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AI-Guided Inverse Design and Discovery of Recyclable
Vitrimeric Polymers

Yiwen Zheng, Prakash Thakolkaran, Agni K. Biswal, Jake A. Smith, Ziheng Lu,
Shuxin Zheng, Bichlien H. Nguyen,* Siddhant Kumar,* and Aniruddh Vashisth*

Vitrimer is a new, exciting class of sustainable polymers with healing abilities
due to their dynamic covalent adaptive networks. However, a limited choice of
constituent molecules restricts their property space and potential
applications. To overcome this challenge, an innovative approach coupling
molecular dynamics (MD) simulations and a novel graph variational
autoencoder (VAE) model for inverse design of vitrimer chemistries with
desired glass transition temperature (Tg) is presented. The first diverse
vitrimer dataset of one million chemistries is curated and Tg for 8,424 of them
is calculated by high-throughput MD simulations calibrated by a Gaussian
process model. The proposed VAE employs dual graph encoders and a latent
dimension overlapping scheme which allows for individual representation of
multi-component vitrimers. High accuracy and efficiency of the framework are
demonstrated by discovering novel vitrimers with desirable Tg beyond the
training regime. To validate the effectiveness of the framework in
experiments, vitrimer chemistries are generated with a target Tg = 323 K. By
incorporating chemical intuition, a novel vitrimer with Tg of 311–317 K is
synthesized, experimentally demonstrating healability and flowability. The
proposed framework offers an exciting tool for polymer chemists to design
and synthesize novel, sustainable polymers for various applications.

1. Introduction

Polymers are essential to a broad range of applications from cars
and wind turbines to smartphones, medical devices and more;
however their performance decreases over their life-cycle initi-
ated by bond breaking at the molecular scale due to high stress,
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oxidation, or other factors. Mechanical dam-
age due to the rupturing of covalent bonds
in traditional thermosets and thermoplas-
tics is irreversible, resulting in crack forma-
tion and finally failure.[1] In such circum-
stances, plastics end up in waste streams
due to the inability to serve the desired pur-
pose, which presents two key challenges for
sustainability. First, failure in repairing me-
chanical damage means polymer parts and
often entire assemblies must be replaced,
resulting in high economic cost and fur-
ther increasing the 430 million tons of plas-
tic produced annually. Second, the inabil-
ity of polymers to repair molecular damage
poses a fundamental challenge preventing
the recycling of thermosets altogether and
the degradation of thermoplastics such as
polyethylene terephthalate (PET) water bot-
tles into highly degraded secondary raw ma-
terials.

Healable polymers, particularly a new
class called vitrimers, offer a potential so-
lution to the plastic waste problem. Com-
bining durability with end-of-life recyclabil-
ity, vitrimers have the potential to greatly

reduce the amount of plastic production and waste.[2] The defin-
ing molecular feature of vitrimers is an associative dynamic co-
valent adaptive network (CAN) which allows the constituents of
polymer chains to attach to and detach from each other while con-
serving crosslinking density under an external stimulus such as
heat. This gives vitrimers the ability to self-healing without loss of
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Figure 1. Schematic overview of this work. a) A transesterification vitrimer comprises a carboxylic acid and an epoxide. The reversible covalent bond
between acid and epoxide allows them to detach from and attach to each other, thus healing the polymer. The design space for vitrimers is defined as
all possible combinations of 50 000 carboxylic acids and 50 000 epoxides and a vitrimer dataset is built by sampling from the design space. b) We use
calibrated MD simulations to calculate Tg on a subset of vitrimers. The vitrimer dataset and Tg are inputs to the VAE model. c) By optimizing latent
vectors according to desirable Tg, novel vitrimers with Tg = 569 K and 248 K are discovered. d) Synthesis of novel vitrimer chemistry proposed by the
framework for target Tg of 323 K (50 °C).

viscosity[3] (Figure 1a). This exchange of constituents is termed a
rearrangement reaction, and polymer scientists have found mul-
tiple reaction chemistries on which to base vitrimers, including
transesterification, disulfide exchange, and imine exchange.[4]

However, available vitrimers have restricted thermo-mechanical
properties due to limited commercially available monomers (i.e.,
building blocks) for synthesizing these polymers, which is a key
impediment to widespread applications of vitrimers.

The structure-property relationships of polymers have been
primarily investigated in a forward manner: given a set of
polymers, one queries their properties by experiments and
simulations.[5,6] At the early stage, most of the novel polymers
are discovered and synthesized based on chemical intuition in
a trial-and-error fashion.[7] As chemical synthesis of polymers
is expensive and time-consuming, virtual specimen fabrication
and characterization of desired chemical structures using molec-
ular dynamics (MD) simulations may be employed to reduce the
cost of experimentation. MD is a simulation technique situated
at the interface of quantum mechanics and classical mechanics
and has been widely employed to assist the discovery process.[8]

Virtual characterization using MD has helped in gaining in-
sights about the effect of polymer molecular structures on me-
chanical properties,[9] glass transition temperature[10] and self-
healing.[11,12] However, scaled computational screens assisted by
MD or other simulation methods remain costly, even with the
development of high-performance computing.[13] As a result, the
searchable design space is limited to the order of 103 to 105 com-
positions.

Advances in machine learning (ML) algorithms offer an op-
portunity to accelerate polymer discovery by learning from avail-
able data, revealing hidden patterns in material properties[14] and

reducing the need for costly experiments and simulations.[15]

Various ML methods have been employed to design or-
ganic molecules and polymers, including forward predictive
models,[16–19] generative adversarial networks,[20–22] variational
autoencoders (VAEs),[23–27] diffusion models,[28,29] normalizing
flows,[30] and large language models.[31] The trained ML mod-
els can be further used for high-throughput screening or con-
ditioned upon physical properties to achieve the inverse design
of polymers from properties of interest, such as glass transition
temperature (Tg),[17,18] thermal conductivity,[19,32,33] bandgap[26]

and gas-separation properties.[19,34] The success of these ML
models depends on the choice of suitable representations, which
is challenging due to the discrete and undefined degrees of free-
dom of molecules and polymers. To date, researchers have em-
ployed strings,[35,36] molecular fingerprints,[37] and graphs[38] to
represent molecules and monomers in ML models. Recently,
Yan et al.[39] have utilized a pretrained VAE with an artificial
neural network for property prediction and virtual screening of
vitrimers. While they have discovered a vitrimer with desirable
properties, the design space is limited to 184 commercially avail-
able monomers, as their VAE is only used as a representation
method instead of a generative model. In contrast to virtual
screening by forward predictive models, which requires a pre-
defined pool of candidates to screen, generative models are able
to learn the distribution of the training data and facilitate the
discovery and design of novel chemistries. In the context of us-
ing generative models for the inverse design of polymers, previ-
ous studies[20–31] have primarily focused on the design of single
molecules or monomers, without addressing the challenges in-
volved in designing multi-component polymers. In this work, we
propose a graph VAE model employing dual graph encoders and

