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Efficient balancing by effort-based activation
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Abstract—We present a unified model for flexibility services
in the power system, identify two existing categories (ramping
and loading) and introduce a new category (stalling). Each
service is characterised by duration, capacity and effort, with
associated prices. We show that the effort of stalling, measurable
in kWh2, is a significant cost component for balancing through
storage and demand response (DR). In future energy systems—
with increased reliance on renewable generation—storage and
DR resources are expected to become an important component
of power system flexibility and balancing. Existing resource
allocation mechanisms are mainly based on pricing in kW (for
ramping) and in kWh (for load). Simulations demonstrate that
conventional pricing mechanisms yield inefficient allocations of
storage and DR resources for power balancing. In contrast,
we show that introducing an additional pricing component in
e/kWh2 (for stalling) improves the allocation efficiency.

I. INTRODUCTION

The power system requires a continuous balance of demand
and supply. Traditionally, the natural variation in energy de-
mand is resolved by ramping the power output of large gener-
ators up and down. Societies now wish to replace conventional
generators with renewable resources. Most of these resources
do not have ramping capabilities, and will in fact contribute to
the variation of load in the system. An important component
of flexibility in future power systems must come from storage
and demand response (DR). Resources that offer that kind of
flexibility are able to shift load over time, but usually not
willing to change their net consumption over a longer period
of time. We are interested in mechanisms that can activate this
largely untapped flexibility in an efficient way.

Current mechanisms settle the use of power system flexi-
bility by the amount of energy (in kWh) that a resource has
withheld (or delivered extra) by reducing (or increasing) its
load. This is a useful quantity for conventional generators,
whose variable costs for providing flexibility also scale with
the generated amount of kWh. That is, the effort that a
conventional power plant has to spend to resolve an imbalance
is proportional to its variable production costs in e/kWh.

In contrast to the cost of producing energy, the cost of stor-
ing energy or delaying consumption depends on the amount of
energy and the amount of time. Therefore, applying the same
pricing structure to reward power plants, storage operators and
consumers for their flexibility (i.e. by settling in kWh) yields
an unfair bias, because the pricing structure is more congruent
with the cost structure of one technology.

Outlook: In this paper we present a unified model for
electricity services, investigate the pricing structure of various

services in relation to their cost structure, and show how
storage and DR services can be activated more efficiently by
including duration in their price. In Section II we elaborate
this paper’s contributions and its relation to the literature. In
Section III we formalise our model and introduce definitions
for shifting energy over time. In Section IV we investigate
an alternative pricing structure for balancing that captures the
effort of storage and DR. Section V concludes the article.

II. PRELIMINARIES

In this paper we look at the power system as a set of energy
technologies that provide electricity services to each other. We
regard services as “activities that are the object of exchange”
[1]. Electricity services comprise the entire chain of activities
that balance power demand and supply over space and time.
Our taxonomy is given in Figure 1.

Separate legal treatment of the commodity of electricity (as
a marketable good) and its balancing and transport (as an-
cillary and system services) has been designated by European
courts, to apply the concept of free movement of goods (within
the EU’s internal market) to electricity production and retail
[2]. In addition, typology, terminology and formal definitions
of ancillary services vary considerably according to regional
custom [3]. For our concern, it is not important to make these
distinctions (e.g. between goods and services), because we can
capture all activities that balance power demand and supply
in one service model.

Service parameters of ancillary services are mostly geared
towards generator limitations rather than load limitations [3,
p.33]. For example, maximum service duration is not a service
parameter, whilst an essential component of load flexibility.
As a result, DR resources have a hard time providing
conventional ancillary services. In order to successfully
transition from a power system with supply flexibility (from
conventional resources) to a system with demand and storage
flexibility (and renewable resources), new service definitions
that include parameters for demand-side resource constraints
are markedly needed.

This paper’s first contribution is a unified model character-
ising all activities in Figure 1 as a service.1 We restructure
the historical taxonomy and refocus on individual services—
provided by flexible resources—that support the essential

1We do not distinguish between the concepts of electricity service, flex-
ibility service and balancing service, since each of these services entails a
modulation of power flow over space and time.



