolution one can discriminate between
three different classes of estimators: the class of integer (I) estimators (Teunissen,
1999), the class of integer-aperture (IA) estimators (Teunissen, 2003a) and the class of
integer-equivariant (IE) estimators (Teunissen, 2003b). The classes are subsets of one
another, with the I-class being the smallest and the IE-class the largest: I ⊂ IA ⊂ IE.
Members from all three classes have found their application in a wide range of different
GNSS models, see e.g. (Brack et al., 2014; Hou et al., 2020; Odolinski and Teunissen,
2020; Psychas and Verhagen, 2020; Verhagen, 2005; Wang et al., 2018; Zaminpardaz
et al., 2018). In this contribution, we restrict attention to the I-class.

Popular estimators in the I-class are integer rounding (IR), integer bootstrapping
(IB) and integer least-squares (ILS). Integer rounding is the simplest, but has the
poorest success-rate performance, while integer least-squares has the best performance,
but is computationally the most complex (Teunissen, 1998, 1999). In terms of their
success-rate performance, the three integer estimators can thus be ordered as follows

IR ≤ IB ≤ ILS (2.1)

where the equality holds if the ambiguities are perfectly decorrelated.

The IB-estimator has the attractive property that it is simple to compute and that
it can have a close to optimal success-rate performance when used with a properly
chosen ambiguity parametrization. The estimator is characterized by two operations
that are alternately applied: a sequential conditional least-squares estimation and
an integer mapping. With the IB these are both applied at the scalar-level. This is
however not a necessity for the two principles to be applicable.

In this contribution we will generalize the scalar concept of integer bootstrapping to
a vectorial form in which both the sequential conditional estimation and the integer
mapping are vectorial. We will develop the associated theory and show that with
the concept of vectorial integer bootstrapping (VIB) great flexibility is created for
designing one’s integer estimators when balancing computational simplicity against
success-rate performance.
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This contribution is organized as follows. In Section 2.2, we briefly review integer
ambiguity resolution with a special emphasis on integer bootstrapping and its various
properties. The concept of vectorial integer bootstrapping (VIB) is introduced in
Section 2.3. Two different descriptions of the class of VIB-estimators are given,
one that follows naturally from the definition of scalar integer bootstrapping and
another that is more suitable to characterize its pull-in regions. In Section 2.4 we
develop probabilistic properties of the VIB-estimators, with a special emphasis on
their probability of correct integer estimation, the ambiguity success-rate, together
with its easy-to-compute lower bounds and upper bounds. In this section we also
provide a generalized version of the performance I-ordering defined in (2.1). It includes
newly defined VIB-estimators and it shows the great flexibility one has in working
with vectorial integer bootstrapping, which we also demonstrate through numerical
examples. In Section 2.5, we provide further considerations for VIB-usage, including
the choice of ambiguity parametrization, efficiency enhancing options when solving the
normal equations and the different ways in which the VIB concept can be extended to
other classes of estimators. Finally a summary with concluding remarks is provided
in Section 2.6.

The following notation is used throughout: E(·) denotes the expectation operator,
D(·) the dispersion operator, P(·) probability of an event, || · ||2Q = (·)T Q−1(·) the
square-weighted-norm in the metric of Q, and I : Rn 7→ Zn an admissible integer map.

2.2 Mixed-integer model estimation

In this section a brief review is given of mixed-integer model estimation with an
emphasis on the method of integer bootstrapping.

2.2.1 Mixed-integer model and ambiguity resolution

The basis of GNSS integer ambiguity resolution is formed by the mixed-integer model,
given as

E(y) = Aa + Bb, D(y) = Qyy (2.2)

with y ∈ Rm the vector of observables containing the pseudo-ranges and carrier-
phases, (A, B) ∈ Rm×(n+p) the full-rank design matrix, a ∈ Zn the vector of unknown
integer ambiguities, b ∈ Rp the vector of real-valued unknown parameters (e.g. baseline
components and atmospheric delays), and Qyy the positive-definite variance-covariance
(vc) matrix of the observables.

In the following we will refer to b simply as the baseline vector. The underlying
distribution of the previous mixed-integer model will be assumed a multivariate normal
distribution as common in many GNSS applications (Leick et al., 2015; Teunissen
and Montenbruck, 2017; Morton et al., 2021). The solution to the (2.2) is obtained
through the following three steps:

Step 1: the model is solved by means of least-squares (LS) estimation whereby the
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integerness of the ambiguities is discarded. This gives the so-called float solution,
together with its vc-matrix, expressed by[

â

b̂

]
,

[
Qââ Qâb̂

Qb̂â Qb̂b̂

]
(2.3)

Step 2: an admissible integer map I : Rn 7→ Zn is chosen to compute the integer
ambiguity vector as

ǎ = I(â) (2.4)
The integer map is admissible when its pull-in regions Pz = {x ∈ Rn| I(x) = z},
z ∈ Zn, cover Rn, while being disjoint and integer translational invariant. It follows
that those regions leave no gaps, have no overlaps and obey an integer remove–restore
principle (Teunissen, 1999).

Some popular choices for I are integer rounding (IR), integer bootstrapping (IB), or
integer least-squares (ILS). To enhance the probabilistic and/or numerical performance
of ambiguity resolution, the integer map is often preceded by the decorrelating Z-
transformation ẑ = ZT â of the LAMBDA method (Teunissen, 1995), in which case
the integer estimate of a is computed as

ǎ = Z−TI(ZT â) (2.5)

Step 3: after ǎ ∈ Zn has been validated, the ambiguity-resolved or fixed baseline
solution can be given as

b̌ = b̂−Qb̂âQ−1
ââ (â− ǎ) (2.6)

Its vc-matrix, in case the uncertainty of ǎ may be neglected, is given as

Qb̌b̌ = Qb̂b̂ −Qb̂âQ−1
ââ Qâb̂ (2.7)

which shows by how much the precision of b̂ will be improved as a consequence of
imposing the integer ambiguity constraint a ∈ Zn.

2.2.2 Integer Bootstrapping

The IB-estimator is one of the most popular integer ambiguity estimators. Its popular-
ity stems from the ease with which it can be computed and from its close to optimal
performance once the ambiguities are sufficiently decorrelated. The IB-estimator,
following (Teunissen, 1998) is here defined.

Definition 1 (Scalar integer bootstrapping). Let â = (â1, . . . , ân)T ∈ Rn be the
float solution and let ǎIB = (ǎ1, . . . , ǎn)T ∈ Zn denote the corresponding integer
bootstrapped (IB) solution. Then

ǎ1 = ⌈â1⌋
ǎ2 = ⌈â2|1⌋ = ⌈â2 − σ21σ−2

1 (â1 − ǎ1)⌋
...

ǎn = ⌈ân|N⌋ = ⌈ân −
∑n−1

j=1 σn,j|Jσ−2
j|J(âj|J − ǎj)⌋

(2.8)
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where ⌈·⌋ denotes integer rounding and âi|I is the least-squares estimator of ai con-
ditioned on the values of the previous I = {1, . . . , (i − 1)} sequentially rounded
components, σi,j|J is the covariance between âi and âj|J , and σ2

j|J is the variance of
âj|J . For i = 1, âi|I = â1.

This previous definition shows that the IB-estimator is driven by products of ambiguity
conditional covariances and variances like σi,j|J · σ−2

j|J . As shown in (Teunissen, 2007),
these are readily available when one works with the triangular decomposition of the
ambiguity vc-matrix, Qââ = LDLT , thus making the computation of the IB-estimator
particularly easy. The matrix L is lower unitriangular, so its entries are defined as

(L)ij =


0 for 1 ≤ i < j ≤ n
1 for i = j
σi,j|J · σ−2

j|J for 1 ≤ j < i ≤ n
(2.9)

while we have
D = diag(σ2

1 , σ2
2|1, . . . , σ2

j|J , . . .) (2.10)

Another attractive feature of the IB-estimator is that its probability of correct integer
estimation, or success-rate, can be easily computed. Its analytical expression is given
by Teunissen (1998) as follows

P(ǎIB = a) =
n∏

i=1

[
2Φ

(
1

2σi|I

)
− 1
]

(2.11)

with Φ(·), i.e. cumulative normal distribution, being

Φ(x) =
∫ x

−∞

1√
2π

exp
{
−1

2v2
}

dv (2.12)

Note that while the entries of L in Qââ = LDLT drive the IB-estimator, entries of D
are the ones that determine its success-rate. Moreover, the IB-estimator is not the
best estimator within the class of I-estimators. Teunissen (1999) proved that of all
admissible integer estimators, the ILS-estimator

ǎILS = arg min
z∈Zn

||â− z||2Qââ
(2.13)

is best in the sense that it has the largest possible success-rate. The price one pays
for this optimality is that, in contrast to the easy-to-compute IB-estimator, the
computation of (2.13) is based on a more elaborate integer search (Teunissen, 1995).

Although IB is not best in the class of integer estimators, it is best in a smaller
class, namely the class of sequential integer estimators. This class was introduced in
(Teunissen, 2007) as any I : Rn 7→ Zn for which

I(x) = [x + (R− In)(x− I(x))] (2.14)
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where [·] denotes component-wise integer rounding of its vectorial entry and R is an
arbitrary unit lower triangular matrix.

Note that both IR and IB belong to this class. IR is obtained with the choice R = In

and IB with the choice R = L−1. In (Teunissen, 2007) it is shown that of all sequential
integer estimators, IB has the largest success-rate. Hence, for the success-rate of the
three popular integer estimators, we have P(ǎIR = a) ≤ P(ǎIB = a) ≤ P(ǎILS = a).
Thus integer rounding has poorest performance and integer-least-squares the best.
In the following section we will extend this ordering by including the success-rate
performance of a vectorial formulation for the integer bootstrapping.

2.3 Vectorial Integer Bootstrapping

In this section we introduce the concept of vectorial integer bootstrapping (VIB)
together with a description of its pull-in regions that are illustrated by means of a few
3-dimensional examples.

2.3.1 The VIB estimator

The IB-estimator is characterized by two elements that are alternately applied, the
sequential conditional estimation and the integer mapping. With the IB-estimator
they are both applied at the scalar-level. This is however not a necessity for the two
applied principles. Hence, we may generalize the scalar integer bootstrapping to a
form in which both the sequential conditional estimation and the integer mapping are
vectorial.

As a result we have the following definition of vectorial integer bootstrapping.

Definition 2 (Vectorial integer bootstrapping) Let â = (â1, . . . , âv)T ∈ Rn be the
float ambiguity solution, with âi ∈ Rni , i = 1, . . . , v and n =

∑v
i=1 ni, while let

ǎVIB = (ǎ1, . . . , ǎv)T ∈ Zn denote the corresponding vectorial integer bootstrapped
solution. Then

ǎ1 = ⌈â1⌋1
ǎ2 = ⌈â2|1⌋2 = ⌈â2 −Q21Q−1

11 (â1 − ǎ1)⌋2
...

ǎv = ⌈âv|V ⌋v = ⌈âv −
∑v−1

j=1 Qvj|JQ−1
jj|J(âj|J − ǎj)⌋v

(2.15)

where ⌈·⌋i : Rni 7→ Zni is a still to be chosen admissible integer mapping, and
âi|I is the least-squares estimator of ai conditioned on the values of the previous
I = {1, . . . , (i − 1)} sequentially integer estimated vectors, Qij|J is the covariance
matrix of âi and âj|J , and Qjj|J is the variance matrix of âj|J . For i = 1, âi|I = â1.

Note that each v integer map, ⌈.⌋i : Rni 7→ Zni , in (2.15), can still be chosen freely.
As an example consider the case where â is partitioned in two parts, â = (âT

1 , âT
2 )T .
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Then v = 2 and the conditional estimator of a2, when conditioned on a1, is given as

â2(a1) = â2 −Qâ2â1Q−1
â1â1

(â1 − a1) (2.16)

having as vc-matrix

Qâ2â2|a1 = Qâ2â2 −Qâ2â1Q−1
â1â1

Qâ1â2 (2.17)

Would we now choose both ⌈·⌋1 and ⌈·⌋2 as ILS-maps, the corresponding VIBILS
solution follows as

ǎ1,VIBILS = arg min
z1∈Zn1

||â1 − z1||2Qâ1â1

ǎ2,VIBILS = arg min
z2∈Zn2

||â2(ǎ1,VIBILS)− z2||2Qâ2â2|a1

(2.18)

Thus now two ILS-problems need to be solved, but both at a lower dimension than
that of the original full ILS-problem, which was defined as

ǎILS = arg min
z∈Zn

||â− z||2Qââ
(2.19)

The two solutions, (2.18) and (2.19), can be compared if we make use of the following
orthogonal decomposition (Teunissen, 1995),

||â− z||2Qââ
= ||â1 − z1||2Qâ1â1

+ ||â2(z1)− z2||2Qâ2â2|a1
(2.20)

This shows that instead of minimizing the sum of quadratic forms, as done with (2.19),
the solution in (2.18) is obtained by minimizing the two quadratic forms separately.
The integer-valued vector z1 in (2.20) is obtained during the first minimization.

In general, the integer mapping in each block can be chosen as only IR, or only IB
or only ILS, or combinations of them. Nonetheless, if for a certain ni-dimensional
block we consider IB as the estimator, this is equivalent to a further partitioning into
ni (scalar) blocks. It follows that adopting IB in each block, i.e. applying the VIBIB
estimator, will lead to the exactly same (scalar) IB formulation, thence this is not
separately analyzed.

2.3.2 The VIB pull-in regions

In our VIB-definition given in (2.15) we have described the components of the VIB-
estimator using the analogy with its scalar variant in (2.8). For the purpose of
describing the pull-in regions of the VIB-estimator, we now provide its vectorial form
thereby drawing on the analogy with (2.14).

Lemma 1 (VIB-estimator) Let IVIB : Rn 7→ Zn be the VIB-defining admissible
integer map. Then we have ǎVIB = IVIB(â), with

IVIB(x) = I ( x + (L − In) (x− IVIB(x)) ) (2.21)
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Figure 2.1: The 3D pull-in regions and their 2D projections are given for integer rounding (IR, cube),
integer bootstrapping (IB, parallelopiped) and integer least-squares (ILS, parallelohedron). The
vertexes of each region are given in red.

where I : Rn 7→ Zn is given as I(x) = (⌈x1⌋T1 , . . . , ⌈xv⌋Tv )T for x = (xT
1 , . . . , xT

v )T .
The L ∈ Rn×n is given as a lower block-triangular matrix, such that

L =


In1

−Qâ2â1Q−1
â1â1

In2

−Qâ3â1Q−1
â1â1

−Qâ3â2|a1Q−1
â2â2|a1

In3

...
...

. . .
−Qâv â1Q−1

â1â1
−Qâv â2|a1Q−1

â2â2|a1
. . . Inv

 (2.22)

Proof. The proof follows directly by substitution thereby using the lower block-
triangularity of L in (2.21).



2.3 Vectorial Integer Bootstrapping

2

23

The pull-in region Pz of an integer estimator is defined as the region in which all float
solutions are mapped to the same integer z ∈ Zn by the integer estimator. Hence, for
the VIB-estimator it is defined as

Pz,VIB = {x ∈ Rn| IVIB(x) = z}, z ∈ Zn (2.23)

The following Lemma shows how the pull-in regions are indeed driven by the VIB
characterizing integer maps ⌈.⌋i : Rni 7→ Zni and sequential conditional estimation.

Lemma 2 (VIB pull-in region) The pull-in regions of ǎVIB = IVIB(â) are given as

Pz,VIB = {x ∈ Rn| I(L(x− z)) = 0}, z ∈ Zn (2.24)

where I(x) = (⌈x1⌋T1 , . . . , ⌈xv⌋Tv )T and L is the lower block-triangular matrix given in
(2.22).

Proof. Starting with (2.21), we have

IVIB(x) = I( x + (L − In)(x− z) )
= I( L(x− z) + z )
= I(L(x− z)) + z

(2.25)

from which, using (2.23), the result follows.

To gain further insights into the geometries of the VIB pull-in regions, in particular
under different choices for the integer maps ⌈.⌋i : Rni 7→ Zni , we provide a few
graphical representations.

2.3.3 Graphics of VIB pull-in regions

We consider a three-dimensional float ambiguity vector â = (â1, â2, â3)T ∈ R3, having
as vc-matrix

Qââ =

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3

 ∼=
 0.090 −0.045 0.027
−0.045 0.101 0.002

0.027 0.002 0.171

 (2.26)

Its lower unitriangular matrix L and the diagonal matrix D from Qââ = LDLT are
given respectively as

L =

 1.000 0 0
−0.499 1.000 0

0.300 0.200 1.000

 (2.27)

D =

 0.302 0 0
0 0.282 0
0 0 0.402

 (2.28)
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Figure 2.2: The 3D pull-in regions are given for the VIBIR [(a1, a2) → (a3)] estimator (left) and
for the VIBILS [(a1, a2) → (a3)] estimator (right). The arrow refers to a conditioning of the last
component on the first two ambiguities.

The pull-in regions of the traditional integer estimators IR, IB and ILS are first
considered. They are shown in Fig.2.1 as a cube, parallelepiped, and parallelohedron,
respectively. Their projections on the three mutually orthogonal coordinate planes are
also shown. Note that generally it is wise to start with the most precise ambiguities
in the IB, in this case â1.

For the three-dimensional VIB-estimators, two different ambiguity-partitionings can
be considered, depending on whether ⌈·⌋1 is a 1-dimensional or a 2-dimensional map.
In Fig. 2.2, ⌈·⌋1 is 2-dimensional for which IR (Fig. 2.2, left) and ILS (Fig. 2.2,
right) is chosen. The third ambiguity is then conditionally updated and rounded to
its nearest integer. For the alternative case that ⌈·⌋1 is 1-dimensional, one starts with
ordinary rounding, but then has different choices for the second step. In Fig. 2.3, the
second step, where conditioning has taken place on the first ambiguity, is based on IR
(Fig. 2.3, left) and ILS (Fig. 2.3, right).

As visible from these examples, different VIB-estimators have different geometries
for their pull-in regions. Hence, their pull-in regions will have different fits to the
float-ambiguity’s confidence region and therefore also different success-rates.

2.4 VIB probability of correct integer estimation

In this section we study the success-rate of VIB estimators, along with bounds and
possible approximations.
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Figure 2.3: The 3D pull-in regions are given for the VIBIR [(a1) → (a2, a3)] estimator (left) and for
the VIBILS [(a1) → (a2, a3)] estimator (right). The arrow refers to a conditioning of the last two
components on the first ambiguity.

2.4.1 The VIB success rate

As the success rate of an admissible integer estimator of a ∈ Zn is given by the amount
of probability mass its a-centred pull-in region covers of the probability density function
(PDF) of â, fâ(x), the VIB success rate is given by the integral

P(ǎVIB = a) =
∫

Pa,VIB

fâ(x)dx (2.29)

The following Lemma shows how this can be computed from a product of probabilities.

Lemma 3 (VIB success rate) Let â ∼ N (a, Qââ) and let ǎVIB be the VIB-estimator
of a ∈ Zn, as expressed in (2.15). Then

P(ǎVIB = a) =
v∏

i=1
P(âi|I ∈ a + Pi) (2.30)

with
P(âi|I ∈ a + Pi) =

∫
Pi

1√
|2πQii|I |

exp
{
− 1

2 ||xi||2Qii|I

}
dxi (2.31)

and Pi = {x ∈ Rni | ⌈x⌋i = 0}, i = 1, . . . , v.

Proof. The proof is given in the Appendix.

This general result has two familiar special cases. For v = n, then the above VIB
success rate reduces to that of the (scalar) integer bootstrapping given in (2.11). For
v = 1, it depends on the chosen integer mapping ⌈·⌋ : Rn 7→ Zn, for which IR, IB and
ILS are the popular contenders.
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2.4.2 Bounds and approximation of VIB success rate

We now discuss how existing bounds and approximations to the success rates of IR,
IB and ILS can be used in order to obtain overall bounds and approximations for the
VIB success rate as well.

Lemma 4 (VIB success-rate bounds) Let Pi = {x ∈ Rni | ⌈x⌋i = 0} be the origin-
centred pull-in region of the integer map ⌈.⌋i : Rni 7→ Zni and let the bounds
LBi ≤ P(âi|I ∈ a + Pi) ≤ UBi be given. Then

v∏
i=1

LBi ≤ P(ǎVIB = a) ≤
v∏

i=1
UBi (2.32)

Proof. This follows from using the individual bounds LBi and UBi in (2.30).

By making use of known bounds for IR and ILS, respectively, (2.32) can be easily
applied to obtain the following two success-rate bounds.

Lemma 5 (Success-rate bounds for VIBIR and VIBILS) Let σ2
j|I , for j = qi−1+1, . . . , qi

(q0 = 0, qi =
∑i

j=1 nj), and i = 1, . . . , v, be the variance of the j-th ambiguity
conditioned on aI , with I = {1, . . . , i− 1}. Then with the Ambiguity Dilution of
Precision (ADOP) of the ith subset âi|I ∈ Rni ,

ADOPi = |Qii|I |
1

2ni (2.33)

we have

P(ǎVIBIR = a) ≥
v∏

i=1

(
qi∏

j=qi−1+1

[
2Φ
(

1
2σj|I

)
− 1
])

P(ǎVIBILS = a) ≤
v∏

i=1
P
(

χ2(ni, 0) ≤ cni

ADOP2
i

) (2.34)

where χ2(ni, 0) denotes a central chi-squared distributed random variable with ni

degrees of freedom, while

cni
= 1

π

[ni

2 · Γ
(ni

2

)]2/ni

(2.35)

with Γ being the gamma-function.

Proof. For the proof see the Appendix.

These bounds can be used in the following sense:

• VIBIR can be considered good enough for ambiguity resolution if its lower bound
is large enough.

• VIBILS can be considered too poor if its upper bound is too small.
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2.4.3 Performance ordering of VIB estimators

We now determine a performance ordering for the different integer estimators discussed.
Such ordering can also be adopted to determine additional bounds on the success
rates of well-known integer estimators.

First we can start with a generalization of (2.1) given a fixed partitioning a =
[aT

1 , . . . , aT
v ]T ∈ Zn. In this case the success rate in (2.30) is respectively the smallest

and the largest when all ⌈.⌋i correspond to IR and to ILS, i.e. ⌈xi⌋i = arg min
zi∈Zni

||xi−

zi||2Qii|I
. It follows that the bounds of (2.34) are a lower and an upper bound for

all VIB estimators given that same partitioning. Hence, for a fixed v, we have
VIBIR ≤ VIB ≤ VIBILS, whereas for v = 1 the relation simply reduces to (2.1).

Differently, we now allow v to vary, provided that it satisfies n =
∑v

i=1 ni, so we
are processing all ambiguity components. It follows that for v = 1, the entire n-
dimensional subset is considered and the relation in (2.1) holds, while for v = n,
each block is a scalar, so both VIBIR and VIBILS are ultimately equivalent to IB.
For the case v ∈ (1, n), I-estimators adopted in each block will define overall VIB
performance. Starting with IR, which is poorer than IB, we thus have VIBIR ≤ IB,
but also VIBIR ≥ IR, since conditioning improves precision and an improved precision
also improves the success rate of rounding (Teunissen, 2007). Similarly, since ILS is
better than or equal to IB, we have VIBILS ≥ IB, but always VIBILS ≤ ILS since ILS
has the largest possible success rate in the class of I-estimators.

We summarize the above performance ordering results in the following Lemma.

Lemma 6 (VIB-performance ordering)

1. For fixed v, i.e. a fixed partitioning a = [aT
1 , . . . , aT

v ]T , with ai ∈ Zni , we have

VIBIR ≤ VIB ≤ VIBILS (2.36)

2. For any v > 0, satisfying n =
∑v

i=1 ni, we have

IR ≤ VIBIR ≤ IB ≤ VIBILS ≤ ILS (2.37)

□

This result shows that an easy way to improve IR is to already define blocks of
ambiguities, and include some conditioning. Similarly, also the performance of IB
can be still improved, while avoiding the computational effort required for a full ILS
solution. A simple way to graphically summarize the previous lemma is given in Fig.
2.4, where the different estimators are ordered in terms of their success rate.

In (2.34) we have already made use of the ADOP quantity in order to formulate an
upper bound. Given that the ADOP is a geometric average of the sequential conditional
standard deviations of ambiguities (Teunissen, 1997a), it gives an approximation to the
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Figure 2.4: Graphical illustration of the success-rate ordering for well-known integer estimators, i.e.
IR, IB and ILS. In addition, the VIBIR and VIBILS are shown, when adopting only IR or ILS in
each block, whose size is arbitrary. Lastly, with the cyan square a generic VIB is illustrated for a
fixed block-size v, using arbitrarily selected I-estimators.

average precision of ambiguities, therefore it can be used for obtaining an approximation
to the ILS success rate as

P(ǎILS = a) ≈
[
2Φ

(
1

2ADOP

)
− 1
]n

(2.38)

with ADOP = |Qââ|
1

2n , similar to (2.33), but here referring to the full set of ambiguities.
In a similar way, it can be used to provide an approximation to the success rate of the
VIBILS estimator.

Lemma 7 (VIBILS success-rate approximation) Let ǎi ∈ Zni be the i-th integer vector
of the VIB estimator defined as

ǎi = ⌈âi(ǎI)⌋i = arg min
z∈Zni

||âi(ǎI)− z||2Qii|I
(2.39)

Then

P(ǎVIBILS = a) ≈
v∏

i=1

[
2Φ

(
1

2ADOPi

)
− 1
]ni

(2.40)

with ADOPi given by (2.33).

This approximation becomes better the more decorrelated the ambiguities are. The
error of approximation vanishes in case of a full decorrelation. Note that the approxi-
mation in (2.40) becomes equal to the success rate of IB when ni = 1,∀i, and thus
when v = n.

Finally we mention that if the bounds and approximations are not considered sharp
enough, that one can still resort to Monte Carlo simulations of the required VIB-
probabilities using the approaches as described in (Verhagen et al., 2013).
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2.4.4 Numerical illustrations

We now present two numerical examples, one low- and one high-dimensional, to
illustrate and exemplify the performance orderings of Lemma 6.

Example 1 (Three-dimensional ambiguity space) We consider the performance of
different I-estimators when the triangular decomposition of the float ambiguity vc-
matrix is given in (2.27) and (2.28). The success rate is numerically computed using
108 samples, where the float ambiguity vectors are synthetically generated from a
normal distribution with zero-mean and vc-matrix given in (2.26). Table 2.1 shows
results for VIBIR and VIBILS, along with results for the well-known IR, IB and ILS
estimators. Here the VIB-estimators have their third ambiguity conditioned on the
other two, which are fixed by IR or ILS. The exact result for IB, together with lower
bounds for IR and VIBIR, and an ADOP approximation for ILS and VIBILS, are also
given, together with a reference to their defining equation.

Table 2.1: Numerical simulations considering a 3-dimensional problem defined by the variance-
covariance matrix in (2.26)

Integer Ambiguity Bounds/Approx.
estimator success rate Value Eqs.

IR 63.24 % ≥ 61.86 % (2.54)
VIBIR 64.18 % ≥ 63.11 % (2.34)

IB 66.04 % = 66.04 % (2.11)
VIBILS 66.82 % ≈ 66.10 % (2.40)

ILS 66.99 % ≈ 67.85 % (2.38)

The success-rate values are aligned with the VIB performance ordering of Lemma 6
(cf. 2.37). The VIBILS shows indeed a quasi-optimal performance, i.e. ILS, without
the need of an integer search over the entire domain. Moreover, the VIBIR estimator
is better than IR, while being suboptimal to the IB method, whose success rate is
available analytically. ⋄

Example 2 (VIB in regional network) A 9-station, dual-frequency GPS network for
PPP-RTK processing with known station coordinates is considered (see Fig. 2.5).
The data is processed based on a Kalman filter each 30s using precise orbits for DOY
293 in 2020, along with mathematical models and the software platform described in
(Odijk et al., 2017).

For the purpose of illustrating the performance orderings, we focus attention on
full-ambiguity resolution (FAR) and on a moment in time when the best FAR success
rate is extremely low, which in the present example is the case at 7:15 (UTC), marked
by epoch number 870, when a new satellite, PRN03, rises and is being tracked by
all stations of the network. The dimension of the ambiguity space is n = 146. Fig.
2.6 shows the success rates of the different integer estimators employed, with all
ambiguities decorrelated using the LAMBDA transformation (Teunissen, 1995).
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Figure 2.5: Example of regional network for GPS dual-frequency (L1-L2) data retrieved on DOY 293
(in 2020). The 9 stations are located within 60 km (circle) from a certain station-user.

In both VIBILS (top plot) and VIBIR (bottom plot), we consider two different parti-
tioning: v = 2 and v = 20. The VIBILS behaves optimally for v = 2, while smaller
improvements are found for v = 20, i.e. when small subsets of 7-8 components are
sequentially processed. We should observe that by decorrelating the ambiguities, an
IB solution becomes quasi-optimal, thus a good lower bound to the ILS. The same
holds also for the VIBILS.

In the bottom plot, the IR solution has a smaller success rate with respect to IB, but
is extremely efficient. The VIBIR solution for v = 20 approaches the IB success rate,
with a large improvement over the IR solution. This second result is relevant since it
empathizes how some conditioning operations can substantially improve robustness of
the straightforward integer rounding. Its success rate will be always smaller than IB,
but once the precision increases, this difference becomes negligible and a quasi-optimal
integer solution can be obtained almost instantaneously. ⋄

2.5 Further VIB considerations

2.5.1 Ambiguity parametrization

In order to enhance the success-rate performance of VIB-estimation, considerations
about the chosen ambiguity parametrization and their ordering are important. The
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Figure 2.6: Network ambiguity success rates simulated for different I-estimators (DOY 293, 2020,
20,000 samples per epoch), with VIBILS referenced (top) and VIBIR referenced (bottom)

general guide hereby is to aim forming blocks having the most precise ambiguities,
followed by blocks that have the most precision gain from the conditioning, and
this continues until the success rate drops below the required threshold. Although
such can be achieved through the construction of the full-dimensional decorrelating
Z-transformation (de Jonge and Tiberius, 1996), this process can in many GNSS
applications be significantly aided by the a priori construction of proper ambiguity
re-parametrizations. Here we show three such examples, with the first working on
frequencies, the second on satellites and the third on antennas.
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Example 3 (Widelane-Narrowlane) Widelaning is a popular multi-frequency technique
of taking differences between ambiguities of different frequencies so as to obtain
transformed ambiguities with a better precision (Hatch, 1989; Forsell et al., 1997;
Teunissen, 1997c). When placed in the framework of VIB-estimation, the following
steps and flexibility in the widelaning procedure can be recognized (here given for the
dual-frequency case, but easily generalized to the multi-frequency case):

1. Apply the widelane transformation to get the float widelane and narrowlane
ambiguity vectors, âw and ân, respectively;

2. Integer estimate the widelane ambiguities as ǎw = ⌈âw⌋1, with ⌈·⌋1 being the
integer map of IR or IB;

3. Float estimate the narrowlane ambiguities conditioned on the fixed widelane
ambiguities as ân|w = ân −Qânâw Q−1

âwâw
(âw − ǎw);

4. Z-transform the narrowlane ambiguities to decorrelate, giving ẑn|w = ZT ân|w
and its vc-matrix Qẑn|w ẑn|w

;

5. Integer estimate the transformed narrowlane ambiguities as žn = ⌈ẑn|w⌋2, with
⌈·⌋2 being the integer map of IB or ILS.

The goal of the first step is to obtain ambiguities that are sufficiently precise so that
simple estimators, like IR or IB, can achieve high-enough success rates in the second
step. The goal of the third and fourth step is to benefit from the conditioning and
decorrelation, before IB or ILS are applied. In case of ILS, the fourth step is aimed
at improving the numerical efficiency of the ILS-computations, whereas for IB, it is
aimed at improving the success rate. ⋄

Example 4 (Multivariate geometry-free model) Consider the dual-frequency, geometry-
free model when tracking v + 1 satellites (Teunissen, 1997b). Due to its special
structure, the 2v × 2v vc-matrix of its DD float ambiguities is given as

Qââ = (DT
v Dv)⊗Q (2.41)

in which Dv ∈ R(v+1)×v represents the between-satellite differencing operator, ⊗
the Kronecker product and Q the vc-matrix of the single-differenced, dual-frequency
ambiguities. It was shown in (Teunissen, 1997b), that by using the analytical LDLT -
decomposition of (2.41), the multivariate quadratic form of the ambiguities can be
written in the form of a weighted sum of 2-dimensional quadratic forms,

||â− a||2Qââ
=

v∑
i=1

i

i + 1 ||âi(aI)− ai||2Q (2.42)

in which the ai ∈ Z2, i = 1, . . . , v, are, with respect to the reference satellite, the
dual-frequency DD ambiguities of satellite i, aI = (aT

1 , . . . , aT
i−1)T , and âi(aI) is the

conditional estimate

âi(aI) = âi −
1
i
·

i−1∑
j=1

(âj − aj) (2.43)
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with âi(aI) = â1 when i = 1. Instead of solving a high-dimensional ILS-problem by
minimizing (2.42) over the 2v-dimensional space of integers, the v two-dimensional
quadratic forms of (2.42) are minimized in a sequential fashion. Hence, in this case
the main VIB-estimation steps, for i = 1, . . . , v, are:

1. Compute the conditional estimate âi|I = âi(ǎI);

2. ILS-estimate ǎi = arg min
z∈Z2
||âi|I − z||2Q;

3. Update integer ambiguity vector: ǎI+1 = (ǎT
I , ǎT

i )T .

Note, as each 2-dimensional ILS problem may still present highly correlated ambiguities,
that a suitable 2× 2 decorrelating Z-transform can be constructed, which then only
has to be applied once to Q. ⋄

Example 5 (Network array) This example is taken from the concept of array-aided
PPP introduced in (Teunissen, 2012). We assume to have an array with r +1 antennas,
tracking s + 1 GNSS satellites, on f frequencies. With zi ∈ Zfs×1 being the integer
vector of DD ambiguities of the ith baseline, the integer network ambiguity matrix
Z = (z1, . . . , zr) ∈ Zfs×r can be formed of which the fsr × fsr vc-matrix of the float
solution ζ̂ = vec(Ẑ) can be shown to read

Qζ̂ζ̂ = DT
r QrDr ⊗N−1 (2.44)

in which Dr ∈ R(r+1)×r represents the between-antenna differencing matrix, Qr is a
cofactor matrix by which the relative quality of the array-antennas can be modelled
(i.e. Qr = Ir+1 when all antennas have the same quality), and N is the sf×sf reduced
normal matrix of the single-baseline ambiguities. Note, although (2.44) resembles
the structure of (2.41), that (2.44) is a Kronecker product of two different types of
matrices. As the receiver-antennae dependency is made explicit in matrix DT

r QrDr,
differences in antenna-quality can be exploited in the VIB-conditioning. If we consider
the case of 3 antennas, with Dr = (e2,−I2)T , e2 = (1, 1)T , and Qr = diag(σ2

1 , σ2
2 , σ2

3),
then ζ = (zT

1 , zT
2 )T ∈ Z2fs×2fs and (2.44) can be written as

Qζ̂ζ̂ =
[

(σ2
1 + σ2

2) ·N−1 σ2
1 ·N−1

σ2
1 ·N−1 (σ2

1 + σ2
3) ·N−1

]
(2.45)

Would we now condition the ambiguities of the second baseline, ẑ2, on those of the
first baseline, ẑ1, the resulting vc-matrix is obtained with the help of (2.45) as

Qẑ2ẑ2|ẑ1 = Qẑ2ẑ2 ·
(

1− 1
(1 + γ2)(1 + γ3)

)
(2.46)

where γi = σ2
i /σ2

1 is the variance-ratio between one of the two auxiliary antennas
and the master. The precision of the ambiguities conditioned in a vectorial sense is
improving by a factor 3/4 for antennas with the same precision. At the same time,
the VIB improvement in the precision of the conditioned ambiguities ẑ2|1 will actually
be negligible if the second antenna (involved in the first baseline) has a very poor
precision, a situation that thus should be avoided. ⋄
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Next to frequencies, satellites and receivers, also other elements of the GNSS functional
and stochastic model can in particular applications be exploited for the construction
of a VIB-suitable ambiguity parametrization. Such can e.g. be driven by constellation,
by satellite-elevation or by atmospheric impact. In a network, for instance, with very
different baseline lengths, the ambiguities of the shorter baselines will generally be
more precise and therefore candidates to be treated first (Blewitt, 1989). A similar
consideration holds for ambiguities of high-elevation satellites, which are usually more
precise than those of lower-elevation satellites.

2.5.2 Practical considerations

As VIB estimation is also aimed at reducing the computational complexities of integer
estimation, it is important to recognize that in several of its computational steps
a good use can be made of the, often readily available, Cholesky-decomposition of
the system of normal equations. For instance, although in many of the expressions
for ambiguity resolution the vc-matrix Qââ and/or its inverse Q−1

ââ are needed, their
explicit computation can often be avoided. Similarly, although the expressions of
estimation often show the float ambiguity vector â explicitly, the computation of this
full vector is not always needed, and this is particularly so in case of VIB-estimation.

To demonstrate this, let the partitioned system of normal equations, with the Cholesky
decomposition for the normal matrix, be given as[

Cbb 0
Cab Caa

] [
Cbb 0
Cab Caa

]T [
b̂
â

]
=
[

rb

ra

]
(2.47)

Then the reduced system of normal equations for the ambiguities is given as CaaCT
aaâ =

r̄a, from which it follows that the lower-triangular sub-matrix Caa ∈ Rn×n is directly
related to the vc-matrix of the float ambiguity vector: Q−1

ââ = CaaCT
aa, and so

Qââ = C−T
aa C−1

aa . The matrix C−1
aa (also lower triangular) can then be directly used

in the decorrelation process prior to the actual integer estimation, thereby saving
several matrix operations. We refer to de Jonge et al. (1996) for a more comprehensive
description of these computational aspects, in particular describing further advantages
relatively to the computation of the decorrelating Z-transformation. Here we also
point to the VIB-flexibility as far as the Z-decorrelation is concerned. One can apply
such decorrelation to all ambiguities, or one can restrict the Z-decorrelation to only
when the mappings ⌈.⌋i : Rni 7→ Zni need to be computed.

In case of VIB, one can take another advantage of the triangular structure of Caa by
avoiding, through a proper ordering of the ambiguities, the explicit computation of
their float values. With the triangular matrix Caa partitioned as

Caa =
[

C11 0
C12 C22

]
(2.48)

it directly follows from the reduced normal equations CaaCT
aaâ = r̄a that the con-

ditional least-squares float solution of a1, when conditioned on a2, is given as
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â1|2 = C−T
11 [C−1

11 r̄1 −CT
12a2]. This shows that the computation of the conditional float

solution â1|2 does not require the explicit computation of the float solution â1 and
that it can be done efficiently by solving triangular systems of equations. Hence, when
in case of VIB, the v-block partitioning is known, the ambiguities can be ordered
accordingly to take advantage of this numerical gain.

As discussed in previous sections, a vectorial formulation enables also ad hoc
parametrizations of the ambiguity components, where structure of a certain problem
can be fully exploited. Given that the mathematical relations presented in this
contribution are generalized for any different parametrization, it is indeed possible to
also makes use of different decorrelation approaches (Jazaeri et al., 2014), which could
further enhance efficiency of VIB-based strategies. The large variety of applications
for such a vectorial formulation makes a comprehensive discussion about performances
not practical within the scope of this work, therefore a subject of future researches.
However, to further emphasize the available flexibility, we briefly highlight the possible
extensions to other estimators.

2.5.3 Extensions to other classes of estimators

The flexibility of the VIB-formulation does not restrict it to the class of integer
estimators only. It could include estimators from the IA-class (Teunissen, 2003a)
or IE-class (Teunissen, 2002) as well. For each block, for instance, one can include
IA-estimators having aperture pull-in regions that are particularly accommodated to
the integer estimator ⌈·⌋i : Rni 7→ Zni of that block. Such can then be used to include
ambiguity-validation for each block, thereby providing flexibility and options to skip
blocks when block-validation fails.

Also IE-estimators can be given a place in the VIB-framework, for instance when it
turns out that the success rate drops below the required threshold when an additional
block would be fixed. Instead of outputting the conditional float solution of the
remaining ambiguities, one could then still apply, using their conditional vc-matrix,
best integer equivariant estimation to these ambiguities to improve upon their mean
squared errors. As such, and with the various options available, the concept of partial
ambiguity resolution, introduced in (Teunissen et al., 1999), is generalized to the
VIB-domain.

2.6 Summary and concluding remarks

In this contribution we introduced the concept of vectorial integer bootstrapping (VIB)
as a generalization of the popular, but scalar, integer bootstrapping. As with integer
bootstrapping, VIB-estimation is characterized by two alternating operations that
are sequentially applied, conditioning and integer mapping. It is due to the vectorial
formulation of these two principles, that the VIB-concept creates such flexibility in
designing one’s integer estimators. Many new integer estimators can be formulated, in
particular when balancing computational simplicity against success-rate performance.
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We presented the probabilistic properties of the VIB-estimators, with a special emphasis
on their probability of correct integer estimation and the formulation of easy-to-
compute lower bounds and upper bounds of their success rates. We provided a new
ordering in the success-rate performance of various different VIB-estimators, together
with corresponding numerical illustrations.

In order to enhance the success-rate performance of VIB-estimation, considerations
about the chosen ambiguity parametrization and their ordering are important. The
general guide hereby is to aim forming blocks having the most precise ambiguities,
followed by blocks that have the most precision gain from the conditioning. Although
such can be achieved through the construction of the full-dimensional decorrelating
Z-transformation, it was shown by means of analytical examples that in many GNSS
applications such can be significantly aided through the a-priori construction of proper
ambiguity re-parametrizations.

We also discussed further considerations when implementing VIB. As it is aimed at
reducing the computational complexities of integer estimation, we described how at
several of its computational steps a good use can be made of the, often readily available,
Cholesky-decomposition of the system of normal equations. This not only concerns
the computation of the ambiguity vc-matrix, but also of the float solution itself.
Finally, we indicated that the flexible VIB-concept lends itself to further extensions,
in particular in combination with estimators from the IA- and IE-class.

2.7 Appendix

Proof of Lemma 3 (VIB success rate) We use the transformation of integral formula∫
R

f(y)dy =
∫

T −1(R)
f(T (x)) · |∂xT (x)| dx (2.49)

with |∂xT (x)| being the determinant (in absolute value) of the Jacobian matrix of
partial derivatives. Moreover, in our case we have R = Pa,VIB and f : Rn → R as

f(y) = 1√
|2πQââ|

exp
{
− 1

2 ||y − a||2Qââ

}
(2.50)

As transformation y = T (x) we choose

yi = xi +
i−1∑
j=1

Qij|JQ−1
jj|J(xj − aj) , i = 1, . . . , v (2.51)

which leads for the transformed pull-in region to

T −1(R) = {x ∈ Rn | I(x− a) = 0} (2.52)

with I(x) = (⌈x1⌋T1 , . . . , ⌈xv⌋Tv )T , and for the transformed integrand we can write

f(T (x)) · |∂xT (x)| =
v∏

i=1

exp{− 1
2 ||xi − ai||2Qii|I

}√
|2πQii|I |

(2.53)
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since |∂xT (x)| = 1. Substitution of (2.52)(2.53) into (2.49) proves the result.

Proof Lemma 5 (Success-rate bounds for VIBIR and VIBILS) The lower bound for
VIBIR follows from the IR lower bound given in (Teunissen, 1998), such that

n∏
i=1

[
2Φ

(
1

2σi

)
− 1
]
≤ P(ǎIR = a) (2.54)

Note that this lower bound is evaluated for the unconditional ambiguity standard
deviations. The upper bound for VIBILS follows from the respective upper bound for
an ILS estimator, also given as

P(ǎILS = a) ≤ P
(

χ2(n, 0) ≤ cn

ADOP2

)
(2.55)

with ADOP = |Qââ|
1

2n , and cn given in (2.35). For a proof of this upper bound, see
(Teunissen, 2000).
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3
On VIB implementations in the

estimation of satellite orbits/clocks
based on small global networks

The estimation of satellite orbits and clocks plays a central role in different Global Navigation
Satellite System (GNSS) domains, e.g. precise positioning or time transfer. Such products
can be computed in the process of Orbit Determination and Time Synchronization (ODTS),
which relies on a network of ground-based stations, well distributed around the globe. The
mm-level precision of carrier-phase measurements is exploited in this network estimation
following a correct resolution of their ambiguities. For several stations, satellites and/or
signals, thousands of ambiguities have to be processed, which means having to deal with
high-dimensional ambiguity resolution (HDAR) problems. In this research work, we firstly
account for the impact of ambiguity resolution in a varying network size, based on GPS-only,
Galileo-only and GPS+Galileo configurations. Using 25 or more stations, the accuracy (1D
RMS orbital errors) of fixed solutions reaches a plateau at 1-2 cm. Hence, we focus on a small
global network of 14 stations, where the model strength decreases, so does the reliability of
the ambiguity fixing process and advantages over a float solution might become less evident.
In order to allow reliable HDAR, two implementations of the Vectorial Integer Bootstrapping
estimator are presented and evaluated with respect to their scalar counterpart. Finally,
it is shown how the proposed fixing processes are more robust, still very efficient, and on
certain days they provide a large improvement to satellite products. The orbital results are
ultimately validated by considering the satellite midnight discontinuity errors over a 3-month
period in 2019.

This chapter has been published as: Massarweh, L., Strasser, S., and Mayer-Gürr, T. (2021). On
vectorial integer bootstrapping implementations in the estimation of satellite orbits and clocks based
on small global networks. In Advances in Space Research, 68(11), 4303-4320. https://doi.org/10.101
6/j.asr.2021.09.023
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3.1 Introduction

The generation of satellite orbit and clock information represents an essential element
for any Regional/Global Navigation Satellite System (RNSS/GNSS) and is generally
based on the use of code and phase observations from a ground-based network of station
receivers. The so-called process of Orbit Determination and Time Synchronization
(ODTS) makes the best use of state-of-the-art knowledge on orbital dynamics for all
tracked satellites (Montenbruck and Steigenberger, 2020). This a priori information
can be consequently improved by means of an accurate functional and stochastic
modeling of such measurements, ideally consistent with the models later adopted on
the user side.

The contribution of carrier-phase measurements, very precise but ambiguous, is a key
aspect in the network estimation, whether a global or a regional one. In fact, to exploit
their mm-level precision, the integer ambiguities need to be correctly resolved, which
is not an easy task when dealing with global networks (Ge et al., 2006). Given denser
networks, many satellites from different GNSS constellations and/or multi-frequency
signals, the number of ambiguity components grows rapidly, along with the complexity
of the integer ambiguity resolution (IAR). This leads to the necessity for a balanced
trade-off between efficiency and robustness of the IAR process, for example in support
of a low-latency generation of precise satellite orbits and clocks products.

Simple and intuitive strategies can be used (Blewitt, 1989; Cocard and Geiger, 1992),
e.g. well-known widelaning approaches, but sophisticated ones are available. For
instance, the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method,
introduced in Teunissen (1995), which provides an effective solution to the IAR. The
LAMBDA approach enables the adoption of a wide range of possible estimators,
suitable for both low and high accuracy applications, and it has been proved to be
relatively efficient up to a few hundred ambiguity components (Li and Teunissen,
2011). Expected performances for precise long-baseline positioning using both GPS
and Galileo are presented in Odijk et al. (2014) based on a formal analysis, for instance
in terms of predicted success rate. The advantages when considering GPS+Galileo
have been further investigated (Nardo et al., 2016), where different long baseline
scenarios (ground- and space-based) are simulated and examined.

However, nowadays, we might deal with problems of a much larger dimensionality
(Chen et al., 2014), where thousands of ambiguity components are involved, and the
overall complexity grows exponentially in such a “dimensional curse” (Verhagen et al.,
2012b). This dimensionality aspect might lead to a computational bottleneck (Jazaeri
et al., 2012), and the high-dimensional ambiguity resolution (hereinafter HDAR)
problems are less likely solvable in a reliable way and in short computational times.

In this work, we consider the Vectorial Integer Bootstrapping (VIB) estimator described
in Teunissen et al. (2021). The flexibility of such a VIB formulation allows for an
arbitrary partitioning of the original n-dimensional ambiguity problem, along with a
suitable choice of the integer estimator in use. Two (possible) implementations are
described: firstly, a straightforward Cascade AR (CascAR) algorithm and secondly,
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a blocked search approach in use by Graz University of Technology (TUG). Both
the two algorithms are shown to be efficiently constructed starting from the same
triangular decomposition, while following LAMBDA decorrelation of ambiguities.

Using the ODTS strategy and software developed at Graz University of Technology
(Strasser et al., 2019), we analyze different network configurations in order to further
define the impact of ambiguity resolution with respect to the network size. The
latter is assessed by looking at the accuracy of satellite products. We focus on a
small global network, where the correct ambiguity resolution shows to provide the
most benefits, e.g. in terms of orbital errors. The two VIB implementations are
validated over a 3-month period in 2019, using GPS+Galileo real data from a network
of 14 well-distributed stations. Both these VIB-based approaches show the great
convenience of this easy-to-implement and flexible formulation, while also leaving
room for improvement. In fact, more advanced algorithms might be designed ad hoc
in several GNSS domains, not limited to this network case.