Adv. Sci. 2024, 2411385 2411385 (2 of 14) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202411385, W

iley O
nline L

ibrary on [23/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

overlapping latent dimensions[40,41] which enable representation
of multi-component vitrimers and controlled design of selective
components simultaneously.

Last few years have seen an increased contribution to struc-
tures and properties databases of polymers and molecules such
as ZINC15,[42] ChemSpider,[43] and PubChem.[44] However, a
dataset of vitrimers to train such a deep generative model is lack-
ing. Furthermore, part of the dataset needs to be associated with
the property of interest to enable property-guided inverse design.
Vitrimers are characterized by two key thermal properties: glass
transition temperature (Tg) and topology freezing temperature
(Tv). Tg describes the transition from glassy state to rubbery
state while Tv describes the transition from viscoelastic solids to
viscoelastic liquids. At service temperatures, vitrimers perform
like traditional polymers, but when heated to Tv, the chains
gain mobility and carry out exchange reactions at the reactive
sites. Traditionally, vitrimer polymers exhibit Tv >Tg

[11,45]; this
makes their future application easier since Tg dictates design
protocols, and healing in vitrimers happens at temperatures
higher than Tg. Therefore, in this work, we focus our efforts on
designing vitrimers with targeted Tg. We build the first vitrimer
dataset derived from the online database ZINC15[42] and calcu-
late Tg by calibrated MD simulations on a subset of vitrimers
(Figure 1a,b).

Leveraging this vitrimer dataset, we build an integrated MD-
ML framework for discovery of bifunctional transesterification
vitrimers with desirable properties specifically targeted Tg for the
scope of this work (Figure 1b). Each vitrimer contains two reactive
constituents (i.e., carboxylic acid and epoxide) with a 1:1 molar
ratio which is the predominant ratio used to synthesize transes-
terification vitrimers in previous studies.[3,46–50] Furthermore, the
discrete nature of the molecules prohibits a smooth and continu-
ous design space. For example, while molecules are interpretable
to human, they are not interpretable to a numerical optimizer for
design of vitrimers. To this end, we develop a VAE that receives as
input a vitrimer represented by graphs and subgraphs of the con-
stituents and produces a smooth and continuous latent space. In
such a latent space, two similar vitrimers are located close to each
other while an optimizer can traverse the space of all possible
vitrimers. Our unique VAE framework offers both constituent-
specific and joint latent spaces of the chemical constituents, i.e.,
continuous screening and optimization can be performed on just
one or both of the constituents. This enables interpretability on
the effects of optimizing over, e.g., acid only, epoxide only, or
simultaneously acid and epoxide molecules. The efficacy of the
framework is demonstrated by discovering novel vitrimers with
Tg both within and well beyond the dataset. Specifically, while
the Tg in the training data ranges from 250 to 500 K, we discover
vitrimers with Tg ≈569 and 248 K (Figure 1c). To validate the
framework predictions, we generate vitrimer chemistries with a
Tg of 323 K (50 °C). We chose this Tg range to develop vitrimers
comparable to commonly used polyamides that find applications
in transportation, electronics, consumer goods, and packaging.
We examine the top candidates suggested by framework and use
chemical intuition to further ensure simpler synthesizability and
thermodynamic stability (Figure 1d). The novel, synthesized vit-
rimer is characterized and experimental Tg is in good agreement
with inverse design target Tg. This validates the proposed frame-
work, which is sufficiently general to be applied to different types

of vitrimers and their properties, as a tool for polymer chemists
to discover and synthesize novel vitrimer chemistries with desir-
able properties.

2. Results

2.1. Design Space and Data Generation

We begin by creating a vitrimer dataset to train the VAE model.
Since there are only a few available bifunctional transesterifi-
cation vitrimers recorded in literature, we create a dataset of
hypothetical vitrimers by combining carboxylic acids and epox-
ides. We first build two datasets by collecting available bifunc-
tional carboxylic acids and epoxides from the online chemical
compound database ZINC15.[42] To further broaden the chem-
ical space, we augment the datasets by adding hypothetical car-
boxylic acids and epoxides derived from available alcohols, olefins
and phenols in the ZINC15 database. In both datasets, molecules
satisfying all the following rules are kept: i) Carboxylic acid and
epoxide-containing monomers have exactly two occurrences of
their defining functional group (to restrict compositions to linear
chains). ii) Molecules with molecular weight smaller than 500 g
mol−1 (to restrict the sizes of the molecular graphs and facilitate
training of the graph VAE). iii) Molecules with C, H, N, O ele-
ments only (to emulate the existing transesterification vitrimers).
After filtering, two datasets of ≈322 000 carboxylic acids and ≈625
000 epoxides are constructed. To ensure synthesizability, we se-
lect the 50 000 acids and 50 000 epoxides with lowest synthetic
accessibility (SA) scores[51] (i.e., those predicted to be easiest to
synthesize). The final dataset is built by randomly sampling one
million vitrimers from the design space of 2.5 billion possible
combinations between the selected acids and epoxides, as shown
in Figure 2a.

