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Abstract: 

Following ionic liquids, (natural) deep eutectic solvents ((NA)DES) are receiving significant attention 

as performance additives for biocatalytic reactions. 

(NA)DES are increasingly evaluated as solvents to replace water in hydrolase-catalysed esterification 

reactions thereby shifting the reaction equilibrium. They also frequently outperform water in terms 

of solubility properties of hydrophobic reagents and thereby enable higher space-time yields. 

Furthermore, (NA)DES frequently exceed stabilising effects on enzymes and thereby enable more 

robust (and therefore economically more attractive) biocatalytic syntheses.  

In this contribution, we will summarise and critically evaluate the recent literature on (NA)DES-

supported biocatalysis. 
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Manuscript text: 

1. Introduction 
 

Cells, microbial and those of higher organisms, are roughly composed of 70% water while the 

remaining 30% share out to proteins (15%), DNA (1%), RNA (6%), (Phospo)lipids (2%) polysaccharides 

(2%) and small molecules (4%).(anonymous, 2014) Therefore, microbial cells are broadly seen as 

aqueous solutions of these components. Even though this model may be too simplistic and the 

interior of a cell should be more seen as a gel rather than a dilute aqueous solution, biocatalysis is 

traditionally performed in aqueous media. This approach, however, severely limits the broad 

applicability of biocatalysis for the synthesis of useful chemicals as many of them are rather 

hydrophobic and therefore poorly soluble in aqueous media. Dilute product mixtures of a few grams 

per litre reaction broth, however, are not attractive neither from an economic, not environmental 

point-of-view. Therefore, limitation to aqueous reaction media poses a severe limitation en route to 

a broad applicability of biocatalysis for chemical synthesis. 

Pioneering works by Klibanov and coworkers(Dordick, Marletta, & Klibanov, 1986; Zaks & Klibanov, 

1984, 1985) that demonstrated that enzymes can be active under non-aqueous conditions first 

received mostly academic interest. In recent years, however, the interest in neoteric solvents for 

biocatalysis has been increasing steadily.  

Following the, now fallen from grace, ionic liquids, deep eutectic solvents are enjoying a rapidly 

increasing popularity in the biocatalysis community as biobased and non-toxic alternatives.(Durand, 

Lecomte, & Villeneuve, 2013; Gotor-Fernández & Paul, 2019; Ibn Majdoub Hassani, Amzazi, & 

Lavandera, 2019; Kourist & González-Sabín, 2020; María, Guajardo, & Kara, 2020; Mbous et al., 2017; 

M.  Pätzold et al., 2019; Perna, Vitale, & Capriati, 2020; Tan & Dou, 2020; Xu, Zheng, Zong, Li, & Lou, 

2017) The aim of this chapter is to critically summarise the current efforts on establishing, 

understanding and applying DES as neoteric solvents for biocatalysis. 
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Kazlauskas and coworkers probably were the first ones to use DES as solvents for biocatalytic 

reactions,(Gorke, Srienc, & Kazlauskas, 2008) demonstrating that several lipases catalyse the 

transesterification of ethyl valerate to butyl valerate. These authors, however, also pointed out one 

possible (undesired) side reaction in this reaction, i.e. the participation of the solvent (e.g. ethylene 

glycol- or glycerol-based DES) in the lipase-catalysed reaction. Interestingly, probably to 

thermodynamic stabilisation in the DES-typical H-bond network, DES components such as ethylene 

glycol or glycerol were significantly less reactive than expected.  

Ever since these pioneering works, the number of reports on biocatalysis in DES has been increasing 

steadily (Figure 1). 

 

Figure 1. Publications (blue bars) and their citations (green line) found within web of knowledge using the search terms 
‘Deep Eutectic Solvent’ and ‘Biocatalysis’, accessed on 29.03.2020. 
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2. Natural Deep Eutectic Solvents in Biocatalysis 
 

Table 1 gives a representative, yet incomplete overview over the manifold applications of DES as 

solvents for biocatalytic reactions.  

DES are rarely used as ‘neat solvents’ and often water (buffer)/DES mixtures give best results as 

compared to ‘anhydrous’ conditions. On the one hand, this may be ascribed to enzymes needing a 

certain amount of (non-bulk) water to maintain activity (water as lubricant).(María et al., 2020) On 

the other hand, the high viscosity of many DES necessitates dilution (with water) to attain acceptable 

viscosities for practical application. Above approximately 50% (v/v) of water as the reaction medium 

DES are more characterised as ‘performance additives’ rather than as co-solvent.  

In the following, we therefore focus on aspects of DESs with a clear advantage over existing reaction 

systems. 

