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A B S T R A C T

Artificial Intelligence (AI) has rapidly advanced, significantly impacting software engineering through
AI-driven tools like ChatGPT and Copilot. These tools, which have garnered substantial commercial
interest, rely heavily on the performance of their underlying models, assessed via benchmarks. How-
ever, the current focus on performance scores has often overshadowed the quality and rigor of these
benchmarks, as emphasized by the absence of studies on this topic. This thesis addresses this gap by
reviewing and improving benchmarking practices in the field of AI for software engineering (AI4SE).

First, a categorized overview and analysis of nearly a hundred prominent AI4SE benchmarks from
the past decade are provided. Based on this analysis, several challenges and future directions are
identified and discussed, including quality control, programming and natural language diversity, task
diversity, purpose alignment, and evaluation metrics. Lastly, a significant contribution of this work
is the introduction of HUMANEVALPRO, an enhanced version of the original HumanEval benchmark.
HUMANEVALPRO incorporates more rigorous test cases and edge cases, providing a more accurate
and challenging assessment of model performance. The findings demonstrate substantial drops in
pass@1 scores for various large language models, highlighting the necessity for well-maintained and
comprehensive benchmarks.

This thesis aims to set a new standard for AI4SE benchmarks, providing a foundation for future re-
search and development in this rapidly evolving field.
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1 I N T R O D U C T I O N

Artificial Intelligence (AI) has become the word of the year [60], consistently making headlines and
revolutionizing various domains, including software engineering. The emergence of AI-driven tools
such as ChatGPT1 and Copilot2 has significantly transformed engineering workflows and developed
intense commercial interest amongst leading companies such as OpenAI, Google and Meta. As per-
formance, which translates into commercial viability, is measured by benchmarks, achieving the top
score has become a battleground where the true quality of benchmarks has been neglected: at the out-
set of this study, there is a troubling absence of rigorous studies evaluating the quality of benchmarks
and the practices in the field.

Among these benchmarks, HumanEval [12] has distinguished itself as the most popular benchmark
over the recent years, becoming synonymous with claims of superiority and commercial promise
within the field of AI for software engineering (AI4SE). During my previous work of manually trans-
lating this benchmark into Haskell [81], many notable problems were discovered, prompting the need
for a thorough re-evaluation of both this benchmark and the field of AI4SE benchmarks in general.
Subsequently, this thesis aims to address this gap by focusing on the following two objectives and
associated research questions:

Review and improve benchmarking practices for AI for Software Engineering (AI4SE).

Research Objective 1

What is the current landscape of AI4SE benchmarks?

,→ Research Question 1.1

What are the challenges and takeaways from the existing pool of AI4SE benchmarks?

,→ Research Question 1.2

Establish an enhanced foundation for HumanEval.

Research Objective 2

1 https://chat.openai.com/
2 https://copilot.github.com/

1

https://chat.openai.com/
https://copilot.github.com/


introduction 2

By addressing these objectives, this research aims to move towards better evaluation of LLMs for soft-
ware engineering and contribute to more accurate and reliable tools and practices in the industry.

The structure of this thesis is as follows:

• Chapter 2: Provides a rigorous and extensive survey of existing AI4SE benchmarks, addressing
Research Question 1.1.

• Chapter 3: Builds upon the findings of Chapter 2, offering a detailed taxonomy of the challenges
in current benchmarks and proposing solution directions, addressing Research Question 1.2.
Together with Chapter 2, Chapter 3 addresses Research Objective 1.

• Chapter 4: Introduces HUMANEVALPRO, a reusable, full-fledged solution designed to enhance
the foundation of the HumanEval benchmark, addressing Research Objective 2.

Finally, the thesis concludes with a summary in Chapter 5.



2 C U R R E N T L A N D S C A P E O F A I 4 S E
B E N C H M A R K S

This chapter outlines the existing pool of notable AI4SE benchmarks. Based upon researching these
benchmarks, an analysis can be made as to whether AI4SE benchmarks truly provide meaningful as-
sessments or what exactly is being signified when researchers train models to excel on these bench-
marks. Furthermore, by identifying the current challenges in the AI4SE benchmarks, directions can
be formed to improve the AI4SE benchmarks in the future (Chapter 3).

2.1 general outline of collected ai4se benchmarks
The AI4SE benchmarks considered in this paper are the most relevant, popular, recent and enhanced
benchmarks from the last decade (2014 – 2024), as depicted in Figure 2.2, based on the search process
shown in Figure 2.1. For each benchmark, the following details were collected (if applicable):

• General information: DOI (Digital Object Identifier) paper, date, author affiliations.

• Details: task description, prediction goal and provided context, number of problems, number
and type of tests, (programming and natural) languages present in the benchmark.

• Discussion: bugs, shortcomings and other reviews.

• Data: accessibility/reproducibility, reference(s) to stored data (e.g. GitHub [23], Hugging Face [33]
and Google Drive [24]), sources regarding the data (e.g. data originates from StackOverflow [79]).

Systematic searches for
applicable research papers

Google Scholar

Validate credibility and

relevance of found literature

Citations, background authors,
quality of the work, applicable

to this research, reproducibility,
novelty, accessibility, etc.

Create taxonomy of AI4SE
benchmarks in spreadsheet

Identify (sub) categories

Write literature survey

arXiv

“Benchmarks”

“Software Engineering”

“Large Language Models”

Backwards snowballing

Gather metadata

Figure 2.1: Schematic representation of the search process behind the collection of AI4SE benchmarks.
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2.1 general outline of collected ai4se benchmarks 4

2021 2022 2023 2024
CRUXEval [25]Jan

PythonSaga [86]

EffiBench [30]Feb

DevBench [46]Mar

CoderUJB [95]

EvoEval [85]

EvoCodeBench [47]

GitBug-Java [76]Apr

ConflictBench [73]

DevEval [48]May

LongCodeArena [9]Jun

CodeRAG-Bench [84]

BigCodeBench [104]

HumanEvalPro (Chapter 4)Jul

HE-Eval [18]Jan

MBPP-Eval [18]

APPS-Eval [18]

CoderEval [90]Feb

xCodeEval [42]Mar

RepoEval [96]

HumanEval-X [99]

API-Bank [49]Apr

HumanEval+ [53]May

HumanEval-MINI [53]

MBPP+ [53]

GFG [59]

Gorilla APIBench [68]

Gorilla APIZoo [68]

RepoBench [54]Jun

InstructHumanEval [14]

RestBench [77]

AVATAR [2]Jul

ClassEval [19]Aug

HumanEvalFix [61]

HumanEvalExplain [61]

HumanEvalSynthesize [61]

MultilingualTrans [87]Oct

NicheTrans [87]

LLMTrans [87]

SWE-bench [39]

CrossCodeEval [17]

InfiCoder-Eval [36]Nov

Natural2Code [22]Dec

BinSum [40]

DSP [11]Jan

CodeContests [50]Feb

TransCoderST [72]

MCoNoLa [83]Mar

MTPB [62]

BIG-Bench [78]Jun

NumpyEval [93]

PandasEval [93]

CoST [103]

XLCoST [102]

AixBench [26]

MultiPL-HumanEval [10]Aug

MultiPL-MBPP [10]

CodeComplex [8]Sep

Multi-HumanEval [5]Oct

MBXP [5]

Multi-MathQA [5]

GSM8K [21]Nov

GSM-HARD [21]

DS-1000 [45]

Lila [58]Dec

ReCode [82]

CodeXGLUE [56]Feb

APPS [27]May

HumanEval [12]Jul

MBPP [6]Aug

MathQA-Python [6]Aug

CoSQA [31]Aug

CODAIT [35]Oct

APIBench-Q [69]Dec

2014 2015 2016 2017 2018 2019 2020
Methods2Test [80]Sep

MathQA [3]May

SPoC [44]Jun

CodeSearchNet [34]Sep

CoRCoD [75]Nov

JuICe [1]Nov

NL2Bash [52]Feb

CoNaLa [89]May

DeepCom [29]

NAPS [94]Jul

Concode [37]Aug

Spider [91]Sep

BIKER [32]

WikiSQL [100]AugMultiArith [71]Oct

Django [63]Nov

Defects4J [41]Jul

Figure 2.2: Timeline of notable AI4SE benchmarks from 2014 to mid 2024.



2.2 detailed overview of categorised ai4se benchmarks 5

2.2 detailed overview of categorised ai4se benchmarks
Currently, one of the most popular AI4SE benchmarks is HumanEval [12], used to evaluate the perfor-
mance of many notable models with software engineering capabilities (e.g. Codex [12], Gemini [22]
and GPT-4 [64]). This benchmark is used mainly for code synthesis, though there also exist some vari-
ations for code repair and code explanation [61]. The family of HumanEval benchmarks is depicted
in Table 2.1. After an in-depth analysis of these benchmarks, which can be found in Appendix A, it
becomes clear that this family of benchmarks suffers from the following issues: incorrect tests, lack of
proper test coverage, incorrect canonical solutions, and imprecise problem definitions. While there
are versions that have improved the language support [5, 10, 61, 99] and test coverage [18, 53], there is
no version that contains all the improvements combined nor fixed the original issues. The issues for
enhancing the original dataset can be generalised as follows:

• Variants that cover multiple languages have duplicated the original issues.

• Variants that added tests used the original incorrect solutions to generate the output.

• Variants based on human corrections or translations are inconsistent.

Furthermore, prompting production systems, such as ChatGPT-3.5, a detail of an incorrect problem
in the original HumanEval benchmark yields the exact same mistake in the response (see Figure A.2),
revealing a high likelihood of production systems being contaminated with the data of this bench-
mark, albeit in a near-identical form, potentially due to its high popularity, rendering the benchmark
outdated.

Another AI4SE benchmark, highly similar in style and popularity compared to HumanEval, is MBPP [6]:
Mostly Basic Python Problems. It contains nearly a thousand crowdsourced problems, where almost
half of it is sanitized and separately released. Furthermore, several enhancements have been pub-
lished for MBPP, see Table 2.2. Upon a more in-depth analysis of MBPP and its family of benchmarks,
there are many signs suggesting deficient quality. One notable problem is the lack of proper testing,
as MBPP originally only has three (rather trivial) tests per problem – which are all revealed in the
prompt as well. With such a test suite in place, evaluation metrics become unstable and insignificant
for proper comparison. The strength of the written tests and solutions themselves is not only trou-
blesome in the original data but also the sanitized data features many flaws (even in corrected vari-
ants [53]). From negligible observations such as poor syntax (e.g. too many spaces, Python method
names starting with a capital – this is a common convention to only use for classes) to uncaught bugs
and edge cases that break the implementation. While there are enhancements that improve the lan-
guage support and extend the test cases, they are all built upon inadequate foundations, which ren-
ders any MBPP benchmark suboptimal for properly assessing the capabilities of and between AI4SE
models. In addition, a pattern of problems is starting to emerge for AI4SE benchmarks based on the
in-depth inspection of HumanEval and MBPP. Combined with the inspection of other benchmarks in
this chapter, these observed issues form the basis for the challenges and takeaways for AI4SE bench-
marks, outlined in Chapter 3.
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Table 2.1: Overview of AI4SE benchmarks stemming from HumanEval [12]. Note, the # Tests column denotes the
number of tests included in the respective benchmarks. This can either be an average per problem, or
a scale compared to the complete original HumanEval benchmark.

Category Name Language(s) # Tests Task Data

Original HumanEval [12] Python Avg. 7.7
Code
Synthesis

,

Improved
Language
Support

MultiPL-
HumanEval [10]

Bash, C++, C#, D, Go,
Java, JavaScript, Julia,
Lua, Perl, PHP, R,
Racket, Ruby, Rust,
Scala, Swift, TypeScript

Avg. 7.7
Code
Synthesis

,

HumanEval-Fix [61]
Python, JavaScript,
Java, Go, C++, Rust

Avg. 7.7
Code
Repair

HumanEval-
Explain [61]

Python, JavaScript,
Java, Go, C++, Rust

Avg. 7.7
Code
Explanation

HumanEval-
Synthesize [61]

Python, JavaScript,
Java, Go, C++, Rust

Avg. 7.7
Code
Synthesis

HumanEval-X [99]
Python, C++, Java,
JavaScript, Go

Avg. 7.7
Code
Synthesis

,

Multi-HumanEval [5]

C#, Go, Java, JavaScript,
Kotlin, Perl, PHP, Ruby,
Scala, Swift, TypeScript,
Python

Avg. 7.7
Code
Synthesis

Improved
Testing

HumanEval+ [53] Python
Scaled
×80

Code
Synthesis

HumanEval-
MINI [53]

Python
Scaled
×47

Code
Synthesis

HE-Eval [18] Python
Scaled
×14

Code
Synthesis

Instruction-
based

InstructHumanEval [14] Python Avg. 7.7
Code
Synthesis

Extended EvoEval [85] Python

Avg. 773.2
(subtle),
Avg. 49.2
(difficult),
Avg. 43.1
(creative),
Avg. 51.8
(combine),
Avg. 51.3
(tool_use)

Code
Synthesis

,

(Only 100
problems
per category
released
currently)

https://github.com/openai/human-eval
https://github.com/openai/human-eval
https://github.com/nuprl/MultiPL-E
https://huggingface.co/datasets/nuprl/MultiPL-E
https://huggingface.co/datasets/bigcode/humanevalpack
https://huggingface.co/datasets/bigcode/humanevalpack
https://huggingface.co/datasets/bigcode/humanevalpack
https://github.com/THUDM/CodeGeeX/tree/main/codegeex/benchmark/humaneval-x
https://huggingface.co/datasets/THUDM/humaneval-x
https://github.com/amazon-science/mxeval
https://github.com/evalplus/evalplus
https://github.com/evalplus/evalplus
https://github.com/YihongDong/CodeGenEvaluation
https://huggingface.co/datasets/codeparrot/instructhumaneval
https://github.com/evo-eval/evoeval
https://huggingface.co/datasets/evoeval
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Table 2.2: Overview of AI4SE benchmarks stemming from MBPP [6].