To achieve property-guided inverse design, we further com-
pute Tg of the vitrimers. Since MD simulations of the entire one-
million dataset are computationally intractable, we calculate Tg of
8424 vitrimers randomly sampled from the dataset. The quantity
can cover a sufficient amount of vitrimers in the design space as
well as keep the computational cost to a reasonable level. For each
vitrimer, we create a virtual specimen then minimize and anneal
the structure to remove local heterogeneities by slowly heating it
to 800 K. A snapshot of the annealed system of an example vit-
rimer (adipic acid and bisphenol A diglycidyl ether) is shown in
Figure 2a. The annealed structure is held at 800 K for an addi-
tional 50 ps and five specimens separated by 10 ps are obtained.
To measure densities at different temperatures for Tg calcula-
tion, each specimen is cooled down from 800 to 100 K linearly
in steps of 10 K. By fitting a bilinear regression to the density-
temperature profile, we calculate Tg as the intersection point of
the two linear regressions (Figure 2a). Five replicate simulations
are carried out from each specimen to reduce the noise due to
the stochastic nature of MD. The distributions of average Tg and
coefficient of variation (i.e., ratio of the standard deviation to the
mean) in Tg of the vitrimers calculated by the five replicate MD
simulations are shown in Figure S2a,b (Supporting Information),
respectively. The coefficients of variation in Tg of most of the vit-
rimers are below 0.1 with only a few ≈0.15, indicating the low
uncertainty in our MD simulations. More details on MD simula-
tions are provided in Supporting Information.
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Figure 2. Data generation by MD simulations and calibration by GP model. a) The vitrimer dataset is obtained by randomly sampling one million
combinations between 50 000 bifunctional carboxylic acids and 50 000 epoxides derived from the ZINC15 database. MD simulations are carried out
to calculate Tg on a subset of 8424 vitrimers. b) We train a GP model to predict experiment-MD offset ΔTg with a training set of 295 polymers with
experimental Tg in literature. c) Using the trained GP model, we calibrate MD-calculated Tg of the vitrimer dataset. The calibrated Tg, serving as a proxy
of experimental Tg, is the design target of this work.

Due to the large difference in the cooling rate between MD
simulations and experiments, MD-calculated Tg is typically over-
estimated compared with experimental measurements. Com-
pensating for this artifact, Afzal et al. have achieved good cor-
relation between MD-simulated Tg and experimental Tg on 315
polymers using ordinary least squares.[52] However, we find em-
pirically that a simple two-parameter linear fit is insufficient to
reduce the effect of larger noise in our MD simulations with
smaller systems and fewer replicates (Figure S3c, Supporting In-
formation). Instead, we employ a Gaussian process (GP) regres-
sion model to calibrate MD calculations against available exper-
imental data. GP is a probabilistic model that uses a kernel (co-
variance) function to make probabilistic predictions based on the
distance between the queried data point and a training set.[53] In
order to construct a training dataset for the GP model, we gather
292 polymers from the Bicerano Handbook[54] and the Chemical
Retrieval on the Web (CROW) polymer database,[55] each with
documented experimental Tg. If the same polymer appears in
both literature sources with different recorded Tg, the average
of both values is calculated as final Tg. The available experimen-
tal data of three bifunctional transesterification vitrimers[11,49,56]

is also included and the dataset contains 295 polymers in to-
tal. The selected polymers cover a diverse chemical space with
a wide Tg range (171–600 K) which are suitable to calibrate the
MD Tg of designed vitrimers. Additionally, the dataset includes
fully cured thermosets and vitrimers whose recorded experimen-

tal Tg values are obtained from the literature with potentially mi-
nor variations in crosslinking. These variations are accounted for
by the calibration process that uses the experimental and MD
simulation data. We compute Tg for this experimental polymer
dataset using the MD protocols described above and calculate
the experiment-MD offset ΔTg for each of these polymers. To nu-
merically represent both the polymers within the training set and
the vitrimers to be calibrated as inputs for the GP model, we ap-
ply extended-connectivity fingerprints (ECFPs)[37] to the repeat-
ing units of the polymers, where asterisks (*) indicate connection
points. We train the GP model to predict ΔTg from molecular fin-
gerprints (see Figure 2b), i.e.,

ΔTGP
g = GP(x) (1)

where ΔTGP
g is the predicted experiment-MD Tg offset by the GP

model and x is the molecular fingerprint of the polymer repeating
unit. The calibrated Tg is defined as

Tg = TMD
g + ΔTGP

g (2)

where TMD
g is the MD-calculated Tg. More details on molecular

fingerprints and the kernel function are provided in Support-
ing Information.
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Figure 3. Illustration of the VAE model. The encoders convert acid and epoxide molecules into latent vectors z in a continuous latent space. The latent
vectors z are further decoded into acid and epoxide molecules by the decoders. A property predictor is added to predict Tg from z.

To evaluate the performance of our GP model, we implement
leave-one-out cross validation (LOOCV). In this process, we train
our GP model on all data points in the training set except one
point and predict its calibrated Tg. Therefore, the one point that is
left out serves as a test set and assesses the capabilities of the GP
model to predict ΔTg of unseen data. We repeat this process for
all 295 polymers in the training set and compare the calibrated
Tg (derived from Equation 2) with experimental Tg recorded in
literature. The mean absolute error (MAE) is 28.07 K (Figure S3,
Supporting Information), which is comparable to the results re-
ported by Afzal et al.[52] (MAE = 27.35 K) with larger systems and
longer simulation time. The error is partially attributed to incon-
sistencies in recorded experimental Tg between the two literature
sources.[54,55] Experimentally measured Tg values for some poly-
mers (such as polypropylene, polyvinylcyclohexane, etc.) differ by
≈30 K gathered from two literature sources.[54,55] By utilizing the
comprehensive GP model trained on the entire training dataset
without LOOCV, we proceed to calibrate Tg of the vitrimer dataset
calculated by MD simulations. The distributions of Tg of the vit-
rimers before and after GP calibration are shown in Figure 2c
and both distributions approach Gaussian. The average Tg before
and after calibration is 423 and 373 K, respectively. Since the cool-
ing rate in our MD simulations is 12 orders of magnitude higher
than typical experiments, the offset of 50 K is consistent with the
Williams–Landel–Ferry theory that estimates an increase in Tg of
3 to 5 K per order of magnitude increase in the cooling rate.[57]

Ten vitrimers with highest and lowest calibrated Tg are shown in
Figure S4 (Supporting Information), indicating the wide chem-
ical and property space covered by the dataset. In this work, we
denote Tg as the calibrated value from MD simulations, which
serves as a proxy of the true experimental Tg. It is also the input
to the variational autoencoder and target of inverse design.

