
 
 

Delft University of Technology

Distributed Adaptive Resource Allocation
An Uncertain Saddle-Point Dynamics Viewpoint
Yue, Dongdong; Baldi, Simone; Cao, Jinde; Li, Qi; De Schutter, Bart

DOI
10.1109/JAS.2023.123402
Publication date
2023
Document Version
Final published version
Published in
IEEE/CAA Journal of Automatica Sinica

Citation (APA)
Yue, D., Baldi, S., Cao, J., Li, Q., & De Schutter, B. (2023). Distributed Adaptive Resource Allocation: An
Uncertain Saddle-Point Dynamics Viewpoint. IEEE/CAA Journal of Automatica Sinica, 10(12), 2209-2221.
https://doi.org/10.1109/JAS.2023.123402

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JAS.2023.123402
https://doi.org/10.1109/JAS.2023.123402


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



 

Distributed Adaptive Resource Allocation: An
Uncertain Saddle-Point Dynamics Viewpoint

Dongdong Yue, Simone Baldi, Senior Member, IEEE, Jinde Cao, Fellow, IEEE,
Qi Li, and Bart De Schutter, Fellow, IEEE

 
   Abstract—This  paper  addresses  distributed  adaptive  optimal
resource  allocation  problems  over  weight-balanced  digraphs.  By
leveraging  state-of-the-art  adaptive  coupling  designs  for  multia-
gent  systems,  two  adaptive  algorithms  are  proposed,  namely  a
directed-spanning-tree-based  algorithm  and  a  node-based  algo-
rithm. The benefits of these algorithms are that they require nei-
ther sufficiently small or unitary step sizes, nor global knowledge
of Laplacian eigenvalues, which are widely required in the litera-
ture. It is shown that both algorithms belong to a class of uncer-
tain  saddle-point  dynamics,  which  can  be  tackled  by  repeatedly
adopting  the  Peter-Paul  inequality  in  the  framework  of  Lya-
punov  theory.  Thanks  to  this  new  viewpoint,  global  asymptotic
convergence  of  both  algorithms can be  proven in  a  unified  way.
The effectiveness of the proposed algorithms is validated through
numerical simulations and case studies in IEEE 30-bus and 118-
bus power systems.
    Index Terms—Adaptive  systems,  directed  graphs,  resource  alloca-
tion, saddle-point dynamics.
  

I.  Introduction

THE  resource  allocation  problem,  also  known  as  the  eco-
nomic dispatch problem, has recently aroused multi-disci-

plinary  interest.  Applications  of  resource  allocation  include
various  engineering  fields  such  as  cloud  computing,  sensor
networks, and power systems. While early works studied opti-
mal resource allocation based on a central node collecting and
processing  all  data  from  every  node  in  the  network  [1],  this
architecture  is  not  effective  in  large-scale  networks.  There-

fore,  distributed  resource  allocation  algorithms  are  highly
desirable, i.e., to solve an allocation problem by making each
node  collect  and  process  the  data  from only  a  few neighbor-
ing nodes, according to the topology of the network.

Different assumptions can be made on the graph describing
the  large-scale  network:  acyclic  (tree)  graph  [2],  undirected
connected  graph  [3]–[12],  strongly  connected  weight-bal-
anced  digraph  [13]–[18],  or  weight-unbalanced  digraph
[19]–[21].  In  most  of  these  works,  the  algorithms  used  to
solve the distributed resource allocation problem require uni-
tary  step  sizes,  or  sufficiently  small  step  sizes  to  implement
local gradient descent, see e.g., [4]–[6], [17]–[20]. Meanwhile,
many  algorithms  rely  on  homogeneous  and  static  coupling
gains,  selected  based  on  the  global  knowledge  of  Laplacian
eigenvalues,  e.g.,  [7],  [10],  [14]–[17],  [21].  Such  a  strategy
may  lead  to  high-gain  instability  when  the  network  is  large
and sparse (with a Laplacian eigenvalue being extremely close
to  the  imaginary  axis).  Besides,  for  an  effective  distributed
methodology, eliminating the global knowledge of the Lapla-
cian  matrix  is  crucial,  which  goes  under  the  name  of  dis-
tributed adaptive implementation.

In fact, distributed adaptive algorithms incorporate adaptive
(in place of static) coupling gains, which have the superiority
of adapting to different network configurations. The reason is
that these adaptive gains do not need to be selected based on
global knowledge of Laplacian eigenvalues. Distributed adap-
tive designs with adaptive coupling gains are available in the
literature for consensus or tracking [22]–[26], containment or
formation [27]–[29], and optimization [30], [31].

Distributed resource allocation solutions with adaptive cou-
pling gains, to our best knowledge, are not available in the lit-
erature,  even  for  the  simplest  case  of  undirected  graphs.  The
main  reason  for  this  gap  lies  in  the  following  difficulty:  In
order  to  obtain  an  optimal  resource  allocation  solution,  the
agents are supposed to seek a consensus over the Lagrangian
multipliers  based  on  a  class  of  nested  primal-dual  dynamics
[4]. This strategy brings the challenge of individual seeking of
optimal  allocation  decisions  and  consensus  seeking  of  the
Lagrangian  multipliers  at  the  same time,  without  any  knowl-
edge of Laplacian eigenvalues. A possible approach to address
this challenge is to solve the consensus optimization problem
for  the  Lagrangian  multipliers  via  distributed  adaptive  opti-
mization  of  [30],  [31].  Such  an  approach  of  focusing  on  the
dual  problem  instead  of  the  primal  problem  was  indeed
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adopted  in  [11],  [19],  [20],  but  it  may  bring  the  so-called
“two-time-scale” problem,  as  each  agent  needs  to  solve  an
auxiliary  optimization  problem  at  each  time  instant  towards
optimal  resource  allocation  [4].  The “two-time-scale” issue
also exists in other approaches, see e.g., the alternating direc-
tion method of multiplies [32].

Motivated  by  the  above  discussions,  this  work  studies  dis-
tributed adaptive solutions to the resource allocation problem.
We provide a novel perspective into this problem by showing
that  the  optimal  solution  corresponds  to  the  (generalized)
equilibrium of a class of uncertain saddle-point dynamics. The
basic  idea  to  guarantee  convergence  to  this  equilibrium is  to
introduce  heterogeneous  adaptive  coupling  gains  promoting
consensus  over  the  Lagrangian  multipliers  of  optimal  deci-
sions,  and  to  let  the  agents  self-determine  the  coupling
strengths between each other. To implement this idea, two dis-
tributed adaptive strategies are studied, i.e., directed-spanning-
tree-based  (DST-based)  and  node-based:  In  the  former,  only
the gains associated with edges along an DST are made adap-
tive; in the latter, the gains associated with all incoming edges
for  each  node  (so  that  all  edges  in  the  network)  are  made
adaptive. The main contributions of this paper are as follows:

1) We propose a new point of view into the resource alloca-
tion  problems,  which  is  made  possible  by  framing  the  prob-
lem via a novel class of uncertain saddle-point dynamics. We
show that the optimal solution to the resource allocation prob-
lem  corresponds  to  a  generalized  equilibrium  point  of  the
uncertain saddle-point dynamics, as discussed in Definition 1
and Lemma 6.

2)  Inspired  by  the  uncertain  saddle-point  dynamics  view-
point, we propose two novel distributed adaptive frameworks
for  solving  optimal  resource  allocation  over  digraphs  and
prove their convergence in a unified way (Theorems 1 and 2).

3)  Two novel  classes  of  convexity  conditions  named span-
ning-tree-based  strongly  convexity  and  jointly  strongly  con-
vexity are identified for the proposed algorithms, respectively.
We  also  show  a  relatively  standard  class  of  local  cost  func-
tions that  automatically satisfies the proposed convexity con-
ditions (Corollaries 1 and 2).

4)  The  proposed  algorithms  require  neither  sufficiently
small  or  unitary  step  sizes,  nor  global  knowledge  of  Lapla-
cian  eigenvalues,  which  are  widely  required  in  nonadaptive
strategies  proposed  in  the  literature,  see  e.g.,  [4]–[7],  [14]–
[21].  Besides,  the  proposed  algorithms  focus  on  the  primal
resource  allocation  problem  directly:  thus,  the “two-time-
scale” issue in the duality-based literature [11], [19], [20] does
not arise.

