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Abstract

Type inference plays a pivotal role in modern software development as it aids
in understanding code, detecting errors, and facilitating code completion. Two main
approaches, static analysis, and machine learning, contribute to this process. Each ap-
proach has its own benefits and limitations. This thesis investigates the potential of
combining static analysis techniques and machine learning (ML) approaches to en-
hance type inference capabilities.

The research initially demonstrates how static analysis and ML complements each
other in the context of type inference. It utilizes two static analysis tools, Pyre [9]
and Pyright [11], to showcase their effectiveness in inferring types. To enhance type
inference, a hybrid approach is proposed, integrating the machine learning approach
Type4Py [53] with static analysis techniques. Additionally, a ranking system is consid-
ered to determine the order of results within this combined approach. Both the naive
approach and learning to rank models are implemented within this ranking system.

Finally, the research evaluates its findings using a newly created dataset, which
is an updated version of ManyTypes4Py [52]. The outcomes of this research empha-
size the potential for improving type inference by integrating static analysis and ML
approaches. Moreover, the evaluation reveals that, in the ranking system, the naive
approach proves to be more effective compared to the learning-to-rank models.
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Chapter 1

Introduction

An introduction to type systems and dynamic type languages is provided in this section. We
continue by outlining the terms type annotation and type language and providing examples.
We also explore type inference’s benefits and significance in the context of dynamic type
languages. We next go over the current literature on type inference and its drawbacks before
outlining our probable strategy. Finally, we state the thesis’s guiding research questions.

1.1 Type Inference

Type System and Dynamic Type Language

Each programming language has its own type system, according to the time when it begins
type check, program languages could be divided into dynamic type languages and static type
languages [45]. For instance, dynamic type languages like Python [37] and Ruby [60],
do not perform the data type check until run-time. In other words, when programming in
a dynamically typed language, there is no need to assign a data type to any variable; the
language records the data type internally when the data is first assigned to the variable. This
pattern for variables in dynamic type languages is also consistent for both function parame-
ters and return types [38]. Unlike static type languages where the types for parameters and
return values need to be specified in the function signature, dynamic type languages do not
require any such specification.

To illustrate the contrast between these language types, consider the following code
snippet that demonstrates the difference between Java and Python in Figure 1.1 and Fig-
ure 1.2. The first Java code snippet demonstrates that when defining the sum function, we
must specify the data types for both parameters a and b, as well as for the return value,
before compiling the code. Additionally, to use the function, we must specify the data type
for the output variable result, which is assigned the value returned by the sum function.
However, the pattern for Python, which is a dynamically typed language, differs from that
of Java. The first print command outputs 3, whereas the second one outputs ’Hello World’.
This illustrates that the sum function in Python does not specify argument types during
compilation, but rather determines them during run-time.

1



1. INTRODUCTION

Figure 1.1: Sum function in Java. This code snippet shows the implementation of the sum
function in Java. In order to use this function, it is necessary to specify the types of both
variables, as well as the parameters and return values.

Figure 1.2: Sum function in python. No need to specify the types.

Type Annotation and Type Inference

Although we know that type information is not required in dynamically typed languages
like Python, we can still include it in the programming code as a hint to the expected data
types of variables and function arguments. This can be helpful in facilitating type checking
and ensuring successful compilation [55]. For example, we can define type restrictions for
input parameters and output results of a Python function to provide additional guidance for
the interpreter. The code snippet below is extracted from the basic type.py file on Github,
and it demonstrates the usage of type annotations for a simple code block. Initially, we set
the variable hello as a string and then assigned the value ”hello word!” to it. Later on, we
specified the expected data types of the input arguments x and y, and also indicated that the
function will return an integer using the -int syntax.

In this code block, the data types such as ”str” and ”int” are defined using type annota-

2
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1.1. Type Inference

Figure 1.3: Define Datatypes in Python

tions [54], which are syntaxes introduced in Python3.5 for explicitly indicating the expected
data types of variables, arguments, and return values in Python code. In cases where there
are no type annotations in the code, we need to infer the data types from other informa-
tion such as the variable names, context, and environment. This process, automatically
determining the data type of a variable or expression is defined as type inference [47]: an
expression E is opposed to a type T, formally written as E: T; type inference is to solve the
E: ? problem, in other words, only the expression is known and try to derive a type for E.
For example, in the code implementation in fib.py file in Figure 1.4, the parameter types and
return type are inferred, demonstrating the type inference process.

Figure 1.4: Type Inference for Function Signature

Significance of Type Inference

As discussed previously, dynamic-type languages do not impose any restrictions on the
types of expressions during their definition. However, this can lead to various problems
and inconveniences [57]. Firstly, there is a higher likelihood of bugs and compilation issues
since variables and function results are not explicitly typed, unlike static-type languages.
The absence of type checking can lead to more bugs, which, in turn, may result in longer
debugging times and delays in the CICD process [59]. Secondly, the lack of type definition
makes it harder for developers to understand the code and can pose issues during code refac-
toring [32]. The absence of type structure definitions makes it challenging for developers
to change and update the code when they take over a project since they cannot rely on the
internal structure of data (i.e., variables).

Therefore, the significance of type inference lies in the following three aspects:

3
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1. INTRODUCTION

• improve code performance: with inferred data types, the compiler could optimize the
generated machine code [39]. In particular for complex systems that require a lot of
data processing, this can lead to faster and more effective code execution.

• improve code quality and maintainability: inferred types can save developers time
and effort in reading, debugging, and testing, as well as assist avoid bugs from being
introduced into production [23].

• lessen the need for explicit type annotations: by automatically determining the data
type of variables and expressions based on the context in which they are used, pro-
grammers may create more clear, succinct, and type-safe code.

1.2 Current research for Type Inference
A summary of current mainstream type inference methods and their limitations are pre-
sented in this section and will be further discussed in the subsequent Chapter 2.

1.2.1 Mainstream implementations of type inference

The current mainstream implementations of type inference can be broadly classified into
three categories: static analysis, machine learning, and hybrid approaches. Static analysis
for type inference involves analyzing code without executing it, and inferring types by look-
ing at the structure and syntax of the code [21]. This can be achieved using various tech-
niques such as abstract interpretation, constraint-based analysis, or type rule inference [31].
Current technologies that use static analysis for type inference include Mypy [46], Pyre [9],
Scalpel [13], and others. There are also several data-driven approaches that use machine
learning methods to learn patterns in code and deduce types. For instance, Type4Py [53]
employs a hierarchical neural network and nearest neighbor search, while DiverseTyper [42]
uses a pre-trained TypeBert [41] model and multi-task deep learning approach to infer types
in TypeScript [15]. A recently emerged trend, which could be referred to as hybrid ap-
proach, combines static approaches with machine learning technologies. For instance, Hi-
Typer [55] and TypeT5 [62] utilize static analysis to identify useful information, which is
then fed into a deep model for pattern learning. This approach results in increased accuracy
and better performance compared to using single machine learning. approach [55].

1.2.2 Limitations and Challenges of Type Inference Research

We previously discussed various approaches for type inference. Machine learning and hy-
brid approaches typically outperform current static analysis tools. Despite the advantages
of machine learning, type inference still faces two major problems.

The first problem is the rare types issue, which referred to types that occurred in a
limited times in the overall dataset, for example, user-defined types. Machine learning
approaches tend to exhibit a significant drop in accuracy when dealing with such types, in
comparison to their overall performance. Due to their infrequency, these types cannot be
effectively predicted based on the learned features. In Figure 1.5, we could see even for the
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current state of art machine learning technology, the accuracy on rare types is still very low,
lower than 20%.

Figure 1.5: Performance on Rare Types for Type4py

The second problem is the cross-domain problem, as highlighted by Gruner [35].
When training a model in one domain and testing it in another, a discrepancy arises that
can result in a 10-20% decrease in accuracy. In real-world scenarios, this can lead to de-
creased performance because it is impossible to ensure that the domain of the project has
been seen during the model training process.