2.2. Variational Autoencoder

The discrete nature of molecules makes it challenging for the
generative model to learn a continuous latent space from discrete
data of vitrimers. Any two molecules can have different degrees
of freedom (e.g., number of atoms and bonds) and extra attention
needs to be paid to the choice of representations. Here we adopt
the hierarchical graph representation of molecules developed by

Jin et al.[25] A molecule is first represented as a graph  = ( , )
with atoms as nodes  and bonds as edges  . We decompose the
molecule  into n motifs 1,… ,n. Each motif i = (i, i)
where i ∈ {1,… , n} is a subgraph with atomsi and edges i. The
ensuing step involves a three-level hierarchical graph represen-
tation (schematic illustration in Figure S5, Supporting Informa-
tion). The motif level  establishes macroscopic connections in
a tree-like structure, the attachment level  encodes inter-motif
connectivity via shared atoms, and the atom level  captures finer
atomic relationships. More details about the hierarchical graph
representation are presented in Supporting Information.

We use a variational autoencoder (VAE) comprising two pairs
of hierarchical encoders and decoders associated with the hier-
archical representations of acid and epoxide molecules, respec-
tively. A schematic of the framework is presented in Figure 3.
Each of the hierarchical encoder uses three message passing net-
works (MPNs) to encode the graphs from each of the three lev-
els. The acid encoder a

𝜙a (with trainable parameters ϕa) maps
the molecular graph of the acid molecule a into a pair of vec-
tors 𝝁

a ∈ ℝda and log𝝈a2 ∈ ℝda of dimension da, which are the
mean and logarithm variance of a Gaussian distribution. Simi-
larly, 𝝁e ∈ ℝde and log𝝈e2 ∈ ℝde of dimension de are converted
from the epoxide molecule e by the epoxide encoder e

𝜙e .
We employ the attributed network embedding method[40,41] to

obtain the unified mean 𝝁 and log variance log𝝈2 of dimension
d embedding information of the acid and epoxide as well as their
unified effects as follows. We define dae = da + de − d denoting
the overlapping dimensions of 𝝁a and 𝝁

e and calculate 𝝁 by

𝝁 =
⎡⎢⎢⎣

𝜇a
1
⋮

𝜇a
da−dae

⎤⎥⎥⎦
⏟⏞⏟⏞⏟
acid-specific

⊕
1
2

⎛⎜⎜⎝
⎡⎢⎢⎣
𝜇a

da−dae+1

⋮
𝜇a

da

⎤⎥⎥⎦ +
⎡⎢⎢⎣
𝜇e

1
⋮
𝜇e

dae

⎤⎥⎥⎦
⎞⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
shared

⊕

⎡⎢⎢⎣
𝜇e

dae+1

⋮
𝜇e

de

⎤⎥⎥⎦
⏟⏟⏟

epoxide-specific

(3)

where ⊕ denotes vector concatenation. The unified log variance
vector log𝝈2 is obtained similarly. Partially overlapping latent di-
mensions enables both independent and joint control as well as
interpretability of embeddings of acid and epoxide. When explor-
ing the latent space and optimizing latent vectors for new vit-
rimers later, it also allows us to change one part of the vitrimer
but keep the other one unaltered.
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The unified mean 𝝁 and variance 𝝈
2 together describe a diag-

onal multivariate Gaussian distribution

z ∼ 
([
𝜇1,… ,𝜇d

]⊺
, diag

([
𝜎2

1 ,… , 𝜎2
d

]⊺))
(4)

where z is the latent vector (representation) of dimension d en-
coding necessary information of both input graphs a and e. To
keep differentiability and facilitate the training of VAE, the repa-
rameterization trick[58] is used to sample the latent vector z from
𝝁 and 𝝈

2 by

z = 𝝁 + 𝝐 ⊙
[
𝜎2

1 ,… , 𝜎2
d

]⊺
(5)

where 𝝐 ∼  (0, I) is a vector of dimension d and ⊙ denotes
element-wise multiplication. The acid decodera

𝜃a (with trainable
parameters 𝜃a) is used to output the acid molecule a′ from the

acid-specific and shared dimensions of z. Similarly, the epoxide
decoder e

𝜃e is used to output the epoxide molecule e′ from the
epoxide-specific and shared dimensions of z. More specifically,
the decoders iteratively expand the graphs at three hierarchical
levels. At step t, three multilayer perceptrons (MLPs) are used to
predict the probability distributions of each motif node p′

t
, at-

tachment node p′
t

and atoms to be attached p′
(u,v)t

(see Support-
ing Information for more details). An additional MLP is used to
predict the probability of backtracing p′

bt
, i.e., when there will be

no new neighbors to add to the motif node. Both decoders are op-
timized to accurately reconstruct the molecules, i.e., a′ ≈ a and
e′ ≈ e. Practically this is achieved by minimizing the error be-
tween all four predicted probability distributions with respect to
the one-hot encoded ground truth, i.e., pt

, pt
, p(u,v)t

and pbt
for t

= 1,…,tmax where tmax is the maximum number of iterations based
on depth-first search of the input molecule (here for simplicity
we omit superscripts a and e denoting acid and epoxide). Encod-
ing input vitrimers as described here introduces an information
bottleneck[59] within the latent representation. This bottleneck se-
lectively retains necessary information required for accurate vit-
rimer reconstruction while largely reducing the dimensionality
and complexity of original data. As a result, vitrimers with simi-
lar compositions occupy proximate positions in the latent space.