The rest of the paper is organized as follows. In Section II,
we  give  the  preliminaries  and  problem  statement,  and  we
introduce uncertain saddle-point dynamics for the problem. In
Sections III  and IV, two distributed adaptive resource alloca-
tion algorithms are established as DST-based and node-based,
respectively. In Section V, simulations are performed to vali-
date the theoretical results. Some discussions are presented in
Section VI. Finally, Section VII concludes the paper and dis-
cusses some future topics.  

II.  Preliminaries and Problem Formulation
  

A.  Matrix Algebra
A series of technical lemmas useful for stability analysis is

now  introduced.  The  so-called  Peter-Paul  inequality  will  be
frequently  used  throughout  this  paper  to  bound  non-definite
terms with positive definite expressions.

Notations:

R R+ (resp. ) Set of real (resp. positive) scalars;
Rn Set of n-dimensional column vectors;

Rn
+

Set  of n-dimensional  positive  (all n
entries  being  positive)  column  vec-
tors;

Rn×m n×mSet of  matrices;
In n×n identity matrix;

1n
Column  vector  with  all n elements
being one;

0 Zero  scalar,  zero  vectors,  and  zero
matrices;

As
(A+AT )/2

Symmetric  part  of  square  matrix A,
i.e., ;

λ̄(A) λ(A) (resp. )
Maximum  (resp.  minimum)  eigen-
value of real symmetric matrix A;

Mn
r

n×nSet  of  matrices  with  zero  row
sums;

A > 0 A ≥ 0 (resp. ) A is positive definite (resp. semi-def-
inite);

IN {1,2, . . . ,N}Set of natural numbers ;
S1 \S2 S1 S2Set difference of sets  and ;
col(x1, . . . , xN) (x1

T , . . . , xN
T )TColumn vectorization ;

diag(·) Diagonalization operator;
⊗ Kronecker product;

O|x0 O : ẋ = f (x) x0 f (x0)
Velocity  of  autonomous  dynamical
system  at , i.e., ;

∇x f Partial derivative of f with respect to
x;

∇ f Gradient of f.

a,b ∈ Rn

ϵ ∈ R+
Lemma  1  (Peter-Paul  Inequality  [33]): For  any 

and , there holds
 

aT b ≤ aT a
2ϵ
+
ϵbT b

2
.

ϵ

Proof: The lemma follows directly from the Young inequal-
ity with exponents 2 and a positive bias . ■

The  following  lemma  can  be  inferred  from  [22,  Lemma
2.3],  and  will  be  used  (cf.  (39))  to  analyze  the  node-based
algorithm of Section IV.

U ∈ RN×N S ∈ Rn×n

x = col(x1, . . . , xN)
xi ∈ Rn i ∈ IN

Lemma  2: Suppose  that .  Let  be  an
orthogonal  matrix  and  be  an  aggregated
vector with , . Then,
 

xT (U ⊗ In)x =
n∑

k=1

yT
k Uyk

yk =
(
[S x1]k, [S x2]k, . . . , [S xN]k

)T k ∈ In [S xi]kwhere , .  Here, 
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S xiis the k-th entry of the vector .  

B.  Algebraic Graph Theory

G(V,E,W) V = IN
E = {ei j|i→ j, i , j}
W = (wi j) ∈ RN×N wi j > 0 e ji ∈ E wi j = 0

i ∈ Nin( j) ei j ∈ E
j ∈ Nout(i)

L = (Li j) ∈ RN×N G
Li j = −wi j, i , j Lii =

∑N
k=1,k,i wik, i = 1, . . . ,N

G

G
i ∈ V ∑

j∈Nin(i) wi j =
∑

j∈Nout(i) w ji

A  weighted  digraph  [34]  (short  for  directed  graph)
 consists  of  the  node  set ,  the  edge  set

,  and  the  weighted  adjacency  matrix
 where  if , and  other-

wise.  The  node i is  an  in-neighbor  of j ( )  if ,
and in return, j is an out-neighbor of i ( ). The Lapla-
cian  matrix  of  is  defined  as  follows:

, and . A path is
a  series  of  edges  connecting  a  pair  of  nodes.  A digraph  is
strongly connected if there exists a directed path between any
pair  of  nodes.  Moreover,  is  weight-balanced  if,  for  any

, there holds .
Ḡ(V, Ē,W̄) G

1 pk
k+1 Ḡ k ∈ IN−1

Ē = {epk ,k+1|k ∈ IN−1} ⊆ E L̄
W̄ Ḡ
N̄out(i) Ḡ

A DST (short  for  directed spanning tree)  of 
is  a  subgraph that  involves a  node called the root,  which has
no  in-neighbors,  such  that  there  exists  one  and  only  one
directed path from the root to any other node. Without loss of
generality, we label the root as node , and use  to represent
the  unique  parent  (in-neighbor)  of  node  in , .
Clearly, . Correspondingly,  (resp.

)  is  the  Laplacian  (resp.  weighted  adjacency)  matrix  of 
and  is the set of out-neighbors of i in .

The  graph theory  notation  allows us  to  introduce  two lem-
mas useful for stability analysis. Lemma 3 will be used to ana-
lyze the DST-based algorithm of Section III. Lemma 4 will be
used to analyze the node-based algorithm of Section IV.

G
Ḡ

Lemma 3 ([28], [34]): Consider a digraph  that contains a
DST . Then, the following statements hold:

L
1N

1)  The  Laplacian  has  a  simple  zero  eigenvalue  corre-
sponding to the right  eigenvector ,  and the other  eigenval-
ues have positive real parts.

Ξ ∈ R(N−1)×N2) Define a matrix  as
 

Ξk j =


−1, if j = k+1
1, if j = pk

0, otherwise.
Q ∈ R(N−1)×(N−1)

ΞL = QΞ
Then,  there  exists  a  unique  such  that

.

L QT Q > 0 Qs > 0
λ(Qs) = λ2(Ls) λ2(Ls)

Ls

3)  The  eigenvalues  of Q are  exactly  the  nonzero  eigenval-
ues  of ,  thus  and .  As  a  consequence,

,  where  is  the  smallest  nonzero  eigen-
value of .

Q = Q̃+ Q̄4) The matrix Q is explicitly given by  with
 

Qk j =
∑

c∈V̄ j+1

(L̃k+1,c−L̃pk ,c)

︸                     ︷︷                     ︸
Q̃k j

+
∑

c∈V̄ j+1

(L̄k+1,c−L̄pk ,c)

︸                     ︷︷                     ︸
Q̄k j

L̃ =L−L̄ V̄ j+1
Ḡ j+1 Q̄ L̄
where . Here,  is the node set of the subtree of

 rooting at .  Furthermore,  the  matrix  is  related  to 
through
 

Q̄k j =


L̄ j+1, j+1, if j = k

−L̄ j+1, j+1, if j = pk −1
0, otherwise.

Remark  1: The  existence  of  the  matrix Q is  guaranteed  by
Lemma 9  of  [35],  and  the  uniqueness  of Q is  guaranteed  by
the fact that Ξ has full row rank.

GLemma  4  ([25],  [36]): Suppose  is  strongly  connected.
Then, the following statements hold:

r = (r1,
r2, . . . ,rN)T ∈ RN

+ L
R = diag(r1, . . . ,rN) L̂ ≜ RL+LT R ≥ 0

r = r01N r0 ∈ R+ G

1)  There  exists  a  positive  left  eigenvector 
 of  associated with the zero eigenvalue. Let

.  Then,  is  the  symmet-
ric  Laplacian  matrix  associated  with  an  undirected  graph.
Moreover,  for  some  if  and  only  if  is
weight-balanced.

ς ∈ RN
+ x ∈ RN2) For any  and , there holds

 

min
ςT x=0,x,0

xT L̂x
xT x

>
λ2(L̂)

N
.

1N L̂
3)  [Courant-Fischer]  In  the  special  case  that ς is  chosen as
,  i.e.,  the eigenvector  of  associated with the zero eigen-

value, then
 

min
1T

N x=0,x,0

xT L̂x
xT x

= λ2(L̂).
  