In Section 3.2, the two algorithms are introduced as examples of implementation for
the VIB estimator. In Section 3.3, the network estimation strategy for satellite orbits
and clocks is delineated, along with configurations and a few scenarios considered in
this work. The main results are presented and analyzed within Section 3.4, focusing
on a small global network and also briefly comparing the two algorithms. In Section
3.5, we perform a validation over a 3-month period, followed by a short discussion on
this vectorial formulation. Lastly, in Section 3.6, the overall conclusions are given.

3.2 Integer ambiguity resolution methodology

We start from a linear(ized) mixed-integer GNSS model estimation (Leick et al., 2015),
given the vector of code and phase observations as y ∈ Rm with its positive-definite
variance-covariance (vc-)matrix as Qyy ∈ Rm×m, such that

E{y} = Aa + Bb, D{y} = Qyy (3.1)

with E{·} and D{·} being the expectation and dispersion operators, respectively. The
matrix (A, B) ∈ Rm×(n+p) denotes a full-rank design matrix, with a ∈ Zn as vector of
carrier-phase integer ambiguity and b ∈ Rp as vector of real-valued parameters. The
latter refer, without loss of generality, to estimable parameters in the ODTS process,
for example satellite orbit and clock products, as later discussed in Section 3.3.

By means of an orthogonal decomposition (Teunissen, 1993), we can separate the
quadratic objective function (with integerness constraints) into a sum of three squares
as

||y −Aa−Bb||2Qyy
= ||ê||2Qyy

+ ||â− a||2Qââ
+ ||b̂(a)− b||2Qb̂(a)

(3.2)

where || · ||2Q = (·)T Q−1(·) refers to a squared Mahalanobis distance (Mahalanobis,
1936), i.e. a weighted norm in the metric given by Q−1. This previous decomposition
leads to a subsequent three-step minimization of the original objective function.
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In the first step, ê ∈ Rm is the residual vector of a least-squares solution that neglects
the integerness constrains on ambiguities. These estimated (float) ambiguities â ∈ Rn,
and their vc-matrix Qââ ∈ Rn×n, are therefore used in a second step to solve an Integer
Least Squares (ILS) problem, e.g. considering a many-to-one map I : Rn → Zn, such
that their integer-fixed estimate is ǎ = I(â). Given that no constrains are taken
into account for b, a fixed solution to the third step is easily found by considering
b = b(ǎ) def== b − Qb̂âQ−1

ââ (â − ǎ) and, for Qǎǎ ≈ 0 (Verhagen, 2005), we can safely
assume Qb̌b̌ ≈ Qb̂b̂ −Qb̂âQ−1

ââ Qâb̂.

A focal point in this three steps process becomes the minimization of ||â − a||2Qââ
,

which can still be tackled by different classes of estimators, i.e. Integer (I) estimators
(Teunissen, 1999), Integer Aperture (IA) estimators (Teunissen, 2003a) or Integer
Equivariant (IE) estimators (Teunissen, 2002). These three classes are proper subsets
of one another, thence I ⊂ IA ⊂ IE, with the I- and IE-class being the smallest and
largest, respectively. Further mathematical details are summarized and extensively
discussed in Teunissen (2003b).

3.2.1 Review of Vectorial Integer Bootstrapping estimators

The Vectorial Integer Bootstrapping (VIB) method, defined in Teunissen et al. (2021),
hinges on a further orthogonal decomposition of the second term in Eq.(3.2). In
fact, it is possible to define an arbitrary partitioning of the initial vector a ∈ Zn, i.e.
a1 ∈ Zn1 , a2 ∈ Zn2 , where all ambiguity components are still involved, so n = n1 + n2.
It follows that

min
a∈Zn

||â− a||2Qââ
= min

a1∈Zn1 ,a2∈Zn2

(
||â1(a2)− a1||2Q11|22

+ ||â2 − a2||2Q22

)
(3.3a)

≈ min
a1∈Zn1

(
||â1(a2)− a1||2Q11|22

)
+ min

a2∈Zn2

(
||â2 − a2||2Q22

)
(3.3b)

for Q11|22 = Q11 −Q12Q−1
22 Q21 as Schur complement (Zhang, 2006) of block Q22 in

Qââ. The latter follows from a conformable blocks’ partitioning, i.e. Q12 ∈ Rn1×n2 ,
such as

Qââ =
[
Q11 Q12
QT

12 Q22

]
(3.4)

with â1(a2) = â1 − Q12Q−1
22 (â2 − a2) here referring to the float ambiguity subset 1

conditioned on 2. In the VIB approach, the first term in parenthesis for Eq.(3.3a)
is then minimized only accounting for a1 ∈ Zn1 , thus assuming in Eq.(3.3b) that a2
is given from the second minimization, i.e. ǎ2 = I2(â2) for an admissible integer
mapping I2 : Rn2 → Zn2 .

The VIB solution is consequently suboptimal, and its success rate depends upon the
ambiguity parametrization, as it does for its scalar counterpart (Teunissen, 1998).
Still, the integer search is now performed over two smaller subsets rather than over
a large domain, whose complexity increases exponentially with the n dimensionality
(Brack, 2019). A similar principle is, nonetheless, also known in the scalar Integer
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Bootstrapping (IB) method, where the number of blocks m is equal to n, so having
ni = 1,∀i = 1, . . . , m. On the other hand, for m = 1 we have n1 = n, and thence the
overall ILS (optimal) solution is computed.

It is important to observe that each block is always conditioned on the previous ones,
preferably going from the most to the least precise subset. This conditioning should
not be neglected since it is a key aspect for improving the VIB success rate (Teunissen
et al., 2021), and for the same parametrization it can lead to a solution that is closer
to optimality than in the scalar IB case. In order to maximize the robustness of the
fixing within each subset, all blocks are sequentially processed by means of an ILS
estimator as discussed in the following sections.

3.2.2 Cascade Ambiguity Resolution (CascAR) algorithm

The CascAR algorithm is based on a quite general implementation of VIB estimators,
and it allows having an efficient characterization of each subset, since it requires
only a single LT DL-decomposition of the (float) ambiguity vc-matrix. It follows
as Qââ = LT

â DâLâ, where Lâ, Dâ ∈ Rn×n are a lower unitriangular and a diagonal
matrix, respectively. This triangular decomposition has a statistical interpretation,
e.g. see Teunissen (1995), and it leads to the desired sum-of-blocks structure discussed
in Section 3.2.1.

Given an arbitrary partitioning with m blocks, for m ∈ [1, n], we can write

||â− a||2Qââ
=

i=m∑
i=1
||âi|J − ai||2Qii|J

, J = {i + 1, . . . , m} (3.5)

with the (conditioned) ambiguity subsets âi|J ∈ Rni , for n = n1+. . .+nm. Furthermore,
we set âm|J = âm, being the unconditioned block (i.e. firstly processed). In Teunissen
et al. (2021), a block-decomposition is shown to define subsets, thus implying a certain
selection for the partitioning, i.e. values ni. Nonetheless, in a very similar way, the
metric used in each sub-problem can be retrieved directly as Qii|J = LT

iiDiiLii, where
a conformable (in size) partitioning of Lâ, Dâ has been adopted. For the sake of clarity,
additional mathematical details are given in Appendix.

We can describe the CascAR algorithm (see Fig. 3.1) by assuming that ambiguities
are firstly decorrelated with the LAMBDA software (Verhagen et al., 2012a) by
means of a Z-transformation, for Z ∈ Zn×n (unimodular), such that ẑ = ZT â and
Qẑẑ = ZT QââZ. This “pre-processing" step enhances the success rate for our VIB
solution, improves the integer search process, and it also assures that ambiguity
components are sorted based on their precision. The latter is an important element
since it is convenient to firstly fix very precise blocks (i.e. with a high success rate),
so to later condition the remaining ones on these more reliably fixed blocks.



3

46 Chapter 3: Vectoral IB for ODTS

In order to assure a full consistency with LAMBDA routines, the most precise
components are set within the last block i = m, which is where we start. We then
continue the cascade (conditioning) process to i = m− 1, m− 2, . . ., till we reach i = 1.

The CascAR algorithm takes as inputs the triangular decomposition for a decorrelated
ambiguity vc-matrix, i.e. Qẑẑ = LT

ẑ DẑLẑ, and a float vector ẑ relative to the full set.
Once the first partitioning has been defined by nm, we initialize the aforementioned
inputs with "*" and we divide the problem in two subsets I and II.

Hence, we get ẑI ∈ RnI and ẑII ∈ RnII , where nI = n1 + . . . + nm−1 and nII = nm.
This second block (presumed to be more precise) is processed in order to obtain an ILS
solution žII ∈ ZnII , later adopted to condition the remaining ambiguities. We should
observe that this conditioning operation takes place directly by means of conformable
blocks in the matrix Lẑ, so directly using LQ ∈ RnII ×nI and LII ∈ RnII ×nII (see
details in Appendix).

CascAR algorithm 

𝐿𝑧 ∈ ℝ𝑛×𝑛 (lower unitriangular matrix) 

𝐷𝑧 ∈ ℝ𝑛×𝑛 (diagonal matrix) 

𝒛 ∈ ℝ𝑛 (decorrelated float ambiguities) 

𝑛𝑖 ∈ ℝ, ∀𝑖 = 1:𝑚 (size of each block) 

Inputs 

𝒛 𝑰𝑰, 𝐿𝐼𝐼, 𝐷𝐼𝐼  ⇒   𝒛 𝑰𝑰 ∈ ℤ𝑛𝑖     ILS search 

𝒛 𝑰|𝑰𝑰 = 𝒛 𝑰 − 𝐿𝑄
𝑇 𝐿𝐼𝐼

−1 ∙ (𝒛 𝑰𝑰 − 𝒛 𝑰𝑰) Conditioning 

   𝒛 ∗, 𝐿∗, 𝐷∗  
𝑛𝑖−block

 𝒛 𝑰𝑰, 𝐿𝐼𝐼, 𝐷𝐼𝐼  Partition 

𝑧 ∗ = 𝑧 , 𝐿∗ = 𝐿𝑧 , 𝐷∗ = 𝐷𝑧  Initialize 

𝒛 ∗ = 𝒛 𝑰|𝑰𝑰, 𝐿∗ = 𝐿𝐼 , 𝐷∗ = 𝐷𝐼  Re-initialize 

𝒛 = 𝒛 𝟏 ; … ; 𝒛 𝒎 ∈ ℤ𝑛 Store solution 

Ite
ra

te
 till 𝑖

=
1
 

𝒛 𝑰𝑰 

LAMBDA 

decorrelation 

Figure 3.1: The CascAR algorithm is shown, where the initial ILS problem can be partitioned into
m blocks, starting from ambiguity components that have been previously decorrelated in LAMBDA.

At the end of this first iteration, the block I is re-initialized with “*” and we re-iterate
the process till nII = n1, while nI = 0. During each i-th iteration, the integer-fixed
solution ž{i} ∈ Zni of the respective subset is stored in a single (column) vector žVIB,
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given as

žVIB =



ž{1}

...
ž{i}

...
ž{m}

 ∈ Zn (3.6)

that still represents an integer solution to the problem as seen in Eq.(3.3b). The
selection over number of blocks m and their respective dimensionality ni is discussed
in Section 3.3.2.1.

3.2.3 TUG’s “blocked search” IAR method

When looking at vectorial approaches, there are several examples available in literature
as highlighted in Teunissen et al. (2021). Another possible approach that can be placed
within the family of VIB estimators is the so-called “blocked search” algorithm that
has been firstly described in Strasser et al. (2019). It shows quite some similarities
with the CascAR implementation, but with an alteration of the cascade processing.

This method considers overlapping blocks, de facto re-processing several components
twice but as part of different subsets. The driving motivation is that the optimal
solution for a certain ILS problem is unique, i.e. a definite n-dimensional set of integer
ambiguities, and therefore fixed solutions for overlapping blocks should have the same
integer components. If two adjacent blocks lead to different integer values for their
overlapping components, then the integer search is performed over their joint subsets.

We should carefully consider that while this approach is not formally defined from a
mathematical point of view, it still presents a quite interesting variation of the VIB
approach and is therefore considered in this investigation. In Fig. 3.2 a schematic
view of the TUG method is given for a simplified case, as a matter of example, based
on a blocked partitioning of an ILS problem with n = 400, where each block involves
100 ambiguity components.

The TUG algorithm starts processing each 100-dimensional block in a main cascade
and overlapping blocks (of same dimensionality) in a secondary one. When all integer-
fixed components in common sub-blocks (i.e. here 50 ambiguities) are the same we
obtain the respective fixed solution (in green color) for that portion of the block.
When a different solution (in red color) is found between this main and secondary
cascade, then the search is performed in the joint subset that contains 150 ambiguities.
The solution of this larger integer search provides the 100 fixed components, including
those 50 that differed originally, while the last 50 solution components are not yet
accepted. In fact, these last 50 components overlap with a new block in the main
cascade (i.e. from ẑ200 till ẑ101) that has not been processed yet. Once this block
has been processed and the overlapping integer components match, we continue the
process; otherwise the same “expansion and search” strategy is performed as before.
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TUG algorithm 

𝒛 𝟒𝟎𝟎…𝟑𝟓𝟏 𝒛 𝟑𝟓𝟎…𝟑𝟎𝟏 𝒛 𝟑𝟎𝟎…𝟐𝟓𝟏 𝒛 𝟐𝟓𝟎…𝟐𝟎𝟏 𝒛 𝟐𝟎𝟎…𝟏𝟓𝟏 𝒛 𝟏𝟓𝟎…𝟏𝟎𝟏 𝒛 𝟏𝟎𝟎…𝟓𝟏 𝒛 𝟓𝟎…𝟏 

ILS search  ILS search 

ILS search ILS search 

𝑧 350…301 𝑧 300…251 𝑧 400…351 ≠ 

ILS search 

𝑧 300…251 𝑧 250…201 TBD 

Ambiguity subsets (most → least precise) 

Different  
solutions LEGEND 

      Processed blocks 

      Not yet processed 

      Conditioning 

      Accepted solution 

      Rejected solution 

      Not yet accepted 

Figure 3.2: The TUG algorithm is shown based on decorrelated ambiguities. The overlapping subsets
are fixed and used to conditioning the following ones. See text for more details.

Note that when working with such larger subsets, then we condition the successive
ambiguities based on this new solution.

It is understandable that such an overlapping vectorial approach leads to higher
computational times, since most components are processed twice. In addition to
that, when rejections occur, we also deal with larger ILS problems. Increasing the
dimensionality by 50% might lead (in some cases) to higher computational times,
depending on the initially chosen size. Hence, it is also important to somehow limit
the expansion strategy otherwise the entire process could become jammed in an
interminable integer search process.

3.3 Processing strategy and scenarios selection

The experiments presented in this article are conducted using the open-source software
GROOPS (Mayer-Gürr et al., 2021), which is developed and maintained at Graz
University of Technology. The source code of GROOPS is available on GitHub
(https://github.com/groops-devs/groops) together with documentation and an
installation guide. The software features GNSS processing capabilities based on an
implementation of the raw observation approach (Strasser et al., 2019).

It supports multi-GNSS and multi-signal environments and is optimized for the
processing of large GNSS station networks. GROOPS was used to process up to 800
stations and 75 GPS, GLONASS and Galileo satellites per day for TUG’s contribution
(Strasser and Mayer-Gurr, 2021) to IGS repro3, the third reprocessing campaign of the

https://github.com/groops-devs/groops
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Table 3.1: Estimated parameters per component and their a priori constraints (σ)

Component Parametrization
Satellite orbits Initial state, 7 ECOM2 parameters, with

stochastic pulse at midday (σ = 0.1 µm/s per axis)
Satellite/receiver clocks Epoch-wise
Satellite/receiver code biases Constant per day, signal (e.g., C1C), and constellation
Satellite phase biases Constant per day, frequency, and constellation
Receiver phase biases Constant per day, signal (e.g., L1C) , and constellation
Phase ambiguities Constant per continuous track and signal
Tropospheric zenith wet delay Degree-1 spline with 2-hourly nodes per station (σ = 5 m)
Tropospheric gradient delays Constant-trend per day/station in the north/east (σ = 5 m)
Ionospheric influence Slant TEC per satellite-receiver line of sight and epoch

International GNSS Service (Johnston et al., 2017). GROOPS-based GNSS products
are thus going to be incorporated into the next version of the International Terrestrial
Reference Frame (i.e. ITRF2020).

The processing setup for the conducted experiments is similar to that of repro3
and generally follows what is documented in Strasser et al. (2019). All process-
ing is performed in daily 24-hour batches. The parameters estimated per day are
listed in Table 3.1. The seven ECOM2 solar radiation pressure parameters are
{D0, D2C , D2S , Y0, B0, B1C , B1S} (cf. Arnold et al., 2015).

Strasser et al. (2019) provides more detailed information on the parametrizations used
for the different components, for example how the ionospheric influence is separated
from code biases and clock errors. The estimated code and phase biases account for
satellite-specific and receiver-specific hardware biases (e.g., Håkansson et al., 2017).
Combined satellite-and-receiver-specific biases, for example as observed by Hauschild
et al. (2019), were not considered in the processing.

The system of equations is firstly solved in an iterative weighted batch least-squares
adjustment. The ambiguities, initially treated as float-valued together with other
real-valued parameters, are then decorrelated and fixed according to the methodology
in Section 3.2. The experiments are limited to GPS and Galileo, either in a single- or
dual-GNSS processing. To keep the setup as simple as possible, only observations with
the RINEX 3 encoding C1C, C2W (GPS) and C1C/C1X, C5Q/C5X (Galileo) are used,
along with their respective phase counterparts. The code and phase observations are
processed at a 30-second sampling period. Satellite and receiver antenna calibrations
are taken from “igsR3_2135.atx”, i.e. the repro3 ANTEX file described in Villiger
et al. (2020).

The station coordinates from a preliminary repro3 combined solution (IGSR03SNX)
are introduced here as known, resulting in station-fixed solutions. This reduces the
number of unknown parameters, allowing a more focused analysis of the impact of
AR onto satellite products. In combination with the repro3 ANTEX file, it leads to
products that are aligned to the IGSR3 reference frame.
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Table 3.2: The list of a priori models considered for the dynamical accelerations of satellite orbital
motion and corrections to GNSS code and phase observations

Dynamical accelerations Model adopted Reference
Earth’s gravity field GOCO06s Kvas et al. (2021)
Astronomical tides JPL DE432 Folkner et al. (2014)
Solid Earth tides IERS 2010 Petit and Luzum (2010)
Ocean tides FES2014b Carrere et al. (2016)
Pole and ocean pole tides IERS 2010 Petit and Luzum (2010)
Atmospheric tides AOD1B RL06 Dobslaw et al. (2017)
General relativity IERS 2010 Petit and Luzum (2010)
Solar radiation pressure Box-wing Rodriguez-Solano (2014)
Earth radiation pressure Box-wing Rodriguez-Solano (2009)
Antenna thrust Narrow-beam Steigenberger et al. (2018)
Observables corrections Model adopted Reference
Solid Earth tides IERS 2010 Petit and Luzum (2010)
Ocean tides FES2014b Carrere et al. (2016)
Pole and ocean pole tides IERS 2010 Petit and Luzum (2010)
Atmospheric tides AOD1B RL06 Dobslaw et al. (2017)
Tropospheric delay VMF3 Landskron and Böhm (2018)

Any potential reference frame and antenna model differences affecting satellite orbit
comparisons are taken into account in our analyses by means of a 7-parameter Helmert
transformation. For example, IGS Final/CODE MGEX products used for evaluation
are both aligned to the IGb14 reference frame and are based on different satellite
antenna Z-offsets, which results in a difference in scale that is accounted for by the
transformation parameters. The small global network adopted in the experiments is
detailed in Section 3.3.2. In case any of the stations are unavailable on a specific day,
they are replaced by nearby IGS stations to keep the network geometry as stable as
possible.

State-of-the-art force and principal models have been applied in this processing, as
described in Strasser et al. (2019). These are summarized in Table 3.2, where we refer
to both dynamical accelerations for the satellite orbital motion and corrections to
the GNSS code and phase observations. Since these two elements refer to inertial
and non-inertial reference systems, the Earth orientation is introduced here as known
based on the IERS EOP 14 C04 (IAU2000A) time series, along with an additional
model covering the high-frequency effects (Desai and Sibois, 2016).

An elevation-dependent stochastic model in the form σ(el) = σz/ sin(el) is applied to
define the a priori standard deviation of an observation based on its elevation angle
“el”, which is then used to weight the observations. Following repro3 configurations
of GPS and Galileo, the standard deviation at zenith σz for raw code and phase
observations is 22 cm and 1 mm, respectively.
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3.3.1 Impact of ambiguity resolution with the network size

We start considering a global network of IGS stations, comprised of 60 well-distributed
ground-based receivers, and a few sub-networks are selected starting from this largest
one. The network and subsets are illustrated in Fig. 3.3, with a number of stations
M ∈ [10, 60].

Figure 3.3: Illustration of networks with different sizes between 10 and 60, with ground-based station
receivers well distributed around the globe. Each smaller network is a subset of larger ones.

For seven consecutive days (DOY 298-304 in 2019) we compute, on a daily basis, orbit
and clock products considering GPS-only, Galileo-only and GPS+Galileo. Furthermore,
in each configuration we compute both a float and a fixed solution. The latter is found
based on an integer bootstrapping (IB) estimator and fixing for the most reliable
subset (Verhagen et al., 2011) with a sufficient success rate, e.g. 99.9%. With IB, each
ambiguity component is conditioned on the previous ones that are sequentially fixed
by simply rounding. This conditioning introduces information that enhances the fixing
success rate with respect to an Integer Rounding (IR) estimator where a component-
wise rounding is performed. In this way, IB allows for a good computational efficiency
with respect to integer search-based processes, even if it remains sub-optimal and
largely dependent upon the ambiguity parametrization.

The resulting satellite orbits are compared with reference orbits referring to IGS Final
and CODE MGEX (Prange et al., 2020) products for GPS and Galileo, respectively.
The overall 1D root mean square (RMS) of the orbit differences is therefore computed
for all GNSS satellites involved in a certain scenario. The RMS values (in log-scale)
are shown in Fig. 3.4, where we observe some relevant features. Each curve is related
to a single daily solution (seven in total), while increasing the network size. All these
global networks are subsets of larger ones, while we have considered some different
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sizes, e.g. M = [10, 12, 14, 16, 18, 20, 25, 30, 40, 60].
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Figure 3.4: The results for orbital (1D RMS) errors given for different GNSS configurations over 7
consecutive days. The notation (G+E) refers to results based on a GPS+Galileo combined processing,
rather than G-only or E-only. Both ambiguity-float (in blue) and ambiguity-fixed (in red) solutions
are shown, while the fixed/float ratio is given (in black) in the bottom plots.

In the float solutions (blue), the underlying observational model strength increases
with a larger network and the overall RMS substantially decreases down to a 2-3
cm level. This is visible for both constellations and each configuration. In the fixed
solutions (red), the overall RMS decreases quickly, but it reaches a plateau with global
networks of around 25-30 stations. Adding more stations only leads to very small
improvements in terms of orbit differences, as they ultimately become limited by the
consistency between our estimates and the reference orbits in terms of force modeling
and/or processing strategy (Section 3.3). Nonetheless, for M = 25, the satellite orbit
differences (1D RMS) for GPS and Galileo fixed solutions are at 1-2 cm level, whereas
the respective float solutions are at around 3-5 cm.

When focusing only on fixed solutions for small-size networks, i.e. M ≤ 20, we note
that IAR benefits seem somehow limited, probably due to a lower model strength of
such small networks. In fact, a crucial condition for improving the accuracy of estimates
(conditioned on the fixed carrier-phase ambiguities) is related to the successfulness of
the IAR process. After all, given stochastic inputs to an integer estimator, also the
outputs are expected to manifest a certain stochastic nature (Teunissen, 1998) and the
least precise components might not be correctly fixed to their integer values. These
wrong fixes might deteriorate our solution (e.g. jumps), while it is visible that for
M > 20 we can (generally) already reach the 1-2 cm level in terms of orbit difference
(1D RMS).

It is also interesting to compare the single- and dual-constellation processing. In fact,
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for the GPS+Galileo case, our fixed solutions (based on the same network) are showing
slightly larger RMS values than for the respective GPS-only or Galileo-only scenario.
The model inconsistencies between the two constellations might be compensated by
real-valued ambiguities that are estimated (float solution), whereas they become more
visible when applying the integer constraints (fixed solution). Moreover, in this dual-
GNSS case, we are considering (integer-estimable) ambiguities mixed from both GPS
and Galileo constellations, therefore processed as one full set. In this way, a between-
constellation correlation is introduced. It seems interesting to further investigate such
a GPS+Galileo scenario within small networks, e.g. looking at M = 14, whereas still
thousands of ambiguities are involved.

3.3.2 Small-size network and configurations

We consider a small global network with 14 stations, and assuming a 5° elevation
mask we obtain a visibility of 3 to 7 ground stations. For example, assuming a GPS
satellite altitude, in Fig. 3.5 the number of ground-based stations visible at any
point is illustrated by the depth-of-coverage (Blomenhofer et al., 2005). With Galileo
satellites’ higher altitude, and given the same elevation mask, station visibility is
slightly increased. Hence, the depth-of-coverage is not exactly the same, nonetheless
the patterns illustrated within Fig. 3.5 are found to be very similar.

Figure 3.5: The depth-of-coverage is given for GPS satellite altitude and 5° elevation mask in this
small global network, which consists of 14 well-distributed ground-based stations.

In all our analyses, we consider a total of around 30 GPS and 24 Galileo satellites.
This number can however change if certain satellites are not available on specific
days. In general, for such a dual-frequency processing (and specified number of
satellites/stations), we can find an ambiguity dimensionality of n ≈ 830, 1290 and
2120 for Galileo-only, GPS-only and GPS+Galileo, respectively. Hence, with only
14 stations, we are already dealing with quite large dimensionalities and with more
Galileo satellites having been deployed in 2020, this dimensionality might further
increase.
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In some very rare cases, some stations are replaced since they are not available on
specific days in the 3-month period considered for our validation, here DOY 244 till
334 in 2019. In that case, the station is replaced by a different close-by IGS station.
As a matter of example, SGOC is replaced by DGAR on DOY 263, and KRGG by
PERT on DOY 322.

3.3.2.1 Block size selection for partitioning
The selection of suitable block sizes for the partitioning follows a balanced trade-off
between the computational complexity, i.e. the efficiency aspect, and the reliability of
fixed solutions, i.e. the robustness aspect. In this research work we consider a fixed
block size ”q” for all subsets, and in both VIB implementations we adopt q = 200,
while in the Section 3.2.3 an example was given based on q = 100. The former value is
found to be suitable for solving a GPS+Galileo HDAR problem (i.e. n > 2000) within
a few tenths of a second in most of the experiments. Given that generally q is not a
perfect divisor of n, we first process a (most precise) block with nm components where
nm = n− q · ⌊n/q⌋ with ⌊·⌋ as the floor function. It follows that the other ambiguity
blocks are given by ni = q, for i = m− 1, . . . , 1 and the number of blocks is simply
found as m = 1 + ⌊n/q⌋.

It should be remarked that for very small block sizes, e.g. q ≪ 100, the integer search
process is almost instantaneous, but we also have many more conditioning operations
to perform. The latter might contribute to increase the overall computational effort
since it involves additional matrix operations. The cost of such matrix operations,
as well as for the integer search in each block, depends upon the computational
capabilities and/or hardware of the platform in use, but is not numerically discussed
in this work. Nonetheless, by using larger blocks we can obtain more reliable solutions,
since closer to the optimality given by an ILS solution. Still, it is important to avoid
ending up into computational bottlenecks due to the exponential growth of number of
candidates spanned in the search tree for too large subsets.

3.4 ODTS results and comparison

In this section we focus on the small global network described in Section 3.3.2. Here,
the different IAR strategies are compared and their beneficial impact onto satellite
products is evaluated. When comparing the fixed results, we will refer to the integer
bootstrapping estimator as ‘IB’, while ‘CascAR’ and ‘TUG’ are the two algorithms
presented in Section 3.2.2 and Section 3.2.3, respectively. For the sake of convenience,
we might refer to ‘VIB’ when results from CascAR and TUG are identical, for example
in comparison with the (scalar) IB.

3.4.1 Results for Galileo-only

We start with the Galileo-only processing, where up to 850 ambiguities need to be
fixed for each day. In this scenario, over the same testing week (DOY 298-304 in
2019) used in Fig. 3.4, we would be able to actually compute an ILS solution in less
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than a few seconds. The latter is possible due to the Z-transformation on ambiguity
components, which improves the overall search time. Moreover, this decorrelation also
makes quasi-optimal both the IB and VIB-based solutions, so leading here to the same
integer solution as ILS. The latter is thus compared with respect to the float one.

The results are shown in Fig. 3.6, where the float and (ILS) fixed solutions are shown
in black and magenta colors, respectively. For these seven days, the overall RMS of
the entire constellation is computed epoch-wise. Looking at the radial component we
see that a fixed solution allows RMS values below 3 cm for a large part of the day,
whereas the float solution can exceed several centimeters. For the along-/cross-track
components, large improvements are found and the overall RMS of fixed solutions are
generally within a few centimeters. For what concerns the satellite clock component,
smaller RMS errors are noted, but, as for the radial direction, the improvements are
less pronounced.

These results are in agreement with the results of Li et al. (2019) and Laurichesse et al.
(2013), since the ambiguity resolution in ODTS does not constrain much the radial
direction due to its correlation with the clock error bias. Consequently, the largest
improvements are generally found in the along-/cross-track error components. With
respect to the float solution, the 1-week mean RMS value in the ILS solution is around
47% smaller for both radial and clock components. For what concerns the along- and
cross-track components, the RMS value is 72% and 74% smaller, respectively.
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Figure 3.6: The comparison for seven days of the epoch-wise RMS error over the entire constellation,
divided into radial/along/cross orbital components and satellite clock error.

For the sake of completeness, we might very briefly look at the error distribution, here
based on all Galileo satellites over this 7-day analysis. In Fig. 3.7, the distribution is
shown with four histograms (1 cm bins) for each component, while considering both a
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float and a fixed solution. It is visible that in the fixed case, most of the errors are
bounded within 3 cm, although the largest improvements mainly concern along and
cross components.

Figure 3.7: The error distribution is shown for all Galileo satellites considering DOY 298 till 304 in
2019. The results are overlapped for a float and a (ILS) fixed solution, separating each component.

3.4.2 Results for GPS-only

When considering the GPS-only process, we deal with a higher dimensionality due to
more satellites available at that time. Moreover, large computations for an ILS solution
make this optimal solution unfeasible, possibly also due to the poorer stochastic model
that affects the precision of float ambiguity estimates (Amiri-Simkooei et al., 2016).
Several elements might concur in the uncertainty of observables, as investigated in
(Hou et al., 2021), such as the robustness of different signals tracking scheme or the
receiver model in use. Still, such features have not been further investigated in the
scope of this work.

In order to enable fixed solutions within seconds (or less), we consider a quite reliable
(and very efficient) IB solution, as well as the TUG and CascAR algorithms. All three
solutions can largely benefit from the decorrelating Z-transformation that has been
previously applied with LAMBDA. In this second scenario, the fixed solutions found
with IB, TUG and CascAR are now different, and differ in terms of satellite orbit
and clock estimates. Here, we focus our analysis mostly on the orbits, with Fig. 3.8
showing the epoch-wise overall RMS values per orbital component.

In almost all cases, both VIB-based solutions lead to same results, meanwhile the
IB solution shows some larger errors in particular for DOY 300-302. In fact, RMS
values might even largely exceed the ones for the respective float solution, as a possible
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consequence of wrong fixes. A different scale has been used for the radial component,
where errors are within a few centimeters. It is interesting to observe, as expected,
that the VIB-based results are generally equal to or better than the scalar IB ones
(Teunissen et al., 2021).
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Figure 3.8: The epoch-wise RMS of orbital components is shown for the fixed solutions with respect
to float (dashed lines). A total of 7 days (DOY 298-304 in 2019) is used in this GPS-only processing.

A more detailed analysis shows that in most cases those larger errors are related to
a one or two satellites, for example on DOY 302, but on some other days might be
affecting more satellites, e.g. on DOY 300. This last case is shown in Fig. 3.9, where
specific GPS satellites presenting large orbital errors have been highlighted in color
(same in all solutions). The remaining ones are still shown in grey dashed lines, but
are generally bounded within 5 cm.

A clear improvement is observed with respect to the float solution, nonetheless, the
IB solution leads for many satellites to large orbital errors, up to 15 cm in the radial
component and several decimeters for the along-track. In the VIB-based solutions
we get large errors only in the case of a single satellite (PRN16), most likely due to
a wrong fix. These issues of specific satellites cause the noticeably increasing RMS,
particularly in the along-track component, towards the end of a day, as visible for
most days in Fig. 3.8. In most cases, the underlying issue is short observation arcs
caused by the cut-off at day boundaries which lead to ambiguities that are not well
determined and can cause issues in ambiguity resolution. Due to the GPS ground-track
repeat period of 1 sidereal day, this effect is very similar for the 7 days shown in Fig.
3.8. However, this is coincidental and a slowly changing observation geometry leads
to this effect being less pronounced for other parts in the 91-day period.

Still, it is visible (as also for other testing days) that VIB solutions generally offer
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Figure 3.9: The orbital errors over 24 hours (DOY 300) for different solutions, considering GPS-only
and highlighting (with colors) certain satellites where fixed-solution errors are quite large.

more reliable fixes without much impacting the computational effort, later discussed
in Section 3.4.4. For instance, HDAR solutions of such a dimensionality (n≈1300) can
be often found within hundredths of a second for standard desktop processors, e.g.
Intel i7-4790 @3.6 GHz. As a matter of example, in Fig. 3.10 we show the RMS values
(over these 24 hours on DOY 300) for all GPS satellites based on the four solutions
previously discussed. The CascAR and TUG solutions are identical on this day, as is
the case on almost all days of this scenario. With respect to the float solution, the
R/A/C components are improved here by around 31/42/71% and 52/67/77% for the
IB and both VIB solutions, respectively. As already seen for the Galileo-only ODTS
results, larger benefits of fixed solutions are mostly observed in the along-/cross-track
components.

3.4.3 Results for GPS+Galileo

At this point we can focus our investigation on the GPS+Galileo processing scenario.
This is also the most interesting one, due to a larger ambiguity dimensionality involved,
where in general for our small network we always have n > 2000. For a more extensive
analysis of this HDAR problem, we consider a 3-month period in 2019, starting from
DOY 244 till 334, both days included. We examine the solutions for these 91 days, so
processing GPS+Galileo on a daily basis as described in Section 3.3.

Firstly, we start considering the RMS errors over all days while referring to each
satellite for GPS and Galileo, and each orbital component. These RMS values are
then divided with the ones relative to a float solution (dashed line), and ratios are
provided, as percentages, in Fig. 3.11. Smaller % values imply larger improvements
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Figure 3.10: The overall RMS error is shown relative to a 24-hour period, i.e. DOY 300 in 2019. For
each orbital component, we consider the float (black) and three fixed solutions.

with respect to the float solution, which is often the case. For GPS satellites, the mean
improvement in terms of R/A/C orbital components is approximatively 28/44/56%
and 33/50/63% for the IB and the VIB-based solutions, respectively. For Galileo
satellites, this is approximatively 30/56/62% for the IB, while 32/60/64% again for
both TUG and CascAR solutions. These two VIB solutions show a high consistency
in the results, but not always the exact same solutions.

At this point we can consider in Fig. 3.12 the results in terms of overall orbital errors
(1D RMS) for GPS (left plot) and Galileo (right plot). For each day we compute values
over all satellites (and components) of each constellation. By comparing the fixed
solutions for Galileo, we see that they are usually quite similar, with the exception of
specific days where the (scalar) IB solution shows much larger errors with respect to
TUG or CascAR. This is for instance visible on DOY 268 where the 1D RMS value
exceeds 12 cm. In these Galileo results, a slight discrepancy is also visible for the TUG
and CascAR solutions, specifically on DOY 294, which is discussed in more details
later in Section 3.4.4.

When looking at the GPS results, similarly to what was seen in Section 3.4.2, we
observe several 1D RMS differences, and on several days we have high values for the
IB. This is again most likely due to wrong fixes, which deteriorates the performance of
the ODTS process in this small global network estimation. With respect to the Galileo
results, float values are generally found at around 5 to 7 cm, whereas we have observed
some much higher peaks in Galileo during the first four weeks, i.e. in September 2019.
Nevertheless, this particular behavior has not been further investigated in the context
of this research work.
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Before proceeding with the validation of these GPS+Galileo results, we might firstly
consider a small comparison between the two VIB methods.

3.4.4 Comparison between TUG and CascAR solutions

The high consistency shown between VIB-based solutions is mostly due to the similarity
of the two algorithms, although in the TUG “blocked search” approach additional
checks are performed on the integer solution by looking at overlapping blocks (see
Section 3.2.3). If the solutions are always consistent in each overlap, then both TUG
and CascAR are basically equivalent, i.e. return the same integer solution. This is the
case for most of the days tested here, however, not always. By a detailed comparison
in Fig. 3.12, only in a few occasions the two VIB-based results are quite different.
For DOY 294 we clearly see CascAR being suboptimal to both IB and TUG. In Fig.
3.13, we present the orbital errors (as 3D scalar displacement) for all 54 satellites
over the 24 hours on DOY 294. It is visible that in the CascAR solution, some wrong
fixes occur and results are largely affected, with errors exceeding some decimeters. It
should be mentioned that such large errors are not only affecting Galileo, but GPS as
well, and in general only limited to very specific days.
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Figure 3.13: A detailed example for DOY 294 (in 2019) concerning the epoch-wise orbital errors of
all satellites processed (different curves) with TUG and CascAR ambiguity resolution methods.

At this point we might wonder whether such robustness of the TUG algorithm comes
at a higher computational cost, thence on a much lower efficiency. As mentioned,
the VIB-based approaches allow for high flexibility in the design of most effective
algorithms, but this also depends on the specific application, the considered scenarios
and/or available computational capabilities. Hence, the daily computational time is
very briefly compared for the different IAR methods considered in this test.
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The IB solution is generally computed in a few milliseconds and it is only dependent
upon the ambiguity problem dimensionality, which was quite constant over this 3-
month period. For instance, in the GPS+Galileo processing we have always between
2050 and 2250 ambiguity components. In Fig. 3.14, we show the computation times
for the two VIB-based solutions, based on an average over 100 runs. It is visible
that both VIB-based solutions are computationally more expensive than IB, but they
seem to provide a more reliable solution as shown in the previous section, and further
validated in Section 3.5. Still, for most of the cases, a HDAR solution (i.e. n > 2000)
can be found within a few tenths of a second, e.g. here based on the Intel Core i7-4790
@3.6 GHz central processor.
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Figure 3.14: The computational time (log-scale), averaged over 100 runs, is given for the TUG and
the CascAR algorithms with respect to the GPS+Galileo HDAR problem (n > 2000).

For what concerns the TUG algorithm, the computational time is indeed higher due
to the overlapping strategy mentioned in Section 3.2.3. In only one case, on DOY
255, the search time is larger for the CascAR approach, while it only exceeds 0.6
seconds once, i.e. ∼20s on DOY 294. The 91-day averaged ratio of CascAR over
TUG computational time is 47.8%, therefore being twice as efficient as the TUG
algorithm. The much-increased search times observed on some days for the TUG
method is caused by the expansion to larger block sizes in case the overlapping of
fixed ambiguity components does not match. In fact, in many occasions we see that
for the TUG approach it takes more than 0.6 seconds to compute an integer solution
to the HDAR problem.

Finally, we should not forget that these examples of VIB algorithms are only two
possible implementations, leaving further more advanced strategies still to be investi-
gated. A few suggestions will be given in Section 3.5.2. We can now continue to focus
on a validation of results for the GPS+Galileo scenario.
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3.5 Validation and discussion

We can now present a further analysis of the results, where a different metric is
adopted. In fact, as mentioned, the adoption of external products as ‘ground truth’ for
the evaluation of orbit and clock errors has some limitations in terms of consistency.
Given that we have processed network data on a daily basis, we might instead consider
the orbital discontinuity at midnights. This evaluation strategy is independent from
external sources and quantifies jumps in satellite orbits between consecutive days.

3.5.1 Analysis of orbital discontinuity at midnight

The GPS+Galileo scenario is considered, and for each satellite we compute the 1D
RMS of orbital discontinuities at the midnight between two consecutive days. For
the float solution we have always larger discontinuities, almost always exceeding 10
cm and it is therefore not illustrated here. Furthermore, TUG and CascAR solutions
are matching basically in most of the results, except for 1-2 days. This difference has
been already discussed in Section 3.4.4, so for this analysis we focus on IB versus VIB,
the latter referring to the TUG solution. These results (over the 3-month period) are
provided in Fig. 3.15 based on a color scale between 0 and 10 cm, while separating
the satellite groups for each constellation.
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Figure 3.15: The satellite orbit discontinuity errors at midnight are shown for GPS+Galileo processing
over a 3-month period in 2019. Both IB and VIB solutions are considered, as described in the text.

In the IB case, we see that many days present much larger values with respect to the
vectorial counterpart. The VIB solution is sometimes exceeding the dm-level only for a
few satellites, i.e. E14/E18 for Galileo and G05/G16/G26 for GPS. In the former case
it should be noted that those two satellites are the ones placed into slightly elliptical
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orbits, making it more challenging to properly model their orbit and attitude.

The most notable differences between IB and VIB clearly fully affect either one or
both GNSS constellations, so we can examine the range of discontinuity values for
both constellations. For each midnight epoch we compute a box plot over each system
and results are shown in Fig. 3.16 for the three methods: the float solution, along
with the fixed IB and VIB ones. A box plot visualizes the median value as a red line
within a blue box that defines the interquartile range, i.e. the difference between 75th
and 25th percentiles. The full range is given by grey whiskers, excluding outliers that
are marked as red dots.

Many days show only small improvements when comparing IB to VIB, but on some
days the discontinuities are much smaller in case of VIB-fixed solutions. However,
improvements with respect to the float case are always evident. It is interesting to
observe that for the (scalar) IB estimator we have, on specific days, errors exceeding
the float ones. Once again, a wrong fixing can lead to an inconsistent satellite orbit,
and this can impact the discontinuity values at the boundary/ies of that particular
day. In this circumstance, many satellites might be affected and fixed results are
visibly worse than the float solution.

At this point, for the sake of completeness, we define an overall empirical cumulative
distribution of these orbit midnight discontinuity errors for each solution. Also in this
case, both VIB-based solutions are represented by a single curve since no (visible)
differences were found. In Fig. 3.17 we see that in terms of orbit midnight discontinuity
errors, over the 91 days, the float solution has quite large errors, and in 50% of the
cases those values exceed 8 cm. For the fixed solutions we have around 3 cm, with
a negligible difference between the two methods. At 95% probability, float-solution
errors are around 18.3 cm, roughly twice the respective value of the fixed solutions.
This also confirms how substantial improvements can be achieved by robust (and
ideally efficient) ambiguity resolution schemes in the estimation of satellite orbits and
clocks, even when using a small global network.

We need to remark that such a good result is possible also thanks to the LAMBDA
decorrelation of ambiguities. In fact, this can substantially improve the optimality
of integer bootstrapping approaches. Still, the VIB solutions further improve the
results with respect to the scalar IB, thus reducing the discontinuity errors from 10
to 8 cm (at 95% probability). As mentioned in Section 3.4.4, these more reliable
solutions are possible without too much compromising the computational efficiency of
the IAR process. Lastly, it should be remarked that enhancements at the decorrelation
step might further benefit the here presented VIB formulations, where an example of
comparison among different “reduction” methods can be found in Jazaeri et al. (2014).

3.5.2 Limitations and further possibilities

When adopting VIB, it is important not to generalize properties of a certain estimator
to the entire ambiguity set. For example, the optimality of ILS within each block does
not hold for the full set where VIB solutions are indeed suboptimal with respect to
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Figure 3.16: The box plot results for midnight discontinuities of GPS and Galileo considering three
methods based on a float solution, then a scalar (IB) and a vectorial (VIB) integer bootstrapping.

an ILS solution over the full n-dimensional set. The use of larger ambiguity blocks
can lead to higher robustness performance, but sometimes at a very high cost for the
efficiency. With the VIB approaches, here focused on a small global network, the
daily fixed solutions can still be computed in less than a second and generally lead
to smaller errors. On some days, these errors might exceed a few decimeters when
making use of the (still convenient) integer bootstrapping estimator.

The VIB formulation shall not be restricted to the use (in each subset) of I-estimators,
e.g. ILS, but it can benefit from more advanced schemes (Teunissen et al., 2021). Hence,
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Figure 3.17: Empirical cumulative distribution for midnight discontinuity errors relative to the
different solutions and all satellites processed over the 3-month period (DOY 244-334 in 2019). The
error values at 95% probability are marked with circles.

by the use of a vectorial formulation, it is possible to combine different types and/or
classes of estimators in this vectorial approach. As mentioned, a proper selection of
the partitioning strategy can depend upon computational resources available, along
with applications and latencies that users want to be addressed by the IAR process.

For instance, adoption of integer validation tests (i.e. a data-driven approach) is
possible and it might further prevent the wrong fixing of some ambiguity subsets. In
addition to that, more efficient estimators, for example rounding or bootstrapping,
might be used only in the more precise ambiguity subsets, while adopting ILS in
the remaining ones. Another notable example of VIB-like strategies is given by the
Sequential Best Integer Equivariant (SBIE) approach, described in Brack et al. (2013),
which enables a more efficient adoption of BIE-related solutions. Still, in their work,
this was limited to a scalar case, therefore not taking full advantage from the vectorial
formulation analyzed in this research contribution.

3.6 Conclusions

The high complexity involved in the search for an optimal integer least-squares solution
to high-dimensional ambiguity resolution (HDAR) problems is still a challenge. In
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order to find a trade-off between robustness and efficiency of a certain IAR process,
in this work we present two implementations of a vectorial integer bootstrapping
(VIB) estimator. Based on the VIB principle, introduced in Teunissen et al. (2021), it
is possible to design more flexible IAR algorithms. This allows finding an effective
solution to a given HDAR problem, thus balancing available computational resources
and reliability of the fixed solutions.

The two algorithms are CascAR, as a straightforward implementation of VIB, and the
“blocked search” method developed at Graz University of Technology. In both cases,
we take advantage of the same initial triangular decomposition, along with LAMBDA
Z-transformation to decorrelate the ambiguity components. These two VIB-based
solutions are therefore compared with respect to their scalar counterpart, i.e. Integer
Bootstrapping (IB) estimator, and investigated in the context of Orbit Determination
and Time Synchronization (ODTS). This is performed based on TUG’s open-source
software GROOPS.

Firstly, we consider for different network sizes, between 10 and 60 stations, the 1D
RMS orbital errors relative to GPS-only, Galileo-only and GPS+Galileo scenarios.
In all cases, we adopt a 24-hour batch processing and 30-second sampling period
for dual-frequency code and phase observations. The float and IB fixed solutions
are considered, the latter showing a plateau at 1-2 cm, reached with 25 or more
well-distributed stations. When looking at smaller networks the improvements over
the float solutions are significant, but in several occasions wrong fixes might lead to
quite large orbital errors. Hence, we focus our investigation on a small global network,
i.e. 14 stations, where the three IAR strategies are evaluated and compared.

In the Galileo-only case, all fixed solutions seem to be optimal over the entire set and
lead to large improvements over the float results, both evaluated with respect to the
CODE MGEX products. On several days, the mean RMS (radial and clock) for a fixed
solution can be around 50% smaller than the float one, and more than 70% for both
along-and cross-track error components. These last two are in fact generally more
affected by IAR, in agreement with literature. In the GPS-only case, with respect to
IGS Final products, more visible differences are found among fixed solutions, where
orbital errors in the radial/along/cross component can be improved (e.g. on DOY
300) by 31/42/71% and 52/67/77% for IB and VIB solutions, respectively.

The most interesting scenario considered is the GPS+Galileo processing, where more
than 2000 ambiguities are fixed per day. This HDAR problem is not trivial, especially
when looking for a computationally cheap and reliable fixed solution. Both GPS
and Galileo are processed together, so an inter-system correlation of carrier-phase
ambiguities might be introduced. The scenario is numerically assessed on a daily basis
over a 3-month period (DOY 244 till DOY 334 in 2019), and then analyzed separately
for each constellation. In some days, the IB solution shows much larger orbital errors
(in terms of RMS over each single constellation), which can exceed several centimeters.