In order to achieve data-driven design and uncover novel vit-
rimers with the interested property, we establish a connection be-
tween the latent space and Tg. This is accomplished by employing
a neural network surrogate model that takes the latent vectors as
inputs and outputs Tg. Consequently, we modify the original VAE

architecture and establish a projection from the latent space to
Tg by incorporating the latent vectors z into a property prediction
model 𝜔 (with trainable parameters 𝜔). Thereby, the predicted
property is

T ′
g = 𝜔(z) (6)

We collect two subsets from the vitrimer dataset, one with N
vitrimers lacking property labels  = {(a(i),e(i)) : i = 1,… , N},
and one with Nprop vitrimer and Tg pairsprop = {(a(i),e(i), T (i)

g ) :
i = 1,… , Nprop}. Due to the large difference between N and Nprop
(999 000 vs. 7424), we first train the VAE on an unsupervised
basis with  and the property predictor is not optimized. Specif-
ically,

𝜃a, 𝜃e,𝜙a,𝜙e ← arg min𝜃a ,𝜃e ,𝜙a ,𝜙e

N∑
i=1

(
CE

(
p(i)


′
, p(i)



)
+ CE

(
p(i)


′
, p(i)



)
+ CE

(
p(i)

(u,v)

′
, p(i)

(u,v)

)
+ BCE

(
p(i)

b

′
, p(i)

b

))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

reconstruction loss

+ 𝜆KL
1
N

N∑
i=1

DKL

(


([
𝜇

(i)
1 ,… ,𝜇(i)

d

]⊺
, diag

([
𝜎

(i)2

1 ,… , 𝜎(i)
d

2
]⊺))‖ (0, I)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Kullback–Leibler divergence

(7)

where CE and BCE denote cross entropy loss and binary cross en-
tropy loss,[60] respectively. For simplicity, the subscript t and su-
perscripts a and e are omitted and all terms in reconstruction loss
represent the sum over all decoding steps and over acid and epox-
ide. 𝜆KL > 0 is the regularization weight for Kullback–Leibler di-
vergence. Training the VAE with  aims to construct well-trained
encoders and decoders capable of accommodating a diverse array
of vitrimers. The reconstruction loss ensures the accurate recon-
struction of the encoded vitrimers with respect to both acid and
epoxide molecules by the VAE. The Kullback–Leibler divergence
(KLD)[61] is a statistical measure to quantify how different two dis-
tributions are from each other. Hence, by employing it as a loss
term,[58] we minimize the difference between the probability dis-
tribution of the latent space created by the encoder and the stan-
dard Gaussian distribution  (0, I). This helps in constructing a
seamless and continuous latent space from which new samples
can be generated using standard Gaussian distribution and al-
lows us to discover and design novel vitrimers not present in the
training set. The KLD is calculated as

DKL

(


([
𝜇1,… ,𝜇d

]⊺
, diag

([
𝜎2

1 ,… , 𝜎2
d

]⊺))‖  (0, I)
)

= 1
2

d∑
j=1

[𝜇2
j + 𝜎2

j − log(𝜎2
j ) − 1] (8)

Subsequently, we use prop to jointly train encoder, decoder
and property predictor at the same time, i.e.,
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𝜃a, 𝜃e,𝜙a,𝜙e,𝜔 ← arg min𝜃a ,𝜃e ,𝜙a ,𝜙e ,𝜔

Nprop∑
i=1

(
CE

(
p(i)


′
, p(i)



)
+ CE

(
p(i)


′
, p(i)



)
+ CE

(
p(i)

(u,v)

′
, p(i)

(u,v)

)
+ BCE

(
p(i)

b

′
, p(i)

b

))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

reconstruction loss

+ 𝜆KL
1

Nprop

Nprop∑
i=1

DKL

(


([
𝜇

(i)
1 ,… ,𝜇(i)

d

]⊺
, diag

([
𝜎

(i)2

1 ,… , 𝜎(i)
d

2
]⊺))‖ (0, I)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Kullback–Leibler divergence

+ 1
Nprop

Nprop∑
i=1

(
T (i)

g

′
− T (i)

g

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
property prediction loss

(9)

The additional property prediction loss ensures accurate predic-
tion of Tg from latent vectors. This joint training process reor-
ganizes the latent space and places vitrimers with similar Tg in
close proximity to each other. More details about hierarchical en-
coder and decoder, network architecture, training protocols and
hyperparameters are presented in Supporting Information.

2.3. Performance of the VAE

We first evaluate the ability of the VAE to reconstruct a given vit-
rimer. We encode the vitrimers in the test set into mean vectors
of latent distribution 𝝁 then decode 𝝁 back to vitrimers. The ratio
of successfully reconstructed (i.e., both carboxylic acid and epox-
ide decoded from 𝝁 are identical to input molecules) is 89.1%,
which demonstrates well-trained encoders and decoders capable
of accommodating and reconstructing vitrimers unseen by the
VAE. Examples of ten vitrimers from the test set and the corre-
sponding reconstructions are presented in Figure S6 (Supporting
Information). Eight vitrimers are perfectly reconstructed, while
one component of vitrimers is decoded into different but similar
molecules in the two unsuccessful examples.

We then assess the performance of the VAE to generate vit-
rimers. We sample 1000 latent vectors z from standard Gaus-
sian distribution and decode them into the carboxylic acid and
epoxide molecules constituting vitrimers. 82.9% of the sam-
pled vitrimers are valid, i.e., the composing acid and epoxide
molecules are chemically valid and contain exactly two carboxylic
acid and epoxide groups. While it is possible to enforce the
VAE model to output molecules only with exactly two func-
tional groups, we choose to keep the current model simple with-
out adding extra computational expenses. All randomly sam-
pled latent vectors are decoded into chemically valid molecules
and most of them contain the desired functionality, which is
sufficient for our inverse design purposes. Examples of sam-
pled vitrimers are shown in Figure S7 (Supporting Information).
Components of the three invalid sampled vitrimers are also car-
boxylic acids and epoxides but do not have exactly two functional
groups.

Apart from validity, we are also interested in the novelty and
uniqueness of the generated vitrimers, which are defined as the
ratio of sampled vitrimers which are not present in the train-
ing set and the expected fraction of unique vitrimers per sam-
pled vitrimers, respectively. Results show that all of the 1000
vitrimers sampled from the latent space are novel and unique,
which greatly benefits the discovery of vitrimers by exploring the
latent space.

We further examine the effect of joint training with the small
dataset prop containing a limited number of labeled vitrimers.
All four metrics of the model before and after joint training
are presented in Table S3 (Supporting Information). The im-
proved reconstruction accuracy and sample validity show that
the second-step joint training enhances the performance of the
model and that the encoders and decoders are not biased to the
limited data in prop.