1.3 Approach Overview

To solve the issue of rare types and enhance the model’s cross-domain capabilities, we
suggest a hybrid strategy that blends machine learning and static analysis methods. We
intend to incorporate the precise predictions from static analysis on rare types into our final
hybrid predictions, in contrast to existing hybrid systems that only use static analysis to
extract important information for the neural network. For the static analysis phase, we
recommend utilizing two tools: Pyre [9] and Pyright [11]. As for the machine learning
component, we suggest employing the Type4Py model and training it on our dataset through
a project-based approach. Due to the Type4Py model is based on the dataset from 3 years
ago [52], we may first start with training that on a new version of the dataset. After that, we
will start evaluating the Type4Py model as well as static analysis on the test projects.

Furthermore, given that our hybrid approach involves two models, it is possible that
different models may yield different results. In light of this, we propose implementing a
ranking system to establish an order of preference. To accomplish this, we have selected a
learning-to-rank approach as the primary component of our ranking system. We will train

5



1. INTRODUCTION

this model independently and integrate it into our hybrid approach to evaluate its effective-
ness. The overall structure of our approach is shown in Figure 1.6.

Figure 1.6: Approach Overview

1.4 Research Questions

In light of the existing research on type inference that has already been done, we created a
hybrid strategy that combines static analysis and machine learning models, as described in
the previous section. Our thesis seeks to explore the following research questions for this
approach:

RQ1: What is the general performance of this hybrid approach?

We suggest a hybrid strategy meant to capitalize on both of their advantages for static anal-
ysis and machine learning. We intend to contrast our approach’s performance with that of
several baseline models in order to judge its effectiveness. We conduct this to see if the hy-
brid strategy can outperform other state-of-art techniques in terms of overall performance.

As previously mentioned, type inference tasks typically involve determining the types
of variables, parameters, and return values. We are interested in examining potential distinc-
tions between these tasks; for example, we might look into whether our suggested method
performs better at determining variable types than the other two tasks. To this end, we plan
to analyze the accuracy of our approach for each of these tasks, in order to gain insight into
their relative strengths and weaknesses.

6
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Moreover, we aim to determine how much the performance of our suggested hybrid
strategy benefits from static analysis and whether it can address some of the drawbacks and
restrictions of type inference based on machine learning. We will investigate how static
analysis can assist in overcoming the limitations of machine learning-based type inference.

RQ2: How to rank among static analysis and machine learning result in hybrid
approach?

In the hybrid approach, which incorporates both static analysis and machine learning results,
running on a single type slot may yield different outcomes. For instance, consider the
expression:

x = 3.0

static analysis may give us a result as x : ‘ f loat‘, while machine learning may give us a result
as x : ‘int‘, it is essential to establish the correct answer order and provide recommendations
between these two options. To address this challenge, we have implemented a ranking
system within our hybrid approach. This system takes into account the varying results
obtained from different static analysis tools, as well as the list of predictions generated by
the machine learning component. By employing a learning-to-rank model, we have trained
several neural networks to solve this ranking problem.

The structure of our methodology, which includes the implementation details of the
ranking system, will be discussed in Chapter 3. Furthermore, we will evaluate the perfor-
mance of our approach in Chapter 4.

RQ3: What is the scalability and time efficiency of this approach?

In addition to exploring the theoretical potential of our proposed hybrid approach, we also
aim to assess its practical viability. Specifically, we will investigate whether our approach
can be effectively applied to large-scale projects with numerous files. In order to do this,
we will analyze the time required to perform type inference using our hybrid approach and
compare it to other existing approaches. In order to assess the practical viability of our
approach in real-world circumstances, we will compute the inference time for each type
slot.

7





Chapter 2

Related Work

The core focus of our research centers around two key areas: type inference and learning-

to-rank problem. Within these domains, we have implemented multiple type inference ap-
proaches and employed a learning-to-rank model to establish an order among them. This
chapter serves to discuss the various technologies associated with these fields and their sig-
nificance in our research.

2.1 Type Inference

As mentioned in Chapter 1, we discussed the current landscape of type inference approaches,
highlighting three main streams: static analysis, machine learning, and hybrid approaches.
The static analysis relies on basic types and existing type annotations within the file, per-
forming recursive analysis to infer unknown types [11]. Machine learning approaches lever-
age program context, such as program names and patterns, as input to predict the most likely
results [22]. The hybrid approach combines static analysis with techniques like user-usee
trees to extract valuable information, which is then inputted into a neural network for infer-
ence [55] [62]. These approaches represent the state-of-the-art methodologies used in type
inference, and their exploration forms a significant part of this research.

2.1.1 Static Type Inference

Static type inference involves utilizing static type analysis techniques to deduce unknown
types without the need for code execution. Prominent static analysis tools in the field include
Mypy [6], Pyre [9], Pyright [11], Pytype [12], Scapel [13], among others. These tools are
capable of analyzing the program context and inferring types based on their recognition
capabilities. By leveraging static type inference, researchers and developers can enhance
code understanding, identify potential errors, and improve overall program correctness.

Static Analysis

At the core of static type inference lies static analysis, which involves examining code
without its execution. During the static analysis process, specialized tools are employed to

9



2. RELATED WORK

detect potential errors, identify violations of coding standards, and attempt to infer missing
type annotations.

Consider the example of Pyre: when Pyre is applied to a program, it initiates static anal-
ysis on the program’s foundation. It scrutinizes variable definitions, establishes call-callee
relationships, and generates reports highlighting any issues encountered. These reports may
include findings such as import cycles, unused variables, and missing type annotations.

Static Type Inference

We will take advantage of static analysis for type inference, type inference includes three
tasks, variables, parameters as well as return types.

For variables, the static analysis tool will infer its type based on its variable assignment
within the scope, either built-in, or the class or project scope.

Figure 2.1: Example Code Snippet for Variables in Python

In Figure 2.1, when analyzing this code snippet, the static analysis tool will infer the
var1 as ‘list [int]‘, this inferred type comes from the type of the source expression for this
variable. In the case of var2, which is assigned in two places, in line 10, and line 12, and
refers to different types, therefore, it will be a union of these types. In line 10, it is easy for
static analysis to infer it as ‘None‘, and in line 12, it will refer to the callee class Foo in line
2, which finally gives the inference ‘Foo | None‘. This is just a simple example, however,
when it comes to more complex definition expressions including user-defined types and
parametric types, static analysis tools will not be able to infer the correct types and in some
cases, it will give an ‘Any‘ type instead.

For parameters, in most cases, it will be hard for static analysis to infer, for example,
Pyright will infer the types of parameters in two cases: 1) if this is a function in an instance
and the corresponding function in base class has the annotation, the static analyzer will infer
the types correspondingly via inherit [11]. 2) if there is a default value for the parameter,
the static analyzer could infer the type by its assignment.

10



2.1. Type Inference

For return types, types can be inferred from the return statements found within that
function, all the types of return statements found in the function will gather a Union as
the overall return type. For example, in Figure 2.2, when analyzing func1, static analyzer
will recognize “empty str“, ‘True‘ as ‘str‘ and ‘bool‘, and the inferred return type will be
‘str | bool | None‘. However, when it comes to functions with parameters unannotated, it
will become harder for the static analyzer to infer, for example in func2, there is no annota-
tion for either a, b or c, in this case, the inferred return type could only be ‘Unknown | None‘.

Figure 2.2: Example Code Snippet for Functions in Python

Static analysis for type inference offers certain advantages. It excels in inferring cor-
rect types for assigning expressions within simple built-in scopes. Furthermore, it can also
recognize and accurately infer user-defined types in class scopes, as demonstrated by the
example of Foo mentioned earlier. However, static analysis may face limitations when
dealing with code that lacks sufficient type annotations, for example, inferring the return
types without the annotations of parameters. In such cases, the inference process may not
yield the desired results, as the absence of explicit type information makes it challenging
for static analysis to deduce the types.

2.1.2 Machine Learning Techniques for Type Inference

In the realm of type inference, machine-learning approaches have also gained prominence.
Two notable ML-based approaches for type inference are Typilus [22] and Type4Py [53].
These approaches utilize neural networks to encode the code context into a high-dimensional
space. Subsequently, they employ K-nearest neighbors (KNN) search to perform type in-
ference.

