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ABSTRACT

Existing data acquisition literature for human behavior research
provides wired solutions, mainly for controlled laboratory setups.
In uncontrolled free-standing conversation settings, where partici-
pants are free to walk around, these solutions are unsuitable. While
wireless solutions are employed in the broadcasting industry, they
can be prohibitively expensive. In this work, we propose a modular
and cost-effective wireless approach for synchronized multisensor
data acquisition of social human behavior. Our core idea involves
a cost-accuracy trade-off by using Network Time Protocol (NTP)
as a source reference for all sensors. While commonly used as a
reference in ubiquitous computing, NTP is widely considered to be
insufficiently accurate as a reference for video applications, where
Precision Time Protocol (PTP) or Global Positioning System (GPS)
based references are preferred. We argue and show, however, that
the latency introduced by using NTP as a source reference is ade-
quate for human behavior research, and the subsequent cost and
modularity benefits are a desirable trade-off for applications in
this domain. We also describe one instantiation of the approach
deployed in a real-world experiment to demonstrate the practicality
of our setup in-the-wild.
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Figure 1: A typical in-the-wild social interaction setting;
adapted from the MatchNMingle Dataset [12]

1 INTRODUCTION

Human social behavior is a dynamic multimodal phenomenon; we
express ourselves visually, vocally, and verbally. A significant focus
of research here is the complex interpersonal dynamics between
interaction partners, such as turn-taking in conversations [24, 28],
or synchrony between participants [16]. An essential characteristic
of these phenomena is their highly dynamic and multimodal nature;
they evolve on short time-scales, requiring precise synchronization
of multimodal and sometimes also multisensor data streams.

Historically, human social behavior for automated analysis has
been captured in controlled lab settings. As multimodal data analy-
sis has become more prevalent, recorded sensors would be physi-
cally connected to relay timing information to ensure packet syn-
chronization [13, 29, 44]. Concurrently, the ubiquitous comput-
ing community were developing approaches using wearable sen-
sors that allowed for more pervasive sensing of social behaviors
[15, 35, 47] while loosening strong requirements for data synchro-
nization. As the trend moved towards more in-the-wild behav-
ior analysis, multimedia researchers turned to collecting data in
more uncontrolled settings that better matched real-world scenar-
ios. Here, multiple visual and wearable sensing sources from both
modalities have been combined [9, 12]. Figure 1 depicts a typical
in-the-wild social interaction. In such prior works however, frame
level synchronization requirements were circumvented by design-
ing automated analysis approaches that smoothed behavioral data
over broader time intervals on the order of a few seconds. On the
other hand, the ubiquitous computing approach has somewhat
waived the need for more robust synchronization by adapting to
problems that are able to take the wearable sensor data at face value
and aggregate over sufficiently long time periods. This makes fine
grained timing errors on the shorter scale of minutes or seconds
less relevant [35].

In this paper, we argue that developing any approach to analyze
the fine temporal dynamics of multi-modal multi-sensor behavioral
data requires us to ensure a maximum temporal latency at the data
collection stage of 40 ms (see Sec. 3.3 for further discussion). This
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Figure 2: Basic types of desynchronization

requires us to bridge two traditions related to synchronization from
the multimedia and ubiquitous computing domain which utilize
different timing protocols and formats. Modalities such as audio and
video, which have been used to analyze human behaviour analagous
to human perception have used protocols such as PTP or GPS based
reference time which enables sub-frame level synchronization using
specialized hardware. Data here is often timestamped in the frame-
based SMPTE timecode format such as linear time code (LTC)-
HH:MM:SS:FF [8]. Meanwhile, in the ubiquitous computing domain,
sensing devices have been born out of a tradition of wireless and
distributed computing where each sensing device is itself also a
microcomputer and as such has used NTP [33], relying on local
UNIX system time to timestamp data. While it is widely understood
that PTP or GPS based timing affords superior accuracy compared
to NTP, setting up a multimodal multisensor system using the
specialized hardware is prohibitively expensive.

In summary, we seek to answer the following question: how
can we design a modular, cost-effective, distributed multi-sensor
data acquisition setup for synchronized capture of social human
behaviour in-the-wild? Concretely, our contributions are as follows:

e We propose and deploy a novel distributed data acquisition
architecture built upon commercially available off-the-shelf
components to wirelessly synchronize cameras (video) and
wearable sensors (audio, inertial motion data, proximity) in-
the-wild. Our core idea involves utilizing the Network Time
Protocol (NTP) [34] as a common reference for all modalities,
a choice contrary to conventional use in broadcasting setups.
We show that the reduced accuracy of NTP in favor of sig-
nificant cost and modularity benefits is a desirable trade-off
for achieving crossmodal synchronization in data recording
for human behavior research applications.

We support our argument in the rest of this work as follows.
In Section 2 we review data recording or post-processing tech-
niques used in other human behavior research and discuss the
trade-offs involved. In Section 3 we establish acceptable latency
tolerances for our application domain and propose our architecture,
also describing a real-world instantiation of our system. We provide
experiments to quantify the latency involved in our setup in Section
4 before discussing cost versus latency considerations in Section 5.
Finally, we summarize our findings in Section 6.

2 RELATED WORK

Synchronization Issues. We begin by first concretely describing
the synchronization issues we propose to solve. We break these
down into two basic types—constant and variable offset between
data packets. Figure 2 depicts these issues for two data streams S1
and S2 over a world clock time axis ¢.
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In the first case, all packets in S2 are offset from the correspond-
ing packets in S1 by a uniform constant offset. This could arise
because the triggers for recording the two streams are delayed, or
because the internal clocks of the devices don’t match. In the second
case, while some packets are aligned in both streams, other packets
are out of sync by a variable offset, and are said to have drifted. One
such common scenario involves devices recording with variable
framerate or dropped packets; for instance, while recording a long
session with a standard webcam with autofocus or variable framer-
ate, the video often drifts with respect to the audio over time. In
practice, both these issues occur simultaneously, and information
about the world clock is required to correct for these issues directly.