The validation of the GPS+Galileo results is performed by an intrinsic quality check,
thus not relying on external orbital information. We look at the orbit discontinuity
errors at midnights over the 3-month period. For multiple days, the discontinuities
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based on an IB solution are quite large, whereas VIB-based methods provide better
results. The two different VIB approaches present quite similar performances over all
tests, as expected; nonetheless the TUG solution further improves the results on a
few occasions. This comes at a higher computational cost, shown for each day over
the testing period. Still, in most of the cases, this HDAR problem can be robustly
solved within fractions of a second, while providing substantial benefit to the ODTS
estimates. By means of VIB fixed solutions, with a global network of 14 stations, it is
possible to compute orbits within a few centimeters error.

The vectorial formulation shows to be a suitable candidate, due to its flexibility, in the
design of more effective IAR algorithms, in particular for HDAR problems. It enables a
trade-off between efficiency and robustness, based on a very easy-to-implement strategy
that has been extensively described in this work. Although referring here to the case
of small global network estimation, its applicability extends over any mixed-integer
GNSS model, and shall not be restricted to the network case. Additional works, also
involving other classes of estimators or different strategies, shall be conducted to
further exploit the VIB theory.

3.7 Appendix

The implementation of a generic VIB estimator can benefit from a conformed parti-
tioning of the triangular decomposition for the ambiguity vc-matrix, i.e. Q̃ ≃ L̃T D̃L̃.
Based on Eq.(3.4), we can consider L̃ ∈ Rn×n (lower unitriangular) and D̃ ∈ Rn×n

(diagonal), such as

L̃ =
[
L̃11 0
L̃Q L̃22

]
, D̃ =

[
D̃1 0
0 D̃2

]
(3.7)

and for k = 1, 2, we have that L̃kk ∈ Rnk×nk is lower unitriangular, D̃kk ∈ Rnk×nk is
diagonal, while L̃Q ∈ Rn2×n1 is a rectangular block matrix. The latter one represents
the correlation between the two subsets, therefore involved in the conditioning, i.e.
here {2}→{1}.

It is straightforward to prove that each block of the vc-matrix Q̃ is retrieved from

Q̃
def==
[
Q̃11 Q̃12
Q̃21 Q̃22

]
=
[
L̃T

11D̃1L̃11 + L̃T
QD̃2L̃Q L̃T

QD̃2L̃22
L̃T

22D̃2L̃Q L̃T
22D̃2L̃22

]
(3.8)

while the first ambiguity block, conditioned on the second one, is described by Q̃11|22
as follows

Q̃11|22 = Q̃11 − Q̃12Q̃−1
22 Q̃21

= Q̃11 − (L̃T
QD̃2L̃22)(L̃−1

22 D̃−1
2 L̃−T

22 )(L̃T
22D̃2L̃Q)

= L̃T
11D̃1L̃11

(3.9)

that represents its unique LT DL-decomposition due to the form of matrices L̃11 and
D̃1. These mathematical relationships also enable a straightforward computation
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of the conditioning for the float ambiguity subset {1}, given âk ∈ Rnk for k = 1, 2.
Hence, we can write

â1|2 = â1 − Q̃12Q̃−1
22 · (â2 − ǎ2)

= â1 − (L̃T
QD̃2L̃22)(L̃−1

22 D̃−1
2 L̃−T

22 ) · (â2 − ǎ2)
= â1 − L̃T

QL̃−T
22 · (â2 − ǎ2)

(3.10)

with all matrix blocks already available from Eq.(3.7). In this case, for example, we
have that ǎ2 = I2(â2), where I2 can be any integer mapping function taken from the
class of

• I-estimators (Teunissen, 1999), which always return ǎ2 ∈ Zn2 (integer-valued);

• IE-estimators (Teunissen, 2002), which always return ǎ2 ∈ Rn2 (real-valued);

• IA-estimators (Teunissen, 2003a), which either return an integer- or a real-
valued ambiguity vector, depending upon the result of the integer validation
test.

With Eq.(3.9), we observe that the metric for the block {1}, being conditioned on {2},
is already ‘extracted’ from the same initial triangular decomposition. Furthermore, a
selection of nk values was arbitrary, and by setting L̃ ≡ L̃11, D̃ ≡ D̃1, we can further
partition the sub-problem, thus equivalently obtaining an arbitrary number m ∈ [1, n]
of subsets. Each one can have an arbitrary dimensionality, as long as their sum is
equal to n.

We should remark that such a partitioning strategy holds also if looking at a reversed
conditioning, therefore {1} → {2} → . . . → {m}. In this case we would need to
consider a different decomposition, e.g. see De Jonge and Tiberius (1996), so having
Q̃ = L̃D̃L̃T , where L̃ and D̃ are once again a lower unitriangular and a diagonal
matrix, respectively.
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4
New LAMBDA toolbox

for mixed-integer models:
Estimation and Evaluation

In this work we introduce the LAMBDA 4.0 toolbox, which provides an enhanced imple-
mentation for integer estimation, validation, and success rate evaluation. This free and
open-source toolbox is a major update to LAMBDA 3.0 (2012), while it also integrates the
functionalities from Ps-LAMBDA 1.0 (2013), thus respectively merging both estimation
and evaluation capabilities. The new implementation provides redefined algorithms, such as
an improved integer search strategy with a one-order reduction in the computational time,
along with additional estimators: Vectorial Integer Bootstrapping (VIB), Integer Aperture
Bootstrapping (IAB) and Best Integer Equivariant (BIE). This toolbox aims to become a
valuable resource for researchers and/or practitioners dealing with mixed-integer models
in high dimensions, e.g., terrestrial-based carrier-phase systems, multi-constellation Global
Navigation Satellite Systems (GNSS), or other interferometric applications.

This chapter has been published as: Massarweh, L., Verhagen, S., and Teunissen, P.J.G. (2025). New
LAMBDA toolbox for mixed-integer models: Estimation and Evaluation. In GPS Solutions 29, 14.
https://doi.org/10.1007/s10291-024-01738-z
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4.1 Introduction

The Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method was
introduced in Teunissen (1993) as a numerically efficient and statistically optimal
solution approach to Integer Ambiguity Resolution (IAR) problems. Such problems
arise in many GNSS and non-GNSS mixed-integer model applications (see Table 4.1).
For GNSS mixed-integer models, the millimeter-level precision of the ambiguous
carrier-phase measurements can be exploited once the integer ambiguities are correctly
resolved with high probability, also known as Success Rate (SR).

Table 4.1: Examples of applications dealing with IAR problems

Application Reference

G
N

SS

precise point positioning (Teunissen, 2020)
integer cycle-slip resolution (Teunissen and de Bakker, 2015)
time and frequency transfer (Mi et al., 2023)
atmosphere remote sensing (Lu et al., 2018)

carrier-phase attitude determination (Giorgi, 2011)
relative navigation for S/C formation flying (Buist, 2013)

N
on

-G
N

SS

detection in MIMO communication systems (Damen et al., 2003)
InSAR permanent scatterer technique (Kampes and Hanssen, 2004)

phase data for InSAR deformation monitoring (Teunissen, 2006)
use of acoustic waves for underwater navigation (Viegas and Cunha, 2007)

fringe phase observations from VLBI (Hobiger et al., 2009)

In this contribution we present the LAMBDA 4.0 toolbox, a new implementation
dedicated to integer estimation, integer validation and SR computations. This new
toolbox integrates all functionalities from LAMBDA 3.0 (Verhagen et al., 2012),
and Ps-LAMBDA 1.0 (Verhagen et al., 2013), while incorporating newly redesigned
algorithms that enhance the computational performance for high-dimensional problems.
The novelties are not limited to computational aspects, since additional (classes of)
estimators are implemented, including the Vectorial Integer Bootstrapping (Teunissen
et al., 2021), Integer Aperture Bootstrapping (Teunissen, 2005) and Best Integer
Equivariant (Teunissen, 2003b) solutions. In this way, we provide users with a larger
collection of tools in support to several applications.

In Section 4.2, we discuss mixed-integer models, including three different classes of
estimators. In Section 4.3, LAMBDA 4.0 is presented, where LAMBDA and Ps-
LAMBDA capabilities are discussed, along with the software package provided to
the user. In Section 4.4, we focus on ‘estimation’ and ‘evaluation’ capabilities for
the new toolbox, providing some illustrative numerical examples. In Section 4.5, the
main conclusions are summarized. A more detailed mathematical documentation,
hereinafter referred to as ‘LAMBDA Documentation’, is given as supplementary
material to this publication.
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4.2 Mixed-integer models

We start with a linear(ized) mixed-integer model, given y ∈ Rm as vector of observables,
and Qyy ∈ Rm×m its variance-covariance (vc-)matrix, such that

E {y} = Aa + Bb, D {y} = Qyy (4.1)

where E {·} and D {·} are the expectation and dispersion operators, respectively. The
vectors a ∈ Zn and b ∈ Rp refer respectively to the integer ambiguities and real-valued
parameters, while the full-rank design matrix is given by [A, B] ∈ Rm×(n+p).

Usually, a three-step procedure is employed to solve such mixed-integer models, based
on a weighted least-squares criterion, so considering the quadratic objective function

∥y −Aa−Bb∥2
Qyy

= ∥ê∥2
Qyy

+ ∥â− a∥2
Qââ

+
∥∥∥b̂(a)− b

∥∥∥2

Qb̂(a)b̂(a)

(4.2)

where ∥x∥2
Q = xT Q−1x, while ê = y − Aâ− Bb̂ refers to the least-squares residuals’

vector. Following this orthogonal decomposition (Teunissen, 1993), we compute

1. Float solution, where the integer constraints on the ambiguities are neglected,
and a least-squares solution is found assuming a ∈ Rn and b ∈ Rp, thus providing
the float estimators â ∈ Rn and b̂ ∈ Rp.

2. Ambiguity resolution, where starting with the ambiguity float estimator
â ∈ Rn and its vc-matrix Qââ ∈ Rn×n, we obtain the fixed ambiguity estimator
ǎ = Ja (â) given a certain mapping function Ja defined for the selected estimator.

3. Fixed solution, where the real-valued (float) parameter b̂ ∈ Rp are now
conditionally updated onto the (fixed) ambiguities, so leading to the fixed
solution b̌ = b̂ (ǎ), while we assume no additional constraints exist onto the
b-parameters.

The LAMBDA method (Teunissen, 1995) exploits the ambiguity re-parametrization
by an admissible transformation matrix Z ∈ Zn×n, where ẑ = ZT â with ẑ ∈ Rn,
which serves to decorrelate the ambiguity components. This Z-transformation process
increases SR for some estimators, while the SR is invariant for the Integer Least-Squares
(ILS) estimator, whereas its computational performance can be enhanced.

4.2.1 Different classes of estimators

In Teunissen (2003c), three classes of estimators are introduced:

I. Integer estimators, i.e. I-class;

II. Integer Aperture estimators, i.e. IA-class;

III. Integer Equivariant estimators, i.e. IE-class;

with a set relationship I ⊂ IA ⊂ IE, as shown in Fig. 4.1 with one example per class.
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Figure 4.1: Overview of the three main classes and their set relationship, including an example of
estimator per each class: Integer Least-Squares (ILS), Integer Aperture Bootstrapping (IAB) and
Best Integer Equivariant (BIE).

Each class is characterized by different properties based on the family of maps Ja being
defined. The I-class (Teunissen, 1999) is the most restrictive class, with many-to-one
mapping functions defining pull-in regions that leave no gaps, have no overlaps and
are invariant to integer translations. The IA-class (Teunissen, 2003a) is defined by
dropping the ‘no gaps’ condition, and so-called aperture regions can be defined. The
IE-class (Teunissen, 2002) is the largest class, where the ‘no overlaps’ condition is
relaxed, while the ‘integer remove-restore’ property is still satisfied. We refer to
Verhagen (2005) and ‘LAMBDA Documentation’ for more mathematical details.

4.3 LAMBDA 4.0 description

The new toolbox merges functionalities from LAMBDA 3.0 (Verhagen et al., 2012)
and Ps-LAMBDA 1.0 (Verhagen et al., 2013), while providing advanced algorithms
and additional estimators. A flowchart is shown in Fig. 4.2 with both LAMBDA and
Ps-LAMBDA routines, respectively adopted for ‘estimation’ and ‘evaluation’.

4.3.1 LAMBDA capabilities

The main LAMBDA script takes as inputs the â-vector and Qââ-matrix, along with rele-
vant configuration parameters. The decorrelation starts with an LT DL-decomposition,
followed by a Z-transformation given an admissible matrix Z ∈ Zn×n (unimodular),
so Qẑẑ = ZT QââZ. This matrix Z also sorts ambiguities based on their conditional
variances, so enabling the selection of a suitable subset of most precise components
needed for Partial Ambiguity Resolution (PAR). An overview of LAMBDA-related
methods is given in Fig. 4.3.
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Figure 4.2: Flowchart of the LAMBDA 4.0 toolbox.

A new integer search strategy is adopted (Section 4.4.2.1), where a one-order re-
duction in computational time is possible, with large computational benefits for
high-dimensional problems. Moreover, new coefficients (Hou et al., 2016) are adopted
for the critical value of the Fixed Failure-rate Ratio Test (FFRT) solution, based on
fitting functions. Lastly, new estimators are introduced:

• I-class: VIB (Teunissen et al., 2021), based on IR or ILS estimators, while
supporting any arbitrary block partitioning of the whole ambiguity set;

• IA-class: IAB (Teunissen, 2005), for a user-defined aperture parameter βIAB ∈
(0, 1] or a maximum bootstrapping failure rate selected by the user;

• IE-class: BIE (Teunissen, 2003b), approximated here by a finite summation
within a search ellipsoid for a user-defined significance level αBIE ≪ 1.

4.3.2 Ps-LAMBDA capabilities

The main Ps-LAMBDA script takes as input only the Qââ-matrix, along with a flag
to enable the decorrelation of ambiguities, so users can still check the impact of
different decorrelation strategies on each SR bound/approximation. The overview of
Ps-LAMBDA-related methods is given in Fig. 4.4, while we refer to Verhagen et al.
(2013) for more details.

The different methods serve as lower/upper bounds (LB/UB), or even approximation
for the SR, while we recall the performance ordering (Teunissen et al., 2021):

IR ≤ VIBIR ≤ IB ≤ VIBILS ≤ ILS (4.3)

with Integer Rounding (IR) and Integer Least-Squares (ILS), which might also be
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Figure 4.3: The LAMBDA functions implemented in LAMBDA 4.0 toolbox are listed, including their
class, a short description and some relevant configuration options.

Figure 4.4: The Ps-LAMBDA functions implemented in LAMBDA 4.0 toolbox are listed here,
including a short description and their relation to popular Integer estimators.

applied vectorially as VIBIR and VIBILS estimators, respectively. An exact SR can
be computed only for Integer Bootstrapping (IB), while numerical simulations are
available as approximation for all I- or IA-estimators of this toolbox, and Ps-LAMBDA
performance can benefit from the enhanced algorithms implemented here.
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4.3.3 Software package

The LAMBDA 4.0 software package contains different files/folders (see Table 4.2).
Both ‘LAMBDA’ and ‘Ps_LAMBDA’ main scripts make use of the functionalities
included in a dedicated “LAMBDA_toolbox” folder. However, more advanced users
might benefit from directly using these functions in their software without the need to
follow the logic defined by these main scripts. These can still easily be included into
existing software applications, e.g., as for LAMBDA legacy versions already integrated
in the “raPPPid” software package (Glaner and Weber, 2023).

Table 4.2: List of the principal files and/or folders in this software package

File/Folder Description
README.txt Text file with content overview
LAMBDA Main script with LAMBDA functionalities
Ps_LAMBDA Main script with Ps-LAMBDA functionalities
\ LAMBDA_toolbox Folder with all toolbox functionalities
\ LAMBDA_examples Folder with some illustrative examples
\ LAMBDA_papers Folder with some relevant publications
LAMBDA – Documentation.pdf PDF with main mathematical descriptions
LAMBDA – User Manual.pdf PDF with the toolbox guide (per environment)

A detailed description of these new functionalities can be found in the supplementary
material (see ‘LAMBDA Documentation’). The current MATLAB implementation is
based on v2024a, and it does not require any additional toolboxes. Moreover, this has
been tested for backward compatibility starting with version 2018b, while a Python 3
version, including its dedicated user manual, is currently under development.

4.4 LAMBDA 4.0: estimation and evaluation

4.4.1 Estimation in the I-class, IA-class and IE-class

This LAMBDA 4.0 implementation offers a versatile toolbox with several estimators
suitable for different problems, where users have access to three classes of estimators
(see Fig. 4.5).

Figure 4.5: LAMBDA main script supporting different classes of estimators.
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In some applications, it is important that users have control over the failure rate, and
two different solutions could achieve this: a model-driven I-estimator and a data-driven
IA-estimator. The former one uses PAR, where only part of the ambiguity vector
is estimated, whereas the latter considers part of the pull-in region for the integer
mapping. Fig. 4.6 shows a graphical example of IA-estimator based on ratio test,
where a stronger and a weaker model are considered respectively in the left and
right plots. The selection of the aperture parameter µ is fundamental for correctly
‘controlling’ the failure rate, where different aperture values are adopted for the two
models, while still having a similar failure rate.

Figure 4.6: A comparison between a stronger and a weaker model is given using two different ratio
tests, respectively for µ = 0.7 and µ = 0.2. Three regions can be observed, related to values of
Success Rate (green), Failure Rate (red) and Undecided Rate (grey).

Another example concerns vectorial IB solutions, more suitable for high-dimensional
problems. A VIB-based method is currently implemented in GROOPS software
(Mayer-Gürr et al., 2021), where it is possible to resolve thousands of ambiguity
components within a few tenths of a second in the context of small global networks for
Orbit Determination and Time Synchronization (ODTS), see Massarweh et al. (2021).

Within the IE-class, the BIE solution is optimal in the minimum Mean Squared
Error (MSE) sense. This property is beneficial for precise positioning applications, as
shown by Odolinski and Teunissen (2020) in the context of multi-GNSS Real-Time
Kinematics (RTK) using low-cost receivers, as well as by Yang et al. (2024) for PPP-
AR applications. These BIE solutions will always outperform – in the MSE sense –
both float and fixed solutions.

A numerical simulation is shown in Fig. 4.7, based on GPS (L1-only) single-baseline
relative (kinematic) positioning with 6 satellites tracked (at 30s). In this illustrative
example, we neglect the atmospheric delays (e.g., short baseline) and we adopt an
elevation weighting ∝ 1/ sin (el), while having 30 cm and 3 mm standard deviation for
the undifferenced code and phase observations (at zenith). Using 100,000 simulations,
we compute the MSE ratio of different ‘fixed’ solutions with respect to the ‘float’
solution. A PAR solution is also shown in Fig. 4.7, based on an SR>99.0% criterion,
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where only a subset of the ambiguities can be fixed, and improvements compared to
the ‘float’ are negligible during the first epochs. At low SR values, the ILS estimator –
optimal in terms of SR – might also lead to worse-than-float performance, whereas
the BIE estimator is capable of outperforming all these solutions and it provides a
minimum MSE value for the positioning coordinates computed here. We refer to
Brack et al. (2023) for additional BIE-related results.

Figure 4.7: The ratio [%] of MSE of the baseline positioning coordinates with respect to the float
solution is shown for different estimators based on GPS single-baseline single-frequency kinematic
positioning, while using 30 cm/3 mm standard deviation for the undifferenced code/phase observations.

4.4.2 Numerical and statistical evaluations

For experimental and designing purposes, it is important to compute the relevant
statistical measure of the different estimators, e.g. SR for the I-class, or also FR for
the IA-class, as enabled in an efficient way by the new toolbox (see Fig. 4.8).

Figure 4.8: Ps-LAMBDA main script supporting different classes of estimators.
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4.4.2.1 Numerical evaluations
In terms of numerical performance, the integer search strategy introduced by Ghasem-
mehdi and Agrell (2011) has been adopted, which is beneficial for both estimation
and evaluation functionalities. The main advantage of this new search strategy is the
removal of non-necessary conditioning operations when spanning (down) the search
tree, see (ibid). An example is provided in Fig. 4.9, considering the old (in blue) and
new (in red) search algorithms; see also Jazaeri et al. (2014).

The numerical test in Fig. 4.9 is based on a single-baseline geometry-free ionosphere-
fixed model using GPS L1+L2 signals, with a standard deviation of 20cm/2mm
respectively for the undifferenced code/phase observations. The number of satel-
lites varies between 2 and 100 to increase the problem dimensionality, with larger
improvements expected at higher dimensionalities.

The computational time is shown averaged over 1000 runs (top-left plot), along with
the ratio between LAMBDA 3.0 and 4.0 (bottom-left plot). Moreover, the number of
conditioning operations is illustrated (right plot), showing the results for each single
run (dots), based on different float samples, along with their averages (circles). This
new strategy does not only enhance I-estimators, such as ILS1, PAR and VIB-ILS,
but it has a positive impact also on Ps-LAMBDA functionalities, e.g., for SR/FR
simulations.

Figure 4.9: A numerical comparison is shown between LAMBDA 3.0 (OLD) and LAMBDA 4.0
(NEW) algorithm in terms of search computations for the optimal ILS solution.

1This 2011-algorithm has also been adopted in the MLAMBDA implementation starting from its
2016 version (https://www.cs.mcgill.ca/~chang/MLAMBDA.php), but limited only to the ILS
estimator.

https://www.cs.mcgill.ca/~chang/MLAMBDA.php
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4.4.2.2 Statistical evaluations
In Fig. 4.10, we compare a few different SR bounds and approximations with respect
to the ILS one, which has been numerically computed for the problem adopted in Fig.
4.7 In this example, the pull-in region method (in green) provides a close upper bound
to ILS estimator (red line) for high SR values, while the variance method (in blue) is
a close lower bound to IR estimator (orange square symbol). See Wang et al. (2016)
for additional examples.

Figure 4.10: A few different bounds or approximations are compared with respect to the SR of ILS
taken here as reference (in the range 95-100%), based on the example from Fig. 4.7, while IR and
ILS numerical simulations are computed using 106 samples.

Moreover, two important cases could be considered (Teunissen, 2000):

1) SR sensitivity for changes in the stochastic model of observations;

2) SR sensitivity when using an incorrect stochastic model of observations;

In the first case, this analysis allows users to calculate how a precision improvement
of their data would affect the SR. In the second case, it provides users with a way to
understand how accurate they would need to know their observables’ vc-matrix to
maintain quasi-optimal performance in the ambiguity fixing. Hence, this provides a
diagnostics to assess the impact on SR due to stochastic misspecifications.

We start with the first case, where we consider in Fig. 4.11 the model adopted in Fig.
4.7, and we vary the standard deviation for the undifferenced phase (left plot) or code
(right plot) observations. Then, we compute the SR of ILS based on 106 samples, and
we focus on the range 80-to-100%. A similar sensitivity analysis can be performed
with other I- and IA- estimators, as well as considering bounds and/or approximations.
See Nardo et al. (2016) for additional examples.
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Figure 4.11: The SR of ILS is computed using 106 samples, based on the example of Fig. 4.7, where
standard deviation for the undifferenced phase σϕ (left plot) and code σp (right plot) observations
has been varied. An elevation weighting scheme is adopted in all simulations.

For the second case, we present an example on the adoption of an incorrect stochastic
model, which can negatively affect IAR performance. We consider a (short) single-
baseline GPS (L1+L2) model, with 7 satellites tracked on a single epoch, having
30cm/3mm for the standard deviation of undifferenced code/phase data, respectively.
The correct stochastic model is based on an elevation weighting scheme ∝ 1/ sin(el),
while for the float solution computation we consider an incorrect stochastic model
without any elevation weighting. The Ps-LAMBDA functionalities enable users to
compare the correct and incorrect stochastic models, so computing the failure rate for
an IA-estimator, e.g., with Ratio Test, while varying its aperture parameter µ ≤ 1.

The results are shown in Fig. 4.12, where SR of ILS is 92.9% or 77.3% when a correct
or an incorrect model is used, respectively. Given different µ-values between 0.5 and
1.0, we can compute the FR, with a user-defined threshold (magenta dashed line)
set here to 1%. Given µ = 0.7, e.g., the FR is 0.9% or 3.0%, and the maximum FR
threshold condition will be fulfilled only with the correct stochastic model.

4.5 Conclusions

In this contribution we introduce the LAMBDA 4.0 toolbox, a new implementation
for the integer estimation, integer validation and success rate computation. This new
toolbox builds its foundations over two legacy software implementations: LAMBDA
3.0 and Ps-LAMBDA 1.0, respectively introduced by Verhagen et al. (2012) and by
Verhagen et al. (2013). Several modular functionalities are provided and can be used
standalone to be easily integrated into existing GNSS or non-GNSS software.
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Figure 4.12: The failure rate is numerically computed for a (short) single-baseline GPS (L1+L2)
model based on an Integer Aperture estimator with Ratio Test, where different values of the aperture
parameter µ are used. An arbitrary user-defined threshold (F R < 1%) is shown in magenta.

The LAMBDA 4.0 toolbox enhances the computational performances based on new
routines to tackle any mixed-integer problem. For instance, an improved search strategy
for optimal Integer Least-Squares (ILS) solutions has been implemented and becomes
beneficial in many other Ps-LAMBDA functionalities. Moreover, new (classes of)
estimators have been introduced, e.g., a flexible Vectorial Integer Bootstrapping (VIB)
formulation for the high-dimensional problems, an Integer Aperture Bootstrapping
(IAB) solution for the controlled failure rate applications, an optimal BIE solution
that always outperforms – in the minimum Mean Squared Error sense – both float
and fixed solutions.

The newly developed toolbox comes in response to the current need for advanced
solutions to tackle high-dimensional problems in both an efficient and reliable way.
Hence, this LAMBDA 4.0 toolbox can support many applications, e.g. for multi-GNSS
and multi-frequency mixed-integer models arising in PPP-RTK network estimation
(Teunissen and Khodabandeh, 2015), frequency-varying carrier phase signals (Khoda-
bandeh and Teunissen, 2023) and in view to the future deployment of large satellite
constellations in low-Earth orbit (LEO) tracked on ground. This landscape of possibil-
ities is not limited to GNSS applications but it is expected to benefit all researchers
dealing with mixed-integer models, thus providing a simple, versatile and effective
tool to the research community.
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5
Primal and Dual Mixed-Integer

Least-Squares: Distributional
Statistics and Global Algorithm

In this contribution we introduce the dual mixed-integer least-squares problem and study it
in relation to its primal counterpart. The dual differs from the primal formulation in the
order in which the integer ambiguity vector a ∈ Zn and baseline vector b ∈ Rp are estimated.
As not the ambiguities, but rather the entries of b are usually the parameters of interest, the
attractiveness of the dual formulation stems from its direct computation of b. It is shown
that this potential advantage relies on the ease with which an implicit integer least-squares
problem of the dual can be solved.

For the convoluted cases, we introduce two methods of simplifying approximations. To be
able to describe their quality, we provide a complete distributional analysis of their estimators,
thus allowing users to judge whether or not the approximations are acceptable for their
application. It is shown that this approach implicitly introduces a new class of admissible
integer estimators of which we also determine the pull-in regions.

As the dual function is shown to lack convexity, special care is required to be able to compute
its global minimizer b̌. Our proposed method, which has finite termination with a guaranteed
ϵ-tolerance, is constructed from combining the branch-and-bound principle, with a special
convex-relaxation of the dual, to which the projected-gradient-descent method is applied to
obtain the required bounds. Each of the method’s three constituents are described, whereby
special emphasis is given to the construction of the required continuously differentiable,
convex lower bounding function of the dual.

This chapter has been published as: Teunissen, P.J.G., and Massarweh, L. (2024). Primal and dual
mixed-integer least-squares: distributional statistics and global algorithm. In Journal of Geodesy 98,
63. https://doi.org/10.1007/s00190-024-01862-1
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5.1 Introduction

The mixed-integer model forms the basis for ultraprecise GNSS parameter estimation
(Hofmann-Wellenhof et al., 2008; Leick et al., 2015; Teunissen and Montenbruck,
2017). Characteristically the mixed-integer least-squares model parameters are usually
computed in the order of first the integer ambiguities and then the ambiguity-resolved
baseline parameters. There is in principle however no a-priori reason for this particular
order. In this contribution we study the dual mixed-integer least-squares problem by
reversing the computational order of the ambiguities and baseline parameters. This
has the potential advantage of a direct computation of the baseline vector, without
the need of an explicit computation of the resolved integer ambiguities. We study the
opportunities and drawbacks of this approach, and show that certain approximations
of the dual problem may have practical potential under specified conditions. We
provide a complete distributional analysis of their estimators, thus allowing users to
judge whether or not the approximations are acceptable for their application. We
also develop the algorithmic details to ensure that the global minimizer of the dual
function can be computed.

This contribution is organized as follows.

Section 5.2 provides a brief review of integer least-squares (ILS) ambiguity resolution,
together with the distributional properties of the ambiguity- and baseline-estimators.
The dual mixed-ILS formulation is introduced in Section 5.3, together with a repre-
sentation of its objective function D(b). It is shown that it implicitly also relies on an
ILS-problem, albeit with a metric driven by the more precise conditional ambiguity
variance matrix. The potential advantage of the dual formulation in solving for b
directly, relies therefore on the ease with which this implicit ILS problem can be
solved. For the purpose of alleviating the computational demand on the implicit
ILS problem, two approximations to the dual are introduced in Sections 5.4 and 5.5,
respectively. The dual approximation of Section 5.4 consists of approximating the
conditional ambiguity variance matrix. It is shown to which primal formulation this
approximate dual belongs and a complete distributional description of its estimators,
together with success-rate bounds, is provided. The approximation of Section 5.5
consists of replacing the implicit ILS-estimaor of the dual function by a simpler integer
map. It is shown that as a result a new class of admissible integer estimators is found.
Also for this class a distributional description of its estimators, together with success-
rate bounds, is provided. With the purpose of providing insight in the challenge of
minimizing D(b), Section 5.6 illustrates and describes the multimodality of the dual
function. As the dual function lacks convexity, special algorithmic care is required
to find its global minimizer. We present our proposed method in Section 5.7. It has
finite termination with a guaranteed ϵ-tolerance and it is constructed from combining
the branch-and-bound principle, with a special convex-relaxation of the dual, to which
the projected-gradient-descent method is applied to obtain the required bounds. As
the described approach of our proposed method is not restricted to the presented dual
formulation, we provide an outlook for the constrained and partitioned dual problems
in Section 5.8. Finally, Section 5.9 contains the Summary and Conclusions.
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The following notation is used: E(·) and D(·) stand for the expectation and dispersion
operator, respectively, and Np(µ, Q) denotes a p-dimensional, normally distributed
random vector, with mean (expectation) µ and variance matrix (dispersion) Q. Rp

and Zp denote the p-dimensional spaces of real- and integer numbers, respectively,
and the range space of a matrix M is denoted as R(M). The least-squares (LS)
inverse of a full column rank matrix M is denoted as M+ = (MT Q−1

yy M)−1MT Q−1
yy

and the orthogonal projector onto R(M) as PM = MM+. P ⊥
M = I − PM is then

the orthogonal projector that projects orthogonally on the orthogonal complement
of R(M). The Q-weighted squared norm is denoted as ||.||2Q = (.)T Q−1(.), and ⌈x⌋
denotes the rounding of x to the nearest integer. If applied to a vector, the rounding
is understood to apply to each of its coordinates. ∪ and ∩ denote the union and
intersection operators, and the vectorial inequality ⪯ denotes the all componentwise
inequality ≤. P[A] denotes the probability of event A, fb̂(b) the probability density
function (PDF) of the continuous random vector b̂ and P[ǎ = z] the probability
mass function (PMF) of the integer random vector ǎ. The noncentral Chi-square
distribution with p degrees of freedom and noncentrality parameter λ is denoted as
χ2(p, λ) and its δ-percentage critical value as χ2

δ(p, 0).

5.2 Brief review of ILS ambiguity resolution

We start from the mixed-integer model of (linearized) GNSS observation equations
(Leick et al., 2015; Teunissen and Montenbruck, 2017), which in vector-matrix form
reads,

E(y) = Aa + Bb , D(y) = Qyy (5.1)
with y ∼ Nm(E(y), D(y)) the m-vector of normally distributed pseudorange and carrier-
phase observables, [A, B] ∈ Rm×(n+p) the given design matrix of full rank n+p, a ∈ Zn

the unknown ambiguity vector consisting of the integer carrier-phase ambiguities,
b ∈ Rp the unknown baseline vector consisting of the remaining real-valued parameters,
such as e.g., position coordinates, atmosphere parameters, receiver/satellite clock
parameters, and instrumental biases, and Qyy ∈ Rm×m the given positive-definite
variance matrix of the observables. The above GNSS model may be given in undif-
ferenced, single-differenced or double-differenced form. In any of these forms, the
possible rank-defects in the design matrix are assumed eliminated through a care-
ful reparametrization in clearly defined estimable parameters (Odijk et al., 2015;
Teunissen, 2019).

The mixed integer least-squares (ILS) estimation of the integer ambiguity vector
a ∈ Zn and the real-valued baseline vector b ∈ Rp is executed in three steps (float-
integer-fixed). In the first step, the integer constraint on a is discarded, giving the
so-called float-solution of a and b as

â = Ā+y and b̂ = B̄+y (5.2)

with Ā = P ⊥
B A and B̄ = P ⊥

A B. In the second step, the integer constraint a ∈ Zn is
invoked, and â ∈ Rn of (5.2) is used as input to obtain the integer estimate of the
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ambiguity vector a as
ǎ = arg min

a∈Zn
||â− a||2Qââ

(5.3)

with Qââ = (ĀT Q−1
yy Ā)−1 being the variance matrix of â. Once the integer solution

(5.3) has been obtained, the expression of the conditional least-squares (LS) baseline
estimator, b̂(a) = b̂−Qb̂âQ−1

ââ (â− a) (i.e. conditioned on knowing a), is used in the
third step to compute the ambiguity-fixed baseline solution as

b̌ = b̂(ǎ) = b̂−Qb̂âQ−1
ââ (â− ǎ) (5.4)

That (5.2), (5.3) and (5.4) are indeed the LS and ILS solutions of the GNSS model
(5.1) follows readily from the orthogonal decomposition (Teunissen, 1998a)

||y −Aa−Bb||2Qyy
= ||P ⊥

[A,B]y||
2
Qyy

+ F (a, b) (5.5)

where
F (a, b) = ||â− a||2Qââ

+ ||b̂(a)− b||2Qb̂(a)b̂(a)
(5.6)

with Qb̂(a)b̂(a) = (BT QyyB)−1 the variance matrix of b̂(a). As ||P ⊥
[A,B]y||

2
Qyy

is in-
dependent of a and b, the minimizers of ||y − Aa − Bb||2Qyy

are those of F (a, b). It
therefore follows from (5.6), recognizing b̂(â) = b̂, that the real-valued minimizers of
F (a, b) are given by (5.2), while their mixed-integer counterparts are given by (5.3)
and (5.4), respectively. We therefore have for the LS and the mixed ILS solutions,

â

b̂

}
= arg min

a∈Rn,b∈Rp

F (a, b) ,
ǎ

b̌

}
= arg min

a∈Zn,b∈Rp

F (a, b) (5.7)

In order to judge the quality of the mixed ILS estimators ǎ and b̌, we need their
probability distributions. They are given in the following theorem.

Theorem 1 (Teunissen, 1999b) The probability mass function (PMF) of ǎ and the
probability density function (PDF) of b̌ are given as{

P[ǎ = z] =
∫

Pz
fâ(α)dα

fb̌(β) =
∑

z∈Zn

fb̂(z)(β)P[ǎ = z] (5.8)

with â ∼ Nn(a, Qââ), b̂(z) ∼ Np(b−Qb̂âQ−1
ââ (a− z), Qb̂(z)b̂(z)), and the pull-in region

of z ∈ Zn given as Pz = {x ∈ Rn| ||x− z||2Qââ
≤ ||x− u||2Qââ

,∀u ∈ Zn}. ■

In the practice of GNSS ambiguity resolution one aims to resolve the ambiguities with
a high success-rate, i.e. a high probability of correct integer estimation P[ǎ = a]. When
the success-rate is high enough, one may neglect the uncertainty in ǎ and describe the
uncertainty in b̌ by means of the PDF of b̂(a). This is made precise by the following
bounds of Teunissen (1999b),

P[b̂(a) ∈ Ω]P[ǎ = a] ≤ P[b̌ ∈ Ω] ≤ P[b̂(a) ∈ Ω] (5.9)
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Figure 5.1: Primal and dual orthogonal decompositions, after (Teunissen, 1998a): ||y−Aa−Bb||2Qyy
=

||P ⊥
[A,B]y||2Qyy

+ ||P[A,B](y −Aa−Bb)||2Qyy
, with primal decomposition ||P[A,B](y −Aa−Bb)||2Qyy

=
||PĀ(y−Aa)||2Qyy

+||PB(y−Aa−Bb)||2Qyy
= ||â−a||2Qââ

+||b̂(a)−b||2Q
b̂(a)b̂(a)

and dual decomposition

||P[A,B](y − Aa − Bb)||2Qyy
= ||PB̄(y − Bb)||2Qyy

+ ||PA(y − Aa − Bb)||2Qyy
= ||b̂ − b||2Q

b̂b̂
+ ||â(b) −

a||2Qâ(b)â(b)
.

which hold true for any convex region Ω ⊂ Rp centred at E(b̂). Thus when the
success-rate P[ǎ = a] is close enough to one, then

P[b̌ ∈ Ω] ≈ P[b̂(a) ∈ Ω] (5.10)

which in case of GNSS, due to the very precise carrier-phase data, is usually a much
larger probability than that obtained from the float-solution b̂, P[b̂(a) ∈ Ω]≫ P[b̂ ∈ Ω].

5.3 A dual mixed-ILS formulation

5.3.1 Primal and dual mixed-ILS

A characteristic of the 3-step solution approach is the order in which the mixed ILS
solutions ǎ and b̌ are computed in the last two steps. First the integer ambiguity
estimate ǎ (cf. 5.3) is computed and then the fixed baseline estimate as b̌ = b̂(ǎ)
(cf. 5.4). There is in principle however no a-priori reason for this particular order.
The same solution will be obtained if one would interchange the order of the two
minimization steps, since

min
a∈Zn

[min
b∈Rp

F (a, b)] = min
b∈Rp

[min
a∈Zn

F (a, b)] (5.11)

With this equivalence, the solution to the mixed ILS problem can be formulated in two
alternative ways, each working with a different objective function, namely a primal
function P(a) that solely depends on the ambiguity vector and a dual function D(b)
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that solely depends on the baseline vector b. With the aid of the following short-hand
notation

b̂(a) = arg min
b∈Rp

F (a, b)
ǎ(b) = arg min

a∈Zn
F (a, b) (5.12)

we have the following result.

Theorem 2 (Primal and dual mixed-ILS) Let the primal and dual objective
functions be defined as

Primal : P(a) = min
b∈Rp

F (a, b) = F (a, b̂(a))
Dual : D(b) = min

a∈Zn
F (a, b) = F (ǎ(b), b) (5.13)

Then the mixed ILS solution is given as

ǎ = arg min
a∈Zn

P(a) = ǎ(b̌)

b̌ = arg min
b∈Rp
D(b) = b̂(ǎ)

(5.14)

■

This result shows that one has two routes available for computing the mixed ILS
solution. Either one minimizes P(a) to obtain ǎ first and then b̌ = b̂(ǎ), or one
minimizes D(b) to obtain b̌ first and then ǎ = ǎ(b̌). Both routes determine the same
minimum of F (a, b),

min
a∈Zn,b∈Rp

F (a, b) = P(ǎ) = D(b̌) (5.15)

The first route is the one described in the previous section. The second route is the
object of study of the present contribution.

5.3.2 The dual objective function

If the parameters of interest are not the ambiguities, but rather the entries of b, it
seems that working with the dual function D(b) is a natural way to go. To determine
an explicit expression for D(b), it is useful to start from the orthogonal decomposition
(5.6), but now with the roles of a and b interchanged, i.e.

F (a, b) = ||b̂− b||2Qb̂b̂
+ ||â(b)− a||2Qâ(b)â(b)

(5.16)

where â(b) = â−Qâb̂Q−1
b̂b̂

(b̂− b), Qb̂b̂ = (B̄T Q−1
yy B̄)−1, and Qâ(b)â(b) = (AT Q−1

yy A)−1.
For the geometry of the primal and dual orthogonal decompositions, see Figure 5.1.
We can now obtain the following representations of the dual function D(b).

Lemma 1 (Dual objective function): Let Sz = {x ∈ Rn| ||x − z||2Qâ(b)â(b)
≤

||x− u||2Qâ(b)â(b)
,∀u ∈ Zn} be the ILS pull-in regions of Qâ(b)â(b), having sz(x) as its



5.3 A dual mixed-ILS formulation

5

99

indicator function, i.e. sz(x) = 1 if x ∈ Sz and sz(x) = 0 otherwise. Then

D(b) = min
a∈Zn

F (a, b) =

= ||b̂− b||2Qb̂b̂
+ ||â(b)− ǎ(b)||2Qâ(b)â(b)

= ||b̂− b||2Qb̂b̂
+
∑

z∈Zn

||â(b)− z||2Qâ(b)â(b)
sz(â(b))

(5.17)

where
ǎ(b) = arg min

a∈Zn
||â(b)− a||2Qâ(b)â(b)

(5.18)

■

This shows that the dual function D(b) is a sum of two functions in b,

D(b) = ||b̂− b||2Qb̂b̂︸ ︷︷ ︸
D1(b)

+ ||â(b)− ǎ(b)||2Qâ(b)â(b)︸ ︷︷ ︸
D2(b)

(5.19)

As the second function D2(b) is formed from solving again an ILS problem, one
may wonder whether anything would be gained by working with the dual D(b), in
particular if we also note that the ILS problem of (5.18) needs to be re-evaluated
for every different value of the unknown b. A comparison of the two ILS problems,
(5.3) and (5.18), shows however that the second is formulated with respect to the
conditional variance matrix Qâ(b)â(b) and not with respect to Qââ as is the case with
(5.3). Although both ILS problems can be solved efficiently by means of the LAMBDA
method (Teunissen, 1995), we recall that herein the two dominant computational
components are (1) the Z-decorrelation, and (2) the ellipsoidal integer search. Hence,
if the structure of the conditional vc-matrix Qâ(b)â(b) is such that one or both of these
components can be skipped or simplified, then working with the dual D(b) could
perhaps become attractive in some instances. For instance, if Qâ(b)â(b) is diagonal,
ǎ(b) equals the component-wise rounded version of â(b), and both components can
be avoided. Diagonality of Qâ(b)â(b) happens when the columns of A are mutually
orthogonal in the metric of Qyy. In the realm of GNSS, this is the case with the
geometry-free GNSS model. Ease of computation would also be present if ǎ(b) would
only be moderately dependent on b. To provide insight into this, we consider the
probability mass function of ǎ(b) and in particular its success-rate P[ǎ(b) = a].

5.3.3 Probability Mass Function of ǎ(b)
For every b that we need to evaluate D(b), we need to compute the integer estimate
ǎ(b). The performance of this integer estimator can be described by its probability
mass function (PMF).

Lemma 2 (PMF of ǎ(b)) The probability mass function of ǎ(b) (cf. 5.18) is given as

P[ǎ(b) = z] = P[â(b) ∈ Sz]
=

∫
Sz

fâ(b)(x)dx,∀z ∈ Zn (5.20)
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with pull-in regions Sz = {x ∈ Rn | ||x− z||2Qâ(b)â(b)
≤ ||x− u||2Qâ(b)â(b)

,∀u ∈ Zn} and
the PDF fâ(b)(x) of â(b) given as

â(b) ∼ Nn(a + ∆a, Qâ(b)â(b)) (5.21)

where ∆a = −Qâb̂Q−1
b̂b̂

∆b, with ∆b = E(b̂)− b. ■

The PMF of ǎ(b) (cf. 5.20) is driven by the PDF of â(b) (cf. 5.21). Its ambiguity
success-rate can be evaluated with the bounds of Teunissen (2001) or with the
simulation algorithms provided in Ps-LAMBDA (Verhagen et al., 2013). The PDF of
â(b) is usually very peaked, especially in case of GNSS where we have Qâ(b)â(b) ≪ Qââ

due to the very precise phase data. Would this peakedness of the PDF be such that
it is located over only a single pull-in region, say Su, u ∈ Zn, for a certain b, then
the PMF of ǎ(b) could be well approximated for that value of b by a Kronecker delta
function,

P[ǎ(b) = z] ≈ δuz =
{

1 if z = u
0 if z ̸= u

(5.22)

The ambiguity success-rate of ǎ(b) would then be large, i.e. P[ǎ(b) = a] ≈ 1, if u = a.
For this to happen however, we need a + ∆a ∈ Sa, i.e. the bias in â(b) needs to be
sufficiently small, with ∆a residing in ǎ(b)’s pull-in region of the origin, ∆a ∈ S0.
For the squared Qâ(b)â(b)-weighted norm of this ambiguity bias we have the following
result.

Lemma 3 (Bias of â(b)) Let ∆a = −Qâb̂Q−1
b̂b̂

∆b. Then

||∆a||2Qâ(b)â(b)
= ||PAB∆b||2Qyy

≤ ||∆b||2Qb̂(a)b̂(a)

(5.23)

■

Proof: see Appendix.

This result shows that for the to be accounted range of b-values, one can generally
not expect the bias ∆a to be small enough such that ∆a ∈ S0. It would namely
require knowledge of b such that ∆b = E(b̂)− b is sufficiently small with respect to
the phase-driven, small standard deviations of b̂(a). Such can only be expected in a
model having strong a-priori constraints on b. As the following example demonstrates,
this can not be expected from a regular unconstrained GNSS model.

Example 1 Consider the single-frequency, single epoch, single baseline, double-
differenced (DD), m + 1 satellite GNSS model

E
[

p
ϕ

]
=
[

0 DT G
λIm DT G

] [
a
b

]
, D
[

p
ϕ

]
=
[

σ2
pDT D 0

0 σ2
ϕDT D

]
(5.24)

with p, ϕ ∈ Rm the DD pseudorange and carrier-phase data vectors, λ the wavelength,
DT = [−em, Im] the differencing matrix, G ∈ R(m+1)×3 the receiver-satellite geometry
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matrix, and σ2
p, σ2

ϕ the variances of the single-differenced pseudoranges and carrier-
phases. For this model the variance matrix of â(b) and its bias work out to be

Qâ(b)â(b) = (AT Q−1
yy A)−1 = σ2

ϕ

λ2 DT D
∆a = (AT Q−1

yy A)−1AT Q−1
yy B∆b = 1

λ DT G∆b
(5.25)

Recognizing that the rows of DT G consist of differences of the rows of G and that
each row of G consists of a unit direction vector, the entries of ∆a can be bounded
from above as |(∆a)i| ≤ 2

λ ||∆b||, i = 1, . . . , m. This shows, as λ ≈ 20cm in case of
GNSS, that ∆b = E(b̂)− b has to be very small indeed to ensure that |(∆a)i| stays
below the subcycle level. □

As the above has demonstrated, without strong a-priori constraints on b, one can not
expect the success-rate of ǎ(b) to be large. This implies that one will have to evaluate
D2(b) = ||â(b)− ǎ(b)||2Qâ(b)â(b)

for a range of values of b and thus also solve as many
ILS problems. It would therefore be beneficial, in case solving the ILS-problem is
too time-consuming, if we could replace the evaluation of D2(b) with a simpler one,
without affecting the performance of the whole estimation process by much. One can
ask oneself for instance, whether one can take advantage of the peakedness of the
PDF of â(b) and replace the ILS estimator ǎ(b) by the integer-rounding (IR) estimator
⌊â⌉, without a serious degradation in performance. Such would be possible if ’all’
probability of the PDF of â(b) would be concentrated in the intersections of the ILS
and IR pull-in regions, which would require a + ∆a ∈ Su ∩Ru, with Ru denoting
the integer-rounding pull-in region of u ∈ Zn. However, such assumption can not
be generally valid, as by changing b in ∆a = −Qâb̂Q−1

b̂b̂
∆b, one would also be able

to pull a + ∆a out of such intersection Su ∩ Ru. It is therefore of importance, if
one would replace the evaluation of D2(b) by a simpler one, that one at the same
time also has the ability to give a rigorous evaluation of the performance of such
simplification. In the following we introduce two different simplifications of D(b) and
study the probabilistic properties of their minimizers.

5.4 Dual with approximate weight matrix

In this and the next section we study the properties of the baseline- and ambiguity
estimators when one works, instead with the dual D(b), with easier-to-compute
approximations to it. The two types of approximation that we consider are,

(a) D◦(b) = ||b̂− b||2Qb̂b̂
+ min

a∈Zn
||â(b)− a||2Q◦

â(b)â(b)

(b) D•(b) = ||b̂− b||2Qb̂b̂
+ ||â(b)− I•(â(b))||2Qâ(b)â(b)

(5.26)

In the first type, we have replaced the conditional variance matrix Qâ(b)â(b) by an
approximation Q◦

â(b)â(b), the idea being that the approximation will then allow for
a simpler ambiguity minimization in (5.26a). For instance, when Q◦

â(b)â(b) is chosen
to be a diagonal matrix, the minimization in (5.26a) reduces to a straightforward
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componentwise integer rounding of â(b). In the second approximation type, we have
replaced the integer ambiguity minimizer ǎ(b) = arg min

a∈Zn
||â(b)− a||2Qââ

of D2(b) (cf.
5.19) by an arbitrary admissible integer estimator ǎ•(b) = I•(â(b)), I• : Rn 7→ Zn.
This second type will be studied in the next section.