Typilus, released in 2020, emerged as the cutting-edge machine learning technique in
this field. This approach employs a Graph Neural Network (GNN) [44] [49] to map type
information to a high-dimensional type space. To enhance the learning process, Typilus

11
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utilizes a variant triplet loss [29] as the loss function in the GNN network. By calculating
the Euclidean distance between type slots, Typilus performs a K-nearest neighbors search.
It predicts the types that are closest to the ones observed in the training set. This process
enables Typilus to make accurate type predictions based on the proximity of the type slots
in the learned type space.

Another state-of-the-art machine learning approach for Python type inference is Type4Py,
which was introduced in 2022. Similar to Typilus, Type4Py is developed using a deep
similarity learning-based hierarchical neural network architecture. Type4Py employs vari-
ous components to make accurate type predictions, including the extraction of identifiers,
code context, and visible type hints for each type slot. The extracted tokens are then
passed through an embedding model, which maps them to a high-dimensional space (256-
dimensional). To accomplish this, Type4Py employs a hierarchical neural network (HNN)
consisting of two LSTM-based recurrent neural network (RNN) models. After the tokens
are embedded, a linear layer is applied to the resulting 256-dimensional embeddings. The
final step involves utilizing a K-nearest neighbors (KNN) search, where the machine learn-
ing model compares the embeddings to similar examples in the training data. Based on this
comparison, Type4Py outputs its final prediction for the type of the given code snippet. The
overall structure is shown below in Figure 2.3.

Figure 2.3: Architecture of Type4Py Type Inference System

According to the results, Type4Py not only outperforms the traditional static type in-
ference techniques but also outperforms other machine learning techniques including the
GNN-based model, Typilus. Moreover, for the machine learning approaches, it could output
top-n predictions, which will be helpful in the actual practice compared to static analysis.

2.1.3 Hybrid Approach for Type Inference

Recently, there have been hybrid approaches that combine both static analysis and machine
learning techniques for Python type inference. Two notable examples are HiTyper [55] and
TypeT5 [62]. These approaches utilize static analysis tools to extract relevant and valu-
able information, which can provide better contexts for the feature learning process. The
extracted features are then fed into a neural network for learning and prediction. By combin-
ing static analysis and machine learning, HiTyper and TypeT5 aim to leverage the strengths
of both approaches to enhance the accuracy of type inference in Python.

Hityper, released in 2022, is a hybrid type inference approach based on the Type Depen-

dency Graph(TDG) [55]. The TDG is a graph that records the type dependencies between
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variables in the function scope. The type prediction task is changed into a graph-filling task
by Hityper using this graph. In order to fill in the types in the graph, Hityper leverages
both static analysis techniques and deep learning models. To ensure accurate predictions,
Hityper builds a series of type rejection rules. These rules help eliminate incorrect type
predictions by considering factors such as conflicting type information and semantic incon-
sistencies. By combining static analysis, deep learning, and type rejection rules, Hityper
strives to provide precise type inference results.

(a) Type Inference as Code Infilling
Task (b) TypeT5 Architecture

Figure 2.4: TypeT5: Seq-2seq Type Inference using Static Analysis

TypeT5 [62], built upon the foundation of CodeT5 [61] with improvements designed
for type inference, is considered one of the most accurate and powerful models available.
TypeT5 leverages the transformer architecture commonly used in sequence-to-sequence
models. By transforming the type inference task into a code-infilling task in Figure 2.4a,
TypeT5 capitalizes on the strengths of the transformer architecture. In addition, TypeT5
recognizes that type inference often requires non-local information beyond the immediate
code context, extending to the entire file or even external dependencies. To address this,
TypeT5 utilizes static analysis techniques to construct a comprehensive usage graph, as
shown in Figure 2.4b. This graph stores valuable information from both within and outside
the surrounding code, enabling TypeT5 to extract relevant details about potential users and
usees. This wealth of information contributes to more accurate type inference results.

With its combination of the Transformer architecture and the usage graph, TypeT5
demonstrates remarkable precision in type inference, making it a leading model in the field.

2.2 Rank system: Learning to Rank
As discussed in the preceding section, the hybrid approach incorporates outputs from both
static analysis and deep learning techniques. Consequently, there may arise situations where
the two models yield different results. To establish a correct ranking among these predic-
tions and ensure proper ordering, the implementation of a rank system becomes necessary.
In this regard, we propose employing a learning-to-rank model as the core component of
this ranking system. In the following subsections, we will introduce the concepts related to
learning to rank and discuss the techniques that we may employ in our approach.
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2. RELATED WORK

2.2.1 Ranking Model and learning to Rank

Ranking models are widely used to sort objects based on their relevance, preference, or
importance. This task is crucial in information retrieval and is encountered in various do-
mains [50]. For instance, in search engines, the goal is to present a sorted list of web pages
based on their relevance to a given query. Similarly, in recommendation systems, the aim
is to provide a list of potentially interesting products based on user profiles and order histo-
ries [43].

Ranking models typically work by predicting a relevance score, denoted as:

s = f (x)

for each input x = (q,d), where q represents a query and d represents a document. The
relevancy score reflects how closely the query and the document are related. By obtaining
the relevance scores for all documents, we can then sort, or rank, the documents based on
these scores. This ranking process enables us to prioritize and present the documents in
an order that reflects their relevance to the given query. To compute the relevance score
S, we will employ the learning-to-rank approach. This methodology involves training a
model to predict a score s when provided with an input x = (q,d) during the training phase.
The learning-to-rank model learns the underlying patterns and relationships between the
query: q and the document: d to estimate their relevance score. By optimizing the model
through training, it becomes capable of accurately predicting the relevance score for new
inputs. This approach enables us to effectively rank and prioritize documents based on their
relevance to a given query.

We can also make use of the learning-to-rank approach in the context of our type infer-
ence ranking system. We provide the model with a query that represents the code context
and anticipate that it will produce an ordered list of predictions from several models. This
enables us to meaningfully and effectively rate and recommend the type predictions.

2.2.2 ML models in Learning to Rank

To construct a machine learning model for calculating relevance, we need to define the
loss function. Considering the input and output mentioned earlier, the remaining aspect to
determine is the appropriate loss function. In the field of learning to rank, there are three
primary categories of loss functions based on different approaches: point-wise, pair-wise,
and list-wise [63] [27]. As shown in Figure 2.5, given a query and a list of documents:

• Pointwise: In this method, the L2R model treats ranking as a regression or classi-
fication problem. The loss function is typically defined based on the discrepancy
between the predicted relevance score Si and the ground truth relevance label yi for
each individual instance xi = (q,di).

• Pairwise: In this method, instances are compared in pairs xi = (q,di), x j = (q,d j)
with the goal of learning a model that appropriately ranks instances inside each pair.
The loss function calculates the discrepancy between the actual pair order and the
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Figure 2.5: Machine Learning Approaches on Learning to Rank: Pointwise, Pairwise, List-
wise [3].

expected pair order. This method is used in RankNet [24] and lambdaMART [26],
which is an improvement compared to the pointwise approach.

• Listwise: In this method, ML models consider the entire list of instances and di-
rectly optimize a ranking metric, such as NDCG (Normalized Discounted Cumulative
Gain) [40] or MAP (Mean Average Precision) [27]. The loss function is designed to
directly optimize the ranking performance on the entire list. This method is used on
LambdaRank [25] model and has better results compared to pointwise and pairwise.

After considering the different approaches, we have decided to adopt the point-wise ap-
proach for its simplicity in embedding the query and training process. By abstracting the
problem as a classification task, we can leverage various techniques such as XGBoost [28]
and neural networks. The specific details regarding the problem abstraction and implemen-
tation will be elaborated in Chapter 3.
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Chapter 3

Methodology

This chapter outlines the methodology employed in our research. We begin by discussing
the utilization of static analysis and the specific tools employed to perform type inference
on a project-based level. Subsequently, we introduce the Type4Py model and elaborate on
the enhancements made to the training process. Additionally, we describe the integration of
static analysis results and the ML model, showcasing our hybrid approach. We further out-
line the pipeline employed in the project-based context. Finally, we introduce our ranking
system and discuss various approaches that were explored within this system.