Event-based Approaches and Post Processing. Many widely
used human behavior datasets attempt to fix the constant offset
issues in post-processing by maximizing similarity scores around a
manually identified common event in data streams. Traditionally,
such an event included a balloon pop, a clap or the turning off of
lights to get a common dark frame across cameras. More recently,
Alameda-Pineda et al. use infra-red detections in cameras and wear-
able sensors to compute the optimal shift according to a similarity
score [9]. Ringeval et al. use a common speech event such as the rise
of a plosive to manually align high-quality audio from an external
microphone to the low-quality audio from a webcam before comput-
ing the inter-correlation score around the located event [37]. While
this approach helps with fixing mismatches around a single man-
ually identified event, they are insufficient for fixing streams that
have drifted over time or have variable offset (Alameda-Pineda et al.
work with a no-drift assumption). More sophisticated approaches
attempt to automatically identify events for synchronizing larger
parts of the streams [10]. In contrast, we propose a modular ap-
proach that synchronizes the devices at data acquisition, requiring
minimal—if any—post processing for synchronization.

Downstream Tasks. In addition to fixing synchronization is-
sues in post-processing, a common approach is to mitigate their
effect on downstream tasks. The core idea is to compute features
over a window [21, 31, 36, 38]. The size of this window is chosen
to be larger than the duration by which the modalities are assumed
to be out of synchronization. The features are computed using
summary statistics, or by passing the individual features through a
recurrent neural network and using the last hidden state as a repre-
sentation of the window. This choice of window size, and whether
this has a detrimental effect on the study of the phenomenon of
interest can be contextualized by the discussion in Section 3.3.

Ubiquitous Computing Approaches. The analysis of social
interactions has also been of interest to the ubiquitous comput-
ing community. Early work involved the development of custom
wearable sensors like the UbER-Badge [26] to analyze interest and
affiliation in conference attendees [22]. Period timestamps in these
setups were relayed across a Radio Frequency (RF) network every
15 minutes. Cattuto et al. analyzed interactions in crowded social
settings using custom RFID (Radio Frequency Identification) tags
[14]. Packets from the tags were relayed to radio receivers that
passed it to a central server for timestamping and storage. Their
approach does not record timestamp at tag acquisition, and does
not account for potential delays in transmission. For modeling
longitudinal social interaction networks in-the-wild, [47] used per-
sonal digital assistant (PDA) devices, and found the PDAs’ clocks
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Figure 3: Overview of our proposed architecture. The reference time signal originates from the chosen NTP server and propa-
gates to the subnetworks of wearable sensors and cameras.

to be "shockingly unreliable", drifting up to 5 minutes across three where synchronization is achieved by plugging the output of the
weeks. Matic et al. infer interpersonal distance and relative orienta- motion capture system to a robot in a human-robot interaction
tion averaged over 10 s windows from up to five mobile phones in study [19], or in post-processing by performing an optimization
interactions lasting up to 15 minutes [31]. They state the mobile over or manually annotated markers in a subset of frames [40].
phones had synchronized clocks without specifying how they were These solutions are hard to deploy within in-the-wild settings over
synchronized. large physical areas since they are mainly wired solutions. They
Synchronization at Acquisition. A significantly more accu- entail physically running trigger lines to the sensors of connecting
rate, albeit expensive, approach compared to those discussed in- the sensors or multiple PCs to a central audio interface. Compara-
volves performing synchronization at data acquisition. This is tively, our solution affords for seamless decentralized addition of
achieved at the hardware level using either software or hardware sensors to the system as long as those sensors are synchronizing
triggers. Early approaches involved connecting low-cost cameras to clocks to the common NTP reference.
standard computers over an Ethernet network and using software The closest work matching the scale and design requirements of
triggers to drive the recording [13, 44]. While the cost of sensors in our interaction setup is the MatchNMingle dataset [12], involving
these setups is low, the cost of computers remains. Timing control speed-dates followed by a mingling event. Their setup for the min-
can be improved by using a common clock and physical hardware gling event involves nine overhead GoPro cameras and wearable
trigger lines into the cameras in an array [45], although this only sensors on about 30 participants for each of three days. GoPro cam-
works for the video modality. eras in their setup are triggered using an infrared remote which
Lichtenauer et al. significantly improved over previous works might induce trigger delays, and no explicit timecode synchroniza-
by proposing a system for multimodal data capture that centralizes tion is done between the cameras which each record local time. The
the synchronization task by physically connecting the sensors to a wearable sensors are synchronized intramodally to a global times-
multi-channel audio interface [29]. This approach was used in the tamp accurate to 1 second [17]. The video data is synchronized
recording of the MAHNOB-HCI datasets [41]. Other approaches manually to the wearable sensors by using a GoPro to visually
have been proposed for setups involving motion-capture systems, record the global timestamp propagating through the wearable
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network displayed on a screen. In contrast, our solution achieves
timecode sync at acquisition at the microsecond level for the camera
network and at the millisecond level across modalities.

To the best of our knowledge, the system we propose here is the
first complete distributed and scalable multi-sensor data capture
solution providing timecode synchronization between modalities
at data acquisition for human behavior research.

3 OUR APPROACH

Our core idea is to propagate a common time reference NTP signal
to end devices (i.e., wearable sensors and cameras) at the time of
data acquisition. Our approach is illustrated in Figure 3. The key
challenge is that different subnetworks employ different timing
information. The cameras use LTC for correct color framing and
clock synchronization; the wearable sensors use the UNIX time
received from the hub. With simply one additional hardware com-
ponent (Plura ELC) combined with our choice of a common NTP
reference, we achieve seamless crossmodal synchronization while
preserving the existing local scheme of timekeeping. Starting from
the origin of our system which is the NTP server, we explain the
trade-offs of using NTP in Section 3.1. We describe a particular real-
world instantiation of our system in Section 3.2, where we provide
implementation details on how to relay time information to the
sensor subnetworks. We contextualize latency measures within the
human behavior research domain in Section 3.3, which frames our
subsequent experimental design.