Fig. 1: One of many possible categorisations of electricity commodities, from the perspective of our proposed unified model
of services. The new stall service category is most pertinent to the blackened areas for which storage and DR may play a
significant role.

function of the power system: a continuous balance of power
demand and supply over space and time. We identify two
categories of individual services, with existing applications as
a marketable commodity:

1) Load services provide a desired amount of energy (in
kWh) within a desired time interval.
E.g. electricity provision and transport.

2) Ramp services provide a desired increase (or decrease)
of power (in kW) within a desired time interval.
E.g. frequency control and system restart services.

We then introduce a third category, with potential applications
as a marketable commodity:

3) Stall services provide a desired shift of energy—for which
we propose a new metric (in kWh2)—within a desired
time interval.
E.g. storage and demand response.

Our model allows each of these services to be captured by
a generic set of parameter definitions when applied on time-
derivatives of energy profiles.

The metric we propose to quantify stall services is the first
order integral of energy over time, with units in kWh2 (or
Js, i.e. Joule-second). This concept stems from a combination
of queueing theory and what we frame as integral dynamics.
Integral dynamics is the nascent study of time-integrals of state
parameters in classical mechanics, which originated from the
concept of absement, the first order time-integral of displace-
ment.2 Time-integrals of energy have previously been used as
a metric for human reflex performance [4] and for memory
properties in electrical components [5]. The directly related
concept in queueing theory is that of traffic volume, which can
be expressed in call-seconds, kilometer-minutes, erlang-hours,
etc. [6, p.106]. Essentially, we measure the traffic volume of
energy, e.g. through a battery.

Our second contribution is to show that our new metric for
stall services captures a significant variable cost component
of balancing through storage and DR. Resources that can
provide storage or DR capabilities are limited by their response
duration and “tend to have [variable] energy cost curves that
rise dramatically with storage duration” [3, p.34]. Our sug-
gestion is to include duration as a component of service costs.

2This largely unexplored field of study was initially coined as integral
kinematics due to a focus on integrals of distance. We suggest integral
dynamics to capture the study of time-integrals of displacement (integral
kinematics), momentum (integral statics) and energy (integral kinetics).

Recent attempts to define new flexibility services that are more
suitable for storage and DR indeed tend to include specific
parameters for service duration, but do not use duration as a
scalar of variable costs explicitly [7], [8], [9].

Finally, our third contribution is to show that balancing
becomes more efficient when the pricing structure of storage
and DR services explicitly includes the usage duration of the
stall service in its variable costs. To investigate this hypothesis,
we simulate a DR mechanism (between a retailer and a
customer) that uses either a conventional tariff with variable
costs for load services (in e/kWh), or our innovative tariff
with additional variable costs for stall services (in e/kWh2).

III. A SERVICEABLE MODEL OF POWER BALANCING

Our service model consists of two components. In Sec-
tion III-A we introduce a general model to price services. In
Section III-B we apply our model to the power system and
define six balancing services.

A. Service terminology: duration, capacity and effort

We calculate total service costs cs as the sum of fixed costs
cT , investment costs cC and variable costs cS , according to:

cs = cT + cC + cS (1)
where cT = pT · T, cC = pC · C, cS = pS · S (2)

The parameter T is the duration for which the service may be
used, C is the capacity denoting the maximum possible service
rate, and S is the effort denoting the total use of service, as
illustrated in Figure 2. Associated unit prices are: the service
availability price pT , the service capacity price pC , and the
service effort price pS , respectively.

Let s(t) ∈ [0, C] be the rate at which a service is performed
at time t ∈ [0, T ]. We define the service effort S as:

S =

∫ T

0

s(t) dt (3)
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W = 4/3 Mean service time
L = 1 Mean queue length
λ = 3/4 Mean arrival rate

Fig. 2: Example parameters for a time profile of service usage.



The capacity factor CF ∈ [0, 1] indicates the utilisation of
potential output. For a service s(t) used up to time T , potential
output is C · T , and realised output is the effort S, such that:

CF =
S

C · T
(4)

Furthermore, the total service time W (full-capacity operating
hours) and average service time W are given by:

W = CF · T , W =
L

λ
(5) (6)

where L =
S

T
=

1

T
·
∫ T

0

s(t) dt (7)

and λ =
1

T
·
∫ T

0

ṡ(t) · [ṡ(t) > 0] dt (8)

where L is the average service rate (mean queue length), λ
is the average increase in service rate (mean arrival rate), and
ṡ(t) is the change in service rate at time t.3 Eq. 6 is analogous
to Little’s law for queueing processes.