3.1 Static Type Inference

This section provides an overview of our approach to utilizing static analysis tools for per-
forming type inference in Python projects. The process consists of several key steps: type

extraction, annotation removal, static type analysis, and inference extraction. These steps
primarily rely on the Abstract Syntax Tree (AST) and operating system (OS) commands. In
the subsequent subsections, we will delve into each step in detail, explaining their impor-
tance and methodology. The overall structure is shown in the following Figure 3.1.

Figure 3.1: Static Analysis Pipeline for Type Inference
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3.1.1 Type Extraction

The first step in the static inference pipeline is to extract all the annotated types in the
Python project to collect ground truth and type inference. In this step, we will mainly use
LibCST [5] for type slot extraction. The procedure is shown in the following Algorithm 1.

Algorithm 1 Type Extraction Algorithm
1: procedure A PYTHON PROJECT(pro ject test)
2: typeslots []
3: for all python file: f ile in pro ject test do
4: typeslots f ile []
5: parsed model = cst.parse module( f ile)
6: for all node 2 parsed model and node is not visited do
7: if node.type == cst.FuncDe f then
8: # Extract Return Type
9: if node.return.annotation is not None then

10: typeslot = (node.return.annotation, node.loc)
11: typeslots f ile.add(typeslot)
12: end if
13: # Extract Parameters
14: for all param in node.params do
15: if param.annotation is not None then
16: typeslot = (param.annotation, param.name, node.loc)
17: typeslots f ile.add(typeslot)
18: end if
19: end for
20: end if
21: # Extract Variables
22: if node.type == cst.AnnAssign then
23: typeslot = (node.annotation, node.name, node.loc)
24: typeslots f ile.add(typeslot)
25: end if
26: end for
27: typeslots typeslots[ typeslots f ile

28: end for
29: return typeslots

30: end procedure
Input: A python project contains a list of files: pro ject test

Output: A list of type slots extracted from the files: typeslots

For each file in the Python project, we will utilize the builtin function: cst parser [2]
to parse the program as a CST (Concrete Syntax Tree) module [1]. Within the module, we
will visit f uncDe f and AnnAssign nodes to extract the return types of all functions, function
parameters, and variables. Furthermore, to proceed with the next step of locating the node,
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removing the annotation, and inferring the types, we need to store the location information
within each type slot in the project-level typeslot list. Each type slot in this list will appear
like the following in Figure 3.2: For the tasks for variables and parameters the name key

Figure 3.2: Example Type Slot after Type Extraction

will refer to the name of that variable and parameter.

3.1.2 Annotation Removal

After extracting all the type slots within the entire project, the next step is to remove the
type annotations and perform static analysis to infer the correct types for those specific
type slots. We can utilize the LibCST [5] package for this task, similar to the previous
step. However, instead of visiting each node, we will make changes to the specific nodes
that require processing with with change method [18]. In each iteration, we will make
changes to a single node within one specific file, while keeping all other type slots and files
unchanged. The three types of changes related to return types, parameters, and variables
will be as follows:

• For Return Types, consider the function node as node, what we just need to do is
change the annotation in node.return to None:

return node.with changes(node.return.annotation = None)

• For parameters, the objective is to remove the specific annotation for one parameter
at a time while keeping all other parameters and the return expression unchanged.
To achieve this, we will create a new parameter list within the f uncDe f node. The
modified f uncDe f node with the updated parameter list will be returned. The process
is shown in the following Algorithm 2
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Algorithm 2 Remove Parameter Algorithm
Input1: Type slot of specific param: type slot

Input2: The module of function which contains that param: f unc node

Output: The updated module of function which removes the annotation of that param:
f unc nodeupdate

1: Initialize updated param list []
2: for all param in f unc node.params do
3: if param.name != type slot.name then
4: updated param list.add(param)
5: else
6: new param = param.with changes(param.annotation = None)
7: updated param list.add(new param)
8: end if
9: end for

10: f unc nodeupdate = f unc node.with changes(params = updated param list)
11: return f unc nodeupdate

• For Variables, when encountering an annotated assignment node, we need to trans-
form the node from Annotated Assignment into Assignment type, while keeping the
target expression unchanged. The transformation can be performed as follows:

return cst.Assign(target = node.target)

3.1.3 Static Type Inference

Once we have the project with only the targeted type slots masked, we can utilize static
analysis tools to perform type inference. In our experiments, we explore the use of two
static analysis tools: Pyre [9] and Pyright [11], for static type inference. The underlying
strategy is similar for both tools. We use their command-line interface to generate type
stubs, which display the types recognized by the tools in the stub files (.pyi). Subsequently,
we parse the .pyi files again and extract the relevant types using the libcst transformer.

First, we will first introduce the pipeline for Pyre static type inference. We utilize the
command tool pyre in f er [10] for this purpose. The process begins by starting the Pyre
server within the project base. Then, we use a subprocess to execute the command tool and
generate the type stubs. The pipeline for running the Pyre server is illustrated in Figure
3.3. In order to perform pyre analysis, it is necessary to have the Watchman server [17].
Therefore, we must initialize and start the watchman server beforehand in every project’s
base.

Moreover, we experimented with another static analysis tool called Pyright, which is
considerably more straightforward compared to Pyre. To utilize Pyright, we will employ
the pyright ��createstub command in the operating system [20]. However, prior to exe-
cuting this command, we need to install the project using the pip install command within
the virtual environment. Once this command is executed, Pyright will generate type stubs
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Figure 3.3: Pyre Static Analysis Process

within the Python project, encompassing all the recognized types. We will then examine
the type stub folder and extract the type inference from it.

3.1.4 Inference Extraction

During this phase, we will carry out the last step, which involves extracting the relevant type
inference from the type stub file generated during the static type analysis. The following
two steps will be used to extract this inference:

• First, we will verify the existence of a type stub file that corresponds to the source file
containing the target type slot. The type stub file will reside in the same relative path
but with a filename suffix of ”.pyi”.

• Next, upon locating the type stub file, we will parse it and utilize the Concrete Syntax
Tree (CST) to navigate and identify the corresponding type slot.

• Finally, we will add the static type inference we extracted from the type stub file into
the type slot in Figure 3.2, with a key as pyre result or pyright result

Following the completion of the preceding four steps, our goal is to obtain a type slot list for
each project. Each type slot will consist the following components: human annotation as the
label, Pyre and Pyright results as type inferences, the corresponding source filename, and
its location. By utilizing these type slot lists, we can evaluate the match rate individually,
and they can also be employed in subsequent experiments that involve combining machine
learning approaches and ranking systems.

3.2 Machine Learning Approach

To implement the machine learning approach for type inference, we primarily build upon the
Type4Py [53] framework and introduce several minor enhancements. These enhancements
aim to adapt the training process to larger datasets and enable the handling of project-based
type inference tasks. The first section of our implementation focuses on introducing the
baseline functionality of Type4Py, while the second subsection delves into the details of our
specific enhancements.
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3.2.1 Type4Py Pipeline

The baseline implementation of Type4Py consists of three main phases: feature extraction,
embedding, and the learning process. In the feature extraction step, Type4Py selects three
components as features for each type slot prediction: natural language information, code
context, and type hints [53]. These features are then passed through the embedding phase,
where a Word2Vec [51] model is utilized to convert them into embeddings. This process
vectorizes the input features, allowing models to learn from them effectively. The resulting
vectors are subsequently fed into the core model. Within this model, both code tokens and
identifier tokens are inputted into separate recurrent neural networks (RNNs) with LSTM
units [34] to generate vectors. These vectors are then combined with visible type hints
and passed through a linear layer. This transformation sets up the type inference task as a
K-nearest neighbors (KNN) [56] search task.

Feature Selection & Embedding

As previously mentioned, the ML approach selects three features for each type slot as inputs
for the inference model. The first feature is natural information, which varies depending
on the specific task. For different tasks, it refers to:

• Variables: variable name Nvar

• Parameters: parameter name Narg + function name Nf unc + the remaining parameter
names Narg0, Narg1...

• Return types: function name Nf unc + parameter names Narg0, Narg1...