Category
Name
Version

Language(s)
# Problems
# Tests per problem

Task Data

Original
MBPP [6]
Original

Python
974
3 (exposed in prompt)

Code
Generation

,

Improved
Language
Support

MultiPL-
MBPP [10]
Sanitized

Bash, C++, C#, D,
Go, Java,
JavaScript, Julia,
Lua, Perl, PHP, R,
Racket, Ruby, Rust,
Scala, Swift,
TypeScript

382 (Bash), 397 (C++),
386 (C#), 358 (D), 374
(Go), 386 (Java), 390
(Julia), 397 (JavaScript),
397 (Lua), 397 (PHP),
396 (Perl), 397 (Python),
397 (R), 397 (Ruby), 397
(Racket), 354 (Rust), 396
(Scala), 396 (Swift), 390
(TypeScript)

3.1 on avg. (tests can
be hidden or exposed
in prompt, configurable
doctests)

Code
Generation

,

MBXP [5]
Original

C++, C#, Go, Java,
JavaScript, Kotlin,
Perl, PHP, Python,
Ruby, Scala, Swift,
TypeScript

848 (C++), 968 (C#), 939
(Go), 966 (Java), 966
(JavaScript), 966 (Kotlin),
966 (Perl), 966 (PHP), 974
(Python), 966 (Ruby), 966
(Scala), 966 (Swift), 968
(TypeScript)

3 (exposed in prompt)

Code
Generation

,

Improved
Testing

MBPP+ [53]
Sanitized

Python
427
Scaled ×35
(for avg. of 3.1)

Code
Generation

MBPP-
Eval [18]
Original

Python
974
101.7 on avg.
(hidden in prompt)

Code
Generation

Besides HumanEval and MBPP, the standardized benchmarks for code synthesis evaluation, there are
many more considerable benchmarks for assessing various categories of tasks within the field of soft-
ware engineering. As a guide for finding specific AI4SE benchmarks, several additional categorized
tables have been listed below, highlighting the most notable benchmarks for each in detail. Table 2.3
features benchmarks with competitive programming as their root, benchmarks used for understand-
ing code complexity and efficiency, and benchmarks related to data science. To assess the mathe-
matical reasoning capabilities of AI4SE models, see Table 2.5. Besides numbers and code, natural
language is also a key component in AI4SE. From supporting instruction-tuned AI4SE models, which
align more with the human brain [7], that aim to accomplish question and answering (QA) similar to
the widely recognized platform StackOverflow, to summarizing code and generating tags, Table 2.6
and Table 2.7 feature AI4SE benchmarks including natural language: text-to-code, code-to-text and
text-to-text (code related).

https://github.com/google-research/google-research/tree/master/mbpp
https://huggingface.co/datasets/mbpp
https://github.com/nuprl/MultiPL-E
https://huggingface.co/datasets/nuprl/MultiPL-E
https://github.com/amazon-science/mxeval
https://huggingface.co/datasets/mxeval/mbxp
https://github.com/evalplus/evalplus
https://github.com/YihongDong/CodeGenEvaluation


2.2 detailed overview of categorised ai4se benchmarks 8

Table 2.3: Overview of various AI4SE benchmarks categories: competitive programming, code complexity and
code efficiency.

Category Name Language(s) # Tests Comment Data

Competitive
Programming

CodeContests [50]

C++, C#, Go, Java,
JavaScript, Lua,
PHP, Python,
Ruby, Rust, Scala,
TypeScript

Avg.
203.7

13,610 problems ,

APPS [27] Python
Avg.
13.2

10,000 problems ,

Code
Complexity

CoRCoD [75] Java 932
Time:
O(1),O(logn),O(n),
O(n logn),O(n2)

GeeksForGeeks
(GFG) [59]

C++, Python
±1,400 /
language
& categ.

Time:
O(1),O(logn),O(n),
O(n logn),O(n2),
O(n3), NP-HARD
Space: ↑ \ O(n3)

Reproducible
via appendix

CODAIT [35] Python 4,000,000
sub-polynomial,
polynomial,
above-polynomial

Private

CodeComplex [8] Java, Python
4,900 /
language

Time:
O(1),O(logn),O(n),
O(n logn),O(n2),
O(n3), NP-HARD

,

PythonSaga [86] Python ?

185 prompts with
balanced code
complexity, spanning
38 programming
concepts

Unreleased

Code
Efficiency

EffiBench [30] Python
Self-defined,
default
avg. 100

1,000 Leetcode
efficiency-critical
problems

https://github.com/google-deepmind/code_contests
https://huggingface.co/datasets/deepmind/code_contests
https://github.com/hendrycks/apps
https://huggingface.co/datasets/codeparrot/appsc
https://github.com/midas-research/corcod-dataset
https://github.com/google-deepmind/code_contests
https://huggingface.co/datasets/deepmind/code_contests
https://huggingface.co/datasets/DONG19/EffiBench
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Table 2.4: Overview AI4SE benchmarks beneficial for data science capabilities.

Name Language(s) # Tests Comment Data

DS-1000 [45] Python Avg. 1.6 NumPy, Pandas, Pytorch, Scipy,
Sklearn, Tensorflow, Matplotlib

,

NumpyEval [93] Python

Avg. 20
functions

Avg. 1
variables

NumPy
(101 problems)

PandasEval [93] Python

Avg. 20
functions

Avg. 1
variables

Pandas
(101 problems)

JuICe [1]
Python, Jupyter
Notebooks

✗
Cell completion
(1.5M training &
3.7K test samples)

DSP [11]
Python, Jupyter
Notebooks

✓
Cell completion
(1,119 problems)

Cannot load
data ( )

BIG-bench [78]
list_functions

Numeric, JSON,
Python

250
Infer and compute functions
over lists of natural numbers

Table 2.5: Overview of math-related benchmarks useful for AI4SE. For more datasets, not necessarily bound to
programming or core math, please refer to the survey by Lu et al. [55].

Category Name Language(s) # Problems Data

Mathematical
Reasoning

MathQA [3] English 37,297
MathQA-Python [6] Python 23,914 Reproducible ( )

MathQA-X [5]
Python, Java,
Javascript

1,883 /
language

,

L ĪLA [58] Python

133,815
questions

358,769
programs

MultiArith [71] English 600
GSM8K [21] English 1,320
GSM-HARD [21] English 1,320
TheoremQA [13] English 800 ,
BIG-bench [78]
see ‘math’ keyword Python Various tasks

https://github.com/xlang-ai/DS-1000
https://huggingface.co/datasets/nuprl/MultiPL-E
https://github.com/microsoft/PyCodeGPT
https://github.com/microsoft/PyCodeGPT
https://github.com/rajasagashe/juice
https://www.github.com/microsoft/DataScienceProblems
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/list_functions/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/list_functions/
https://huggingface.co/datasets/math_qa
https://github.com/google/trax/blob/master/trax/examples/MathQA_Python_generation_notebook.ipynb
https://github.com/amazon-science/mxeval
https://huggingface.co/datasets/mxeval/mathqa-x
https://github.com/allenai/Lila
https://huggingface.co/datasets/ChilleD/MultiArith
https://github.com/reasoning-machines/pal
https://github.com/reasoning-machines/pal
https://github.com/wenhuchen/TheoremQA
https://huggingface.co/datasets/TIGER-Lab/TheoremQA
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md##logic-math-code
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md##logic-math-code
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Table 2.6: Overview of AI4SE benchmarks specifically focused on the inclusion of natural language (part I).

Category Name Language(s)
No. of
Problems

Tests Task Data

Text2Code

CoNaLa [89] English → Python 2,879 Unit
tests ✗

Stack
Overflow Q&A

MCoNaLa [83]
Spanish, Japanese,
Russian → Python

896
(341+210+345)

Unit
tests ✗

Stack
Overflow Q&A

,

APPS [27] English → Python 10,000
Avg.
13.2

Code
Generation

,

APPS-Eval [18] English → Python 10,000
Avg.
181

Code
Generation

AixBench [26]
English, Chinese
→ Java

175

✓ / ✗
(paper
claims
unit
tests)

Method
Generation

(tests not
listed in
/resources)

Natural2Code [22] English → Python ? ✓
Code
Generation

Private

CoSQA [31] English → Python 20,604 Unit
tests ✗

Code Search,
Q&A

WebQueryTest [56] English → Python 1,046 Unit
tests ✗

Code Search,
Q&A

AdvTest [56] English → Python 280,634 Unit
tests ✗

Code Search

CONCODE [37] English → Java 104,000 Unit
tests ✗

Generate
Class Member
Functions

XLCoST [102]
English → C, C++,
C#, Java, JavaScript,
PHP, Python

509K & 58K Unit
tests ✗

Snippet &
Program
Synthesis +
Code Search

MTPB [62] English → Python 115 Avg. 5
Multi-step
Code
Generation

Reproducible
from their
Appendix D

xCodeEval [42]

English → C, C++,
C#, Go, Java,
JavaScript, Kotlin,
PHP, Python, Ruby,
Rust

5,539,899 ✓
Code
Generation

,

BIG-bench [78]
programming_challenge English → Python

7 (very easy),
14 (easy),
14 (medium),
7 (hard)

Labeled
Pairs ✓

Code
Generation

Text2Text
(about code)

InfiCoder-
Eval [36]

English → English
(featuring: Bash, C,
C++, C#, CSS, Dart,
Go, HTML, Java,
JavaScript, Kotlin,
PHP, Python, R,
Ruby, Rust, Swift,
VBA)

270

Labeled
Pairs ✓

(50% not
released
currently)

Free-form
Q&A ability,
e.g. Code
Completion,
Knowledge
Q&A, Code
Debugging

CodeXGLUE [56]/
MicrosoftDocs [57]

Chinese,
Norwegian,
Danish, Latvian
↔ English

52K (Chinese),
46K (Norwegian),
45K (Danish),
21K (Latvian)

Labeled
Pairs ✓

Code
Document
Translation

https://huggingface.co/datasets/neulab/conala
https://github.com/zorazrw/multilingual-conala
https://huggingface.co/datasets/neulab/mconala
https://github.com/hendrycks/apps
https://huggingface.co/datasets/codeparrot/apps
https://github.com/YihongDong/CodeGenEvaluation
https://github.com/aixcoder-plugin/nl2code-dataset
https://github.com/Jun-jie-Huang/CoCLR
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-WebQuery
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-Adv
https://github.com/sriniiyer/concode
https://github.com/reddy-lab-code-research/XLCoST
https://github.com/ntunlp/xCodeEval/blob/main/program_synthesis.md
https://huggingface.co/datasets/NTU-NLP-sg/xCodeEval
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/python_programming_challenge
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/python_programming_challenge
https://github.com/infi-coder
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Text/text-to-text
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Table 2.7: Overview of AI4SE benchmarks specifically focused on the inclusion of natural language (part II).

Category Name Language(s)
No. of
Problems

Tests Task Data

Code2Text

CodeXGLUE [56]/
CodeSearchNet
[34]

Go, Java,
JavaScript, PHP,
Python, Ruby →
English

280,652 (Go),
180,253 (Java),
65,201 (JS),
39,588 (PHP),
28,588 (Python),
27,588 (Ruby)

Labeled
Pairs ✓

Code
Summarization,
Comment
Generation

DeepCom [29] Java → English 588,108 Labeled
Pairs ✓

Code
Summarization

BinSum [40]
Binary functions
(x64, x86, ARM,
MIPS) → English

557,664 Labeled
Pairs ✓

Binary Code
Summarization

XLCoST [102]
C, C++, C#, Java,
JavaScript, PHP,
Python → English

509K & 58K Labeled
Pairs ✓

Snippet &
Program
Summarization

xCodeEval [42]

C, C++, C#, Go, Java,
JavaScript, Kotlin,
PHP, Python, Ruby,
Rust → English

5,587,437 Labeled
Pairs ✓

Tag
Classification

,

BIG-bench [78]
code_line_description Python → English 60 Labeled

Pairs ✓

Code line
description

Long Code
Arena [9]

Python → English 163 Labeled
Pairs ✓

Commit
message
generation

Long Code
Arena [9]

Python → English 216 Labeled
Pairs ✓

Module sum-
marization

While translating natural language is more trivial nowadays, translating code remains challenging due
to various reasons (e.g. versioning, semantics, dependencies). With the lack of diversity in language
support for AI4SE benchmarks and also benefiting numerous other SE tasks, Table 2.8 features an
overview of resources that can support the ongoing development of code translation.

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Text/code-to-text
https://github.com/huxingfree/DeepCom
https://github.com/xinjin95/BinSum
https://github.com/reddy-lab-code-research/XLCoST
https://github.com/ntunlp/xCodeEval/blob/main/tag_classification.md
https://huggingface.co/datasets/NTU-NLP-sg/xCodeEval
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/code_line_description/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/code_line_description/
https://huggingface.co/datasets/JetBrains-Research/lca-commit-message-generation
https://huggingface.co/datasets/JetBrains-Research/lca-module-summarization
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Table 2.8: Overview of useful resources regarding code translation for AI4SE benchmarks.

Category Name Language(s) # Samples Avg. # Chars Data

Programming
Languages

CodeTrans [56] C#, Java 11,800 ±205

TransCoder-
ST [72]

C++, Java, Python 437,030 –
Repro-
duction
Package
( )

CoST [103]
C, C++, C#, Java,
JavaScript, PHP, Python

16,738 ±600

XLCoST [102]
C, C++, C#, Java,
JavaScript, PHP, Python

122,151 ±640

AVATAR [2] Java, Python

7.133 (Train),
476 (Dev),
1,906 (Test)
(note: 3,391
parallel functions
and 250 unit tests)

±689

Multilingual-
Trans [87]

C, C++, C#, Go, Java, PHP,
Python, Visual Basic

19,115 (Train),
3,759 (Dev),
7,545 (Test)

1,099 (Train),
1,135 (Dev),
1,358 (Test)

NicheTrans [87]

Ada, Arturo, AutoHotKey,
AWK, BBC Basic, Clojure,
COBOL, Common Lisp, D,
Delphi, Elixir, Erlang, Factor,
F#, Forth, Fortran, Groovy,
Haskell, Icon, J, Julia, Lua,
Mathematica, MATLAB, Nim,
OCaml, Pascal, Perl,
PowerShell, R, Racket, Ruby,
Rust, Scala, Swift, Tcl

165,457 (Train),
23,509 (Dev),
47,502 (Test)

785 (Train),
995 (Dev),
1,372 (Test)

LLMTrans [87]
C, C++, C#, Go, Java, PHP,
Python, Visual Basic

350 745

xCodeEval [42]
C, C++, C#, Go, Java,
JavaScript, Kotlin, PHP,
Python, Ruby, Rust

5,538,841 (Train),
7,474 (Dev),
20,356 (Test)

–
,

Libraries DLTrans [87]
PyTorch, TensorFlow,
MXNet, Paddle

282 (Train),
36 (Dev),
90 (Test)

1,318 (Train),
2,441 (Dev),
1,841 (Test)

Language
Conversion
Frameworks

MultiPL-
E [10]

Bash, C++, C#, D, Go, Java,
JavaScript, Julia, Lua, Perl,
PHP, Python, R, Racket, Ruby,
Rust, Scala, Swift, TypeScript

– –

MultiEval [5]

C++, C#, Go, Java,
JavaScript, Kotlin, Perl,
PHP, Python, Ruby, Scala,
Swift, TypeScript

– –

Notably, many benchmarks do not reflect real-world code usage scenarios. Hence, several bench-
marks catering to these scenarios (e.g. featuring a wider context) are denoted in Table 2.9.