To determine the properties of the baseline estimator b̌◦ = arg min
b∈Rp
D◦(b) and its

corresponding integer ambiguity estimator, we again make use of the correspondence
between the primal and dual formulations. The quadratic form identity, as provided
by the following Lemma, forms the basis for establishing this correspondence.

Lemma 4 Let the conditional ambiguity variance matrix Qâ(b)â(b) in (5.16) be replaced
by Q◦

â(b)â(b). Then
||b̂− b||2Qb̂b̂

+ ||â(b)− a||2Q◦
â(b)â(b)

=
||â− a||2Q◦

ââ
+ ||b̂◦(a)− b||2Q◦

b̂(a)b̂(a)

(5.27)

with
Q◦

ââ = Q◦
â(b)â(b) + Qâb̂Q−1

b̂b̂
Qb̂â

b̂◦(a) = b̂−Qb̂âQ◦−1
ââ (â− a)

Q◦
b̂(a)b̂(a) = Qb̂b̂ −Qb̂âQo−1

ââ Qâb̂

(5.28)

Proof: see Appendix. ■

This result shows that replacing the variance matrix Qâ(b)â(b) in D(b) (cf. 5.19) by
Q◦

â(b)â(b) provides an objective function of the type (5.6). It therefore again establishes
a primal-dual equivalence, but now one that is driven by the approximate dual function
D◦(b). Note that the single replacement Qâ(b)â(b) → Q◦

â(b)â(b) resulted in three changes
of the primal formulation: Qââ → Q◦

ââ, b̂(a)→ b̂◦(a), and Qb̂(a)b̂(a) → Q◦
b̂(a)b̂(a). These

changes will therefore also drive the properties of the corresponding baseline- and
integer ambiguity estimators. Using the quadratic identity (5.27), the following
equivalence for the minimizer of D◦(b) can be established.

Theorem 3 Let the approximate dual be given as

D◦(b) = ||b̂− b||2Qb̂b̂
+ ||â(b)− ǎ◦(b)||2Q◦

â(b)â(b)
(5.29)

with ǎ◦(b) = arg min
a∈Zn

||â(b)− a||2Q◦
â(b)â(b)

. Then the corresponding primal is P◦(a) =

||â − a||2Q◦
ââ

and the minimizer b̌◦ of D◦(b), with corresponding integer ambiguity
solution ǎ◦, satisfies the primal-dual equivalence,

ǎ◦ = arg min
a∈Zn

P◦(a)

b̌◦ = b̂◦(ǎ◦)

}
⇔

{
b̌◦ = arg min

b∈Rp
D◦(b)

ǎ◦ = ǎ◦(b̌◦)
(5.30)

Proof: see Appendix. ■
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This equivalence can now be used to apply available theory for the primal formulation
to determine the distributional properties of the estimators ǎ◦ and b̌◦. It should
hereby be noted, however, although ǎ◦, like ǎ, is still computed as the solution of
an ILS-problem having â as its input, the weight matrix used is now different, Q◦−1

ââ

instead of Q−1
ââ . Also note, although b̂◦(a) has the same structure as b̂(a), that â

is now not independent of b̂◦(a). The matrix Q◦
b̂(a)b̂(a) of (5.28) is therefore not the

variance matrix of b̂◦(a). We have the following distributional result.

Theorem 4 (Distributions of ǎ◦ and b̌◦) With the PDF of â ∼ Nn(a, Qââ) denoted
as fâ(α), the PMF of the ambiguity estimator ǎ◦ is given as

ǎ◦ ∼ P[ǎ◦ = z] =
∫

P◦
z

fâ(α)dα, with
P[ǎ◦ = a] ≤ P[ǎ = a] (5.31)

and the limiting PDF of the baseline estimator b̌◦ is given as

lim
P[ǎ◦=a]↑1

b̌◦ ∼ Np(b, Qb̂◦(a)b̂◦(a)), with

Qb̂◦(a)b̂◦(a) = Qb̂(a)b̂(a) + Tb̂âQââT T
b̂â
≥ Qb̂(a)b̂(a)

(5.32)

where P◦
z = {x ∈ Rn| ||x−z||2Q◦

ââ
≤ ||x−u||2Q◦

ââ
,∀u ∈ Zn} and Tb̂â = Qb̂â[Q−1

ââ −Q◦−1
ââ ].
■

Proof: See Appendix. □

The above result shows that replacing Qâ(b)â(b) by Q◦
â(b)â(b) will always degrade the

performance of the associated estimators. It will give a smaller ambiguity success-rate
(cf. 5.31), as well as a poorer precision of the ambiguity-fixed baseline (cf. 5.32). Still,
depending on the choice made for Q◦

â(b)â(b), the degradation could be acceptably small,
depending on the application.

To evaluate the success-rate P[ǎ◦ = a], the multivariate integral of (5.31) needs to be
computed. This is a nontrivial numerical task due to the geometric complexity of the
pull-in region P◦

a , over which the integration needs to be carried out. One approach is
to rely on simulation, whereby the Ps-LAMBDA simulation tools of (Verhagen et al.,
2013) can be used. Note hereby, that the success-rate P[ǎ◦ = a] is driven by both
Qââ and Q◦

ââ, i.e. by the ambiguity variance matrix that determines fâ(α) and by its
approximation that determines the pull-in region P◦

a .

The following example compares the two success-rates P[ǎ = a] and P[ǎ◦ = a].

Example 2 Consider the GNSS model of Example 1 (cf. 5.24) and assume that in solving
the dual problem we approximate the fully populated variance matrix Qâ(b)â(b) =
σ2

ϕ

λ DT D with the diagonal matrix Q◦
â(b)â(b) = 2σ2

ϕ

λ Im. Then, with Qâb̂Q−1
b̂b̂

Qb̂â =
σ2

p

λ2 DT G[GT PDG]−1GT D and PD = D(DT D)−1DT , we get

Q◦
ââ = 1

λ2

(
2σ2

ϕIm + σ2
pDT G[GT PDG]−1GT D

)
(5.33)
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Figure 5.2: Comparison of P[ǎ◦ = a] with P[ǎ = a] as described in Example 2, based on the GNSS
model of Example 1.

With reference to Theorem 4 (cf. 5.31), Figure 5.2 compares the two success-rates
P[ǎ = a] and P[ǎ◦ = a], based on (5.33), for a case of single-epoch, single-frequency L1
GPS, using a 10−4 phase-code variance ratio. It shows that P[ǎ◦ = a] ≤ P[ǎ = a], but
also that P[ǎ◦ = a] can still be acceptably large for some measurement scenarios. □

Instead of simulation, success-rate bounds may sometimes be used as an alternative.
Upper-bounds are then useful to identify when successful ambiguity resolution would
be problematic, while lower-bounds are useful to identify when to expect successful
ambiguity resolution. As upper-bound of P[ǎ◦ = a], one may directly use the ILS
success-rate P[ǎ = a] (cf. 5.31), or alternatively, any of its simpler to compute upper-
bounds given in (Teunissen, 2000a; Verhagen et al., 2013). The following Theorem
provides two lower-bounds on the ambiguity success-rate of ǎ◦.

Theorem 5 (Success-rate lower bounds) Let â ∼ Nn(a, Qââ), ǎ◦ = arg min
a∈Zn

||â−

a||2Q◦
ââ

. Then the success-rate of ǎ◦ can be lower-bounded as follows:

(i) If Q◦
ââ ≥ Qââ, then

n∏
i=1

[2Φ
(

1
2

√
di

)
− 1] ≤ P[ǎ◦ = a] (5.34)

where D = diag(d1, . . . , dn) is the diagonal matrix of the triangular decomposition
Q◦

ââ = LDLT and Φ(x) =
∫ x

−∞
1√
2π

exp(− 1
2 v2)dv.

(ii) For any Q◦
ââ > 0,

P[χ2(0, n) ≤ r2] ≤ P[ǎ◦ = a] (5.35)

with 
r2 = λmin × 1

4 min
z∈Zn/{0}

||z||2Q◦
ââ

λmin = min
x∈Rn

xT Q◦
ââx

xT Qââx

(5.36)

Proof: see Appendix □
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Note that lower-bound (5.34) is somewhat easier to compute than (5.35). It requires
however that Q◦

ââ ≥ Qââ, while no such restriction is placed on the lower-bound
(5.35). Also note, although both lower-bounds are here presented in the context of the
primal-dual formulations, that they are in fact success-rate lower-bounds of improperly
weighted ILS-estimators, i.e. ILS-estimators that not use the inverse variance-matrix
as their weight-matrix. They can therefore also be used more generally for studying
the impact misspecifications in the stochastic model have on the success-rate.

5.5 Dual with approximate integer map

In this section we consider the second approximation of the dual function, D•(b) (cf.
5.26), and determine the statistical properties of its minimizer.

5.5.1 The minimizer of D•(b)
The approximation D•(b) of D(b) is a result of replacing the integer vector ǎ(b) =
arg min

z∈Zn
||â(b)− z||2Qâ(b)â(b)

in D(b) by the integer vector I•(â(b)), for which I• : Rn 7→
Zn may be chosen as any member from the class of admissible integer estimators, such
as, for instance, integer rounding (IR), integer bootstrapping (IB), integer least-squares
(ILS) or vectorial integer bootstrapping (VIB) (Teunissen et al., 2021). The following
theorem provides the solution of minimizing D•(b).

Theorem 6 (Minimizer of D•(b)) Let I• : Rn 7→ Zn be any admissible integer
estimator. Then the minimizer b̌• = arg min

b∈Rp
D•(b) of the approximate dual

D•(b) = ||b̂− b||2Qb̂b̂
+ ||â(b)− I•(â(b))||2Qâ(b)â(b)

(5.37)

is given as
b̌• = b̂(ǎ•), with ǎ• = arg min

z∈Ω•
â

||â− z||2Qââ
(5.38)

where
Ω•

â = {z ∈ Zn| z = I•(â + Mβ),∀β ∈ Rp} (5.39)

with M = Qâb̂Q−1
b̂b̂
∈ Rn×p.

Proof: see Appendix. □

Note, in contrast to the baseline estimator b̌◦ (cf. 5.30), that the baseline estimator
b̌• (cf. 5.38) is based, like the estimator b̌ (cf. 5.4), on the conditional LS baseline
mapping b̂(a). However, b̌ and b̌• make use of different integer ambiguity estimators
in general. Although the integer estimator ǎ• (cf. 5.38) has the appearance of
a standard ILS-estimator, it is generally not, unless of course I•(x) is chosen as
I•(x) = arg min

z∈Zn
||x− z||2Qâ(b)â(b)

, in which case ǎ• = ǎ, since then D•(b) = D(b).
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Figure 5.3: (Top) The integer set Ω•
â = {z ∈ Zn| z = I•(â + Mβ), ∀β ∈ Rp} for n = 2, p = 1, and

I(.) = ⌈.⌋; (Center) The real-valued set Ω̄•
z = {x ∈ Rn| z = I•(x + Mβ), ∃β ∈ Rp} for n = 2, p = 1;

(Bottom) The integer set Φ•
z = {u ∈ Zn| u = I•(x + Mβ), x ∈ Ω̄•

z , ∀β ∈ Rp} for n = 2, p = 1.

The difference between the two integer estimators ǎ and ǎ• is driven by the character-
istics of the integer set Ω•

â (cf. 5.39), which on its turn is driven by the n× p matrix
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M in
â(β) = â + M(β − b̂) (5.40)

The following three cases can be discriminated:

(1) â(β) ≡ â if M = 0, i.e. Qâb̂ = 0 or AT Q−1
yy B = 0

(2) â(β) describes a linear manifold if rank(M) < n

(3) â(β) covers the whole of Rn if rank(M) = n

Case (1) happens if the estimators â and b̂ are uncorrelated. As the integer set (5.39)
reduces then to the single integer vector Ω•

â = {z = I•(â)}, we have in that case
ǎ• = I•(â). In case (2), the subset Ω•

â contains all integer vectors to which I•(x) is
mapped when x varies along the rank(M)-dimensional linear manifold (5.40). This is
shown in Figure 5.3(Top) when I•(x) represents integer rounding and n = 2, p = 1, in
which case the pull-in regions of I•(x) are unit-squares centred at integer grid points.
As Ω•

â ̸= Zn, we have ǎ• ≠ ǎ in case (2). In case (3), the invertibility of matrix M
implies that the whole Rn is integer-mapped by I•(x), thus giving Ω•

â = Zn. This
shows that ǎ• = ǎ in case (3).

Note, as rank(M) ≤ min(n, p), that case (3) can only happen if p ≥ n. Hence, since
p < n in most GNSS models, the equality of the two estimators, ǎ• and ǎ, is very
unlikely in case of GNSS. Although the two estimators ǎ• and ǎ are then generally
different, their integer sample outcomes can, of course, sometimes be the same. This
happens when the outcome of ǎ lies in Ω•

â.

5.5.2 A qualitative comparison of ǎ• and ǎ

We now compare the two integer estimators for case (2), i.e. when â(β) describes a
linear manifold of dimension rank(M) < n and ǎ• ̸= ǎ.

To aid the comparison between ǎ• and ǎ, we first introduce the ambiguity search space

Eâ = {z ∈ Zn| ||â− z||2Qââ
≤ χ2} (5.41)

where χ2 is assumed chosen such that ǎ ∈ Eâ (note: for any integer z0 ∈ Zn, e.g.
z0 = ⌈â⌋, the value χ2 = ||â− z0||2Qââ

satisfies this assumption). With the help of Eâ

we may write ǎ = arg min
u∈Zn

||â− u||2Qââ
in a similar form as that of ǎ•. We therefore

have
ǎ = arg min

u∈Eâ

||â− u||2Qââ

ǎ• = arg min
u∈Ω•

â

||â− u||2Qââ

(5.42)

which shows that the two estimators can be compared by comparing their respective
search spaces, Eâ vs Ω•

â. For Ω•
â we have

Ω•
â = {z ∈ Zn| z = I•(â + Mβ),∀β ∈ Rp} (5.43)
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For Eâ we may write, with the help of M = Qâb̂Q−1
b̂b̂

and Qââ = Qâ(b)â(b) + MQb̂b̂MT ,

Eâ = {z ∈ Zn| (â− z)T [Qâ(b)â(b) + MQb̂b̂MT ]−1(â− z) ≤ χ2} (5.44)

We can now compare the two integer sets (5.43) and (5.44). We will do so, for two
extreme cases.

Case (a) : Qâ(b)â(b) = small and Qb̂b̂ = large (5.45)

This is the typical ’GNSS-case’, in particular for instantaneous positioning. As the
very precise carrier phase data do not contribute to the determination of b in case of
a single epoch, the precision of b̂ is solely driven by the noisy pseudorange data and
Qb̂b̂ = large. Would b be known, then it are the very precise carrier phase data that
predominantly determine the ambiguities and Qâ(b)â(b) = small.

When (5.45) is true, the ellipsoidal search space Eâ (cf. 5.44) will have an extreme
elongation in the directions of the range space of M and therefore closely resemble the
integer set Ω•

â, which, afterall, is constructed from integer mapping the points of the
linear manifold â + Mβ. Under case (a) one can therefore expect the two estimators
to be not too different, i.e. sample values of the ILS-estimator ǎ ∈ Eâ will not rarely
be inside Ω•

â as well. We hereby note that the GNSS-typical extreme elongation of Eâ

results in integer search-halting when solving for ǎ. Resolving this bottleneck was the
motivation for developing LAMBDA. By means of its decorrelating Z-transformation,
the discontinuity in the spectrum of sequential conditional ambiguity variances is
largely removed and search-halting avoided, see (Teunissen, 1995).

Case (b) : Qâ(b)â(b) = large and Qb̂b̂ = small (5.46)

Now we have a different situation, which in GNSS-terminology could be described as
having ultra-precise pseudorange data and very poor carrier-phase data. In such case
the shape of the ellipsoidal search space Eâ is primarily driven by Qâ(b)â(b), implying
that its shape will now generally not be aligned with Ω•

â. And this will even be more
so if the ellipsoidal search space would have its elongation orthogonal to the range
space of M . In this case one would expect the two estimators, ǎ• and ǎ, to have
different performances, i.e. sample values of the ILS-estimator ǎ ∈ Eâ are then not
likely to reside inside Ω•

â as well.

5.5.3 The pull-in regions of ǎ•

In order to study the statistical properties of ǎ• and b̌•, it is useful to first determine
the pull-in regions of ǎ•. As the pull-in region P•

z of ǎ• is the region in which the
float solution â gets mapped to z ∈ Zn, we have

P•
z = {x ∈ Rn| z = arg min

u∈Ω•
x

||x− u||2Qââ
} (5.47)

To further characterize this region, we recognize that the choice of z ∈ Zn, i.e. the
integer-vector for which the pull-in region is described, already constrains the values
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Figure 5.4: Pull-in regions P•
z of the integer ambiguity estimator ǎ• for n = 2 and p = 1. Top:

Comparison of P•
z with ILS pull-in regions, showing integer set Ω•

0 through encircled gridpoints;
Bottom: A zoom-in showing P•

0 of ǎ• together with the (lower) bounding ellipse E0 (cf. proof of
Theorem 7).

of x ∈ Rn to a subset. As z has to lie in Ω•
x, the choice of z implies the following

subset for the values of x,

Ω̄•
z = {x ∈ Rn| z = I•(x + Mβ),∃β ∈ Rp} (5.48)

This is the set of x-values for which a β ∈ Rp exists, such that x + Mβ gets mapped
by I•(.) to z, see Figure 5.3(Middle).

With the help of the region Ω̄•
z we can now characterize the whole integer set that is

in play in the minimization of (5.47). As P•
z is characterized by the minimization of

||x− u||2Qââ
over the integer subset Ω•

x, while, at the same time, this is constrained to
all x ∈ Ω̄•

z , the integer set considered is actually

Φ•
z = {u ∈ Zn| u = I•(x),∀x ∈ Ω̄•

z} (5.49)

It consists of all integer vectors to which the elements of Ω̄•
z are mapped by I•(.), see

Figure 5.3(Bottom).

With the above three constructed sets, Ω•
x ⊂ Zn, Ω̄•

z ⊂ Rn, and Φ•
z ⊂ Zn, we have

the following three representations of the pull-in regions of ǎ•.

Lemma 5 (Representations of pull-in region P•
z ) The pull-in regions P•

z ,
z ∈ Zn, of ǎ• can be represented, with

Ω•
x = {z ∈ Zn| z = I•(x + Mβ),∀β ∈ Rp}

Ω̄•
z = {x ∈ Rn| z = I•(x + Mβ),∃β ∈ Rp}

Φ•
z = {u ∈ Zn| u = I•(x),∀x ∈ Ω̄•

z}
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as
P•

z = {x ∈ Rn| z = arg min
u∈Ω•

x

||x− u||2Qââ
}

= {x ∈ Rn| ||x− z||2Qââ
≤ ||x− I•(y)||2Qââ

,∀y ∈ Ω̄•
z}

= {x ∈ Rn| ||x− z||2Qââ
≤ ||x− u||2Qââ

,∀u ∈ Φ•
z}

(5.50)

■

We can now use these pull-in representations to show that ǎ• is an admissible integer
estimator. Recall that an integer estimator is said to be admissible if its pull-in regions
are translational invariant and cover the whole space Rn without gaps and overlaps
(Teunissen, 2002).

Lemma 6 (Admissible integer estimator ǎ•) The integer estimator ǎ• is admissible
as its pull-in regions satisfy

(i) ∪
z∈Zn

P•
z = Rn

(ii) P•
z1
∩P•

z2
= ∅, ∀z1 ̸= z2

(iii) P•
z = P•

0 + z, ∀z ∈ Zn

(5.51)

Proof: see Appendix. ■

The admissibility property implies that if y is perturbed by Az to give y′ = y + Az,
the ambiguity float solution changes from â = Ā+y to â′ = Ā+(y + Az) = â + z,
and the integer ambiguity solution from ǎ• to ǎ′• = ǎ• + z. Hence, this provides
the pleasant property, that if one wants to work with managable numbers, one can
subtract arbitrary integers from the ambiguity float solution and still get the correct
integer solution by restoring the subtracted integer at the end, i.e. if â′ = â− z then
ǎ• = ǎ′• + z.

Figure 5.4 shows, for n = 2 and p = 1, an example of the pull-in regions P•
z of the

integer ambiguity estimator ǎ•. The choice made for the integer map I• : Rn 7→ Zn

is in this case integer-rounding, i.e. I•(x) = ⌈x⌋. The encircled integer gridpoints
constitute the integer set Ω•

x=0 (cf. Lemma 5) and the line through the origin has
M = Qâb̂Q−1

b̂b̂
as its direction vector. For comparison also the hexagonian ILS pull-in

regions of ǎ are shown, thus illustrating the close overlap between the two types of
pull-in regions.

5.5.4 Distributions of ǎ• and b̌•

With the knowledge that the integer estimator ǎ• is admissible, we can now apply
existing theory of Teunissen (1999b) to determine the distributions of ǎ• and b̌•.

Corollary (Distributions of ǎ• and b̌•): Let fâ(α) be the PDF of â ∼ Nn(a, Qââ)
and fb̂(z)(β) be the PDF of b̂(z) ∼ Np(b − Qb̂âQ−1

ââ (a − z), Qb̂(a)b̂(a)). Then, as ǎ•

is an admissible integer estimator and b̌• = b̂(ǎ•), their PMF and PDF follow from
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Figure 5.5: The dual function D(b) for n = p = 1, σ2
b̂

= 2.22, σ2
â = 0.152 and ρâb̂ = 0.5 (left),

ρâb̂ = 0.9 (right)

(Teunissen, 1999b) as

{ P[ǎ• = z] =
∫

P•
z

fâ(α)dα

fb̌•(β) =
∑

z∈Zn

fb̂(z)(β)P[ǎ• = z] (5.52)

■

This result shows that the distribution of the ambiguity resolved baseline b̌• can be
approximated well by the peaked PDF Np(b, Qb̂(a)b̂(a)) if the ambiguity success-rate
P[ǎ• = a] is sufficiently close to one. Verification whether or not the success-rate is
large enough can be done by simulation or by using the following lower-bound.

Theorem 7 (Lower-bound of P[ǎ• = a]) Let â ∼ Nn(a, Qââ) and ǎ• = arg min
z∈Ω•

â

||â−

z||2Qââ
, with Ω•

â = {u ∈ Zn| u = I•(â + Qâb̂Q−1
b̂b̂

β),∀β}. Then

P[χ2(0, n) ≤ r2] ≤ P[ǎ• = a] (5.53)

with r2 = 1
4 min

z∈Zn/{0}
||z||2Qââ

.

Proof: see Appendix. ■
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5.6 On the multimodality of D(b)

So far we studied the distributional properties of the estimators that follow from the
dual formulation. A convergent algorithm for actually computing these estimators has
however not been developed yet. To be able to do so, it is useful to first illustrate some
insightful characteristics of the dual function. To highlight some of its characteristics,
we start with the simple one-dimensional case n = p = 1. The two components of
D(b) (cf. 5.19) simplify then to

D1(b) = ||b̂− b||2Qb̂b̂
= (b̂− b)2/σ2

b̂

D2(b) = ||â(b)− ǎ(b)||2Qâ(b)â(b)
= (â(b)− ⌈â(b)⌋)2/σ2

â(b)
(5.54)

For the second component, we may write D2(b) = (â(b)−z)2/σ2
â(b) if â(b) ∈ [z− 1

2 , z+ 1
2 ].

Since â(b) = â− σâb̂σ−2
b̂

(b̂− b), we have the equivalence

â(b) ∈ [z − 1
2 , z + 1

2 ]⇔ b ∈ [b(z)− 1
2 ∆, b(z) + 1

2 ∆] (5.55)

where b(z) = b̂ + (z − â)∆ and ∆ = σ2
b̂
/σâb̂ (note: b(z) should here not be confused

with b̂(z)). Using this equivalence one can show that the sum of D1(b) and D2(b) can
be written as

D(b) = σ−2
b̂

{
(b̂− b)2 +

ρ2
âb̂

1− ρ2
âb̂

(b(z)− b)2

}
(5.56)

for b ∈ [b(z) − 1
2 ∆, b(z) + 1

2 ∆], z ∈ Z, where ρâb̂ denotes the correlation coefficient
of â and b̂ . Thus D(b) is the sum of a parabola D1(b) = (b̂− b)2/σ2

b̂
and an infinite

z-sequence of equally shaped parabola D2(b) = ρ2
âb̂

1−ρ2
âb̂

(b(z)− b)2/σ2
b , centred at b(z)

and with domain b ∈ [b(z)− 1
2 ∆, b(z) + 1

2 ∆].

Equation (5.56) shows that the contribution of D2(b) to D(b) is driven by the correlation
coefficient ρâb̂; it is small if the correlation is small and it gets larger the closer the
correlation coefficient gets to one. An illustration of D(b), together with its two
components D1(b) and D2(b), is given in Figure 5.5 for two different values of the
correlation coefficient, ρâb̂ = 0.5 and ρâb̂ = 0.9. It shows that D(b) is a multimodal
function of which the multimodality, with its multiple local minima, gets more
pronounced the larger the correlation coefficient gets, i.e. the more weight is given to
D2(b) in the sum of D(b). Figure 5.6 illustrates the multimodality of D(b) for p = 1
and n = 2, with diagonal (left) and nondiagonal (right) conditional ambiguity variance
matrix. The multiple local minima of D(b) and also the domain in which its global
minimizer is guaranteed to reside, are given by the following Lemma.

Lemma 7 (Local minimizers and global domain) (a) The local minimizers and
corresponding minima of D(b) are{

b̂(z) = arg min
â(b)∈Sz

D(b)

D(b̂(z)) = ||â− z||2Qââ
, ∀z ∈ Zn

(5.57)
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Figure 5.6: The dual function D(b) for p = 1 and n = 2, with diagonal (left plot) and nondiagonal
(right plot) conditional ambiguity variance matrix.

(b) The global minimizer of D(b),

b̌ = arg min
b∈Rn

D(b) ∈ E(rz) , z ∈ Zn (5.58)

resides in the ellipsoidal region E(rz) = {b ∈ Rn | ||b̂ − b||2Qb̂b̂
≤ r2

z}, for all z ∈ Zn,
with r2

z = ||â− z||2Qââ
. ■

Proof: First we prove (5.57). For â(b) ∈ Sz, we have ǎ(b) = z, and therefore

D(b) = ||b̂− b||2Qb̂b̂
+ ||â(b)− z||2Qâ(b)â(b)

= ||â− z||2Qââ
+ ||b̂(z)− b||2Qb̂(a)b̂(a)

(5.59)

showing that its local minimizer and minimum are given by (5.57). That no other
minima exist of D(b) follows from the fact that the pull-in regions Sz partition Rn,
∀z ∈ Zn (Teunissen, 1999a). The proof of (5.58) follows by recognizing that as the
global minimizer b̌ is one of the local minimizers, b̌ resides in the set {b ∈ Rp | D(b) ≤
||â− z||2Qââ

}, and thus also in the larger set Ez. □

This result shows the size of the local minima and where they are located in b-space
Rp, but it does not show how their global minimum can be obtained, other then that
it is confined to E(rz). Due to the presence of this multimodality of D(b), one can
therefore not expect standard iterative descent techniques (Teunissen, 1990) to be
successful for finding its global minimum b̌. We will therefore have to develop a global
algorithm dedicated to D(b).
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5.7 Global minimization of dual function

In this section we present our proposed method for finding the global minimizer b̌ of the
dual function D(b). According to Lemma 7, we can confine the search for b̌ to a convex
set C ⊂ Rp, being either a suitably scaled ellipsoid E(r) = {b ∈ Rp| ||b̂− b||2Qb̂b̂

≤ r2}
or any other of its circumscribing convex regions. The problem to be solved reads
therefore

b̌ = arg min
b∈C⊂Rp

D(b) (5.60)

The challenge in solving this problem is due to the multimodal dual function not
being convex. Although various heuristic and stochastic methods for the approximate
computation of nonconvex global minimizers exist (Zhigljavsky, 1991; Horst et al., 2000;
Pardalos and Romeijn, 2002), we choose to present a method that has finite termination
with a guaranteed ϵ-tolerance. Our method for solving (5.60) is constructed from the
following three constituents:

1. Branch and Bound (BB): Branch and bound algorithms (Lawler and Wood, 1966;
Balakrishnan et al., 1991; Guida, 2015) are methods for global minimization of
nonconvex problems. They are nonheuristic, in the sense that they maintain a
provable upper and lower bound on the global minimum, i.e. they terminate
with a guarantee that the computed solution has a prescribed accuracy.

2. Convex relaxation: To be able to compute the required lower bounds in the
BB-algorithm, we construct differentiable, convex lower bounding functions of
D(b) over convex sets. They are constructed such that the lower bounds converge
to the nonconvex dual function as the convex sets shrink to a point.

3. Projected gradient descent (PGD): As our convex lower bounding functions are
only continuous differentiable (i.e. C1-functions), the projected gradient descent
method (Bertsekas, 1999; Nocedal and Wright, 2006) is used for the computation
of their convex constrained minima.

We now describe each of these constituents and how they interrelate and integrate.

5.7.1 Branch and Bound (BB)

The basic idea of the BB-algorithm is

• to partition the initial box C ⊂ Rp in k boxes Bi,

C = ∪k
i=1Bi (5.61)

• to find local lower and upper bounds of D(b) for each box Bi,

L(Bi) ≤ min
b∈Bi

D(b) ≤ U(Bi), (5.62)

• to form global bounds from the local bounds,

Lk ≤ min
b∈C
D(b) ≤ Uk (5.63)
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where
Lk = min

i=1,...,k
L(Bi) and Uk = min

i=1,...,k
U(Bi) (5.64)

• to terminate if the difference of these bounds is small enough, Uk − Lk ≤ ϵ, else
to refine the partition and repeat the process.

The efficacy of the BB-concept depends on the chosen method of partitioning, on
the sharpness of the bounds and on the ease with which they can be computed.
Importantly, for convergence, the bounds should become tight as the box shrinks to a
point.

Although there exist a large variety of different BB-mechanizations, we shall here
restrict ourselves to the simple approach where the partitioning of C ⊂ Rp is sequentially
constructed through a splitting in half of the boxes. So at the first level, we start with
the trivial partitioning, which is C itself, and compute the lower and upper bounds
L1 = L(C) and U1 = U(C) (hence, these bounds are local and global at the same
time),

L1 = L(C) ≤ D(b̌) ≤ U1 = U(C) (5.65)

If U1−L1 ≤ ϵ, the algorithm terminates. Otherwise we go to the second iteration level
and partition C into two boxes C = B1 ∪ B2, and compute L(Bi) and U(Bi), i = 1, 2.
The splitting of the box is usually done along its longest edge. Then we can construct
new global lower and upper bounds,

min(L(B1), L(B2))︸ ︷︷ ︸
L2

≤ D(b̌) ≤ min(U(B1), U(B2))︸ ︷︷ ︸
U2

(5.66)

As both B1 and B2 are ’smaller’ than C (i.e. they are its partition), one can generally
expect the local bounds for Bi to be sharper than the previous global bounds are for
Bi. One can therefore assume that the lower and upper bounds of the pair of boxes
obtained by splitting are no worse than the lower and upper bounds of the box they
were formed from.

If U2 − L2 < ϵ, the algorithm terminates. Otherwise, we partition one of B1 and B2
into two boxes, to obtain a new partition of C into three boxes, and we compute the
local lower and upper bounds for these new boxes. We then update the global lower
bound L3 as the minimum of the local lower bounds over the partition of C, and
similarly for the upper bound U3. The choice which of the two boxes to split, B1 or
B2, is based on the value of their local lower bound. The box to be split is the one of
which the local lower bound equals the global lower bound, i.e. the one that has the
smallest local lower bound. As at each iteration level a box is split into two, we have
after k iterations a partitioning of the form (5.61), with associated global lower and
upper bounds of D(b̌) as given in (5.63), with Lk nondecreasing and Uk nonincreasing.
Note, although the choice of which box to split may not be correct in the sense that
it does not contain the solution b̌, at a certain following stage the BB-algorithm will
revisit the nonselected box containing b̌ as its local lower bound will then have become
the smallest.
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Figure 5.7: (a) The function g(x) = (x − ⌊x⌉)2 as a sequence of cut-off parabola on interval
[zL − 1

2 , zU + 1
2 ]; (b) with its parabolic lower bounding function; and (c) with its best possible,

continuous differentiable lower bounding convex function.

Initialization and Bounds

To start the BB-algorithm, the initial box C needs to be formed. We choose C to be
the box

C = {b ∈ Rp| |bα − b̂α| ≤ rσb̂α
, α = 1, . . . , p} (5.67)

It follows from the ellipsoidal planes-of-support lemma that the box C is circumscribed
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by the ellipsoid E(r) = {b ∈ Rp| ||b − b̂||2Qb̂b̂
≤ r2}, see e.g. (Teunissen, 1995). The

scalar r > 0 is a user-defined parameter. It can be set following Lemma 7, or by
choosing a user-defined confidence-level. In the latter case, r2 = χ2

α(p, 0) corresponds
with a confidence-level 1− α.

For the bounds we need to be able to compute upper and lower bounds of minb∈B D(b)
for any relevant box B that the BB-algorithm creates. The computation of local upper
bounds U(B) is rather straightforward, since any b ∈ B can be used for that purpose.
We choose to compute the bound as

U(B) = D(b∗) ≥ min
b∈B
D(b) (5.68)

with b∗ being the ’centre of gravity’ of the box, i.e. if box B is bounded as bL ⪯ b ⪯ bU ,
then b∗ = 1

2 (bL + bU ).

The computation of local lower bounds L(B) is much more involved. We cannot
use standard gradient-based methods for computing the minimizer, since D(b) is
not convex and convergence is therefore not assured. The idea is therefore to find
a differentiable convex lower bounding function DL(b) ≤ D(b),∀b ∈ B such that the
minimizer of DL(b) over B can be computed with standard means and used as the
local lower bound

L(B) = min
b∈B
DL(b) ≤ min

b∈B
D(b) (5.69)

We now show how this can be achieved.

5.7.2 Convex relaxation

We will develop the convex relaxation for the dual function D◦(x), as a similar
approach can be developed for the other dual versions, like D•(x). Using the diagonal
approximation Q◦

â(b)â(b) = diag(σ2
1 , . . . , σ2

n), the dual function (5.29) can be written as

D◦(x) = ||b− b̂||2Qb̂b̂
+ G(b) (5.70)

with
G(b) =

∑n
i=1 g(xi)/σ2

i

g(x) = (x− ⌊x⌉)2

xi = âi(b) = âi + mT
i (b− b̂)

mT
i = cT

i Qâb̂Q−1
b̂b̂

ci = ith column of unit matrix In

(5.71)

Since the first term of (5.70) is already convex for the whole space Rp, we can
concentrate on the second term and try to find a convex differentiable lower bounding
function GL(b) such that

GL(b) ≤ G(b), ∀b ∈ B (5.72)

Once this function is found, we have found the dual convex lower bounding function
as D◦

L(b) = ||b− b̂||2Qb̂b̂
+ GL(b) ≤ D(b), ∀b ∈ B.
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Note that the lack of convexity of G(b) is due to the single function g(x), which itself
is a sequence of cut-off parabolae, see Figure 5.7(a). Hence, if we can find a convex
lower bounding function gL(x) of g(x) on the required interval, then we automatically
have constructed a convex GL(b) on the required box B. To do so, we first need to
construct the intervals of âi(b), i = 1, . . . , n, that correspond with bL ⪯ b ⪯ bU . As
these n intervals will differ, the lower bounding functions of g(x) on these intervals
will differ as well. They will be denoted as gi,L(x).

The interval [li, ui] for which gi,L(x) has to be convex

As the function GL(b) =
∑n

i=1 gi,L(âi(b))/σ2
i has to be convex for the box bα,L ≤

bα ≤ bα,U , α = 1, . . . , p, the functions gi,L(x) need to be convex for the intervals
li ≤ ai(b) ≤ ui that correspond with this box. Application of the projection-lemma
from the Appendix shows the relation between these intervals given as

bα,L ≤ bα ≤ bα,U ⇒ li ≤ âi(b) ≤ ui (5.73)

with
li = âi(0) +

p∑
α=1

(−b̃α|miα|+ b̄αmiα)

ui = âi(0) +
p∑

α=1
(+b̃α|miα|+ b̄αmiα)

(5.74)

where b̃α = 1
2 (bα,U − bα,L), b̄α = 1

2 (bα,U + bα,L), and miα = cT
i Qâb̂Q−1

b̂b̂
cα.

Note that the widths of the baseline intervals bα,U − bα,L propagate into the widths
of the ambiguity intervals as ui − li =

∑p
α=1(bα,U − bα,L)|miα|. Thus as the baseline

intervals get smaller due to the rectangular BB-splitting, the corresponding ambiguity
intervals get smaller as well, producing in the limit, when bα,U = bα,L = b̌α, the result
â(b̌).

As the BB-splitting acts on only one interval at a time, we can now also show how
this halfway splitting affects the intervals [li, ui]. Let the γth interval [bγ,L, bγ,U ], with
γ ∈ {1, . . . , p} be split halfway in [bγ,L, b̄γ ] and [b̄γ , bγ,U ]. Then the new intervals
[l1

i , u1
i ], corresponding with [bγ,L, b̄γ ], can be expressed in the old as

l1
i = li + 1

2 b̃γ(|miγ | −miγ)
u1

i = ui − 1
2 b̃γ(|miγ |+ miγ) (5.75)

Hence, the length of the interval changes as (u1
i − l1

i ) = (ui − li)− b̃γ |miγ |, i.e. it gets
shorther by b̃γ |miγ |, where b̃γ = 1

2 (bγ,U − bγ,L).

Now that we know the intervals [li, ui] over which the functions gi,L(x), i = 1, . . . , n,
need to provide a differentiable lower bounding of g(x), we can start constructing
these functions. As we will do so for an arbitrary interval [l, u], we will dispense with
the lower index i and write gL(x) instead of gi,L(x).

Convex lower bounding function of g(x) on [l, u]
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 (a)  (b)

 (c)  (d)

Figure 5.8: Four convex differentiable lower bounding functions (in red) of g(x) = (x − ⌈x⌋)2 on the
interval [l, u] ⊂ [z, z + 1], z ∈ Z

Figure 5.9: The linear-parabolic differentiable lower bounding function (in red) of g(x) = (x − ⌈x⌋)2

when l ∈ [zl − 1, zl − 1
2 ], u ∈ [zu + 1

2 , zu + 1] for zu ≥ zl.

Many different differentiable convex lower bounding functions gL(x) of g(x) = (x−
⌈x⌋)2 on x ∈ [l, u] can be constructed. For example, if we assume for the moment that
l = zl − 1

2 , zl ∈ Z, and u = zu + 1
2 , zu ∈ Z, then the parabola

gL(x) = α(x− z̄)2 + β (5.76)

with α = 1
2 ( 1

2 + z̃)−1, z̃ = zu−zl

2 , z̄ = zu+zl

2 , and β = − 1
2 z̃, is such lower bounding

function of g(x), see Figure 5.7b. It gives a perfect fit to g(x) if u− l = 1. However,
the longer the interval [l, u] becomes, i.e. the larger the difference u − l, the more
negative the minimum β of the parabola becomes. With choice (5.76), the lower
bounding fit to g(x) gets thus poorer the more l and u differ.
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A much better choice for the lower bounding function would be (see Figure 5.7c)

gL(x) =

 (x− zl)2 for l = zl − 1
2 ≤ x ≤ zl

0 for zl ≤ x ≤ zu

(x− zu)2 for zu ≤ x ≤ zu + 1
2 = u

(5.77)

Also this choice gives a perfect fit when u−l = 1, while now its minimum is independent
of the interval length. In fact, the minimum value of 0 provides the best possible
convex lower bounding over the interval [zl, zu]. When we compare the smoothness
of the above two choices, we note that (5.76) is a C2 function, while (5.77) is only
a C1 function. The continuous differentiability of (5.77) is sufficient however for the
application of the projected gradient descent method (see subsection 5.7.3).

So far we made the simplifying, but unrealistic assumption that l = zl − 1
2 and

u = zu + 1
2 . For the general situation in which [l, u] can be any interval, we first

assume that the interval lies inside the interval bordered by two consecutive integers:
[l, u] ⊂ [z, z + 1] for some z ∈ Z. Then the following 4 different cases can be
discriminated (see Figure 5.8):

Case 1: If [l, u] ⊂ [z, z + 1
2 ], then gL(x) = (x− z)2. Thus if both l and u lie in the first

half of the interval, the parabola itself can be taken as the lower bounding function,
see Figure 5.8a.

Case 2: If [l, u] ⊂ [z + 1
2 , z + 1], then gL(x) = (x− z − 1)2. Thus if both l and u lie

in the second half of the interval, the parabola centred at z + 1 can be taken as the
lower bounding function, see Figure 5.8b.

For the third and the fourth case, we assume that l and u lie in different halfs of the
interval [z, z + 1], whereby then the discrimination has to be made whether or not the
function value at l is larger than at u.

Case 3: Let l ∈ [z, z + 1
2 ], u ∈ [z + 1

2 , z + 1], and (l − z)2 ≥ (u − z − 1)2. Now the
best convex lower bounding differentiable function is either a decreasing straight line,
connecting the points (l, (l−z)2) and (u, (u−z−1)2), or a decreasing straight line that
starts at the point (l, (l− z)2), is tangent of the parabola y = (x− z− 1)2 at the point
(α, (α− z − 1)2), and then continues along the parabola to the point (u, (u− z − 1)2),
see Figure 5.8c. It is given as:

gL(x) =



u≤α= a(x− l) + (l − z)2 for l ≤ x ≤ u

u≥α=


= 2(α− z − 1)(x− α) + (α− z − 1)2

for l ≤ x ≤ α
= (x− z − 1)2

for α ≤ x ≤ u

(5.78)

with α = l +
√

1− 2(l − z) and a = (u−z−1)2−(l−z)2

u−l ≤ 0.
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Case 4: Let l ∈ [z, z + 1
2 ], u ∈ [z + 1

2 , z + 1], and (l − z)2 ≤ (u − z − 1)2. This case
is a ’mirror-image’ of the previous one, see Figure 5.8d. The convex lower bounding
differentiable function is given as:

gL(x) =



l≥β= a(x− l) + (l − z)2 for l ≤ x ≤ u

l≤β=


= (x− z)2

for l ≤ x ≤ β
= 2(β − z)(x− β) + (β − z)2

for β ≤ x ≤ u

(5.79)

with β = u−
√

2(u− z)− 1 and a = (u−z−1)2−(l−z)2

u−l ≥ 0.

We can use the above insight also to construct lower bounding functions in case
[l, u] ⊂ [z, z + 1] is not true, but instead l ∈ [zl − 1, zl] and u ∈ [zu, zu + 1] for some
integers zl ≤ zu, see Figure 5.9. When l ∈ [zl − 1, zl − 1

2 ] and u ∈ [zu + 1
2 , zu + 1], the

lower bounding function will be given as

gL(x) =

 f1(l, x) for l ≤ x ≤ zl

0 for zl ≤ x ≤ zu

f2(x, u) for zu ≤ x ≤ u
(5.80)

with f1(l, x) and f2(x, u) constructed such that they provide the required lower bounds.
They can be found directly from (5.78), through replacement z := zl − 1, and from
(5.79), through replacement z := zu, as

f1(l, x) ={
2(α− zl)(x− α) + (α− zl)2 for l ≤ x ≤ α
(x− zl)2 for α ≤ x ≤ zl

(5.81)

and
f2(x, u) ={

(x− zu)2 for zu ≤ x ≤ β
2(β − zu)(x− β) + (β − zu)2 for β ≤ x ≤ u

(5.82)

where α = l +
√

1− 2(l − zl + 1) and β = u−
√

2(u− zu)− 1.

Note that either one or both of the straight line components of (5.81) and (5.82) will be
absent when l ∈ [zl− 1

2 , zl] or/and u ∈ [zu, zu + 1
2 ]. Both are absent when l ∈ [zl− 1

2 , zl]
and u ∈ [zu, zu + 1

2 ] , in which case the lower bounding function generalizes (5.77) to
become

gL(x) =

 (x− zl)2 for l ≤ x ≤ zl

0 for zl ≤ x ≤ zu

(x− zu)2 for zu ≤ x ≤ u
(5.83)

With the above construction of gL(x) for the different scenarios we are now in the
position to formulate our sought for lower bounding function as D◦

L(b) = ||b̂− b||2Qb̂b̂
+∑n

i=1 gi,L(âi(b))/σ2
i . It is continuous differentiable, convex and lower bounding D◦(b)

on the interval bL ⪯ b ⪯ bU . Hence, it is now in the form that the PGD-method can
be applied to it.
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Figure 5.10: The function g′
i,L(x) = dgi,L

dx
(x) (cf. 5.91) on the interval [li, ui] for li ∈ [zli

− 1, zli
− 1

2 ],
ui ∈ [zui + 1

2 , zui + 1].

5.7.3 Projected Gradient Descent (PGD)

The PGD-method is designed to solve a constrained minimization problem

min
b∈B

f(b) (5.84)

of which the objective function f : Rp → R is only continuous differentiable, i.e.
C1-function (Bertsekas, 1999; Nocedal and Wright, 2006; Parikh and Boyd, 2013;
Nesterov, 2018). This implies that only first order gradient information of the objective
function can be used. If in addition both the objective function and the constraint are
convex, then any local minimum is automatically a global minimum. This is the case
before us when f(b) := DL(b) and B = {b ∈ Rp| bL ⪯ b ⪯ bU}.

The PGD algorithmic steps for solving (5.84) are:

1. Initialize: Start with a feasible solution, b0 ∈ B and then loop for k = 0, . . . until
stop criterium:

2. Gradient descent step: Compute stepsize µk and gradient descent

b̂k = bk − µk∇f(bk) (5.85)

such that f(b̂k) ≤ f(bk).

3. Projection step: Project b̂k onto B to ensure conformity with the constraints,

bk+1 = PB(b̂k) with PB(y) = arg min
b∈B
||y − b||2 (5.86)

This iterative scheme can be seen as repeatedly solving an approximate version of the
original minimization problem, namely one in which the objective function f(b) is
approximated by a quadratic function Fk(b) = f(bk) +∇f(bk)T (b− bk) + 1

2µk
||b− bk||2

(µk > 0). The above iterative scheme can then be summarized as repeatedly solving

bk+1 = arg min
b∈B

Fk(b) (5.87)
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To see this, we first rewrite the quadratic function Fk(b) in the more convenient form
Fk(b) = 1

2µk
||b̂k − b||2 + ck, with ck = f(bk)− 1

2 µk||∇f(bk)||2 and b̂k = bk −µk∇f(bk),
showing that the gradient step (5.85) provides the unconstrained minimizer of Fk(b).
Substitution of Fk(b) = 1

2µk
||b̂k − b||2 + ck into (5.87) gives bk+1 = arg min

b∈B
||b̂k − b||2

and therefore bk+1 = PB(b̂k), which is the projection step (5.86).

For computing the stepsize µk in each iteration, different linesearch strategies exist,
from simple to advanced (Nesterov, 2018). One of the simplest starts with µk = 1,
followed by halving it, µk ← µk/2, until f(bk − µk∇f(bk)) < f(bk). More involved
accelerated strategies exist, where bk+1 is taken as a convex combination (weighted
mean) of bk and PB(bk − µk∇f(bk)).

A potential complicating factor in applying the PGD-method lies in the projection
onto the convex set B, which, depending on the geometry of B, can be quite involved.
The PGD-method is only efficient if this projection can be done efficiently. Fortunately,
in our case, with the convex set given as B = {b ∈ Rp| bL ⪯ b ⪯ bU}, the projection
can be done very efficiently.

As PB(y) = arg min
b∈B
||y − b||2, the minimization problem to be solved is

min
bL⪯b⪯bU

||y − b||2 = min
bL⪯b⪯bU

p∑
α=1

(yα − bα)2

=
p∑

α=1
min

bα,L≤bα≤bα,U

(yα − bα)2

=
p∑

α=1
(yα −median(bα,L, yα, bα,U ))2

(5.88)

in which the minimizer median(bα,L, yα, bα,U ) denotes the median value of the triplet
bα,L, yα, and bα,U . We therefore have,

PB(y)α =

 bα,L if yα ≤ bα,L

yα if bα,L ≤ yα ≤ bα,U

bα,U if bα,U ≤ yα

(5.89)

What now remains to be determined for the PGD-method to be applicable to solve
L(B) = minb∈B D◦

L(b) is the gradient of the objective function.

