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ABSTRACT

Functional ultrasound (fUS) is an emerging neuroimaging
modality that records changes in local blood dynamics. While
it is known that the brain can respond variably to the same
stimuli presented at different time instants, the extent to
which fUS detects this variability based on the measured
hemodynamics remains an open question. In this work, we
characterize trial variability using fUS by estimating activa-
tion coefficients per trial using region-specific hemodynamic
response functions. Our visual fUS experiments conducted
on a mouse consistently reveal an increase of trial variability
from the lateral geniculate nucleus to the visual cortex across
different brain slices. These results are in parallel with prior
findings in neuronal studies, suggesting a link between fluctu-
ations of the evoked fUS response and true neural variability.

Index Terms— hemodynamic response, trial variability,
functional ultrasound

1. INTRODUCTION

Functional ultrasound (fUS) is a relatively new neuroimag-
ing technique that, similar to functional magnetic resonance
imaging (fMRI), measures hemodynamics as a proxy for neu-
ral activity [1]. Both modalities frequently employ multiple
repetitions (trials) of stimuli in order to improve the signal-to-
noise ratio (SNR) for capturing evoked activity and enhance
the statistical power of the study [2]. The majority of fUS and
fMRI analyses use the time courses of stimuli to extract spa-
tial activation maps, either via linear regression (known as the
general linear model - GLM) or by computing the per-voxel
Pearson correlation coefficient (PCC). For both approaches,
the stimulus time course, represented as a boxcar function in-
dicating when the stimulus is on or off, is convolved with a
hemodynamic response function (HRF).

An inherent assumption of using the convolutional model
is that the brain response is time-invariant. However, we know
this assumption does not hold due to various neurobiological
mechanisms such as neuronal adaptation, stimulus expecta-
tion, time-varying functional connectivity, fluctuating atten-

tion or simply from noise [3]. When this variability is not
taken into account, trial-averaging can lead to an imprecise
portrayal of the brain’s actual response. In more extreme sce-
narios, this imprecision could potentially yield erroneous con-
clusions in neurocognitive research [4].

In the literature, there are several approaches proposed
for tackling trial variability. For example, a common pro-
cedure is selective averaging of trials by rejecting outlier tri-
als. To determine which trials should be considered as unreli-
able, various methods have been employed such as amplitude-
based thresholding (attributed to motion or eye blink artifacts)
[5, 6] or visual inspection [7]. Nevertheless, experiments have
shown that repeating of stimuli not only induces changes in
the magnitude, but also in the peak latency or duration [8] of
individual trial responses. As such, only tracking the changes
in magnitude may not be adequate to represent the full extent
of trial variability.

The GLM framework has also been used to model trial
variability, for instance, by defining a separate regressor for
each trial, or picking a trial of interest and grouping every
other trial under another regressor [9]. Allowing for trial
variability was shown to improve classification accuracy with
fMRI [10]. However, it’s important to note that these methods
employ a fixed HRF in their designs, despite the known varia-
tions in HRF across individuals and brain regions [11]. In our
work, we define the data matrix with columns corresponding
to distinct trial responses of a voxel. Likewise, we character-
ize the model time course for a single trial response, i.e. we
convolve a voxel-specific HRF with one stimulus epoch. Fi-
nally, we estimate trial activation coefficients for each region
of interest (ROI) using linear regression.

Despite the increasing utilization of fUS as a new imaging
technique for both neuroscientific and clinical applications
[12], owing to its portability, low cost and high spatiotempo-
ral resolution, trial variability as detected by fUS has not yet
been explored. In our analysis, we focus on the fUS responses
of two crucial ROIs of the mouse brain’s visual-processing
pathway, the lateral geniculate nucleus (LGN) and visual cor-
tex (VIS), and examine their temporal dynamics through trial
variability.
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(a)

(b)

Fig. 1: Thresholded correlation images (a) obtained using the optimal HRF peak latency (b), overlaid against the mean PDI,
displaying LGN (bottom region) and VIS (top region). The slices were imaged at Lateral +2.55, -2,55, +2.15 and -2.15 mm
from left to right respectively.