B. Balancing services: ramping, loading and stalling

The application of our service model to power balancing
produces the variables and parameters in Table I. We first
explain the relationship between the variables, then define our
service parameters and end with examples.

Energy variables: Let x(t) be the total amount of elec-
trical work (in kWh) that an agent has done on the grid up to
time t ∈ [0, T ]. A positive x(t) denotes net production until
time t, and negative x(t) denotes net consumption. Following
Newton’s notation for time-derivatives, ẋ(t) represents the
power flow (in kW) at time t, where positive ẋ(t) denotes
a production rate and negative ẋ(t) denotes a consumption
rate. Similarly, ẍ(t) represents the acceleration of power
flow (in kW/h) at time t, where positive ẍ(t) denotes an
increasing production rate (or decreasing consumption rate)
and negative ẍ(t) denotes a decreasing production rate (or
increasing consumption rate). Finally, we define the agent’s
absergy4 (in kWh2) at time t as:

X(t) =

∫ t

0

x(τ) dτ +X0 (9)

where X0 is the initial absergy at t = 0. Absergy is a useful
metric for storage and DR. It measures the agent’s traffic
volume [6, p.106] in terms of energy volume (of production
or consumption) and the duration in which a given volume
is kept. Positive X(t) denotes that most of the agent’s traffic
up to time t was due to lending energy to the grid, while
negative X(t) denotes that most traffic was due to the agent
borrowing energy from the grid. Both advancing production
and delaying consumption increases the agent’s absergy. Both

3Iverson bracket notation is used in equations throughout this article (the
bracketed term is 1 if the condition inside is satisfied, and 0 otherwise).

4In analogy with the concept of absement [4], a portmanteau of “absence of
displacement” which indicates the time-integral of position (hence in units of
ms or meter-seconds), we use the term absergy as a portmanteau of “absence
of energy” to indicate the time-integral of energy (in SI units of Js, or in
kWh2 to maintain our orientation on power networks).

TABLE I: Units and corresponding variables and parameters
in our service model for power balancing.

Unit Variable C S

kWh2 X Action capacity Stall effort Sx
kWh x Stall capacity Cx Load effort Sẋ
kW ẋ Load capacity Cẋ Ramp effort Sẍ
kW/h ẍ Ramp capacity Cẍ Surge effort

delaying production and advancing consumption (and thus,
storing) decreases the agent’s absergy.

Service parameters: Given the energy variables in Ta-
ble I, we define two services for each of three categories
(ramping, loading and stalling). For ramping, we define an
upramp service at rates s↑ẍ and a downramp service at rates
s↓ẍ, according to:

s↑ẍ(t) = ẍ(t) · [ẍ(t) > 0] , s↓ẍ(t) = ẍ(t) · [ẍ(t) < 0] (10)

and use Eq. 3 to determine the effort Sẍ for both ramp services.
The required capacity Cẍ is at least max sẍ(t) ∀ 0 ≤ t ≤ T .
Other parameters in Table I are determined in a similar fashion,
using the following definitions for upload and download
services, and upstall and downstall services, at rates s↑ẋ, s↓ẋ,
s↑x and s↓x, respectively:

s↑ẋ(t) = ẋ(t) · [ẋ(t) > 0] , s↓ẋ(t) = ẋ(t) · [ẋ(t) < 0] (11)

s↑x(t) = x(t) · [x(t) > 0] , s↓x(t) = x(t) · [x(t) < 0] (12)

In Eq. 11, the arrows indicate whether the agent is providing
an upload service (production) or using a download service
(consumption). Finally, in Eq. 12, the arrows indicate whether
the agent is providing an upstall service s↑x(t) (e.g. advancing
production) or a downstall service s↓x(t) (e.g. storage).5

Example 1—Load and ramp services: Consider a small
factory that uses a 100 kW machine once a day for 2 hours,
and balances its load through a monthly supply service from
service provider A. In a month, A will provide an upload
service with:
• a duration T ↑ẋ of 30 days, and service time W ↑ẋ of 60 h,
• an upload capacity C↑ẋ of 100 kW, and
• an upload effort S↑ẋ of

(
30 days · 200 kWh

day

)
= 6 MWh.