The extraction of these names is a straightforward process using the Abstract Syntax Tree
(AST). Once the names are extracted, they are then passed as input to a Word2Vec model,
which generates vector representations as Nvar, Narg, Nf unc. As for parameters and return
types, the concatenated vector length is limited to 1000 dimensions, where any excess be-
yond this length is omitted and not used as input for the model.

The second feature we choose to utilize as input is the code context. This includes the
code expressions corresponding to each type slot. We feed the selected code snippets into
the code Word2Vec model and concatenate the resulting output vectors based on different
tasks, as outlined below:

• Variables: All the occurrences for the variable within the scope {Cvar,Cvar,Cvar...}

• Parameters: All the occurrences for the parameter within the function scope {Cparam, Cparam...}

• Return types: All the return expressions: {Return1, Return2}

We will consider the third feature as visible type hints, which encompass all the imports
present in the source project. This information can be helpful in providing hints to an ML
model about the potential types that might occur and be used within the code context.
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During the embedding process, for each project, the visible type hints can be represented
as a binary vector consisting of 0s and 1s. 0 indicates that a particular type has not occurred
in the project, while 1 indicates the presence and location of the type within the project in
relation to the overall type libraries.

Neural Model

Once we have obtained the input vector for each type, we will feed the vector into a neural
model for deep similarity learning. This model consists of a hierarchical neural network
(HNN) comprising a code RNN and an identifier RNN. Additionally, we employ a triplet
model to calculate the triplet loss in the type space as shown in Figure 3.4. The triplet model

Figure 3.4: Type4Py Model for Deep Similarity Learning

is designed to learn a mapping that makes the results of type A closer together compared to
results from a different type B. For example, in Figure 3.5, let’s consider examples A and
B, both of which belong to the ”str” type. In this case, we desire that A and B are closer to
each other in the embedding space, as compared to example C, which belongs to the ”int”
type. In the implementation, the RNNs are implemented using the LSTM [4] package in
PyTorch. Additionally, the triplet loss can be calculated using the TripletMarginLoss [14]
module available in PyTorch.

Figure 3.5: Triplet Loss for Types
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Consequently, in the prediction phase, when presented with a new example, the trained
model will be able to predict the closest type cluster based on the learned mappings.

3.2.2 Enhancement on Training for Larger Dataset

We have added a modification to the Type4Py model that was initially discussed earlier in
order to handle larger datasets more effectively. We found that it is not possible to load the
complete dataset for training, as we observed while working with large datasets (which will
be discussed in more detail in Chapter 4). Consequently, we have devised a strategy as
Sequential Training: to train the model sequentially on three different datatypes: variables,
parameters, and return types as shown in Figure 3.6a. With the help of this sequential
training method, we can overcome the difficulties larger datasets present. We can efficiently
analyze and train on subsets of the data at a time by separating the training process into
these three different data types. While taking into account the limitations of larger datasets,
this approach enhances the manageability and scalability of training.

Furthermore, during the training phase, it is necessary to save type clusters for KNN
(K-Nearest Neighbors) search in the prediction phase. Considering our sequential training
strategy, we load and save type clusters accordingly. Additionally, we employ a reduced
type cluster with fewer dimensions, reducing it from 1024 to 256. Moreover, to facilitate
prediction, we convert our Type4Py model to ONNX [7] format. This allows for efficient
and optimized inference during the prediction phase. The training process and outputs are
shown in Figure 3.6b.

(a) Train the Model Sequentially on
Data Types

(b) Training Output: Reduced Type Cluster,
Model.onnx

Figure 3.6: Enhancement on Training for Larger Dataset

3.3 Integration on Project-Base
In the preceding sections, we discussed the utilization of static analysis and ML approaches
for type inference. However, the results obtained from these different approaches may be
present in separate files or formats. To obtain a consolidated type list that includes hybrid
results for each project, we will now provide additional details on how we achieve project-
based type inference.
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3.3.1 Implement Type4Py model on Project-base

Once we have obtained the type cluster and Type4Py model in the previous step, we can
utilize them for project-level type inference. This can be achieved using the libsa4py [52]
tool, which facilitates the extraction of relevant information from the projects.

For each project, libsa4py generates a JSON-like file containing comprehensive infor-
mation about the types. This JSON file includes detailed information about variables, pa-
rameters, return types, and their corresponding locations within the code. In the case of
variables, which can be found in files, classes, and functions, the ML model utilizes both
the variable name and its occurrences as input. The model then adds the predicted types
to the JSON file accordingly. For each variable, the model generates a list containing the
predicted types, represented as varp. Similarly, for parameters and return types occurring
in functions, the extracted information is fed into the model, and the predicted types are
outputted as paramp and return typep respectively.

Subsequently, we clean up unnecessary information in the JSON file, retaining only
the type slots consisting of the original type, predictions, and locations in each file in the
project. As a result, the ML approach generates a type list file that contains all the type slots
with ML predictions.

3.3.2 Merge Results as Type List

After completing the previous step, for each project, we obtain a type slot list that includes
annotated types along with predictions from both static analysis and the ML approach
(Type4Py). Using the location information within the file, we can merge these results to-
gether, resulting in a consolidated output as depicted in Figure 3.7. In this example types
lot output, the term original type corresponds to the human annotations, serving as the
ground truth for comparison. The pyre predict field represents the predictions generated
by the static analysis tool Pyre, while pyright predict represents the predictions from an-
other static analysis tool, Pyright. Additionally, the t4py predictions field contains a list of
type predictions obtained using the Type4Py approach.

3.4 Ranking System

Having obtained results from both the ML approach and static analysis, it is desirable to
establish an ordering among these approaches for ranking purposes. Initially, a straightfor-
ward approach involves placing the static analysis results above the ML approach results.
Moreover, we also aim to explore the use of a learning-to-rank model to determine if we
can further improve the ranking process.

3.4.1 Naive Approach

Now, let’s consider the results obtained from both the static analysis and ML approach.
Initially, we can adopt a straightforward approach where the results from the static analy-
sis are placed above the results from the ML approach. This is based on the intuition that
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Figure 3.7: Hybrid Result for an Example Type Slot

static analysis is generally believed to be more accurate compared to machine learning ap-
proaches. Therefore, when dealing with the results from Pyre, Pyright, and Type4Py, the
ranking order will be as follows in Figure 3.8:

(a) Pyre & Type4Py (b) Pyright & Type4Py (c) Order for three results

Figure 3.8: Naive Ranking Order: Static Analysis before ML Approach

3.4.2 Learning to Rank Approach

We are also interested in exploring a novel approach to solving this problem by utilizing a
learning-to-rank model. Our idea is to abstract the problem as a query-document challenge,
where we consider the code context as the query and type inferences as the document. In this
subsection, we will first present the problem abstraction and then introduce our proposed
solutions.
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Problem Abstraction

Currently, we possess a list of predictions for a specific type slot generated by Pyre, Pyright,
and Type4Py. Our aim is to transform the rank-ordering problem into a learning-to-rank
problem. To achieve this, we need to determine the query for the problem. We define the
query as a type query, representing the expression for the type without any annotation. This
could be either the variable definition or the function context. Consequently, the documents
in our learning-to-rank framework will consist of type predictions from different models.

Let’s consider the following function in Figure 3.9 as an example.

Figure 3.9: Example Function for Type Query

It has a function signature that includes the return type int and parameter hex string. To
rank the predictions for the return type, which is int, we will remove the type annotation for
the return value while keeping all other contexts intact, including annotations for parameters
and variables within the function, as shown in Figure 3.10a. Similarly, when inferring
the type of a parameter, we will only remove the annotation for that specific parameter
while preserving all other annotations and contexts as shown in Figure 3.10b. Additionally,
we have observed that this function includes a function-level variable v which is another
target for type inference. The type query for this variable is straightforward: it will be the
assignment of v without any type annotation in Figure 3.11

(a) Type Query for Return Type (b) Type Query for Parameter

Figure 3.10: Type Query for Parameter and Return Type

Figure 3.11: Type Query for Variable

Therefore, we abstract the problem to the learning-to-rank model as:

x = ( q : type query, d : type predicts)
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Embedding model

In order to facilitate learning in our machine learning model, it is necessary to obtain vector-
ized representations of the code tokens for both queries and documents. For example, when
we have a code fragment, specifically a function code fragment that serves as our type
query, our goal is to generate code embeddings that capture code-related understanding. To
achieve this, we explore various options such as codeBERT [30], Unixcoder [36], and Star-
coder [48]. After consideration, we decide to utilize the pre-trained model of Unixcoder
for our task. By leveraging Unixcoder, we can encode the type queries and type predic-
tions into a 768-dimensional vector representation. This allows us to capture the semantic
information and characteristics of the code tokens effectively.