Clearly, one exciting aspect of DESs is their tuneable solvent properties (hydrophilicity, 

hydrophobicity). Carbohydrates, for example, are best soluble in aqueous media. If, however, the 

esterification of carbohydrates with carboxylic acids is the desired reaction, water is a very 

unfavourable (co-)solvent due to the unfavourable equilibrium of esterifications in aqueous media. In 

this respect, carbohydrate-based DES (in which the carbohydrates are liquefied in the absence of 

water) are very promising alternative solvents for the synthesis of glycolipids e.g. as surfactants 

(Scheme 1).(Siebenhaller et al., 2018; Siebenhaller et al., 2016) 

 

Scheme 1. Using carbohydrate-based DES as solvent for the synthesis of glycolipids. 
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Another class of reactions that is severely hampered by the presence of water is the amidation of 

carboxylic acid esters as catalysed by amidases. In this reaction, the amine group of the starting 

amine nucleophilically attacks the carboxylate group of the acid ester, eventually substituting the 

ester alcohol and forming the desired amide. Water, however, competes as nucleophile yielding the 

free carboxylic acid, yielding thermodynamically stable and kinetically inert carboxylate salts of the 

starting amine (Scheme 2).  

 

Scheme 2. Amidase-catalysed acylation of amines using carboxylic acids and amines. In aqueous media also hydrolysis of 
the starting ester and the desired amide occur yielding the free acid and amine, which spontaneously form 
thermodynamically and kinetically inert salts. 

 

Performing enzymatic amidation reactions in DES offers the possibility of significantly reduced water 

contents, leading to increased yields of the desired amide products. This has been successfully 

exploited in the Chymotrypsin-(Zaira Maugeri, Leitner, & Domínguez de María, 2013) or Papain-(Cao, 

Xu, Li, Lou, & Zong, 2015) catalysed synthesis of dipeptides or in the penicillin acylase catalysed 

synthesis of the antibiotic Cefaclor.(X. Wu et al., 2019) 

 



6 
 

The aforementioned tuneable solvent properties of DES can be exploited to increase the substrate 

loadings (and eventually the product titres). Rutin, for example, is practically insoluble in aqueous 

media while its solubility in aconitic acid-choline chloride is more than 80 g kg-1
solvent.(Choi et al., 

2011)   

The Gotor-Fernández group, for example, established ChCl-Gly-based DES as solvent for 

benzaldehyde and other hydrophobic ketones to perform aldol reactions with molar concentrations 

of these reagents (Scheme 3).(González-Martínez, Gotor, & Gotor-Fernández, 2016) 

 

Scheme 3. Aldol reaction (condensation) catalysed by porcine pancreatic lipase (PPL) in ChCl-Gly-DES. 

These results were confirmed later by Holtmann and coworkers. (Milker, Pätzold, Bloh, & Holtmann, 

2019) These authors, however also found that the highest productivities were found in the absence 

of DES and using acetone (one of the reagents) as solvent. 

Further examples wherein DES enable higher substrate loadings are shown in Table 1. 

The broad variability of components of which DES can be formed from also opens up a remarkable 

extension of DES beyond the mere solvent application: DES in a dual function as solvent and starting 

material for the (biocatalytic) reaction. 

Holtmann and coworkers, for example, reported an esterification reaction of menthol and various 

fatty acids, forming a DES and hence providing a suitable medium for the solvent-free synthesis of 

menthol fatty acid esters (Scheme 4).(Hümmer et al., 2018) Addition of water increased the catalytic 

activity of the biocatalyst, which was attributed to the formation of a two liquid phase system and 

the resulting activity increase of the lipase due to interfacial activation. Under optimised conditions, 

full conversion of e.g. lauric acid and molar concentrations of the desired product have been 

achieved.(Pätzold, Weimer, Liese, & Holtmann, 2019) 
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Scheme 4. Using a DES formed by menthol and fatty acids for the lipase (from Candida rugosa, CRL)-catalysed synthesis of 
menthol esters in a solvent-free approach. 

The original work used enantiomerically pure (-) menthol, which was later extended in work by Paiva 

and coworkers to the kinetic resolution of rac-menthol.(Craveiro et al., 2019) 

This two-in-one approach has also been used with sugar-based DES for the synthesis of fatty acid 

esters of carbohydrates,(M.  Pätzold et al., 2019; Pöhnlein et al., 2015; Siebenhaller et al., 2018; 

Siebenhaller et al., 2016) structured lipids,(Zeng, Qi, Xin, Yang, & Wang, 2015) or benzoate 

glycerides.(Nadia Guajardo et al., 2017) 

In addition to forming part of the desired product, DESs can also be used to promote cofactor- or 

cosubstrate-dependent biocatalytic reactions. A very interesting application of glucose-based DESs to 

promote alcohol dehydrogenase (ADH)-catalysed stereospecific reduction reactions of prochiral 

ketones was reported by Lavandera, Gotor and coworkers (Scheme 5).(Mourelle-Insua, Lavandera, & 

Gotor-Fernández, 2019) 
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Scheme 5. Double use of a Glu-ChCl-DES as solvent and cosubstrate in ADH-catalysed stereospecific carbonyl reduction 
reactions. (Mourelle-Insua et al., 2019) Glu-ChCl, on the one hand, serves as cosubstrate to promote the glucose-
dehydrogenase (GDH)-catalysed regeneration of NAD(P)H and as cosolvent to enable higher substrate loadings. 