3.1 NTP as a reference signal

The main consideration of our approach is whether using NTP as
a reference for cameras recording audiovisual data compromises
the latency tolerance margins of the application when compared to
more commonly used higher accuracy references such as PTP and
GPS. Concretely, NTP is a software based protocol. While it uses a
standardized, 64-bit UDP packet that can theoretically achieve pi-
cosecond timing, the latency error for NTP is heavily dependent on
the network and ambient characteristics, and is typically measured
on the order of milliseconds. On the other hand, PTP (specified in
the IEEE 1588 standard) utilizes hardware based timestamping [18]
to improve over NTP latency accuracy. With customized hardware,
the latency error of PTP can be guaranteed to be on the order of mi-
croseconds. Though not as accurate as PTP or GPS-based solutions,
using NTP has three advantages: firstly, ease of setup; synchroniz-
ing the system clock of a device to a local or public NTP server
is straightforward, secondly, modularity; an entire subsystem of
devices can be seamlessly added to the setup and guaranteed to be
synchronized with all other devices if they synchronize to a com-
mon NTP reference, and thirdly, reduced cost; we discuss details in
Section 5. For human behavior research applications, the lowered
precision trade-off in favor of increased modularity of our setup is
preferable, as we further contextualize in Section 3.3.

Specifically, the clock disciplining algorithm at the heart of the
NTP specification states that if left running continuously, an NTP
client on a fast local area network in a home or office environment
can maintain synchronization nominally within one millisecond
[32]. As an implementation detail, practitioners can choose between
a public server such as time.google.com, or an isolated local NTP
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server at the source. Using a local server avoids upstream latency
introduced by network congestion. However, using a public server
provides easier setup.

3.2 Real-world implementation

We now describe one implementation of our approach. This setup
was deployed to record data from a real-world social event. It in-
volved 48 participants each wearing a sensor around their neck,
in an interaction area of size 12m x 6m, captured by elevated and
overhead cameras. Our setup included the following sensors:

e 13 GoPro Hero 7 Black video cameras (60fps, 1080p, Linear,
NTSC) with audio (48 kHz); commercially available [3].

e 48 custom wearable sensors adapted from the open source
Rhythm Badges [27]; each sensor includes an inertial mea-
surement unit (IMU), mono microphone (1.2 kHz), and a
Bluetooth proximity sensor.

The core components, custom hardware, and a working setup
of our solution is depicted in Figure 4. Note that in keeping with
privacy regulations, the wearable sensors record audio at frequen-
cies only sufficient for detecting voice activity rather than verbal
content. This makes the already subjective task of identifying se-
mantic event boundaries in-the-wild even harder. Consequently,
for the post-hoc evaluation of our system and comparison against
widely used approaches in the domain that rely on such events for
synchronization, we take a more principled approach to defining
and sampling stimulus events, as we discuss in Section 4. While
the number of devices we report here were used in our real-world
deployment, it is not the system limit, as we discuss below. Our
system is modular and scalable to larger number of devices with
additional hubs and base stations (indicated in Figure 3).

Relaying time to cameras. We explain the bottom branch in
Figure 3 regarding the camera network and its upstream compo-
nents in this section. A laptop that receives the time reference from
a local NTP server (same as the one used by the Bluetooth hub)
shares the network time through a Power-Over-Ethernet injector
(Plura 30W Single Port) with an Ethernet-to-LTC Converter (Plura
ELC) [4]. The LTC signal that is converted from NTP is sent to
a base station unit by Timecode Systems called :pulse [6], which
allows for control, synchronization and metadata exchange for all
devices within the camera network. It serves as the master in the
localized master-slave radio frequency (RF) network, which shares
its timecode with slave devices called Syncbac PRO [7], also man-
ufactured by Timecode Systems. Each Syncbac PRO is physically
tethered to a GoPro camera so that the accurate shared timecode is
embedded within the MP4 files in each camera. In practice, once
the timecode information of each video is available, any common
video editing software can be used to align the video streams auto-
matically for playback. An important consideration of our system
design is to start the data acquisition remotely and wirelessly, since
cameras are often mounted on the ceiling or other inaccessible
places. The BLINK Hub app is used to remotely control (e.g. start,
stop, etc), monitor and set features of all units within the localized
RF network, which includes :pulse and Syncbac PRO. The BLINK
Hub app can control up to 64 devices over a range of 500 m line of
sight. Each :pulse unit can theoretically connect to an unlimited
number of Syncbac PRO slaves within the same RF network over a
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(a) Core components in our setup depicted only with custom cables; (b) Full working setup of our data acquisition system, here

the connectors are aligned with the corresponding sockets.

shown with four cameras and five wearable sensors.

Figure 4: Real-world implementation of our proposed approach. Our working setup in Figure 4b is shown here recording
audio-visual events for evaluating crossmodal synchronization, as discussed in Section 4.2.

range of 200 m line of sight. Both the RF network and the BLINK
hub app control could have more network latency with increasing
number of connections on the specific RF channel. The accuracy of
the RF network synchronization is zero parts per million when the
slaves (Syncbac PROs) are locked to the master (:pulse) [6, 7].