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
https://github.com/facebookresearch/CodeGen/blob/main/docs/TransCoder-ST.md
https://github.com/reddy-lab-code-research/MuST-CoST
https://github.com/reddy-lab-code-research/XLCoST
https://github.com/wasiahmad/AVATAR
https://github.com/WeixiangYAN/CodeTransOcean
https://github.com/WeixiangYAN/CodeTransOcean
https://github.com/WeixiangYAN/CodeTransOcean
https://github.com/ntunlp/xCodeEval/blob/main/code_translation.md
https://huggingface.co/datasets/NTU-NLP-sg/xCodeEval
https://github.com/WeixiangYAN/CodeTransOcean
https://github.com/nuprl/MultiPL-E
https://github.com/amazon-science/mxeval
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Table 2.9: Overview of AI4SE benchmarks simulating more real-to-life scenarios. For example, by providing
wider context than standalone functions or actual project issues instead of illustrative tasks.

Name Language(s)
No. of
Problems

Tests Task Data

ClassEval [19] Python 100 Avg. 33.1 Class-level
code generation

,

CrossCodeEval [17] C#, TypeScript,
Java, Python

2,665 (Python),
2,139 (Java),
3,356 (TypeScript),
1,768 (C#)

✗
Cross-file contextual
code completion

CoderEval [90]
Java,
Python

230 (Java),
230 (Python)

✓ (source repositories)
Context-dependent
code generation

SWE-bench [39] Python
19,008 (Train),
225 (Dev),
2,294 (Test)

Avg. resolved tests:
20.9 (Dev), 9.1 (Test)
Avg. regression tests:
86.3 (Dev), 111.7 (Test)
Median resolved tests:
2 (Dev), 1 (Test),
Median regression tests:
42 (Dev), 51 (Test)

Solve pull request (PR)
of a GitHub project,
unit test verification
using post-PR
behaviour as the
reference solution

,

RepoBench [54]
Python,
Java

Cross-file:
8,033 (first),
7,618 (random)
In-file: 7,910
Median tokens:
For each, ±10K

✗
Repository-level
context retrieval and
code completion

,

RepoEval [96] Python
1,600 (line),
1,600 (API),
373 (function)

Line, API: ✗
Function: ✓
(source repositories)

Repository-level
code completion,
various granularities:
line, function & API
invocation completion

CONCODE [37]
English,
Java

104,000 ✗
Class-level code
generation

CoderUJB [95] Java 2,239 ✓

Based on 17 real projects:
code generation (function),
code-based and issue-
based test generation,
defect detection,
automated program repair

EvoCodeBench [47] Python 275 ✓ Based on 25 repositories:
code generation

,

BigCodeBench [104]Python 1,140 Avg. 5.6
Code generation with
function calls and
complex instructions

,

DevEval [48] Python 1,874 ✓
Repository-level
code generation

DevBench [46]

Python,
C/C++,
Java,
JavaScript

22
repositories

LLM-as-a-judge or
Avg. # Unit Tests:
Python: 12.4
C/C++: 11.8
Java: 8.2
JavaScript: -
(functional correctness is
not applicable to pure
static web pages)

Software development
lifecycle, including
software design,
environment setup,
implementation,
acceptance testing, and
unit testing

Long Code
Arena [9]

Python 150 ✓
Library-based code
generation

Long Code
Arena [9]

Python

Per context size:

Huge: 270
Large: 270
Medium: 224
Small: 144

✓ (≈ completion lines)
Project-level code
completion

https://github.com/FudanSELab/ClassEval
https://huggingface.co/datasets/FudanSELab/ClassEval
https://github.com/amazon-science/cceval
https://github.com/CoderEval/CoderEval
https://github.com/princeton-nlp/SWE-bench
https://huggingface.co/datasets/princeton-nlp/SWE-bench
https://github.com/Leolty/repobench
https://huggingface.co/datasets/tianyang/repobench_python_v1.1
https://github.com/microsoft/CodeT/tree/main/RepoCoder
https://github.com/sriniiyer/concode
https://github.com/WisdomShell/ujb
https://github.com/seketeam/EvoCodeBench
https://huggingface.co/datasets/LJ0815/EvoCodeBench/tree/main/EvoCodeBench-2403
https://github.com/bigcode-project/bigcodebench
https://huggingface.co/datasets/bigcode/bigcodebench
https://github.com/seketeam/DevEval
https://github.com/open-compass/DevBench
https://huggingface.co/datasets/JetBrains-Research/lca-library-based-code-generation
https://huggingface.co/datasets/JetBrains-Research/lca-project-level-code-completion
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Table 2.10: Overview of AI4SE resources focusing on leveraging the power of APIs or other external sources.

Name
Sources/
API(s)

No. of
Problems

Tests Task Data

RestBench [77]
Spotify,
TMDB

57,
100

Golden solution path
Predict API path(s) for
realistic user
instructions

APIBENCH-Q [69] StackOverflow,
Tutorial Websites

6,563 (Java),
4,309 (Python)

Corresponding APIs,
API classes and source

Predict API for
code-related
questions

BIKER [32] StackOverflow 33,000
Verified subset:
413 pairs

Predict candidate
APIs for query

Gorilla
APIBench [68]

HuggingFace,
TensorHub,
TorchHub

925,
696,
94

10 instruction
references per API call

Predict API based on
user question prompts

Gorilla
APIZoo [68]

Open submissions, including APIs of
Google, YouTube, Zoom and more

Instruction
reference per API call

Predict API based on
user question prompts

API-Bank [49] 73 commonly
used APIs

753 Chinese instruction
reference per API call

Planning, retrieving
and calling API tools

CodeRAG-
Bench [84]

Competition
solutions, online
tutorials, library
documentation,
StackOverflow,
GitHub

25,859 Ground truths
available

Basic programming,
open-domain,
repository-level and
code retrieval

Table 2.11: Overview of AI4SE benchmarks related to pseudocode.

Name Language(s)
No. of
Problems

Tests Task Source Data

SPoC [44] C++ 18,356 Avg. 38.6 Pseudocode to Code Crowdsourced

NAPS [94] Java/UAST 17,477 Avg. 7.5 Pseudocode to Code Generated ✗

Django [63]
Python,
English &
Japanese

18,805 (Train),
1,000 (Dev),
1,805 (Test)

– Code to Pseudocode Generated ,

Additionally, the utilization of APIs play a significant role in AI4SE benchmarks, specifically for models
with Retrieval Augmented Generation (RAG) capabilities. In Table 2.10, prominent benchmarks focus-
ing on leveraging the power of APIs are denoted. Furthermore, Table 2.11 lists benchmarks related to
pseudocode, followed by an overview of notable crowd-sourced AI4SE resources in Table 2.12.

https://github.com/Yifan-Song793/RestGPT
https://github.com/JohnnyPeng18/APIBench
https://github.com/tkdsheep/BIKER-ASE2018
https://github.com/ShishirPatil/gorilla
https://github.com/ShishirPatil/gorilla
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/api-bank
https://github.com/code-rag-bench/code-rag-bench
https://sumith1896.github.io/spoc/
https://github.com/delihiros/pseudogen
https://ahcweb01.naist.jp/pseudogen/
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Table 2.12: Overview of notable crowd-sourced AI4SE resources.

Name Language(s)
No. of
Problems

Tests Source Year Data

WikiSQL [100] Natural language
→ SQL query

80,654 Pairs Amazon MT 2017
(deprecated)

Spider [91] Natural language
→ SQL query

10,181 5,683
11 Yale
students

2018 ,

NL2Bash [52] Natural language
→ Bash

9,305 Pairs Upwork 2018

NAPS [94] Java/UAST →
Pseudocode

17,477 Avg. 7.5

Self-hosted crowd-sourcing
platform, participants
competitive programming
community

2018 ✗

SPoC [44] C++ 18,356 Avg. 38.6 Participants of competitive
programming websites

2019

MBPP [6] Python 974 Avg. 3
Internal pool of
crowdworkers,
Google Research

2021 ,

BIG-bench [78] Python
200+
tasks

Pairs Open-source contributions
via GitHub

2022

With AI4SE models mainly being utilised for program synthesis, it remains relatively questionable how
effective these models are in generating tests and repairing bugs, as it is unclear whether these models
truly understand code. For example, Siddiq et al. [74] observed Codex [12] being able to get above 80%
coverage for HumanEval [12], yet many test smells were discovered and for another dataset, no higher
than 2% coverage was attained. This reveals the importance of benchmarking AI4SE models’ capabil-
ities in test generation, bug repair and understanding. Below, in Table 2.13, several benchmarks are
listed that make an effort to assess the aforementioned.

https://github.com/salesforce/WikiSQL
https://github.com/taoyds/spider
https://yale-lily.github.io/spider
https://github.com/TellinaTool/nl2bash
https://sumith1896.github.io/spoc/
https://github.com/google-research/google-research/tree/master/mbpp
https://huggingface.co/datasets/mbpp
https://github.com/google/BIG-bench
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Table 2.13: Overview of AI4SE benchmarks related to bug repair, test generation and understanding.

Name Language
No. of
Samples

Context Task Data

Defects4J [41] Java

835
(at the time of
writing, it is open
for extension)

Bug and single commit
fix, open-source program,
accompanied by a test
suite

Automated
program repair
(APR), fault
localisation (FL)

METHODS2TEST [80] Java 780,944 Unit tests mapped to
methods (also class-level)

Automated unit
test case generation

BIG-bench [78]
code_line_description Python

20 (numeric),
15 (string),
10 (collection),
15 (logical),
6 (type)

List of inputs/outputs
Inductive code
synthesis (satisfy
I/O relationship)

BIG-bench [78]
auto_debugging Python 34 Program with question

and answer pair(s)

Program state
analysis,
automatic
debugging

BIG-bench [78]
simp_turing_concept Python

6,390 queries,
426 concepts

Few I/O examples
Turing-complete
concept learning

ConflictBench [73] Java 180
Conflicting chunk re-
ported by git-merge
and merged version for
validation

Merge conflict
repair

CRUXEVAL [25] Python 800 Input-output pair for a
short (3-13 lines) function

Test input and
output prediction,
code understanding

, ,

Long Code
Arena [9]

Java,
Kotlin,
Python

5.04k,
1.24k,
8.68k

Bug issue description,
repositories, list of cor-
responding files

Bug localization

GITBUG-JAVA [76] Java 199 Repository, validated by
subsequent version

APR & FL

Long Code
Arena [9]

Python 78
Logs, commit, work-
flows, repository snapshot,
changed files

CI builds repair

https://github.com/rjust/defects4j
https://github.com/microsoft/methods2test
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/code_line_description/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/code_line_description/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/auto_debugging/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/auto_debugging/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/simp_turing_concept
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/simp_turing_concept
https://github.com/UBOWENVT/ConflictBench
https://github.com/facebookresearch/cruxeval
https://huggingface.co/datasets/cruxeval-org/cruxeval
https://crux-eval.github.io/
https://huggingface.co/datasets/JetBrains-Research/lca-bug-localization
https://github.com/gitbugactions/gitbug-java
https://huggingface.co/datasets/JetBrains-Research/lca-ci-builds-repair


3
A TA X O N O M Y O F C H A L L E N G E S A N D
S O L U T I O N D I R E C T I O N S I N A I 4 S E
B E N C H M A R K S

By researching the existing pool of AI4SE benchmarks in the previous chapter (Chapter 2), many in-
sights have been gathered on current practices within the field. Unfortunately, not all works follow
best practices, or in some cases, no best practices even exist – revealing that there is still much work to
be done in the field of AI4SE benchmarks. To adequately shape this evolving landscape, this chapter
aims to provide a structured taxonomy of critical challenges and actionable solution directions that
are essential for advancing AI4SE benchmarks towards greater reliability and relevance.

3.1 quality control
Quality control is paramount in ensuring that AI4SE benchmarks accurately measure the performance
of models. As observed in several studied benchmarks in Chapter 2, such as HumanEval and the
family of benchmarks around it, almost none mention quality control measures and data used for
evaluation oftentimes contains significant errors – confirming the lack of actual quality control being
implemented. Even beyond the original authors, newer papers extending these benchmarks (with the
aim to enhance them) also repeatedly lack rigorous quality control; many fail to thoroughly review
the source data before adding new layers. While reviewing and correcting benchmark data is labor-
intensive, it is essential for maintaining the integrity and usefulness of AI4SE benchmarks.

Some AI4SE engineers argue that errors do not affect model comparisons since all models contend
with the same flawed data. However, data accuracy is crucial for several reasons. Firstly, inaccuracies
compromise the validity of these comparisons – especially when considering a lack of test coverage.
Secondly, incorrect data can lead to misleading conclusions about model performance, setting an
inaccurate performance standard. Lastly, reliable benchmarks build trust within the research com-
munity, encouraging their adoption for further research and development. To mitigate any issues
associated with erroneous benchmark data, recommendable strategies are provided below.

Incorporate a review process in benchmark creation. The review process can be tiered based on the
level of scrutiny required, with the following options available (listed in descending order of quality
assurance):

• Independent peer review: Engage experts with domain knowledge to conduct a thorough re-
view of the benchmark data. This is the highest quality review method but can be resource-
intensive.

17
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• Crowdsourced review: Utilize platforms such as MTurk1 or Prolific2 to gather feedback and
corrections from a large pool of reviewers. This method can easily provide diverse insights and
is cost-effective.

• LLM-based review: Leverage LLMs to automatically detect and suggest corrections for errors
in the data. While not as reliable as human review, LLMs can serve as an initial filter to catch
obvious mistakes.

