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Abstract
This paper investigates the viability of using
scope graphs to implement type checkers for
programming languages, specifically for a Scala
subset. The primary objective is to determine if
scope graphs can offer a declarative and extensible
approach to type checking. To achieve this, we
used a phased Haskell library to implement such a
type checker. The declarativity and feature exten-
sibility of the approach were evaluated by means
of comparation with Rouvoet et al.’s approach in
mini-Statix. The results demonstrate that using
scope graphs as a basis for type checking yields
a modular and extensible solution compared to
traditional methods. However, it is noted that
this approach may sacrifice a certain degree of
declarativity. These findings suggest that scope
graphs are a promising tool for type checking, par-
ticularly in the context of name binding. Further
research is recommended to explore the possibility
of implementing similar type checkers for other
programming languages. Additionally, the paper
suggests incorporating additional features into
the targeted Scala subset, thereby enhancing its
extensibility. The code is available on GitHub1.

Key terms: Type Checking, Scala Type
Checker, Scope Graphs, mini-Statix, Phased
Type Checking, Monotonicity.

1 Introduction
The field of programming languages has seen significant ad-
vancements in recent years, with the focus shifting towards
developing efficient type checkers that ensure the correctness
of programs. In this context, scope graphs have emerged as a
promising solution for handling scoping and binding in pro-
gramming languages [1].

Previous research has explored the use of scope graphs
for building type checkers. For example, van Anterwepen
et al. [2] demonstrated the effectiveness of their approach
in handling various language features, such as nested func-
tions, imports and composite types. While alternative ap-
proaches, such as Hindley-Milner type inference [3] or type
classes inference [4], exist for generating type checkers, chal-
lenges remain in declaratively implementing type checkers
using scope graphs for certain language features.

Furthermore, the development of this research has been in-
spired by the work presented in [5], which introduces mini-
Statix2, a Haskell implementation of Statix-core [6] tailored
for a Scala subset. It provides support for handling Scala-
specific language features such as imports and objects, en-
abling the type checking of Scala programs against their
declarative specifications. Declarative specifications offer
concise and intuitive descriptions of desired behavior or prop-
erties, without specifying implementation details. The paper

1Code: https://github.com/rgmihalachiuta/ScalaScopeGraphs.git
2Scala mstx: https://github.com/MetaBorgCube/scala.mstx

demonstrates the effective utilization of scope graphs in ad-
dressing some challenges of name resolution.

Despite recent progress in generating type checkers from
declarative specifications using scope graphs, a knowledge
gap remains regarding how these approaches represent name
binding and scoping rules in a clear and understandable man-
ner [7]. In this paper, we address the question “Can we imple-
ment a type checker for a targeted Scala subset, using scope
graphs and a Haskell library for phased scope graph con-
struction?”. This research question pertains to unanswered
questions surrounding the declarative nature and extensibility
of such type checker:

i. “ How effectively does the scope graph-based phased
approach capture language declarativity and represent
name binding and scoping rules?”

ii. “ Can the scope graph-based phased approach be ex-
tended to support new language features in a modular
and efficient manner, and does this require additional
phases?”

To answer these research questions, we implemented
our approach based on Rouvoet et al.’s mini-Statix Scala
project, using a phased Haskell library3. Then, we performed
a qualitative comparison to the mini-Statix approach, uti-
lizing their test suite for name resolution challenges. We
also evaluated the declarativity and feature extensibility
of our type checker compared to theirs, highlighting the
strengths and weaknesses to guide future research in this area.

In summary, the contributions of this paper are:
1. We provide a Haskell implementation of a phased type

checker for a Scala subset (presented in Section 3).
Through this, we address challenges related to prece-
dence in Scala, particularly with specific and absolute
imports, by carefully phasing the type checking process
(presented in Section 3.4).

2. We present a comprehensive comparison with the mini-
Statix implementation, utilizing their existing test suite.
This comparison serves to validate and evaluate the pro-
posed approach, as discussed in Section 4.

3. We identify opportunities for further research, such
as improving rule readability, addressing precedence
in name resolution, resolving ambiguity between def-
initions across scope levels, and exploring alternative
strategies for handling name conflicts (presented in Sec-
tion 8).

The rest of the paper is organized as follows. Section 2
provides a thorough description of the addressed problem,
while Section 3 highlights our contributions. Section 4
presents a qualitative analysis of our type checker, and
Section 5 discusses the Responsible Research behind our
implementation. We further compare our approach with other
related work in Section 7, while Sections 6 & 8 summarize
the findings and discuss possible directions for future work.