The property predictor maps latent space encoded from vit-
rimers to Tg and serves as a surrogate model for estimating Tg
without the need for costly MD simulations. We evaluate the
predictive power of the property predictor network by encoding
the vitrimers in the test set into mean vectors 𝝁 and predicting
the associated Tg. The predicted Tg and true Tg are compared in
Figure S8 (Supporting Information). A mean absolute error of
13.53 K indicates accurate prediction of Tg by the property pre-
dictor which facilitates the inverse design process.

The VAE jointly trained with the property predictor organizes
the latent space such that vitrimers exhibiting similar properties
are positioned in the vicinity of each other. We examine the dis-
tribution of latent vectors and corresponding Tg of the labeled
datasets using principal component analysis (PCA). As shown
in Figure S9a,b (Supporting Information), the distribution of the
latent vectors shows an obvious gradient in both training and
test sets, where vitrimers with higher Tg cluster in the lower
left region. Such a well-structured latent space based on proper-
ties benefits the discovery of novel vitrimers with desired Tg. For
comparison, the latent vector distribution before joint training is
presented in Figure S9c,d (Supporting Information). The much
less obvious trend confirms the effect of joint training on latent
space organization.
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2.4. Interpretable Exploration of the Latent Space

The well-trained, continuous latent space enables us to discover
new vitrimers by exploring the latent space through modifica-
tions of latent vectors z. For example, we start with the latent vec-
tor z0 of a known vitrimer (adipic acid and bisphenol A diglycidyl
ether) as origin and sample latent vectors in the neighborhood
by perturbing z0. Previous works that employ multi-component
VAEs (i.e., VAEs with multiple encoders and decoders) simply
add embedding or mean (log variance) vectors from encoders to
derive the unified latent vector z.[34] The effect of different com-
ponents is not considered individually and a change in z leads
to potential changes in all components. The partially overlapping
latent dimensions (Equation 3) allow us to explore the vicinity of
the origin z0 along different axes by adding noise to acid-specific
latent dimensions (first da dimensions of z0), epoxide-specific la-
tent dimensions (last de dimensions of z0) and all latent dimen-
sions of z0 (details are provided in Supporting Information). Con-
sequently, novel vitrimers with changes in only acid, only epoxide
and both components are identified by decoding the latent vec-
tors modified along three axes, as shown in Figures 4a–c. The de-
coded vitrimers present variety in molecular structures without
significant changes in Tg (Figure 4f) due to limited search region
in latent space, which opens an opportunity to tailor a specific
vitrimer to its novel variants with different molecular structures
but preserve certain property similarity.

Besides neighborhood search, we perform an interpolation be-
tween two points in the latent space and identify a series of new
vitrimers along the path. Figure 4d presents an example of spher-
ical interpolation (SLERP)[62] between vitrimers with highest and
lowest Tg in the training set. As opposed to linear interpolation
(LERP), we use SLERP because Gaussian distribution in high di-
mensions closely follows the surface of a hypersphere. The de-
coded vitrimers show a smooth transition from the low-Tg vit-
rimer with linear structure to the high-Tg vitrimer with more
aromatic nature. The continuous transition between molecular
structures and Tg (Figure 4f) evidences the smoothness of the la-
tent space with associated Tg. The vitrimers discovered by LERP
and their associated Tg are shown in Figure S10 (Supporting In-
formation). More details on spherical and linear interpolation
schemes are presented in Supporting Information.

2.5. Inverse Design by Bayesian Optimization

The VAE together with the property predictor succeeds in learn-
ing the hidden relationships between latent space and Tg of vit-
rimers, which allows us to tailor vitrimer compositions to de-
sirable Tg even beyond the training regime. Although we have
achieved forward projection from the vitrimer space (or latent
space) to property space, the inverse mapping is more challeng-
ing due to the fact that multiple distinct vitrimers could have a
similar Tg. To achieve inverse design of vitrimers with optimal or
desirable Tg, we employ batch Bayesian optimization to identify
the latent vectors z that have the potential to be decoded into vit-
rimers with target Tg. The proposed candidates are further vali-
dated by MD simulations with GP calibration, and the optimal
solutions with desirable Tg are found. Due to the discrete na-
ture of molecules, the latent vectors proposed by the optimization

process may lead to invalid molecules. Furthermore, since the
discrete molecules are projected onto a continuous latent space
by the VAE, it is inevitable that multiple distinct latent vectors
in the neighborhood can be decoded into the same vitrimer but
are associated with different Tg predicted by the property predic-
tor. This severely limits the accuracy and efficiency of the opti-
mization process. To this end, we add an additional decoding-
encoding step before passing z to the property predictor to predict
Tg (Figure S11, Supporting Information). More specifically, when
evaluating the Tg of a point of interest z in the latent space during
the optimization process, z is first decoded into a carboxylic acid
and an epoxide. If both molecules are valid, they are passed to the
encoders to obtain the reconstructed mean vector 𝝁recon, which is
further passed to the property predictor to evaluate the Tg. In this
way, the Bayesian optimization algorithm is able to search for po-
tential candidates with desirable Tg efficiently without proposing
the same vitrimer for a large number of iterations. More details
about Bayesian optimization are provided in Supporting Infor-
mation.

To demonstrate the effectiveness of our inverse design frame-
work, we use Bayesian optimization to discover novel vitrimers
with three different targets: maximum Tg, Tg = 373 K and Tg
= 248 K. Tg of the proposed candidates is validated by MD
simulations and GP calibration. For each target, four examples
of discovered vitrimers are presented in Figure 5. For the first
target (maximum Tg), our VAE model generates novel vitrimers
with MD-validated Tg beyond the upper bound of Tg in the
training data (500 K) and thereby expands the limits in thermal
properties of bifunctional transesterification vitrimers. The
Bayesian optimization procedures are able to probe the latent
space outside of the training domain and propose novel vitrimers
with extreme properties, which is difficult for traditional forward
modeling methods to find. For the second target, the Bayesian
optimization algorithm effectively searches the latent space and
successfully proposes vitrimers with the exact target Tg of 373
K. The corresponding latent vectors are spread out in the latent
space and the vitrimer compositions present significant molec-
ular variety. For the third target which is the lower bound of
the training domain (248 K), the proposed vitrimers (especially
carboxylic acids) are more similar to each other and occupy a
small region in the latent space. This can be attributed to the fact
that there are not many linear molecules with more aliphatic
nature in the 50 000 acids or epoxides making the training set.
As a result, the distribution of these vitrimers with low Tg is
insufficiently captured by the VAE and the proposed candidates
of low-Tg vitrimers are restrained by the limited training data.