The gradient of D◦
L(b)

The gradient of D◦
L(b) = ||b̂− b||2Qb̂b̂

+ GL(b) is given as

∇DL(b) = 2Q−1
b̂b̂

(b− b̂) +∇GL(b)

= 2Q−1
b̂b̂

(b− b̂) +
n∑

i=1
σ−2

i g′
i,L(âi(b))mi

= 2Q−1
b̂b̂

[b− b̂ + Qb̂âQo−1
ââ s(b)]

(5.90)

with s(b) = 1
2 [g′

1,L(â1(b)), . . . , g′
n,L(ân(b))]T and g′

i,L(x) = dgi,L

dx (x). The entries of the
vector s(b) are driven by the intervals [li, ui], the derivatives g′

i,L(x) of the functions
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Figure 5.11: Multimodal dual-function of vertical positioning mixed-integer GNSS model, with its
per iteration constructed convex lower bounding functions (red and blue) over intervals that get
split for the red functions (i.e. intervals for which minimum of lower bounding function is lowest).
Convergence was achieved in 7 iterations. Shown are the results of iterations #1, #2, #3, #6, and
#7, with an additional zoom-in of #7. (Continued in Figure 5.12.)
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Figure 5.12: Continued from Figure 5.11

that are convex lower bounding on [li, ui], and the locations of the âi(b) within the
intervals [li, ui]. For instance, for li ∈ [zli − 1, zli − 1

2 ] and ui ∈ [zui + 1
2 , zui + 1], with
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zui
≥ zli

, the applicable derivative g′
i,L(x) follows from (5.80), (5.81) and (5.82) as

g′
i,L(x) =


2(αi − zli

) for li ≤ x ≤ αi

2(x− zli
) for αi ≤ x ≤ zli

0 for zli
≤ x ≤ zui

2(x− zui) for zui ≤ x ≤ βi

2(βi − zui) for βi ≤ x ≤ ui

(5.91)

with
αi = li +

√
1− 2(li − zli

+ 1)
βi = ui −

√
1− 2(zui + 1− ui)

(5.92)

The behaviour of g′
i,L(x) for x ∈ [li, ui] is illustrated in Figure 5.10. It shows that the

entries of s(b) are determined, in dependence of the location of âi(b), through a mixed
hard-soft thresholding, see Figure 5.10.

We now present two examples to illustrate the workings of our global algorithm. To
provide an insightful graphical display of the box-splitting iterations, we show the
results for the 1D and the 2D case, i.e. b ∈ R and b ∈ R2.

Example 3 (Horizontal position known) This example and the next one are based on
the single-frequency, single-epoch, single-baseline linearized GNSS model of example 1
(cf. 5.24), using a m + 1 = 31 satellite configuration having n = 30 DD ambiguities,
with signal wavelength λ = 19.03 cm, and pseudorange and carrier-phase standard
deviations of σp = 20 cm and σϕ = 0.2 cm, respectively. As we use satellite-elevation
weighting, the used variance matrices of the observables are: D(p) = σ2

pDT QD

and D(ϕ) = σ2
ϕDT QD, with Q = diag[sin−1(eli), . . . , sin−1(elm+1)], where eli is the

elevation angle of satellite i. In the current example we have b ∈ R, as we assume the
horizontal positions known, while in the next example, we have b ∈ R2, as the vertical
positions are then assumed known. Note, as the model is in linearized form, that the
parameters are increments with respect to the chosen approximate values, which in
our case are taken as the correct values used for the simulation. Hence, an increment
value of zero implies that the parameter value equals the correct value. In our case
the float increment is computed to be b̂ = 0.7042 m.

Although the initialization in practice should follow our description of (5.67), we here
use a larger, and thus more conservative, value for the initial box or interval size.
Here we have chosen the initial interval to be [−16m, +16m]. The reason for this
choice of larger interval length is that the corresponding increase in required number
of iterations allows us to better show the various steps that are taken in the splitting
process and construction of the convex lower bounding functions. The results of the
various iteration steps are shown in Figure 5.11, starting at the top of the first column
with iteration #1 and finishing at the bottom of the second column with iteration
#7. The first interval [−16m, +16m] is designated to be centred at 0, but which
corresponds to the float solution b̂. Thus the horizontal axis denotes the difference
b− b̂. The multimodal dual function is shown as a black curve, while the convex lower
bounding functions are shown as either red or blue dashed curves. The lower bounding
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Figure 5.13: Multimodal dual-function of horizontal positioning mixed-integer GNSS model, with the
contour lines of its per iteration constructed convex lower bounding functions over the rectangles that
get split (i.e. rectangles for which minimum of lower bounding function is lowest). Convergence was
achieved in 20 iterations. Shown are the results of iterations #1, #2, #10, #16, and #20. (Continued
in Figure 5.14.)

function is shown as a red dashed curve if its minimum is the smallest, thus implying
that it is its interval that will be split for the next iteration step. We thus start off
with a red dashed lower bounding function, as is shown in Figure 5.11 at iteration #1.

With the initial interval of iteration #1 split in the middle, we obtain in iteration
#2, two lower bounding functions. As the red curve has the smallest minimum, we
continue with the left interval and split it in the middle, thus again giving us two
lower bounding functions in iteration #3. This time it is the right interval that has
the lower bounding function with smallest minimum. Splitting this interval in the
middle and continuing in this way with the splitting process, we reach at the second
last iteration #6 an interval that after splitting has in its left half the lower bounding
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Figure 5.14: Continued from Figure 5.13.
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function with smallest minimum. With this lower bounding function at iteration #7,
the iteration stops, as then the fulfillment of our stop criterium, set at ϵ = 10−6, is
realized. The obtained minimizer is then outputted to provide the asked for solution.
In the current example, the iteration gives b̌− b̂ = −0.7019 m, which combined with
the float increment b̂ = 0.7042 m, gives for the ambiguity-fixed increment b̌ = 0.0023
m, thus showing that the fixed-solution differs by 2.3 mm from the correct value. □

Example 4 (Vertical position known) This example continues with the same model as
used in the previous example, be it that now the vertical positions are assumed known
and thus b ∈ R2. The results of the various iteration steps are shown in Figure 5.13,
with iterations #1, #2, #10 and #16 columnwise in the first two rows, while the last
iteration #20 is shown in the third row as a greater zoom-in. For each iteration, the
function values of the dual function are shown in color coded form, as well, next to it,
the contour lines of the convex lower bounding function for the box that is to be split.
At each iteration step, its iteration number is located close to the centre of gravity of
the red box, i.e. the box that will be split. The old iteration number is then moved
to the centre of the box that remains unsplit. Iteration results #1, #2 and #10 are
shown to the same scale, but for iteration #16 we use a zoom-in to show a greater
detail and this is again done for the last iteration #20. Note, that even with this
greater zoom-in, still a dense variability of the dual function is apparant, thus showing
that it still has many local minima at this greater scale. In the red box containing the
global minimum however, we now have a less pronounced multi-modality. At iteration
#20 the stop criterium ϵ = 10−6 is fulfilled and as before the fixed solution is obtained
at the mm-level. □

5.8 Constrained and partitioned dual problems

In this contribution we restricted our study of the dual problem to the mixed-integer
model (5.1). It is possible however to generalize the developed methodology also to
the constrained case b ∈ C ⊂ Rp or to the case when only part of b ∈ Rp needs to be
ambiguity-resolved. For these two cases we provide the following outlook.

Constrained Dual

For the constrained mixed-integer model

E(y) = Aa + Bb , a ∈ Zn , b ∈ C ⊂ Rp (5.93)

the constrained primal approach would be to first solve for the integer ambiguity a
and then the baseline b. As we have, using F (a, b) of (5.6),

ǎ = arg min
a∈Zn

F (a, b̌(a)) , b̌(a) = arg min
b∈C

F (a, b) (5.94)

the primal function F (a, b̌(a)) would be used to set up a (nonellipsoidal) search space
to determine ǎ, which then on its turn is used to determine the ambiguity-resolved
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constrained baseline as b̌ = b̌(ǎ). This is the approach used in the LAMBDA-based
constrained solutions of GNSS attitude determination (Teunissen, 2010; Giorgi et al.,
2010) and rank-defect bias estimation (Khodabandeh, 2022; Teunissen, 2006).

The dual formulation to (5.94) is

b̌ = arg min
b∈C

F (ǎ(b), b) , ǎ(b) = arg min
a∈Zn

F (a, b) (5.95)

In this case, first the constrained baseline is solved as b̌, from which the integer
ambiguity follows as ǎ = ǎ(b̌). Earlier we demonstrated in Section 5.3.3, that for the
typical unconstrained mixed-integer GNSS model, one can not expect the success-rate
of ǎ(b) to be large. This may change however when constraints on b are included. If C
is such that the variability in ǎ(b) is small in relation tot the size of the pull-in regions,
then only a few integer candidates ǎ(b) may need to be considered, thus simplifying
the computation of b̌ in (5.95) considerably. A typical example from the field of GNSS
attitude determination is one where the distance between the antennae is sufficiently
small in relation to the used signal wavelength.

In (5.95) we recognize the dual function as D(b) = F (ǎ(b), b), thus giving

b̌ = arg min
b∈C
D(b) (5.96)

This shows that if C would be easily and efficiently covered by a box B, that our
method of the previous section is directly applicable to the constrained mixed-integer
model (5.93) as well. In the more general case, one can use the indicator function of C,
pC(b) =∞ if b /∈ C, and pC(b) = 0 otherwise, to replace the constrained formulation
(5.96) by the unconstrained formulation b̌ = arg minb∈Rn [D(b) + pC(b)]. Similar to our
development in the previous section, the approach would then be to construct convex
lower bounding functions using a continuous barrier function for pC(b) (Nocedal and
Wright, 2006; Nesterov, 2018).

Partitioned Dual

Earlier we mentioned that a potentially attractive feature of the dual formulation is
that the minimization of the objective function takes place in Rp instead of Rn. This
can be attractive if p is much smaller than n and the dual function D(b) is easily
formed or acceptably approximated. This changes however if the dimension of b ∈ Rp

is large as well.

Still, even with p large, it could be that one is only interested in the ambiguity-resolved
solution of some of the components of b, say b1 of b = [bT

1 , bT
2 ]T ∈ Rp1+p2 . In that case

one can combine the primal- and dual approach to obtain the decomposition

F (a, b1, b2) = ||b̂1 − b1||2Qb̂1 b̂1
+ ||â(b1)− a||2Qâ(b1)â(b1)

+ ||b̂2(a, b1)− b2||2Qb̂2(a,b1)b̂2(a,b1)

By now defining the partitioned dual PD(b1) as

PD(b1) = ||b̂1 − b1||2Qb̂1 b̂1
+ ||â(b1)− ǎ(b1)||2Qâ(b1)â(b1)

(5.97)
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with ǎ(b1) = arg mina∈Zn ||â(b1)− a||2Qâ(b1)â(b1)
, the solution for a and b becomes

b̌1 = arg min
b1∈Rp1

PD(b1)

ǎ = ǎ(b̌1)
b̌2 = b̂2(ǎ, b̌1)

(5.98)

In this way one can still apply the dual approach to solve for b1 in a lower dimensioned
space. However, the price one pays for this reduction in dimension is that â(b1) will
be less precise than â(b), implying that, in dependence of the application, PD(b1) may
be more difficult to construct or to approximate.

5.9 Summary and conclusions

In this contribution we introduced and studied the dual mixed-integer least-squares
formulation. The dual differs from its primal counterpart in the order in which the
integer ambiguity vector a ∈ Zn and baseline vector b ∈ Rp are estimated. In the
primal formulation, the integer ambiguity estimator ǎ is computed first, followed by
the computation of the ambiguity-resolved baseline estimator b̌ = b̂(ǎ). In the dual
formulation, the order is reversed, giving first b̌, followed by the ambiguity estimator
ǎ = ǎ(b̌). As not the ambiguities, but rather the entries of b are usually the parameters
of interest, the dual formulation seems a natural way to go. And this seems even
more so for applications where the baseline dimension p is considerable less than the
ambiguity dimension n.

We show however that this optimism must somewhat be tempered, due to the fact
that the formation of the dual objective function D(b) also requires the solution of an
n-dimensional integer least-squares (ILS) problem, and even one that depends on the
unknown baseline b. The potential advantage of the dual formulation lies therefore in
the ease with which this implicit ILS problem can be solved. This problem is trivially
solved in case the conditional ambiguity variance matrix is diagonal, which in case of
GNSS happens for instance with the geometry-free model.

To make the dual formulation more computationally attractive, we introduced two
approximations to it, both with the purpose of alleviating the computational demand
on the implicit ILS problem. The first approximation is based on replacing the
variance matrix of â(b) by a matrix of simpler structure (preferably diagonal), the
second by replacing the integer estimator ǎ(b) by a simpler estimator (preferably
integer rounding).

To be able to describe the quality of their dual solutions, we provided a complete
distributional analysis of the ambiguity- and baseline-estimators that follow from
these approximations. This will allow users to rigorously judge whether or not the
approximations made in the dual formulation are acceptable for their application. We
hereby note that the second approximation of the dual formulation also resulted in
the finding of a new class of admissible integer estimators, the pull-in regions of which
were described as well.
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To characterize the challenges that the computation of b̌, as a global minimizer of
D(b), poses, we illustrated and emphasized the multimodality of the dual function
D(b) with its many local minima. As a consequence, the dual function lacks convexity,
thus requiring special care in developing an algorithm that is globally convergent.

Our proposed method, which has finite termination with a guaranteed ϵ-tolerance, is
constructed from combining the branch-and-bound principle, with a special convex-
relaxation of the dual, to which the projected-gradient-descent method is applied to
obtain the required bounds. Each of the method’s three constituents are described,
whereby special emphasis is given to the construction of the required continuously
differentiable, convex lower bounding function of the dual. Illustrative examples are
given to provide insight into the workings of the method, while in future work its
numerical performance for advanced models will be evaluated. Finally, we provided
an outlook on solving a constrained and partitioned dual.

5.10 Appendix

Proof of Lemma 3: The equality of (5.23) follows from substituting −Qâb̂Q−1
b̂b̂

=
(AT Q−1

yy A)−1AT Q−1
yy B and Qâ(b)â(b) = (AT Q−1

yy A)−1 in ||∆a||2Qâ(b)â(b)
. The inequality

of (5.23) follows from Qb̂(a)b̂(a) = (BT Q−1
yy B)−1 and recognizing that the norm of a

projected vector is never larger than the norm of the vector itself. □

Proof of Lemma 4: The quadratic identity follows as

||b̂− b||2Qb̂b̂
+ ||â(b)− a||2Q◦

â(b)â(b)

=
[

â(b)− a

b̂− b

]T [
Q◦

â(b)â(b) 0
0 Qb̂b̂

]−1 [
â(b)− a

b̂− b

]
=
[

â− a

b̂− b

]T [
Q◦

â(b)â(b) + Qâb̂Q−1
b̂b̂

Qb̂â Qâb̂

Qb̂â Qb̂b̂

]−1 [
â− a

b̂− b

]
=
[

â− a

b̂◦(a)− b

]T [
Q◦

ââ 0
0 Qb̂b̂ −Qb̂âQ◦−1

ââ Qâb̂

]−1 [
â− a

b̂◦(a)− b

]
= ||â− a||2Q◦

ââ
+ ||b̂◦(a)− b||2Q◦

b̂(a)b̂(a)

(5.99)

□

Proof of Theorem 3: Using the quadratic identity (5.27), we may write D◦(b) as

D◦(b) = ||b̂− b||2Qb̂b̂
+ min

a∈Zn
||â(b)− a||2Q◦

â(b)â(b)

= min
a∈Zn

(
||b̂− b||2Qb̂b̂

+ ||â(b)− a||2Q◦
â(b)â(b)

)
= min

a∈Zn

(
||â− a||2Q◦

ââ
+ ||b̂◦(a)− b||2Q◦

b̂(a)b̂(a)

) (5.100)
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from which it follows that b̌◦ = arg min
b∈Rp
D◦(b) can be computed through the primal

formulation as b̌◦ = b̂◦(ǎ◦), with ǎ◦ = arg min
a∈Zn

||â−a||2Q◦
ââ

. What remains to be shown

is that ǎ◦ = ǎ◦(b̌◦). Starting from the definition ǎ◦(b) = arg min
a∈Zn

||â(b)− a||2Q◦
â(b)â(b)

,
we may write with the aid of the quadratic identity (5.27),

ǎ◦(b) = arg min
a∈Zn

(
||â− a||2Q◦

ââ
+ ||b̂◦(a)− b||2Q◦

b̂(a)b̂(a)

)
(5.101)

from which it follows, since b̌◦ = b̂◦(ǎ◦), that ǎ◦(b̌◦) = arg min
a∈Zn

||â− a||2Q◦
ââ

= ǎ◦. □

Proof of Theorem 4: As Q◦
ââ is not the variance matrix of â, inequality (5.31a)

follows directly from Theorem 1 of (Teunissen, 2000b). From substituting the given
matrices Râb̂, Sââ and Tâb̂, we obtain

RT
âb̂

Râb̂ = Qb̂â[Q◦−1
ââ QââQ◦−1

ââ − 2Q◦−1
ââ + Q−1

ââ ]Qâb̂ (5.102)

which proves the equality of (5.32b). As (5.102) is positive semi-definite, the inequality
of (5.32b) follows. □

Proof of Theorem 5 (Success-rate lower-bounds)

(i) The proof of (5.34) follows from combining an inequality-theorem of (Ander-
son, 1996) with the ILS-theorem of (Teunissen, 1999a). Let â ∼ Nn(a, Qââ), â◦ ∼
Nn(a, Q◦

ââ) and Q◦
ââ ≥ Qââ. Then it follows from Anderson’s theorem that P[â◦ ∈

P◦
a ] ≤ P[â ∈ P◦

a ], as the subset P◦
a ⊂ Rn is convex and symmetric about a. As

P[â◦ ∈ P◦
a ] can now be interpreted being the success-rate of a properly weighted

ILS-estimator, it follows from Teunissen’s optimality-theorem that any other integer
estimator using â◦ as input, will have a smaller success-rate. This therefore also holds
true for integer bootstrapping, of which the success-rate is given by the left-hand side
of (5.34), see (Teunissen, 1998b).

(ii) To prove the given lower-bound (5.35) of

P[ǎ◦ = a] =
∫

P◦
a

fâ(α)dα (5.103)

we will work with two ellipsoids, one being a subset of the other, while both are subsets
of the pull-in region P◦

a . First we describe the pull-in region in a way that facilitates
the comparison with the planes-of-support formulation of ellipsoids:

P◦
a = a + P◦

0
= a + {x ∈ Rn| xT Q◦−1

ââ x ≤ ||x− z||2Q◦
ââ

,∀z ∈ Zn}
= a + {x ∈ Rn| (zT Q◦−1

ââ x)2 ≤ 1
4 ||z||

4
Q◦

ââ
,∀z ∈ Zn}

(5.104)
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Now we construct the first ellipsoid residing in P◦
0 . We have

E◦
0 = {x ∈ Rn| xT Q◦−1

ââ x ≤ χ2}
a= {x ∈ Rn| (gT x)2 ≤ χ2gT Q◦

ââg,∀g ∈ Rn}
b= {x ∈ Rn| (fT Q◦−1

ââ x)2 ≤ χ2fT Q◦−1
ââ f, ∀f ∈ Rn}

c
⊂ {x ∈ Rn| (zT Q◦−1

ââ x)2 ≤ χ2||z||2Q◦
ââ

,∀z ∈ Zn}
d
⊂ {x ∈ Rn| (zT Q◦−1

ââ x)2 ≤ χ2
||z||4

Q◦
ââ

min
z∈Zn/{0}

||z||2
Q◦

ââ

,∀z ∈ Zn}

(5.105)

In (a) we used the planes-of-support formulation of the ellipsoid (Teunissen, 2001),
while (b) follows from using the one-to-one transformation g = Q◦−1

ââ f . With (c) we
obtain a larger set as now only the integers are considered, while with (d) again a
larger subset is created due to the larger right-hand side.

It follows from comparing (5.105) with (5.104) that

E◦
a = a + E◦

0 ⊂P◦
a if χ2 = 1

4 min
z∈Zn/{0}

||z||2Q◦
ââ

(5.106)

We now construct our second ellipsoid Ea ⊂ E◦
a such that the probability P[â ∈ Ea] is

easy to compute. The ellipsoid is chosen as

Ea = {x ∈ Rn| (x− a)T Q−1
ââ (x− a) ≤ r2}

= {x = a + Q
1/2
ââ v, v ∈ Rn| vT v ≤ r2}

(5.107)

If we use the same transformation also for E◦
a , we may write

E◦
a = {x = a + Q

1/2
ââ v, v ∈ Rn| vT [Q1/2

ââ Q◦−1
ââ Q

1/2
ââ ]v ≤ χ2} (5.108)

By comparing (5.108) with (5.107) and noting that a sphere best fits inside an ellipsoid
if its radius is equal to the ellipsoid’s minor axis, it follows that

Ea ⊂ E◦
a if r2 = λmin × χ2 (5.109)

where λmin is the smallest eigenvalue of [Q1/2
ââ Q◦−1

ââ Q
1/2
ââ ]−1 and thus the minimum of

the Raileigh quotient

λmin = min
x∈Rn

xT Q◦
ââx

xT Qââx
(5.110)

Since Ea ⊂ E◦
a ⊂P◦

a (cf. 5.106 and 5.109), it follows that

P[ǎ◦ = a] = P[â ∈P◦
a ] ≥ P[â ∈ Ea] = P[χ2(0, n) ≤ r2]

which concludes the proof. □

Proof of Theorem 6: Recall that any admissible integer estimator I•(x) can be
written as (Teunissen, 2000b),

I•(x) =
∑

z∈Zn

zι•
z(x) (5.111)
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where ι•
z(x) is the indicator function of its pull-in region I•

z = {x ∈ Rn| z = I•(x)}.
With (5.111), we can rewrite the dual function as

D•(b) = ||b̂− b||2Qb̂b̂
+ ||â(b)− I•(â(b))||2Qâ(b)â(b)

= ||b̂− b||2Qb̂b̂
+
∑

z∈Zn

||â(b)− z||2Qâ(b)â(b)
ι•
z(â(b))

=
∑

z∈Zn

(
b̂− b||2Qb̂b̂

+ ||â(b)− z||2Qâ(b)â(b)

)
ι•
z(â(b))

=
∑

z∈Zn

(
||â− z||2Qââ

+ ||b̂(z)− b||2Qb̂(a)b̂(a)

)
ι•
z(â(b))

This shows that

D•(b) = ||â− u||2Qââ
+ ||b̂(u)− b||2Qb̂(a)b̂(a)

if â(b) ∈ I•
u

Hence, if â(b) ∈ I•
u for some u ∈ Zn, then the minimizer and minimum of D•(b) are

given as
b̂(u) = arg min

ι•
u(â(b))=1

D•(b), D•(b̂(u)) = ||â− u||2Qââ
(5.112)

To find the global minimum of D•(b), we need to find the smallest value of D•(b̂(u))
for all u ∈ Zn that satisfy â(b) ∈ I•

u, ∀b ∈ Rp. This integer set consists of the integer
grid points of all pull-in regions I•

z through which â(b) passes when b is varied,

Ω•
â = {z ∈ Zn| z = I•(â(b)),∀b ∈ Rp} ⊂ Zn (5.113)

Hence, the global minimum of D•(b) is given as

min
b∈Rp
D•(b) = min

z∈Ω•
â

D•(b̂(z)) = min
z∈Ω•

â

||â− z||2Qââ
(5.114)

and its corresponding minimizer as

b̌• = arg min
b∈Rp
D•(b) = b̂(ǎ•), with

ǎ• = arg min
z∈Ω•

â

||â− z||2Qââ

(5.115)

□

Proof of Lemma 6: The first two conditions, (i) and (ii), for an integer estimator to
be admissible, are not difficult to verify. The pull-in regions cover the whole space as
arg min

u∈Ω•
x

||x− u||2Qââ
maps any x ∈ Rn to an integer vector. Furthermore, any x ∈ Rn

that lies inside a pull-in region will be mapped uniquely to one integer vector. To
verify the third condition, (iii), we need to show that P•

z = P•
0 + z. We will prove

this in steps. First we show that Ω̄•
z = Ω̄•

0 + z and Φ•
z = Φ•

0 + z (similarly one can
show that Ω•

x + z = Ω•
x+z). We have

Ω̄•
0 + z = {x + z ∈ Rn| 0 = I•(x + Mβ),∃β ∈ Rp}

= {y ∈ Rn| 0 = I•(y − z + Mβ),∃β ∈ Rp}
= {y ∈ Rn| z = I•(y + Mβ),∃β ∈ Rp}
= Ω̄•

z , ∀z ∈ Zn

(5.116)
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where use was made of the property I•(x + z) = I•(x) + z. Similarly, we have

Φ•
0 + z = {u + z ∈ Zn| u = I•(x),∀x ∈ Ω̄•

0}
= {v ∈ Zn| v = I•(x) + z,∀x ∈ Ω̄•

0}
= {v ∈ Zn| v = I•(x + z),∀x ∈ Ω̄•

0}
= {v ∈ Zn| v = I•(y),∀y ∈ Ω̄•

0 + z}
= {v ∈ Zn| v = I•(y),∀y ∈ Ω̄•

z}
= Φ•

z, ∀z ∈ Zn

(5.117)

where use was made of Ω̄•
z = Ω̄•

0 + z. Finally, we have

P•
0 + z = {x + z ∈ Rn| ||x||2Qââ

≤ ||x− u||2Qââ
,∀u ∈ Φ0}

= {y ∈ Rn| ||y − z||2Qââ
≤ ||y − (u + z)||2Qââ

,∀u ∈ Φ0}
= {y ∈ Rn| ||y − z||2Qââ

≤ ||y − v||2Qââ
,∀v ∈ Φ0 + z}

= {y ∈ Rn| ||y − z||2Qââ
≤ ||y − v||2Qââ

,∀v ∈ Φz}
= P•

z , ∀z ∈ Zn

(5.118)

where use was made of Φ•
z = Φ•

0 + z. □

Proof of Theorem 7: As P[ǎ• = a] = P[â ∈P•
a ] =

∫
P•

a
fâ(α)dα, the proof will be

based on finding an ellipsoidal region Ea = {x ∈ Rn| (x− a)T Q−1
ââ (x− a) ≤ r2} that

resides in P•
a . Once such region is found, we have Ea ⊂P•

a , and thus the lower-bound
P[â ∈ Ea] ≤ P[â ∈P•

a ], with P[â ∈ Ea] = P[χ2(0, n) ≤ r2]. The challenge is therefore
to find the proper value for r2.

First we express the pull-in region P•
a = a + P•

0 in a more amendable form. We have

P•
0 = {x ∈ Rn| ||x||2Qââ

≤ ||x− I•(y)||2Qââ
,∀y ∈ Ω̄•

0}
= {x ∈ Rn| I•(y)T Q−1

ââ x ≤ 1
2 ||I

•(y)||2Qââ
,∀y ∈ Ω̄•

0}
(5.119)

We now show how r2 can be chosen such that E0 ⊂ P•
0 . We have, with q2 =

r2/( min
z∈Zn/{0}

||z||2Qââ
),

E0 = {x ∈ Rn| xT Q−1
ââ x ≤ r2}

(i)= {x ∈ Rn| [gT x]2 ≤ r2gT Qââg,∀g ∈ Rn}
(ii)= {x ∈ Rn| [fT Q−1

ââ x]2 ≤ r2fT Q−1
ââ f, ∀f ∈ Rn}

(iii)
⊂ {x ∈ Rn| [zT Q−1

ââ x]2 ≤ r2||z||2Qââ
,∀z ∈ Zn}

(iv)
⊂ {x ∈ Rn| [zT Q−1

ââ x]2 ≤ q2||z||4Qââ
,∀z ∈ Zn}

(v)
⊂ {x ∈ Rn| [I•(y)T Q−1

ââ x]2 ≤ q2||I•(y)||4Qââ
,∀y ∈ Ω̄•

0}
(vi)
⊂ {x ∈ Rn| I•(y)T Q−1

ââ x ≤
[
q2||I•(y)||4Qââ

] 1
2 ,∀y ∈ Ω̄•

0}
(5.119)= P•

0 if r2 = 1
4 min

z∈Zn/{0}
||z||2Qââ

In (i) we used the planes-of-support formulation of the ellipsoid (Teunissen, 1995),
while (ii) follows from using the one-to-one transformation g = Q−1

ââ f . With (iii) we
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obtain a larger set as now only the integers are considered, while with both (iv) and
(v) again larger subsets are created, once due to the larger right-hand side and once
due to considering only a subset of integers rather than the whole integer space Zn.
Finally, with (vi) we replaced the two-sided inequality by a one-sided one. Comparison
with (5.119) shows that P•

0 is obtained as stated. An example of the lower bounding
ellipse E0 is shown in Figure 5.4 for n = 2 and p = 1. □

Projection Lemma (projection of cube and rectangle):

(a) Largest and smallest projection of cube on a line:

max
−e⪯x⪯e

aT x = +
p∑

α=1
|aα|

min
−e⪯x⪯e

aT x = −
p∑

α=1
|aα|

(5.120)

with a = (a1, . . . , ap)T and e = (1, . . . , 1)T .

(b) Largest and smallest projection of rectangle on a line:

max
l⪯x⪯u

aT x =
p∑

α=1
+ 1

2 (uα − lα)|aα|+ 1
2 (uα + lα)aα

min
l⪯x⪯u

aT x =
p∑

α=1
− 1

2 (uα − lα)|aα|+ 1
2 (uα + lα)aα

(5.121)

■

Proof: (a) is easy to prove; (b) follows from (a) through the one-to-one transformation
x = Ũx′ + x̄, where x̄ = 1

2 (u + l), ũ = 1
2 (u− l) and Ũ = diag(ũ1, . . . , ũp). □
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6
An efficient ‘P1’ algorithm for dual

mixed-integer least-squares problems
with scalar real-valued parameters

In this contribution we consider mixed-integer least-squares problems, where the integer
ambiguities a ∈ Zn and real-valued parameters b ∈ Rp are estimated. Both a primal and
a dual formulation can be considered, with the latter concerning the ambiguity resolution
process taking place into the parameters’ domain. We study the p = 1 case, where an ad hoc
‘P1’ algorithm is introduced, and some geometrical insights are provided. It is demonstrated
how the algorithm’s complexity (i.e., number of candidate integer solutions to be evaluated)
grows linearly with the ambiguity dimensionality n, differently from the primal formulation
where an exponential growth is observed. By means of numerical simulations, here based on
Global Navigation Satellite System (GNSS) models, we show the efficiency of this proposed
‘P1’ algorithm, meanwhile also demonstrating its quasi-optimal statistical performance.

This chapter has been published as: Massarweh, L., and Teunissen, P.J.G. (2024). An efficient
P1 algorithm for dual mixed-integer least-squares problems with scalar real-valued parameters. In
Journal of Applied Geodesy. https://doi.org/10.1515/jag-2024-0076
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6.1 Introduction

The Integer Ambiguity Resolution (IAR) process concerns the successful resolution
of the unknown integer ambiguities present in mixed-integer models. For instance,
in the context of Global Navigation Satellite Systems (GNSS), carrier-phase IAR is
the key to fast and high-precision baseline estimation (Teunissen, 2017). Once these
ambiguities have been correctly resolved, the carrier-phase data starts acting as very
precise pseudo-range data, so enabling users’ precise positioning and navigation, see
(Blewitt, 1989; Leick et al., 2015).

When considering mixed-integer least-squares problems, two equivalent formulations
are possible, denoted as primal and dual, respectively introduced by Teunissen (1993)
and by Teunissen and Massarweh (2024). In the primal formulation, integer ambiguities
are firstly resolved followed by a conditional least-squares baseline estimator, so
computing ambiguity-fixed baseline solutions. Efficient algorithms exist for tackling
such IAR problems within the ambiguity domain, for instance with the Least-Squares
AMBiguity Decorrelation Adjustment (LAMBDA) method, see (Teunissen, 1995). On
the other hand, in the dual formulation, the IAR process takes place directly in the
parameters’ domain and globally convergent solutions could be defined, as presented
by Teunissen and Massarweh (2024).

In this contribution we further study dual mixed-ILS problems, focusing on the case
p = 1, i.e. scalar real-valued parameter b∈ R, meanwhile assuming an arbitrary number
of integer ambiguity components in a ∈ Zn, n ≥ 1. A deterministic P1 algorithm is
introduced here as an efficient implementation for the ambiguity search process, now
taking place in the parameters’ domain (Jazaeri et al., 2012). By defining the algorithm
complexity as ‘number of candidate solutions evaluated’, it is demonstrated that, in
the dual formulation (for p = 1), the complexity grows linearly with the dimensionality
n. Besides the numerical performance, compared here against LAMBDA method, we
also investigate statistical performances, thus showing that quasi-optimal solutions
can be obtained by the P1 algorithm.

In Section 6.2, a brief review of dual mixed-integer least-squares models is given, then
focusing on the case n ≥ p = 1. In Section 6.3, the P1 algorithm is presented, along
with some geometrical insights, and the linear growth of complexity with respect to
the dimensionality n is demonstrated. The performance is numerically investigated in
Section 6.4, i.e. considering GNSS models, while the main conclusions are summarized
in Section 6.5.

6.2 Review of dual mixed ILS models

The dual formulation for mixed-integer least-squares models was introduced by Te-
unissen and Massarweh (2024). We start here with the observables’ vector y ∈ Rm,
so
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y ∼ Nm (Aa + Bb, Qyy) , a ∈ Zn, b ∈ Rp (6.1)

where ∼ refers to distributed as, given a m-dimensional normal distribution with
expectation E {y} = Aa + Bb and dispersion D {y} = Qyy for Qyy ∈ Rm×m being the
variance-covariance of y. The full-rank design matrix is given by [A, B] ∈ Rm×(n+p),
while integer ambiguities and real-valued parameters are respectively denoted as a
and b.

The dual formulation considers a dual objective function D :Rp→ R given by

D(b) =
∥∥∥b− b̂

∥∥∥2

Qb̂b̂

+ ∥â(b)− ǎ(b)∥2
Qâ(b)

(6.2)

where the (dual) mixed ILS solution for the real-valued parameters follows as

b̌ = arg min
b∈Rp
D(b) (6.3)

given the (conditioned) ambiguity vectors

â(b) = â−Qâb̂Qb̂b̂

(
b̂− b

)
, ǎ(b) = arg min

a∈Zn
∥â(b)− a∥2

Qâ(b)
(6.4)

with Qâ(b) ∈ Rn×n as conditional variance-covariance matrix of ambiguities. The
latter ones are conditioned onto the current b-value that could freely be defined in Rp.

Two approximations of Eq.(6.2) are discussed in (ibid), such as

I) Approximate weighting, where we replace the conditional variance matrix
Qâ(b) by an approximation Q◦

â(b), e.g. diagonal matrix, such that

D◦(b) =
∥∥∥b− b̂

∥∥∥2

Qb̂b̂

+ ∥â(b)− ǎ◦(b)∥2
Q◦

â(b)
(6.5)

for ǎ◦(b) = arg mina∈Zn ∥â(b)− a∥2
Q◦

â(b)
.

II) Approximate mapping, where we replace the integer minimizer of Eq.(6.4)
by an arbitrary admissible estimator I• : Rn → Zn, e.g. integer rounding, such
that

D•(b) =
∥∥∥b− b̂

∥∥∥2

Qb̂b̂

+ ∥â(b)− I• (â(b))∥2
Qâ(b)

(6.6)

and the two approximations differ since in the ‘approximate weighting’ case we neglect
off-diagonal terms in Qâ(b), whereas in the ‘approximate mapping’ case we might
adopt simpler rounding estimators for the many-to-one mapping function I•.
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6.2.1 Particular case for n ≥ p = 1
We focus on the case p = 1, thus defining β∈ R and D: R→ R, where

D(β) = D1(β) +D2(β) =

(
β − b̂

)2

σ2
b̂

+ ∥â(β)− ǎ(β)∥2
Qâ(b)

(6.7)

for â(β) = â − qâb̂σ−2
b̂

(
b̂− β

)
given qâb̂ ∈ Rn, while ǎ(β) follows Eq.(6.4). Note

that in the parameter domain the dual objective function is composed by a parabolic
term D1(β) and a periodic-like term D2(β), as shown in Fig. 6.5 by Teunissen and
Massarweh (2024). At the same time, in the ambiguity domain we are able to define
‘pull-in regions’, i.e. subsets of Rn where float vectors are mapped to the corresponding
integer.

For integer estimators, the pull-in regions are translational invariant over the integers
and cover the entire space Rn without gaps and overlaps [8, 9]. Moreover, from
Eq.(6.7), we observe that potential integer candidates are the ones belonging to pull-in
regions crossed by the conditioned line â(β) for β∈ R. In Fig. 6.1, we provide an
illustrative example for p = 1, n = 2 given β ∈

[
βMIN = b̂− 1.7, βMAX = b̂ + 1.7

]
,

with these bounds for β further specified later, where

â1
â2
b̂

 =

+0.4
−0.6
+0.2

 ,

 σ2
â1

σâ2â1

σb̂â1

σâ1â2

σ2
â2

σb̂â2

σâ1b̂

σâ2b̂

σ2
b̂

 ∼=
+0.733
−0.666
+0.294

−0.666
+1.031
−0.637

+0.294
−0.637
+0.490

 , (6.8)

such that qâb̂ =
(

σb̂â1
, σb̂â2

)T

, and therefore

Qâ(b) = Qââ − qâb̂qT
âb̂

σ−2
b̂
∼=
[
+0.557
−0.284

−0.284
+0.203

]
, Q◦

â(b)
∼=
[
0.557

0
0

0.203

]
(6.9)

with two pull-in regions represented in red and blue respectively when using Qâ(b)
and its diagonal approximation Q◦

â(b) as inverse-weighting matrix. In the first case (in
red), we are looking at Integer Least-Squares pull-in regions (i.e. hexagons), while in
the second case (in blue) we have more simple Integer Rounding pull-in regions (i.e.
unit squares).

The weighting approximation leads to an approximate dual objective function

D◦(β) = D1(β) +D◦
2(β) =

(
β − b̂

)2

σ2
b̂

+ ∥â(β)− ǎ◦(β)∥2
Q◦

â(b)
(6.10)
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Figure 6.1: The conditioned line â(β) is shown in magenta given β ∈ [βMIN , βMAX ], i.e. defined
between the extreme points â (βMIN ) and â (βMAX). The magenta circle refers to â(b) for the true
b∈ R, while the asterisk refers to â

(
b̂
)

≡ â, i.e. the float ambiguity solution. Moreover, two pull-in
regions are defined as hexagons (in red) or unit squares (in blue) when making use of Qâ(b) or Q◦

â(b)
as inverse-weighting matrix, respectively.

so using D◦(β) instead of D(β), both illustrated in Fig. 6.2, with a common parabolic
term D1 highlighted in green color. The periodic-like terms D2 and D◦

2 are depicted
in red and blue colors, as for their pull-in regions, respectively on the left and right
side. Note that when Qâ(b) is diagonal, no approximation takes place at all, and the
original dual problem is being considered. Even if Qâ(b) is diagonal, it does not imply
that also Qââ is diagonal, and in the primal formulation we might deal with highly
correlated (unconditioned) ambiguities.

The required interval [βMIN, βMAX] can be found starting with an initial guess β0
def== b̂,

so leading to â (β0) = â, and then seeking new solutions βj for j > 0, such that

D (βj)≤ D (β0) = ∥â− ǎ (β0)∥2
Qâ(b)

(6.11)

and therefore(
b̂− βj

)2

σ2
b̂

≡ D1 (βj)≤ D (βj) Eq.(6.11)→

(
b̂− βj

)2

σ2
b̂

≤ D (β0) (6.12)

where the first inequality follows from the definition of D(β), see Eq.(6.7).
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Figure 6.2: The dual objective function D(β) and its approximation D◦(β) are shown in the left and
right plots, respectively, with the parabolic term D1(β) shown as green dashed line. The periodic-like
contributions D2(β) and D◦

2(β) are respectively given in red and blue, as well as their pull-in regions,
while the conditioning line â(β) is depicted in magenta, centered in â(b̂) ≡ â (magenta asterisk),
where we have D1(b̂) = 0.

Hence, we are able to define an initial search radius R0 = σb̂

√
D (β0) such that

−R0 ≤ βj − b̂ ≤ R0 for any j-th candidate solution, i.e. interval
[
b̂−R0, b̂ + R0

]
is

found. A grid search could be performed over this interval, but in this work we will
consider an alternative efficient approach for the enumeration of all potential solutions,
as discussed next.

6.3 The P1 algorithm

In the earlier Fig. 6.1 we notice how several β values might belong to the same pull-in
regions, implying that a grid search might be inefficient. At the same time, pull-in
regions are convex regions for any n > 0, and the conditioning line â(β) will at most
intersect them twice. By identifying any β value associated with each different integer
vector ǎ(β), we can obtain a finite set of integer candidates where we expect to find a
global minimizer. This is the main idea of the ‘P1’ algorithm described in this section.

The intersection between â(β) and ILS pull-in regions is not trivial, therefore we will
restrict our discussion to the approximated dual objective function D◦(β). Hence, we
make use of Q◦

â(b) after neglecting the off-diagonal terms of Qâ(b), but notice that
in some mixed-integer models the latter one might already be a diagonal matrix, as
discussed later. Based on the example of Fig. 6.1, we can consider again an illustration
of the conditioning line â(β) for β ∈ [βMIN , βMAX ] given in magenta color in the
Fig. 6.3 (note a rotated plot).
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The intersections with each interface (of unit-square regions) are shown by magenta
squares, while the middle points βMP

j are computed between two consecutive intersec-
tions, here shown as (filled) blue hexagrams. Each candidate βMP

j will belong to an
individual rounding pull-in region.

Figure 6.3: Illustration of the example p = 1, n = 2, from Fig. 6.1, with the conditioning line â(β) in
magenta color given β ∈ [βMIN , βMAX ]. The intersections with all interfaces are shown as magenta
squares, while the middle points βMP

j are given as (filled) blue hexagrams.

6.3.1 Algorithm description

The P1 algorithm starts with an initial search radius R0 and we consider individually
each i-th component of the conditioned ambiguity vector. By making use of the
expression of the conditioned line â(β) projected along each component, i.e. âi(β) =
âi + qâib̂σ−2

b̂

(
β − b̂

)
, it is then possible to bound each i-th term since β − b̂ ∈

[−R0, +R0], so having

âi(β) ∈ [âi −∆i, âi + ∆i] , ∆i
def==

∣∣∣qâib̂

∣∣∣
σ2

b̂

R0 (6.13)

where qâib̂ refers to the i-th component of the vector qâb̂ ∈ Rn. In this way, we
can compute all the integer components νi∈ Z between âi − ∆i and âi + ∆i, and
define values βνi

that are related to the interfaces with rounding pull-in regions.
These values are then collected from all i-th ambiguity components in one sorted list,
i.e. {βMIN , . . . , βj−1, βj , βj+1, . . . , βMAX}, while also including both two extrema
βMIN = b̂−R0 and βMAX = b̂ + R0.
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The middle point can be found by βMP
j = (bj + bj+1) /2, and will belong to a single

integer pull-in region, hence refers to an individual integer candidate uj
def== ǎ◦ (βMP

j

)
∈

Zn. In the solutions’ evaluation process, we can start with values βMP
j that are closer

to b̂, since they will be associated with a smaller parabolic term D1
(
βMP

j

)
. Moreover,

during the evaluations, we can make use of results from Eq.(6.12) in order to reduce
the search radius R0 after each evaluation. This leads to discarding several outer
values of β that could not further minimize the dual objective function.

This search-and-shrink strategy is similar to the primal counterpart already adopted
in LAMBDA, but now we ‘shrink’ the real-valued parameters’ domain (i.e. on the
conditioning line) where the enumeration process takes place. Once all potential
candidates in the current interval are evaluated, the process stops and the global
minimum β∗ is obtained.

A summary of ‘P1’ algorithm is given in Algorithm 1, which consists of three parts:
INITIALIZATION where an initial guess allows computing the initial search radius R0,
ENUMERATION of the integer candidates that are found inside the initial interval,
and MAIN SEARCH, where such potential solutions are evaluated, including the
aforementioned ‘shrinking’ strategy.
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Algorithm 1 Summary of the ‘P1’ algorithm described in Section 6.3.1
INPUTS:

â ∈ Rn, b̂∈ R, Qââ ∈ Rn×n, qâb̂ ∈ Rn, σb̂∈ R
INITIALIZATION:

Given β0 = b̂ (initial guess), compute â (β0) = â based on Eq.(6.4), which is used to

find ǎ◦
0 = ⌈â⌋ ∈ Zn, along with an initial search radius R0 = σb̂

√
D◦
(

b̂ (ǎ◦
0)
)

.

ENUMERATION: % Find all potential integer candidates

For each i-th ambiguity component âi, with i = 1, . . . , n, find the intersections with
rounding pull-in regions given νi ∈ Z ∩ [âi −∆i, âi + ∆i], see Eq.(6.13).

Collect all β-values in one sorted list: {βMIN , . . . , βj , . . . , βMAX}, so including the
extrema βMIN = b̂−R0 and βMAX = b̂ + R0.

Compute the middle points βMP
j = (bj + bj+1) /2, each associated to a single integer

candidate, and sorted now starting from smaller values of
∣∣∣βMP

j − b̂
∣∣∣.

MAIN SEARCH: % Evaluate each potential integer candidate

Set D∗ as the current best function value from the step INITIALIZATION, with the
current best solution defined by β∗ = b̂ (ǎ◦

0).

% Iterate over each j-th potential solution, sorted by
∣∣∣βMP

j − b̂
∣∣∣.

for j = 1, . . . , N
% Outside the interval, search is over.
if
∣∣∣βMP

j − b̂
∣∣∣ > R0

Break loop;
end

% Evaluation of the current integer candidate.
Compute the integer vector uj

def== ǎ◦ (βMP
j

)
=
⌈
â
(
βMP

j

)⌋
, which it is used

to evaluate a new objective function DNEW
j = D◦

(
b̂ (uj)

)
, see Eq.(6.15).

% Update the current best solution
if DNEW

j < D∗

Save D∗ = DNEW
j and β∗ = βNEW

j = b̂ (uj);

% Shrinking step, see Eq.(6.12)
Update current R0 (search radius);

end
end

OUTPUTS:
β∗∈ R, ǎ◦ (β∗) ∈ Zn, D∗∈ R

NOTE: the symbol ⌈·⌋ defines the integer rounding operator.
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In Algorithm 1, the main search takes place starting with smaller values
∣∣∣βMP

j − b̂
∣∣∣,

then considering that
∣∣∣βMP

j − b̂
∣∣∣ ≤ ∣∣∣βMP

j+1 − b̂
∣∣∣ for any j > 0. Therefore, once the

j-th solution is found outside the interval
[
b̂−R0, b̂ + R0

]
, given the current radius

R0 (updated after each evaluation), we can stop the for-loop iterations. For the
evaluation of each integer candidate uj

def== ǎ◦ (βMP
j

)
, we might directly exploit a

primal formulation, thus evaluating

P◦ (uj) = ∥â− uj∥2
Q◦

ââ
, b̌

def== b̂ (uj) = b̂− qT
âb̂

Q◦
ââ

−1 (â− uj) (6.14)

given the approximate primal objective function P◦ : Zn→ R for Q◦
ââ = Q◦

â(b) +
qâb̂qT

âb̂
/σ2

b̂
, so following Lemma 4 by Teunissen and Massarweh (2024).

On the other hand, the candidates’ evaluation could also be performed directly in
the dual formulation, starting from a selected integer value u ∈ Zn. Using Lemma
7 from (ibid), we know that the local minimizer for â(β) ∈ Su, i.e. pull-in region
of u such that ǎ◦(β) = u, can be computed based on a primal conditioning b̂(u) =
b̂− qT

âb̂
Q◦

ââ
−1 (â− u), where

P◦(u) = D◦
(

b̂(u)
)

, ∀u ∈ Zn (6.15)

so now evaluating D◦ and no other minima exist given â(β) ∈ Su, see (ibid). In this
way it is possible to initialize using Q◦

ââ rather than Q◦
â(b), so leading to fewer integer

candidates.

6.3.2 Algorithm complexity

Before presenting a numerical analysis of the performance, we can briefly discuss the
linear growth of complexity, here defined by the number of potential candidates that
are evaluated during the enumeration process. In fact, in the dual formulation with
D◦(β), the algorithm’s complexity can be shown to be linearly increasing with the
dimensionality n > 0.

Starting with Eq.(6.13), we can approximate a maximum number of candidates of
each i-th component directly using NMAX

i
∼= 2∆i, such that the total number of

candidates (i.e. the middle points computed between successive intersections) follows
as

NMAX =
i=n∑
i=1

NMAX
i

∼=
i=n∑
i=1

2R0

∣∣∣qâib̂

∣∣∣
σ2

b̂

= 2R0

σ2
b̂

i=n∑
i=1

∣∣∣qâib̂

∣∣∣ (6.16)

where the approximation ∼= gets more accurate for larger values of NMAX
i , i = 1, . . . , n.