3Haskell Library: https://github.com/heft-lang/hmg

https://github.com/rgmihalachiuta/ScalaScopeGraphs.git
https://github.com/MetaBorgCube/scala.mstx
https://github.com/heft-lang/hmg


2 Problem Description
In this chapter, a comprehensive description of the addressed
problem is provided. Firstly, the chapter explains the back-
ground of the main concepts in 2.1, which are part of the
stated objective of the research in 2.2. Then, the focus is
put on a targeted Scala subset and the challenges posed by
objects and imports, justifying their relevance in Section 2.3.
Lastly, the concept of monotonicity errors is presented in 2.4,
underscoring their significance in maintaining type correct-
ness. The solution to these challenges is further explained in
Section 3.

2.1 Preliminaries
Type checking
Type checkers are programs that ensure the compatibility and
correctness of types in a program. They help to catch errors
early in the development process and ensure program relia-
bility through valuable feedback [8]. In the research context,
a robust and accurate type checker is essential to enforce type
safety, maintain the integrity of object hierarchies, and ensure
the proper resolution of imported symbols.

Scope Graphs
Scope graphs are a promising approach in constructing type
checkers for handling intricate name resolution rules [2].
They offer a unified view of scoping, name resolution, and
visibility, accurately tracking program entity accessibility
within scopes.

Scope graphs provide declarative rules for scoping struc-
tures, eliminating the need for ad hoc typing contexts (i.e.
language-specific scoping mechanisms). They offer a para-
metric approach to name resolution, enabling consistent and
reusable type checking algorithms [7].

The adoption of scope graphs in this research addresses
complexities in name resolution and scoping mechanisms. It
ensures correct enforcement of scoping rules, unambiguous
name resolution, and resolved import conflicts.

Scope Graph Representation
Scope graphs are directed graphs where scopes are repre-
sented as nodes with attached sinks for name binding infor-
mation. Type-checking involves running queries for specific
names starting from a given scope and traversing edges based
on regular expressions. We used the notation depicted in Fig-
ure 1, where the scope graph showcases variable and object
sinks linked to their respective scopes through labeled edges.
These edges represent various relationships such as lexical
parents (P), object sink edges (O), definition scopes (D), vari-
able sink edges (V), type aliases sink edges (TY), explicitly
imported variable sink edges (EI), and wildcard import edges
(WI).

Sink.ValDecl ::= [([String] [Type])]
Sink.ObjDecl ::= [([String] [Scope])]

Edge.Label ::= P | O | D | V | TY | EI | WI

Figure 1: Scope Graph Parameters.

Van Antwerpen et al. [2] propose representing scopes as
types to address challenges in name resolution, including im-
ports and composite types. In contrast, the Haskell library in-
corporates scopes as arguments of declarations, as shown in
Figure 1. The sink object declaration takes arguments of the
object name and associated scope, aligning with the concept
of treating scopes as types. Thus, it provides explicit scop-
ing and improves understanding of interactions with the en-
vironment. This approach offers a declarative representation
of name resolution rules, ensuring consistency across scopes
and declarations.

2.2 Research Objective
The current mini-Statix implementation handles stable query-
ing, addressing scoping and name resolution complexities, in-
cluding objects and differences between explicit and wildcard
imports. Ergo, the objective of this research is to develop
an alternative scope graph-based type checker, combining the
convenience of automated scheduling with the flexibility and
control offered by the phased Haskell library.

Additionally, the research aims to explore the number of
phases required for this type checker and investigate the im-
pact of explicit phasing on the implementation. This explo-
ration is particularly intriguing as previous work, such as
mini-Statix, has handled the phasing automatically, and the
effects of explicit phasing remain unknown. By addressing
these aspects, the study seeks to expand the current under-
standing in programming languages and type systems, specif-
ically within the context of Scala.

2.3 Targeted Scala Subset
Due to time constraints and the specific nature of the research
question, only the mini-Statix Scala subset was considered
for development and evaluation. A part of the selected sub-
set can be visualised in Figure 2, and it includes essential
language features related to definitions, objects and import
mechanisms.

ScProg.Prog ::= [([ScDecl*])]

ScDecl.Val ::= [([ScPr] [ScExp])]
ScDecl.TypeAlias ::= [([String] [Type])]
ScDecl.Def ::= [([String] [ScPr*]

[Type] [Body])]
ScDecl.Obj ::= [([String] [ScDecl*])]
ScDecl.Imp ::= [([ScImp])]

ScImp.ExplicitImp ::= [([String*] [String])]
ScImp.WildcardImp ::= [([String*]]

ScPr.Parameter ::= [([String] [Type])]
Body.DefBody ::= [([ScDecl*] [ScExpr])]

ScExpr.Id ::= ID
ScExpr.Num ::= INT
ScExpr.Boolean ::= BOOL

Figure 2: Context-free Syntax for the Scala Subset.