 

These dual-function ‘designer’ NADES enabled stereoselective reductions of a range of ketones with 

various ADHs. On the one hand, the NADES served as cosubstrate enabling in situ regeneration of the 

reduced nicotinamide cofactors (NAD(P)H). On the other hand, the NADES also enabled significantly 

higher substrate concentrations than in aqueous reaction media. 

Choline-based DESs have recently been reported as dual-purpose solvents to also serve as 

stoichiometric electron donors for the reductive activation of molecular oxygen.(Y. Li et al., 2020; Ma 

et al., 2019; Ma et al., 2020) The resulting H2O2 can be used as oxidant to promote lipase-initiated 

chemoenzymatic epoxidation reactions(Ma et al., 2019) or peroxygenase-catalysed 

oxyfunctionalisation reactions (Scheme 6).  
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Scheme 6. Dual use of Choline-based DES for the in situ generation of H2O2 catalysed by a choline oxidase (ChOx) and the 
use of the H2O2 to promote chemoenzymatic Prilezhaev-type epoxidations and peroxygenase-catalysed 
oxyfunctionalisation reactions. 

 

In case of the chemoenzymatic epoxidation of limonene, the DES (Ch-Pro) was also used to extract 

the terpene starting material from waste lemon peels thereby representing a triple-use (as extraction 

solvent, reaction solvent and sacrificial cosubstrate) for the overall process.(Ma et al., 2019) 

 

A fascinating influence of ChCl-Gly on the enantioselectivity of the Bakers’ yeast-catalysed 

stereospecific reduction of ketones was reported by Domínguez de María and co-workers (Scheme 

7).(Zaira Maugeri & Domínguez de María, 2014) Depending on the water content of the ChCl-glycerol 

DES used as solvent, a marked switch of the overall enantioselectivity of the reaction was observed. 

Puzzling at first sight, this observation may be explained by (de)activation of enantiocomplementary 

ADHs within the S. cerevisiae cell. 
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Scheme 7. Baker’s yeast (Saccharomyces cerevisiae)-catalysed reduction of acetoacetate in ChCl-glycerol/water mixtures. At 
water contents below 20% (v/v) the reaction was (R)-selective whereas at water contents above 50% (v/v) high (S)-
selectivity was observed.  

 

Similar effects have also been observed by Capriati and coworkers(Vitale et al., 2017) and 

Redovnikovic and coworkers(Cvjetko Bubalo, Mazur, Radošević, & Radojčić Redovniković, 2015; 

Panic, Delac, Roje, Redovnikovic, & Bubalo, 2019) in the Baker’s yeast-catalysed reduction of 

acetophenone derivates in ChCl-Gly. 

Several authors have observed accelerating effects of DESs on the rate of whole cell-

biotransformations. For example, the Lysinibacillus fusiformis-mediated transformation of isoeugenol 

into vanillin was markedly accelerated in the presence of various (NA)DES (Scheme 8).(T.-X. Yang et 

al., 2017) 

 

Scheme 8. Lysinibacillus fusiformis-catalysed conversion of isoeugenol to vanillin. 

 

Generally, this is ascribed to cell wall/membrane permeabilisation resulting in facilitated diffusion of 

the reagents into the (biocatalyst-containing) whole cells.(Zhang et al., 2020) 

 

Frequently, a stabilising effect of DES on the biocatalysts is mentioned. Lipases have been the 

preferred study object for the influence of a myriad of DESs on their activity and stability.(Bernardo 

Dias, Lucas de Carvalho, Maria Alice Zarur, & Isabel, 2019; Kim et al., 2016; Nian, Cao, & Liu, 2020; Oh 
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et al., 2019) This vast amount of data, however, is blurred by differences in the experimental design 

and analysis and interpretation of the data. As a result, the sometimes contradicting findings are 

difficult to structure and interpret. Trends observed with one enzyme cannot be transferred easily to 

another.(Z. L. Huang, Wu, Wen, Yang, & Yang, 2014; B. P. Wu, Wen, Xu, & Yang, 2014) Furthermore, a 

given DES may influence the enzyme and assay conditions in various ways, sometimes not directly 

obvious to the experimenter. Viscosity is frequently mentioned as a factor influencing activity assays. 