Given that
∣∣∣qâib̂

∣∣∣ =
∣∣∣ρâib̂

∣∣∣σâi
σb̂ for the correlation term ρâib̂ ∈ [−1, +1], we notice
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that each NMAX
i grows with the (unconditioned) standard deviation σâi

of the i-th
ambiguity component âi, which is dependent on the underlying model strength. Note
that the search of a global minimum will take around NMAX evaluations of all the
middle points βMP

j currently in the list, meanwhile we continue here by defining

∣∣∣qâib̂

∣∣∣ = 1
n

i=n∑
i=1

∣∣∣qâib̂

∣∣∣ (6.17)

and we further reformulate the approximation in Eq.(6.16) as

NMAX ∼=
2R0

σ2
b̂

n
∣∣∣qâib̂

∣∣∣ (6.18)

where
∣∣∣qâib̂

∣∣∣ is smaller than the largest entry (in absolute value) of qâb̂ ∈ Rn. This
shows how NMAX grows linearly with the dimensionality n given an initial search
radius R0, which can be computed based on Eq.(6.11), e.g., using R0 = σb̂

√
D (β0),

therefore we obtain

NMAX ∼= 2n ·
√
D (β0) ·

∣∣∣qâib̂

∣∣∣
σb̂

(6.19)

and the complexity is indeed dependent upon three elements: the problem dimensional-
ity, the initial guess β0 and the variance/covariance terms. Note that given

∣∣∣qâib̂

∣∣∣ = 0,
no correlation exists at all between the float ambiguities âi and the parameter b̂, so
the latter is actually the global minimizer for our dual problem.

6.4 Numerical assessments

We start by a simple numerical example for a multi-frequency geometry-free model,
where the conditional variance matrix Qâ(b) is diagonal, whereas the unconditional
matrix Qââ is not. Given a single-epoch single-baseline ionosphere-fixed scenario, two
receivers track two Galileo satellites based on a standard deviation of σp = 30 cm and
σϕ = 3 mm respectively for the undifferenced code and phase observations.

The mixed-integer model of Eq.(6.1), given J frequencies, is based on

A =
[

0
ΛJ

]
, B =

[
eJ

eJ

]
, Qyy = 4

[
σ2

pIJ

σ2
ϕIJ

]
(6.20)

where IJ ∈ ZJ×J refers to the identity matrix, eJ ∈ ZJ is a vector of 1s, while
ΛJ ∈ RJ×J is a diagonal matrix with its entries as the signal wavelengths, where
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n ≡ J . The factor ‘4’ arises from the covariance propagation law following the
double-differencing operator for code and phase observables.

We consider four scenarios based on Galileo signal, i.e. E1+E6 (n = 2), E1+E6+E5a
(n = 3) E1+E6+E5a+E5b (n = 4) and E1+E6+E5a+E5b+E5 (n = 5), where
computational time over 2000 different samples has been presented in Fig. 6.4. In all
these simulations, the results for p = 1 using the P1 algorithm perfectly match with
the ILS solutions computed by LAMBDA 4.0 toolbox (Massarweh et al., 2025), since
Qâ(b) is a diagonal matrix, where

Q−1
â(b) = AT Q−1

yy A = ΛT
J ΛJ

4σ2
ϕ

= 1
4σ2

ϕ

diag
(
λ2

1, . . . , λ2
J

)
(6.21)

therefore no approximation takes place in our dual formulation, and

D(β) ≡ D◦(β) = n

(
β − b̂

)2

4σ2
p

+ 1
4σ2

ϕ

i=n∑
i=1

λ2
i ϵ̌2

i (β), ∀β∈ R (6.22)

for the ambiguity residuals’ defined by ϵ̌i(β) = âi(β)−⌈ âi(β)⌋ for i = 1, . . . , n and ⌈·⌋
being the integer rounding operation. Notice how the parabolic term D1 and periodic-
like term D2 are mainly driven by the precision of code and phase measurements,
respectively. Moreover, in this illustrative example, we observe a smaller computational
time for the P1 algorithm with respect to LAMBDA method, and its efficiency becomes
more visible when increasing the ambiguity problem dimensionality.

Based on 2000 samples (n = 3), we show in Fig. 6.5 the maximum number of integer
candidates (in blue) as defined by Eq.(6.16), which seems to well approximate the
potential number of candidates (in orange) iterated in the MAIN SEARCH step (see
Algorithm 1), i.e. number of middle points previously found in ENUMERATION.
However, by means of the search-and-shrink approach, we note that the actual number
of integer candidates evaluated (in yellow) is substantially reduced. This demonstrates
substantial improvements in terms of efficiency once accounting for a search-and-shrink
strategy in the ‘P1’ algorithm, as adopted in the numerical results of Fig. 6.4.

At this point, we continue with a different numerical example, where the matrix Qâ(b)
is not diagonal and suboptimal performance (with respect to a primal ILS estimator)
might be expected, so we focus on statistical performances rather than computational
ones.

6.4.1 Statistical performance for Qâ(b) not diagonal

We consider a single-epoch single-baseline geometry-based ionosphere-fixed model,
with m satellites tracked on GPS L1 frequency. We assume the horizontal position
known, leading to p = 1 estimation of the vertical (UP) coordinate bUP∈ R, where

A =
[

0
λ1Im−1

]
, B =

[
DT

mG
DT

mG

]
, Qyy = 2

[
DT

mQppDm

DT
mQϕϕDm

]
(6.23)
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Figure 6.4: The computational times for primal (ILS) and dual (P1) solutions are shown given
four different Galileo scenarios, i.e. E1+E6 (n = 2, top left), E1+E6+E5a (n = 3, top right)
E1+E6+E5a+E5b (n = 4, bottom left) and E1+E6+E5a+E5b+E5 (n = 5, bottom right). For each
scenario, we use 2000 different float samples, see text for more information.

with In ∈ Zn×n refers to the identity matrix for n = m−1, while DT
m = [−em−1, Im−1]

is the between-satellite single differencing with respect to the first (pivot) satellite,
and the vector G ∈ Rm consists of sin(el◦) terms for each GPS satellite, see (Odijk
and Teunissen, 2008).

The stochastic model follows by a covariance propagation law for the undifferenced code
and phase standard deviation (at zenith), respectively given as 30 cm and 3 mm, while
an elevation weighting ∝ 1/ sin(el◦) is adopted. Therefore, both matrices Qϕϕ and
Qpp are diagonal with entries being the elevation-dependent standard deviations. Note
that a term ‘2’ in the expression for Qyy arises from the between-receiver differencing.
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Figure 6.5: The maximum number of expected integer candidates is shown (in blue) based on the
Eq.(6.16), while the potential number of integers refers to middle points (in orange) actually computed
in this analysis over 2000 different samples for n = 3. Lastly, we also provide the actual total number
of integers being evaluated (in yellow), largely reduced thanks to the search-and-shrink strategy
adopted by the ‘P1’ algorithm.

At this point, given Q◦
ââ, we aim to analyze such dual approximation of the variance-

covariance matrix Qââ for the estimated (unconditioned) float ambiguities. The
objective is to assess how accurate the dual approximation is, where as a matter of
comparison we will consider also a primal approximation given Q⊙

ââ. Three different
scenarios are compared:

• Case #1: We use Qââ = Qâ(b) + Qâb̂Q−1
b̂b̂

Qb̂â;

• Case #2: We use Q◦
ââ = Q◦

â(b) + Qâb̂Q−1
b̂b̂

Qb̂â, with Q◦
â(b) diagonal;

• Case #3: We use Q⊙
ââ =

(
Qâ(b) + Qâb̂Q−1

b̂b̂
Qb̂â

)⊙
, with Q⊙

ââ diagonal;

where in the Case #1, we consider a (primal) Integer Least-Squares solution based on
the full variance-covariance matrix Qââ, in the Case #2 we adopt a dual approximation
based on Q◦

ââ where Q◦
â(b) accounts only for the diagonal entries of Qâ(b) (that is not

diagonal), while in the Case #3 we consider a (primal) Integer Rounding solution
based on Q⊙

ââ, being the diagonal matrix extracted from Qââ. In LAMBDA, a
decorrelation process (Teunissen, 1995) is used to reduce the correlation between
(unconditioned) float ambiguities, based on an admissible transformation matrix
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Z ∈ Zn×n (unimodular), so ẑ = ZT â. Still, in order to directly compare statistical
performances of these three cases, no ambiguity decorrelation has been used here,
while in Case #1 such a re-parametrization would only affect the computational
time.

In Fig. 6.6, the errors for the ‘UP’ component are shown using 6000 samples, where
a total of 8 satellites has been tracked, i.e. n = 7. In grey color, the float solution
is illustrated, having a standard deviation σb̂

∼= 1.612 [m], while the fixed results
are presented in green and red color referring to correctly fixed and incorrectly fixed
ambiguities, respectively. The success rate (SR) is computed for the three scenarios,
with SR ∼= 97.9%,∼= 97.0% ,∼= 6.3% for each case. The poor success rate of the
primal rounding is visible in the large UP errors, with a root mean squares (RMS)
value of around 1.6 [m] in contrast to the 1.6 [cm] found for the fixed solutions when
ambiguities are correctly resolved, i.e. a = 0 (in green).

Figure 6.6: The ‘UP’ error component [m] is shown for different samples generated based on a
single-epoch single-baseline geometry-based ionosphere-fixed model for L1 signal tracked by 8 GPS
satellites. In grey color, we show the float solution, along with fixed solutions in red or green
respectively for incorrectly resolved or correctly resolved ambiguities. See text for more details on
the three cases considered for this example.

We can further investigate the good performance of the dual formulation by looking at
the two individual terms of Qââ, i.e. Qâ(b) and Qâb̂Q−1

b̂b̂
Qb̂â, and we re-write those as

Qââ ≜ Qâ(b) + Qâb̂Q−1
b̂b̂

Qb̂â=
(
AT Q−1

yy A
)−1 + A+BQb̂b̂BT

(
A+)T (6.24)

with A+ =
(
AT Q−1

yy A
)−1

AT Q−1
yy as the left inverse matrix of A ∈ Rm×n. In this

last example, the conditional variance-covariance matrix of the ambiguities Qâ(b) was
given by
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Qâ(b) =
(
AT Q−1

yy A
)−1 = 2

(
DT

mQϕϕDm

)
/λ2

1 (6.25)

where the (conditioned) L1 ambiguities are correlated through the between-satellite
single-differencing operator. In several GNSS models, like the one adopted for our last
numerical example, most of the correlation in the unconditional variance matrix Qââ

arise due to the presence of real-valued parameters, meanwhile Qâ(b) is generally also
small due to the much higher precision of phase measurements, e.g. σp/σϕ

∼= 100.

For sake of completeness, in Fig. 6.7 we can show the numerical values of Qââ and its
individual matrix terms, where it is visible how the approximation Q◦

â(b) would actually
have little impact, so Q◦

ââ is very similar to the original matrix Qââ. In the Case #3,
where large off-diagonal components have been neglected, the approximation is poor,
and therefore the correlation among ambiguities is not taken properly into account.

Figure 6.7: The entries of matrix Qââ, as well as Qâ(b) and Qâb̂Q−1
b̂b̂

Qb̂â, are shown based on the
numerical example used in Fig. 6.6. Note that the elevation for the eight satellites was 62.6°, 49.6°,
48.8°, 43.9°, 18.5°, 18.2°, 9.3° and 7.3°, using a weighting scheme ∝ 1/ sin(el◦).

6.4.2 Additional remarks

The proposed P1 algorithm is limited to the rounding pull-in regions (i.e. unit hyper-
cubes in Rn) since they allow efficiently computing intersections and middle points,
later used for the enumeration of potential integer candidates (see Section 6.3.1). In this
way, in the dual case it was possible to demonstrate a linear growth of the complexity
with respect to the ambiguity dimensionality n, differently from the exponential growth
found in the primal problem, e.g. see (Fincke and Pohst, 1985). At the same time,
we have restricted the algorithm to the case p = 1 since the computation of these
intersections in a more general case p > 1 is not trivial, even while working with the
rounding pull-in regions. In fact, in this case, the enumeration of candidates belonging
to each pull-in region would require a more expensive search for all intersections,
i.e. most likely very inefficient. On the other hand, the potential repeated use of P1
algorithm for searching over different directions in Rp (parameters’ domain) is also
possible, and it will be subject of future works.
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6.5 Conclusions

In this contribution we have considered mixed-integer models, and the dual mixed-
Integer Least-Squares (ILS) formulation introduced by Teunissen and Massarweh
(2024). In the dual problems, the resolution of integer ambiguities takes place in the
domain of real-valued parameters, which are freely defined in Rp. We focus here on
the p = 1 case, where a scalar parameter is estimated together with an arbitrary
number of ambiguities n ≥ 1.

As an alternative to a grid search approach, we present the ‘P1’ algorithm, i.e. a
deterministic global solution for the minimization of dual problems (p = 1). This
algorithm is based on the intuition that potential integer candidates are the ones
whose pull-in region is crossed by the conditioning line â(β) = â(0) + qâb̂σ−2

b̂
β, for

β ∈ R. Therefore, we show how algorithm’s complexity grows linearly with respect
to the dimensionality n. Moreover, the proposed ‘P1’ algorithm makes use of a
search-and-shrink strategy that further enhances its computational performance, here
evaluated numerically with respect to an implementation of the LAMBDA method,
see (Massarweh et al., 2025). As the ambiguity dimensionality n increases, the P1
algorithm computationally outperforms LAMBDA search process that takes place in
the primal formulation.

Given that the algorithm assumes an approximate conditional matrix Q◦
â(b), i.e.

after neglecting the off-diagonal terms of Qâ(b), this work shows how quasi-optimal
performance could still be achieved when Qâ(b) provides a small contribution to the
unconditional matrix Qââ. This is often the case in GNSS models, where the term
Qâ(b) is generally small since driven by the high precision of phase data, while most of
correlation among (unconditioned) ambiguities is due to the presence of the estimated
real-valued parameters. Lastly, as this efficient algorithm is limited to the case p = 1,
a further extension to the case p > 1 will be investigated in the future. This is possible,
e.g., by considering a partitioned dual formulation (Teunissen and Massarweh, 2024),
thus solving the problem in a lower dimensioned space, or by exploiting heuristic
search strategies in Rp, thus looking along multiple ‘search lines’ that intersect with
pull-in regions, where the P1 algorithm could be effectively employed.
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7
Branch-and-bound INteger-

equivariant Global Optimizer:
implementation and performance

in dual mixed-ILS problems

In this contribution we investigate the performance in dual mixed-Integer Least-Squares (ILS)
problems introduced by Teunissen and Massarweh (2024). We focus on the unconstrained
dual problem, where the integerness of ambiguities is taken into account, while the real-valued
parameters are freely defined in Rp. We describe in detail the main implementation steps for
the Branch-and-bound INteger-equivariant Global Optimizer (BINGO), a globally convergent
solution to dual problems. This implementation employs a normalization of the dual objective
function, and it is based on the branch-and-bound (BB) approach, with BB lower bounds
constructed with a convex relaxation, then minimized via projected gradient descent. In this
work, we first evaluate the computational trade-offs of the proposed BINGO implementation,
and later we assess the ambiguity fixing performance with respect to the primal formulation
in the context of Global Navigation Satellite System (GNSS).
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7.1 Introduction

Mixed-integer models arise in several geodetic problems, e.g. precise point positioning
(PPP) and atmosphere remote sensing with multi-constellation Global Navigation
Satellite Systems (GNSS), or deformation monitoring by Interferometric Synthetic
Aperture Radar (InSAR), or fringe phase observations from Very Long Baseline Inter-
ferometry (VLBI). These problems generally involve two types of unknowns: integer
ambiguities and real-valued parameters, where the accuracy of these estimated param-
eters can significantly be improved following a correct resolution of the ambiguities;
see Hofmann-Wellenhof et al. (2008).

In Teunissen and Massarweh (2024), mixed-integer least-squares problems have been
studied, and a dual formulation has been introduced in addition to the primal one
originally presented by Teunissen (1993). The primal formulation created the founda-
tions for the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method,
i.e. statistically optimal and numerically efficient approach to the ambiguity resolution
(Teunissen, 1995). Moreover, a few different (classes of) estimators were introduced
(Teunissen, 2003), with the resolution process taking place in the ambiguity domain.
However, the new dual problem formulation introduces a framework that focuses the
ambiguity resolution process in the domain of real-valued parameters, given that they
are typically the parameters of interest for the user.

In this research work, we numerically investigate the performance in ‘unconstrained
dual’ problems, where we account for the integerness of ambiguities without any
additional constraint onto the real-valued parameters, therefore freely defined in Rp.
In Section 7.2, we discuss a globally convergent solution to dual problems, as introduced
by Teunissen and Massarweh (2024), thus presenting an implementation of the Branch-
and-bound INteger-equivariant Global Optimizer (BINGO), and investigating main
computational trade-offs using illustrative examples. In Section 7.3, a numerical
analysis of the ambiguity-fixing performance is carried out based on GNSS models,
e.g., by comparing the success rate (SR) between primal and dual formulations. Lastly,
in Section 7.4, the main conclusions are summarized.
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7.2 Branch-and-bound INteger-equivariant Global
Optimizer (BINGO)

The Branch-and-bound INteger-equivariant Global Optimizer (BINGO) represents
a globally convergent solution to dual problems, see (ibid), and makes use of three
principles:

• Branch and Bound (BB) algorithm, for achieving the global minimization
of non-convex problems given an initial search domain, see Lawler and Wood
(1966);

• Convex relaxation, for computing the required lower bound in the branch-and-
bound iterations, here based on a convex continuous differentiable C1-function;

• Projected Gradient Descent (PGD), used for minimizing this convex lower
bound over a constrained set (e.g. p-dimensional box), see Parikh and Boyd
(2013);

with the proposed implementation following a normalization step, as discussed below.

7.2.1 Dual problem normalization

We start from a Cholesky decomposition of the covariance matrix for the ambiguities
and the real-valued parameters, with the Cholesky factor C ∈ R(n+p)×(n+p) given as

C =
[

Câ 0
CQ Cb̂

]
Q≜CT C→

[
Qââ Qâb̂

Qb̂â Qb̂b̂

]
≜

[
CT

â Câ + CT
QCQ

CT
b̂

CQ

CT
QCb̂

CT
b̂

Cb̂

]
(7.1)

where all sub-matrices are conformable in size, with Câ ∈ Rn×n and Cb̂ ∈ Rp×p

being lower triangular, while CQ ∈ Rp×n is a rectangular matrix. The Cholesky
decomposition of the conditional ambiguity covariance matrix follows simply as
Qâ(b) = CT

â Câ, and it can be noticed that Qâb̂Q−1
b̂b̂
≡ CT

QC−T

b̂
.

Differently from the ambiguities, where an admissible transformation is needed to
preserve their integerness (Teunissen, 1994), for the real-valued parameters b ∈ Rp

without additional constraints, we can consider any linear transformation T :Rp → Rp

as long as T is invertible. Therefore, we make use of δ = C−T

b̂

(
b− b̂

)
∈ Rp, so

that δ̂ = C−T

b̂

(
b̂− b̂

)
= 0, and the transformed parameters will have a standard

multivariate normal distribution, i.e. Np (E {δ} , D {δ}) given E {δ} = 0 and D {δ} =
Ip. Furthermore, we have Qδ̂â = CQ, while the conditional ambiguity covariance
matrix Qâ(δ) = CT

â Câ will not be affected by this linear transformation.

The ‘normalized’ function F̄2 : Zn × Rp→ R is expressed here as

F̄2(a, δ) def== ∥δ∥2
2 + ∥â(δ)− a∥2

Qâ(δ)
, â(δ) = â + CT

Qδ (7.2)
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where a ∈ Zn and δ ∈ Rp, given the ‘normalized’ dual objective function

D̄(δ) = min
a∈Zn

F̄2(a, δ) = F̄2 (ǎ(δ), δ) = ∥δ∥2
2 + ∥â(δ)− ǎ(δ)∥2

Qâ(δ)
(7.3)

with the dual mixed ILS solution found as

δ̌ = arg min
δ∈Rp

D̄(δ) = arg min
δ∈Rp

(
∥δ∥2

2 + ∥ϵ̌(δ)∥2
Qâ(δ)

)
(7.4)

given the (conditioned) ambiguity residuals ϵ̌(δ) = â(δ)− ǎ(δ), for

ǎ(δ) = arg min
a∈Zn

∥â(δ)− a∥2
Qâ(δ)

(7.5)

and once the global solution δ̌ ∈ Rp has been found, we compute the real-valued
ambiguity-fixed vector in its original parametrization simply as b̌ = b̂ + CT

b̂
δ̌.

7.2.2 Algorithm implementation aspects

We consider the dual weighting approximation Q◦
â(δ) described by Teunissen and

Massarweh (2024), so we neglect the off-diagonal terms of Qâ(δ), such that

Q◦
â(δ) = diag

(
σ2

â1(δ), . . . , σ2
ân(δ)

)
(7.6)

and the approximate (normalized) dual objective function is

D̄◦(δ) = ∥δ∥2
2 + Ḡ(δ) (7.7)

with the (non-negative) second periodic-like term Ḡ : Rp→ R given as

Ḡ(δ) =
i=n∑
i=1

g (xi(δ))
σ2

âi(δ)
, g(x) = (x− ⌈x⌋ )2

, xi(δ) ≡ âi(δ) = âi + cT
Q,iδ (7.8)

where cQ,i ∈ Rp refers to the i-th column for i = 1, . . . , n, of matrix CQ ≡ Qδ̂â ∈ Rp×n,
while ⌈ ·⌋ is the rounding operator. At the problem initialization, we might consider
a guess solution δ0

def== δ̂ ≡ 0 (float solution) to bound the dual objective function as

D̄◦(0) = Ḡ(0) =
i=n∑
i=1

g (âi)
σ2

âi(δ)
≤

i=n∑
i=1

0.25
σ2

âi(δ)
=

tr
(

Q◦
â(δ)

−1
)

4 (7.9)

where g(x) ≤ 0.25,∀x∈ R, while tr(Q) refers to the trace of matrix Q.
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However, this upper bound will be too large for small (conditional) variances σ2
âi(δ)

and for large n values. Instead, in the dual initialization we consider a local minimizer
given â (δ0) = â ∈ Su, where u = ⌈ â⌋ ∈ Zn is the integer rounding solution. Using
Lemma 7 from (ibid), we can therefore define an initial search radius R0, such as

R0
def==
√
P◦ (⌈â⌋) = ∥â− ⌈â⌋∥Q◦

ââ
(7.10)

so making use of the approximate inverse-weighting matrix Q◦
ââ. Note that R0 is

defined here as ‘radius’ since we seek new solutions δj for j > 0 that further minimize
D̄◦, i.e.

∥δj∥2
2 ≤ D̄

◦ (δj) ≤ D̄◦ (δ0) (7.11)

where the first inequality follows by the definition given in Eq. 7.7. Therefore, starting
with an initial guess δ0 = 0, we are able to constrain the feasible domain in ΘR0 ⊂ Rp,
with

ΘR0 = {δ ∈ Rp | ∥δ∥2 ≤ R0} (7.12)

that represents a p-ball of radius R0. In BINGO, as well as other branch-and-bound
methods, it is common to set the initial search domain using a p-dimensional box,
namely

C = {δ ∈ Rp| −R0 ≤ δj ≤ R0, j = 1, . . . , p} (7.13)

that will later be partitioned during the BB k-iterations into smaller boxes, e.g.

Bk = {δ ∈ Rp|δj,L ≤ δj ≤ δj,U , j = 1, . . . , p} , k > 0 (7.14)

where δj,L and δj,U are the extrema of the current partitioned box along each j-th
component, and they relate to the ambiguity intervals li ≤ âi(δ) ≤ ui given i = 1, . . . , n.
For additional information, we refer to Eq.(74) in (ibid), where miα is equivalent here
to entries

(
Qâδ̂

)
iα

based on the indexing notation i ∈ [1, n] and α ∈ [1, p].

Given any box B, the convex lower bounding function ḠL(δ) ≤ Ḡ(δ),∀δ∈ B can be
found considering gi,L

def== gL (xi) ≤ g (xi) for i = 1, . . . , n. A definition of these
functions gi,L is summarized in Table 7.1, with the two auxiliary functions ‘funL’ and
‘funU’ respectively described in Table 7.2 and Table 7.3. The derivatives g

′

i,L = dgi,L(xi)
dxi

are not shown since they can easily be computed for these polynomial functions. Note
that the implementation in Table 7.1 has been simplified here after re-defining the
followings: li := li − zL, xi := xi − zL, ui := ui − zL and zU := ⌊ui⌋ − zL, given a
common integer offset zL := ⌊li⌋ with ⌊·⌋ referring to the floor function. Hence, we
have zU = 0 if ui ∈ (li, 1), otherwise zU > 0.

The branch-and-bound iterations involve computing both upper bound and convex
lower bound for each box, thus partitioning the initial box C ⊂ Rp in smaller boxes.
Given a box B, the computation of upper bounds U (B) is possible by evaluating
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Table 7.1: An overview is given of the Convex Lower Bound (CLB) term gi,L, computed after
re-defining li := li − zL, xi := xi − zL, ui := ui − zL and zU := ⌊ui⌋ − zL, for zL := ⌊li⌋.

CASE Condition Sub-Condition CLB function

zU = 0

li < 0.5, ui ≤ 0.5 - gi,L = x2
i

li ≥ 0.5, ui > 0.5 - gi,L = (xi − 1)2

li < 0.5, ui > 0.5
|li| > |ui − 1| gi,L = funL (li, ui, xi)

|li| < |ui − 1| gi,L = funU (li, ui, xi)

|li| = |ui − 1| gi,L = l2
i

zU ̸= 0

xi ≥ 1, xi ≤ zU - gi,L = 0

xi < 1
li < 0.5 gi,L = funL (li, 1, xi)

li ≥ 0.5 gi,L = (xi − 1)2

xi > zU

ui > zU + 0.5 gi,L = funU (0, ui − zU , xi − zU )

ui ≤ zU + 0.5 gi,L = (xi − zU )2

Table 7.2: Auxiliary function ‘funL’ adopted in Table 7.1

funL(li, ui, xi)

▶ Compute αi = li +
√

1− 2li, while note that xi ∈ [li, ui]

Condition Function

ui < αi giL = l2
i + (xi − li) (ui−1)2−l2

i

ui−li

xi ≤ αi giL = 2(αi − 1)(xi − αi) + (αi − 1)2

xi ≥ αi giL = (xi − 1)2

Table 7.3: Auxiliary function ‘funU’ adopted in Table 7.1

funU(li, ui, xi)

▶ Compute βi = ui −
√

2ui − 1, while note that xi ∈ [li, ui]

Condition Function

li > βi gi,L = l2
i + (xi − li) (ui−1)2−l2

i

ui−li

xi ≤ βi gi,L = x2
i

xi ≥ βi gi,L = 2βi (xi − βi) + β2
i
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any feasible solution within this box domain, while for the lower bounds L (B) the
minimization takes place via a convex relaxation and projected gradient descent, as
discussed later. At the k-th iteration, the global upper bound Uk and the global lower
bound Lk are eventually found by

Lk = min
q=1,...,k

L (Bq), Uk = min
q=1,...,k

U (Bq) (7.15)

and the BINGO algorithm converges if Uk − Lk < ϵBB .

Note that a small tolerance ϵBB ≪ 1 is provided by the user as convergence criterion,
but in addition we can also set a maximum number of iterations KMAX to limit
excessively long computational times. Still, in this case, the global optimal solution
for the approximate dual problem is not guaranteed.

7.2.3 Analysis of computational trade-offs

We can investigate now the computational performance, thus looking at different
trade-offs for the proposed implementation. Hence, we examine the following aspects:

I. Problem normalization (Section 7.2.3.1)

II. Problem initialization (Section 7.2.3.2)

III. Boxes’ splitting strategy (Section 7.2.3.3)

IV. Convex lower bound minimization (Section 7.2.3.4)

V. The ϵBB-termination criterion (Section 7.2.3.5)

7.2.3.1 Benefits of normalization
The problem normalization in Section 7.2.1 is convenient since with each function
evaluation we compute ∥δ∥2

2 ≡ δT δ instead of
∥∥∥b− b̂

∥∥∥2

Qb̂b̂

≡
(

b− b̂
)T

Q−1
b̂b̂

(
b− b̂

)
, so

avoiding several matrix operations, while using â(δ)− â = CT
Qδ for the conditioned

ambiguities rather than â(b)− â = Qâb̂Q−1
b̂b̂

(
b− b̂

)
. The global minimum is invari-

ant to a re-parametrization of the b parameters, however as boxes’ definition and
splitting change, then the computational steps might slightly differ following a linear
transformation T : Rp → Rp.

In Fig. 7.1, we compare the original (left) and normalized dual problem (right) for the
Example 3 in Fig. 12 from (ibid), based p = 2 and n = 30, while using a different float
sample. The initial feasible domain, where we expect to find the global minimum, is
bounded by a p-dimensional hypersphere or hyperellipsoid, respectively when using the
normalized or the original formulation (see magenta dashed line). Hence, the BINGO
initial search domain for the normalized case is always reduced to a p-dimensional
hypercube (right plot).
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Figure 7.1: The comparison between original (left) and normalized (right) formulations of the dual
problem is shown based on Example 3 in Fig. 12 from (ibid). In red, the box relative to the optimal
solution found with BINGO method, along with previously partitioned boxes in blue and the initial
ellipsoid in magenta dashed line. See text for more information, and note that the BB convergence
criterion is based here on a small tolerance ϵBB = 10−6.

In this example, the initial ellipse (or sphere) is based on a statistical criterion,
where

∥∥∥b− b̂
∥∥∥2

Qb̂b̂

∼ χ2(p), following a Chi-squared central distribution with p =

2 degrees of freedom. Hence, we can define a 99.0% confidence level, leading to
R0 ≃ 3.035 and the smallest axis-aligned initial bounding box in the original or the
normalized case is given as

{∣∣∣b1 − b̂1

∣∣∣ ≤ R0 σb̂1
∼= 0.565,

∣∣∣b2 − b̂2

∣∣∣ ≤ R0 σb̂2
∼= 0.624

}
or as {|δ1| ≤ R0 , |δ2| ≤ R0}, for σb̂1

∼= 0.186 and σb̂2
∼= 0.206.

7.2.3.2 Initialization strategies
The initialization is a key aspect for the performance in the BINGO solution, where
we could consider four different strategies:

a) Statistical criterion, where R0 = χα(p) for a given confidence level, e.g.,
α = 99%, as adopted in the previous example of Fig. 7.1;

b) Dual initial guess, where R0 = ∥â− ⌈ â⌋ ∥Qâ(b)
, using the weighting matrix

Q−1
â(b) and given â (b0) ≡ â, since we have assumed b0 = b̂;

c) Primal initial guess, where R0 = ∥â− ⌈ â⌋ ∥Qââ
, thus using the matrix Q−1

ââ

instead;

d) Constrained set, where each j-th component of real-valued parameters is
constrained between some known a priori values bMIN

j and bMAX
j .
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In (a), we expect the true parameter vector b to be found in a neighborhood of b̂,
which is distributed as N

(
b, Qb̂b̂

)
. However, given the true integer vector a ∈ Zn,

we have b̂(a)∼ N
(

b, Qb̂(a)

)
, which is also expected to be found in a neighborhood of

b. However, notice that b̂(a) might not belong to the search domain initially set by
R0 = χα(p). On the other hand, (b) and (c) are similar, starting with the integer
ambiguity vector ǎ = ⌈ â⌋ , which ensures that the global solution is found. In this
case, a primal initial guess is preferred since Q−1

ââ ≤ Q−1
â(b), and therefore we start with

a much smaller radius R0. Lastly, with strategy (d), we are making use of additional
information, e.g. given a specific application in use, de facto constraining b ∈ Ω ⊂ Rp,
but this is not further discussed here since we will mainly focus on ‘unconstrained
dual’ problems.

We consider now the example in Fig. 7.1 for the normalized dual problem, and we
assume different R0 values. The number of boxes partitioned in BINGO for a different
initial search radius R0 ∈ [3, 30] is shown on the left plot in Fig. 7.2, while on the
right we provide an illustration of the search domain for the case R0 = 30, along
with the contour values of the (normalized) dual cost function, with a global solution
achieved in 23 iterations. We observe that a larger initial search radius leads to a
higher number of partitioned boxes, but this relation is however not a monotonically
increasing function and it also depends upon other aspects, such as the boxes’ splitting
strategy, as discussed next.

Figure 7.2: On the left plot, we show the number of partitioned boxes (or BB iterations) for the
normalized dual problem of Fig. 7.1, while varying the initial search radius R0 between 3 and 30.
On the right plot, we show the dual cost function starting with R0 = 30 (see magenta dashed line),
along with the 23 iterations needed before the algorithm converged.

7.2.3.3 Boxes’ splitting strategy
So far, the splitting of boxes was based on halving the longest edge for the most
promising box, i.e. the one having the lowest global CLB value. In this way, we were
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able to control the ‘condition number’ of the boxes during their partitioning (leading
to ‘children’ boxes or sub-regions), which is defined by Boyd and Mattingley (2007) as
follows

cond (B) = νmax

νmin

def== maxj=1...p (δj,U − δj,L)
minj=1...p (δj,U − δj,L) ≤ max {cond (C) , 2} (7.16)

for any box B ∈Lk (in the current list), where C is the initial search box. Hence,
during each branching step, condition number of children boxes is not larger than
the maximum between 2 and the condition number of C. In this way, (ibid) is able
to prove convergence assuming that bounds become sharper as boxes shrink, while
upper and lower bounds should be cheap to compute for making the BB approach
computationally efficient.

We investigate now if an uneven splitting of the boxes is convenient, thus taking the
longest edge νmax of a certain box, thus dividing it into µBBνmax and (1− µBB) νmax
for the splitting ratio µBB ∈ (0, 1). In Fig. 7.3, we take the numerical example
from Fig. 7.1 (right) starting with R0 = 10 and varying µBB = 0.001, . . . , 0.999, so
computing the total number of partitioned boxes needed for each splitting ratio value
(see left plot).

For the boundary cases, i.e. µBB → 0 and µBB → 1, the number of splits increases
up to a maximum set here to KMAX = 100, while the nominal case µBB = 0.5 is
illustrated on the right side with all iterations. The use of splitting ratios µBB close to
0 or 1 is certainly not suggested since too elongated boxes will be created during the
BB iterations, and the search for a global solution will require more iterations given
the same initial search domain. The algorithm partitioning steps are not perfectly
symmetric for µBB and 1− µBB , and in general, the exact number of iterations will
depend upon several factors, e.g. the initial search radius or dual function topology
varying based on the float ambiguity solution. In the reminder of this work we will
keep using µBB = 0.5, while we briefly discuss now some potential alternatives to
bisection.

Alternatives to Bisection

The previous results are derived from splitting the most promising box in two parts
along its longest edge. However, several BB alternatives exist and different partitioning
strategies can be considered, e.g. adopted in the ‘DIRECT method’ for black-box global
optimization, as introduced by Jones et al. (1993). A discussion of the ‘DIRECT
method’ is outside the scope of this work since it aims at minimizing black-box
objective functions, with little information available, see Jones and Martins (2021),
i.e. differently from our dual mixed-ILS problems.

At this point, it is possible to consider trisections instead of bisections, splitting the
longest edge into three parts instead of two. An illustrative sketch is presented for
p = 2 in Fig. 7.4, where the bisection (left) and trisection (right) approaches are
shown starting with an initial radius R0 (in magenta), so that the initial domain
is defined as C = {x ∈ Rp : |xi| ≤ R0, i = 1, . . . , p}, with each box in Rp given by
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Figure 7.3: The number of partitioned boxes is shown on the left with respect to the splitting ratio
µBB ∈ [0, 1] for the problem of Fig. 7.1 while using an initial search radius R0 = 10. On the right
side, we show the BB iterations for the specific case µBB = 0.5, given ϵBB = 10−6.

Bq1q2...qk
for indexes qs referring to the qs-th partition (or children box) at the s-th

iteration. A different number of iterations is considered for the bisection and trisection
cases, respectively leading to a volume for the optimal box (in green color) given by
vol (B21111) = vol (C) /32 and vol (B213) = vol (C) /27.

Both bisection and trisection strategies can be understood as binary and ternary
search trees, as illustrated in Fig. 7.5, with the most promising box (marked by a red
asterisk) being split at each BB iteration. This interpretation allows extending the
splitting strategy to an arbitrary number of children boxes starting from the most
promising one, but one should carefully consider that a higher number of evaluations
(per generation) will take place.

The branching strategy can be generalized to Bq1q2...qk
with the index qs defining

the qs-th partition (or children box) at the s-th iteration. This can be varied during
iterations and it opens a vast landscape of possibilities for BB methods, where also the
parallelization of the children boxes’ evaluation is possible. Still, from our experience,
higher-order splitting approaches are not suggested as several evaluations will then
occur in regions of the search domain most likely less promising for finding the global
optimum.

Overall, the splitting strategy can be regarded as a trade-off between width and depth
of the search tree associated to branching iterations (Morrison et al., 2016). However,
the algorithm’s complexity is not solely related to the number of boxes evaluated,
but also to the computational effort required for computing the bounds (Boyd and
Mattingley, 2007), as discussed in the next section. For sake of simplicity, in the
reminder of this work we proceed by considering only the bisection strategy.
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Figure 7.4: An illustrative comparison between bisection and trisection splitting approaches is
presented for a 2-dimensional case in normalized coordinates, where δ̂ = 0 (float solution, in blue)
and δ̌ ̸= 0 (fixed solution, in red). The partitioned boxes Bq1q2...qk are defined based on indexes qs

referring to the qs-th partition (or children box) at the s-th iteration.

7.2.3.4 Convex lower bound minimization
At each box evaluation, given B = {δ ∈ Rp | δj,L ≤ δj ≤ δj,U , j = 1, . . . , p}, the upper
bound can be computed starting with the initial guess, e.g., δC = (δ1,C , . . . , δp,C)T ∈
Rp, which refers to the center of the box given δj,C = 0.5 (δj,U + δj,L) for j = 1, . . . , p.
This initial guess leads to a conditioned (float) ambiguity âC = â (δC), thence rounded
to ǎC = ⌈âC⌋ ∈ Zn, so we obtain a local minimizer δUB = δ̂ (ǎC) of D̄◦. This local
minimum will represent an upper bound of the dual function inside B. As the box
shrinks, it might become the only minimum in B, at which point there is no reason to
further split this box.

On the other hand, the computation for the CLB minimization is less trivial and
represents a major processing burden for the BINGO algorithm. The CLB definition
has been provided in Table 7.1, see description in Section 7.2.2. In this section, we will
investigate a few different computational aspects related to the CLB minimization,
therefore briefly discussing

(1) the projection operation;

(2) the selection of step length;

(3) the selection of step direction;

based on the projected gradient descent method, hereinafter PGD; see Schmidt (2020)
and Andersen (2024) for additional information.
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Figure 7.5: The search tree presentation of Fig. 7.4 is shown here for the bisection and trisection
strategies, respectively defined by a binary (left side) and a ternary (right side) search tree. In green
color, the box where the global minimum lies, while the red asterisk refers to the most promising box
(at each k-th iteration) for the generation of children boxes (in blue), which will be evaluated. In this
illustration, we require 11 (left) versus 10 (right) evaluations.

(1) Projection inside the loop

The PGD algorithmic steps described in Teunissen and Massarweh (2024) start by a
feasible solution δq=0∈ B, therefore looping q with an alternation between the gradient
descent and projection steps. Firstly, we compute δ̂k = δk − µk∇D̄◦

L

(
δk
)

given a
step-size µk > 0 such that D̄◦

L

(
δ̂k
)
≤ D̄◦

L

(
δk
)
, then we ensure conformity with the

box constraints by a projection δk+1 = PB

(
δ̂k
)

where for each j-th component the

projection reduces to the median value of each triplet
{

δj,L, δ̂k
j , δj,U

}
due to our box

geometry. This operation is computationally cheap, whereas a large number of PGD
iterations k ≫ 0 might still be needed before we converge to the minimum of the CLB
function (i.e. needed at each new box evaluation).

However, given the step-size µk for D̄◦
L

(
δ̂k
)
≤ D̄◦

L

(
δk
)
, after the projection step we

cannot assure D̄◦
L

(
δk+1) ≤ D̄◦

L

(
δk
)
, and the PGD might take a long time to converge

to the CLB minimizer δLB∈ B with D̄∗
L = D̄◦

L

(
δLB

)
. Therefore, we can make use

of a different approach, as suggested in Section 11.2.3.2 by Schmidt et al. (2011),
known as “backtracking along the projection arc”, see Bertsekas (1999). Given that
our projection operator PB is very cost efficient, we can conduct a line search for µk,
such that
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D̄◦
L

(
δk+1) ≤ D̄◦

L

(
δk
)

, δk+1 = PB

(
δ̂k def== δk − µk∇D̄◦

L

(
δk
))

(7.17)

so directly searching along the projection arc rather than in a descent direction.
Ultimately, the PGD algorithm stops when

∥∥δk+1 − δk
∥∥

2 < γP GD for a small positive
value γP GD.

An example is shown in Fig. 7.6, where we compare the backtracking along the descent
direction (left) and along the projection arc (right). In the first approach, we descent
outside the blue box with δ̂k (red circles), then projected back onto the constraints
as δk+1 (black dots). Still, after five iterations we see that δ5 ≡ δ1 and the PGD
is therefore trapped in a configuration that will never converge, except if changing
adaptively the step-size (i.e. rather not trivial). In the proposed implementation,
the backtracking occurs along projection arcs, so when reaching an edge of the box,
the search continues directly along this direction, and convergence is assured. For
instance, the point δ4 in Fig. 7.6 diverges for the ‘projection outside the loop’ approach,
while converges towards the CLB minimum, δLB∈ B shown as magenta square, when
making use of the ‘projection inside the loop’.

Figure 7.6: The iterations of Project Gradient Descent are shown for two cases: with projection
outside (left) or inside (right) the loop for the line search. See text for more details.

As initial value in the box B, we can consider δ0 def== PB
(
δUB

)
, so starting with

the solution from the upper bound computations, then projected into B. The PGD
computations described in this section are summarized in Algorithm 2, while we
continue by investigating the PGD in relation to both ‘step length’ and ‘descent
direction’.
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Algorithm 2 Summary of the ‘PGD’ algorithm
INPUTS:

B ∈Rp, γP GD ≪ 1, kMAX∈ Z

INITIALIZATION:

Initialize δ0∈ B, e.g., using the vector δUB obtained in the upper
bound computations, then projected into B.

PROJECTED GRADIENT DESCENT:

Set δ∗ = δ0 and D̄∗ = D̄◦
L

(
δ0);

% PGD iterations
for k = 1, . . . , kMAX

Define δk = δk−1;

% Gradient descent with projection step
Compute D̄◦

L

(
δk
)

and ∇D̄◦
L

(
δk
)
, being respectively the

approximate dual function and its gradient;

% Line search iterations
for µk = 20, 2−1

, 2−2, 2−3, . . .
δk+1 = PB

(
δk − µk∇D̄◦

L

(
δk
))

% Check if solution improved
Compute D̄◦

L

(
δk+1);

if D̄◦
L

(
δk+1) ≤ D̄◦

L

(
δk
)

δ∗ = δk+1;
D̄∗ = D̄◦

L

(
δk+1);

Break loop; % Inner loop
end

end

% Check if PGD converged
if
∥∥δk+1 − δk

∥∥
2 < γP GD

Break loop; % Outer loop
end

end

OUTPUTS:
δ∗ ∈ Rp, D̄∗∈ R

(2) Selection of the step length

The step-size µk > 0 scales the gradient ∇D̄◦
L evaluated at δk, so leading to the

displacement δk − δ̂k = µk∇D̄◦
L

(
δk
)
, as illustrated in Fig. 7.6, where the black dashed
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line represents the descent trajectory with D̄◦
L

(
δk+1) ≤ D̄◦

L

(
δk
)

for a suitable value
µk. We can introduce now the step-length ηk = µk

∥∥∇D̄◦
L

(
δk
)∥∥

2, such that

δk+1 = PB

(
δ̂k def== δk − ηk

∇D̄◦
L

(
δk
)∥∥∇D̄◦

L (δk)
∥∥

2

)
(7.18)

meaning that
∥∥∥δ̂k − δk

∥∥∥
2

= ηk ≥ 0. As shown in Algorithm 2, the CLB evaluation
with D̄◦

L is needed at each k-th iteration, as well as for each candidate step-size µk (or
step-length ηk) in the inner loop. That backtracking strategy concerns a search line
for a suitable step that is halved till a smaller CLB value is found, where a too small
initial step might lead to many PGD iterations (i.e. outer loop), while a too large
step might lead to unnecessary evaluations of D̄◦

L during the line-search iterations (i.e.
inner loop).

We take the example of Fig. 7.6 (right) and examine how the backtracking search
operates along the box edge when using the step-size µk or the step-length ηk,
respectively shown in the left or in the right plot of Fig. 7.7. In the latter case,
convergence is achieved in fewer operations since the δ-displacement is not subject
to the local gradient value during the descent step that might become too large or
too small. Moreover, the backtracking search for ηk =

{
η0

k, η1
k = η0

k

21 , . . . , ηq
k = η0

k

2q

}
is

optimized here since the step-length will decrease once we reach an edge of the box,
so we can avoid evaluations for larger values of η0

k in the successive PGD iteration.

For instance, we start with η0
k ≈ ηqlast

k−1 , so making use of the previous step length found
during the qlast-th iteration of the inner loop (see Algorithm 2). We opt here for using
η0

k = 2ηqlast

k−1 to avoid η0
k monotonically decreasing with k, while the length-halving

strategy adopted in our algorithms can be regarded as a special case of

ηk =
{

η0
k, η1

k = τη0
k, . . . , ηq

k = τηq−1
k

}
(7.19)

for τ = 0.5, see Armijo (1966). By way of example, considering the left panel of
Fig. 7.7 for the step-size µk, then we are able to reduce the total number of CLB
evaluations (of the inner loop) from 1428 to 300, therefore approximatively from 15 to
3 dual function evaluations per each PGD iteration of the outer loop (here equal to
96).

(3) Selection of the step direction

Besides step size or step length, the descent direction is likewise important when
minimizing the CLB. A class of ‘iterative descent’ methods is discussed by Teunissen
(1990), where the necessary and sufficient conditions for convergence are given. By
iterative, we refer here to algorithms that generate a sequence of vectors δk for k ≥ 0,
i.e. dependent on previous ones, while by descent we refer to the fact that new
candidates correspond to decreasing values of the convex lower bound D̄◦

L.
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Figure 7.7: The comparison of PGD iterations is shown along the variable δ2 for δ1 = 0.4, given
the projection-in-the-loop case in the example of Fig. 7.6. On the left and right plots, we show the
adoption respectively of step-size µk or step-length ηk for minimizing the CLB function D̄◦

L, with
the minimizer shown as magenta square. See text for more detail.

For instance, in this class, we can consider

• Steepest Descent method, see Cauchy (1847), where in a linear approximation
the direction follows the steepest descent of D̄◦

L at δk;

• Newton’s method, which computes the minimum of a quadratic approximation
for D̄◦

L at each iteration step, and it has a local quadratic rate of convergence;

• Trust Region method, introduced by Levenberg (1944), and modified by
Marquardt (1963), i.e. a compromise between the previous two methods.

while – in our experience – we observe that many PGD iterations often occur at the
edges of the box currently evaluated. Therefore, the projection-in-the-loop strategy
will anyhow alter the descent direction, as already discussed in Fig. 7.6. Notice that if
the convex lower bound minimizer is found at one edge of the box, then the gradient
might not be zero, nevertheless it is expected to be orthogonal to the constraint
contour lines going through that point.

Concerning the PGD convergence criterion, note that this depends upon the user-
selected threshold γP GD > 0, where we recall δ = C−T

b̂

(
b− b̂

)
, such that

∥∥δk+1 − δk
∥∥

2 ≡
∥∥bk+1 − bk

∥∥
Qb̂b̂

< γP GD ≪ 1 (7.20)

and a direct relation follows between the threshold γP GD and ∆bk+1 = bk+1 − bk. In
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general, a small value γP GD = 10−4 seems to work well in practice, while in the next
section we will lastly also discuss a convergence criterion for the BB iterations.

7.2.3.5 The ϵBB-termination criterion
For the algorithm convergence, we have considered the following stopping criterion

Uk − Lk ≤ ϵBB , (7.21)

with the global bounds computed in Eq. 7.15, while U (B) and L (B) are the local upper
bound and lower bound for a certain box B, thus starting with the box C =

⋃q=k
q=1 Bq

at each k-th BB iteration. After defining gi(δ) ≡ g (âi(δ)) and gi,L(δ) ≡ gL (âi(δ)) for
i = 1, . . . , n, we are able to re-write the algorithm convergence condition such as

[∥∥δUB
∥∥2

2 +
i=n∑
i=1

gi

(
δUB

)
σ2

âi(δ)

]
−

[∥∥δLB
∥∥2

2 +
i=n∑
i=1

gi,L

(
δLB

)
σ2

âi(δ)

]
≤ ϵBB (7.22)

or equivalently

(∥∥δUB
∥∥2

2 −
∥∥δLB

∥∥2
2

)
+

i=n∑
i=1

gi

(
δUB

)
− gi,L

(
δLB

)
σ2

âi(δ)
≤ ϵBB (7.23)

where δUB and δLB refer to the solutions respectively obtained from the upper and
the lower global bound computations. Once the global minimum is found, we assume
δUB ≡ δLB .