Note that our use of the ELC is different from its typical appli-
cation of providing a signal for displaying the reference from a
dedicated master reference generator. The novelty of our system
stems from not requiring a typical GPS master reference generator
at the source to phase lock to. Since our approach uses the local
NTP server as the main reference itself, our use of the ELC allows
for a simple method for video reference generation. Through exper-
iments in Section 4 we show that our setup is appropriate for the
domain. With the addition of a single component (any hardware
or software NTP-LTC converter, the ELC in our setup), we wire-
lessly achieve crossmodal synchronization between the camera and
wearables network compared to previous works as well as the more
expensive GPS-based setup described in Section 4. Specifically, we
are able to wirelessly embed the timecode generated from the same
reference used for other subnetworks into the video files, while re-
lying on commercial products (with only custom connecting cables)
for easier reproduction.

Relaying time to wearable sensors. We explain the top branch
in Figure 3 regarding the wearable sensors network in this section.
Note that our system design is agnostic to the choice of the type of
wearable sensors. Our choice of wearable sensors for this specific
instantiation is motivated by the open source platform [27] for
its accessibility and reproducibility, but could be replaced by any
other subnetwork of sensors—wearable or otherwise—that supports
NTP time synchronization. In our system, a hub node (in form of
a laptop) receives the NTP time reference and shares it with the
wearable sensors. The hub connects to the sensors sequentially
in order of their MAC addresses for a Bluetooth handshake that
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transmits the UNIX time from the hub to the sensor. Each sensor
then updates its system time to this timestamp. The frequency of
establishing connection (i.e., synchronization messages) is a user
defined parameter, and it has been shown that any interval between
0 and 600 seconds would be appropriate [25]. Since the hub is not
maintaining a connection with all sensors at all times, there is no
limit on the number of sensors that the hub can connect to. In
practice, the maximum number of sensors associated to the hub is
dictated by the saturation of wireless channel (i.e., when collisions
occur). The mean average error in synchronization within the sen-
sor network has been shown to be 5 ms over 9.5 hours of recording
[25]. While intramodal synchronization within this subnetwork
can be improved through various methods such as tracking the
timestamps at each timestamp reception and parallelization of com-
munication between the hub and the sensors, such improvements
are outside the scope of our contribution.

We thereby achieve multisensor intramodal synchronization,
multicamera intramodal synchronization, as well as multisensor-
multicamera crossmodal synchronization. To summarize, each wear-
able is timestamped with the UNIX system time of the wearable
network hub. The hub is set to the time of the local NTP server also
providing time reference to the cameras, which are then recorded in
terms of LTC. In post-processing, we convert the UNIX time to UTC
time (HH:MM:SS:mS) to match samples to video frames denoted
by LTC timecode (HH:MM:SS:FF). Note that these post-processing
steps are insignificant compared to ones taken in manual alignment.

3.3 Latency measures in social literature

To contextualize our assessment of tolerable latency margins, we
review representative literature from social psychology that alludes
to latency measures across different behavioral phenomena.
Measuring human response time (between stimulus and reaction)
is an intuitive way to quantify behavior latencies. Early works have
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found that the response time spans between 120 ms and 300 ms
[30], with a specific example finding a 157 ms latency in speech
perception [20]. Related to speech behavior is the more complicated
turn-taking mechanism in conversations that involves pauses, gaps
and overlaps. The time frame of consideration in identifying gaps
between speakers. (speaker change) is approximately 200 ms, which
is shown to be suitable for the task [24]. Studies in synchrony,
mimicry, entrainment, and other higher-level social phenomena
usually consider alarger window size. Levitan et al. have shown that
a window size of 200-1000 ms works well in practice for studying
speech backchannels. An episode of facial and body motor mimicry
could be between 40 ms and 4 s [11, 42].

Apart from surveying the size of time frame used in various
studies, an important measure of time offset is the latency in hu-
man perception of audiovisual data , since many human behavior
datasets are manually annotated. Humans are shown to tolerate
an audio lag of 200 ms or a video lag of 45 ms [23]. A successful
automated method of data synchronization should perform on par
with, if not better than human perception. It is worth noting that
humans cannot annotate sensor data such as acceleration, in which
case an automated synchronization solution is needed if aligning
such data is required.

We deduce that offsets within a window size and/or range of
human perception error, are generally tolerable. Based on the stud-
ies listed above, we consider a time offset to be acceptable if it
is between 40 ms (e.g., facial analysis) and 1000 ms (e.g., entrain-
ment). Though smaller offsets between different data streams can be
achieved, the incremental gain becomes less relevant, especially for
common phenomena of interest as discussed above. Nevertheless,
our setup—in which we achieve a median video latency of 414 ys
and wearable data latency of 5 ms over 9.5 hours [25]—is also ap-
plicable to data collection situations where fine details like faces
are important such as egocentric vision setups, or those involving
physiological sensors.

4 EXPERIMENTS

The primary metric for synchronization accuracy is timing latency.
A principled evaluation of our system would require characterizing
latency at the local connection links in our proposed architecture,
as well as final latency in the recorded data streams.

A common method for crossmodal synchronization used by
human behavior datasets is the aligning of semantic events [9, 37].
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Figure 6: Raw audio LTC signals generated by the Plura ELC
and :pulse modules. The window includes the encoding of
an LTC sync word (0011111111111101) followed by the bits
0001000 from the next frame. The lower signal here leads the
upper signal by 62 audio samples, or less than 1 bit of data.

As discussed in Section 3.2, given the subjective nature of start
and end boundaries of semantic social events and low frequency
audio recordings from wearables for privacy, we employ a more
principled approach of defining and sampling stimulus ground-
truth audio-visual events for our experiment presented in Section
4.2. Note that while the ground truth events are manually generated
for control, the synchronization setup exactly matches the one we
deployed in our in-the-wild experiment.

Our core crossmodal approach introduces one point of latency
through the use of an NTP-LTC converter to share the common
NTP reference with the camera subnetwork. Since limited hardware
connections prevent recording the output LTC streams during real-
world deployment, we first present a pre-experiment to measure
latency at the isolated connection in Section 4.1. Latency measures
in our individual sensor subnetworks are depicted in Figure 3 and
already discussed in Section 3.2.