2. METHOD

For each voxel, we segment the observed response into trials,
and place these segments to columns of a matrix Y . We define
our data model as:

Y = Xβ + ϵ, (1)

where Y ∈ RT×N is the data matrix, β ∈ RK×N is the
matrix of activation coefficients, X ∈ RT×K contains the de-
sign variable(s), ϵ ∈ RT×N represents noise, N is the number
of stimulus repetitions, T is the number of time samples in-
cluded within one trial and K is the number of different types
of stimuli. The proposed method is illustrated over example
simulated data in Fig. 2. Note that, we employed a single type
of visual stimulus in our fUS experiments, hence for consis-
tency the illustration is given for K = 1. It is possible to
incorporate different stimuli by including their responses to-
gether in the trial segments. Then, a separate regressor can be
defined with the onset of each event, as a new column in X .

For constructing the design variable, we estimated voxel-
specific HRFs by shifting the HRF peak latency at vari-
ous values using a single gamma function [13]: h(t,θ) =
Γ(θ1)

−1θθ12 tθ1−1e−θ2t. We determined the HRF of a voxel
as the one that provides the highest PCC with the stimulus
across slices. Finally, we estimate β̂ = X†Y where (.)† is
the pseudo-inverse. We aimed at answering the following
research questions:

Ti
m
e

Trials

=

𝑌: Segmented
Response

𝑋: Design 
Variable(s)

𝛽: Trial 
Activations

+ Noise

Fig. 2: Depiction of the proposed method for K = 1. Each
column of Y stands for a trial response. The design variable
is given by the convolution of a stimulus trial with an HRF.

Q1. Do the trial activations stay constant, or do they vary
during the experiment? If they do, is this variation ran-
dom or could we track a trend?

Q2. Do the variations occur simultaneously at the ROIs?
Q3. Can we find a reproducible difference in variability be-

tween LGN and VIS across slice recordings?

To unveil the trend of trial activations, we fit a linear
model to the estimated β coefficients of each ROI (Q1). Sub-
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sequently, we express the trial activations of VIS as a function
of those of LGN to see if they vary in a correlated manner
(Q2). Finally, we compute the coefficient of variation (CoV)
of the trial activations of the ROIs (Q3).

3. EXPERIMENTAL SETUP

Functional ultrasound records the hemodynamic activity of
the brain in 2D slices using ultrafast Doppler imaging. Imag-
ing was performed on an awake head-fixed mouse (7-months
old male, C57BL/6J), by transmitting 20 tilted plane waves
(±8◦) through a cranial window covered by a TPX layer,
while the mouse was able to freely walk on a rotating wheel.
After Fourier-domain beamforming and angular compound-
ing of the echo waves, singular value decomposition-based
clutter filtering [14] was utilized to remove tissue compo-
nents. We worked on power-Doppler images (PDIs) sampled
at a rate of 4 Hz. The mouse brain was imaged sagittaly at 4
locations (Lateral ±2.15,±2.55 mm), all of which captured
LGN and VIS (Fig. 1). The visual stimulus consisted of ran-
domly generated high contrast images (white speckles against
a black background). The stimulus was repeated 20 times
throughout the experiment and its duration was kept at 4 s,
while the rest periods in-between stimuli were randomized
from 10 to 15 s. We applied spatial smoothing using a Gaus-
sian kernel with a standard deviation of 0.5 voxels in size,
and standardized the voxel time-series to zero-mean and unit
variance prior to further processing.

To determine significantly active voxels for each ROI,
we selected a P-value threshold of 0.0001 and converted this
value to z-score using a two-tailed test (z-score: 3.71). Next,
we applied Fisher’s transform to this z-score and arrived at
a PCC threshold of c = 0.1 [15]. We calculated the PCC of
each voxel by correlating the voxel time-series with the HRF-
convolved stimulus time course. The thresholded correlation
images are displayed in Fig. 1. We segmented the voxel time-
series into trials that start 3 s before a stimulus onset and ends
12 s after. Note that, these values are determined in accor-
dance with our stimulus design, but can be re-adjusted based
on the paradigm. All segments were baseline corrected by
subtracting the mean amplitude of the pre-stimulus response
([-3,0] s with respect to the stimulus onset time).

4. RESULTS

Using the optimal HRFs, we estimated trial activations per
voxel. We averaged the trial activations across the voxels of
a ROI at each slice. The results are provided in Fig. 3(a).
To start with, we observe a declining trend of trial activations
as the trials progress. As discussed in the Introduction, many
factors including neuronal adaptation or habituation can cause
such descent. For studying the correlation of the timing of
these variations between LGN and VIS, we plotted the trial
activations of VIS as a function of those of LGN. The link be-

tween the two regions can be clearly observed in Fig. 3(b), as
the best-fitting line shares similar parameters (slope and inter-
section) across slices. Note that, this correlation is expected,
at least up to some degree, as VIS is anatomically connected
to, and receives direct input from the LGN.