The variation of the load requires upramping when the ma-
chine is turned on, and downramping when it is turned off
again. If both ramps would take 8 minutes, the supply service
of A would also entail a ramp service with:
• service times W ↑ẍ and W ↓ẍ of 4 h,
• ramp capacities C↑ẍ and C↓ẍ of

(
100 kW
8 min

)
= 750 kW/h,

and
• ramp efforts S↑ẍ and S↓ẍ of

(
30 days · 100 kW

day

)
= 3 MW.

5Table I includes two additional parameters for completeness, and their
names should be considered suggestions without much claim: Action capacity
indicates the maximum amount of possible stall within a given time horizon.
For example, a flexible prosumer may be willing to delay up to 10 kWh for
up to 2 hours within a given day, which would yield an action capacity of 20
kWh2. The second quantity, surge effort, indicates the effect on ramp rate (in
kW/h) of a jerk in power flow. However, we won’t use these concepts further.
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Fig. 3: Three derivative perspectives of a DR service (hatched)
distinguishing a ramp service (bottom), a load service (middle)
and a stall service (top), jointly provided by service provider B.
By lending energy for 5 hours, this DR service would resolve
the misaligned supply from service provider A (shaded green)
with the factory’s demand (red) in our example.

However, it is very uncommon to charge fees to small end
users for ramp rates, or to even inform them on the matter.

Example 2—Stall services: Now let us extend our ex-
ample by assuming that there is a consistent mismatch in the
timing of the factory’s demand and the timing of supply. For
example, service provider A can only deliver between 1pm
and 3pm, while the factory requires power between 8am and
10am. To resolve this, the factory might need a second service
contract through which it is able to advance energy supply by
5 hours each day, e.g. a DR service from service provider
B that enables the factory to borrow energy from a fleet of
electric vehicles (EVs). Each day, B would provide an upstall
service as depicted in Figure 3, with:

• a duration T ↑x of 1 day, and service time W ↑x of 5 h,
• an upstall capacity C↑x of 200 kWh, and
• an upstall effort S↑x of (5 hours · 200 kWh ) = 1 MWh2.

Besides sufficient stall capacity, the vehicles’ batteries also
require sufficient load capacity, will face conversion losses
and will use up a part of their cycle lifetime. The DR service
of B would also entail load and ramp services with:

• load capacities C↑ẋ and C↓ẋ of 100 kW,
• load efforts S↑ẋ and S↓ẋ of (2 hours · 100 kW ) = 200

kWh, and
• ramp efforts S↑ẍ and S↓ẍ of 100 kW.

Here, ramp effort scales with the number of charging cycles,
while load effort also scales with the depth of (dis)charge, and
stall effort scales with both and with the storage/shift duration.
By pricing stall effort, provider B can recuperate its private
costs that scale with storage/shift duration. Two real-world
phenomena give rise to such costs:

Firstly, round-trip efficiency decreases with duration. The
amount of this efficiency loss varies tremendously between
different storage and DR resources. Although most battery
technologies have negligible (intraday) dissipation losses [10],
they may have a critical influence in e.g. heat storage; while
for DR, shifting consumption entails a deviation from an
otherwise optimised schedule. As a result, less efficient means
will be selected, or more means than necessary. In the case of
an EV fleet, for example, a longer DR service will necessarily
involve more cars, as individual cars may drive off in between.

Secondly, opportunity costs increase with duration. The
service-time spent stalling may have been used to serve some
other purpose. For example, DR by industrial technologies
may induce high variable costs due to delaying personnel.

IV. DEMAND RESPONSE AS A STOCHASTIC GAME

In this section we study whether including a price com-
ponent for stall effort can improve the allocation efficiency
of DR services. We investigate a retailer-customer system
in which a flexible customer offers to resolve imbalances
on the retailer’s behalf, at a known tariff T .6 As a pricing
structure, we use various sets of unit prices pT for service
duration, capacity and effort. Costs for duration and capacity
correspond to fixed costs and investments, respectively, while
costs for effort correspond to variable costs. Here we focus
on the latter. Specifically, we show that pricing stall effort
(in e/MWh2), in addition to the more common pricing of
load effort (in e/MWh), increases the market efficiency of
the retailer-customer system when the customer has some
flexibility.