With these time drifts quantified, we demonstrate that our ap-
proach is more robust and suitable for video, audio, and wearable
sensor data alignment for the purpose of studying human behavior
compared to previous approaches. Code and data for the decoding
and analysis in these experiments are publicly available.!

4.1 Timecode latency between NTP-LTC
converter and camera network master

We use the Plura Ethernet to LTC converter (ELC) for passing an
LTC signal generated from the common NTP reference into the
:pulse base station, as a timing reference for the camera network. In
this experiment we evaluate the latency between two LTC signals:
the LTC output of Plura ELC and the LTC output of :pulse.
Encoding. LTC is an encoding of timecode data within an audio
signal. The timecode data is in the hour:minute:second:frame format.
The data bits in an LTC signal are encoded using the biphase mark
code (BMC) as depicted in Figure 5: a 0 bit has a single zero-one
transition at the start of the bit period; a 1 bit has two transitions,

1Code & data are available at https://github.com/TUDelft-SPC-Lab/sync-experiments
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at the beginning and middle of the bit period. Each LTC frame is
made up of 80 bits of data, including a 16 bits long ’sync word’
0011111111111101 denoting the end of a frame. Consequently, at
a framerate of 30 frames/sec, the LTC timecode has a maximum
frequency of 2400 Hz (binary ones). In our experiments we measure
the latency between the two LTC signals at the smallest possible
time resolution; we consequently record the audio signals at the
highest possible sampling frequency of 192 kHz, allowing for the
smallest latency resolution of about 5 microseconds. Note that here
theoretically, 80 audio samples correspond to 1 bit of data, and 80
bits correspond to 1 LTC frame.

Test setup and data. We passed the outputs of the Plura ELC
(RJ45 jack) and the :pulse (BNC socket) to a Focusrite Scarlett 2i2
audio interface [2] through custom cables. Figure 7 depicts a part of
our setup for recording the signals from the two devices. The Plura
ELC was configured to use the public NTP server time.google.com
as reference and generate an LTC signal at 30 frames/second. An
isolated private NTP server can also be used upstream as mentioned,
but that does not affect the outcome of the latency between the ELC
and the :pulse we are studying here. The LTC signals were recorded
using the application Audacity. We recorded for a total duration
of 30 minutes over six sessions of five minutes each, for a total of
54000 LTC frames. Figure 6 depicts a window from our recorded
audio signals at the end of a frame. The signals here represent the
real-world noisy LTC signals encoded using the biphase mark code
depicted in Figure 5.

Experiments. We measure synchronization at two levels: LTC
frame level, and audio sample level. We use demodulation to refer to
the conversion of the audio signal to binary data, and decoding to the
conversion of the binarized data into the hour:minute:second:frame
format. The recorded audio signals have imperfect leading and
falling edges along with noise, with optima corresponding to a
single data bit period being between 77-83 samples apart instead of
the theoretical 80 audio samples. During demodulation, we begin by
finding the local optima within a window size of six samples around
the 80th sample following an optima. This new optima becomes the
reference for the subsequent clock period. The demodulation was
verified to match the original timecode presented in the recordings
on the devices. We conducted a synchronization test using the
30 minutes of recording from six sessions where the binarized
stream following the first sync word was decoded into timecode

Figure 7: Hardware setup with custom cables for recording
LTC signals from the Plura ELC and the :pulse base station.
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for checking correspondence at the frame level. We found that the
data was indeed synchronized at the frame level for all the frames.
With frame-level synchronization verified, we measured the world
clock latency between the signals at the sub-frame level. We do
this by finding the shift in number of audio samples to achieve
maximum cross-correlation between the two audio signals. This
lag was found to be [79, 80, 80, 80, -43, 78] samples for our six
recordings, yielding a mean latency of 307.29 microseconds (59
samples) and a median latency of 414 microseconds (79.5 samples).
A positive lag implies that the :pulse signal leads the Plura ELC
while a negative one implies the opposite. One way to interpret
this is that the median latency is approximately 1 bit of data, which
corresponds to 1/80th of an LTC frame. We conclude that this
measure of latency is an order of magnitude lower than our overall
acceptable latency tolerance of about 40 ms for the application
domain as established in Section 3.3.

4.2 Evaluating crossmodal synchronization

Assuming that the GoPro audio and video are synchronized, we
compare the audio recorded by the wearable sensors with the audio
recorded by the GoPros in order to evaluate crossmodal synchro-
nization of the wearable sensors and cameras of our system. We
defined 10 stimulus audio-visual events that occurred randomly
based on interval length (from 1-5 seconds) sampled from a Poisson
distribution. An event is comprised of a visual color change accom-
panied by an audio beep. These events can be seen as the ground
truth events in which the duration between each event is known.
Figure 4b depicts our full working setup for recording these events.

The experiment considers 4 wearable sensor sensors and 4 Go-
Pro cameras simultaneously capturing the generated audiovisual
events played over approximately one minute. Figure 8 is a repre-
sentative example showing that the audio events from one of the
wearable sensors and one of the GoPro cameras appear to be in
alignment. To further quantify the time offsets between different
audio streams, we determine the number of samples between the
end of an audio event and the onset of the subsequent event by
thresholding the amplitude. Since the sampling frequencies of the
wearable sensors (20 kHz) and the GoPros (48 kHz) are known, the
number of samples is converted to time duration in seconds. We
compare these empirically found durations from the recordings to
ground truth durations between events .