Some DESs, however, also exhibit emulsifying properties, which in two-liquid-phase-systems (as 

commonly used in lipase-catalysed transformations) can influence the surface area of the two liquids 

and thereby influence the reaction rate.(Lan, Wang, Zhou, Hollmann, & Wang, 2017)  

Activity and stability data are also available for oxidoreductases such as horse liver alcohol 

dehydrogenase,(L. Huang, Bittner, Domínguez de María, Jakobtorweihen, & Kara, 2020) the 

peroxidase from horseradish,(B. P. Wu et al., 2014) versatile peroxidase,(Mamashli et al., 2019) 

catalase,(Harifi-Mood, Ghobadi, & Divsalar, 2017) laccase(Toledo et al., 2019) or haloalkane 

dehalogenases.(Stepankova, Vanacek, Damborsky, & Chaloupkova, 2014) 

DES have been demonstrated exhibiting a stabilising effect on the chemoenzymatic epoxidation of 

C=C-double bonds (Scheme 9).(Lan et al., 2017; Ranganathan, Zeitlhofer, & Sieber, 2017; Zhou, 

Wang, Yang, Hollmann, & Wang, 2017; Zhou, Wang, Zeng, et al., 2017) 
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Scheme 9. Chemoenzymatic epoxidation of (non)-natural alkenes in DES. 

 

The well-known perohydrolase activity of lipases (Björkling, Godtfredsen, & Kirk, 1990; Warwel & 

Klaas, 1995) allows them to accept H2O2 in lieu of water as nucleophile to hydrolyse the enzyme-acyl 

intermediate. The resulting peracids the mediate the Prilezhaev-type epoxidation of a broad range of 

C=C-double bonds. Unfortunately, the high KM values of most lipases for H2O2 in water-containing 

media necessitate high H2O2-concentrations, which in turn can be detrimental to the robustness of 

the biocatalyst. Interestingly, DES seems to alleviate this inactivation, possibly by stabilising the free 

H2O2 through additional H-bonding. 

A unified theory rationalising the effects of DES on enzymes is urgently needed! 
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Finally, also the emerging field of chemoenzymatic synthesis in DES is worth mentioning. Particularly 

popular are cascade reactions combining typical transition-metal catalysed, but not known in enzyme 

catalysis, reactions such as cross-coupling or metathesis reactions with stereospecific enzyme-

catalysed reactions (such as the stereoselective reduction of ketones) (Scheme 10).(Cicco et al., 2018; 

Grabner, Schweiger, Gavric, Kourist, & Gruber-Woelfler, 2020; Paris, Ríos-Lombardía, Morís, Gröger, 

& González-Sabín, 2018) 

 

 

 

Scheme 10. Examples for chemoenzymatic cascade reactions performed in DES. (Cicco et al., 2018; Grabner et al., 2020; 
Paris et al., 2018) 

 

Issues of incompatibility of the two catalysis worlds, such as different requirements for the reaction 

conditions or mutual inactivation, are generally solved by spatial of temporal separation of the 

chemical and the enzymatic step. 
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Table 1. Biocatalytic reactions performed in DES. 

Product Enzyme DES used Remarks Reference 

Esterifications 

 

 

CRL 

N435 

CALB 

BCL 

PCL 

PFL 

Men:OA (55:45) 

Men:DA (63:35) 

Men:DDA (75:25) 

H2O-content: 

0, 1, 5 or 10 wt-% 

DES as solvent and reagent, 

addition of water improves the 

enzymatic reaction significant, 

BCL,PCL and PFL showed no 

activity in DES,best results 

obtained with CRL with 10% water 

(Hümmer et al., 

2018) 

 

 CRL Men:La (9:1 to 1:1) 

 

As above, kinetic resolution of 

rac-menthol 

(Craveiro et al., 

2019) 
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CalB 

immobilized 

ChCl:Gly : Phosphate buffer DES as solvent and reagent, 

positive influence of water on the 

reaction 

(N. Guajardo, 

Ahumada, & de 

Maria, 2020) 

 

N435 

RMIM 

TLIM 

Lipase G50 

F-AP 

B:Gly 

ChCl:Gly 

H2O-content: 1-4% 

 

Selectivity depends on DES (Zeng et al., 

2015) (L. Xu et 

al., 2017) 

 

CalB 

immoblised 

CHCL:G (1:1) 

CHCl:U (1:2) 

H2O-content: 0-10% 

 

in ChCl:Gly DES 

high enzyme stability (1200h), 

-ChCl:U DES advantage is ester 

production free of by product 

 

(Kleiner & 

Schorken, 

2015) 

 

CalB CHCL:G (1:2) 

CHCL:EG (1:2) 

CHCl:U (1:2) 

H2O-content: 0.5-2.5 mol-% 

Higher esterification yield 80% 

(higher than reference solvent n-

heptan (50%) 

 

(Bubalo et al., 

2015) 
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Ester hydrolysis  

 

 

CalB CHCL:U (1:2) 

H2O-content: 50% 

Desymmetrisation reaction, 

increased enantioselectivity in 

DES 

(Fredes, 

Chamorro, & 

Cabrera, 2019) 

Free fatty acids from hydrolysis of natural oils 

Pine nut oil 

Amino Lipase PS ChCl:U (1:2) 

ChCl:Gly (1:2) 

ChCl:EG (1:2) 