Method: We model the system as a game played by
the retailer and the customer, in which exogenous events are
represented as stochastic moves by a third player: nature.
Similar to other authors [7], [9], [11], we let the customer
set the tariff, because it has the relevant private information
about costs that arise when a DR service is used. In the stage
game:
• the customer offers a tariff (a set of unit prices for load

and stall effort) for providing DR to the retailer,
• nature informs the retailer on upcoming imbalances w.r.t.

its market commitments (where imbalances arrive one at
a time, are unrelated, and are dealt with sequentially),

• for each imbalance, the retailer decides whether or not to
activate the DR mechanism,

• if activated, the customer resolves the imbalance by
deviating from its precommited load, and

• we keep track of the best possible allocation of resources
from a social welfare perspective, as a reference.

In the repeated game, the customer:
• can change the unit prices within its set pT , and
• learns which prices optimise its own utility.

Finally, we compare the resulting allocation efficiency for two
different pricing structures.

6Note the perhaps subtle reversal of the roles of seller and buyer. The energy
seller (i.e. the retailer) becomes a flexibility buyer, and the energy buyer (i.e.
the customer) becomes a flexibility seller.



Notation: Let q(X) be the vector of quantities that may
be priced through a balancing service contract for a given
imbalance X , where the imbalance is specified as an absergy
function X(t) with t ∈ (0, T ).7 We define a conventional
tariff pTcon and an innovative tariff pTinn that price the following
quantities (load effort Sẋ and stall effort Sx):

q(X) =
〈
S↑x, S

↑
ẋ, S

↓
x, S

↓
ẋ

〉
(13)

The conventional tariff pTcon always contains zero prices for
stall effort. Furthermore, let pR and pC be the retailer’s R
and customer’s C own variable costs, respectively. Then the
retailer and customer have private values u given by:

uC
(
pT , X, a

)
=
(
pT − pC

)
· q(X) · [a = 1] (14)

uR
(
pT , X, a

)
=
(
pR − pT

)
· q(X) · [a = 1] (15)

where a is the retailer’s action (a = 1 specifies that the retailer
accepts the offer, and a 6= 1 specifies a rejection). The retailer’s
policy is to accept only offers that yield a positive utility
(therefore uR ≥ 0). The customer’s policy is to choose a
tariff that yields the highest expected utility over the duration
of the contract (therefore E

[
uC
]
≥ 0).

The parameters of the utility functions in Eq. 14 and 15
correspond, in the given order, to the sequential outcomes of
the following decision tree:

C

pT

N

X

R

a

(
uC , uR, w, wmax

)

The tariff pT is determined by the customer (C); the imbalance
X , specified as the absence of energy, is determined by nature
(N ); and the action a is determined by the retailer (R).

Furthermore, we define two variables for social welfare. The
realised social welfare w(a,X) does not depend on pT—only
on the action a and imbalance X—and is given by:

w(a,X) = uR + uC (16)

=
(
pR − pC

)
· q(X) · [a = 1] (17)

whereas the maximum obtainable social welfare wmax de-
pends only on the imbalance X , and is given by:

wmax(X) =
[(
pR − pC

)
· q(X) > 0

]
(18)

Any resource allocation that does not result in maximum social
welfare shows an inefficiency. This is normal given a stochastic
setting and given that the allocation mechanism cannot capture
all private values. We compare the performance of our tariffs
pTcon and pTinn on the basis of their average allocation efficiency
η, using:

η =
w

wmax
(19)

where w is the average social welfare over a number of
sequential timeslots j, each with a stochastic imbalance Xj .

7The function X(t) contains all relevant information concerning the
imbalance. The function itself describes credit history, while its first three
derivatives describe energy levels, power flows and ramp rates.
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Fig. 4: Symmetric imbalance modelled as a load of size k (in
kW) and duration τ (in h), shifted by a duration ∆ (in h). The
average load takes 0.1 hours and is shifted by 9 hours.