C.  Problem Statement
G

di ∈ Rn

fi(·) : Rn→ R

f (·) : RNn→ R

Consider N agents interacting over a digraph . Each agent
has an amount of local resources  and is associated to a
local cost function . In distributed resource allo-
cation,  the  agents  are  cooperatively  seeking  a  global  alloca-
tion  strategy  with  minimum  cumulative  cost 
(referred  to  as  the  global  cost  function),  while  meeting  the
sum of the total resources
 

min
x≜col(x1,...,xN )

f (x) ≜
N∑

i=1

fi(xi)

s.t.
N∑

i=1

xi = d (1)

d =
∑N

i=1 diwhere .
The  following  assumption  is  standard  in  the  distributed

resource allocation literature, see e.g., [4], [6], [11], [17].
fi(·)Assumption 1: Each local cost function  is continuously

differentiable and strictly convex.

x∗

y∗ ∈ Rn

Lemma  5  (Solution  of  (1)): Under  Assumption  1,  problem
(1)  has  a  unique solution .  Moreover,  there  exists  a  unique

, i.e., the Lagrangian multiplier, such that
 

∇ f (x∗)+1N ⊗ y∗ = 0

(1T
N ⊗ In)(x∗−D) = 0 (2)

∇ f (x) = col(∇ f1(x1), . . . ,∇ fN(xN))
f (·) D = col(d1, . . . ,dN)

where  according to the def-
inition of  and .

L(x,y) = f (x)+ yT (1T
N ⊗ In)(x−D)

∇xL(x,y) = 0 ∇yL(x,y) = 0

Remark  2: Equation  (2)  is  known  in  the  literature  as  the
Karush-Kuhn-Tucker  (KKT)  condition  (see  e.g.,  [37,  Chap.
5]).  Specifically,  given  the  Lagrangian  function  of  problem
(1),  i.e., ,  the  KKT  condi-
tion (2) consists of  (tangency) and 
(feasibility).

In  this  paper,  the  following  assumption  is  made  regarding
the communication graph.

YUE et al.: DISTRIBUTED ADAPTIVE RESOURCE ALLOCATION: AN UNCERTAIN SADDLE-POINT DYNAMICS VIEWPOINT 2211 

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 11:41:02 UTC from IEEE Xplore.  Restrictions apply. 



GAssumption  2: The  communication  digraph  is  strongly
connected and weight-balanced.

G

G

Remark  3: This  assumption  is  standard  in  distributed
resource  allocation  as  well  as  distributed  optimization  prob-
lems  [14]–[18],  and  is  considerably  more  general  than  the
assumption  of  being  undirected  and  connected  [4]–[12].
Note that there have been some results on weight-unbalanced
digraphs [19]–[21], which require sufficiently small step sizes
for  gradient  descent  and  can  raise  the “two-time-scale” issue
[19],  [20],  or  rely on constant  coupling gain selected accord-
ing  to  the  Laplacian  eigenvalues  [21].  These  limitations  are
not  desired  for  an  effective  distributed  methodology.  Note
that, if  is weight-unbalanced, one can recover Assumption 2
by  first  performing  a  finite-time  weight-balancing  algorithm
along a DST, cf. [31].  

D.  Primary Analysis

L(x,y)
y0 ∈ Rn

To solve problem (1), one can in principle use saddle-point
dynamics,  i.e.,  a  gradient  descent  of  the  Lagrangian  function

 in  the  primal  variable x and  a  gradient  ascent  in  the
dual variable 
 

ẋ = −∇ f (x)−1N ⊗ y0

ẏ0 = (1T
N ⊗ In)(x−D). (3)

y0

yi ∈ Rn i ∈ V
yi

However, one problem of (3) is that the update of  cannot
be performed in  a  distributed way.  To make the saddle-point
algorithm  (3)  distributed,  several  algorithms  have  been  pro-
posed,  such as  endowing each agent  a  copy of  the  dual  vari-
able  as , ,  while  incorporating  an  integral  feed-
back action of , see [4], [17].

Therefore,  let  us  consider  the  system resulting  from incor-
porating  a  distributed  integral  feedback  action  of  local  dual
variables on top of (3), as follows:
 

O : ẋ = −κ1(∇ f (x)+ y) (4a)
 

ẏ = x−D− (Υ⊗ In)y− (L⊗ In)z (4b)
 

ż = (Υ⊗ In)y (4c)
κ1 ∈ R+ y = col(y1, . . . ,yN) ∈ RNn z = col(z1, . . . ,

zN) ∈ RNn yi zi
L G

Υ ∈MN
r

Υ

yi y j

where ,  and , 
 contain  the  local  auxiliary  variables  and  for

agent i.  The matrix  in (4b) is  the Laplacian of .  We will
refer  to  system  (4)  as uncertain since  the  matrix  is
unknown a  priori.  More  specifically,  the  matrix  represents
the coupling between  and , which is the result of an adap-
tation  mechanism  to  be  designed  so  as  to  guarantee  stable
attractive behavior of (4).

L
Υ

Remark  4: State-of-the-art  distributed  algorithms  to  solve
problem (1)  directly involve the Laplacian matrix  in place
of  (see e.g.,  [4],  [17]).  However,  a  unitary step size  of  the
gradient descent is required and, in the case of [17], the global
knowledge of Laplacian eigenvalues is also required.

Let  us  define  the  generalized  equilibrium  points  (GEP)  of
the uncertain system (4) as follows:

(x̃, ỹ, z̃) ∈ RNn×RNn×RNn

Υ ∈MN
r O|(x̃,ỹ,z̃) = 0

Definition 1 (GEP): The triple  is
called  a  generalized  equilibrium  point  of  (4),  if  for  any

, there holds .
Lemma  6  (GEPs  of  (4)): Under  Assumptions  1  and  2,  the

uncertain  system (4)  has  infinitely  many  GEPs.  Moreover,  if

(x̃, ỹ, z̃) (x̃, ỹ) = (x∗,1N ⊗ y∗) x̃

(x̃, ỹ)

 is a GEP of (4), then , i.e.,  is the
optimizer  of  problem  (1).  The  latter  statement  implies  that

 is unique.
(Υ⊗ In)ỹ = 0 Υ ∈MN

r
ỹ = 1N ⊗ y0 y0 ∈ Rn (x̃, ỹ, z̃)

(1T
N ⊗ In) (1T

N ⊗ In)(x̃−D)
−(1T

NL⊗ In)z̃ = 0 1T
NL = 0

(1T
N ⊗ In)(x̃−D) = 0 ∇ f (x̃)+

1N ⊗ y0 = 0
(x̃, ỹ) = (x∗,1N ⊗ y∗)

rank(L) = N −1
z̃ (L⊗ Im)z̃ = x−D

(x̃, ỹ, z̃) (x̃, ỹ, z̃+1N ⊗∆z)
∆z ∈ Rn

Proof: Since  for  any ,  we  have
 for some . Substituting  into (4b) and

left-multiplying  to both sides lead to 
.  Under  Assumption  2,  we  have ,

implying that , which together with 
,  results  exactly  in  the  KKT  condition  (2).  By

Lemma  5,  we  know  that  exists  and  is
unique.  Furthermore,  since ,  there  exist
infinitely many solutions  such that : in fact,
if  is  a  GEP of  (4),  also  is  a  GEP of
(4) for any . ■

Υ

Lemma 6 states that distributed optimal resource allocation
can be realized by steering the uncertain saddle-point dynam-
ics (4) to its GEPs. In the following two sections, we will pro-
pose  two continuous  realizations  of  in  (4b),  that  are  DST-
based  and  node-based,  respectively,  and  guarantee  stable
attractive behavior of the GEPs of (4).  