ChCl:1,2-PG (1:2 – 1:3) 

ChCl:CA (1:3) 

ChCl:LA (1:1) 

H2O-content: 38% 

Best reaction conditions reached 

in ChCl:U with 38% of water 

(G. L. Yang, 

Tong, Yang, Liu, 

& Wang, 2019) 

 

Palmitic acid 

hydrolysis of para-nitrophenyl palmitate 

BCL 

 

ChCl:U (1:2) 

ChCl:Gly (1:2) 

ChCl:EG (1:2) 

enzyme activity enhanced by up 

to 230% 

 

(Juneidi, 

Hayyan, 
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ChCl:DEG (1:2) 

EAC:Gly (1:2) 

EAC:EG (1:2) 

EAC:TEG (1:2) 

H2O-content: varable 

Hashim, & 

Hayyan, 2017) 

Transesterifications 

 

 

CalB ChCl:carbohydrate (71.6% Glu 

& 16.6% Xyl) 

DES as solvent and reagent, 

Carbohydrate obtained from 

beech wood 

(Siebenhaller et 

al., 2018) 

 

 

CalB ChCl:Ara (1:1) 

ChCl:Glu (1:1) 

ChCl:Xyl (1:1) 

ChCl:Man (1:1) 

ChCl:Rha (1:1) 

ChCl:Lev (1:1) 

 (Siebenhaller et 

al., 2016) 
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N435 ChCl:U Increased stability of the 

biocatalyst 

(Andler, Wang, 

Rotello, & 

Goddard, 2017) 

 

CalB ChCl:Gly 

H2O-content: varable 

Optimised water content for 

maximised activity and minimised 

hydrolysis 

(Ulger & Takac, 

2017) 

 

PLD ChCl:U (1:2) 

ChCl:A (1:2) 

ChCL:EG (1:2) 

ChCL:Gly (1:2) 

ChCl:1,4-Bu (1:4) 

ChCl:TEG (1:4) 

ChCL:X  (1:1) 

ChCL:OA (1:1) 

ChCl:LA (1:2) 

ChCL:MAA (1:1) 

ChCl:EG DES best t for 

Phosphatidylserine synthesis 

 

(S.-L. Yang & 

Duan, 2016) 
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ChCL:MA (1:1) 

ChCl:CA (1:1) 

Biodiesel Various lipases ChCl:Gly (1:2) 

CHAc:Gly (1:1.5) 

MeOH: 20-50% (v/v) 

best conditions were ChCl:Gly 

(1:1) in the presence of 30% 

MeOH 

(Zhao, Zhang, & 

Crittle, 2013) 

biodiesel Lipozym TL 

CALB L 

 

ChCl:U (1:2) 

ChCl:Gly (1:2) 

  

(Kleiner, 

Fleischer, & 

Schorken, 

2016) 

biodiesel PEL 

N435 

 

ChCl:U (1:1 – 2:1) 

ChCl:A (1:1 – 2:1) 

ChCl:Gly (1:1 – 2:1) 

ChCl:EG (1:1 – 2:1) 

ChAc:U (1:1 – 2:1) 

ChAc:A (1:1 – 2:1) 

  

(Z. L. Huang et al., 

2014) 
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ChAc:Gly (1:1 – 2:1) 

ChCl:EG (1:1 – 2:1) 

Amide synthesis 

 

 

Chymotrypsin ChCL:U (1:2) 

ChCL:Gly (1:2) 

ChCL:X (1:1) 

ChCL:Is (1:2) 

H2O-content: 4-50% (v/v) 

productivities of approx. 20 gL–1 

h–1, presence of water absolutely 

crudial 

 

(Zaira Maugeri 

et al., 2013) 

 

Penicillin acylase 

 

ChCl: CA (1:1) 

ChCl:OA (1:1) 

ChCl:TA (1:1) 

ChCl:MA (1:1) 

ChCl:p-toluene 

ChCL:X (1:1) 

Higher solubility of 7-ACCA in 

DESthan in purely aqueous  

buffer  

(X. Wu et al., 

2019) 
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ChCL:Gly (1:2) 

ChCl:PG (1:1) 

ChCL:BG (1:4) 

ChCL:Gl (1:2) 

ChCL:I (1:2) 

ChCl:U (1:2) 

Buffer 

 

Papain 

 

ChCl:U (1:2) 

H2O-content: variable 

 (Cao et al., 

2015) 

Reduction reactions 

 

 

Kurthia gibsonii SC031 ChCl:1,4-Bu (1:4) 

ChCl:U (1:2) 

ChCl:Gly 1:2) 

Increased activity due to cell 

permeabilisation, 

(Fei Peng et al., 

2020) 
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ChCl:E (1:2) 

ChCL:TEG (1:4) 

DESs on whole-cell catalytic 

properties 

 

Carrot root ChCl:G (1:1) 

ChCl:Xyl (2:1) 