For research insights and transparency within the community, it is imperative to publish any data or
details regarding these changes. In current AI4SE benchmarks that do mention quality control, the ex-
tent of effort or impact of these measures remains unclear due to the lack of detailed documentation
and dissemination of this information.

Release updated versions. While continuously releasing minor updates (e.g. v1.4.7) for a bench-
mark may be impractical or impossible to maintain, extensively accumulated community feedback
(e.g. GitHub pull requests or discussions) can warrant a higher quality version release at some point.
Ideally, leaderboards would facilitate more frequent versioned releases of benchmarks, automatically
re-running evaluations for all models, as this bottleneck remains the most influential reason for not
updating benchmarks. However, this approach is resource-intensive, thus, it remains best to ensure
that the original version attains a certified level of quality.

3.2 preventing data contamination
The observation that smaller models exhibit significant benchmark performance on certain leader-
boards prompted a closer investigation into data contamination. Confirming the likelihood of data
contamination, the upcoming Chapter 4 shows how some AI4SE models completely drop in perfor-
mance upon changing the data in a benchmark compared to other model and benchmark results.
Ensuring the integrity and reliability of AI4SE models is crucial for producing valid and reproducible
results, thus it is important to understand different ways to prevent data contamination. Otherwise,
misleading conclusions are made and could eventually render all results of certain benchmarks unre-
liable. Below, several strategies are denoted that can be employed to mitigate the risk of data contam-
ination or possibly detect contaminated models.

Temporal data splits. Temporal data splitting involves partitioning the dataset based on time. By
ensuring that training data precedes testing data chronologically, it is possible to avoid using future
information to predict past events, which is unrealistic in real-world scenarios. This method helps
maintain a clear distinction between training and evaluation phases, thus preventing leakage of infor-
mation from the test set into the training set.

Using obfuscated data. Obfuscated data involves modifying the data to retain its original structure
and semantics while making it unrecognizable compared to its previous state. Techniques such as
shuffling or rephrasing instruction sentences, renaming variables, obscuring code using state-of-the-
art obfuscating tools, or even employing LLM-augmented obfuscation can be used. This obfuscation
ensures that models do not rely on mistakenly memorized patterns from contaminated data but must

1 https://www.mturk.com
2 https://www.prolific.com

https://www.mturk.com
https://www.prolific.com
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generalize on “unseen” data. Note, bias may be introduced when models receive differently obfus-
cated data, yet their performance results are directly compared. Thus, this approach should mainly
be used to detect data contamination amongst models.

API-based testing. API-based testing involves evaluating models using a standardized API that pro-
vides access to the test set of the benchmark. This approach ensures that the test data remains hidden
from the developers and the models being tested. The API returns evaluation metrics without expos-
ing the underlying test data, thus preventing any form of data contamination. However, the reliability
of this method depends on the trustworthiness and quality of the API implementation.

Detecting near-duplicates. While this is rather difficult in practice, correct near-duplicate detection
could ensure that similar or identical examples do not appear in both training and test sets. By elimi-
nating these instances, the risk of models overfitting to tested patterns is reduced, thereby enhancing
the accuracy of performance results.

Opt out. As a final measure, benchmark developers can take proactive steps to ensure their data is
explicitly marked as unavailable for scraping from specific websites, such as licenses on GitHub [23],
or for inclusion in widely used large-scale data collections like The Stack [43], which are commonly
employed in training large language models (LLMs). In addition, marking benchmark data with cer-
tain tokens simplifies the identification and exclusion of non-consensual data for model developers
that aim to evaluate on a specific benchmark.

In cases of suspected data contamination, comparing trendlines between results from different bench-
marks and models can help identify outliers that may exhibit unusually high performance due to con-
tamination.

3.3 programming language diversity
The rapid evolution of the AI4SE field has resulted in a significant deficiency in programming language
diversity within its benchmarks. Upon a careful analysis of the AI4SE benchmarks listed in Chapter 2,
a rather substantial imbalance in the distribution of programming languages becomes visible – see
Figure 3.1. Almost 80% of the analysed benchmarks support Python and roughly 40% supports Java.
The next most popular programming languages are C++, C#, JavaScript, Go and PHP, being supported
by roughly 20% of the AI4SE benchmarks. Beyond these languages, support dwindles dramatically,
underscoring the urgent necessity for greater programming language diversity in the field.

The importance of supporting a broader range of programming languages in AI4SE benchmarks is
twofold. Firstly, the current distribution of programming language support is misaligned with the
actual usage patterns across different domains and industries. Secondly, programming languages
exhibit significant variations in their use cases and structural paradigms. For instance, functional
languages, which are scarcely represented in current benchmarks [81], offer different computational
models compared to imperative or object-oriented languages, making AI4SE tools rather incapable
in supporting these languages. Similarly, database languages such as SQL, which are vital for data
manipulation and querying, also receive inadequate representation.
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Figure 3.1: Lack of diversity in programming languages based on 84 prominent AI4SE benchmarks from Chap-
ter 2. In this diagram, only languages with 2 or more benchmarks are considered.

All other programming languages not listed in Figure 3.1 though supported, albeit by only one AI4SE
benchmark (predominantly NicheTrans [87]), include: AWK, Ada, Arturo, AutoHotKey, BBC Basic,
Binary, COBOL, CSS, Clojure, Common Lisp, Dart, Delphi, Elixir, Erlang, F#, Factor, Forth, Fortran,
Groovy, HTML, Icon, J, MATLAB, Mathematica, Nim, OCaml, Pascal, PowerShell, Tcl, and UAST.

There are promising language conversion frameworks, as listed in Table 2.8, applicable for some bench-
marks. However, ideally, benchmarks should be manually constructed or reviewed for specific lan-
guages, as there is a high chance of potential mismatches in the translated problems and common
usage of a language.

3.4 natural language diversity
In addition to the lack of programming language diversity discussed in Section 3.3, the diversity of
natural languages in AI4SE benchmarks is even more limited. To summarize, all prominent AI4SE
benchmarks are primarily in English. Cassano et al. [10] highlighted in 2022 that MCoNoLa is the
only benchmark potentially suitable for evaluating code generation from multiple natural languages,
specifically Spanish, Japanese, and Russian. Despite the passage of several years, there has been min-
imal progress in this area.

Based on the careful analysis in Chapter 2, only a few other benchmarks are revealed which sup-
port natural languages other than English (covering at least 95% of renowned AI4SE benchmarks).
AixBench [26] includes Chinese for method generation tasks. Additionally, Django [63] supports Japanese
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for code-to-pseudocode conversion tasks. For code document translation, the Microsoft Docs bench-
mark [57] in CodeXGLUE [56] supports Chinese, Norwegian, Danish, and Latvian. Lastly, API-Bank [49]
features Chinese instruction references amongst 73 commonly used APIs. Despite these examples,
the support for diverse natural languages remains alarmingly low, underscoring the urgent need for
expansion in this area to ensure that AI4SE tools are accessible and effective for a global user base.

The inclusion of a broader range of natural languages in AI4SE benchmarks is crucial for several rea-
sons. Firstly, it ensures that the tools and models developed are inclusive and useful to non-English-
speaking users, thereby democratizing access to advanced AI capabilities. Secondly, different natural
languages present unique challenges in terms of syntax, semantics, and idiomatic usage, which can
significantly impact the performance and robustness of AI models. For example, languages with com-
plex grammatical structures or those that are significantly different from English, such as Chinese or
Japanese, may reveal different strengths and weaknesses in AI models that are not apparent when
evaluating them solely on English tasks.

3.5 task diversity
There are two primary levels of concern regarding the diversity of tasks in the domain of AI4SE. At
a macro level, the literature predominantly focuses on a few key tasks: code generation, code com-
pletion, code summarization, and program repair [28]. This trend is corroborated by the analysis
presented in Chapter 2, which accentuates the need for a broader spectrum of AI4SE benchmarks en-
compassing a wider array of software engineering tasks. At a micro level, a more granular examination
within these benchmarks reveals that the individual tasks, or specific problems, exhibit significant di-
versity issues themselves.

AI4SE benchmarks frequently possess a generic label describing their scope, such as ‘code generation’
or algorithmic coding tasks. As a result, almost all lack clarity on the diversity of tasks encompassed.
This ambiguity poses significant challenges for benchmark users, as it requires high effort to review
the benchmark data manually, leading towards benchmark users erroneously trusting the benchmark
on their novelty. Consequently, certain benchmarks have become the de facto standard for evaluating
domain-specific expertise, without clear indications of what excelling on these benchmarks signifies.
For instance, HumanEval is widely used to gauge straightforward coding capabilities of models and
was often regarded by large companies as the benchmark for signifying state-of-the-art performance.

Recent work by Yadav and Singh [86] confirms this hypothesis by looking into the difficulties within
HumanEval and MBPP. By creating a taxonomy of diverse programming concepts and manually anno-
tating the difficulty and category of tasks within the benchmark, results show roughly 80% of problems
belonging to the basic category. Altogether, this work highlights a strong imbalance in difficulty level
and task diversity for these benchmarks, illustrating the need for change. Three recommendations to
move the field towards trustworthy and balanced benchmarks are delineated below.

Providing an overview of difficulty levels for all problems in the benchmark. Numerous papers
present evaluations of their benchmarks using a broad array of LLMs [30, 53], sometimes exceeding
50 models [85]. While this provides an overview of the models’ capabilities, it fails to offer insights
into the difficulty levels of individual tasks within the benchmark. If manually annotating theoretical
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difficulty is overly labor-intensive, the evaluation of various LLMs offers a new opportunity to easily
create a difficulty overview for all benchmark problems: by accumulating the number of models that
pass each problem. This can be mathematically defined as follows:

S(pi ) =
n∑

k=1
pass-metric(pi ) (3.1)

where:

• S(pi ) represents the simplicity score, scaled over all n models, for problem pi

• pass-metric(pi ) denotes the [0,1] score of model k for problem pi according to a pass metric
such as pass@k or a more granular pass metric that considers the ratio of tests passing for prob-
lem pi .

For a difficulty score, D(pi ), the inverse of S(pi ) could be considered, where D(pi ) + S(pi ) = the total
number of evaluated models.

To illustrate this concept, consider the following scenarios. For a balanced benchmark, a wide variety
of models with different capability levels should exhibit a clear diagonal line in a bar chart based on
sorted values. An illustrative example is shown below in Figure 3.2.

Figure 3.2: Illustration of difficulty levels for a balanced benchmark based on Equation 3.1.

In contrast, for a difficult benchmark, the diagonal line would start off-axis and remain low, indicating
that many problems are too complex for most models to solve, even the simplest ones. An illustrative
example of this scenario is depicted below in Figure 3.3.
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Figure 3.3: Illustration of difficulty levels for a rather challenging balanced benchmark based on Equation 3.1.

Lastly, it could be argued that any relatively non-linear line indicates an imbalance in the benchmark
which needs to be carefully regarded, assuming a wide variety of AI4SE models. A real application of
the above, based on 10 LLMs, is presented in Figure 4.7.

Providing a clear scope of the benchmark data, for example, via a taxonomy. Consumers of the
benchmark should precisely know what it signifies when they excel on the benchmark, thus, a clear
representation of the scope of the data of the benchmark should be provided. The most ideal way
would be creating a list of (sub)domains (e.g. in the field of software engineering this could be file han-
dling, dynamic programming, divide and conquer, bit manipulation, etc.). These (sub)domains can
then be categorized into difficulty levels, such as basic, intermediate, and advanced. Subsequently, a
bar chart depicting the number of problems per difficulty level and/or (sub)domain can be drafted,
providing a clear overview of the tasks’ difficulty and scope. Such an overview also facilitates the cre-
ation of more balanced benchmarks by developers.

Comparing features of benchmark data with real-life data. To ensure that a benchmark accurately
reflects the diversity of real-world data, various features of the benchmark could be calculated and
compared to those of actual data. For instance, comparing the code and dependency distributions of
the benchmark to an aggregate of popular and valuable repositories can provide insights into its repre-
sentativeness. Recent work of Li et al. [47, 48] exemplifies this approach, demonstrating the effective-
ness of such comparative analyses in confirming the diversity and applicability of AI4SE benchmarks
by providing such an overview.

3.6 purpose alignment
The alignment of AI4SE benchmarks with their intended purposes is a critical aspect that warrants
careful consideration. This goes hand in hand with the emphasis on scope clarity in Section 3.5. What
(real-world) challenges does my benchmark accurately represent? Realistic and purpose-aligned bench-
marks ensure that the evaluation of AI models is both meaningful and indicative of their performance
in real-world scenarios. At the outset of this research, state-of-the-art benchmarks were often mis-
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aligned with real-to-life developer scenarios, urgently necessitating a paradigm shift to properly ad-
vance AI4SE [47]. However, given the rapid progression in this field, a shift is already underway with
new benchmarks increasingly providing the complexity and contextual richness reflective of actual
software engineering tasks, or calculating their alignment with real-world code repositories [47, 48].

State-of-the-art AI4SE benchmarks exemplifying this shift include SWE-bench [39] and Long Code
Arena [9], offering enormous context to models. Furthermore, with the aim of moving towards Arti-
ficial General Intelligence (AGI) [77], benchmarks leveraging APIs are quickly emerging (Table 2.10),
allowing rapid advancement in Retrieval-Augmented Generation (RAG) capabilities for AI4SE models.
Additionally, the rise of autonomous program improvement has started, with many newer AI4SE mod-
els showing increasingly promising results on these larger benchmarks [15, 98].

Despite these advancements in a satisfactory direction, there remains significant future work to be
done. The current progress is in its earliest stages, there still is a pressing need for more benchmarks
with larger contexts featuring complex software engineering tasks (e.g. non-trivial code that requires
cross-file references). Additionally, the integration of multimodality in AI4SE benchmarks is an area
that requires substantial development. Effective utilization of multimodality, where models can pro-
cess and integrate data from various sources such as video, images, and speech, remains one of the
critical research gaps in AI4SE benchmarks. Currently, no prominent AI4SE benchmarks incorporate
this capability, which limits the comprehensive evaluation of newer AI models with multimodal capa-
bilities (e.g. GPT-4V [65], GPT-4o [66], Gemini [22], Claude 3 [4], and more).