III.  Distributed Adaptive Resource Allocation:
DST-Based Design

Ḡ G

i ∈ V j , i k ∈ IN−1

Recall that, with the strongly connected property, a DST can
be identified in a distributed fashion without any prior knowl-
edge of the Laplacian matrix [38]. Based on any DST  of ,
consider the distributed adaptive resource allocation (DARA)
algorithm for agent ,  ( ), as follows:
 

Oa : ẋ = −κ1(∇ f (x)+ y) (5a)
 

ẏ = x−D− (La⊗ In)y− (L⊗ In)z (5b)
 

ż = (La⊗ In)y (5c)
 

ȧi j =


κ2
(
(y j− yi)−

∑
c∈N̄out(i)

(yi− yc)
)T

(y j− yi)

≜ ˙̄ak+1,pk , if e ji ∈ Ē
0, if e ji ∈ E\ Ē

(5d)
κ2 ∈ R+ Lawhere  and  is the gain-dependent Laplacian matrix

defined as follows:
 

La
i j = −ai jwi j, i , j

La
ii =

N∑
j=1, j,i

ai jwi j, i = 1, . . . ,N. (6)

wi j ai j
(yi− y j)

yi zi aii
ai j

e ji ∈ Ē

The  weight  multiplied  by  the  gain  determines  the
feedback gain of the relative error vector  for agent i to
update  and . Note that we did not define  in (5) and (6)
since there are no self-loops. According to (5d), the gain  is
updated only when . Such an update law is distributed,
i.e., it depends on agent i, agent j and all the out-neighbors of
agent i in the DST [24], [31]. One can refer to Algorithm 1 for
the implementation of (5).

(x,y) (x∗,1N ⊗ y∗)
(x(0),y(0),z(0) ∈ RNn×RNn×RNn

ai j(0) ∈ R m ∈ R+

Theorem 1: Under Assumptions 1 and 2, the adaptive algo-
rithm  (5)  drives  to  asymptotically  for  any
initial  condition  and  any

 provided there exists a scalar ,  such that the
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∀x, y ∈ RNn
following  condition  (referred  to  as  spanning-tree-based m-
strongly convexity) holds :
 

(x− y)T (L̄U⊗ In)(∇ f (x)−∇ f (y))

≥ m(x− y)T (L̄U⊗ In)(x− y) (7)
L̄U = ΞTΞ

ḠU Ḡ
āk+1,pk k ∈ IN−1

where  is  the  un-weighted  Laplacian  matrix  of  the
undirected  spanning  tree  based  on  (Ξ  is  defined  as  in
Lemma  3).  Moreover,  the  adaptive  gains , ,
converge to some finite constant values.

Algorithm 1 DARA: DST-Based

xi(0) yi(0) zi(0) ai j(0) κ1 κ2

Ḡ(V, Ē)

Data: 1) Initialization: , , , ; 2) Parameters: , ;
3) Structure: A DST 

xi→ x∗Result: Optimal resource allocation solution 
s← 11: ;

s ·h ≤ Ttml Ttml2: while  do /* h is the integration step and  is the ter-
minal time

i← 13: 　　for  to N do
dxi←−κ1(∇ fi(xi)+ yi)4: 　　　　 ;
dyi← xi −di −

∑
j∈V
La

i jy j −
∑
j∈V
Li jz j5: 　　　　 ;

dzi←
∑
j∈V
La

i jy j6: 　　　　 ;
j← 1 j , i7: 　　　　for  to N and  do
dai j← 08: 　　　　　　 ;

e ji ∈ Ē ∃k ∈ IN−1 i = k+1 j = pk9: 　　　　　　 if  then /*  such that  and 

dai j← κ2
(
(y j − yi)−

∑
c∈N̄out(i)

(yi − yc)
)T

(y j − yi)10: 　　　　　　　 ;
11: 　　　　　  end

ai j← ai j +h×dai j12: 　　　　  　 ;
13: 　　  　end

xi← xi +h×dxi14: 　  　　 ;
yi← xi +h×dyi15: 　  　　 ;
zi← xi +h×dzi16: 　　  　 ;

17: 　  end
s← s+118: 　  ;

19: end

(x̃, ỹ, z̃)

Proof: We  conduct  the  proof  by  showing  that  each  trajec-
tory of (5a)−(5c) converges to a GEP of (4). Let us define the
error vectors between the trajectory of (5a)−(5c) and any GEP

 of (4), following a change of coordinates:
 

µ = x− x̃, ν = y− ỹ, η = z− z̃ (8a)
 

µ̄ = (Ξ⊗ In)µ, ν̄ = (Ξ⊗ In)ν, η̄ = (Ξ⊗ In)η. (8b)

eµ̄ = col(µ̄1, . . . , µ̄N−1) µ̄k = µpk −µk+1 k ∈ IN−1

where Ξ is defined as in Lemma 3. In a component-wise form,
 where , .

La ∈MN
r Oa|(x̃,ỹ,z̃) = 0

Oa
Note that .  By Definition 1, we have .

Then,  in  the  new  coordinates  (8b),  the  dynamics  of  is
equivalent to
 

˙̄µ = −κ1(Ξ⊗ In)h− κ1ν̄ (9a)
 

˙̄ν = µ̄− (Qa⊗ In)ν̄− (Q⊗ In)η̄ (9b)
 

˙̄η = (Qa⊗ In)ν̄ (9c)
 

˙̄ak+1,pk = κ2
(
ν̄k −

∑
j∈N̄out(k+1)

ν̄ j−1
)T
ν̄k, k ∈ IN−1 (9d)

h = ∇ f (µ+ x̃)−∇ f (x̃) Qa

Ḡ
where  in  (9a),  and Q (resp. ),  is
defined  as  in  Lemma  3  based  on  the  DST  and  the  (resp.

Qa =

Q̃a+ Q̄a Q̃a ȧi j = 0
e ji ∈ E\ Ē

gain-dependent)  Laplacian  matrix.  More  specifically, 
 contains  the  fixed  matrix  (note  that  if

), and the time-varying matrix
 

Q̄a
k j =


ā j+1,p jw j+1,p j , if j = k

−ā j+1,p jw j+1,p j , if j = pk −1
0, otherwise.

(10)

(Ξ⊗ In)ỹ = 0

Here,  statement  2)  of  Lemma  3  and  the  properties  of  the
Kronecker  product  have  been  used  to  get  (9b)  and  (9c);  and
the fact that  has been used to get (9d).

Consider the following candidate Lyapunov function:
 

V1 =
1+3λ̄(QT Q)
ϵ1λ

2(Qs)
Vµ̄+Va

ν̄ +
3λ̄(QT Q)
λ(Qs)

Vη̄ (11)

where
 

Vµ̄ =
1
2
µ̄T µ̄

Va
ν̄ =

1
2
ν̄T ν̄+

N−1∑
k=1

wk+1,pk

2κ2

(
āk+1,pk (t)−ϕk+1,pk

)2
Vη̄ =

1
2

(ν̄+ η̄)T (ν̄+ η̄) (12)

Qs > 0 ϵ1, ϕk+1,pk ∈
R+ k = 1, . . . ,N −1
and  is guaranteed by 3) of Lemma 3, and 

, , will be determined later.
Vµ̄The time derivative of  can be obtained as

 

V̇µ̄ = −κ1µ̄T (Ξ⊗ In)h− κ1µ̄T ν̄. (13)
By (8b) and (7), we have

 

µ̄T (Ξ⊗ In)h ≥ mµ̄T µ̄. (14)
Then,

 

V̇µ̄ ≤ −κ1mµ̄T µ̄− κ1µ̄T ν̄

≤ (ϵ2− κ1m)µ̄T µ̄+
κ21
4ϵ2
ν̄T ν̄ (15)

ϵ2 ∈ R+where  is to be decided later, and Lemma 1 was used to
get the second inequality.

Va
ν̄The time derivative of  can be obtained as

 

V̇a
ν̄ = ν̄

T µ̄− ν̄T (Qa⊗ In)ν̄− ν̄T (Q⊗ In)η̄

+

N−1∑
k=1

wk+1,pk (āk+1,pk −ϕk+1,pk )
(
ν̄k −

∑
j+1∈N̄out(k+1)

ν̄ j
)T
ν̄k.