ChCl:X (5:2) 

ChCl:G (1:2) 

ChCl:EG 1:2) 

H2O-content 30-80% 

Stereoselectivity depends on the 

DES used 

and the HBD used in DES 

(Panić, Elenkov, 

Roje, Bubalo, & 

Redovniković, 

2018) 

 

E. coli CCZU-T15 ChCL:U (1:2) 

ChCl:Gly (1:2) 

ChCL:EG (1:2) 

H2O-content: variable 

DES better than toluene-water 

solvent 

(Dai, Huan, 

Zhang, & He, 

2017) 

 

Several examples 

LbADH, ADH-A, TeSADH 

 

ChCl:Gly (1:2) 

H2O-content: 50-80% 

increased substrate 

concentration (up to 400 mM) in 

20% v/v of DES, 

preparative scale, 

(Ibn Majdoub 

Hassani, 

Amzazi, Kreit, & 
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Lavandera, 

2020) 

 

recombinant E. coli  

 

ChCl :GLy (1:1) 

ChCl:Lys (1:1) 

ChCl:GSH (1:1) 

ChCl:Glu (1:1) 

ChCl:Trp (1:1) 

ChCl:Ala (1:1) 

ChAc:Gly (1:1) 

ChAc:Lys (1:1) 

ChAc:GSH (1:1) 

ChaC:Glu (1:1) 

ChAc:Trp (1:1) 

ChAc:Ala (1:1) 

H2O-content: <1% 

 

ChAc/Lys improves cofactor 

regeneration, 

Increased cell membrane 

permeability  

 

(He, Huang, & 

Wang, 2020) 
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Rhodococcus 

erythropolis XS1012 

ChCl:Ala (1:1) 

ChCl:Cys (1:1) 

ChCl:EG (1:1) 

ChCl:Glu (1:1) 

ChCl:GlY (1:1) 

ChCl:GSH (1:1) 

ChCl:IPA (1:1) 

ChCl:Lys (1:1) 

ChCl:Trp (1:1) 

ChCL:Tyr (1:1) 

ChCl:U (1:1) 

ChCl:U (1:2) 

ChCl:U (2:1) 

H2O-content: 99% 

 

Increased activity due to cell 

membrane permeabilisation 

(Chen, Qian, 

Lin, Chen, & 

Wang, 2020) 



25 
 

 

Acetobacter 

pasteurianus GIM1.158 

ChCl:U (1:2) 

ChCl:Gly (1:2) 

ChCl:EG (1:2) 

CHCL:OA (1:2) 

ChCl:MA (1:2) 

ChCL:I (1:2) 

H2O-content: 90% 

DES increased initial rate  

 

(Xu, Du, Zong, 

Li, & Lou, 2016) 

 

 

Acetobacter sp. CCTCC 

M209061 

ChCl:U (1:2) 

ChCl:Gly (1:2) 

ChCl:EG (1:2) 

CHCL:OA (1:2) 

ChCl:MA (1:2) 

ChCL:I (1:2) 

H2O-content: 95% 

Best results obtained with  

ChCl:U which also increased cell 

permeability, 

combining DES with ILs improved 

the reduction of CPE 

(85.2 v 93.3) 

(Xu, Xu, et al., 

2015) 

 

 

TeSADH 

HLADH 

ChCl:Gly (1:2) 

H2O-content: 20% 

Significant influence of DES on 

enantoselectivity 

(Müller, 

Lavandera, 
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RasADH 

RasADH 

Gotor-

Fernández, & 

Domínguez de 

María, 2015) 

 

 

T. asperellum ZJPH0810 

Candida tropicalis 104 

Candida parapsilosis 

ZJPH1305 

ChCl:GSH (1:1 – 1:2)) 

ChCL:Glu (1:1 – 1:2) 

CHCl:Cys (1:1 – 1:2) 

ChCL:G (1:1 – 1:2) 

H2O-content: <1% 

 (J. Li, Wang, He, 

Zhu, & Huang, 

2019)  

     

Oxidative kinetic resolution 
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Acetobacter sp. CCTCC 

M209061 

ChCL:Gly: [C4MIM]PF6 

Biphasic system with buffer 

Oxidative kinetic resolution, 

A combination of ChCl:Gly with 

[C4MIM]PF6 gave best results in 

terms of substrate solubility and 

rate 

(Wei, Liang, 

Cheng, Zong, & 

Lou, 2016; Xu, 

Cheng, Lou, & 

Zong, 2015) 

 

 

(De)glycosylation reactions 

 

isoquercitin to rutin E.coli BL21-pET21a-

rhaB1 

ChCl:U (1:2) 

ChCl:Gly (1:2) 

ChCl:MA (1:1) 

ChCl:EG (1:2) 

ChCl:A (1:2) 

H2O content: 99% 

 (Zhang et al., 

2020) 
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Acremonium sp. 