The Tg distributions of the dataset and ≈100 designed vit-
rimers for each target are presented in Figure S12 (Supporting
Information). For the target of maximum Tg, our model effi-
ciently discovers novel vitrimer chemistries beyond the training
property space. For the other two targets of 373 K and 248 K, the
distributions are centered around the design target. Ten examples
of novel vitrimers discovered by Bayesian optimization for each
target are presented in Figure S13 (Supporting Information). For
the first target, all ten proposed vitrimers have validated Tg larger
than 500 K, which indicates the effective extrapolation beyond
the training domain by our framework. For the other two targets
of finding vitrimers with exact target Tg, the discovered vitrimers
present Tg within a range of 2 K around the target and maintain
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Figure 4. Exploration in the latent space to discover novel vitrimers. Starting with a known vitrimer as origin (adipic acid and bisphenol A diglycidyl
ether), vitrimers are discovered by perturbing its latent vector in a) acid-specific dimensions, b) epoxide-specific dimensions and c) all dimensions.
d) Novel vitrimers are identified along the interpolation path between two vitrimers in the training set. e) The distribution of discovered vitrimers is
visualized in the latent space by PCA. f) Tg of discovered vitrimers. All presented Tg values are validated by MD simulations and GP calibration.
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Figure 5. Inverse design of novel vitrimers by Bayesian optimization based on three targets of desirable Tg. a) Maximum Tg, b) Tg = 373 K and c) Tg =
248 K. All presented Tg values of proposed vitrimers are validated by MD simulations and GP calibration.

considerable molecular diversity, proving the high accuracy in
the inverse design process. We further examine the stability
of the proposed molecules by minimizing them by reactive
molecular dynamics (ReaxFF) using the CHON2017_weak_bb
force field.[9] All molecules remain stable during minimization
and the minimized structures are presented in Figure S14 (Sup-

porting Information). To ensure the feasibility of applying the
calibration GP model trained by 295 polymers to the discovered
novel vitrimers, in Figure S15 (Supporting Information) we
present their molecular fingerprints reduced to two dimensions
by PCA. The calibration dataset occupies a broad chemical space
and covers the chemistries of designed vitrimers.

Adv. Sci. 2024, 2411385 2411385 (10 of 14) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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We carry out further analysis based on the molecular descrip-
tors of ten proposed vitrimers for each target. The molecular de-
scriptors except density are calculated from the vitrimer repeat-
ing units (n = 1 in Figure S1a, Supporting Information) by the
Modred package.[63] Density of each vitrimer at 300 K is extracted
from MD simulations. The relevant descriptors of designed
low, medium and high-temperature vitrimers are presented in
Figure S16 (Supporting Information). The vitrimers with higher
Tg have larger molecular weight, higher density, more heavy
atoms and multiple bonds, and fewer rotatable bonds. Conse-
quently, the chains in these vitrimers are more rigid and less mo-
bile, which agrees with the common knowledge of structure-Tg
relationships in polymers.

We compare Tg of the designed vitrimers with nine commonly
used polymers in Figure S17 (Supporting Information). The pro-
posed vitrimers cover a wide range of Tg suitable for various ap-
plications from coating materials to aerospace polymers. With
further tuning of the target, our framework has the potential to
discover vitrimer compositions with any Tg within an expanded
range and expedite the widespread applications of sustainable
polymers in various industries.

2.6. Experimental Synthesis of Novel Vitrimer Designed with
Chemical Intuition

To experimentally validate the effectiveness of the VAE model, we
perform Bayesian optimization to propose novel vitrimers with a
target Tg of 323 K. Since epoxides are typically more difficult to
synthesize, the epoxide molecule is fixed as bisphenol A digly-
cidyl ether (DGEBA) during optimization to improve the synthe-
sizability of the vitrimer. In other words, the shared and epoxide-
specific dimensions are fixed while we only optimize acid-specific
dimensions in Equation 3. Out of the carboxylic acids proposed
by the VAE model, four acids with low SA scores (2.39 to 2.61)
and symmetric structures are further analyzed for synthesis fea-
sibility. Additionally, some of these acid molecules have an amine
group that can react with epoxide rings to form irreversible cova-
lent bonds, thereby reducing the adaptive nature of the macro-
molecular network. Keeping these thermodynamical stability is-
sues in polymer synthesis and resulting crosslinked network
through chemical intuition, we make slight modifications to the
proposed structures to achieve a symmetric acid molecule with a
lower SA score (2.23) that can be synthesized using off-the-shelf
chemicals. This acid is crosslinked with DGEBA epoxide to form
a stable polymer, demonstrating inverse design and synthesis of
novel vitrimer chemistry (Figure 6a).

The synthesis of the novel vitrimer chemistry is carried out by
the ring opening reaction of succinic anhydride by glycerol fol-
lowed by immediate crosslinking with DGEBA. The reaction of
beta-hydroxy groups of glycerol with succinic anhydride opens
the ring and creates carboxylic functional groups. The resultant
acid is crosslinked with DGEBA in presence of catalyst triazabi-
cyclodecene (TBD) to yield the final vitrimer product (Figure 6b).
The cured vitrimer is verified using Fourier transform infrared
(FTIR) spectroscopy, as shown in Figure S18 (Supporting Infor-
mation). The characteristic peaks for carbonyl groups at 1728
cm−1 and for aromatic epoxide chains at 1033 to 1028 cm−1 are
observed. In addition, other peaks at 1400 to 1608 cm−1 indi-