(16)
From (10), one has

 

N−1∑
k=1

wk+1,pk āk+1,pk

(
ν̄k −

∑
j+1∈N̄out(k+1)

ν̄ j
)T
ν̄k

=

N−1∑
k=1

(Q̄a
kkν̄k +

N−1∑
j=1, j,k

Q̄a
jkν̄ j)T ν̄k

=

N−1∑
k=1

N−1∑
j=1

Q̄a
jkν̄

T
j ν̄k = ν̄

T (Q̄a⊗ In)ν̄. (17)

Following the procedure in [24], [28] and [31], let us define
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Φ ∈ R(N−1)×(N−1) as:
 

Φk j =


ϕ j+1,p jw j+1,p j , if j = k

−ϕ j+1,p jw j+1,p j , if j = pk −1
0, otherwise.

(18)

Then, it follows from (16)−(18) that:
 

V̇a
ν̄ = ν̄

T µ̄− ν̄T (Qa⊗ In)ν̄− ν̄T (Q⊗ In)η̄

+ ν̄T
(
(Q̄a−Φ)⊗ In

)
ν̄

= ν̄T µ̄− ν̄T ((Q̃a+Φ)⊗ In
)
ν̄− ν̄T (Q⊗ In)η̄. (19)
Q̄aNote  that  the  time-varying  matrix  has  been  cancelled,

and all the matrices left are constant. Based on Lemma 1, we
have
 

V̇a
ν̄ ≤ ν̄T µ̄− ν̄T

(
(Q̃a+Φ)⊗ In

)
ν̄

+
ν̄T ν̄

2
+
η̄T (QT Q⊗ In)η̄

2

≤ 1
λ2(Qs)

µ̄T µ̄+
(λ2(Qs)

4
+

1
2

)
ν̄T ν̄

− ν̄T ((Q̃a+Φ)⊗ In
)
ν̄+
λ̄(QT Q)

2
η̄T η̄ (20)

xT Ax ≤ λ̄(A)xT x
A > 0

where  we  have  also  used  the  property  that 
for a matrix  and for all x to get the last inequality.

Vη̄The time derivative of  can be obtained as
 

V̇η̄ = ν̄T µ̄− ν̄T (Q⊗ In)η̄+ η̄T µ̄− η̄T (Q⊗ In)η̄

≤ 1
2λ(Qs)

µ̄T µ̄+
λ(Qs)

2
ν̄T ν̄

+
λ̄(QT Q)
λ(Qs)

ν̄T ν̄+
λ(Qs)

4
η̄T η̄

+
λ(Qs)

2
η̄T η̄+

1
2λ(Qs)

µ̄T µ̄−λ(Qs)η̄T η̄

≤ 1
λ(Qs)

µ̄T µ̄+
(λ(Qs)

2
+
λ̄(QT Q)
λ(Qs)

)
ν̄T ν̄

−
λ(Qs)

4
η̄T η̄ (21)

where we have repeatedly used Lemma 1 to get the inequality.

V1

Based on (11), (15), (20), and (21) and with some manipula-
tions,  the  time  derivative  of  along  the  trajectory  of  (9)  is
upper bounded by
 

V̇1 ≤ −
(
1+3λ̄(QT Q)

)
(κ1m− ϵ1− ϵ2)

ϵ1λ
2(Qs)

µ̄T µ̄

− ν̄T ((Φs−γIN−1+ (Q̃a)s)⊗ In
)
ν̄− λ̄(Q

T Q)
4
η̄T η̄ (22)

γ ∈ R+where  is given by
 

γ =
κ21
(
1+3λ̄(QT Q)

)
4ϵ1ϵ2λ2(Qs)

+
3λ̄2(QT Q)
λ2(Qs)

+
3λ̄(QT Q)

2
+
λ2(Qs)

4
+

1
2
. (23)

ϵ1, ϵ2, ϕk+1,pk ∈
R+ ϵ1, ϵ2

ϵ1+ ϵ2 ≤ κ1m ϕk+1,pk k = 1, . . . ,
N −1 Φs−γIN−1+ (Q̃a)s > 0 (Q̃a)s

ϕk+1,pk Φ
s− γ̄IN−1 > 0 γ̄ ∈ R+

The next procedure is to find some appropriate 
 to  stabilize  the  system.  First,  we  can  always  select 

such  that .  Next,  we  select , 
,  such that .  Since γ and  are

both fixed, it is sufficient to prove that by choosing appropri-
ate ,  for  any .  This  latter  state-
ment  is  indeed  guaranteed  following  similar  mathematical
induction procedures as in [28]. Specifically, let
 

ϕ2,p1 >
γ̄

w2,p1

, ϕk+1,pk > γ̄+

∑k
j=2ϕ

2
j,p j−1

w2
j,p j−1

4wk+1,pkλ(Ωk−1)
(24)

Ω1 = (ϕ2,p1w2,p1 − γ̄)where , and
 

Ωk =

 Ωk−1 φk

φT
k ϕk+1,pk wk+1,pk − γ̄

 (25)

φk =
1
2 (ϕk1wk1,ϕk2wk2, . . . ,ϕk,k−1wk,k−1)T k = 2, . . . ,N −1

Φs− γ̄IN−1 ΩN−1

V̇1 ≤ 0 V1
µ̄ ν̄ η̄ āk+1,pk

V1

V̇1 = 0
(µ̄, ν̄, η̄)→ (0,0,0) āk+1,pk k ∈ IN−1

(x,y,z)→ (x̃+1N ⊗∆x, ỹ+1N ⊗∆y, z̃+1N⊗
∆z) ≜ (xs,ys,zs) ∆x,∆y,∆z ∈ Rn

with , .
Then, the positive definiteness of  ( ) is guaran-
teed by the  Schur  complement  [39]  and the  induction princi-
ple. Then, it follows that , implying that  has a finite
limit and all the signals , , , and  are bounded. Note
that since  is continuously differentiable, it is guaranteed by
LaSalle’s invariance principle that each trajectory of (9) con-
verges to the set such that , which by (22), implies that

,  and  the  adaptive  gains , ,
converge to  some finite  constant  values.  Back to  the  original
coordinates  of  (5), 

, for some .
∆x = ∆y = 0

∆x ∆y

Next, we show that . The steady-state dynamics
of  and  are governed by
 

∆̇x =
1
N

(1T
N ⊗ In)ẋs, ∆̇y =

1
N

(1T
N ⊗ In)ẏs. (26)

(xs,ys,zs)
Oa|(x̃,ỹ,z̃) = 0

Substitute  (5a)  and  (5b)  evaluated  at  into  the
above, and note that . Then, we obtain
 

∆̇x = −
κ1
N

(1T
N ⊗ In)

(∇ f (xs)−∇ f (x̃)
)− κ1∆y = 0

∆̇y = ∆x = 0. (27)
∆x = ∆y = 0 (xs,ys) = (x̃, ỹ)

(x,y)→ (x∗,1N ⊗ y∗)

This  gives ,  i.e., ,  which  implies
that each trajectory of (5a)−(5c) converges to a GEP of (4). By
Lemma 6, we know that . ■

Consider the special case of quadratic local costs
 

fi(x) ≜ xTΘx+ xTφi, Θ > 0, φi ∈ Rn. (28)

m ≤ λ(Θ)
In  this  case,  the  spanning-tree-based m-strongly  convex

condition  (7)  holds  with  any  and  for  any  DST.
Immediately, we have the following corollary:

(x(0),y(0),
z(0) ∈ RNn×RNn×RNn ai j(0) ∈ R (x,y)→ (x∗,1N⊗
y∗) āk+1,pk k ∈ IN−1

Corollary 1: Under Assumptions 1 and 2, the resource allo-
cation problem (1) with local costs (28) can be solved with the
adaptive  algorithm  (5)  for  any  initial  conditions 

 and any , i.e., 
.  Moreover,  the  adaptive  gains , ,  converge

to some finite constant values.
Remark  5: The  proposed  adaptive  resource  allocation

framework  is  essentially  different  from  related  literature  [7],
[10],  [14]–[17],  [21],  which  rely  on  the  global  knowledge  of
Laplacian  eigenvalues  to  establish  convergence  results.  The
main idea behind the proof of Theorem 1 is to repeatedly use
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āk+1,pk
ϕk+1,pk

ϕk+1,pk ∀k ∈ IN−1

the Peter-Paul inequality (Lemma 1) so as to entrust  stability
to  the  adaptive  coupling  gains .  Thus,  global  stability
can be derived by selecting sufficiently large  with the
help of the Schur complement and mathematical induction, as
shown in  the  proof.  As a  consequence,  the  knowledge of  the
global  Laplacian  eigenvalues  is  successfully  removed  at  the
design  stage.  Note  that  the  exact  values  of  the  parameters

, ,  are  not  needed  in  the  algorithm,  they  are
only used for the purpose of stability analysis.