Following the CLB definition, we will always have gi(δ)− gi,L(δ) ≥ 0,∀δ ∈ B, so the
second summation term cannot be negative. However, even for the same input δ∈ B, it
is not guaranteed that gi(δ) = gi,L(δ) since it will depend on the intervals [li, ui] used to
define each convex lower term gi,L for i = 1, . . . , n. Moreover, from our experience, the
CLB minimizer δLB might be affected by small numerical errors, since it is computed
via PGD iterations using a threshold condition, e.g., γP GD = 10−4. At the same time,
a direct relation ϵBB ↔ ∥∆δ∥2 for the displacement vector ∆δ

def== δUB − δLB if not
straightforward here and, unfortunately, literature on branch-and-bound optimization
primarily provides convergence proofs, see Balakrishnan et al. (1991). Still, we know
that bounds become sharper as the box shrinks to a point, and in our numerical
examples we generally make use of ϵBB = 10−6, i.e. in most of the cases achieving
Uk − Lk ≈ 10−12 after convergence.

These numerical considerations are certainly dependent on the specific problem at hand,
and they should therefore be assessed by BINGO’s users based on their individual
applications. As discussed in Section 7.2.2, a maximum number of iterations might
be set to limit large computational times, but in this case the algorithm’s optimality
is not guaranteed, and a sub-optimal ambiguity fixing performance may occur. The
statistical performance will be further studied in the next section.
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7.3 Analysis of dual ambiguity-fixing performance

So far, we have discussed different implementation aspects related to the BINGO
algorithm, thus showing important computational trade-offs and describing a few
different possible mechanizations. Still, as presented by Teunissen and Massarweh
(2024), we make use of the dual ‘weighting approximation’, where the periodic-like term
in D◦(b) is weighted by using the conditional matrix Q◦

â(b) instead of Qâ(b). Hence,
we neglect all off-diagonal terms, i.e. correlation among (conditioned) ambiguities,
and this approximation leads to a much simpler definition of the convex lower bound
function (see Table 7.1), which is required for the BB iterations.

We consider now the equivalent approximate primal problem, used here to study the
statistical ambiguity-fixing performance and to determine the properties of ambiguity-
fixed dual estimators. Following (ibid), we can transform Qââ → Q◦

ââ, with

Q◦
ââ = Q◦

â(b) + Qâb̂Q−1
b̂b̂

Qb̂â (7.24)

while given α ∈ Zn we also have

b̂◦(α) = b̂−Qb̂âQ◦
ââ

−1 (â− α) , Q◦
b̂(a) = Qb̂b̂ −Qb̂âQ◦

ââ
−1Qâb̂ (7.25)

where Q◦
b̂(a) is not the variance matrix of b̂◦(a), since the latter is not independent

of â. Still, it is possible to conclude1 that Q◦
b̂(a) ≥ Qb̂(a), where the equality holds if

Qââ = Q◦
ââ.

In this section we will therefore discuss and evaluate two cases: Qâ(b) diagonal, i.e.
no approximation takes place, and then Qâ(b) nondiagonal. In the latter case we
numerically compare the performance with respect to the original primal formulation,
i.e. based on GNSS user positioning model.

7.3.1 Case with Qâ(b) diagonal

We start with the case where the conditional ambiguities are perfectly uncorrelated,
and the matrix Qâ(b) is diagonal, so we look for models where the matrix AT Q−1

yy A is
diagonal. One GNSS example where this condition occurs is the multivariate Integer
Cycle-Slips (I-CS) Resolution approach introduced by Teunissen and de Bakker (2015),
and later discussed in Li and Melachroinos (2019).

Given a single-receiver user ‘u’ tracking each satellite ‘s’ on J signal frequencies
with wavelengths λj for j = 1, . . . , J , we consider the time-differenced code and
phase observables respectively as ∆ps

u∈RJ and ∆ϕs
u∈RJ . Assuming we have no time

1In Theorem 4 by (ibid), it is proved that

Q◦
b̂(a) = Qb̂(a) + Qb̂â

[
Q−1

ââ − Q◦
ââ

−1]Qââ

[
Q−1

ââ − Q◦
ââ

−1]Qâb̂ ≥ Qb̂(a) (7.26)

where, for a sufficiently high success rate, we have b̌◦ ∼ Np

(
b, Q◦

b̂(a)

)
given b̌◦ = arg minb∈Rp D◦(b).
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correlation (between epochs) and no correlation among different frequencies, the
covariance matrices are diagonal and given by 2Qpp and 2Qϕϕ. The functional and
stochastic models follow as

E


∆ps

u

∆ϕs
u

∆i0

 =

eJ

eJ

0

+µ
−µ
1

0
Λ
0

∆ρs
u

∆is
u,1

cs
r

 ,

D


∆ps

u

∆ϕs
u

∆i0

 =

2Qpp

0
0

0
2Qϕϕ

0

0
0

σ2
∆is

u,1

 (7.27)

where eJ = (1, . . . , 1)T and Λ = diag (λ1, . . . , λJ). The ionosphere pseudo-observation
∆i0 ∈ R is weighted by σ2

∆is
u,1

and set to zero, so it constrains the time-differenced
slant ionospheric delay on the first frequency given by ∆is

u,1, scaled by the coefficients
µ = (µ1, . . . , µJ)T given µj = f2

1 /f2
j . The time difference of the lumped parameter

including frequency-independent terms, e.g. the receiver-satellite range, is given by
∆ρs

u ∈ R, while the integer cycle-slip vector is cs
r ∈ ZJ .

Hence, this is a mixed-integer model with p = 2 and n = J , where the conditional
covariance ambiguity matrix is diagonal and its inverse is defined as

Q−1
â(b) =

ΛT Q−1
ϕϕΛ

2 = diag
(

λ2
1

2σ2
ϕ1

, . . . ,
λ2

J

2σ2
ϕJ

)
∈ RJ×J (7.28)

so each conditional ambiguity variance is ultimately given by

σ2
âj(b) =

2σ2
ϕj

λ2
j

, ∀j = 1, . . . , J (7.29)

where generally we have σϕj /λj ≈ 0.01 in the GNSS scenarios.

An illustrative example is given in Fig. 7.8 where we show the dual objective function
D(b) : Rp=2→ R given b =

(
∆ρs

u, ∆is
u,1
)T , thus considering GPS L1, L1+L2 and

L1+L2+L5 signals based on 30cm and 3mm as standard deviation of code and phase
(undifferenced) observations, respectively. We set σ2

∆is
u,1

= 0.012, which leads to a
SR of 17.7%, 92.9% and 99.8% for the three configurations, and we show the float
solution (black asterisk), the fixed solution (magenta diamond) and the region (red
line) in the parameters’ domain relative to true integer vector ǎ(b) = a ∈ ZJ .

As mentioned in Teunissen and Massarweh (2024), when columns of A are mutually
orthogonal in the metric of Qyy, then Qâ(b) is diagonal and no approximation is used.
Hence, optimal solutions are achieved and this is the case for other GNSS models, such
as the multi-frequency geometry-free models. In these ones, the conditional variance
matrix is diagonal, whereas the unconditional vc-matrix Qââ is not.
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Figure 7.8: The illustration of the dual objective function for the multivariate integer cycle-slip
model described in Eq. 7.27 is given based on three different configurations for GPS L1, L1+L2 and
L1+L2+L5 signals. The float and fixed solutions are represented respectively as a black asterisk and
a magenta diamond, while the region associated to the true integer vector ǎ(b) = a ∈ ZJ is marked
with a red line. See text for additional information.

Moreover, the unconditionally estimated ambiguities are highly correlated, with the
correlation coefficient between two ambiguities âi and âj given as ρâiâj

≈ 1 due to
the very small variance ratio between phase and code.

7.3.2 Case with Qâ(b) not diagonal

We consider the case where conditional ambiguities are correlated, and the matrix
Qâ(b) is not diagonal. Still, as said in Massarweh and Teunissen (2024), this conditional
ambiguity covariance matrix is generally small given the high precision of carrier-phase
measurements in GNSS models. By looking at Eq. 7.24, assuming Q◦

â(b) ≪ Qâb̂Q−1
b̂b̂

Qb̂â,
we notice that the dual approximation of Q◦

â(b) might not have a large influence on
Q◦

ââ. Following (ibid), we can therefore compare three scenarios: adoption of Qââ for
a primal ILS solution, Q◦

ââ for a dual approximation (with Q◦
â(b) diagonal), and Q⊙

ââ

(diagonal) for a primal IR solution where no decorrelation is performed.

We take a nominal 24-satellite constellation for GPS and Galileo tracked on L1+L5
and E1+E5a by a single (short) baseline at middle latitude, e.g., near REDU station,
every 5 minutes over a 24-hour period. An illustration is given in Fig. 7.9, where the
number of visible satellites (i.e. 7◦ elevation mask) is shown per constellation on the
left side, along with a skyplot on the right side. Notice that around 13-to-17 satellites
are considered for this multi-GNSS dual-frequency constellation, given λ1 = 19.03 cm
and λ2 = 25.48 cm.
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Figure 7.9: The number of visible satellites with a 7◦ elevation mask is shown on the left panel for
nominal GPS and Galileo constellations tracked by one single (short) baseline at middle latitude (e.g.
near REDU) over a 24-hour period, along with a sky plot on the right panel.

At each epoch, the functional and stochastic models (Odijk and Teunissen, 2008) are:

E




ϕ1
ϕ2
p1
p2


 =


λ1Im−2

λ2Im−2

DT
mG

DT
mG

DT
mG

DT
mG


a1

a2
b

 , b =

bE

bN

bU

 ∈ Rp=3

D




ϕ1
ϕ2
p1
p2


 = 2


DT

mQϕ1ϕ1Dm

DT
mQϕ2ϕ2Dm

DT
mQp1p1Dm

DT
mQp2p2Dm


(7.30)

with aj referring to DD ambiguities for each j-th signal, while

G =


...

cos(El◦) sin(Az◦)
...

...
cos(El◦) cos(Az◦)

...

...
sin(El◦)

...

 (7.31)

and DT
m = blkdiag

(
DT

mG
, DT

mE

)
being a block diagonal matrix for the between-satellite

single differencing DT
mS
∈ R(mS−1)×mS for each ‘S’ constellation, so m = mG + mE .

The choice of a pivot satellite per constellation is here necessary due to the existence
of receiver differential GPS-Galileo inter-system biases on the overlapping frequencies,
see Odijk and Teunissen (2013). The variance matrices for code Qpjpj and phase
Qϕjϕj are both diagonal, where the variance terms σ2

pj
and σ2

ϕj
are then multiplied by

an elevation weight sin−2(el◦). Lastly, we make use of σp1 = 30 cm and σp2 = 20 cm,
along with σϕ1 = 3 mm and σϕ2 = 2 mm.
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Recalling the block diagonal structure of the variance-covariance matrix Qyy of
observables, we note that Qâ(b) is a block diagonal matrix with each frequency
block equal to 2

(
DT

mQϕjϕj
Dm

)
/λ2

j , therefore off-diagonal entries still exist due to
the between-satellite differencing of phase observations, nonetheless these terms are
generally small given a ratio σϕj

/λj ≪ 1. Furthermore, the block diagonal structure
of DT

m (due to the choice of one pivot satellite per constellation) leads further defining
constellation-wise blocks, so

2
λ2

j

(
DT

mQϕjϕj
Dm

)
= 2

λ2
j

[
DT

mG
QG

ϕjϕj
DmG

DT
mE

QE
ϕjϕj

DmE

]
(7.32)

after separating measurements of GPS (G) and Galileo (E) constellations.

For the statistical performance analysis, we generate observation data distributed
as N (0, Qyy), then we calculate the ‘empirical SR’ (based on 100,000 samples) to
evaluate fixing performance of the three cases, where in the approximations of Case
#2 and Case #3 we are neglecting the off-diagonal terms of matrix Qâ(b) and Qââ,
respectively.

As visible in the left panel of Fig. 7.10, the dual approximation achieves similar SR
performance as the primal ILS solution, i.e. expected by the close approximation made
in Eq. 7.24. On the right panel, we evaluate the Root Mean Squared Error (RMSE) of
the ambiguity-fixed parameters, with values for the 3D positioning RMSE at centimeter
level for Case #1 and Case #2. Still, the dual approximation conditioning b̂◦(a) is
based on the approximated Q◦

ââ instead of Qââ, so some wrong fixes are visible, while
for Case #3 we find RMSE at around 35-40 cm, i.e. consequence of the poorer fixing
performance when using the approximation Q⊙

ââ.

We focus now on a single epoch, i.e. at 20:50, with 18 tracked satellites and we illustrate
the horizontal errors and vertical errors (for all samples) respectively in Fig. 7.11
and Fig. 7.12. As visible, centimeter-level solutions are still possible, nonetheless the
performance is slightly deteriorated due to potential wrong fixes (e.g. when SR is
lower), but also due to the fact that b̂◦(a) ∈ Rp, and so we expect Q◦

b̂(a) ≥ Qb̂(a).

7.3.3 Summary remarks

As mentioned, the matrix Qâ(b) is generally less correlated, and in the previous
example the correlation existed only due to a between-satellite differencing of phase
observations. Thus, a block diagonal structure as Qâ(b) = blkdiag

(
Qâ1(b), Qâ2(b)

)
allows further simplifying a dual formulation, given H2 : Zn1 × Zn2 × Rp→ R, where

H2 (a1, a2, b) def==
∥∥∥b̂− b

∥∥∥2

Qb̂b̂

+ ∥â1(b)− a1∥2
Qâ1(b)

+ ∥â2(b)− a2∥2
Qâ2(b)

(7.33)

with n = n1 + n2, while assuming âq(b) = âq − Qâq b̂Q−1
b̂b̂

(
b̂− b

)
∈ Rnq for each

subset q, and given Qâ1(b)â2(b) = 0. Notice that the expression above represents no
approximation of the original problem.
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Figure 7.10: The Empirical SR (left) and Root Mean Square Errors (right) are computed based on
three cases described in this section, using 105 samples at each epoch, see text for details.

Figure 7.11: The horizontal positioning errors of the east and north coordinates are given for a single
epoch based on 105 samples, thus showing float solutions (in grey), approximate dual solutions (in
orange) and primal ILS solutions (in blue), with a zoom-in on the right panel.

This last consideration leads also to a possibility of performing partial ambiguity
resolution, where only a subset of the ambiguities is resolved, e.g. ǎ2 = â2(b) ∈ Rn2 .
This comes in addition to the partitioned dual formulation suggested in Section 8 by
Teunissen and Massarweh (2024), i.e. splitting of real-valued parameters. For this dual
PAR approach, different criteria might be considered, for example neglecting specific
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Figure 7.12: The vertical errors of the up coordinate is given for a single epoch based on 105 samples,
thus showing float solutions (in grey), approximate dual solutions (in orange) and primal ILS solutions
(in blue), with a zoom-in on the right panel.

satellites/signals or large σâi(b) values, and will be investigated in future works.

For sake of clarity, we highlight that current BINGO computations are not over
performing (yet) the very recent LAMBDA 4.0 implementation (Massarweh et al.,
2025), as the latter has benefitted from decades of research works. Still, the landscape
of possibilities introduced by this dual formulation is certainly vast and yet to be
explored. As an example, the possible generalization to ‘constrained dual’ problems is
yet to be exploited when some additional constraints on the real-valued parameters
exist and could be taken into account rigorously.

7.4 Conclusions

In this contribution we have investigated the performance in dual mixed-integer least-
squares problems, introduced by Teunissen and Massarweh (2024). We focus on the
‘unconstrained dual’ problems, thus accounting for the integerness of ambiguities and
freely defining the real-valued parameters in Rp. The globally convergent algorithm
discussed in (ibid) is here extensively examined, therefore discussing a Branch-and-
bound INteger-equivariant Global Optimizer (BINGO) implementation for solving
dual problems. Following a normalization of the dual problem, we perform an
in-depth analysis of the computational performance and we scrutinize individual
computational steps in order to evaluate the impact of several different elements:
problem normalization and initialization, boxes’ splitting strategy, convex lower bound
minimization, and ϵBB-termination criterion.



7

184 Chapter 7: Dual BINGO Algorithm

In addition to the computational performance, we evaluate the statistical performance
for the dual approximation used in the BINGO approach, and we show how this might
still provide an accurate representation of the original problem. By means of numerical
analysis for a multi-GNSS single-baseline positioning example, we demonstrate how
quasi-optimal solutions are possible, with quasi-optimal results comparable (for the
selected scenarios) to the primal integer least-squares estimator.

Overall, the landscape of possibilities and potential applications for the dual mixed-
ILS formulation is vast and still to be explored, where additional aspects shall be
investigated, e.g. decorrelation, parameters’ splitting or partial ambiguity resolution.
Lastly, we remark that we have focused here on ‘unconstrained dual’ problems, while
some additional constraints on real-valued parameters might still be accounted for in
a rigorous way with the dual formulation, and this is subject of future research.



References

7

185

References

Andersen A (2024) Projected gradient algorithm. ECS at University Southampton,
UK. Available at https://angms.science/doc/CVX/CVX_PGD.pdf (Accessed: 7
September 2024)

Armijo L (1966) Minimization of functions having lipschitz continuous first partial
derivatives. Pacific Journal of Mathematics 16(1):1–3

Balakrishnan V, Boyd S, Balemi S (1991) Branch and bound algorithm for computing
the minimum stability degree of parameter-dependent linear systems. International
Journal of Robust and Nonlinear Control 1(4):295–317

Bertsekas D (1999) Nonlinear Programming, 2nd edn. Athena Scientific

Boyd S, Mattingley J (2007) Branch and bound methods. Notes for EE364b, Stanford
University, 2006-07

Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS: Global Navigation
Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, New York

Jones DR, Martins JRRA (2021) The DIRECT algorithm: 25 years later. Journal of
Global Optimization 79:521–566, DOI 10.1007/s10898-020-00952-6

Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the
lipschitz constant. Journal of Optimization Theory and Applications 79(1):157–181,
DOI 10.1007/BF00941892

Lawler EL, Wood DE (1966) Branch-and-bound methods: A survey. Operations
Research 14(4):699–719

Li T, Melachroinos S (2019) An enhanced cycle slip repair algorithm for real-time
multi-GNSS, multi-frequency data processing. GPS Solutions 23:1, DOI 10.1007/s1
0291-018-0792-0

Massarweh L, Teunissen PJG (2024) An efficient ‘P1’ algorithm for dual mixed-integer
least-squares problems with scalar real-valued parameters. Journal of Applied
Geodesy DOI 10.1515/jag-2024-0076

Massarweh L, Verhagen S, Teunissen PJG (2025) New LAMBDA toolbox for mixed-
integer models: estimation and evaluation. GPS Solutions 29(1):14, DOI 10.1007/s1
0291-024-01738-z, available at http://pntlab.tudelft.nl/LAMBDA

Morrison DR, Jacobson SH, Sauppe JJ, Sewell EC (2016) Branch-and-bound algo-
rithms: A survey of recent advances in searching, branching, and pruning. Discrete
Optimization 19:79–102

Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-
frequency single-baseline GNSS models. Journal of Geodesy 82:473–492, DOI
10.1007/s00190-007-0197-2

https://angms.science/doc/CVX/CVX_PGD.pdf
http://pntlab.tudelft.nl/LAMBDA


7

186 References

Odijk D, Teunissen PJG (2013) Characterization of between-receiver gps-galileo
inter-system biases and their effect on mixed ambiguity resolution. GPS Solutions
17:521–533, DOI 10.1007/s10291-012-0298-0

Parikh N, Boyd S (2013) Proximal algorithms. Foundations and Trends in Optimization
1(3):123–231

Schmidt M (2020) First-order optimization algorithms for machine learning - projected-
gradient methods. The University of British Columbia, Canada. Available at https:
//www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf (Accessed: 24 July 2024)

Schmidt M, Kim D, Sra S (2011) Projected newton-type methods in machine learning.
In: Optimization for Machine Learning

Teunissen PJG (1990) Nonlinear least-squares. Manuscripta Geodaetica 15(3):137–150

Teunissen PJG (1993) Least-squares estimation of the integer gps ambiguities. In:
IAG General Meeting. Invited Lecture. Section IV Theory and Methodology

Teunissen PJG (1994) A new method for fast carrier phase ambiguity estimation.
In: Proceedings of 1994 IEEE Position, Location and Navigation Symposium -
PLANS’94, Las Vegas, NV, USA, pp 562–573, DOI 10.1109/PLANS.1994.303362

Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: A
method for fast gps integer ambiguity estimation. Journal of Geodesy 70(1–2):65–82

Teunissen PJG (2003) Towards a unified theory of GNSS ambiguity resolution. Journal
of Global Positioning Systems 2(1):1–12

Teunissen PJG, de Bakker PF (2015) Multivariate integer cycle-slip resolution: A
single-channel analysis. In: N Sneeuw MC P Novák, Sansò F (eds) VIII Hotine-
Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia, vol 142, pp Springer, Cham, DOI 10.1007/1345_2015_69

Teunissen PJG, Massarweh L (2024) Primal and dual mixed-integer least-squares:
Distributional statistics and global algorithm. Journal of Geodesy 98:63, DOI
10.1007/s00190-024-01862-1

https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S5.pdf


8
Theory for the Ambiguity Function

Method: Probability Model and
Global Solution

In this contribution we introduce some new theory for the classical GNSS ambiguity function
(AF) method. We provide the probability model by means of which the AF-estimator
becomes a maximum likelihood estimator and we provide a globally convergent algorithm
for computing the AF-estimate. The algorithm is constructed from combining the branch-
and-bound principle, with a special convex-relaxation of the multimodal ambiguity function,
to which the projected-gradient-descent method is applied to obtain the required bounds.
We also provide a systematic comparison between the AF-principle and that of integer
least-squares (ILS). From this comparison the conclusion is reached that the two principles
are fundamentally different, although there are identified circumstances under which one can
expect AF- and ILS-solutions to behave similarly.

This chapter will be published as: Teunissen, P.J.G., and Massarweh, L. (2024). Theory for
the Ambiguity Function Method: Probability Model and Global Solution. In Journal of Geodesy
(submitted).
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8.1 Introduction

The ambiguity function (AF) method is one of the earliest methods for estimating base-
lines from integer ambiguous GNSS carrier-phase data. The method was introduced
and popularized by Counselman and Gourevitch (1981) and Remondi (1984, 1991),
while its original idea of eliminating dependence on the ‘2π’ ambiguities goes back
to (Rogers et al., 1978). In fact, it was this property of invariance that contributed
to the initial popularity of the method. It promised the capability of determining
precise baselines, without the explicit need of having to resolve the values of integer
carrier-phase ambiguities.

Although the AF-method is one of the oldest methods, its statistical and numerical
evolution did not keep pace with the theoretical developments of other methods of
mixed-integer inference (Teunissen, 2003b, 2017; Hartman, 2021). Currently we have
different classes of mixed-integer estimators, with identified optimal estimators within
each class, together with numerically efficient computational algorithms (Teunissen,
1995). For instance, the best integer-equivariant (BIE) estimator (Teunissen, 2003a)
is minimum-mean-squared-error optimal in the largest class, while the integer least-
squares (ILS) estimator (Teunissen, 1999) is best in maximizing the probability of
correct integer estimation within the smaller integer-class.

As the maturity of the AF-method is not on par with the current methods of mixed-
integer estimation, it is the goal of the present contribution to help fill in some of
the theoretical gaps. In doing so, the two main innovations of this contribution are:
(1) the provision of a probability model by means of which the AF-solution is given
a statistical basis, and (2) the provision of a global optimizer of the AF likelihood
function, having finite termination with a guaranteed epsilon-tolerance.

This contribution is organized as follows. In Section 8.2 we provide a brief review of
the ambiguity-function method, together with examples of its use. Then in Section 8.3
we draw attention to the possible nonuniqueness of the AF-solution. This is new, as
this problem has not been addressed before in the AF-method’s literature. We prove
under which conditions the AF-solution is nonunique and how one can verify whether
or not this nonuniqueness is problematic for the specific problem or application under
consideration.

In Section 8.4, we introduce our probability model for the AF-method. It shows
what distributional assumptions need to be made in order for the AF-estimator to
become a maximum likelihood estimator. It therefore provides, for the first time, a
statistical basis for the AF-method of GNSS baseline determination. In doing so, we
also generalize the classical expression of the AF-estimator by showing how a varying
precision of the carrier-phase observables can be incorporated into the estimation
scheme.

In order to describe the characteristics of the ambiguity objective function qualitatively,
we provide its multivariate gradient and Hessian in Section 8.5. Their analysis indeed
shows that the ambiguity objective function is severely multimodal and that, in the
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absence of very accurate baseline initializations, iterative gradient descent methods
will not be able to locate the sought for maximizer of the likelihood function. A global
optimization method is therefore asked for, which we introduce in Section 8.6. Our
proposed method, which has finite termination with a guaranteed epsilon-tolerance, is
constructed from combining the branch-and-bound principle, with a special convex-
relaxation of the ambiguity function, to which the projected-gradient-descent method
is applied to obtain the required bounds. Each of the method’s three constituents
is described in this chapter, whereby special emphasis is given to the construction
of the required continuously differentiable, convex lower bounding function of the
multimodal ambiguity function.

In Section 8.7 we compare the AF estimation principle with that of integer least-
squares (ILS). Although we exemplify the various marked differences between the
two principles, we also show under which identified circumstances one can expect
AF- and ILS-solutions to be close. We do this by making use of the primal-dual
equivalence of mixed-ILS theory as introduced in (Teunissen and Massarweh, 2024).
The presented theory is supported by means of several examples in which the workings
and performance of the AF-method are numerically and graphically illustrated. Finally,
Section 8.8 contains the Summary and Conclusions.

The following notation is used: E(.) and D(.) stand for the expectation and dispersion
operators, respectively, and Np(µ, Q) denotes a p-dimensional, normally distributed
random vector, with mean (expectation) µ and variance matrix (dispersion) Q. Rp

and Zp denote the p-dimensional spaces of real- and integer numbers, respectively.
The Q-weighted squared norm is denoted as ||.||2Q = (.)T Q−1(.), and ⌈x⌋ denotes the
rounding of x to the nearest integer. If applied to a vector, the rounding is understood
to apply to each of its coordinates. ∪ and ∩ denote the union and intersection
operators, and the vectorial inequality ⪯ denotes the all componentwise inequality
≤. The gradient of a function F (b) is denoted as ∂bF (b) and the central Chi-square
distribution with p degrees of freedom is denoted as χ2(p, 0), with χ2

δ(p, 0) being its
δ-percentage critical value.

8.2 The AF-method: a brief review

The single-baseline, k-epochs, f -frequencies, and s-satellites GNSS ambiguity function
(AF) is generally defined as (Mader, 1992; Lachapelle et al., 1992; Leick et al., 2015),

AF(b) =
k∑

t=1

f∑
j=1

s∑
i=1

cos[ 2π
λj

(ϕri
12,j(t)− ρri

12(t, b))] (8.1)

in which λj is the wavelength of the jth frequency, ϕri
12,j(t) = [ϕi

2,j(t) − ϕi
1,j(t)] −

[ϕr
2,j(t) − ϕr

1,j(t)] the double-differenced (DD) phase-observable, in units of range,
on frequency j at epoch t of receivers 1, 2 and satellites r, i, and ρri

12(t, b) is its
corresponding DD-range, which depends on b, the unknown baseline vector between
receivers 1 and 2.
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Note that AF(b) is invariant for any pertubations of ϕri
12,j(t) that are integer multiples

of the wavelength λj . Hence, it is invariant for integer cycle slips in the phase data,
as well as for the presence of the DD integer ambiguities ari

12,j ∈ Z in the observation
equations ϕri

12,j(t) = λjari
12,j + ρri

12(t, b) + ϵri
12,j(t). This invariance has in fact been the

overarching motivation for introducing the AF-concept (Counselman and Gourevitch,
1981; Remondi, 1984; Mader, 1992; Hofmann-Wellenhof et al., 2008; Leick et al., 2015).
It promises namely of being able to resolve the unknown baseline b, without the
explicit need of having to resolve the values of the integer ambiguities ari

12,j .

As AF(b) reaches its maximum value when all DD phase errors ϵri
12,j(t) are identically

zero, the chosen AF-approach for resolving the unknown baseline is to aim for a
solution that satisfies b̌ = arg maxb AF(b). The usual approach for doing so is by direct
evaluation of the ambiguity function on the vertices of a three-dimensional rectangular
grid, centred at an approximate baseline solution. The vertex that provides the largest
ambiguity function value is then selected as the solution sought (Rogers et al., 1978;
Remondi, 1984; Hofmann-Wellenhof et al., 2008). It will be clear that the numerical
and statistical efficacy depends on the chosen grid spacing, grid size, and grid location.

Although the AF-principle, of working with an integer-ambiguity invariant objective
function that is maximized when the errors are zero, forms the basis of all publications
in the GNSS AF-literature, it is important to realize that different authors applied the
principle to different objective functions. As a consequence, different baseline results
will be obtained even when these authors would be using the same original data.

Some authors work on single-differenced data, while others apply the principle to
double-differenced data, and some work directly with the cosine function, as in (8.1),
while other authors work with the complex phasor function, being the analytical
representation of a cosine function. Remondi (1984, 1991), for instance, works with
phasor norms, as a result of which his ambiguity objective function contains, in
contrast to (8.1), both cosine and sine functions. The same phasor norms are also
used by Han and Rizos (1996), but they use it on double-differenced data, instead
of on single-differenced data as is done in (Remondi, 1984, 1991; Remondi and Hilla,
1993; Hofmann-Wellenhof et al., 2008).

In this contribution we will use, as in (8.1), a ‘sum of cosines’ as our basis for
constructing the ambiguity-invariant objective function. This is consistent with the
original formulation of Rogers et al. (1978), but more importantly, it will allow us to
formulate a probabilistic model for the ambiguity function method.
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8.3 On the nonuniqueness of the AF-solution

As mentioned earlier, the attractiveness of the AF-method is the integer-ambiguity
invariance of its objective function. This invariance, however, holds for any integer
pertubations of its argument and thus also for those that may be generated by changes
in the baseline. If such case happens, one can not expect the baseline solution of the
AF-method to be unique.

To study the possible nonuniqueness of the AF-solution, we first introduce a useful
compact notation for the ambiguity function. Let ϵϕ = [ϵϕ1 , . . . , ϵϕm

]T be an m-vector
with its entries expressed in cycles and let em = [1, . . . , 1]T be the m-vector of ones.
Then we introduce for the AF-function the compact notation

AF = eT
m cos[2π(ϵϕ)] :=

m∑
i=1

cos[2π(ϵϕi
)] (8.2)

Thus cos[2π(ϵϕ)] is the vector that consists of the componentwise cosine values of
2πϵϕi

. As the general system of GNSS carrier-phase observation equations can be
written in vector-matrix cycle-form as

ϕ = Aϕa + Bϕb + ϵϕ, a ∈ Zn, b ∈ Rp, Aϕ ∈ Zm×n (8.3)

the to-be-maximized objective function of the AF-method follows upon substitution
of ϵϕ = ϕ−Aϕa−Bϕb into (8.2) as

AF(b) = eT
m cos[2π(ϕ−Bϕb)] (8.4)

Note that this formulation generalizes that of (8.1) in the sense that ϕ need now not
be retricted to a DD-form and that b need not be restricted to a single baseline. As
(8.4) applies to any carrier-phase system of the form (8.3), it holds in principle for
undifferenced data and networks as well.

Also note, due to the property of the cosine-function, that the ambiguity-part Aϕa ∈
Zm of system (8.3) disappeared from the objective function AF(b). This is also the
principal attractiveness of the method as it implies that no explicit ‘integer ambiguity
resolution’ is required when maximizing (8.4). We now show what this ‘invariance’
does to the uniqueness of the AF-maximizer.

Theorem 1 (Nonuniqueness of AF-solution): Let m× (n + p) design matrix [Aϕ, Bϕ]
(cf. 8.3) be of full column rank and let Z = [Z1, Z2], Z1 ∈ Zm×(m−p), Z2 ∈ Zm×p,
be an admissible ambiguity transformation (i.e. Z and Z−1 have integer entries),
satisfying B⊥T

ϕ [Z1, Z2] = [L, 0], where B⊥
ϕ is a basis matrix of the null space of BT

ϕ .
Then the ambiguity function (8.4) satisfies

AF(b + B+
ϕ Z2z̃2) = AF(b) , ∀z̃2 ∈ Zp (8.5)

in which B+
ϕ is a left-inverse of Bϕ (i.e. B+

ϕ Bϕ = Ip). ■
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Proof: From B⊥T
ϕ [Z1, Z2] = [L, 0], it follows that Z2 is an integer basis matrix of

the range space of Bϕ, i.e. Z2 = BϕX for some invertible p × p matrix X = B+
ϕ Z2.

Therefore
AF(b) = eT

m cos[2π(ϕ−Bϕb)]
= eT

m cos[2π(ϕ−Bϕb− Z2z̃2)]
= eT

m cos[2π(ϕ−Bϕ(b + Xz̃2))]
= eT

m cos[2π(ϕ−Bϕ(b + B+
ϕ Z2z̃2))]

= AF(b + B+
ϕ Z2z̃2)

(8.6)

□

The important consequence of this result is that the AF-solution may not be unique
even if the design matrix [Aϕ, Bϕ] (cf. 8.3) is of full column rank. Thus even if the
phase-only system of observation equations produces a unique float-solution, with
corresponding integer least-squares (ILS) solution, the solution produced by the AF-
method may not be unique. This possible lack of baseline uniqueness is here identified
for the first time as it is not part of the deliberations in the classical AF-literature
(Counselman and Gourevitch, 1981; Remondi, 1984; Mader, 1992; Hofmann-Wellenhof
et al., 2008; Leick et al., 2015).

The condition under which the above lack of uniqueness occurs is when an admissible
integer matrix Z = [Z1, Z2] can be constructed such that B⊥T [Z1, Z2] = [L, 0]. This
is always possible when the entries of matrix B⊥ are rational, see Theorem 2 in
(Teunissen and Khodabandeh, 2022). We hereby note, even if the actual entries of
B⊥ are not rational, that in the context of numerical computing they could be, which
then still introduces numerically the above-mentioned lack of uniqueness.

Whether or not the above-identified lack of uniqueness is problematic from a practical
point of view may depend on how large the smallest pertubation B+Z2z̃2 will be. If
the smallest such pertubation is sufficiently large, then a local maximizer b̌ of AF(b)
could still be acceptable, since the next nearest maximizer will then be far away. The
smallest distance between the local maximizers is given by

Dmin = min
z∈Zp\{0}

||B+
ϕ Z2z||Q (8.7)

with Q as user-chosen positive definite matrix, e.g. Q = (BT
ϕ Bϕ)−1. This can be

computed efficiently with LAMBDA method (Teunissen, 1995; Massarweh et al., 2025).

8.4 A probability model for the Ambiguity Function
method

In this section we will develop our probability model for the AF method. The starting
idea is to find a probability density function (PDF) that has the solution of the
AF method, b̌ = arg maxb eT

m cos[2π(ϕ − Bϕb)] (cf. 8.4), as its maximum likelihood
estimate.
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We ignore for the moment that the solution may be nonunique, then

b̌ = arg max
b

eT
m cos[2π(ϕ−Bϕb)]

(a)= arg max
b

exp{eT
m cos[2π(ϕ−Bϕb)]}

(b)= arg max
b

exp{eT
m cos[z − z̄]}, z = 2πϕ, z̄ = 2πBϕb

(c)= arg max
b

exp{eT
m cos[z−z̄]}∫

Ω
exp{eT

m cos[z−z̄]}dz
, Ω = [−π, +π]m

(d)= arg max
b

m∏
i=1

exp{cos[zi−z̄i]}∫ +π

−π
exp{cos[zi−z̄i]}dzi

, zi = cT
i z, z̄i = cT

i z̄

(e)= arg max
b

m∏
i=1

f(zi|z̄i, 1)

with f(x|µ, κ) = exp{κ cos[x−µ]}∫ +π

−π
exp{κ cos[x−µ]}dx

(8.8)

This result can be explained as follows. By taking the exponential exp in step (a), we
obtain a nonnegative objective function which has the same maximizer as the original
objective function. In step (b), we simplify the argument by setting z = 2πϕ and
z̄ = 2πBϕb. In step (c), we normalize the objective function such that it now can
be interpreted as being a PDF. As function of z, it integrates to 1 over Ω, and as
function of b, it still has b̌ as its maximizer. It is thus the multivariate PDF of the
random vector z, having z̄ = 2πBϕb as its parameter vector. As the PDF is symmetric
about z̄, z̄ = 2πBϕb is also the mean of z. In step (d), we applied the property that
the exponential of a sum can be written as a product of exponentials. As a result the
multivariate PDF is written as an m-product of univariate PDFs. Here, ci denotes
the canonical unit vector having its only nonzero entry of 1 as its ith entry; Step
(e) follows by recognizing that all m PDFs are the same, except for their means z̄i,
i = 1, . . . , m. Here we also recognize that the PDFs f(zi|z̄i, 1), i = 1, . . . , m, are all
special cases of the well-known circular normal distribution CN (µ, κ), having f(x|µ, κ)
as its PDF (Gumbel et al., 1953). The circular normal distribution CN (µ, κ), with
mean µ and concentration parameter κ, is also known as the von Mises distribution.
Its denominator is given as 2πI0(κ) =

∫ +π

−π
exp{κ cos[x − µ]}dx, where I0(κ) is the

modified Bessel function of the first kind of order 0.

The above has shown that the solution b̌ of the ambiguity function method can
now be interpreted as being the maximum of the likelihood function of 2πϕ, if
the m random variables 2πϕi, i = 1, . . . , m, are independent and distributed as
2πϕi ∼ CN (2πcT

i Bϕb, 1). Noting that this probabilistic result is obtained with circular
normal distributions having unity concentration parameters, our above derivation
now also shows how to introduce a weighting scheme into the ambiguity function
method. If we replace the sum of cosines, eT

m cos[2π(ϕ−Bϕb)], by the weighted sum
wT cos[2π(ϕ − Bϕb)], w = [w1, . . . , wm]T , a similar derivation as above shows, with
zi = 2πcT

i ϕ and z̄i = 2πcT
i Bϕb, that

arg max
b

wT cos[2π(ϕ−Bϕb)] = arg max
b

m∏
i=1

f(zi|z̄i, wi) (8.9)
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This shows how the classical objective function (8.4) needs to be changed in order
to incorporate a varying precision of the GNSS carrier-phase measurements, thus
allowing to include, for instance, frequency and/or elevation dependency in the
precision description.

We are now in the position to summarize the above findings in a theorem. In order to
do so, we will include the pseudorange data, and work, instead of with the phase-only
system (8.3), with the extended partitioned system[

p
ϕ

]
=
[

0 Bp

Aϕ Bϕ

] [
a
b

]
+
[

ϵp

ϵϕ

]
, a ∈ Zn, b ∈ Rp, Aϕ ∈ Zm×n (8.10)

in which the pseudoranges in p are expressed in units of range, while the carrier-phases
in ϕ are still expressed in cycles.

By now assuming the pseudorange observables to be normally distributed and indepen-
dent of the circular-normal distributed carrier-phase observables, we obtain a complete
probabilistic model for the ambiguity function method and one that also eliminates
the lack of uniqueness discussed in the previous section. We have the following result.

Theorem 2 (AF-ML estimator) Let p ∼ Nm(Bpb, Qpp), with rankBp = p, Qpp > 0,
be independent of 2πϕ ∼

∏m
i=1 CN (2πcT

i Bϕb, wi). Then the likelihood function of b is
given as

L(b) =
exp{− 1

2 ||p−Bpb||2Qpp
}

|2πQpp|1/2
exp{wT cos[2π(ϕ−Bϕb)]}∏m

i=1 2πI0(wi)
(8.11)

and its maximizer as

b̌AF = arg max
b∈Rp

(
− 1

2 ||p−Bpb||2Qpp
+ wT cos[2π(ϕ−Bϕb)]

)
(8.12)

■

This result shows how the solution of the ambiguity function method can be interpreted
as a maximum likelihood (ML) estimator, through which it also automatically inherits
all the known properties of ML-estimators. Hence, by means of the above identified
probabilistic model one can now apply known likelihood estimation and testing results.

Note, by making use of the trigonometric identity cos 2x = 1− 2 sin2 x, that we may
write the maximization-problem (8.12) also as a minimization-problem,

b̌AF = arg min
b∈Rp

(
||p−Bpb||2Qpp

+ 4wT sin2[π(ϕ−Bϕb)]
)

(8.13)

If we assume Bp to be of full column rank, we may use the orthogonal decomposition
||p − Bpb||2Qpp

= ||P ⊥
Bp

p||2Qpp
+ ||b̂ − b||2Qb̂b̂

, with P ⊥
Bp

= Im − BpB+
p , b̂ = B+

p p, B+
p =

Qb̂b̂BT
p Q−1

pp , Qb̂b̂ = (BT
p Q−1

pp Bp)−1, and write (8.13) also as

b̌AF = arg min
b∈Rp

(
||b̂− b||2Qb̂b̂

+ 4wT sin2[π(ϕ−Bϕb)]
)

(8.14)
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This formulation shows how the quadratic term on the right-hand side, and therefore
the inclusion of pseudorange data through b̂, acts as a regularizer on the phase-based
part of the objective function. It is through this pseudorange-based regularization
that the earlier mentioned nonuniqueness of the classical ambiguity function (8.4)
is eliminated. Note in this regard that although a full rank of (8.10) guarantees
uniqueness of the float LS-solution, that this not necessarily implies uniqueness of
b̌AF. This is only the case if also Bp is of full rank. With single-differenced data for
instance, Bp will be rank defect as the phase-clock cannot be determined from code
data alone. In that case, the integerness of the phase-clock coefficients implies that the
phase-clock can only be AF-determined up to an integer multiple of the wavelength.

To be able to work with (8.12) or (8.14), we still need to show how the weighting
vector w can be chosen. For this we rely on the properties of the circular normal
distribution and the fact that GNSS carrier-phase measurements are ultra-precise.
The circular normal distribution CN (µ, κ) is a symmetric unimodular distribution
having its mode at µ. The parameter κ drives its peakedness or concentration. For
κ→ 0, the circular normal distribution converges to the uniform distribution, while for
κ→∞, it converges to the point distribution δ(x− µ). As for large, but finite values
of κ, the normal distribution N (µ, σ2 = 1

κ ) provides a good approximation to CN (µ, κ)
(Gumbel et al., 1953), we will use the precision of the carrier-phase observables to set
the entry values of the weight vector w. For example, if σi denotes the phase standard
deviation when expressed in units of range, i.e. σi = σλiϕi

with λi the wavelength,
then the variance of 2πϕi can be taken as the reciprocal value of the corresponding
concentration parameter, i.e. 4π2σ2

i

λ2
i

= 1
wi

.

Example 1 (Geometry-free model) Consider the single-epoch, multi-frequency, double-
differenced (DD) geometry-free model

E
[

p
ϕ

]
=
[

0 ef

If Λ−1
f ef

] [
a
ρ

]
(8.15)

with p ∈ Rf the DD pseudorange vector expressed in units of range, ϕ ∈ Rf the
DD carrier-phase vector expressed in cycles, ef = (1, . . . , 1)T the f -vector of ones,
Λf = diag(λ1, . . . , λf ) the diagonal matrix of f wavelengths, a ∈ Zf the DD integer
ambiguity vector and ρ ∈ R the scalar DD range. Then, with D(p) = σ2

pIf , the two
parts of the objective function of (8.14) work out as

||b̂− b||2Qb̂b̂
:=

(
ρ̂−ρ

σp/
√

f

)2
, ρ̂ = 1

f

∑f
i=1 pi

4wT sin2[π(ϕ−Bϕb)] := 4
∑f

i=1 wi sin2[ π(ϕ̃i−ρ)
λi

]
wi := λ2

i

4π2σ2
ϕ̃i

(8.16)

with σ2
ϕ̃i

being the variance of ϕ̃i = λiϕi. □
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8.5 Multimodal Ambiguity Function and its opti-
mality domain

In this section we describe and illustrate some of the defining characteristics of the
ambiguity function. In order to do so, we work from now on, for convenience sake,
instead of with the objective function (8.12), with that of (8.13), i.e.

F (b) = ||p−Bpb||2Qpp
+ 4wT sin2[π(ϕ−Bϕb)] (8.17)

Hence, since F (b) = 2wT em − 2AF(b), the maximum likelihood solution of the AF-
method is then computed, not as a maximizer, but as the minimizer of F (b).

8.5.1 Minimization by Iterative Gradient Descent

As F (b) is a smooth function (in fact, it is a C∞ function, having continuous derivatives
of all orders), one may think of applying methods of iterative gradient descent to
obtains its minimum. Such methods adhere to the following scheme (Teunissen, 1990;
Nocedal and Wright, 2006):

bk+1 = bk − tkQ(bk)∂bF (bk), k = 0, 1, . . . (8.18)
in which tk > 0 is a to be chosen step size and Q(bk) > 0 a to be chosen positive-definite
matrix. The iteration is started by an externally provided initial approximation b0 of
the minimizer.

Through the choice of Q(bk), one can choose the direction of descent, and through the
choice of tk, one can enforce that F (bk+1) ≤ F (bk). For computing the stepsize tk in
each iteration, different linesearch strategies exist, from simple to advanced (Nesterov,
2018). One of the simplest starts with tk = 1, followed by halving it, tk ← tk/2, until
F (bk − tkQ(bk)∂bF (bk)) < F (bk). The simplest choice for Q(bk) would be to choose it
as an identity matrix, Q(bk) = Ik. As the resulting direction −∂bF (bk) points in the
direction of steepest descent of F (b) at bk, this method is known as the steepest descent
method. It has a local linear rate of convergence, but the iterations have the potential
to zig-zag when the contours of F (b) are elongated at the minimizer. This is avoided
when Q(bk) is chosen as the inverse-Hessian of F (b), Q(bk) = [∂2

bbF (bk)]−1. This gives
Newton’s method, which is known to have a local quadratic convergence. Contrary to
the steepest descent method, Newton’s method does not need a linesearch strategy to
enforce local convergence. That is, when the Hessian is positive-definite, the method
has a quaranteed convergence for points sufficiently close to the solution. This is a
consequence of the method being based on a linear approximation of the vanishing
gradient of F (b) at the minimizer: 0 = ∂bF (b̌AF) ≈ ∂bF (bk) + ∂2

bbF (bk)(b̌AF − bk).

To apply the above iterative descent methods to (8.17) and verify whether or not a
minimizer is obtained, the gradient and Hessian of F (b) are needed. They are given
as follows.

Lemma 1 (Ambiguity Function Gradient and Hessian): The gradient and
Hessian of the objective function F (b) = ||p − Bpb||2Qpp

+ 4wT sin2[π(ϕ − Bϕb)] are
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Figure 8.1: The L1 single-frequency, geometry-free ambiguity function F (ρ) = F1(ρ)+F2(ρ) (cf. 8.21)
is illustrated for different standard deviation values of the code and phase data. As the parabolic
term F1(ρ) (in blue) rapidly increases for larger values ϵ = σ2

ϕ̃
/σ2

p, the ambiguity function F (ρ)
becomes strictly convex for ϵ > 1 (note: ∆ρ is the difference between the variable ρ and the range
model value).

given as
∂bF (b) = −2

(
BT

p Q−1
pp (p−Bpb) + BT

ϕ φ
)

∂2
bbF (b) = 2

(
BT

p Q−1
pp Bp + BT

ϕ DBϕ

)
,

(8.19)

with
φ =

m∑
i=1

(2πwi sin[2πcT
i [ϕ−Bϕb)])ci

D = diag(d1(b), . . . , dm(b))
di(b) = 4π2wi cos[2πcT

i (ϕ−Bϕb)]

and where ci is the ith canonical unit vector. ■

Note, due to the presence of the diagonal matrix D, that the Hessian matrix (cf. 8.19)
of the ambiguity function is not necessarily positive-definite. Hence, it may not be
invertible, or, when it is, it may not provide a descent direction. To avoid this from
happening, one may think of regularizing the Hessian as ∂2

bbF (b)− 2BT
ϕ DBϕ, when

∂2
bbF (b) fails to be positive-definite. The so obtained regularized iteration can then

again be interpreted as an iterative descent method, but now corresponding with the
choice Q(bk) = [2(BT

p Q−1
pp Bp)]−1. Note that, with tk = 1, this iteration boils down to

bk+1 = (BT
p Q−1

pp Bp)−1[BT
p Q−1

pp p + BT
ϕ φ] (8.20)

which can be seen to be the fixed point iteration of the system ∂bF (b) = 0.