We found that the average time offset for all wearable sensors
and all GoPro recordings is 10.8+5.6 ms and 1.9+2.0 ms, respectively,
when compared to the ground truth durations. Therefore, the max-
imum offset on average between wearable sensor and GoPro audio
signals is the sum of these offsets, resulting in approximately 13 ms,
for a conservative estimation. In light of the latency in upstream
links which are orders of magnitude smaller than what we observe
here in the end devices, we offer some hypotheses on the possible
sources of errors. Firstly, there is uncertainty in the generation and
transmission of synchronization messages between the hub and
the wearable sensors, ranging from a few milliseconds to several
seconds, depending on connection interval settings [1, 25]. The
time offset between the hub and the wearable sensors is inversely
proportional to the frequency of connection. While it is possible to
address this random time offset in Bluetooth connections via the
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Figure 8: Representative example showing the aligned audio
events in one of the wearable sensors and one of the GoPros.

Media Access Control (MAC) layer of the communication interface,
the current approach is optimized towards energy efficiency [25].
Other possible reasons include varied quality of the wearable sen-
sors and GoPro cameras resulting in discrepancy in sensor behavior
and sensitivity, and offsets between the playback of the audiovisual
events on the laptop (in Figure 4b) and the actual recording by the
sensors. Despite the 13 ms offset across the camera and wearable
sensor modalities, we highlight that it is still lower than both, the
lower bound of 40 ms described in Section 3.3 and the human per-
ception tolerance limit of audiovisual skew which is + 80 ms [43].
In these purely perceptual tests, we could not hear any audible dif-
ferences when the GoPro audio and the wearable sensor audio are
played simultaneously. This shows that our approach is at least as
good as, if not better than manual alignment of multimodal signals
in the context of this experiment.

5 COST VERSUS LATENCY CONSIDERATIONS

Apart from providing a seamless interface for synchronizing differ-
ent subnetworks of sensors, our choice of leveraging NTP as the
common reference is also motivated by cost—the only component
we have introduced to achieve crossmodal synchronization is the
NTP to LTC converter. We have also shown that the reduced accu-
racy of our choice is well within tolerable latencies between sensors
for our application domain. But what if cost is not a constraint?

For setups enjoying higher budgets, we recommend using syn-
chronization references from highly-accurate GPS satellites. These
satellites are all synchronized to the same time using stabilized
atomic clock hardware and known locations due to their medium
earth orbits. As a result, GPS receivers can listen to multiple broad-
cast sources and use trilateration (somewhat similar to triangu-
lation) to determine their own position and time deviation. GPS
modules can consequently perform time-synchronization with a
resolution of 100 nanoseconds or smaller [39].

Through the use of satellites, a GPS based solution largely miti-
gates issues like unquantifiable delays in network communications
or a lack of local operating system resources commonly plaguing
the use of the protocols described in Section 3.1. Additionally, GPS
modules can be used to generate NTP and PTP signals [46] for
downstream subnetworks. One potential downside of using GPS
references is that the GPS antenna needs to be installed outdoors
under visible sky to obtain the GPS reference, which might pose
logistical challenges depending on the physical setting of the inter-
actions being studied.

Since we use the Plura ELC in our setup, for comparison we
provide an example GPS controlled setup using components from
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Plura. This involves modules from their Rubidium Series [5]. A
GPS receiver such as the RUB G16X would obtain the GPS signal
and pass it as reference to the RUB GT master timecode generator
module to produce an LTC signal. This LTC signal would act as
an external reference for the :pulse base station like in our current
setup. ARUB PM-N module connected to the the GT would serve the
dual purpose of powering the setup and acting as an NTP server to
generate the NTP signal for the hub of the wearable sensor network
similar to our current setup. The entire setup would be housed in
a RUB H1 rack. The GPS setup for crossmodal synchronization is
approximately eight times more expensive than our setup using an
ELC and a POE injector. 2

6 CONCLUSION

In this paper we introduce a novel approach for synchronized and
wireless acquisition of human behavior data across video, audio, and
wearable sensor data modalities, captured in highly dynamic in-the-
wild settings. The key challenge of synchronization in these settings
is to propagate a common time reference signal to end devices such
as cameras and wearable sensors in a wireless and scalable manner
without compounding network delays. Another challenge is that
different types of sensors rely on different types of timing informa-
tion. Existing solutions in this space are either wired solutions, or
achieve limited synchronization in post-processing, making them
less suitable for our scenario involving a large number of people
free to move in a large physical area. Our novel solution uses a
common NTP reference signal for both the camera and wearable
sensors modalities; conventionally NTP is superceded by more ac-
curate reference signals for video. Through empirical experiments,
we show that the median time latency introduced by our choice of
using NTP is 414 s for the video modality. The intramodal latency
of our wearable sensor network built by extending an open plat-
form is 5 ms over 9.5 hours [25]. The overall crossmodal latency of
our setup is approximately 13 ms at worst based on an events-based
experiment. We contextualized our findings using latency measures
from representative social behaviour literature, and find that our
setup performs well within a tolerable latency margin of 40 ms for
our application domain and human perception. To the best of our
knowledge, this is the first work that quantifies latency tolerances
for a data collection system designed for collecting human behavior
data, and proposes a distributed architecture built on commercially
available products. Through valid trade-offs, our approach provides
a practical, accurate, cost-effective, time-efficient, and modular so-
lution that is more advantageous than the current state-of-the art
methods/heuristics for highly dynamic social settings.

ACKNOWLEDGMENTS

This research was partially funded by the Netherlands Organization
for Scientific Research (NWO) under the MINGLE project number
639.022.606. We thank Ruud de Jong, Jeroen Bastemeijer, Amelia
Villegas, Paul Scurrell, Thomas Rock, Jiirgen Loh, and Ekin Gedik
for sharing their technical expertise and giving us helpful feedback.

2The GPS setup described currently costs approximately US $5700, while the combined
cost of the ELC and the POE injector is about US $730.