κ1, κ2 ∈ R+
κ1

κ2

κ1

κ2

Remark  6: In  addition  to  removing  the  knowledge  of  the
global  Laplacian  eigenvalues  as  discussed  above,  it  is  worth
noticing  that  the  adaptive  coupling  gains  (5d)  overcome  the
need  for  unitary,  or  sufficiently  small  steps  sizes  to  imple-
ment  local  gradient  descent  [4]–[6],  [17]–[20].  The  conver-
gence of the proposed algorithm (5) is guaranteed globally for
any  parameters .  These  parameters  can  easily  be
tuned taking into account the fact that increasing  allows for
larger step sizes towards decreasing the local costs (with con-
straint  concerns),  while  increasing  enhances  the  impor-
tance  of  communicating  Lagrangian  multipliers.  Generally
speaking,  a larger  would require a smaller  integration step
for  practical  implementation  (i.e.,  smaller h in  Algorithm 1),
and larger  would induce higher steady-state coupling gains
(cf. our simulations in Section V). Note that the above discus-
sions also apply to the node-based case in Section IV.  

IV.  Distributed Adaptive Resource Allocation:
Node-Based Design

i ∈ V

The DST-based adaptive law (5d) in Section III relies on the
structural  information  of  a  DST.  Although  a  DST  can  be
obtained in a distributed way [38], it is of interest to possibly
remove this  intermediate  step:  To this  purpose,  a  node-based
design  is  developed  in  this  section.  Consider  the  following
distributed adaptive resource allocation (DARA) algorithm for
agent :
 

Oα : ẋ = −κ1(∇ f (x)+ y) (29a)
 

ẏ = x−D− ((A+B)L⊗ In
)
y− (L⊗ In)z (29b)

 

ż =
(
(A+B)L⊗ In

)
y (29c)

 

α̇i = βi := κ2ξTi ξi (29d)
A = diag(α1, . . . ,αN) B = diag(β1, . . . ,βN) ξi =∑

j∈Nin(i) wi j(yi− y j)
where ,  and 

.  One  can  refer  to  Algorithm  2  for  the
implementation of (29).

(x,y) (x∗,1N ⊗ y∗)
(x(0), y(0), z(0) ∈ RNn×RNn×RNn

αi(0) ∈ R+ m ∈ R+

∀x,y ∈ RNn

Theorem 2: Under Assumptions 1 and 2, the adaptive algo-
rithm (29) drives  to  asymptotically for  any
initial  condition  and  any

 provided there exists a scalar , such that the
following condition (referred to as jointly m-strongly convex-
ity) holds :
 

(x− y)T (LTL⊗ In)(∇ f (x)−∇ f (y))

≥ m(x− y)T (LTL⊗ In)(x− y). (30)
αi i ∈ INMoreover,  the  adaptive  gains , ,  converge  to  some

finite constant values.

(x̃, ỹ, z̃) (µ,ν,η)

Proof: Following  similar  lines  as  the  proof  of  Theorem  1,
define the error vectors between the trajectory of (29a)−(29c)
and  any  GEP  of  (4)  as  defined  in  (8a),  and

apply a change of coordinates:
 

µ̂ = (L⊗ In)µ, ν̂ = (L⊗ In)ν, η̂ = (L⊗ In)η. (31)

Algorithm 2 DARA: Node-Based

xi(0) yi(0) zi(0) ai(0) κ1 κ2Data: 1) Initialization: , , , ; 2) Parameters: , 
xi→ x∗Result: Optimal resource allocation solution 

s← 11: ;
s ·h ≤ Ttml Ttml2: while  do /* h is the integration step and  is the ter-

minal time
i← 13: 　  for  to N do
ξi←

∑
j∈V
Li jy j4: 　  　 ;

βi← κ2ξTi ξi5: 　  　 ;
dxi←−κ1(∇ fi(xi)+ yi)6: 　  　 ;
dyi← xi −di − (αi +βi)

∑
j∈V
Li jy j −

∑
j∈V
Li jz j7:   　　 ;

dzi← (αi +βi)
∑
j∈V
Li jy j8: 　  　 ;

dαi← βi9: 　　  ;
xi← xi +h×dxi10: 　　 ;
yi← xi +h×dyi11: 　　 ;
zi← xi +h×dzi12: 　　 ;
αi← αi +h×dαi13: 　　 ;

14: 　end
s← s+115: 　 ;

16: end

(A+B)L ∈MN
r

Oα|(x̃,ỹ,z̃) = 0 ξ = col(ξ1, . . . , ξN) ξ = (L⊗ In)y =
(L⊗ In)(y− ỹ) = ν

Oα

Note  that .  By  Definition  1,  we  have
. Denote , we have 

.  Then,  in  the  new  coordinates  (31),  the
dynamics of  is equivalent to
 

˙̂µ = −κ1(L⊗ In)h− κ1ν̂ (32a)
 

˙̂ν = µ̂− (L(A+B)⊗ In
)
ν̂− (L⊗ In)η̂ (32b)

 

˙̂η =
(L(A+B)⊗ In

)
ν̂ (32c)

 

α̇i = βi := κ2ν̂Ti ν̂i, i ∈ IN (32d)
h = ∇ f (µ+ x̃)−∇ f (x̃)where  in (32a).

Consider the following candidate Lyapunov function:
 

V2 =
N
(
2λ2

2(Ls)+5λ̄(LTL)
)

ϵ1λ2
3(Ls)

Vµ̂+Vαν̂ +
5Nλ̄(LTL)
λ2

2(Ls)
Vη̂ (33)

where
 

Vµ̂ =
1
2
µ̂T µ̂

Vαν̂ =
1
2
ν̂T
(
(2A+B)⊗ In

)
ν̂+

N∑
i=1

1
2κ2

(
αi(t)− ᾱ

)2
Vη̂ =

1
2

(ν̂+ η̂)T (ν̂+ η̂) (34)

ᾱ, ϵ1 ∈ R+where  remains to be decided.
Vµ̄The time derivative of  can be obtained as

 

V̇µ̂ = −κ1µ̂T (L⊗ In)h− κ1µ̂T ν̂. (35)
By (31) and (30), we have

 

µ̂T (L⊗ In)h ≥ mµ̂T µ̂. (36)
Similar to (15), we have 
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V̇µ̂ ≤ (ϵ2− κ1m)µ̂T µ̂+
κ21
4ϵ2
ν̂T ν̂ (37)

ϵ2 ∈ R+where  is to be decided later.
Vα
ν̂

The time derivative of  can be obtained as
 

V̇αν̂ =
1

2κ2

N∑
i=1

(
2αiβ̇i+2α̇iβi+2βiβ̇i+2(αi− ᾱ)α̇i

)
=

1
κ2

N∑
i=1

(
(αi+βi)β̇i+ (αi+βi− ᾱ)α̇i

)
= ν̂T
(
(A+B− ᾱIN)⊗ In

)
ν̂+2ν̂T

(
(A+B)⊗ In

) ˙̂ν
= ν̂T
(
(A+B− ᾱIN)⊗ In

)
ν̂+2ν̂T

(
(A+B)⊗ In

)
µ̂

−2ν̂T
(
(A+B)L(A+B)⊗ In

)
ν̂

−2ν̂T
(
(A+B)L⊗ In

)
η̂. (38)

ν̃ =
(
(A+B)⊗ In

)
ν̂ ≜ col(ν̃1, . . . , ν̃N)Let . Based on Lemma 2,

we have
 

ν̂T
(
(A+B)L(A+B)⊗ In

)
ν̂

= ν̃T (Ls⊗ In)ν̃ =
n∑

k=1

δ̃TkL
sδ̃k (39)