3.7 evaluation techniques
As with any benchmark, including AI4SE benchmarks, robust metrics are needed to measure the per-
formance, for which it is essential to capture the right aspects. This section will describe the most
widely used evaluation techniques regarding code generation, based on similarity (3.7.1) and func-
tional correctness (3.7.2), along with a discussion of their respective advantages and disadvantages, to
determine which techniques can be considered as best practices in Section 3.7.3. Additionally, provid-
ing a more fine-grained perspective, a new metric for assessing the functional correctness of code is
introduced: latest-pass@n.

3.7.1 Evaluation Techniques based on Similarity

In earlier research, evaluation metrics were mainly focused on similarity. In some cases, these metrics
are still valuable to include in your evaluation. Below, the most prevalent ones are listed.

Exact Match (EM). This metric, also referred to as (perfect) ‘accuracy’ at times, measures the per-
centage of generated code sequences that exactly match the reference code sequences. Formally, let
ŷi be the generated code and yi the reference code for instance i , then EM is defined as:

EM = 1

N

N∑
i=1

1(ŷi = yi ) (3.2)
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where N is the total number of instances, and 1(·) is the indicator function.

Advantages:

• Simple to compute.

• Easily interpretable: a high EM score can be thought of as having high precision.

• Directly measures exact correctness.

Disadvantages:

• Stringent criterion; does not account for minor acceptable variations.

• Sensitive to superficial differences like variable naming and formatting.

Edit Similarity (ES). A more granular variant of EM: ES evaluates the similarity between gen-
erated and reference code by computing the edit distance, which is the minimum number of oper-
ations (insertions, deletions, substitutions) required to transform one sequence into the other. The
normalized edit similarity, hereafter referred to as ES, is given by:

ES = 1− dedit(ŷ , y)

max(|ŷ |, |y |) (3.3)

where dedit(ŷ , y) is the edit distance (Levenshtein), and | · | denotes the length of the sequence.

Advantages:

• Captures subtle differences.

• Less sensitive to small, irrelevant changes.

Disadvantages:

• May not correlate with functional correctness.

• Computationally expensive for long sequences.

BLEU. The BiLingual Evaluation Understudy (BLEU) score is a precision-based metric, originally de-
signed for machine translation, adapted for code generation [67]. For context, the definition of an
n-gram is needed first: a contiguous sequence of n items from a given sample of text or code – see
Figure 3.4 for an example.

Figure 3.4: Illustrative example regarding the definition of n-grams.
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BLEU computes the geometric mean of the precision of n-grams with a length penalty to favour longer
sequences (since it could be that the generated code contains all the n-grams of the solution, but does
not match the repeated n-grams). The metric is defined as follows:

BLEU = BP ·exp

(
N∑

n=1
wn log pn

)
(3.4)

where BP is the brevity penalty, pn is the precision of n-grams, and wn are positive weights summing
to 1.

Advantages:

• Well-established in natural language processing.

• Captures semantic relations by taking into account the n-gram overlap.

Disadvantages:

• May not fully capture syntactic and semantic correctness.

• Sensitive to exact token matching.

METEOR. The Metric for Evaluation of Translation with Explicit ORdering (METEOR) is designed to
improve upon BLEU by considering synonymy, stemming, and paraphrasing.

Advantages:

• Accounts for synonyms, structure and morphological variations.

• Better at sentence level than BLUE, which makes it more interesting for line completion.

Disadvantages:

• More complex and computationally intensive than BLEU.

• Originally designed for natural language, less commonly used for code.

• Deficient for evaluating larger bodies of text, due to the coherence and cohesion.

• Language dependent (e.g. different synonym database and stemmer needed).

CodeBLEU. This metric leverages the strengths of BLEU in matching n-grams and makes it more
suitable for code evaluation by incorporating code syntax through abstract syntax trees (AST) and
code semantics through data flow analysis, resulting in a higher correlation with human evaluation
scores [70]. The authors of this metric suggest using five times the weight for keywords compared to
the weight of other tokens. The metric can be simplified as follows:

CodeBLEU =α ·BLEU+β ·Syntax+γ ·DataFlow (3.5)

where α, β, and γ are weights for the BLEU score, syntax match, and data flow match, respectively.
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Advantages:

• Considers structural and semantic aspects of code, which together with the similarity-based
approach of BLUE results in a more genuine assessment of the code quality.

Disadvantages:

• More complex to compute than BLEU.

• Requires additional resources like parsers.

• Still, no functional correctness is guaranteed.

ROUGE. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a recall-based metric
that evaluates the overlap of n-grams (ROUGE-1 and ROUGE-2) and longest common subsequences
(ROUGE-L) between the generated and reference texts [51]. These metrics are defined as follows:

ROUGE-1 =
∑

unigrams min(countgen,countref)∑
unigrams countref

(3.6)

where the numerator sums the minimum counts of each unigram (single word or token) in the gen-
erated text (countgen) and reference text (countref), capturing the correctly recalled unigrams. The
denominator sums the counts of unigrams in the reference text, normalizing the score to reflect re-
call.

ROUGE-2 =
∑

bigrams min(countgen,countref)∑
bigrams countref

(3.7)

which is similar to ROUGE-1, however, instead of unigrams, bigrams (pair of consecutive words or
tokens) are considered.

ROUGE-L = LC S(ŷ , y)

|y | (3.8)

where LC S(ŷ , y) is the length of the longest common subsequence between ŷ and y , capturing the
longest sequences of tokens that appear in both the generated and reference texts in the same order.
This metric reflects the recall of the longest matching sequence, normalized by the length of the refer-
ence text.

Advantages:

• Measures recall, useful for partial correctness.

• Robust to minor lexical variations.

Disadvantages:

• May not correlate with functional correctness.

• Does not consider order beyond subsequences.
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While there are improvements for ROUGE, such asROUGE-N+Synonyms andROUGE-TopicUniq [20],
they do not transfer well to the coding domain, as semantic similarity in programming languages re-
lies on deeper underlying logic and structural relationships compared to natural languages.

CodeBERTScore. This metric, derived from BERTScore [97], evaluates the similarity between gen-
erated and reference code by leveraging the contextual embeddings from pretrained models. Unlike
traditional similarity metrics that rely on token overlap, CodeBERTScore encodes both the natural lan-
guage input and the generated code to assess consistency. This yields the highest correlation with
human judgments of functional correctness, making it the most optimal choice when a test-based
evaluation is not available. For the detailed equations and methodology used to calculate this metric,
refer to the work of Zhou et al. [101].

Advantages:

• Captures semantic similarity, making it robust to minor lexical differences.

• Highest correlation with human preferences and functional correctness [101].

• Supports multiple programming languages, including Python, Java, C, C++, and JavaScript.

Disadvantages:

• Computationally intensive due to the use of large pretrained models.

• Requires model fine-tuning for optimal performance in specific programming languages.

3.7.2 Evaluation Techniques based on Functional Correctness

Recently, metrics based on functional correctness have emerged as the gold standard for evaluating
code generation models, in particular pass@k. These metrics offer a robust framework for assess-
ing whether generated code meets the specified functional requirements through testing. This sec-
tion provides an overview of the currently available functional correctness metrics and introduces the
novel latest-pass@n metric, designed to offer an even more nuanced evaluation of model per-
formance. Note, for all functional correctness metrics, the evaluation can become rather expensive
computationally and the outcomes are dependent on the quality and comprehensiveness of test cases.

Pass@k. This metric measures the functional correctness by evaluating whether at least one of the
top k generated code samples passes all test cases. It is defined as:

pass@k = 1

N

N∑
i=1

f (ni ,ci ,k) (3.9)

where:

• f (ni ,ci ,k) =

1 if ni − ci < k

1−
(ni −ci

k

)(ni
k

) otherwise

• ni is the total number of predictions for problem i .
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• ci is the number of correct predictions (viz. all tests pass for the prediction) for problem i .

• k is the number of top predictions considered.

• (ni
k

)
is the binomial coefficient, representing the number of ways to choose k items from ni

items.

• (ni−ci
k

)
is the binomial coefficient, representing the number of ways to choose k items from ni −

ci items.

Advantages:

• Directly measures functional correctness.

• Reflects practical utility in competitive coding environments.

Disadvantages:

• The binary nature may not reflect partial correctness.

Pass-ratio@n. Instead of using a binary approach like pass@k (either all tests in a test suite pass
→ 1 or otherwise→ 0), Yeo et al. [88] introduce a more granular approach, which captures the accuracy
according to the pass rate of the test cases in the range of [0,1] as follows:

pass-ratioi =
(

the number of passed test cases for problem i

the number of test cases

)2

(3.10)

pass-ratio@n =
∑n

i=1

(
pass-ratioi

)
n

(3.11)

Advantages:

• Directly measures functional correctness.

• More informative for understanding the performance distribution across test cases compared
to the traditional pass@k metric.

Disadvantages:

• Does not clearly extend to multiple top-k samples, appearing primarily suited for k = 1.

• Although squaring the pass-ratio values is intended to reflect higher degrees of accuracy, this ap-
proach lacks insight into the distribution of test case difficulties, which may lead to the potential
undervaluation or overvaluation of the scores.

Latest-pass@n. To address the potential undervaluation or overvaluation of scores inpass-ratio@n,
we introduce thelatest-pass@nmetric. This metric evaluates the ratio of consecutively passed test
cases, thereby offering a more nuanced measure of performance. It allows for each test to be valued
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appropriately by designing the test suite in an order of interest – inspired by the Ideal Discounted Cu-
mulative Gain (IDCG) metric in the field of information retrieval [38]. Formally, latest-pass@n is
defined as follows:

latest-passi =
number of consecutively passed test cases for problem i

total number of test cases
(3.12)

latest-pass@n =
∑n

i=1

(
latest-passi

)
n

(3.13)

To maximize the insight provided by this metric, the execution order of the tests must be carefully
considered. For example, if the tests are sorted by increasing complexity, this metric can indicate how
far a model can progress through the problem set, offering a more cautious yet granular evaluation
compared to pass-ratio@n. Additionally, if certain tests are of pivotal importance, such as edge
cases or safety tests, this metric facilitates a benchmark design that enables the accurate evaluation of
model capabilities according to specific expectations. To further mitigate the chances of undervalua-
tion or overvaluation, an alternative approach would be to incorporate weighted scoring for the tests,
thereby providing a more balanced assessment of model performance.

3.7.3 Recommended Evaluation Techniques for AI4SE Benchmarks

Building on the comprehensive analysis of the discussed metrics above, a strategic recommendation
is provided below with the aim of advancing future AI4SE benchmarking practices. To illustrate the
limitations and potential solutions, consider the example Figure 3.5.

This example highlights the constraints of similarity-based metrics, as they tend to be overly restrictive
towards correct solutions that differ syntactically from the canonical answer. While metrics such as
CodeBLUE attempt to mitigate these limitations by considering code structure, they still fall short in
certain aspects. When similarity-based metrics are the sole feasible option, employing a multi-metric
approach is recommended for a more comprehensive assessment – as most metrics capture different
facets of code quality and can be susceptible to certain biases or shortcomings [92]. However, this
changed with the introduction of CodeBERTScore – if applicable for the programming language in
use. This metric is the new state-of-the-art in the field, providing superior performance by leveraging
contextual embeddings from pretrained models, capturing semantic similarity more effectively, and
correlating highly with human judgments of functional correctness [101], making it the most recom-
mendable metric for similarity-based evaluations.

Ultimately, the most robust evaluation technique hinges on actual functional correctness, typically
assessed through unit tests. This method is highly recommended, as it is the only reliable means to
verify the validity of a candidate solution. However, functional correctness is not without challenges,
notably the need for meticulously curated unit tests for each problem. Additionally, functional cor-
rectness metrics often lack granularity in depicting varying degrees of correctness. To address this,
new research should consider variants such as pass-ratio@n and latest-pass@n, which pro-
vide more nuanced insights into model performance. Additionally, for newer AI4SE benchmarks using
cross-references, consider recall@k mentioned in the work of Li et al. [47, 48].
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Figure 3.5: Illustration of the pitfall behind using text similarity metrics for code synthesis evaluation. Any incor-
rect solution that is highly similar to the canonical solution will score higher than alternative-looking
solutions that do capture the semantical purpose of the function.

In summary, the selection of evaluation metrics should align with the specific requirements of the
code generation task, whether it be exactness, syntactic accuracy, or functional correctness. Each
metric offers a unique perspective on performance, and often a combination of metrics is necessary
for a thorough evaluation. Currently, CodeBERTScore and pass@k are the state-of-the-art metrics
in the field, excelling in capturing functional correctness. In the next chapter, the latest functional
correctness metrics will be further explored in practice.



4
TO W A R D S B E T T E R E VA L U AT I O N O F L L M S
F O R S O F T W A R E E N G I N E E R I N G :
I N T R O D U C I N G H U M A N E VA L P R O

This chapter encapsulates, in a similar format to a research paper, the work behind the newly intro-
duced benchmark HUMANEVALPRO, established by the findings within earlier chapters in this study.

abstract
The HumanEval benchmark is widely recognized as the most popular tool for assessing the software
engineering capabilities of large language models (LLMs) in a lightweight manner. However, its wide-
spread use has revealed significant flaws, including incorrect tests, suboptimal or wrong canonical
solutions, and imprecise problem definitions – issues that have propagated into all ‘enhanced’ vari-
ants of the benchmark. Serving as a new foundation, we introduce HUMANEVALPRO, a thoroughly
refined benchmark that addresses these deficiencies through rigorous peer review and comprehen-
sive modifications. Key improvements include fixing erroneous solutions and problem definitions,
enhancing support for language conversion, doubling the number of manually crafted tests, and ele-
vating the benchmark’s difficulty to ensure ongoing relevance and impact, given the high data leakage
risk and the presence of near-duplicates in training datasets. Additionally, we present a novel metric,
namely latest_pass, to provide a more granular evaluation of performance. Our extensive exper-
iments reveal a substantial 31.22% average and 26.02% median drop in pass@1 scores compared to
HumanEval, highlighting the increased challenge and accuracy of HUMANEVALPRO. This work un-
derscores the critical need for high-quality, peer-reviewed benchmarks to advance the evaluation of
LLMs in software engineering.