Poster Session B3: Multimedia System and Middleware

& Multimedia Telepresence and Virtual/Augmented Reality

REFERENCES

(1]
(2]

[10]

[11]

[12]

[13]

[14

[15]

[17

(18]

[19]

[20]

[21

[22]

[23]

[24

[25]

[26

[n. d.]. Bluetooth Core Specifications. https://www.bluetooth.com/specifications/
bluetooth-core-specification/.

[n. d.]. Focusrite Scarlett-2i2. https://focusrite.com/en/usb-audio-interface/
scarlett/scarlett-2i2

[n. d.]. Go Pro Hero 7 Black. https://gopro.com/en/nl/shop/cameras/hero7-
black/CHDHX-701-master.html.

[n. d.]. Plura Ethernet to LTC Convertor. https://plurainc.com/wp-content/
uploads/2019/03/eELCmanual.pdf.

[n. d.]. Plura Inc. Rubidium Series. https://www.plurainc.com/solutions/timers/
rubidium-series/

[n. d.]. Timecode Systems mini-basestation. https://www.timecodesystems.
com/wp-content/uploads/2016/08/Pulse-manual-Web-1.1-1.pdf

[n. d.]. Timecode Systems SyncbacPro. https://www.timecodesystems.com/
syncbac-pro/.

2014. ST 12-1:2014 - SMPTE Standard - Time and Control Code. ST 12-1:2014
(2014), 1-41.

Xavier Alameda-Pineda, Jacopo Staiano, Ramanathan Subramanian, Ligia Ba-
trinca, Elisa Ricci, Bruno Lepri, Oswald Lanz, and Nicu Sebe. 2015. Salsa: A novel
dataset for multimodal group behavior analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence 38, 8 (2015), 1707-1720.

David Bannach, Oliver Amft, and Paul Lukowicz. 2009. Automatic event-based
synchronization of multimodal data streams from wearable and ambient sensors.
In European Conference on Smart Sensing and Context. Springer, 135-148.
Sanjay Bilakhia, Stavros Petridis, Anton Nijholt, and Maja Pantic. 2015. The
MAHNOB Mimicry Database: A database of naturalistic human interactions.
Pattern recognition letters 66 (2015), 52—61.

Laura Cabrera-Quiros, Andrew Demetriou, Ekin Gedik, Leander van der Meij, and
Hayley Hung. 2018. The MatchNMingle dataset: a novel multi-sensor resource
for the analysis of social interactions and group dynamics in-the-wild during
free-standing conversations and speed dates. IEEE Transactions on Affective
Computing (2018).

Xun Cao, Yebin Liu, and Qionghai Dai. 2008. A flexible client-driven 3DTV
system for real-time acquisition, transmission, and display of dynamic scenes.
EURASIP Journal on Advances in Signal Processing 2009 (2008), 1-15.

Ciro Cattuto, Wouter Van den Broeck, Alain Barrat, Vittoria Colizza, Jean-
Francois Pinton, and Alessandro Vespignani. 2010. Dynamics of person-to-person
interactions from distributed RFID sensor networks. PloS one 5, 7 (2010).
Tanzeem Choudhury and Alex Pentland. 2003. Sensing and modeling human
networks using the sociometer. In Seventh IEEE International Symposium on
Wearable Computers, 2003. Proceedings. IEEE, 216-222.

Emilie Delaherche, Mohamed Chetouani, Ammar Mahdhaoui, Catherine Saint-
Georges, Sylvie Viaux, and David Cohen. 2012. Interpersonal synchrony: A
survey of evaluation methods across disciplines. IEEE Transactions on Affective
Computing 3, 3 (2012), 349-365.

Matthew Carlson Dobson. 2013. Low-power epidemic communication in wireless
ad hoc networks. Ph.D. Dissertation. Vrije Universiteit.

John Eidson and Kang Lee. 2002. IEEE 1588 standard for a precision clock
synchronization protocol for networked measurement and control systems. In
Sensors for Industry Conference, 2002. 2nd ISA/IEEE, Vol. 10. Ieee.
Evita-Stavroula Fotinea, Eleni Efthimiou, Athanasia-Lida Dimou, Theo Goulas,
Panayotis Karioris, Angelika Peer, Petros Maragos, Costas Tzafestas, Iasonas
Kokkinos, Klaus Hauer, et al. 2014. Data acquisition towards defining a multi-
modal interaction model for human-assistive robot communication. In Interna-
tional Conference on Universal Access in Human-Computer Interaction. Springer,
613-624.

Carol A Fowler, Julie M Brown, Laura Sabadini, and Jeffrey Weihing. 2003. Rapid
access to speech gestures in perception: Evidence from choice and simple re-
sponse time tasks. Journal of memory and language 49, 3 (2003), 396-413.

Ekin Gedik and Hayley Hung. 2018. Detecting conversing groups using social
dynamics from wearable acceleration: Group size awareness. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 4 (2018),
1-24.

Jonathan Gips and Alex Pentland. 2006. Mapping human networks. In Fourth An-
nual IEEE International Conference on Pervasive Computing and Communications
(PERCOM’06). TEEE, 10-pp.

Ken W Grant, Virginie van Wassenhove, and David Poeppel. 2003. Discrimination
of auditory-visual synchrony. In AVSP 2003-International Conference on Audio-
Visual Speech Processing.

Mattias Heldner and Jens Edlund. 2010. Pauses, gaps and overlaps in conversa-
tions. Journal of Phonetics 38, 4 (2010), 555-568.

Michael Hopfengaertner. 2018. An open-source sensor platform for analysis of
group dynamics. arXiv preprint arXiv:1901.04977 (2018).

Mathew Laibowitz, Jonathan Gips, R Aylward, Alex Pentland, and Joseph A
Paradiso. 2006. A sensor network for social dynamics. In 2006 5th International
Conference on Information Processing in Sensor Networks. IEEE, 483-491.