δ̃k =
(
[S ν̃1]k, [S ν̃2]k, . . . , [S ν̃N]k

)T S ∈ Rn×n

[S ν̃i]k = (αi+βi)
∑

j∈Nin(i) wi j×
([S νi]k − [S ν j]k) δk =

(
[S ν1]k, [S ν2]k, . . . ,

[S νN]k
)T δ̃k = (A+B)Lδk ∀k ∈ In(

(A+B)−11N
)T δ̃k = 1T

NLδk = 0
(A+B)−11N ∈ RN

+ αi(0) ∈ R+ α̇i ≥ 0

where .  Here  is  an
orthogonal  matrix.  Note  that 

.  If  we  denote 
, then , . Under Assumption 2,

there  holds  for  any k.  Note
that  (  and ).  So,  it  follows
from (39) and statements 1) and 2) of Lemma 4 that:
 

ν̂T
(
(A+B)L(A+B)⊗ In

)
ν̂

=

n∑
k=1

δ̃TkL
sδ̃k ≥

λ2(Ls)
N

n∑
k=1

δ̃Tk δ̃k =
λ2(Ls)

N
ν̃T ν̃

=
λ2(Ls)

N
ν̂T
(
(A+B)2⊗ In

)
ν̂. (40)

Then, it follows from (38) and (40) that:
 

V̇αν̂ ≤ ν̂
T ((A+B− ᾱIN)⊗ In

)
ν̂+2ν̂T

(
(A+B)⊗ In

)
µ̂

− 2λ2(Ls)
N

ν̂T
(
(A+B)2⊗ In

)
ν̂

−2ν̂T
(
(A+B)L⊗ In

)
η̂

≤ ν̂T ((A+B− ᾱIN)⊗ In
)
ν̂+

2N
λ2(Ls)

µ̂T µ̂

+
λ2(Ls)

2N
ν̂T
(
(A+B)2⊗ In

)
ν̂+

Nλ̄(LTL)
λ2(Ls)

η̂T η̂

− λ2(Ls)
N
ν̂T
(
(A+B)2⊗ In

)
ν̂

=
2N
λ2(Ls)

µ̂T µ̂− λ2(Ls)
2N

ν̂T
(
(A+B)2⊗ In

)
ν̂

+ ν̂T
(
(A+B− ᾱIN)⊗ In

)
ν̂+

Nλ̄(LTL)
λ2(Ls)

η̂T η̂ (41)

where  we  have  repeatedly  used  Lemma  1  to  get  the  second
inequality.

Vη̂Similar to (21), the time derivative of  can be obtained as
 

V̇η̂ = ν̂T µ̂− ν̂T (L⊗ In)η̂+ η̂T µ̂− η̂T (L⊗ In)η̂

≤ 1
λ2(Ls)

µ̂T µ̂+
(λ2(Ls)

2
+
λ̄(LTL)
λ2(Ls)

)
ν̂T ν̂− λ2(Ls)

4
η̂T η̂.

(42)
η̂T (L⊗ In)η̂ ≥ λ2(Ls)η̂T η̂

(1T
N ⊗ In)η̂ = 0

Here,  we  have  used  the  fact  that ,
which  is  guaranteed  by  statement  3)  of  Lemma  4,  and

 under Assumption 2.

V2

Based on (33), (37), (41), and (42) and with some manipula-
tions, the time derivative of  along the trajectory of (32) is
upper bounded by
 

V̇2 ≤ −
N
(
2λ2

2(Ls)+5λ̄(LTL)
)
(κ1m− ϵ1− ϵ2)

ϵ1λ2
3(Ls)

µ̂T µ̂

− λ2(Ls)
2N

ν̂T
(
(A+B)2⊗ In

)
ν̂

+ ν̂T
((A+B− (ᾱ−γ′)IN

)⊗ In
)
ν̂− Nλ̄(LTL)

4λ2(Ls)
η̂T η̂ (43)

γ′ ∈ R+where  is given by
 

γ′ =
Nκ21
(
2λ2

2(Ls)+5λ̄(LTL)
)

4ϵ1ϵ2λ2
3(Ls)

+
5Nλ̄(LTL)

2λ2(Ls)
+

5Nλ̄2(LTL)
λ2

3(Ls)
. (44)

ϵ1, ϵ2 ϵ1+ ϵ2 ≤ κ1m ᾱ ≥ γ′+
N

2λ2(Ls)

Let  us  select  such  that ,  and 
. Then, it follows from (43) that:

 

V̇2 ≤−
λ2(Ls)

2N
ν̂T
((A+B− N

λ2(Ls)
IN
)2⊗ In

)
ν̂

− Nλ̄(LTL)
4λ2(Ls)

η̂T η̂ ≤ 0 (45)

V2 µ̂ ν̂ η̂
αi

implying that  has  a  finite  limit  and all  the signals , , ,
and  are bounded. The rest of the proof follows similarly to
that of Theorem 1. ■

m ≤ λ(Θ)
Note that for local costs (28), the jointly m-strongly convex

condition  (30)  also  holds  with  any ,  resulting  in  the
following corollary:

(x(0),y(0),z(0) ∈ RNn×RNn×RNn αi(0) ∈ R+
(x,y)→ (x∗,1N ⊗ y∗) αi i ∈ IN

Corollary 2: Under Assumptions 1 and 2, the resource allo-
cation  problem  (1)  with  quadratic  local  costs  (28)  can  be
solved with the adaptive algorithm (29) for any initial  condi-
tion  and any , i.e.,

.  Moreover,  the adaptive gains , ,
converge to some finite constant values.

yi

Remark 7: Although both algorithms can be recast as uncer-
tain  saddle-point  dynamics,  the  ideas  behind  the  DST-based
and  node-based  designs  for  promoting  the  consensus  over 
are  intrinsically  different.  In  the  DST-based  case,  the  root  of
the  DST  plays  the  role  of  a  leader;  while  in  the  node-based
case,  there  is  no leader  and all  the  nodes  play the  same role.
This  shows  the  flexibility  of  the  uncertain  saddle-point
dynamics viewpoint to accommodate for different design per-
spectives.
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Remark  8: The  proposed  conditions,  either  the  spanning-
tree-based or the jointly strongly convexity, are slightly more
conservative  as  compared  with  classical  strongly  convexity.
The  reason  is  due  to  the  induced  Laplacian  matrices.  Never-
theless,  Corollaries  1  and 2 have shown a  relatively standard
class  of  local  cost  functions  that  automatically  satisfies  the
proposed strongly convexity conditions.  

V.  Simulations

In this section, we give two examples to show the effective-
ness of the proposed methods. For each example, we consider
two  cases  to  model  networks  of  different  scales  (cf. Fig. 1).
The first example considers cost functions with randomly gen-
erated  coefficients,  while  the  second  example  is  inspired  by
the  benchmark  power  networks  IEEE 30-bus  and  IEEE 118-
bus  for  which  the  systems  diagrams  and  data  sets  are  avail-
able online at [40] and [41], respectively.
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Fig. 1.     Two balanced digraphs. The selected DSTs for the DST-based pro-
tocol (5) are highlighted with thicker red lines.
 

κ1, κ2 ∈
R+

In  addition  to  validate  the  effectiveness  of  the  proposed
algorithms,  some  other  goals  of  the  experiments  include:  to
support  Remark  6  in  that  the  convergence  of  the  proposed
algorithms  is  guaranteed  globally  for  any  parameters 

; to highlight the necessity of introducing the adaptive cou-
pling  strategies;  to  give  a  comparison  with  the  method  pro-
posed in [14].