0

1
m = -0.01

LGN

0 10 20
Epoch Number

0

1
m = -0.017

VIS

m = 0.001

0 10 20
Epoch Number

m = 0.001

m = -0.005

0 10 20
Epoch Number

m = -0.016

m = -0.006

0 10 20
Epoch Number

m = -0.017

Slices

-
  

A
ct

iv
at

io
ns

(a)

0 0.2 0.4 0.6

LGN

0

0.2

0.4

0.6

V
IS

V = 1.3L - 0.05

0 0.2 0.4 0.6

LGN

V = 0.7L - 0.02

0 0.2 0.4 0.6

LGN

V = 1.6L - 0.14

0 0.2 0.4 0.6

LGN

V = 1.3L - 0.03

 Slices !

(b)

1 2 3 4
Slices

0

0.5

1

1.5

2

C
oV

 o
f  
-

  
A

ct
iv

at
io

ns

LGN VIS

(c)

Fig. 3: (a) Variation of β across trials for each region and
brain slice. We plotted the best-fitting line (in least-squares
sense) to β values in each case to highlight the trend of ac-
tivations across trials. The slope m of the predicted line is
indicated on top of each plot. (b) Trial activations of LGN
vs. VIS. The equation written on each plot describes the line
of best fit in least-squares sense (shown in red color) between
VIS and LGN, denoted by V and L respectively. (c) Coeffi-
cient of variation (CoV) of β across regions and slices.
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Another point worth discussing is the offset in the line
equations relating LGN to VIS (Fig. 3(b)). This offset is
caused by the occasional negative activations of VIS, albeit
small both in absolute value and quantity. This negativity
comes as a result of VIS amplitudes dropping below the base-
line in certain trials. We can consider the possibility that the
mouse was not responsive in those trials, and the effects of
noise (physiological and/or instrumentation related) became
too dominant. However, in those same trials, negative acti-
vations were almost never found in LGN. Indeed, stimulus-
evoked negative activations in VIS were reported before with
fMRI as well [16]. For both Fig. 3(a) and (b), the results of
the second slice are slightly different from the rest. Although
this difference might be due to the particular slice that was
imaged or a change in the mouse’s attention, it is worth to
mention that this slice has the least amount of active voxels,
possibly affecting it’s generalizability compared to the rest.

In order to assess the overall variability of the two re-
gions, we calculated the CoV of β’s, defined as the ratio of
the standard deviation to the mean (Fig. 3(c)). We can ob-
serve that VIS exhibits a variability that is twice as high as
that of LGN for all slices, in accordance with neuronal find-
ings [17]. In fact, the transformation between LGN and VIS
is argued to be the point at which the large response variabil-
ity of VIS originates [18]. As a last note, we observed that
the PCC values calculated conventionally (i.e., via correlat-
ing the whole HRF-convolved stimulus time course with the
voxel time-series, Fig. 1(a)) share a very similar trend with
the summation of trial activation coefficients across voxels.
On the contrary, the CoV of trial activations follows an op-
posing trend (Fig. 4), indicating that PCC values might drop
as a result of higher variability.

5. CONCLUSION

In this study, our objective was to investigate trial variability
using fUS. By segmenting the observed data into individual
trial responses, we computed activation coefficients for each
trial within specific regions of interest. We noted a general
decline in activations throughout the experiment, potentially
influenced by intricate brain mechanisms such as neuronal
adaptation. Our comparison of trial variability between LGN
and VIS revealed higher variability in the cortex. This con-
sistent difference in variability across all our recordings aligns
with established neuronal findings. Our results imply a poten-
tial link between the variability of fUS responses and the un-
derlying neuronal variability. Trial variability can be assessed
via different metrics other than an HRF-based model-fitting as
proposed in this paper, such as by tracking the changes in sig-
nal power or amplitude across trials. In the future, such meth-
ods can be compared for evaluating trial variability, while the
temporal dynamics of LGN and VIS should be further val-
idated with more experiments performed over multiple sub-
jects.
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Fig. 4: Change of PCC values, summation of non-negative
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Note that, the voxels were sorted in ascending PCC and all
measures were normalized to have a maximum amplitude of
1 for easier interpretability of the plots.
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