Settings: Stochastic simulations were repeated with iden-
tical seeds for the comparison between an effort-based tariff
for loading (conventional tariff) and an effort-based tariff for
both loading and stalling (innovative tariff). Each simulation
comprised a repeated game, in which the customer uses a
pattern search through the available tariff space—starting at
its private costs—to maximise its expected utility. Each stage
game comprised a 100 encountered imbalances drawn from a
3-parameter distribution as shown in Figure 4. Each imbalance
is symmetric in the sense that a change in load is followed
by an equal change in the opposite direction at a later point
in time. This provides a simple yet very useful model of
imbalances: any forecasted imbalance can be broken down
into a number of symmetric imbalances, plus some residual
(asymmetric) imbalance that is shifted so far to the future
that it falls within an ahead market. Private value parameters
are stated in Table II. The first row of pR corresponds to
the retailer’s expected costs for using its own portfolio of
energy resources; the second row corresponds to the retailer’s
expected costs for using the imbalance market.

Results: Figure 5 shows the customer’s search over the
round-trip load and stall prices to find a good tariff.8 Shown
searches start by offering DR services at cost price, i.e. at the
customer’s private costs. A customer using the conventional
tariff does not charge according to storage effort Sx, and
changes only the price of its load effort Sẋ, achieving an
average utility of e13 per imbalance. A customer using the
innovative tariff that includes duration proportional pricing
has a second degree of freedom to optimise its profit. Our
initial search method yields an average utility of e18 per
imbalance. As a result, the customer asks for a lower price
for load services and a higher price for stall services, which
better reflects the structure of its private costs. Moreover, the

8The round-trip load price is the sum of prices for upload and download
effort.

TABLE II: Private value parameters of the customer C and
retailer R.

S↑
x S↓

x S↑
ẋ S↓

ẋ

e/MWh2 e/MWh2 e/MWh e/MWh

pC = 〈 5 5 60 60 〉 (20)

pR = 〈 20 20 10 10 〉 (21)0 0 150 150



Fig. 5: Customer search over the available tariff family.

customer is able to learn a good pricing strategy for its services
simply by interaction with its retailer.

Figure 6 shows the retailer’s and customer’s utility together
with the socially best allocation of resources. The latter corre-
sponds to the mechanism’s Pareto front of economic surplus
between the retailer and the customer. The customer’s final
innovative tariff yields a more efficient activation of its DR
services than its final conventional tariff.

Finally, Figure 7 shows the effective round-trip MWh price
as a function of storage time. Markers indicate the required
storage time for a (random) selection of imbalances at the
private costs for which they were resolved. With perfect
knowledge, the customer may seek to set the innovative
tariff at the retailer’s private values. At that set of prices,
the customer would be able to extract the most surplus out
of the mechanism. Given imperfect knowledge about private
values as well as expected imbalances, the customer’s search
converges to the prices as shown. This is a risk averse tariff,
since it is always above the customer’s private costs.

V. CONCLUSION

Balancing markets should level the playing field between
technologies with various cost structures, and accommodate
broader pricing structures. This paper contains three contri-
butions to that end, which we elaborate in Section II. In
Section III we present our service model for power balancing,
encompassing e.g. ramping, production and storage. We argue
that variable costs of storage and DR services scale both with

Fig. 6: Distribution of individual welfare per imbalance, and
allocation efficiency of selected social indifference curves.

Fig. 7: Effective round-trip MWh price for storage durations up
to 48 hours, including a selection of encountered imbalances.

the amount of stored or shifted electrical work (in kWh), and
with the duration of the shift (in h). That is, the effort of
storage and DR is proportional to costs in e/kWh per hour, i.e.
in e/kWh2. We also formally relate the relevant unit for these
variable costs, stall effort (in kWh2), to the concept of absergy.
In Section IV we investigate an alternative pricing structure—
for a DR mechanism between a retailer and a customer—that
explicitly includes the variable costs of stalling. This allows us
to capture e.g. energy dissipation losses and opportunity costs
for storage and DR. Both players benefit from our pricing
structure, making the activation of DR services more efficient
when compared to pricing in kWh alone.

Future work may extend our results to multiple customers
while motivating truthful bidding, e.g. using a Vickrey type
mechanism that may decrease the price of anarchy and further
increase the activation efficiency. This may result in a new
merit order of electricity services—focusing on storage instead
of production—that ranks the storage capacity of flexible
resources according to their marginal costs of stalling.
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