Pointwise Solution

After embedding the type queries and type predictions into vectors, as described in the
previous section, we can now explore a pointwise solution to transform the ranking problem
into a classification problem. To achieve this, we concatenate the query and document
vectors together, forming a single vector representation. The label assigned to each training
sample is either 0 or 1, indicating whether the document (type prediction) matches the
ground truth.

By training a classification model using these training samples, we aim to learn the
ability to classify whether the query and type predictions are a match. In the prediction
phase, we can then rank the documents based on the scores outputted by the classification
model. These scores serve as the ranking order, allowing us to determine the most relevant
matches for the given query.

Figure 3.12: Learning to Rank Model

As illustrated in Figure 3.12, the input vector for our classification model is constructed
by concatenating the query vector (vec q in the figure), the document vector (vec d in the
figure), and a delimiter that serves to differentiate between different approaches. In this
context, the delimiter takes the value of 1 when the documents (type predictions) originate
from static analysis and 0 when they come from a machine learning approach. Conse-
quently, the input vector becomes a 1537-dimensional vector (768 * 2 + 1). Along with
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the corresponding label, which is either 1 or 0, we feed these inputs into the classification
model for learning purposes.

Regarding the classification model, we conducted experiments with three different mod-
els: XGBoost, Linear-layer Model, and Multi-layer Model:

• XGBoost: XGBoost is a gradient boosting algorithm that utilizes decision trees [28].
It trains multiple decision trees, with each tree focusing on samples that were misclas-
sified or had higher prediction errors in previous trees. The final prediction is formed
by combining the predictions from each tree. In our experiment with XGBoost, we
used the Scikit-Learn API [19] of it. Given the large input size, we adjusted the pa-
rameter settings in the API to include more gradient-boosted trees during the training
process.

• Linear-layer Model: we implemented a neural network model with a single layer for
this classification problem. The input layer of the model has a dimension of (1537,
1). We used the PyTorch package to build and train this model. During the training
process, we employed the Binary Cross Entropy Loss [58] as the loss function and
the Adam optimizer [64] for parameter optimization.

• Multi-layer Model: In addition, we conducted experiments with a multi-layer model
for this classification problem. The model consists of hidden layers with dimensions
(1537, 512) and (512, 256), and an output layer with dimensions (256, 1). Within the
hidden layers, we utilized the ReLU activation function. Similar to the linear-layer
model, we used the Binary Cross Entropy Loss as the loss function and employed the
Adam optimizer for parameter optimization in the multi-layer model. This ensured
consistency in the training process across both models.
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Chapter 4

Evaluation

In this section, we will initially present the evaluation setup, encompassing the dataset,
our baselines, and evaluation metrics. Subsequently, we answer the following research
questions introduced in Chapter 1:

RQ1: What is the general performance of this hybrid approach?
RQ2: How to rank among static analysis and machine learning results in our hybrid

approach?
RQ3: What is the scalability and time efficiency of this approach?

4.1 Evaluation Setup

The implementations and preparations leading up to the evaluation are described in this
section. We will first display the dataset construction process and its characteristics. The
introduction of the baselines and evaluation metrics follows.

4.1.1 Dataset

A dataset with enough annotated type information is needed to train and test type annota-
tion predictions. Typilus’ Dataset, created by Allanmanis [22], ManyTypes4Py, created by
Mir [52], and the BetterTypes4Py [62], a subset of ManyTypes4Py released this year, are
the most frequently used datasets for Python type inference. These datasets were produced
two or three years ago, and for the advantage of training and assessing purposes, we would
prefer a more recent dataset. Therefore, we created a new version of ManyTypes4Py, which
we shall refer to MT.v0.8 in the subsequent discussions. Our dataset can be downloaded on
Zenodo1

Build Dataset

The selection of MT.v0.8 basically based on the dependents for mypy [6] package in Github.
Our hypothesis is that projects built based on mypy, the most well-liked static type checker

1
https://zenodo.org/record/8255564
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for Python, would contain more precise type annotations. In order to filter the 57k re-
sults returned by our search for mypy-dependent Python projects over the last four years
(2018–2022), we used the selection criteria listed below in Table 4.1. Furthermore, we

Table 4.1: Dataset Selection

Selection Criteria Number of Projects

None 57201
50+ stars & 5+ forks 2246

100+ stars & 10+ forks 1456

chose the 2k repositories among 57k Python projects with more than 50 ratings and 5 forks
as our dataset. In the end, we remove none python files and exact-duplicated Python files
by using the hash-deduplicate method [33].

Dataset Augmentation

We were inspired by Allamanis [22] and Mir [53] to use a static analysis tool for dataset
augmentation by adding more type annotations. We chose to use the static analysis tool
Pyre for this purpose. Unlike Mir’s approach, we used both pyre query and pyre infer for
augmentation. The updated version of Pyre [10] can now add type annotations for return
types and parameters. We acknowledge that some projects or files couldn’t be processed
by either Pyre or LibSA4Py [52] due to parse issues in Table 4.2, so we ended up selecting
2220 projects as our final dataset. After filtering with useless type information, we have
gained the results for 290k files with 5.1M extracted useful types, compared to type4py
with 3.3M types in total for 288k files as shown in Table 4.3, there is a raise about 54.90%
in annotated types per file.

Table 4.2: Process of Enhancing Datasets. The number refers number remaining.

Process Number of Projects Number of Files

LibSA4Py 2230 332,284
pyre query 2228 328,716
pyre infer 2220 290,040

Table 4.3: Types & Files between MT V0.8 and ManyTypes4Py.

Files Available Types Types per File

ManyTypes4Py 288,760 3.3M 11.43
MT V0.8 290,040 5.1M 17.69
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Dataset Properties

To look into the new dataset, MT V0.8, we are two outperforming advantages:
Table 4.4 below shows the type coverage for variables, parameters, and return types. By

comparing these results with ManyTypes4Py, we can observe that the new feature for pyre
results in better type annotation performance for parameters and return types.

Table 4.4: Type coverage between MT V0.8 and ManyType4Py.

Tasks ManyTypes4Py MT V0.8

variables 47.90% 42.01%
parameters 14.50% 45.73%
return types 10.70% 23.66%

overall 37.76% 39.50%

Figure 4.1 demonstrates that MT V0.8 has a better-balanced type distribution than
ManyTypes4Py, the percentage of return types and parameters have raised to 10.83% and
26.62% in the overall types.

Figure 4.1: Datapoint percentage between MT V0.8 and ManyType4Py.

We divided the entire dataset by projects, with a ratio of 0.7, 0.1, and 0.2 for training,
validation, and testing. The model is developed and tested using training and validation
data, and then it is assessed using test projects. The fundamental statics for the three sets
are displayed in the following Table 4.5, and the top-10 most frequent types in the dataset
is shown in the following Figure 4.2. However, during the final project-based evaluation,
certain factors such as Python versions and system requirements led us to obtain a total
of 80 module-based projects that could be successfully installed in the Python 3.10 virtual
environment on the Ubuntu 18.04 system. We proceeded to test both the baselines and our
approaches on these 80 projects.
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Table 4.5: Basic Statistics in MT V0.8.

train valid test

Project numbers 1554 224 442
File numbers 211,414 31,912 55,102
Lines of code 32.4M 5.24M 7.48M

Types 3,734,316 554,313 842,864

Figure 4.2: Top-10 frequent types in MT V0.8 dataset.