cate the formation of ester linkages between acids and epoxides.
We further characterize the thermal properties of the synthesized
vitrimer using differential scanning calorimetry (DSC) and ther-
momechanical analysis (TMA), as shown in Figure 6c. DSC re-
sult shows one transition temperature (Tg) at 317 K, indicating
complete curing of crosslinked vitrimer. TMA result presents two
thermal transitions, first at 311 K for Tg and second at 489 K for
Tv. The difference in Tg from DSC and TMA arises due to differ-
ent physical phenomena and sensitivities measured by each tech-
nique. DSC measures heat flow associated with the glass transi-
tion, which reflects changes in heat capacity as the polymer tran-
sitions from a glassy to a rubbery state, it therefore provides an
average Tg. TMA on the other hand measures the mechanical
response of the polymer to non-isothermal creep and the ma-
chine detects subtle changes in molecular mobility through di-
mensional changes. Experimental Tg from DSC and TMA agrees
well with the design target (323 K) and demonstrates the capabil-
ity of our framework to design novel vitrimers with desired ex-
perimental Tg. The second transition indicates flowability of the
vitrimer at elevated temperature when dynamic exchange reac-
tions start to occur and enhance polymer chain mobility. The me-
chanical properties of the synthesized vitrimer are measured by
tensile testing (Figure S19, Supporting Information), which indi-
cates a tensile stress of 11 MPa and an elastic modulus of 692 MPa
(Table S5, Supporting Information). To confirm healability of the
vitrimer, we cut a pristine specimen and heal it at temperature
around Tv. The surfaces of pristine, cut, and healed samples are
examined under the microscope (Figure 6d). The complete re-
moval of damage shows healability of the synthesized novel vit-
rimer chemistry and the recyclability is validated by the recov-
ered sample using heat press (Figure S20, Supporting Informa-
tion). To demonstrate the capability of the model in discovering
vitrimers with a higher target Tg, another round of Bayesian opti-
mization is conducted to design vitrimers with a target Tg of 373
K (100 °C). The acid-specific dimensions are optimized while the
epoxide is fixed as DGEBA. The proposed acid molecules include
1,4-cyclohexanedicarboxylic acid (CHDA) which is a commer-
cially available carboxylic acid. Notably, the vitrimer composed
of CHDA and DGEBA with an equal molar ratio has been syn-
thesized and characterized in a previous work[64] which reports
an experimental Tg of 358 ± 2.3 K. This value agrees well with
our design target and validates the accuracy and reliability of our
framework for inverse design of vitrimer chemistries with higher
Tg targets (Figure S21, Supporting Information).

3. Conclusion

We develop an integrated MD-ML framework for inverse design
of bifunctional transesterification vitrimers with desirable Tg. A
diverse vitrimer dataset is built for the first time from the ZINC15
database.[42] High-throughput MD simulations with a GP calibra-
tion model are employed to calculate Tg on a subset of vitrimers.
The dataset is used to train a VAE model with dual graph en-
coders and decoders which enables representation and design of
the desired vitrimer components. This further provides flexibility
by exploring the latent space and optimizing latent vectors of dif-
ferent components for novel vitrimers. We demonstrate the high
accuracy and efficiency of our framework in discovering novel
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Figure 6. Synthesis and characterization of novel vitrimer designed by ML framework. a) Four vitrimers (epoxide fixed as DGEBA) are proposed by
Bayesian optimization with a target Tg = 323 K. Driven by chemical intuition, a symmetric and thermodynamically stable vitrimer is selected. b) Reaction
scheme for synthesis of the acid and consequent crosslinking with DGEBA to form a novel vitrimer. c) Experimental characterization of the synthesized
vitrimer to measure Tg and Tv. The measured Tg ranges from 311 K to 317 K, which agrees well with the design target. d) Images of pristine, cut and
healed vitrimer specimens, confirming healability of the synthesized vitrimer.

vitrimers with three different targets of Tg even beyond the train-
ing distribution. The proposed vitrimers achieve both molecu-
lar variety and desirable Tg within 2 K range around the target,
which make them ideal candidates for sustainable polymers for
different applications. To validate our framework in experiments,
we synthesize and characterize a novel vitrimer designed by the
model. This vitrimer is proposed by optimizing acid-specific di-
mensions of latent vector while fixing epoxide as DGEBA. Driven

by chemical intuition, we then slightly modify the proposed acids
to a thermodynamically favorable derivative. The experimentally
measured Tg (311 to 317 K) agrees well with the design target
(323 K), which validates effectiveness of the VAE model.

While this work focuses on transesterification vitrimers that
rely on catalysts, our VAE model can be modified to design
catalyst-free vitrimers composed of anhydrides, epoxides, and
co-curing agents such as glycerol,[65] triethanolamine,[66,67] and
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phosphaphenanthrene-derived diols.[68] By incorporating an ad-
ditional pair of encoder and decoder to embed the necessary in-
formation of the co-curing agent and employing partially over-
lapping latent dimensions, we can achieve the selective design of
any of the three components. This approach is particularly advan-
tageous when optimizing the properties of these vitrimers while
preserving specific functionalities. Apart from transesterification
vitrimers, our VAE model can be further applied to the design of
other vitrimer types, such as disulfide bond exchange and Schiff
base vitrimers. The multiple encoder-decoder pairs and overlap-
ping latent dimension scheme allow for the design of more com-
plex vitrimer systems. In addition, our MD-ML framework can be
potentially extended to a wide range of properties and other types
of polymers. Recent advancements in high-throughput MD sim-
ulations have led to the creation of polymer datasets with diverse
properties including thermal conductivity,[69,70] free volume[71]

and ionic conductivity.[72] With sufficient polymer data from MD
simulations, our VAE architecture can be easily adjusted to other
types of multi-component polymers, such as copolymers, ther-
mosets, and covalent organic frameworks. By adjusting the out-
put dimensions of the property predictor, the model can also
be extended to multi-objective inverse design through Bayesian
optimization. This enables the definition of Pareto fronts to ef-
fectively balance trade-offs between various properties of inter-
est. The complete workflow of computational design and exper-
imental validation opens an opportunity for polymer scientists
to achieve high-fidelity inverse design of multi-component poly-
meric materials with desirable properties.

4. Experimental Section
Details of MD simulations (Section S1, Supporting Information), GP

calibration model (Section S2, Supporting Information), hierarchical rep-
resentation of molecules (Section S3.1, Supporting Information), VAE ar-
chitecture and training protocols (Section S3.2, Supporting Information),
VAE performance (Section S3.3, Supporting Information), exploration of
the latent space (Section S3.4, Supporting Information), Bayesian opti-
mization (Section S3.5, Supporting Information), estimate of computa-
tional efficiency (Section S4, Supporting Information) and experiments
(Section S5, Supporting Information) are provided in Supporting Infor-
mation.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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