G
fi(xi) = aix2

i +bixi+ ci ai = 0.1 ci = 0 bi

[1,100]

di = d/N (xi,yi,zi)

ai j(0)
(−1,1)

αi(0)
(0,1)

Example 1: Consider a total resource d to be allocated over
a  network  of N agents  that  communicate  via  a  weight-bal-
anced  digraph .  The  local  cost  function  for  each  agent  is
given by ,  where , ,  and 
are randomly selected in the interval . In the following,
two cases will be simulated. In each case, the local resources
are equally distributed as ; the initial  of the
agents are chosen from a Gaussian distribution with standard
deviation 5. For the DST-based design (5), the initial  are
chosen  from  a  uniform  distribution  in ;  for  the  node-
based design (29), the initial  are chosen from a uniform
distribution in .

d = 1.5×103 N = 6 G = G1Case 1: , ,  (Fig. 1(a));
κ1 = κ2 = 1

κ1 = 10
κ2 = 0.1

Select  for  both  the  DST-based  and  node-based
designs. The states of the agents and the corresponding adap-
tive  gains  under  (5)  and  (29)  are  provided  in Figs. 2 and 3,
respectively,  where  the  dashed  lines  represent  the  local  opti-
mal  allocation  decisions.  For  comparison, Fig. 4 shows  the
results  under  (5)  with  a  pair  of  different  parameters 
and .

d = 1.5×104 N = 54 G = G2Case 2: , ,  (Fig. 1(b));

κ1 = κ2 = 0.1

κ2 = 0

Select  for both the DST-based and node-based
designs. The states of the agents and the corresponding adap-
tive  gains  under  (5)  and  (29)  are  provided  in Figs. 5 and 6,
respectively.  For  comparison,  let ,  which  is  the  static
strategy  used  in  many  related  works,  e.g.,  [4]–[6].  It  can  be
seen from Fig. 7 that the resulting nonadaptive strategy fails to
solve  the  resource  allocation  problem.  The  reason  is  that  the
results  in the aforementioned works cannot be adapted to the
case with directed communication graphs.

Example 2: In this example, we examine the proposed algo-
rithms  applied  to  the  relaxed  (i.e.,  without  box  constraints)
economic  dispatch  (rED)  problem.  We  consider  two  bench-
mark power networks, IEEE 30-bus and IEEE 118-bus, where
N power generators must cooperatively minimize the cumula-
tive cost, while meeting a total load demand d. In both bench-
marks,  the  cost  functions  of  the  generators  are  of  quadratic
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Fig. 2.     Case 1:  States  of the agents and adaptive gains  with
DST-based protocol (5) and parameters . The states  converge
to  the  corresponding  optimal  allocation  decisions,  and  the  adaptive  gains

 converge to finite constants.
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Fig. 4.     Case 1:  States  of the agents and adaptive gains  with
DST-based protocol (5) and parameters , . A larger  leads to
better transient performance of  and a smaller  leads to smaller steady
values of , as compared to Fig. 2.
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fi(xi) = aix2
i +bixi+ ciform: .

Two  observations  follow  when  comparing  our  algorithms
with the Laplacian-gradient dynamics proposed in [13] for the
rED  problem:  first,  in  our  algorithms  the  knowledge  of  the
cost functions (or the corresponding gradients) of neighbors is
not  needed  for  each  generator,  which  makes  our  algorithms
more  privacy-friendly;  second,  our  algorithms  are  initializa-
tion-free  (i.e.,  the  initial  decisions  do  not  need  to  satisfy  the
total  load  demand).  In  fact,  the  initialization-free  problem  in
[13]  has  also  been  overcome  in  [14]  by  a “dynamic  average
consensus  +  Laplacian-gradient” (DAC+LG)  algorithm  defi-
ned as follows:
 

ẋ = −(L⊗ In)∇ f (x)+ κ1y

ẏ = −κ2(x−D)−αy−β(L⊗ In)y− z

ż = αβ(L⊗ In)y (46)
κ1, κ2, α, β ∈ R+where  are  tuned  based  on  the  Laplacian

eigenvalues.  Nevertheless,  the  exchange  of  the  gradients
through  the  network  is  still  needed.  Besides,  without  the
adjustable parameter for gradient descent, DAC+LG may suf-
fer from a slower convergence rate (cf. our case study below).

d = 103 N = 6 G = G1Case 1 (IEEE 30-bus): , ,  (Fig. 1(a));

ai = (0.00375,
0.0175, 0.0625, 0.00834, 0.025, 0.025)T bi = (2, 1.75, 1,
3.25,3,3)T ci = 0

The power system contains 6 generators. The parameters of
the local  costs are described in vector form by 

, 
,  and  [42].  The  power  allocation  states  and

the  corresponding  adaptive  gains  under  (5)  and  (29)  are  pro-
vided  in Figs. 8 and 9,  respectively,  where  the  dashed  lines
represent the local optimal power allocation decisions. Mean-
while, Fig. 10 shows  the  simulation  result  with  DAC  +  LG
proposed in [14].
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Fig. 9.     Case 1 (IEEE 30-bus):  Power allocation states  and adaptive
gains  with node-based protocol (29) and parameters , .
 

d = 105 N = 54 G = G2Case 2 (IEEE 118-bus): , ,  (Fig. 1(b));

ai ∈ (0.0024,0.0697)
bi ∈ (8.3391,37.6961) ci ∈ (6.78,74.33)

The  power  system  contains  54  generators.  The  parameters
of  the  local  costs  belong  to  the  ranges ,

,  and  [41].  The  power
allocation  states  and  the  corresponding  adaptive  gains  under
(5)  and  (29)  are  provided  in Figs. 11 and 12,  respectively,
where the dashed lines represent the local optimal power allo-
cation decisions.

N = 54
N = 6

ᾱ ≥ γ′+ N
2λ2(Ls)

When  comparing  Case  2  to  Case  1,  one  can  find  that  the
steady-state  gains  for  have  smaller  orders  of  magni-
tude as those for . Therefore, we conclude the section by
commenting  on  the  lower  bound  introduced
before (45). Although this bound increases for increasing N, it
is only used for stability analysis of algorithm (29), and might
be  conservative  in  practice,  as  discussed  in  [25],  and  as  evi-
dent  from  our  simulations.  As  a  matter  of  fact,  our  simula-
tions show that the actual values attained by the adaptive gains
are  not  influenced by the  scale N of  the  network,  but  mainly
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κ2depend on the network structure and the parameter .
  

VI.  Discussions

[On further  comparisons  between  DST-and  node-based
algorithms]  The  DST-based  method  can  in  general  lead  to
faster  convergence  (see Figs. 2 and 3 in  Section  V,  and  the
simulation results  in [31] for a distributed optimization prob-
lem). This is consistent with intuition since enhancing connec-
tions  along  a  DST  structure  should  be  more  efficient  than
enhancing connections of all links. Note that a DST structure
is known in the literature to be beneficial for cooperative con-
sensus [24], [36].

[On the  superiority  between  DST-and node-based  algo-
rithms] Different constraints in real-world applications would
decide the superiority between these two algorithms. If faster
convergence  speed  is  desired,  the  DST-based  method  would

be preferable, where the DST structure could be identified via
a  breadth/depth  first  algorithm  [43,  Section  1.4.4]  or  dis-
tributed  algorithms  [38].  If  a  fully  distributed  strategy  that
does not rely on any a priori information is desired, the node-
based  algorithm  would  be  preferable,  since  the  DST-based
method requires a priori knowledge of a DST structure.

[On  the  open  problems  of  the  DARA  algorithms]  Note
that  the  Lyapunov  functions  in  (11)  and  (33)  are  quadratic.
Since  results  exist  where  a  non-quadratic  Lyapunov  function
may improve performance in adaptive schemes, see e.g., [44],
[45],  an  open  future  direction  is  to  improve  the  proposed
adaptive  resource  allocation solutions  via  non-quadratic  Lya-
punov functions. Besides, the DARA algorithms in this paper
have  been  formulated  for  resource  allocation  problems  with-
out local bound constraints. Such local bound constraints may
appear in engineering applications such as economic dispatch
in  the  field  of  power  networks.  Embedding local  bound con-
straints  in  the  proposed  saddle-point  dynamics  viewpoint  is
thus a challenge for future work.  

VII.  Conclusions

Distributed  optimal  in-network  resource  allocation  over
weight-balanced digraphs was studied.  Two novel distributed
adaptive saddle-point algorithms named DST-based and node-
based algorithms have been proposed. The asymptotic conver-
gence  of  each  algorithm  has  been  theoretically  proved  and
numerically tested. The proposed adaptive resource allocation
frameworks successfully remove the knowledge of the under-
lying  Laplacian  eigenvalues,  which  has  been  widely  used  in
related literature.  Future work includes relaxing the proposed
conditions (7) and (30), and studying resource allocation prob-
lems with local bound constraints.  
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