4.1.2 Baseline Approaches

Our aim is to compare the performance of our own approach with mainstream approaches
such as static analysis, machine learning, and hybrid approaches. We have selected Pyre

and Pyright as the static type inference tools for static analysis. For the machine learn-
ing approach, we have opted for Type4Py. However, we have made some modifications
to the Type4Py training process and used the reduced type cluster due to out-of-memory
issues. Additionally, we have implemented project-based predictions for this approach as
mentioned in the previous Chapter 3. For the hybrid approach baseline, we have chosen
TypeT5 which is a mixing approach that includes both usage graph and CodeT5 [61].

For Type4Py, we trained the model on our training dataset and made some slight changes
in the Type4Py training process. With the trained model, we proceeded to deploy it for type
inference in the project base. The resulting predictions were then saved in a JSON-like file,
which contains ”original type” and ”predictions” information.

In order to differentiate between human-annotated type information (considered as the
ground truth) and type inferences generated by static analysis, we follow a specific proce-
dure as mentioned in the Chapter 3. Firstly, we extract all the type information from the
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original test projects. Subsequently, we utilize pyre and pyright CLI commands to predict
types for each type slot within the projects. We extract the pertinent type information from
the stub file and combine the results into a type slot list. This allows us to calculate accuracy
and evaluate the performance of Pyre and Pyright’s static analysis.

Type inference for TypeT5 is performed using the pre-trained TypeT5 model, which can
be accessed on Huggingface [16]. To execute the model and generate type inferences on the
cleaned projects, we use the ”evaluate on projects” API provided by TypeT5. The resulting
output is converted to CSV format and evaluated using our own evaluation metrics.

4.1.3 Evaluation Metrics

To simplify the evaluation process, we first conduct a preprocessing stage for the type pre-
dictions. Following this, we define the evaluation metrics and several terms used in the
evaluation phase.

Preprocess

The type indexes used among different type inferences may differ, for example Pyre used
the PEP484 [8] type system which includes types such as ”typing.List” and ”builtins.str”.
To ensure consistency between the type predictions generated by different approaches, we
first remove type information from the results. We then resolve type aliases by mapping
symbols such as ”{...}” to the type dict and ”[...]” to the type list.

Measurements

We have adopted two criteria from Typilus [22] to evaluate the performance of both the base-
line methods and our own approaches: exact match and basic type match. Additionally, we
modify the match rules to include the union match. For instance, in some circumstances, the
ground truth (human annotation) may only contain the type for a single return expression,
whereas the results of static analysis may include the ground truth in a union of results. As
a result, we see a union match as an exatch match. To be specific, here are explanations and
examples of their definitions:

1) Exact match: for an original type tlabel and a type prediction tprediction, we consider
this is exact match only when tlabel and tprediction are exactly identical:

tlabel ==e tprediction

Also, when the original type is an union includes a None type, if the type prediction
is same as the rest types in the original type, we consider it is an exatch match. More-
over, when the type prediction tprediction consists the original type tlabel , we consider
it is an exatch match, for example:

tlabel : Union(str,None) ==e tprediction : str

tlabel : str ==e tprediction : Union(str, f loat)
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2) Basic Type match When a type contains a ”[]” argument, such as ”Dict[str]” or
”List[int]”, it is considered to be parametric. If the original type tlabel is parametric,
we adopt a broader matching criteria refered to as parametric match. This involves
ignoring the type parameters outside of the ”[]” argument and considering tlabel and
tprediction to be a parametric match only if their corresponding basic types are identical,
for example:

Dict[str] ==p Dict[Any]

Set[str] ==p Set[...]

In the basic type match, we also provide union match rules. For instance, if the
original type has a union with multiple types and the prediction matches one or more
types in the union, we consider the match to be parametric, as follow:

tlabel : Union(str, f loat) ==p tprediction : str

Terms

During the evaluation phase, we will look into three subtasks and three types of data types
to conduct a comprehensive and detailed investigation. The subtasks in the type inference
task are defined as follows:

1) variables: the subtask of variable inference encompasses inferring types for variables
within four domains: file-based variables, class-based variables, function-based vari-
ables within the file, and function-based variables within the class.

2) parameters: The parameter subtask involves inferring types of parameters in two
contexts: function parameters at the file level and function parameters at the class
level.

3) return types: The return type subtask is similar to the parameter subtask, which also
involves two contexts: function returns at the file level and the class level.

The three kinds of data types are defined as follows:

1) Ubiquitous Types: We define the following types in the set as the most common
types:

{str, int, list,bool, f loat}

2) Common Types: For types that appear more than 100 times in the dataset and are not
part of the ubiquitous type set are categorized as common types.

3) Rare Types: For types in the dataset that appear less than 100 times are classified as
rare types.
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4.2 RQ1: What is the general performance of this hybrid
approach?

Our objective is to assess the overall performance of our approach in comparison to main-
stream approaches. To achieve this, we have deployed the three baselines as well as our
own approaches on the project-based test dataset. Our approaches, include the merging of
Type4py and Pyre, referred to as Type4Pyre; the merging of Type4py and Pyright, referred
to as Type4Pyright; and the merging of the three, referred to as Type4SA in the table.

4.2.1 Performance among different data types

Table 4.6 below shows the performance of these approaches among data types on the test
projects. The common types are referred to as comT, ubiquitous types are referred as ubT,
and rare types are referred to as rareT in the table.

Table 4.6: Overall Performance on Project-based Test Dataset.

Approach Exact Match % Parametric Match %

All ComT UbT RareT All ComT RareT

Pyre 29.80 23.82 55.52 11.36 30.12 24.01 12.05
Pyright 35.04 39.70 47.64 24.08 37.07 40.23 26.01

Type4Py 45.29 54.87 78.67 17.59 47.28 57.02 20.34
TypeT5 50.35 43.94 90.52 20.47 53.36 45.04 27.91

Type4Pyre 52.78 61.90 90.97 24.48 54.01 62.10 25.33
Type4Pyright 56.40 68.58 87.54 35.84 59.87 70.01 37.29

Type4SA 63.30 72.57 93.50 41.05 67.34 74.02 45.20

In terms of accuracy, Type4Py is outperformed by our methods, including our three
approaches in the table, for both exact match and parametric match. As shown in Figure 4.3,
our approach combing static analysis and type4py Type4SA, with a 20% boost on both
match metrics on rare type datasets, our approach also significantly solves the problem
of rare types. In addition, as compared to Type4Py, our technique improves on ubiquitous
types by 15% and common types by 18%. Our technique also outperforms another baseline,
TypeT5, which asserts to have high accuracy on its dataset, with a 20% improvement in
accuracy for both match metrics. This might be because our hybrid technique uses static
analysis to infer types, whereas TypeT5 relies on static analysis to acquire information
needed for deep models.

4.2.2 Performance among different tasks

As previously stated, our type inference task includes three subtasks: variable subtask, pa-
rameter subtask, and return type task. We aim to evaluate the performance of type inference
on each subtask and examine if there are still significant differences between them. In Table
4.7, we compare baselines and our own approaches. We observe a discrepancy among the
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Figure 4.3: Overall Performance on Rare Types.

three subtasks, with accuracy on variables, including exact match and parametric match,
outperforming the other two subtasks. One of our baseline approaches, TypeT5, demon-
strates a more balanced performance; however, there is still a 20% difference between the
variable task and the parameter task. This suggests that in type inference tasks, predicting
parameters is more challenging for models to capture patterns, even with the assistance of
static analysis.

We could also see that our hybrid method, which is the combination of Type4Py, Pyre
and Pyright, Type4SA, significantly outperforms Type4Py as a baseline. In particular, we
see a 20% increase in variable accuracy, a 7% increase in parameter accuracy, and a 20%
increase in return type accuracy. Notably, our method achieves return type accuracy for
exact match and parametric match of 65.79% and 67.01%, respectively. The return type
problem has, in our opinion, been somewhat addressed thanks to the use of static analysis.