8.5.2 On the Ambiguity Function multimodality

Although the above descent methods converge to a minimum of F (b), it depends on
the initial approximation b0 whether the minimum is a local or a global minimum of
F (b). One can have some confidence in having computed the global minimum, if b0
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Figure 8.2: The L1-L2 dual-frequency, geometry-free ambiguity function F (ρ) = F1(ρ) + F2(ρ) is
illustrated for different standard deviation values of the code and phase data as presented in Fig.8.1.
The term F2(ρ) is a sum of two sine squared functions, illustrated individually in the plots (red
curves), each one having different amplitudes and periods.

would already be close enough to the global minimizer b̌AF. To see whether or not
one can reasonably expect this to be the case, we take the ambiguity function of the
single-frequency geometry-free model as an example. For the single-frequency case,
the geometry-free ambiguity function follows from (8.16) as

F (ρ) = (p−ρ)2

σ2
p

+ 4w sin2 (π
λ [ϕ̃− ρ]

)
, w = λ2

4π2σ2
ϕ̃

(8.21)

thus having first and second derivatives

dρF (ρ) = 2
σ2

ϕ̃

[
ϵ(ρ− p)− λ

2π sin
( 2π

λ [ϕ̃− ρ]
)]

d2
ρρF (ρ) = 2

σ2
ϕ̃

[
ϵ + cos

( 2π
λ [ϕ̃− ρ]

)] (8.22)

with ϵ being the phase-code variance ratio ϵ = σ2
ϕ̃
/σ2

p. This shows that all those points
where the straight line y = ϵ(ρ− p) intersects the sine-function y = λ

2π sin( 2π
λ (ϕ̃− ρ)),

are points for which dρF (ρ) = 0. These are therefore the points where the local minima
and maxima of the function F (ρ) are located. Note that their number increases, when
ϵ gets smaller, i.e. when the descending straight line y = ϵ(ρ− p) gets less tilted.

From the second derivative we learn that of these points, only those are minima for
which cos( 2π

λ (ϕ̃ − ρ)) > −ϵ holds. This shows, since cos x ≥ −1 for all x ∈ R, that
d2

ρρF (ρ) > 0 for all ρ ∈ R, if ϵ > 1. Hence, this is the condition for which F (ρ)
is convex. Thus if ϵ > 1, then F (ρ) has only a single minimum. As ϵ equals the
phase-code variance ratio, this would require the precision of the pseudorange (code)
observables to be better than that of the phase observables, which clearly is not the
case with GNSS.

In fact, in case of GNSS it is the reciprocal value of ϵ that is large, i.e. the phase-code
variance ratio is very small, ϵ ≈ 10−4. This implies that the almost horizontal line
y = ϵ(ρ − p) will have a large number of intersections with y = λ

2π sin( 2π
λ (ϕ̃ − ρ)).

Hence, in the typical GNSS case, there will be a large number of minima and maxima
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from which one would then need to select the global minimum. The ρ-values for the
minima will have to satisfy cos( 2π

λ (ϕ̃− ρ)) > −ϵ ≈ 0. If we define the small value δϵ as
satisfying ϵ + cos( 1

2 π + 2πδϵ) = 0, then d2
ρρF (ρ) > 0 for all DD range values satisfying

ρ/λ ∈ ϕ + z + (− 1
4 − δϵ, + 1

4 + δϵ),∀z ∈ Z (8.23)

Thus of all the solutions satisfying dρF (ρ) = 0, those ρ/λ that lie in one of the
integer translated intervals (8.23) will be local minima and thus candidates for a global
minimum.

To see how this set of ‘integer translated intervals’ generalizes to the multidimensional
case, we need to study the region for which the p × p Hessian-matrix ∂2

bbF (b) is
positive-definite. We have the following result.

Lemma 2 (On ambiguity function’s convexity) Let ΩPD = {b ∈ Rp|∂2
bbF (b) > 0}

be the region in which the ambiguity function is convex and define the convex polytope

Ω◦
PD(z) = {b ∈ Rp| l(z) ⪯ Bϕb ⪯ r(z)}, z ∈ Zn (8.24)

with l(z) = (ϕ− δϵ − 1
4 em) + z, r(z) = (ϕ + δϵ + 1

4 em) + z. Then

Ω◦
PD = ∪

z∈Zm
Ω◦

PD(z) ⊂ ΩPD (8.25)

for δϵ = 0, while if Bϕ = Λ−1Bp, with Λ the diagonal wavelength matrix, and Qpp is
diagonal, relation (8.25) even holds with the entries of δϵ = (δϵ1 , . . . , δϵm)T satisfying
ϵi + cos( 1

2 π + 2πδϵi) = 0, ϵi = σ2
ϕ̃i

/σ2
pi

= λ2
i /(4π2wiσ

2
pi

), i = 1, . . . , m. If then also Bp

is invertible, we have Ω◦
PD = ΩPD. ■

Proof: Relation (8.25), for δϵ = 0, follows from the fact that D > 0 (cf. 8.19)
implies 2(BT

p Q−1
pp Bp + BT

ϕ DBϕ) = ∂2
bbF (b) > 0. Similarly, if Bϕ = Λ−1Bp, then

Q−1
pp +Λ−1DΛ−1 > 0 implies 2(BT

p Q−1
pp Bp+BT

ϕ DBϕ) = ∂2
bbF (b) > 0, which gives (8.25)

for the given δϵ when Qpp is diagonal. If also Bp is invertible, then Q−1
pp +Λ−1DΛ−1 > 0

is equivalent to 2(BT
p Q−1

pp Bp + BT
ϕ DBϕ) = ∂2

bbF (b) > 0, which gives the equality
Ω◦

PD = ΩPD. □

This result shows how the region over which the ambiguity function is convex can
be inscribed by a set of translated convex polytopes. This set is thus not guaranteed
to contain the global minimizer. This is only true in the special case when Bp is
invertible.

It will be clear from the above that for the typical GNSS case, i.e. when the phase-
code variance ratio is small, the ambiguity function will show many local minima and
maxima, and thus exhibit a pronounced multimodal variability. This is illustrated
in Figure 8.1 for the single-frequency, geometry-free model and in Figure 8.2 for the
dual-frequency, geometry-free model.

Due to the multimodality of F (b) and the difficulty of knowing a-priori whether our
initial approximation b0 resides in the same convexity region as the global minimizer,
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it will generally not be possible to solve for b̌AF by using one of the iterative gradient
descent methods from the start. Fortunately, we do know how we can provide a convex
bound to the region in which the search for the global minimizer can be conducted.
We have the following result.

Lemma 3 (Optimality domain) Let b̂ = arg minb∈Rp ||p−Bpb||2Qpp
. Then

b̌AF = arg min
b∈Rp

F (b) ∈ Ω, with

Ω = {b ∈ Rp| ||p−Bpb||2Qpp
≤ F (b̂)}

(8.26)

■

Proof: Clearly b̌AF ∈ ΩF = {b ∈ Rp| F (b) ≤ F (b0)} for any b0 ∈ Rp and thus also
for b0 = b̂. Then the result follows by recognizing that ||p− Bpb||2Qpp

≤ F (b) for all
b ∈ Rp. □

Geometrically, the region Ω of (8.26) captures all those b ∈ Rp of which the vectors
Bpb have a weighted squared distance to p that is not greater than F (b̂). With Bp

being of full column rank and by using the orthogonal decomposition ||p−Bpb||2Qpp
=

||P ⊥
Bp

p||2Qpp
+ ||b̂−b||2Qb̂b̂

, in which Qb̂b̂ = (BT
p Q−1

pp Bp)−1, the region can also be written
in ellipsoidal form,

Ω = {b ∈ Rp| ||b̂− b||2Qb̂b̂
≤ r2} (8.27)

with r2 = F (b̂) − ||P ⊥
Bp

p||2Qpp
. Note, since b̂ ∼ Np(b, Qb̂b̂), that Ω would become a

confidence region with confidence level 1− α, if r2 would be chosen as r2 = χ2
α(p, 0).

8.6 Global minimization of the Ambiguity Function

In this section we present our proposed method for finding the global minimizer
b̌AF of the ambiguity function F (b). The method is based on that of Teunissen and
Massarweh (2024), be it that a different convex relaxing lower bounding function
needs to be constructed. We therefore first provide a brief review of the characteristic
components of the algorithm, followed by our construction of the required convex
relaxation of the ambiguity function.

8.6.1 Branch-and-bound based minimization

As b̌AF ∈ Ω (cf. 8.27), we can reformulate our original minimization problem
minb∈Rp F (b) as the minimization of F (b) over a bounded convex region, minb∈Ω F (b).
This can be further simplified if we replace Ω by the ellipsoid-circumscribing box
C = {b ∈ Rp| |bα − b̂α| ≤ rσb̂α

, α = 1, . . . , p} ⊃ Ω. Hence, this brings our task to
solving

b̌AF = arg min
b∈C⊂Rp

F (b) (8.28)
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Figure 8.3: An illustrative example for p = 1, showing the branch-and-bound iterations for computing
the global minimum of the ambiguity function (in black). In the first iteration, the interval [−2, +2]
is defined as search domain for the global optimum, where ∆b refers to the initial value. The
convex lower bound is represented by dashed lines for each interval, where at each iteration the most
promising one (in red color) is halved, thus further isolating the global optimum.

The challenge in solving (8.28) is due to the multimodality of the ambiguity function.
It is not convex and it has a multitude of local minima over C. As this challenge
is similar to the ones of dual mixed-integer least-squares computations, the same
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algorithmic components will be used as in the method of Teunissen and Massarweh
(2024), i.e. a branch-and-bound driven minimization, for which the required lower
bounds are constructed from projected gradient descent solutions of a convex relaxed
objective function.

Table 8.1: Overview of different cases and conditions for the definition of convex lower bound terms
gi,L.

Case Condition Function Plot

zU = 0

[li, ui] ∈
[
0, 1

4
]

gi,L = sin2(πxi) Figure 8.4a

[li, ui] ∈
[ 3

4 , 1
]

[li, ui] ∈
[ 1

4 , 3
4
]

gi,L = sin2(πli) + (xi − li) sin2(πui)−sin2(πli)
ui−li

Figure 8.4b

li ∈
[
0, 1

4
]

, ui ∈
[ 1

4 , 1
]

gi,L = funL(li, ui, xi) Figure 8.4c

li ∈
[
0, 3

4
]

, ui ∈
[ 3

4 , 1
]

gi,L = funU(li, ui, xi) Figure 8.4d

zU > 0

xi < 1 gi,L =
{

funU(li, 1, xi), li < 3
4

sin2(πxi), otherwise

xi ∈ [1, zU ] gi,L = 0 Figure 8.5

xi > zU gi,L =
{

funL(0, ui − zU , xi − zU ), ui > zU + 1
4

sin2(πxi), otherwise

Branch and Bound (BB)

Branch and bound algorithms (Lawler and Wood, 1966; Balakrishnan et al., 1991;
Guida, 2015) are methods for global minimization of nonconvex problems. They are
nonheuristic, in the sense that they maintain a provable upper and lower bound on the
global minimum, i.e. they terminate with a guarantee that the computed solution has
a prescribed accuracy. BB-algorithms involve partitioning a problem into subproblems
(branching) and solving these subproblems to the optimal level, using bounds to
eliminate the need to consider suboptimal solutions (bounding). Although there exist
a large variety of different BB-mechanizations, we shall here restrict ourselves to
the simple approach where the partitioning of the initial box C ⊂ Rp is sequentially
constructed through a splitting in half of the boxes. So at the first level, we start with
the trivial partitioning, which is C itself, and compute the lower and upper bounds
L1 = L(C) and U1 = U(C) (hence, these bounds are local and global at the same
time),

L1 = L(C) ≤ F (b̌AF) ≤ U1 = U(C) (8.29)

If U1 − L1 ≤ ϵ, the algorithm terminates (note: here the user-defined stop-criterion ϵ
should not be confused with the phase-code variance ratio). Otherwise we go to the
second iteration level and partition C into two boxes C = B1 ∪ B2, and compute L(Bi)
and U(Bi), i = 1, 2. The splitting of the box is usually done along its longest edge.
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Then we can construct new global lower and upper bounds,

min(L(B1), L(B2)) ≤ F (b̌AF) ≤ min(U(B1), U(B2)) (8.30)

with L2 = min(L(B1), L(B2)) and U2 = min(U(B1), U(B2)). As both B1 and B2 are
‘smaller’ than C (i.e. they are its partition), one can generally expect the local bounds
for Bi to get sharper in subsequent BB-iterations and the difference between upper
and lower bounds to converge uniformly to zero, see (Balakrishnan et al., 1991).

If U2 − L2 < ϵ, the algorithm terminates. Otherwise, we partition one of B1 and B2
into two boxes, to obtain a new partition of C into three boxes, and we compute the
local lower and upper bounds for these new boxes. We then update the global lower
bound L3 as the minimum of the local lower bounds over the partition of C, and
similarly for the upper bound U3. The choice which of the two boxes to split, B1 or
B2, is based on the value of their local lower bound. The box to be split is the one of
which the local lower bound equals the global lower bound, i.e. the one that has the
smallest local lower bound. As at each iteration level a box is split into two, we have
after k iterations a partitioning of the form C = ∪k

i=1Bi, with associated global lower
and upper bounds of F (b̌AF) as

Lk ≤ min
b∈C

F (b) ≤ Uk (8.31)

where Lk = mini=1,...,k L(Bi) is nondecreasing, while Uk = mini=1,...,k U(Bi) replaces
Uk−1 only if Uk < Uk−1, thus assuring that the global upper bound is nonincreasing
(i.e. possibly speeding up the BB algorithm). Partitioning terminates if the difference
of these bounds is small enough, Uk − Lk ≤ ϵ.

With reference to Lemma 3 (cf. 8.26), we note that the above procedure can be aided
by applying box-shrinking, i.e. any b∗ that has a function value F (b∗) smaller than
the previously used, can be used to shrink the set Ω.

Lower and Upper Bounds

For the bounds we need to be able to compute lower and upper bounds of minb∈B F (b)
for any relevant box B that the BB-algorithm creates. The computation of local lower
bounds L(B) is the most challenging. We cannot use standard gradient-based methods
for computing the minimizer over B, since F (b) is not necessarily convex over B and
convergence is therefore not assured. The idea is therefore to find a differentiable
convex lower bounding function FL(b) ≤ F (b),∀b ∈ B, such that the minimizer of
FL(b) over B can be easily computed and used as the local lower bound

L(B) = min
b∈B

FL(b) ≤ min
b∈B

F (b) (8.32)

where B = {b ∈ Rp| bL ⪯ b ⪯ bU}. Our construction of FL(b) is described in Sect.
8.6.2.

In contrast to the lower bound, the computation of local upper bounds U(B) is
straightforward, since any b∗ ∈ B can in principle be used for that purpose,

U(B) = F (b∗) ≥ min
b∈B

F (b) (8.33)
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A simple choice is to take b∗ as the ‘centre of gravity’ of the box, i.e. if box B is
bounded as bL ⪯ b ⪯ bU , then b∗ = 1

2 (bL + bU ). Another simple choice would be to
take b∗ as the minimizer of the lower bounding function, b∗ = arg minb∈B FL(b) (cf.
8.32), the idea being that if FL(b) approximates F (b) well in B, then FL(b∗) should
not differ too much from F (b∗). A third option is to exploit the smoothness of the
AF-function and compute b∗ as a local minimizer of F (b) over B, thereby using, for
instance, the projected gradient descent method (see below). This local minimizer
becomes then automatically the global minimizer over B, once the branching has
reached the stage that F (b) is truely convex over B.
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Figure 8.4: Illustration of the different convex lower bound terms gi,L (top) and their derivatives g′
i,L

(bottom) for the case zU = 0 in Table 8.1. We consider {l = 0.05, u = 0.20} and {l = 0.75, u = 0.90}
in the first column, {l = 0.30, u = 0.60} in the second column, {l = 0.05, u = 0.45} in the third
column, and {l = 0.40, u = 0.95} in the fourth column.

Projected Gradient Descent (PGD)

As our constructed lower bounding convex function FL(b) is only continuously differ-
entiable, we use the PGD-method to solve for the lower bound (8.32). The algorithmic
steps for doing so are as follows (Bertsekas, 1999; Nocedal and Wright, 2006):

1. Initialize: Start with a feasible solution, b0 ∈ B and then loop for k = 0, . . . until
the stop criterium ||bk+1 − bk|| ≤ δPGD is satisfied, given a user-selected small
threshold δPGD ≪ 1.

2. PGD step: Compute stepsize tk > 0 and projected gradient descent
bk+1 = PB(bk − tk∂bFL(bk)) (8.34)

such that FL(bk+1) ≤ FL(bk), where
PB(y) = arg min

b∈B
||y − b||2 (8.35)
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As B is a box, the orthogonal projection PB : Rp → B can be computed very efficiently.
We have for α = 1, . . . , p,

PB(y)α =

 bα,L if yα ≤ bα,L

yα if bα,L ≤ yα ≤ bα,U

bα,U if bα,U ≤ yα

(8.36)

in which bα,L, yα, and bα,U denote the α-coordinates of bL, y, and bU , respectively.

Example 2 (BB height-determination) Figure 8.3, first panel, shows, over an initial
interval [−2, +2] meters, the ambiguity function (8.17) of an L1 single-frequency, DD
short-baseline model for which only the height difference is assumed unknown, i.e.
p = 1. The true, simulated, height-difference is 30.0cm, while the AF-minimizer is
found to be 30.3cm, using a pseudo range (code) and phase measurement precision of
20cm and 2mm, respectively (note: ∆b is shown with respect to initial value).

In the first iteration, the initial search interval [−2, +2] is taken and the convex lower
bounding function (red dashed line) is evaluated. This interval represents our initial
box C ∈ Rp for p = 1, which is therefore split in two for the second iteration. For
both intervals, we compute the respective convex lower bounding functions (blue and
red dashed line) and their minimum value, i.e. convex lower bound (CLB). The one
with lowest CLB value is taken as most promising interval, here marked in red color.
For the upper bound computations, we simply consider the center of current intervals,
i.e. b∗ = (bL + bU )/2, and compute F (b∗). As the intervals get shorter, the difference
between upper and lower local bounds get smaller as well.

The process is repeated and with further iterations the global minimum is isolated in
smaller intervals where the difference between F (b) and FL(b) also gets smaller, until
convergence. Note that in the last iteration, we have isolated the global minimum
in an interval where the ambiguity function is convex and iterative gradient descent
could have been adopted, see Section 8.5.1. □

8.6.2 Convex relaxation of the Ambiguity Function

We now determine our differentiable convex lower bounding (CLB) function of

F (b) = ||p−Bpb||2Qpp
+ 4wT sin2[π(ϕ−Bϕb)]

= ||p−Bpb||2Qpp
+ 4

m∑
i=1

wi sin2[πcT
i (ϕ−Bϕb)]︸ ︷︷ ︸

G(b)

(8.37)

As the first term on the right-hand side is already convex, we concentrate on finding
a convex relaxation of the second term G(b). We thus aim to find a differentiable
convex function GL : B → R, such that

GL(b) ≤ G(b), ∀b ∈ B (8.38)
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Figure 8.5: Illustration of the convex lower bound term gi,L given the case zU > 0 described in Table
8.1, along with the associated derivative terms g′

i,L, where we consider for this example a particular
interval {l = 0.3, u = 3.2}.

so that we obtain the convex lower bounding (CLB) function

FL(b) = ||p−Bpb||2Qpp
+ GL(b) ≤ F (b), ∀b ∈ B (8.39)

with its gradient given by

∂bFL(b) = −2BT
p Q−1

pp (p−Bpb) + ∂bGL(b) (8.40)

Given that G(b) is a summation of scalar terms,

G(b) = 4
m∑

i=1
wigi(xi(b)), gi(xi(b)) = sin2(πxi(b)) (8.41)

where xi(b) = cT
i (ϕ−Bϕb) ∈ R, we may seek a CLB function of similar structure,

GL(b) = 4
m∑

i=1
wigi,L(xi(b)) (8.42)
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Figure 8.6: A branch-and-bound iteration towards the global minimum of the ambiguity function
F (b) (cf. 8.17) for an L1 single-frequency, DD short-baseline model with the horizontal position
coordinates assumed unknown, where at each iteration the most promising box (in red color) is
halved.
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such that gi,L(xi(b)) ≤ gi(xi(b)),∀b ∈ B, thus satisfying (8.38). The box constraint
implies that also xi(b) is bounded in an interval [li, ui] for which gi,L is required to
be convex. These intervals can be found based on the projection-lemma described in
Teunissen and Massarweh (2024).

At this point we provide the definition of gi,L for xi ∈ [li, ui], and different cases
should be distinguished as summarized in Table 8.1. Notice that we define zL = ⌊li⌋
and zU = ⌊ui⌋, where ⌊·⌋ refers to the floor function. Hence, we subtract zL from
the aforementioned quantities, so they are re-defined as xi := xi − zL, li := li − zL,
ui := ui − zL, and zU := zU − zL. Thus, we always have li ∈ [0, 1] with ui ∈ (li, 1)
if zU = 0 or ui > 1 if zU > 0. These two cases are separated in Table 8.1, and are
respectively illustrated in Figure 8.4 and Figure 8.5.

When constructing these CLB terms, we make use of two auxiliary functions ‘funL’
and ‘funU’ that are defined as:

Auxiliary Function #1:

funL(l, u, x) =


sin2(πl) + (x− l) sin2(πu)−sin2(πl)

u−l , l ≥ xT

sin2(πx), l < xT , x ≤ xT

sin2(πxT ) + π(x− xT ) sin(2πxT ), l < xT , x > xT

(8.43)

where xT ∈ [0, 1
4 ] is obtained from

sin2(πu) = sin2(πxT ) + π(u− xT ) sin(2πxT ) (8.44)

Auxiliary Function #2:

funU(l, u, x) =


sin2(πl) + (x− l) sin2(πu)−sin2(πl)

u−l , u ≤ xT

sin2(πx), u > xT , x ≥ xT

sin2(πxT ) + π(x− xT ) sin(2πxT ), u > xT , x < xT

(8.45)

where xT ∈
[ 3

4 , 1
]

is obtained from

sin2(πl) = sin2(πxT ) + π(l − xT ) sin(2πxT ) (8.46)

At the same time, the derivative in b ∈ Rp of each CLB term gi,L follows as

∂bgi,L(xi(b)) = g′
i,L(xi)∂bxi(b) = −g′

i,L(xi)BT
ϕ ci (8.47)

given xi ∈ [li, ui], while g′
i,L(xi) = ∂xi

gi,L(xi) can be easily computed based on the
elementary expressions provided in Table 8.1, and has been illustrated for the two
cases zU = 0 and zU > 0, respectively in Figure 8.4 and Figure 8.5. The gradient
∂bGL(b) is ultimately computed as

∂bGL(b) = −4
m∑

i=1
wig

′
i,L(xi)BT

ϕ ci (8.48)
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Figure 8.7: Contourlines zoom-in of the dual-ILS function D◦(b) (left) and ambiguity function F (b)
(right) for the single-epoch model of example 3. The colourbar scale of D◦(b) is half that of F (b).
The float solution b̂ is shown as a magenta asterisk and the AF-solution b̌AF = arg minb F (b) as a
red circle. The ten black diamonds show the locations of 10 out of the 40 smallest local minima
of D◦(b), with diamond #1 showing the location of the ILS-solution b̌◦ = arg minb D◦(b) = b̂◦(ǎ◦),
with ǎ◦ = arg min

a∈Zn
||â − a||2

Q◦
ââ

.

and ∂bFL(b) will resemble the expression shown in (8.19), after substituting π sin(2πxi)
with g′

i,L(xi) since we are considering now the convex lower bound of F (b).

Example 3 (BB position determination) In analogy with example 2, this example
illustrates the BB-iterations towards the global minimum of the ambiguity function
F (b) (cf. 8.17) in case of an L1 single-frequency, DD short-baseline model for which
only the horizontal position coordinates are assumed unknown. The panels of Figure
8.6 show the contourlines of F (b), together with the per iteration-step increasing
box-densification. Shown are the results for iterations #1, #7, #22, #25, together
with a zoom-in of the last two iteration steps, #25 and #26. The red box is every time
the most promising box to be split. It is the box with lowest CLB value, computed
from the convex lower bounding functions that we introduced in Section 8.6.2. □

8.7 The AF- and LS-principle compared

The fact that the ambiguity objective function (8.17) has a ‘sum-of-squares’ structure
and that the approximation sin2(x) ≈ x2 holds for small x, has led some authors to
link the AF-principle to that of least-squares, e.g. (Rogers et al., 1978; Lachapelle
et al., 1992; Leick et al., 2015), with some even stating that the two are ’fundamentally
equivalent’. Although we show in this section that this statement is incorrect, we also
show under which identified circumstances one can expect AF- and ILS-solutions to
have similar behaviour.
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8.7.1 A least-squares relation

To make a strict comparison between the AF- and ILS-objective functions possible, we
rely on the primal-dual equivalence of mixed-ILS theory as introduced in (Teunissen
and Massarweh, 2024). We therefore first summarize the for current purposes relevant
material in the following theorem (see Section 4 of (ibid)).

Theorem 3 (Primal-Dual mixed ILS): Let the dispersion of the float ambiguity
and baseline estimators, â ∈ Rn and b̂ ∈ Rp, be given as

D
[

â

b̂

]
=
[

Qââ Qâb̂

Qb̂â Qb̂b̂

]
(8.49)

and define the baseline objective function as

D◦(b) = ||b̂− b||2Qb̂b̂
+ ||â(b)− ǎ◦(b)||2Q◦

â(b)â(b)
(8.50)

with â(b) = â−Qâb̂Q−1
b̂b̂

(b̂− b), ǎ◦(b) = arg minz∈Zn ||â(b)− z||2Q◦
â(b)â(b)

and Q◦
â(b)â(b)

being an approximation of the actual baseline-conditioned ambiguity variance matrix
Qâ(b)â(b) = Qââ −Qâb̂Q−1

b̂b̂
Qb̂â. Then the minimizer of D◦(b),

b̌◦ = arg min
b∈Rp
D◦(b) (8.51)

is the solution of the mixed ILS-problem

ǎ◦

b̌◦

}
= arg min

a∈Zn,b∈Rp

(
||â− a||2Q◦

ââ
+ ||b̂◦(a)− b||2Q◦

b̂(a)b̂(a)

)
where

Q◦
ââ = Q◦

â(b)â(b) + Qâb̂Q−1
b̂b̂

Qâb̂

b̂◦(a) = b̂−Qb̂âQ◦−1
ââ (â− a)

Q◦
b̂(a)b̂(a) = Qb̂b̂ −Qb̂âQ◦−1

ââ Qâb̂

■

Proof: See Section 4 of (Teunissen and Massarweh, 2024). □

From the above theorem two important conclusions can be drawn. First, if Q◦
â(b)â(b)

is chosen to be equal to Qâ(b)â(b), then also Q◦
ââ = Qââ and b̂◦(a) = b̂(a), from which

follows that b̌◦ = arg minb∈Rp D◦(b) will be identical to

b̌ = b̂(ǎ) with ǎ = arg min
a∈Zn

||â− a||2Qââ
(8.52)

Thus with the choice Q◦
â(b)â(b) = Qâ(b)â(b), the baseline solution b̌◦ = arg minb∈Rp D◦(b)

is identical to the ILS-baseline estimator b̌, as a consequence of which it will also share
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its statistical optimality properties such as having a maximum ambiguity success-rate
(Teunissen, 1999).

The second conclusion that can be drawn from the above theorem is that even if
Q◦

â(b)â(b) ̸= Qâ(b)â(b), the minimizer b̌◦ = arg minb∈Rp D◦(b) is still an ILS-baseline
estimator, namely

b̌◦ = b̂◦(ǎ◦) with ǎ◦ = arg min
a∈Zn

||â− a||2Q◦
ââ

(8.53)

but now one which uses an incorrect ambiguity-weighting through Q◦
ââ and an incorrect

baseline-mapping through b̂◦(a); compare (8.52) with (8.53). Hence, (8.53) will not
have the optimality properties of (8.52). Using the statistical and distributional
properties of ǎ◦ and b̌◦ as given in (Teunissen and Massarweh, 2024), one can study
by how much these properties differ from those of the optimal estimators in (8.52).

As the above makes clear, this departure from optimality is driven by the difference
between Q◦

â(b)â(b) and Qâ(b)â(b). In (ibid) we discussed some cases for which the
estimators b̌◦ and b̌ performed similarly due to their small difference between the
matrices Q◦

â(b)â(b) and Qâ(b)â(b).

For our current AF-analysis, the relevance of the above Theorem 3 lies now in the
fact that with a special choice for Q◦

â(b)â(b), the ILS-baseline producing objective
function D◦(b) can be given a structure that closely resembles that of the ambiguity
objective function F (b). For the ambiguity objective function given in (8.17), assuming
wi = 1

4π2σ2
ϕi

, we have

F (b) = ||b̂− b||2Qb̂b̂
+

m∑
i=1

sin2(πcT
i (ϕ−Bϕb))

π2σ2
ϕi

(8.54)

A very similar structure is obtained for D◦(b) if Q◦
â(b)â(b) = diag(σ2

â1(b), . . . , σ2
ân(b)).

With this choice we have ǎ◦ = arg min
a∈Zn

||â − a||2Q◦
ââ

= (⌈â1(b)⌋, . . . , ⌈ân(b)⌋)T , and

therefore D◦(b) = ||b̂ − b||2Qb̂b̂
+
∑n

i=1
1

σ2
âi(b)

(âi(b)− ⌈âi(b)⌋)2, which can be worked
out as

D◦(b) = ||b̂− b||2Qb̂b̂
+

n∑
i=1

d2(cT
i A+

ϕ
(ϕ−Bϕb))

σ2
(A

+
ϕ

ϕ)i

with

d(x) = (x− ⌈x⌋)
A+

ϕ = (AT
ϕ Q−1

ϕϕAϕ)−1AT
ϕ Q−1

ϕϕ

σ2
(A+

ϕ
ϕ)i

= cT
i (AT

ϕ Q−1
ϕϕAϕ)−1ci

(8.55)

The two expressions, (5.6) and (8.55), look very similar, but with the following marked
differences,
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1. The functions used in the two respective sums are sin2(πx)
π2 in (5.6) and (x−⌈x⌋)2

in (8.55).

2. The arguments used in the two functions are cT
i (ϕ−Bϕb) in (5.6) and cT

i A+
ϕ (ϕ−

Bϕb) in (8.55), while normalized with the variances σ2
ϕi

in (5.6) and σ2
(A+

ϕ
ϕ)i

in
(8.55).

3. Furthermore, as a consequence, the sum in (5.6) is over m, the dimension of the
phase vector ϕ, while the sum in (8.55) is over n, the dimension of the ambiguity
vector a.

In the absence of these differences, the two functions F (b) and D◦(b) would be identical
and the ambiguity function determined baseline b̌AF = arg minb∈Rp F (b) would be a
true ILS-baseline, albeit one determined from an incorrect ambiguity variance matrix.

Note that the second of the above differences (and implictly the third as well) is due
to the fact that D◦(b) is based on a conditional least-squares ambiguity estimation,
while this is not true for F (b). The ambiguity function F (b) works namely directly on
the phase data and it thus therefore not exploit any time-constancy in the ambiguities
if such would be present. Hence, if we assume to work with DD phase data in either a
single-epoch model or a multi-epoch model in which all ambiguities are disconnected
in time, then Aϕ = Im, from which follows that the last two of the above differences
disappear, since then A+

ϕ = Im and m = n. As immunity for cycle slips is considered
one of the attractive features of AF methods, we summarize the properties for the
case Aϕ = Im separately in the following corollary.

Corollary 1 (AF as ILS approximation) If Aϕ = Im, replacement of sin2 πx
π2 in

(5.6) by (x − ⌈x⌋)2 turns the ambiguity function F (b) into D◦(b), the minimizer of
which is the ILS-baseline b̌◦ (cf. 8.53) with Q◦

â(b)â(b) = diag(σ2
â1(b), . . . , σ2

ân(b)). ■

This result shows that the extend to which the AF-solution b̌AF = arg minb∈Rp F (b) can
be considered an approximate ILS-solution hinges on the approximation of (x−⌈x⌋)2 by
sin2 πx

π2 . Although the maxima of these two functions are quite different, their minima
are identical and their local behaviour around these minima is also very similar. For
x = z + δ, with z ∈ Z and δ = small, we have namely sin2 πx

π2 ≈ δ2 = (x− ⌈x⌋)2. This
shows that under the condition of Corollary 1, one can indeed expect the minimizers
of F (b) and D◦(b) to be quite close.

This is illustrated, for the model of example 3, in Figure 8.7. To the left we have the
contourlines of D◦(b) and to the right those of F (b). Apart from their difference in
scale, the two contour plots show a very similar topography, with their local minima
at almost identical locations. The ten black diamonds, for instance, show the locations
of 10 out of the 40 smallest local minima of D◦(b), but they are at the same time
also very close to the corresponding local minima of F (b). And this also holds true
for their global minimum, with the black diamond #1 identifying the ILS-solution
b̌◦ = arg minbD◦(b) and the red circle identifying b̌AF = arg minb F (b).
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As the strength of the underlying model is not in play in the properties captured
by Corollary 1, the close-to-ILS behaviour of the AF-solution b̌AF will not change
when varying the ambiguity success-rate of the model. In Table 8.2 we show the
formal standard deviation (σUP) and the simulated RMS-values of b̂ (float), b̌◦ (ILS),
and b̌AF, for three different success-rates (SR) of the model used in example 2. The
success-rates were reduced by reducing the number of satellites from 8 via 6 to 5.
These results show the consistency between σUP and the float-RMS values and how
the AF-RMS values follow those of ILS. The RMS-values of AF and ILS get poorer for
smaller success-rates and for very small success-rates even poorer than the RMS of the
float solution. This shows just as for ILS, it is the ambiguity success-rate that plays a
decisive role in the quality of the AF-solution. Hence, although the ambiguity function
is a function of b only, the statistical and probabilistic quality of its minimizer is still,
like the ILS estimator of b, in a large part driven by the ambiguity success-rate.

Table 8.2: Formal standard deviation (σUP) and simulated RMS-values of b̂ (float), b̌◦ (ILS), and
b̌AF, for three different success-rates (SR) of the model used in Example 2. For b̌◦ (cf. 8.53), matrix
Q◦

â(b)â(b) was chosen as Q◦
â(b)â(b) = diag(σ2

â1(b), . . . , σ2
ân(b)).

SR [%] σUP [cm] Float [cm] ILS [cm] AFM [cm]
99.99 101.9 101.8 1.0 1.1
86.84 194.7 194.5 113.6 113.9
45.06 418.1 418.0 372.5 372.9

As an additional remark to our comparison of the two objective functions (5.6) and
(8.55), we note that the difference in their phase-arguments can easily be eliminated
by re-defining the ambiguity function such that cT

i (ϕ − Bϕb) and σ2
ϕi

in (5.6) are
replaced by cT

i A+
ϕ (ϕ−Bϕb) and σ2

(A+
ϕ

ϕ)i
, respectively. This however, would eliminate

the immunity-to-cycle-slip property of the ambiguity function.

8.7.2 What about differencing?

The above considerations have shown that the extend to which the AF-solution can
be expected to be close to the statistically optimal ILS-solution b̌ depends on the
differences listed for (8.52) and (8.53), and on how well Q◦

â(b)â(b) approximates the
actual ambiguity variance matrix Qâ(b)â(b). However, in addition to this, there are
also two other aspects that one should keep in mind when comparing AF with ILS.
The first is their difference in solution-uniqueness as discussed in Section 8.3 and the
second is their ability to handle data transformations, like e.g. phase differencing.

In our review Section 8.2 we already alluded to the fact that the AF baseline solution
lacks invariance against different forms of data differencing. To understand the
essence of this better, consider data differencing as a linear transformation and
then first recall the property which the least-squares principle has with respect to
invertible linear transformations of the data. In case of least-squares the parameter
solution remains invariant provided the weighting accomodates the effect of the data
transformation. Such accomodation however, is not generally available with the
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AF-method. The w-vector in (8.12) can take care of variations in precision, but not
accomodate any correlations that a linear transformation of the data may introduce.
Another way of describing this difference between the two principles is to consider
the PDF transformation rule for the normal distribution and the circular normal
distribution. The normal distribution is closed under linear transformations. That
is, a linear transformation of a normally distributed random vector is again normally
distributed. Such is, however, not the case with the circular normal distribution. A
linear combination of circular normally distributed random variables is not circular
normally distributed anymore.

This lack of being closed under linear transformations implies that one has to be
careful when formulating the carrier-phase part of the AF likelihood function. Under
the assumption that the considered carrier-phase observables are circular normally
distributed, usage of (8.12), as maximum likelihood estimator, requires the carrier-
phase observables to be independent. This implies, in the context of GNSS, that
only undifferenced (UD) or (between-receiver) single-differenced (SD) carrier-phase
observables would qualify as potential entries of the m-vector ϕ. Double-differenced
(DD) carrier-phase observables, being correlated amongst themselves, would then not
qualify in principle.

But usage of the AF-method with DD carrier-phase observables is of course not
forbidden. As our numerical examples have shown, their AF-results can become quite
close to the ILS-solutions and similarly to the SD-based AF-results, as a consequence
of the typically high-precision of the GNSS phase-observables. What one should keep
in mind however is that the solution would then not be invariant for the in principle
arbitrary way in which DD observables can be defined. Hence, from the same UD data
set, one would then obtain different AF solutions when using different definitions of
the DD observables. Although these solution differences can be small, it is important
that this lack of invariance is understood when applying the AF-method.

8.8 Summary and conclusions

In this contribution we introduced new theory for the ambiguity function method. Its
two main components are (i) the provision of a probability model by means of which
the AF-estimator can be identified as a maximum likelihood estimator, and (ii) the
provision of a global optimizer of the AF-likelihood function, having finite termination
with a guaranteed epsilon-tolerance.

It was shown that for the AF-estimator to be a maximum likelihood estimator, the
multivariate distribution of the phase data must consist of independent circular normal
distributions. Although the suggestion of the circular normal distribution for phase
data is not new, see (Cai et al., 2007), our linkage of the circular normal distribution
to the ambiguity function method and its requirement for the AF-estimator to be
a maximum likelihood estimator, are new. In this context we also showed how the
ambiguity function method can be generalized so as to enable the inclusion of varying
weights for the phase data.
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Although the attractiveness of the ambiguity function method is the integer-ambiguity
invariance of its objective function, we showed that this same invariance may also
cause nonuniqueness in its solution. As this possible nonuniqueness appears to be
overlooked in the AF-literature, we determined in Theorem 1 the explicit conditions
that need to be satisfied for such nonuniqueness to occur. This nonuniqueness is then
removed by code-regularization in Theorem 2.

To better understand the challenges of computing the AF-solution, we first character-
ized the multimodality of the ambiguity function, provided its gradient and Hessian
matrix in Theorem 2 and determined a convex region in which its minimizer is guaran-
teed to reside. As iterative gradient descent methods alone will not be able to ensure
the determination of the global minimizer of the multimodal ambiguity function, we
introduced our globally convergent algorithm which is constructed from combining
the branch-and-bound principle, with a special convex-relaxation of the ambiguity
function, to which the projected-gradient-descent method is applied. Each of the
method’s three constituents was described, with special emphasis to the construction
of the required continuously differentiable, convex lower bounding function of the
multimodal ambiguity function. Several examples were provided in which the workings
and performance of our AF-algorithm were numerically and graphically illustrated.

Finally, a further comparison between the AF-principle and that of ILS-estimation
was made using the primal-dual equivalence of mixed-ILS theory as introduced in
(Teunissen and Massarweh, 2024). Based on this equivalence, as summarized in
Theorem 3, it was shown that the differences are driven by those listed for (8.52) and
(8.53), as well as by the impact of neglecting the correlation between the baseline
conditioned, float ambiguities. From this comparison, as well as from the identified
differences in nonuniqueness and dependence on linear transformations, the conclusion
is reached that the two principles are fundamentally different, although there are
identified circumstances, as was shown, under which one can expect AF- and ILS-
solutions to behave similarly.
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9
Conclusions

9.1 Conclusions

In this dissertation, we considered mixed-integer models in the context of Global
Navigation Satellite Systems (GNSS), but most of the theoretical contributions of
this work can be generalized also to non-GNSS problems dealing with a mixture of
integer ambiguities a ∈ Zn and real-valued parameters b ∈ Rp. This thesis tackled
mixed-integer least-squares problems, and the search for candidate solutions, from two
different perspectives. First, we looked into the discrete domain of ambiguities, used
to conditionally update real-valued parameters, e.g. positioning coordinates. Then,
we formulated a dual problem mainly concerned with these parameters of interest for
the user, and therefore implicitly solving for the unknown ambiguities.

The main conclusions can be summarized as follows:

• In Part I (Primal formulation), we started by introducing in Chapter 2 new
integer estimators, so extending the bootstrapping principle to the vectorial
case. The Vectorial Integer Bootstrapping (VIB) estimators were compared
against legacy estimators such as integer rounding, integer bootstrapping and
the (success-rate optimal) integer least-squares. A performance ordering was
therefore established, showing that by means of larger blocksets of ambiguities
it is possible to obtain quasi-optimal performance, since ambiguity correlation is
more extensively considered. It was also demonstrated how other techniques,
e.g. widelane-narrowlane (Teunissen, 1997), belong to this family of vectorial
solutions. The vectorial solutions were proved to be flexible since balancing
computational efficiency and success rate performance by means of a user-selected
partitioning of the ambiguity resolution problem. Lastly, the possible extension
of these vectorial solutions to other classes of estimators was discussed.
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Overall, VIB-based solutions are highly effective in high-dimensional problems, as
demonstrated in Chapter 3 where we compared and analyzed different ambiguity
fixing solutions for Orbit Determination and Time Synchronization (ODTS)
processes. The ODTS aims at estimating accurate satellite products, and it
relies on a global network of ground station receivers. First, the impact of
ambiguity resolution was studied with respect to the network size, showing that
a plateau is reached with global networks of around 25–30 stations, whereas a
factor ‘2’ improvement is maintained when comparing float and fixed solutions.
The VIB solutions proved to be suitable for such applications, where thousands
of ambiguities were fixed in a fraction of a second, based on a 14-station network
of well-distributed receivers. Daily RMS error values of few centimeters were
obtained, then validated by a 3-month GPS+Galileo campaign where we looked
at midnight orbit discontinuity errors. At 95% probability, errors of 8.0 cm, 10.1
cm and 18.3 cm were obtained for VIB, (scalar) IB, and float solutions.

After these flexible vectorial solutions were established, we developed a unified
software framework for integer estimation and evaluation, built upon the legacy
of LAMBDA (2012) and Ps-LAMBDA (2013) software. Thus, a new LAMBDA
4.0 toolbox was implemented (in MATLAB), extensively documented, then
released, free and open source, to the community. This implementation not only
included a versatile implementation of VIB estimators, but it also accounted
for additional (classed of) estimators, such as Integer Aperture Bootstrapping
(IAB) and Best Integer Equivariant (BIE). In this way, it was possible to provide
users with a large set of functionalities for different applications. Moreover, this
implementation took advantage of recently enhanced algorithms, including a
search strategy with one-order reduction in the computational time, enabling
numerical success-rate simulations for different classes of estimators.

• In Part II (Dual formulation), we shifted our attention back to real-valued
parameters, and we introduced in Chapter 5 a dual formulation for mixed-integer
least-squares problems, based on a dual orthogonal decomposition. The latter is
complementary to the primal decomposition introduced by Teunissen (1993),
which created the foundations for the LAMBDA method and current state-of-
the-art theory in GNSS ambiguity resolution. A close primal-dual relation was
proved, then exploited in order to study the statistical properties of these new
dual ILS estimators. Two easy-to-compute approximations were introduced,
based on an approximate weighting and an approximate integer mapping, with
dual objective functions respectively denoted as D◦ and D•. While the weighting
approximation implies non-optimal performance, it was shown how quasi-optimal
solutions are still possible for GNSS models, mainly due to the high precision
of carrier-phase measurements. With the second approximation, new pull-in
regions were defined and the distributional statistics was discussed. Given the
multimodality of the dual objective function, a globally convergent solution was
proposed based on a branch-and-bound principle combined with a well-defined
convex relaxation. In this way, optimal solutions were guaranteed (given an
ϵ-tolerance) for the approximate dual problems.
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Our investigation continued by focusing on the special case p = 1, where scalar
real-valued parameters were considered given an arbitrary number of ambiguities
n. Although this is likely not representative of most GNSS models, this simple
analysis provided important geometrical insights and demonstrated that global
solutions can be found based on an enumeration of solutions taking place in the
domain of real-valued parameters. Hence, the P1 algorithm was presented and
numerically evaluated against LAMBDA 4.0 implementation (see Chapter 4),
showing superior computational performance for such particular problems. In
addition, it was also mathematically proved that this algorithm has a complexity
(i.e. number of candidate solutions to be enumerated) growing linearly with
respect to the ambiguity dimensionality n.

When looking at the more general case p ≥ 1, we investigated the branch-and-
bound strategy from Chapter 5, and we provided an extensive analysis of the
computational performance, including different implementation aspects for a
Branch-and-bound INteger-equivariant Global Optimizer (BINGO) solution. A
dual problem normalization was introduced, i.e. convenient for the computations,
along with the evaluation of several different elements: search space initialization,
boxes’ splitting strategy, convex lower bound minimization approach, and so on.
By analyzing GNSS models, it was demonstrated that quasi-optimal solutions
are feasible and comparable with the primal ILS estimator. Moreover, this
highlighted a landscape of potential applications, where additional constraints
on the real-valued parameters can be rigorously taken into account.

Ultimately, the methodology introduced for the dual formulation was exploited
for an in-depth analysis of Ambiguity Function (AF) methods. These were
originally developed in the 1980s for GPS baseline positioning based on different
formulations, but unfortunately often confused in literature. In this final part
of the dissertation, we addressed and bridged some existing theoretical gaps
related to the AF principle. Hence, we demonstrated the nonuniqueness of the
AF solution, later solved via a code-based regularization, and we introduced
a probabilistic model that justifies the AF methods as maximum likelihood
estimator. This is possible when the multivariate distribution of phase data
consists of independent circular normal distributions. Therefore, a similar branch-
and-bound strategy was applied to provide a global solution (with guaranteed
ϵ-tolerance), based on a different convex lower bound function. To conclude, a
comparison between the Ambiguity Function principle and the one of Integer
Least-Squares estimators was presented, based on the primal-dual equivalence
introduced in Chapter 5. In this way, we proved that the two principles are
fundamentally different, although there are identified circumstances under which
the two solutions might behave similarly.
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9.2 Recommendations for future work

Based on this thesis’s contributions, there are some aspects that we consider to be of
interest for future research works, summarized by the following recommendations:

• Vectorial bootstrapping estimators defined in the primal formulation (Part I)
proved to be flexible and highly efficient methods. However, they were mainly
analyzed in the context of integer estimators, so their extension to the class of
Integer Aperture or Integer Equivariant estimators is still an important subject
of future investigation. See example in Miao et al. (2024).

• As VIB solutions are still dependent upon the ambiguity parametrization, it is
important to study how admissible Z-transformations could be generalized to the
vectorial case. An example was given in Chapter 5 with the widelane-narrowlane
transformation, but more general methods should be developed in view of future
navigation systems in low Earth orbit (Wang et al., 2024), where the ambiguity
problem dimensionality will play a central role.

• Although LAMBDA 4.0 toolbox presented many new algorithms and introduced
different (classes of) estimators, it is fundamental to further study the uncertainty
description for all these ambiguity-fixed solutions. For instance, the Best Integer
Equivariant (BIE) estimator is optimal in terms of minimum mean squared errors,
but this solution is not normally distributed and its probabilistic characterization
is therefore necessary.

• The introduction of a dual mixed-integer least-squares problem opened up a
wide range of possible analyses. In fact, this research work mainly focused on the
‘unconstrained’ case, where no additional constraints existed for the real-valued
parameters. However, several GNSS or non-GNSS models do have constraints
that can be exploited to enhance the success rate, i.e. probability of correctly
fixing the ambiguities, and they could be taken into account more rigorously in
this dual formulation.

• In the geometric interpretation of the P1 algorithm, the link between primal
and dual formulations should be further explored, as also noted in Chapter 5,
since an enumeration in the parameter domain is possible (and proved for the
p = 1 case). This could potentially lead to new search algorithms (for p > 1)
that make better use of the information from real-valued parameters.

• A global solution in the dual formulation was made possible by a branch-
and-bound approach, which used a dedicated lower convex bound function
constructed differently for the ILS and AF principles. However, it represents
only one potential approach to guarantee optimal solutions in dual mixed-integer
least-squares problems, and other strategies might be investigated. For instance,
the adoption of simple heuristic methods (e.g. genetic algorithms, particle swarm
optimization, etc.) or alternative global optimization methods can be explored,
thus leading to new solutions and more advanced applications.
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