32
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4.1 introduction
The HumanEval benchmark [12] has become a cornerstone in the evaluation of large language mod-
els (LLMs) with software engineering capabilities, such as Codex [12], Gemini [22], and GPT-4 [64].
Despite its widespread use, numerous mistakes and suboptimalities are present in the benchmark,
particularly evident during our manual translation of HumanEval-Haskell [81]. These issues have
prompted a thorough re-evaluation of the entire suite of benchmarks related to HumanEval.

Although several enhanced versions of HumanEval have been developed (see Table 2.1 & Section 4.2),
such as improved language support [5, 10, 61, 99] and improved test coverage [18, 53], all variants suf-
fer from fundamental flaws. These include incorrect tests, inadequate test coverage, incorrect canon-
ical solutions, and imprecise problem definitions. Specifically, our analysis (refer to Section 4.3.1 for
more details) identified the following general issues across current HumanEval variants:

• Variants covering multiple languages have duplicated the original issues.

• Variants adding new tests used the original incorrect canonical solutions to generate the output.

• Variants based on human corrections or translations are inconsistent.

Moreover, attempted LLM-augmented strategies for benchmark improvement lack rigorous quality
control, perpetuating original errors and suboptimalities. Ultimately, this analysis underscores the
necessity of peer-reviewing benchmarks, even though this remains a high manual effort. Given the
limitations of HumanEval, such as high data leakage risk and the presence of near-duplicates in train-
ing datasets, there is also a pressing need to elevate the benchmark’s difficulty. Transforming problems
into more challenging variants with additional edge cases will ensure the benchmark’s ongoing rele-
vance and impact.

To address the above issues, we introduce HUMANEVALPRO1 ( ), an enhanced foundation for the
family of benchmarks around HumanEval. Moreover, we demonstrate a new metric for assessing func-
tional correctness in a more fine-grained manner, latest_pass, allowing for more precise compar-
isons between LLMs with regard to the underlying complexity of the problems.

The outline of this chapter is as follows. Section 4.2 discusses the related work on HumanEval. Sec-
tion 4.3 highlights the approach for the HUMANEVALPRO benchmark, describing the observed issues,
modifications and peer-review process. Subsequently, an evaluation on various LLMs is performed,
for which the experimental setup is presented in Section 4.4, the results in Section 4.5 and discussion
in Section 4.6. Lastly, Section 4.7 concludes and mentions future work.

1 https://github.com/AISE-TUDelft/HumanEvalPro

https://github.com/AISE-TUDelft/HumanEvalPro
https://github.com/AISE-TUDelft/HumanEvalPro
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4.2 related work
Throughout the lifespan of HumanEval [12], many efforts have been made to enhance the popular
benchmark. These enhancements can be categorized as follows: improved language support, differ-
ent task and instruction setups, improved testing, and extended problem sets.

For improved (programming) language support, Cassano et al. [10] present MultiPL-HumanEval, based
on their newly introduced language conversion framework for benchmark tests: MultiPL-E. Through
translation of unit tests and function headers, in addition to changing language-specific terminology
in the prompt, it extends HumanEval to 18 other programming languages. However, canonical solu-
tions are not translated. Consequently, Athiwaratkun et al. [5] proposes a new language conversion
framework, where canonical solutions are also included, creating Multilingual HumanEval, a variant
covering 12 languages. Besides automated conversion, Zheng et al. [99] translate the full benchmark
using human-crafted samples into 6 programming languages: HumanEval-X. This variant has been
evaluated and modified by Meunnighoff et al. [61], performing additional cleaning and support for
Rust, resulting in HumanEvalPack.

HumanEvalPack also provides different tasks besides code synthesis (HumanEval-Synthesize), namely
HumanEval-Fix for code repair and HumanEval-Explain for code explanation. Similarly, Instruct-
HumanEval [14] provides a different setup, namely catering the prompts towards a more instruction-
based format, covering a human-assistant style, for improved interpretation for instruction-based
models.

As the original HumanEval lacked test coverage, Liu et al. [53] introduce HUMANEVAL+, with 80 times
the number of tests as the original. For efficiency, they also release HUMANEVAL+-MINI, with 47 times
the number of tests. The test suite is extended by EvalPlus, an automatic test input generator, using
LLM- and mutation-based strategies. Dong et al. [18] release HE-Eval, with 14 times the number of
tests.

Lastly, Xia et al. [85] introduce EVOEVAL, which evolves the HumanEval problem set by extending it
with five new domains: subtle, creative, difficult, combine and tool use. Using the original problems as
seeds, the problems have been transformed into different domains using LLMs – also using EvalPlus
to generate additional test cases.

4.3 approach
As mentioned, the original and variants of the HumanEval benchmark all contain flaws. To estab-
lish a proper new foundation for this family of benchmarks, we pursue the following approach – also
illustrated in Figure 4.1. First, we initiate a comprehensive code review, leading to standardized ob-
servations (Section 4.3.1). Then, we address these identified issues through a series of modifications
(Section 4.3.1), followed by a peer review (Section 4.3.3) to ensure accuracy and reliability. Finally, in
the upcoming sections, we will experiment with the revised benchmark to evaluate and discuss the
results. Below, more details are provided for specific steps in this approach.



4.3 approach 35

Figure 4.1: Outline of the general approach behind HUMANEVALPRO.

4.3.1 Standardized Observations in Current HumanEval Benchmarks

Upon careful examination, manual reconstruction of canonical solutions, and experimentation with
the test suites of various HumanEval benchmarks, we identified several consistent issues across all
problems:

Incorrect and Suboptimal Code

• Canonical solutions are incorrect (see testing point below) and inefficient.

• Canonical solutions do not account for assumptions stated in the problem description.

• Only a small subset of problems includes type annotations in the function headers.

Lack of Quality Testing

• Example tests in the prompt overlap with those in the test suite. This makes test suites with 5
assertions rather ineffective when the model is already given 3 tests in the problem description.

• Incorrect canonical solutions pass the tests.

• Mistakes in the tests of the problem description, where the input of test examples does not pro-
duce the stated output upon executing the canonical solution.

Poor Language Quality

• Grammar mistakes, poor explanations.

• Ambiguous instructions leading to mismatches between the canonical solution and the tests.

• Formatting of the problem description is inconsistent, particularly the test examples.

Suboptimal Support for Language Conversion Frameworks

• MultiPL-E, the only ready-to-use language conversion framework with the best language sup-
port, currently only supports equality assertions, whereas many problems feature an incompat-
ible setup.

For a more precise overview of the observed issues in altered versions of the HumanEval benchmark,
see Table 4.1.
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Table 4.1: Overview of the issues present in AI4SE benchmarks stemming from HumanEval [12]. The example
issues mentioned originate from further insights provided in Appendix A.

Category Name Issues Note

Original HumanEval [12] ✓

Incorrect tests (e.g. #47)
Incorrect canonical solutions (e.g. #95)
Lack of proper test coverage (e.g. #95)
Imprecise docstrings (e.g. #163)

Improved
Language
Support

MultiPL-HumanEval [10] ✓

Similar issues as original , besides:
No incorrect canonical solutions (e.g. #95),
as only unit tests are translated and used in
MultiPL-E [10].

HumanEval-Fix [61] ✓ Similar issues as original
HumanEval-Explain [61] ✓ Similar issues as original
HumanEval-Synthesize [61] ✓ Similar issues as original

HumanEval-X [99] ✓

Similar issues as original , besides:
Inconsistent manual translation , e.g. Java-
Script fixed the docstring issue of #47, Rust
does not even provide examples, the other
languages still have the issue. For #95, the
incorrect original solution is not fixed for all
languages (Python and Go).
Suboptimal manual translation , e.g. best
time-complexity is also worst in #95 for
JavaScript and Rust. Furthermore, for most
languages in #95, the translators are only
focused on returning the correct output
and write semantically suboptimal code
(“hacking” the logic by setting the state to
"mixed" instead of returning false when
the wrong type is given, as done originally).

Multi-HumanEval [5] ✓
Similar issues as original , besides:
No incorrect canonical solutions (e.g. #95),
as they are not provided ( besides Python ).

Improved
Testing

HumanEval+ [53] ✓

Similar issues as original , besides:
Inconsistent manual corrections , some
implementations have been altered such
that the mistakes are fixed (e.g. #95), yet
other alterations have worsened the qual-
ity and still lack proper test coverage (e.g.
#163).

HumanEval-MINI [53] ✓
Similar issues as HumanEval+ , though fea-
tures fewer tests (tradeoff between perfor-
mance and coverage).

HE-Eval [18] ✓ Similar issues as original
Instruction-
based

InstructHumanEval [14] ✓ Similar issues as original



4.3 approach 37

4.3.2 Modifications in HumanEvalPro

In HUMANEVALPRO, we address all the above issues by manually modifying all problems in the original
HumanEval benchmark. To summarize, these are the general changes made in HUMANEVALPRO and
their benefits:

• Fixing all suboptimal and incorrect canonical solutions, previously uncaught due to the lack
of testing and overall quality review.

• Adding type annotations to all problems, providing useful context and facilitating easier trans-
lation to other programming languages. The original HumanEval benchmark only featured type
annotations for the first 30 problems, which is 18% of all problems (164).

• Better support for language conversion frameworks. HUMANEVALPRO has improved language
support for frameworks such as MultiPL-E [10], which can translate to 18 other programming
languages, by changing all tests to equality assertions if possible. This reduces the number of
incompatible problems by roughly ten times.

• Adding edge cases for each problem (e.g. negative numbers, zero cases, empty input, non-
alphanumeric characters), such that high-quality AI4SE benchmarks can only pass if they care-
fully consider and handle different scenarios similarly to the intuition of excellent engineers.

• Similarly, adding assertions in the code whenever the problem description mentions constraints.
High-quality AI4SE models should not neglect this information and adding this increases the
data provided in the benchmark.

• Improving the test examples in the problem description to enhance the quality of the evalua-
tion - performance is sensitive to prompt examples [6]. Test examples in the problem descrip-
tion are also not solely used anymore for testing the generated code. In addition, for some
problem descriptions with a large number of test examples, the number has been reduced to
a minimum, such that the evaluation of the model is distributed more fairly and critical.

• Removing any spelling errors in the descriptions of the problems, consistently formatting the
descriptions and making sure any description matches the implementation yet also leaves ad-
equate room to test the model on its capabilities to solve the problem intuitively, as expected for
high-quality AI4SE models.

• Elevated difficulty by adding more edge cases and altering the various problems. By adding
difficult edge cases, this benchmarks expects models to perform similar to intuitiveness of ac-
tual engineers. Furthermore, more challenging and differently phrased problems aim to solve
the issues around the high risk of data leakage with the original benchmark in addition to the
saturated performance scores in the HumanEval leaderboards.

To illustrate the modifications of the tests in HUMANEVALPRO, consider Table 4.2 below.
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Table 4.2: Comparison of test statistics between HumanEval (based on human-eval-v2-20210705.json
listed as HumanEvalOriginal.json in the repository) and HUMANEVALPRO.

Metric HumanEval (Original) HUMANEVALPRO ∆

Total number of asserts 1325 2551 ×1.92
Average number of asserts 8 16 ×2
Median number of asserts 7 11 ×1.57
Min. number of asserts 1 4 +3
Problems with < 5 asserts 34 2 -94%

4.3.3 Peer Review Process of HumanEvalPro

To back up our commitment to accuracy and reliability, all the changes made during the creation of
the initial version of HUMANEVALPRO have been repeated by an independent reviewer. In short, the
following was carefully checked:

• Clarity of docstrings: Each problem’s docstring, viz. the problem description, is reviewed for
clarity, and completeness.

• Consistency between docstring and canonical solution: Verification of the alignment between
the canonical solution and the problem’s docstring. This step involves checking that the tests
provided are consistent with both the docstring and the canonical solution, ensuring there are
no discrepancies.

• Correctness and efficiency of canonical solutions: The canonical solution is assessed for cor-
rectness. If inefficiencies are easily identifiable, suggestions for optimization are provided. This
ensures that the solutions are not only correct but also optimize for efficiency.

• Comprehensive test cases: The test cases are reviewed to identify any missing expected behav-
ior or scenarios where faulty solutions might still pass. This step is crucial for ensuring that the
tests are robust and cover a wide range of edge cases.

While the initial crafting of this benchmark took over hundred hours, the additional review only re-
quired another 16 hours to complete. The peer-review of the 164 problems (100%) resulted in the
following modifications:

• Redesign of 2 problems (1%), both sharing a similar structure. This modification primarily ac-
counts for the observed changes in the new results.

• A few additional test cases for 15 problems (9%).

• Simple grammar or clarity enhancements, e.g. adding ‘the’ before certain words, for 25 prob-
lems (15%).

All suggested changes were clearly documented and reviewed by the original author, with all sugges-
tions being implemented or improved differently. The data behind this peer-review process is also
available, upon request.

Since there are changes beyond the test suites, implementing the peer-review suggestions also re-
quired re-running the completions for all models. Notably, the results gathered before the peer-review

https://github.com/openai/human-eval/blob/master/data/HumanEval.jsonl.gz
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process already demonstrated great similarity with the results based on the current version of HU-
MANEVALPRO, as the pass@1 scores did not result in a substantial change for most considered mod-
els nor did the order of the results change. To be more specific, this was the detailed impact on the
pass@1-scores of the models:

• For 40% of the models, there was no change in score.

• For 50% of the models, the change was at most 1-2%.

• The remaining 10%, initially top-performing in the original HumanEval benchmark, dropped
5% in score.

Note, these percentages are values regarding the absolute change in score, not the relative percentages
to the original scores. For example, the writing style above denotes a drop from 45% to 40% as −5%,
not (40−45)

45 ≈−11%.

Overall, the peer-review process confirmed the quality of the initial modifications and provided final
enhancements. In the upcoming sections, the experimental setup and results of the peer-reviewed
version, i.e. the released version of HUMANEVALPRO, will be showcased in more detail.

4.4 experimental setup
This section outlines all the data, layers, and components in HUMANEVALPRO that contribute to its
evaluation or the understanding thereof. First, context is provided regarding the data and setup of
HUMANEVALPRO in Section 4.4.1. Then, an overview of the models and their systematic configuration
is given in Section 4.4.2 and 4.4.3. Lastly, the metrics, including the newly introduced latest_pass
metric, are described in Section 4.4.5. With all these elements combined, the results presented in
Section 4.5 can be accurately interpreted.