DSM24697 

ChCl:U (1:2) 

ChCL:EG (1:2) 

ChCl:Gly (1:2) 

 (Weiz, Braun, 

Lopez, de 

María, & 

Breccia, 2016) 

 

 

D-glucosidase ChCl:PEG (1:1 – 1:3) 

ChCl:Glu (1:1 – 1:3) 

ChCl:Gly (1:1 – 1:3) 

ChCl:EG (1:1 – 1:3) 

ChCl:U (1:1 – 1:3) 

H2O content: 80% 

 (Cheng & 

Zhang, 2017)  

Epoxide hydrolysis  

 

 

mEH 

 

ChCl:U (1:2) 

ChCl:EG (1:2) 

ChCl:Gly (1:2) 

 (F. Peng, Zhao, 

Li, Zong, & Lou, 

2018)  
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ChCl:1,4-Bu (1:4) 

ChCl:TEG (1:4) 

ChCl:OA (1:1) 

ChCl: LA (1:2) 

ChCl:MA (1:1) 

ChCl:MA (1:1) 

ChCl:CA (1:1) 

Improvement of enatiopurity 

achieved wit 10-20% of DES 

ChCl:TEG in phosphate buffer 

 

StEH1 ChCl:E (1:2) 

ChCl:Gly (1:2) 

ChCL:U (1:2) 

H2O content: 40-80% 

DES enabled higher substrate 

concentrations 

 

(Lindberg, 

Revenga, & 

Widersten, 

2010)  

Decarboxylation reactions 

 

 

BsPAD 

 

ChCl:Gly (1:2) 

ChCl:S (1:1) 

ChCl:U (1:2) 

Significantly increased substrate 

solubility 

(Schweiger et 

al., 2019) 
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DES:Water 

H2O content: 50% 

Desaturation reactions 

 

 

Arthrobacter simplex ChCl:U (1:2) 

ChCl:EG (1:2) 

ChCl:Gly (1:2) 

H2O content: 94% 

Higher substrate solubility and 

increased rate due to 

permeabilisation 

(Mao et al., 

2018; Mao, Yu, 

Ji, Liu, & Lu, 

2016) 

C-C-bond formation 
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BAL ChCl:Gly (1:2) 

ChCl:U (1:1) 

ChCl:Xyl (1:1) 

H2O content: 40% 

 (Z. Maugeri & 

de Maria, 2014) 

 

 PPL 

Alcalase-CLEA 

CalB 

 

ChCl:Gly (1:1.5,1:2) 

H2O content: 0-20% 

ChCl-Gly-based DES as solvent for 

benzaldehyde and other 

hydrophobic ketones to perform 

aldol reactions with molar 

concentrations 

(González-

Martínez et al., 

2016) 

 PPL ChCl:Gly (1:1.5) 

TOABr:EG (1:3) 

Best results obtained in the co-

solvent acetone 

(Milker et al., 

2019) 
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TOABr:1,5PD (1:3) 

TOABr:4-NBA (2.2:1.5) 

H2O 

Acetone content (up to 20% 

(v/v)) 

 

     

     

Epoxidation reactions 

 

 CalB ChCl:VA (1:2)  

ChCl:L (1:2) 

ChCl:4-HPA (1:2) 

ChCl:MAA (1:1) 

ChCl:TA (2:1) 

ChCl:GA (1:2) 

DES system ChCl:U withH2O2 

achieved the fastest total 

conversion of reactants, 

 DES have a stabilising effect on 

the chemoenzymatic epoxidation 

of C=C-double bonds 

(Ranganathan 

et al., 2017) 
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ChCl:Gly (1:2) 

ChCl:EG (1:2) 

ChCl:U (1:2) 

ChCl:F (1:2) 

ChCl:Glu (1:2) 

ChCl:X (1:1) 

ChCl:S (1:1) 

 CalB ChCl:U (1:2) 

ChCl:EG (1:2) 

ChCl:A (1:2) 

ChCl:Gly (1:1) 

ChCl:X (1:1) 

ChCl:S (1:1) 

ChCl:Xyl:H2O (5:2:5) 

ChCl:Glu:H2O (5:2:5) 

ChCl:Su:H2O (5:2:5) 

 (Zhou, Wang, 

Yang, et al., 

2017) 
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 Lipase G ChCl:U (1:2) 

ChCl:Gly (1:2) 

ChCl:X (1:1) 

ChCL:EG (1:2) 

B:Gly (1:2) 

DES increased the enzyme 

stability against H2O2 

(Zhou, Wang, 

Zeng, et al., 

2017) 
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 PCL ChCl:U (1:2) 

ChCl:Gly (1:1) 

ChCl:X (1:1) 

ChCl:S (1:1) 