MM 20, October 12-16, 2020, Seattle, WA, USA

Oren Lederman, Dan Calacci, Angus MacMullen, Daniel C Fehder, Fiona E Murray,
and Alex’Sandy’ Pentland. 2017. Open Badges: A low-cost toolkit for measuring
team communication and dynamics. arXiv preprint arXiv:1710.01842 (2017).
Rivka Levitan, Agustin Gravano, and Julia Hirschberg. 2011. Entrainment in
speech preceding backchannels. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies: Short
Papers-Volume 2. Association for Computational Linguistics, 113-117.

Jeroen Lichtenauer, Jie Shen, Michel Valstar, and Maja Pantic. 2011. Cost-effective
solution to synchronised audio-visual data capture using multiple sensors. Image
and Vision Computing 29, 10 (2011), 666—-680.

R Duncan Luce et al. 1986. Response times: Their role in inferring elementary
mental organization. Number 8. Oxford University Press on Demand.
Aleksandar Matic, Venet Osmani, and Oscar Mayora-Ibarra. 2012. Analysis of
social interactions through mobile phones. Mobile Networks and Applications 17,
6 (2012), 808-819.

David Mills. 2014. Clock Discipline Algorithm. https://www.eecis.udel.edu/
~mills/ntp/html/discipline htm]

David Mills, Jim Martin, Jack Burbank, and William Kasch. 2010. Network time
protocol version 4: Protocol and algorithms specification. (2010).

David L Mills. 1991. Internet time synchronization: the network time protocol.
IEEE Transactions on communications 39, 10 (1991), 1482-1493.

Daniel Olguin Olguin, Benjamin N Waber, Taemie Kim, Akshay Mohan, Koji Ara,
and Alex Pentland. 2008. Sensible organizations: Technology and methodology for
automatically measuring organizational behavior. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 39, 1 (2008), 43-55.

Chirag Raman and Hayley Hung. 2019. Towards automatic estimation of con-
versation floors within F-formations. In 2019 8th International Conference on
Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW).
IEEE, 175-181.

F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne. 2013. Introducing the
RECOLA multimodal corpus of remote collaborative and affective interactions.
In 2013 10th IEEE International Conference and Workshops on Automatic Face and
Gesture Recognition (FG). 1-8.

Alessio Rosatelli, Ekin Gedik, and Hayley Hung. 2019. Detecting F-formations &
Roles in Crowded Social Scenes with Wearables: Combining Proxemics & Dy-
namics using LSTMs. In 2019 8th International Conference on Affective Computing
and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 147-153.
Edward Sazonov, Vidya Krishnamurthy, and Robert Schilling. 2010. Wireless
intelligent sensor and actuator network-a scalable platform for time-synchronous
applications of structural health monitoring. Structural Health Monitoring 9, 5
(2010), 465-476.

Leonid Sigal, Alexandru O Balan, and Michael J Black. 2010. Humaneva: Synchro-
nized video and motion capture dataset and baseline algorithm for evaluation of
articulated human motion. International journal of computer vision 87, 1-2 (2010),
4.

M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic. 2012. A Multimodal Database
for Affect Recognition and Implicit Tagging. IEEE Transactions on Affective
Computing 3, 1 (2012), 42-55.

Marianne Sonnby-Borgstrom, Peter Jénsson, and Owe Svensson. 2003. Emo-
tional empathy as related to mimicry reactions at different levels of information
processing. Journal of Nonverbal behavior 27, 1 (2003), 3-23.

Ralf Steinmetz. 1996. Human perception of jitter and media synchronization.
IEEE Journal on selected Areas in Communications 14, 1 (1996), 61-72.

Tomas Svoboda, Hanspeter Hug, and Luc Van Gool. 2002. ViRoom—low cost syn-
chronized multicamera system and its self-calibration. In Joint Pattern Recognition
Symposium. Springer, 515-522.

S. Tan, M. Zhang, W. Wang, and W. Xu. 2007. AHA: An Easily Extendible High-
Resolution Camera Array. In Second Workshop on Digital Media and its Application
in Museum Heritages (DMAMH 2007). 319-323.

Peter Volgyesi, Abhishek Dubey, Timothy Krentz, Istvan Madari, Mary Metelko,
and Gabor Karsai. 2017. Time synchronization services for low-cost fog comput-
ing applications. In 2017 International Symposium on Rapid System Prototyping
(RSP). IEEE, 57-63.

Daniel Mark Wyatt et al. 2010. Measuring and modeling networks of human social
behavior. University of Washington.


https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://focusrite.com/en/usb-audio-interface/scarlett/scarlett-2i2
https://focusrite.com/en/usb-audio-interface/scarlett/scarlett-2i2
https://gopro.com/en/nl/shop/cameras/hero7-black/CHDHX-701-master.html
https://gopro.com/en/nl/shop/cameras/hero7-black/CHDHX-701-master.html
https://plurainc.com/wp-content/uploads/2019/03/eELCmanual.pdf
https://plurainc.com/wp-content/uploads/2019/03/eELCmanual.pdf
https://www.plurainc.com/solutions/timers/rubidium-series/
https://www.plurainc.com/solutions/timers/rubidium-series/
https://www.timecodesystems.com/wp-content/uploads/2016/08/Pulse-manual-Web-1.1-1.pdf
https://www.timecodesystems.com/wp-content/uploads/2016/08/Pulse-manual-Web-1.1-1.pdf
https://www.timecodesystems.com/syncbac-pro/
https://www.timecodesystems.com/syncbac-pro/
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html

	Abstract
	1 Introduction
	2 Related work
	3 Our Approach
	3.1 NTP as a reference signal
	3.2 Real-world implementation
	3.3 Latency measures in social literature

	4 Experiments
	4.1 Timecode latency between NTP-LTC converter and camera network master
	4.2 Evaluating crossmodal synchronization

	5 Cost versus Latency Considerations
	6 Conclusion
	Acknowledgments
	References