4.4.1 Benchmark Details

Understanding the root elements of HUMANEVALPRO is crucial, particularly its data layout and setup.
The benchmark comprises 164 unique problems, each identified by a task ID. Each problem consists
of executable code files, broken down into separate parts and stored in .json-format. This structure of
the code is as follows:

• Imports – these are rarely needed and hence often not included.

• Function Header – provides the model with specific parameters for the problem, including the
types, also of the expected output.

• Function Description – Explanation of the problem to solve in the function body.

• Canonical Solution – The answer to the above, in the form of the function body. Mainly pro-
vided for completeness as this is replaced by model completions when benchmarking.

• Test Suite – To check the function body, a series of input-output pairs formatted as assertions is
supplied.



4.4 experimental setup 40

During inference, an instructional preamble is prepended to each prompt (= imports + function header
+ function description), clearly defining the task for the models:

“Your task is to finish the implementation of the function below according to the docstring.
Keep in mind all possible edge cases. Only provide the implementation of the function.”

General Instruction

To better visualise the above data and other benchmark details, refer to Figure 4.2 below.

Figure 4.2: Illustrative overview of the data layout and benchmark details of HUMANEVALPRO.

4.4.2 Models

To get a general overview of the impact of HUMANEVALPRO, experiments with various LLMs are needed.
Ultimately, 10 LLMs have been selected, conforming to the following:

• Available via the Hugging Face module transformers2.

• pass@1 values are made available, either in the published paper or via popular and well-maintained
leaderboards such as BigCode3 and EvalPlus4.

• A wide spectrum of performance is covered.

To facilitate the automated use of these models, a ‘model hub’ has been developed (see Figure 4.3).
It automatically configures each model correctly by setting up the model endpoint, specifying the
prompt instruction format, and potentially including a system message – all defined in the documen-
tation of the models. This abstraction effectively separates the concerns of gathering completions
accurately for each model, also making it applicable in a broader scope within this field. To utilize
this functionality, one simply needs to import the wrapper classes provided in the HUMANEVALPRO

GitHub repository ( ).

2 https://huggingface.co/docs/transformers
3 https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
4 https://evalplus.github.io/leaderboard.html

https://github.com/AISE-TUDelft/HumanEvalPro
https://huggingface.co/docs/transformers
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://evalplus.github.io/leaderboard.html
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Figure 4.3: The Model Hub abstraction, designed to easily yet accurately gather completions of various models.

4.4.3 Configuration

The configuration of the models and the execution environment is as follows:

• In gathering completions across different models, a deterministic approach is employed for
each model, utilizing at most 512 tokens and generating only a single sample. Models are run
on DelftBlue, a supercomputer made available by Delft High Performance Computing Centre
(DHPC) [16], utilising one NVIDIA A100 80GB GPU and 32 CPU cores.

• During test execution, a timeout limit of 15 seconds is utilised per function call to disregard
completions that are potentially looping forever or are considered overly inefficient with regard
to the canonical solutions. Each test is executed in an evaluation suite using the precautions
deployed by OpenAI, e.g. a reliability guard disabling various destructive functions, as docu-
mented in execution.py from the repository of the original HumanEval benchmark ( ).

4.4.4 Post-processing Completions

As some models may continue generating output beyond the required function implementation, or
other noise, a systematic approach to extract the relevant data from the model completions has been
developed. The two main interests are:

• The function body, i.e. the required completion of the prompt.

• Added imports within the generated data – possibly declared outside the function body.

Below, insight is given as to how these two parts within the generated data can be collected in an
automated manner. For the evaluation of HUMANEVALPRO, manual verification was also performed,
however, a significant speed-up in the process was obtained via the use of tools based on the methods
described below.

Extracting Only the Function Body from Completions

To extract only the function body from the model completions, the following approach is used:

1. Identify the function declaration: The process begins by locating the earliest instance of the
keyword def, which marks the start of the function definition. Any text preceding this declara-
tion is considered noise and is removed. It is important to take the earliest def, as functions
might have other functions declared within them.

https://github.com/openai/human-eval/blob/master/human_eval/execution.py
https://github.com/openai/human-eval
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2. Remove extraneous content after the function body: To ensure that only the relevant part of
the function is retained, the process continues by identifying the latest return statement within
the function. All lines following this statement are considered unnecessary and are removed.
In practice, oftentimes models continue with writing tests, following the structure of the Hu-
manEval data, most likely due to data leakage.

3. Store and alert for truncated completions: If no return statement is found, we store this
information, as it might provide model-specific insights during the evaluation step.

Combining the above into a rule-based method ensures that the extracted function body is as free
from any noise or extraneous content as possible, making the evaluation process more efficient and
accurate.

Extracting imports from completions

Given the response of a model, it could be the case that the model has imported certain libraries. Since
we are only interested in the completion of the function, i.e. the function body, and the imports could
be defined above the function header whenever the model returns the entire function or amidst other
noise, we need to extract the imports from the response separately.

The algorithm to extract the imports is rather simplistic:

1. Look for lines that contain the keyword import.

2. Remove any trailing spaces or tabs.

3. If the line starts with import or from (reducing the chance of including other sentences using
‘import’), attach the line to the problem-specific list of imports for the respective model.

Then, during the evaluation of the completion, the stored imports can be included before the function
declaration, such that the completion is evaluated correctly instead of wrongly judging functional
code due to preventable execution errors. In practice, this post-processing step is mainly used to
extract import hashlib for Task ID 162. Other tasks should not require other imports, however,
this function allows for flexibility if needed.

4.4.5 Metrics

To assess the impact of HUMANEVALPRO, functional correctness is used as the evaluation score of
the benchmark. Instead of only using the pass@k metric, two other variants are also used to get a
more fine-grained perspective into the performance of models, namely the “average_pass” and
“latest_pass”. The overall score for the benchmark can be calculated as follows:

Evaluation score benchmark = E
problems

[
pass-metric

]
(4.1)

where pass-metric can be substituted for pass@k, average_pass and latest_pass, all defined
below.

The pass@k metric is introduced by the authors of the original benchmark, HumanEval [12], as fol-
lows:



4.4 experimental setup 43

pass@k =
1 if n − c < k

1−
(n−c

k

)(n
k

) otherwise
(4.2)

where:

• n is the total number of predictions.

• c is the number of correct answers (viz. all tests pass for the prediction).

• k is the number of top predictions considered.

• (n
k

)
is the binomial coefficient, representing the number of ways to choose k items from n items.

• (n−c
k

)
is the binomial coefficient, representing the number of ways to choose k items from n − c

items.

Since only one sample is generated using greedy decoding,pass@1 can be simplified to a binary value,
where ‘1’ denotes all tests passing and ‘0’ otherwise. For the entire benchmark, this indicates the ratio
of completely passed problems. However, a shortcoming in this approach is the lack of insight into
the varying degrees of correctness. To provide more nuance in the assessment of models, the following
two variants will also be reviewed:

average_pass = pt

t
(4.3)

latest_pass = pc

t
(4.4)

where:

• pt is the total number of passed tests.

• pc is the number of consecutively passed tests, until the first non-passing test is reached.

• t is the number of available tests.

To gain maximum insight from the latest_pass metric, the execution order of the tests needs to
be considered. For example, if the tests are sorted on increasing complexity, this metric can represent
how far a model can solve the problem set in a more careful, yet still granular, way compared to av-
erage_pass. Given that HUMANEVALPRO considers new edge cases, including simpler ones such
as empty input, the latest_pass metric can properly penalize models according to this design by
executing such tests early on. Meanwhile, average_pass could still score relatively high by contin-
uing to check all test cases, ultimately denoting the expected average pass ratio with no insight into
the varying degrees of underlying complexity within the test suite.
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4.5 results
After running the experiments as described in Section 4.3 and 4.4, the main finding is an average drop
of 31.22% and median drop of 26.02% (both in absolute percentages) in pass@1 scores of HumanEval
compared to the newly introduced HUMANEVALPRO benchmark, based on 10 LLMs. The results per
model are shown in Figure 4.5, with a summarized illustration of the performance drops in Figure 4.4
below.

Figure 4.4: Boxplot depicting the distribution of absolute drops in pass@1 score between HumanEval and the
newly introduced HUMANEVALPRO benchmark, based on 10 LLMs (Figure 4.5).

Furthermore, specifically for the HUMANEVALPRO benchmark, novel variants of the pass@k metric,
namely average_pass and latest_pass, have been investigated and the results are shown in
Figure 4.6. The variants display a wider spectrum of scores compared to pass@1. In addition, the
scores always rank in the following order: pass@1 < latest_pass < average_pass.

Lastly, insights regarding the overall complexity of problems within HUMANEVALPRO are visualised in
Figure 4.7. The theory behind this figure is explained in more detail in Section 3.5.

Note, all scripts to develop or gather any data in the results are available in the GitHub repository ( ).

https://github.com/AISE-TUDelft/HumanEvalPro
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Figure 4.5: Comparison of pass@1 scores between the original HumanEval benchmark and HUMANEVALPRO.
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Figure 4.6: Comparison of different pass-metrics on HUMANEVALPRO.
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Figure 4.7: Distribution of the increasing “difficulty” (or in inverse, the decreasing “simplicity”) for HUMANEVAL-
PRO problems based on evaluating 10 LLMs on functional correctness.
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4.6 discussion
Overall, the results listed in Section 4.5 demonstrate a notable decline in model performance when
evaluated with HUMANEVALPRO compared to the original HumanEval benchmark. This trend un-
derscores the increased difficulty and improved assessment accuracy provided by HUMANEVALPRO,
which even features more robust environments with type annotations and clearer instructions.

A closer look reveals that the top-performing models from the original HumanEval benchmark do
not maintain their standings in HUMANEVALPRO. For example, while HUMANEVALPRO consistently
ranks deepseek-ai/deepseek-coder-6.7b-instruct as the top performer across all met-
rics, previous leaders like NTQAI/Nxcode-CQ-7B-orpo and Qwen/CodeQwen1.5-7B show a
significant drop in their rankings. Specifically, NTQAI/Nxcode-CQ-7B-orpo falls from an impres-
sive 87.23% pass@1 in HumanEval to 51.22% in HUMANEVALPRO, and Qwen/CodeQwen1.5-7B
plummets from 87.2% to 10.98%. This sharp decline suggests that certain models may have benefited
from data leakage or other issues in the original HumanEval benchmark, indicating the necessity for
a more rigorous benchmark like HUMANEVALPRO to accurately assess model performance.

Especially the resilience of models, e.g. deepseek-ai/deepseek-coder-6.7b-instruct, can
be confirmed by evaluating the model on the new challenges presented in HUMANEVALPRO. When
models also score relatively well in this benchmark, it highlights the models’ ability to adapt and per-
form competently under more demanding conditions, making HUMANEVALPRO a great benchmark
to reveal the reliability of the capabilities of models. This finding also emphasizes the need for regu-
lar updates to benchmarks, as reliance on outdated benchmarks can misrepresent model capabilities
over time, even when models claim not to train on the test data.

Furthermore, an interesting observation emerges when analyzing model size and performance: big-
ger is not always better. Larger models such as TechxGenus/starcoder2-15b-instruct and
HuggingFaceH4/starchat2-15b-v0.1 do not consistently outperform smaller models. This
observation suggests that model size alone is not a definitive predictor of success in complex, edge-
case-inclusive benchmarks like HUMANEVALPRO. For instance, looking at pass@1 scores, Techx-
Genus/starcoder2-15b-instruct scores 77.4% on HumanEval but drops to 43.29% on HU-
MANEVALPRO, whileise-uiuc/Magicoder-S-DS-6.7B scores 76.8% on HumanEval (lower) but
only drops to 53.66% on HUMANEVALPRO (higher), highlighting that increased model size does not
necessarily equate to better performance in more challenging assessments.

Evaluating additional pass-metrics beyond the commonly usedpass@1metric provides the following
insights:

• Wider spectrum of percentages: The inclusion of metrics such as latest_pass and aver-
age_pass reveals a broader spectrum of performance percentages, enabling clearer differen-
tiation between models. This wider range helps highlight subtle performance differences that
pass@1 alone might not capture.

• Model ranking variations: Different metrics can result in varied model rankings. While the top-
tier and worst-performing models consistently rank across all pass-metrics in HUMANEVALPRO,
a different order in ranking is obtained for the mid-tier models likeTechxGenus/starcoder2-
15b-instruct,HuggingFaceH4/starchat2-15b-v0.1 andgoogle/codegemma-7b-
it. These shifts show that average_pass and latest_pass are able to capture different
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facets of model performance compared to the commonly used pass@k metric – indicating a
need for more data and research on these metrics.

• Resemblance to pass@1: If only more nuance is desired, based on these results, the lat-
est_pass metric aligns more closely with pass@1 compared to average_pass.

• Effectiveness of latest_pass: The latest_pass metric proves effective for providing a
detailed view of a model’s performance, particularly in handling initial, simpler test cases, as
this was the common order of tests throughout HUMANEVALPRO. However, its effectiveness
might be limited if the order of test cases skews results, necessitating a critical evaluation of this
metric to ensure it accurately reflects model capabilities.

Lastly, ranking problems based on their difficulty using accumulated pass metrics per problem (Fig-
ure 4.7), confirms that HUMANEVALPRO presents a well-distributed range of complexity over the com-
plete set of challenges. It also shows the increased difficulty of the benchmark, where even the easiest
problems are not universally passed, with roughly 30% of the models still failing to solve them. Al-
together, this distribution highlights HUMANEVALPRO’s effectiveness in providing a thorough assess-
ment environment, making it an excellent tool for evaluating straightforward coding capabilities of
LLMs in a lightweight manner - the main reason behind the popularity of the original HumanEval
benchmark and its variants.

4.7 conclusion and future work
The introduction of HUMANEVALPRO represents a significant step forward in the field of AI4SE bench-
marks, showcasing the effect of a lack of rigorous quality control. By addressing the limitations of the
original HumanEval benchmark and incorporating more rigorous test cases, HUMANEVALPRO pro-
vides a more accurate and challenging assessment of model performance for evaluating straightfor-
ward coding tasks in a lightweight manner. With substantial drops in score, 10 LLMs showcasing a
31.22% average and 26.02% median drop in pass@1 scores compared to HumanEval, the results con-
firm the need for comprehensive benchmarks that are well-maintained. Hence, we urge the authors of
the benchmarks based on HumanEval to update their benchmarks with this new seed, leveraging the
benefits of this new foundation, and any other developers of AI4SE benchmarks to rigorously focus
on quality control - even though it can be a high manual effort, this is of pivotal importance for the
development of more robust and reliable models.