 

two liquid phase (2LP) approach, 

DES lower the surface tension of 

hydrophobic organic phases in 

aqueous reaction media and 

thereby enable more efficient 

biphasic biocatalytic reactions 

(Lan et al., 

2017) 

http://dx.doi.org/

10.1039/C7RA067

55K 

Candida rugosa lipase type VII (CRL), Amano lipase PS from Burkholderia cepacia (BCL), lipase from Pseudomonas cepacia PCL, Amano lipase Pseudomonas 
fluorescence (PFL), Candida Antarctica lipase B (CALB), immobilized Thermomyces lanuginosus lipase (TLIM), immobilized Rhizomucor miehei lipase (RMIM), 

Penicillium camemberti lipase (G50), Rhizopus oryzae lipase (F-AP), Amano lipase PS (free enzyme）from Burkholderia cepacia (BCL), Candida antarctica lipase 

B (CV-CALBY), Phospholipase D from Streptomyces chromofuscus (PLD), lipase from T. lanuginosus (Lipozyme TL), lipase from Penicillium expansum (PEL), 
alcohol dehydrogenase from Lactobacillus brevis (LBADH), alcohol dehydrogenase from Thermoanaerobacter ethanolicus (TeSADH), ), alcohol dehydrogenase 
from Thermoanaerobacter sp, (ADH-A), ), alcohol dehydrogenase from Ralstonia sp (RasADH), Horse liver ADH (HLADH), potato epoxide hydrolase (StEH1), 
Phenolic acid decarboxylase from Bacillus subtilis (BsPAD), mung bean epoxide hydrolases (mEH), benzaldehyde lyase from P. fluorescens (BAL), Porcine 
pancreas lipase (PPL), protease from Bacillus licheniformis (Alcalase-CLEA) 
 
Choline chloride (ChCl), Choline Acetate (ChAc), Ethanediol (E), Glycol (Gl), Imidazole (I), Propylene ethylene glycol (PEG), Butyl glycol (BG), Propylene glycol 
(PG), 1,2-Propylene glycol (1,2-PG), Tartaric acid (TA), Isosorbide (Is), Citric acid (CA), Malic acid (MA), Malonic acid (MAA), Lactic acid (LA), Carbolic acid (CA), 
Levulinic acid (LA), Glutamic acid (GA), Valeric acid (VA), 4-Hydroxy phenyl acetic acid (4-HPA), Cystein (Cys), Glutamine (Gln), Lysin (Lys), Alanine (Ala), 
Tryptophan ((Trp), Octanoic acid (OCA), Decanoic acid (DA), Dodecenoic acid (DDA), Sucrose (Su), Oxalic acid (OA),Lauric acid (LA), Xylitol (X), 1,4-Butanediol 
(1,4-Bu), 1,5-Pentadiol (1,5-PD), Acetamide (A), Levoglucosan (Lev), Sorbitol (S), Rhamnose (Rha), Mannose (Man), Xylose (Xyl), Arabinose (Ara), Glucose (Glu), 
Frucose (F),N,N-diethyl ethanol ammonium chloride (EAC), Triethylene glycol (TEG), Diethylene glycol (DEG), Ethylene glycol (EG), Urea (U), Betaine (B), 
Glycerol (Gly), 4-nitrobenzaledehyde (4-NBA), Tetraoctylammonium bromide (TOABr), Glutathione (GSH) ,Menthol (Men) 

http://dx.doi.org/10.1039/C7RA06755K
http://dx.doi.org/10.1039/C7RA06755K
http://dx.doi.org/10.1039/C7RA06755K
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3. Conclusions 
 

Undoubtedly, (NA)DES represent an upcoming class of alternatives to established solvents in 

biocatalysis. Reactions, where too high water activities negatively influence the yield or selectivity of 

a reaction can benefit from using DES as (co)solvents. Also, DES can enable higher regent solubilities 

than water and thereby substitute volatile, non-renewable organic solvents. Particularly interesting 

are those applications where the DES not only serves as solvent or enzyme stabiliser but also actively 

influences the reaction outcome or serves as (co)substrate itself. We are convinced that the near 

future will bring about many more exciting applications of (NA)DES for biocatalysis. 

There are, however, certain risks we have identified: From many contributions, the specific reason 

behind choosing a DES as (co-)solvent is not evident and one gets the impression that many 

contributions are just ‘surfing the (NA)DES wave’ without particular reason for this choice. 

Frequently, terms such as ‘non-toxic’, ‘biobased’ and ‘biodegradable’ are used in a prayer-wheel like 

fashion to underline the greenness of (NA)DES. We believe that limiting the evaluation of greenness 

to such terms is not sufficient. As shown in this contribution, DES have a (de)stablising effect on 

proteins. Therefore, unless a broader empiric basis exists, claiming non-toxicity appears premature. 

Furthermore, as pointed out by Holtmann and coworkers(M.  Pätzold et al., 2019) the sometimes 

very high viscosity of DES-based reaction mixtures also implies higher energy demands for pumping 

and stirring. As a result, unless the energy used for these processes is obtained from entirely 

renewable sources, also increased CO2 emissions due to stirring and pumping can be expected.  
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