Table 4.7: Performance on Three Subtasks (%)

Approach Variables Parameters Return Types

Exact Parametric Exact Parametric Exact Parametric

Pyre 26.94 27.02 20.13 21.76 39.33 39.45
Pyright 42.24 43.20 19.72 20.12 46.65 47.23

Type4Py 49.84 52.26 45.01 47.76 42.15 44.57
TypeT5 57.31 64.24 47.19 50.45 50.85 59.10

Type4Pyre 56.66 57.27 50.37 52.69 60.84 62.36
Type4Pyright 70.51 72.19 47.80 49.44 63.92 65.10

Type4SA 71.60 73.61 52.24 53.01 65.79 67.01

Additionally, we analyzed the accuracy of our approach on three data categories: com-
mon types, ubiquitous types, and rare types. The detailed results can be found in Table 4.8
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below. It was observed that ubiquitous types showed no variations across the three subtasks.
However, for common types and rare types exhibited a decrease of 10 to 20 percent in the
exact match between variable subtasks and the other two. The current approach still faces
difficulties in accurately predicting rare types for function parameters and return values.
The task of predicting rare types becomes even more challenging when it comes to function
parameters.

Table 4.8: Type4SA Performance(exact match) on Three Subtasks (%)

Variables Parameters Return Type All

Common Types 0.81 0.63 0.71 0.72
Ubiquitous Types 0.94 0.93 0.94 0.93

Rare Types 0.56 0.25 0.37 0.41

4.2.3 Contribution of the static analysis and ML approach to the hybrid
approach

The hybrid approach we adopt consists of two components: a static analysis part and a deep
model part. We aim to determine the extent to which static analysis contributes to the overall
performance and whether it assists in addressing the weak points in machine learning.

(a) Contribution of Static Analysis: Pyre in
Exatch Match

(b) Contribution of Static Analysis: Pyright
in Exatch Match

Figure 4.4: Contributaion of Static Analysis and ML Approach

Figure 4.4 illustrates the impact of ML approach and static analysis on the exact match
of the test projects. The graphic specifically shows that for Type4Pyre: Type4Py (ML Tech-
nique) accounts for 23% of the 52% of precise matches, demonstrating the deep model’s
impressive pattern recognition ability without involving Pyre. The graphic, however, re-
veals that pyre’s self-prediction represents 7%, which means that static analysis accounts
for around one-seventh of the overall performance of type inference. Additionally, exam-
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ining Type4Pyright, which exhibits a higher exact match rate of 56%, we observe that the
static analysis tool Pyright plays an even more complementary role. Pyright contributes to
approximately one-fifth of the overall match rate, further enhancing the performance of the
type inference system.

(a) Contribution of Static Analysis and ML
among Tasks

(b) Contribution of Static Analysis and ML
among Data Types

Figure 4.5: Contributaion of Static Analysis and ML Approach

In the depicted Figure 4.5, we examine the impact of static analysis on the performance
of the three subtasks and data types. Notably, there is a substantial enhancement for rare
type prediction on variables and return types. Specifically, applying static analysis on rare
types in these two tasks results in an almost twofold increase in accuracy compared to the
baseline. We could conclude that static analysis can enhance the weaknesses, specifically
the rare type issue and return type issue, of machine learning to a certain extent.

4.3 RQ2: How to rank among static analysis and machine
learning results in hybrid approach?

As explained in the Chapter 3, a ranking system may be necessary when there are discrep-
ancies between the results obtained from static analysis and the ML Approach for the same
type slot. In the table below, we compare the Naive Approach (static analysis before ML
approach) with three models using the learning-to-rank approach. Unfortunately, we are
disappointed to observe that the learning-to-rank approaches did not surpass the naive ap-
proach. This suggests that when faced with a discrepancy between the ML approach and
static analysis, it may be preferable to initially trust the static analysis result.

Additionally, we discovered that using the neural network model instead of XGBoost
for the classification mode resulted in a better Mean Reciprocal Rank (MRR). This implies
that when dealing with classification problems that involve large input dimensions (such as
our case with 1537 dimensions), neural networks are more powerful than boosted trees.
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Table 4.9: Performance Evaluation of Rank System (%)

Approach Exact Match Naive Approach Learning to Rank

XGBoost Linear-layer Multi-layer

Type4Pyre 52.78 49.23 40.33 42.50 43.10
Type4Pyright 56.40 52.01 41.30 40.93 42.01

Type4SA 63.30 60.34 51.01 54.33 55.20

4.4 RQ3: What is the scalability and time efficiency of this
approach?

In this research question, we would like to examine the practicality and time efficiency of
our approaches. Specifically, we want to compare the inference time per type slot among
our approaches and baselines. Figure 4.6 below displays the results, which include Pyre and
Pyright, Type4Py, TypeT5, and our hybrid approaches.

Figure 4.6: Time Efficiency among Approaches

For each type slot, Pyre and Pyright static analysis approach take about 2 seconds, al-
though this also includes the time needed to connect to and initiate the Pyre or Pyright server
and extract the type from the stub file. Another baseline, type4py, is the most time-efficient
approach, taking approximately 0.20 seconds per type slot. Our hybrid approach, Type4SA

which combines static analysis and type4py, takes less than 3 seconds per type slot, account-
ing for the time taken to wait for the multiprocessors of static analysis and ML approach.
However, the other baseline, the hybrid approach typeT5, takes significantly longer, ap-
proximately 4 seconds per type slot, because it first extracts the callers-callees graph in the
project base. It can be inferred that utilizing static analysis to supplement machine learning
predictions rather than extracting information for it not only leads to improved results but
also saves time in practical applications.
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Chapter 5

Conclusions and Future Work

We will summarize the contributions of our work in this chapter. Following this summary,
we will consider the findings and reach conclusions. A few suggestions for future develop-
ment will then be explored.

5.1 Contributions

In this thesis and our research, we suggest a hybrid strategy that uses static analysis tools to
augment the classic ML approach. We experimented with two static analysis tools, Pyre and
Pyright, and developed algorithms to employ these tools for type inference. A more recent
version of the ManyTypes4Py dataset is also gathered, and Type4Py’s training procedure
is modified to make it fit a larger dataset. Finally, we test if it is possible to create an
order among the outcomes of static analysis and machine learning using the learning-to-
rank approach. We experiment with several approaches to address the learning-to-rank
problem with the goal of incorporating the rank issue into type inference. Our contributions
can be summarized as follows:

• Proved complementary between static analysis and the ML approach

• Utilized static analysis tools to perform type inference

• Created an improved dataset and implemented enhancements to the Type4py model

• Evaluated the effectiveness of Learning to Rank in the type inference ordering system

5.2 Conclusions

Based on our research experiments and the evaluation, we can draw the following conclu-
sions:

1) The combination of static analysis and the ML approach proved to be comple-
mentary: By leveraging static analysis tools for type inference and incorporating
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the Type4py model, the research demonstrated the effectiveness of integrating these
two methodologies.

2) Learning to Rank is not as effective as the naive approach in the type inference rank
system: The results obtained indicate that the naive approach, which does not involve
complex machine learning techniques, outperforms the learning to rank method in
terms of MRR. It highlights the importance of carefully considering the applicability
and suitability of machine learning methods in different problem domains.

5.3 Future work
Future work can involve exploring the potential of other static analysis tools, such as Mypy,
Scapel, and others, to enhance the type inference ability. While the research experiment
focused on Pyre and Pyright, there are a number of other static analysis tools that may be
looked into to further increase the efficacy and accuracy of type inference.

Additionally, the current research primarily considered the pointwise approach in learn-
ing to rank. Future investigations could explore the pairwise and listwise approaches in
order to assess their effectiveness in the context of type inference rank systems. Imple-
menting and comparing these different approaches can provide valuable insights into the
optimal learning-to-rank strategy for improving type inference order systems. Another area
for further investigation is broadening the evaluation to incorporate various codebases, pro-
gramming languages, and software domains. This broader analysis would provide a more
comprehensive understanding of the strengths and weaknesses of Learning to Rank in vari-
ous contexts.

Future research can deepen our understanding of the complimentary nature of static
analysis and ML in type inference by taking into account more static analysis tools, inves-
tigating various learning-to-rank methodologies, and expanding the evaluation to diverse
codebases and programming languages. These initiatives will help create more efficient
and flexible type inference systems for a variety of software applications.
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