Future work on HUMANEVALPRO will focus on expanding to additional programming languages, which
it already has been optimized for, yet these variants have not been produced or evaluated. Addition-
ally, further exploration of various setups of the latest_passmetric could yield significant insights
into the evaluations of model performance. This paper already provides a glimpse of how more nu-
anced metrics regarding functional correctness can lead to a more comprehensive understanding of
model capabilities, yet there needs to be more data and research to move the field forward. Lastly,
while evaluating 10 LLMs provides valuable insights, it remains unclear how larger, top-performing
models behind paywalls, such as GPT and Gemini, would perform; unfortunately, due to financial
constraints, these models were excluded from this study.
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Artificial Intelligence (AI) has rapidly advanced, profoundly impacting numerous domains, including
software engineering. AI-driven tools such as ChatGPT and Copilot have revolutionized engineering
workflows, garnering significant commercial interest from leading companies like OpenAI, Google,
and Meta. The performance of such tools depends on the underlying model, which is assessed using
benchmarks, leading to a competitive environment where achieving top scores is paramount. How-
ever, this emphasis on performance has overshadowed the importance of the quality and rigor of these
benchmarks. With the absence of of such studies, this thesis addresses this gap by focusing on two
main objectives: reviewing and improving benchmarking practices in the field of AI for software engi-
neering (AI4SE) and establishing an enhanced foundation for HumanEval – the most prominent, yet
erroneous, AI4SE benchmark in the recent years of the AI4SE field developing.

By analyzing nearly a hundred of the most prominent AI4SE benchmarks from the past decade, a
comprehensive categorization of these benchmarks has been established. The identified categories
are as follows:

• Benchmarks derived from HumanEval.

• Benchmarks derived from MBPP.

• Benchmarks focusing competitive programming, code complexity, code efficiency.

• Benchmarks related to data science.

• Benchmarks concentrating on mathematical problems.

• Benchmarks involving code translation and frameworks useful for benchmark conversion.

• Benchmarks based on real-to-life scenarios, which include wider context and common soft-
ware engineering tasks.

• Benchmarks that leverage the power of APIs, particularly relevant for Retrieval-Augmented Gen-
eration (RAG) models.

• Benchmarks incorporating natural language processing tasks (e.g., text to code, code to text,
and text to text).

• Benchmarks related to pseudocode.

• Noteworthy crowd-sourced benchmarks.

• Benchmarks focused on bug repair, test generation, and understanding.

Furthermore, by analyzing these benchmarks, several key challenges and takeaways have been identi-
fied to improve the future of AI4SE benchmarks:
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• Quality Control. Benchmarks rarely denote or incorporate quality control in their processes.
While it can be labor-intensive, it is essential for maintaining the integrity and usefulness of
AI4SE benchmarks. Quality control can be achieved through independent peer review, crowd-
sourced review, LLM-based review, or by releasing new versions upon accumulation of external
feedback.

• Programming Language Diversity. With approximately 80% of AI4SE benchmarks supporting
Python and roughly 40% Java, followed by a substantial drop for other languages, there is an
urgent need for greater programming language diversity in the AI4SE field.

• Natural Language Diversity. With only five benchmarks supporting different natural languages,
there is a clear need for the inclusion of a broader range of natural languages in AI4SE bench-
marks.

• Task Diversity. At a macro level, a broader spectrum of AI4SE benchmarks should be consid-
ered, as current benchmarks mostly focus on code generation, completion, summarization, and
program repair, leaving many other software engineering tasks underrepresented. At a micro
level, a more granular examination of tasks within benchmarks is needed. Solutions include
providing an overview of difficulty levels for all problems in the benchmark, creating a taxon-
omy to provide a clear scope of the data, and comparing features of the data with real-life data
to ensure balanced task diversity.

• Purpose Alignment. At the outset of this study, AI4SE benchmarks did not align well with real-
to-life software engineering scenarios, necessitating a shift. However, as of yet, this advance-
ment is well underway where benchmarks accurately start representing real-world challenges.
Still, much future work is needed, including the integration of multimodality in AI4SE bench-
marks.

• Evaluation Techniques. The selection of evaluation metrics should align with the specific re-
quirements of the code generation task, whether it be exactness, syntactic accuracy, or func-
tional correctness. Especially when only similarity-based metrics are applicable, a multi-metric
approach is needed, as each metric offers a unique perspective on performance (viz. similarity-
metrics are inadequate when not considered together with other insights). However, if applica-
ble for the programming language in use, CodeBERTScore is recommended as the state-of-
the-art metric for similarity-based evaluations, capturing semantic similarity more effectively
and correlating highly with human judgments of functional correctness. The future of the field
mainly lies in evaluation using functional correctness, primarily through pass@k, with newer,
more granular approaches emerging, such as the introduced latest-pass@n metric.

Lastly, a significant contribution of this thesis is the introduction of HUMANEVALPRO ( ), an en-
hanced version of the original HumanEval benchmark. HUMANEVALPRO addresses the many limita-
tions of HumanEval:

• Adding Type Annotations: In HUMANEVALPRO, we introduced comprehensive type annota-
tions across all problems. This inclusion not only provided essential context for each problem
but also facilitated easier translation of benchmarks into multiple programming languages. Un-
like the original benchmark, which only included type annotations for a limited subset of prob-
lems, HUMANEVALPRO ensures consistency and clarity throughout all 164 problems.

https://github.com/AISE-TUDelft/HumanEvalPro
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• Enhanced Language Support for Frameworks: Recognizing the importance of language diver-
sity, HUMANEVALPRO significantly improved support for language conversion frameworks such
as MultiPL-E. By standardizing tests to equality assertions wherever feasible, we reduced com-
patibility issues across various programming languages by a considerable margin.

• Inclusion of Edge Cases: Each problem in HUMANEVALPRO now includes carefully crafted edge
cases. These additions, such as scenarios involving negative numbers, zero values, empty in-
puts, and non-alphanumeric characters, ensure that AI4SE models are rigorously tested against
a broader spectrum of realistic conditions. This enhancement encourages models to handle
diverse inputs akin to proficient software engineers.

• Integration of Assertions: Building on problem constraints specified in the descriptions, HU-
MANEVALPRO incorporates explicit assertions within the code. This practice underscores the
importance of adhering to given constraints, thereby enriching the benchmark’s evaluation cri-
teria and promoting robust model performance.

• Improvement of Test Examples: We refined the test examples provided within each problem
description to enhance evaluation quality. By optimizing the use of test examples and reducing
their number in certain cases, we aimed to ensure a fair and unbiased assessment of model
capabilities, aligning closely with current best practices in benchmark design.

• Enhanced Descriptive Consistency: HUMANEVALPRO underwent thorough editing to rectify
spelling errors and maintain consistent formatting across all problem descriptions. This consis-
tency not only improves readability but also ensures that the problem descriptions accurately
reflect the intended implementations, fostering a more intuitive evaluation process for AI4SE
models.

• Increased Difficulty and Complexity: By introducing more challenging problem variations and
nuanced phrasing, HUMANEVALPRO raises the benchmark’s overall difficulty level. These modi-
fications address concerns regarding data leakage risks associated with the original benchmark
and aim to mitigate inflated performance scores often observed in HumanEval leaderboards.

Most importantly, the more rigorous test cases (twice as many compared to the original) and edge
cases offer a more accurate and challenging assessment of model performance on straightforward
coding tasks. The results demonstrate substantial drops in pass@1 scores for 10 LLMs, with an aver-
age and median drop of 31.22% and 26.02%, respectively. These findings underscore the need for
comprehensive and well-maintained benchmarks, with the rest of the thesis providing the necessary
material for achieving this.

To summarize, the taxonomy of challenges and proposed solution directions, alongside the introduc-
tion of HUMANEVALPRO, mark a significant refinement in AI4SE benchmarking practices. Emphasiz-
ing these insights will be crucial for guiding future advancements in the field and fostering meaningful
progress.
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J. Zou, J. Kocoń, J. Thompson, J. Wingfield, J. Kaplan, J. Radom, J. Sohl-Dickstein, J. Phang, J. Wei,
J. Yosinski, J. Novikova, J. Bosscher, J. Marsh, J. Kim, J. Taal, J. Engel, J. Alabi, J. Xu, J. Song,
J. Tang, J. Waweru, J. Burden, J. Miller, J. U. Balis, J. Batchelder, J. Berant, J. Frohberg, J. Rozen,
J. Hernandez-Orallo, J. Boudeman, J. Guerr, J. Jones, J. B. Tenenbaum, J. S. Rule, J. Chua, K. Kan-
clerz, K. Livescu, K. Krauth, K. Gopalakrishnan, K. Ignatyeva, K. Markert, K. D. Dhole, K. Gim-
pel, K. Omondi, K. Mathewson, K. Chiafullo, K. Shkaruta, K. Shridhar, K. McDonell, K. Richard-
son, L. Reynolds, L. Gao, L. Zhang, L. Dugan, L. Qin, L. Contreras-Ochando, L.-P. Morency,
L. Moschella, L. Lam, L. Noble, L. Schmidt, L. He, L. O. Colón, L. Metz, L. K. Şenel, M. Bosma,
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A I L L U S T R AT I O N O F S H O R TC O M I N G S I N
H U M A N E VA L

This appendix illustrates some shortcomings of HumanEval [12]. Note, this is not an exhaustive list of
all problems, rather it is a list to indicate that important issues exist in (popular) benchmarks.

Some of the main findings during the analysis of the raw HumanEval data are as follows:

• Incorrect (example) test - see Figure A.1. Notably, ChatGPT, made by the authors of the bench-
mark, produces the same mistake in production, as depicted in Figure A.2.

• Incorrect canonical solution and lack of proper test coverage - see Figure A.3.

• Mismatch (or lack of clarity) in docstring and canonical solution - see Figure A.4.

Furthermore, these issues can be found in the altered versions of this benchmark as well, see Table 4.1
for a detailed description of the issues per benchmark. This strongly indicates that in general, no
proper quality checks are taking place within the field of AI4SE benchmarks.

1 def median(l: list):
2 """
3 Return median of elements in the list l.
4 >>> median([3, 1, 2, 4, 5])
5 3
6 >>> median([-10, 4, 6, 1000, 10, 20])
7 15.0
8 """

Figure A.1: Prompt of Problem #47 of HumanEval [12]. The docstring contains an incorrect example. The me-
dian of [-10, 4, 6, 1000, 10, 20] should be 8 instead of 15, as 6 and 10 are the two middle
values in this list of even length – not 10 and 20.
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Figure A.2: Production system (ChatGPT-3.5, 6 Dec 2023) providing an incorrect response exactly similar to the
mistake included in the HumanEval benchmark [12], as seen in Figure A.1. The prompt for this
response was: “What is the median of [-10,4,6,1000,10,20]?”. This emphasizes the critical
role of high-quality training data in developing AI4SE models and underscores the importance of
maintaining accurate benchmarks to avoid misleading conclusions.
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1 def check_dict_case(dict):
2 """
3 Given a dictionary, return True if all keys are strings in lower
4 case or all keys are strings in upper case, else return False.
5 The function should return False is the given dictionary is empty.
6 Examples:
7 check_dict_case({"a":"apple", "b":"banana"}) should return True.
8 check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return

False.
9 check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return

False.
10 check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should

return False.
11 check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True.
12 """
13 if len(dict.keys()) == 0:
14 return False
15 else:
16 state = "start"
17 for key in dict.keys():
18

19 if isinstance(key, str) == False:
20 state = "mixed"
21 break
22 if state == "start":
23 if key.isupper():
24 state = "upper"
25 elif key.islower():
26 state = "lower"
27 else:
28 break
29 elif (state == "upper" and not key.isupper()) or (state ==

"lower" and not key.islower()):
30 state = "mixed"
31 break
32 else:
33 break
34 return state == "upper" or state == "lower"

Figure A.3: Prompt and canonical solution of Problem #95 of HumanEval [12]. The function needs to check if
all keys are upper or lower case in a dictionary (data structure with keys mapped to values), yet it
breaks in line 31 (instead of continue) when the state variable is "upper" or "lower" and
the current key matches this capitalization. Instead of continueing to check the rest of the keys,
the function breaks and returns true, which could be wrong, as later keys might have incorrect
capitalization (meaning the state would have been "mixed"). For example, the following input
yields True: check_dict_case({“abcd”:“d”,“abce”:“e”,“abcF”:“f”}), as the first
two keys, i.e. abcd and abce, result in a “lower” state and then break out of the program in the in-
correct else-statement. Meanwhile, the dictionary contained inconsistent capitalization, indicat-
ing a lack of test coverage or problematic test generation for enhanced variations of the benchmark
using the canonical solution as a way to generate the “correct” output.
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1 def generate_integers(a, b):
2 """
3 Given two positive integers a and b, return the even digits between a
4 and b, in ascending order.
5

6 For example:
7 generate_integers(2, 8) => [2, 4, 6, 8]
8 generate_integers(8, 2) => [2, 4, 6, 8]
9 generate_integers(10, 14) => []

10 """
11 lower = max(2, min(a, b))
12 upper = min(8, max(a, b))
13

14 return [i for i in range(lower, upper+1) if i % 2 == 0]

Figure A.4: Prompt and canonical solution of Problem #163 of HumanEval [12]. The description within the doc-
string does not match the implementation or example tests. In addition, the problem lacks proper
test coverage. Firstly, the description mentions between the arguments a and b, yet the implemen-
tation and example tests include a and b in the output. Instead of range(lower, upper+1),
where the first argument (start) is included and the second (stop) is excluded from the range, the im-
plementation should use range(lower+1, upper). Furthermore, 0 is considered to be a digit
(0–9), yet the implementation does not account for this. Given two positive integers a and bwhere
the numbers in between cross 0, e.g. range(8, 12) crosses 10, the implementation should include
0 in the output based on the description. Lastly, as the implementation mentions the digits between
a and b, it should consider all the digits of the numbers in between (or the instruction lacks clarity in
this regard). Digits are not only the last digit of a number. For example, number 2024 contains digits
0, 2, and 4. Hence, the example test generate_integers(10, 14) => [] could be deemed
mistaken compared to the instruction, as the numbers in between, i.e. 11, 12, and 13, contain the
even digit 2, meaning the output should be [2].
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