Name Resolution in Scala Objects
Objects in Scala provide a powerful abstraction mechanism
for encapsulating state and behavior. However, their inter-
action with scoping rules or member access introduces com-
plexities in the type checking process. In Scala, scoping rules
vary for names defined in the lexical scope (which can be
forward referenced) and imported names (which cannot), re-
sulting in more complex resolution and disambiguation rules
[5]. Figure 3a (with its scope graph representation in Figure
3b) exemplifies two such possible complexities. It comprises
of a forward-reference case, where x depends on the type of
y, which is declared later in the program, and a case where
the inner block of an object method shadows the outer scope.
By targeting this subset, the goal is to handle object declara-
tions and ensure proper scoping and name resolution within
the object context.

(a) Program

object A {
val x: Int = y
val y: Int = 42

def m : Boolean = {
val x: Boolean = true
x

}
}

(b) Scope graph
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x: Int y: Int

m: Bool

x: Bool
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Figure 3: Visualisation of challenges imposed by Scala Objects. A
case of forward-reference and block-shadowing.

The process of querying in scope graphs involves exam-
ining paths that adhere to specific edges and arranging them
based on their shortest path. Regular expressions are used to
define the permissible edges that can be traversed. In Figure
3b, queries are represented by purple and violet lines. For in-
stance, when resolving the reference to x, a query is initiated
from scope 2, searching for all sinks whose path labels match
the regular expression P*D*WI?(EI|V). This query yields a
single path, depicted in violet. In cases where multiple paths
exist, the shortest path is chosen. If it is not feasible to estab-
lish a path, the program becomes ambiguous.

Imports Precedence
In Scala, explicit and wildcard imports have different prece-
dence rules based on whether names are explicitly listed or
caught by a wildcard, allowing developers to selectively im-
port specific members or import all members from a mod-
ule [5]. The difference in precedence between these import
mechanisms creates an interesting challenge in name reso-
lution. When a name is referenced, conflicts, called name
clashes, may arise between explicitly imported members and
wildcard-imported members with the same name. This can
be observed in Figure 4, where both A & B define a variable
x, imported by C. Resolving these conflicts requires defining
rules that prioritize one type of import over the other. These
rules will be further explained in Section 3.2.

object A {
val x : Int = 21

}

object B {
val x : Boolean = true

}

object C {
import A.x
import B._

val y : Int = x /** queries to A == 21
}

Figure 4: Name-clash between specific and absolute
imports.

2.4 The Challenge of Monotonicity
Monotonicity ensures that query results remain valid through-
out the entire type-checking process (i.e. query stability). In
the context of scope graph queries, being monotone means
that once a scope has been queried for a path with a spe-
cific label, an outgoing edge with the same label cannot be
added later. These edges are called critical edges in literature
[5] and they can invalidate the stability of queries. Hence,
these errors occur when the addition of critical edges influ-
ences previous queries, leading to inconsistent results upon
re-evaluation.

In Figure 5a (scope graph representation in Figure 5),
querying for A before the second explicit import would ini-
tially resolve A from scope 1. However, when the scope graph
is fully constructed, querying for label EI in the same scope
would violate monotonicity, introducing a crticial edge. This
ambiguity highlights that an explicit import does not effec-
tively shadow the earlier one. To maintain monotonicity, only
one explicit import should be used. We describe how our ap-
proach handles these challenges imposed by monotonicity in
Section 3.2.

(a) Program

object O {
type A = Boolean
object M {
type A = Int

}

object I {
import O.A
val x : A = 3
import M.A

}
}

(b) Scope graph
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Figure 5: A program and its associated scope graph that lead to
monotonicity errors.



3 Phased Type Checking
In this chapter, we present the main contribution of this the-
sis: the phased type checker. We start by discussing the tech-
nical implementation, utilizing the Haskell library, in Section
3.1. Next, in Section 3.2, we outline the phases of the type
checker. To provide even more depth, we present another
comprehensive example in Section 3.3. Finally, we reflect
upon the encountered challenges in Section 3.4. This founda-
tion sets the stage for the subsequent analysis and evaluation
of the type checking approach, which we present in Section
4.

3.1 Technical Implementation
The type checker is implemented using Haskell, leveraging a
range of tools and libraries to facilitate its development. Ad-
ditionally, we have used a phased Haskell library which offers
a functional approach to build and inquire about scope graphs
using the principles of effect handler theory introduced by
Bach Poulsen and van der Rest in their work [9].

The fundamental resources were represented by the main
primitives of the Haskell library: new, edge, sink, and
query for creating efficient and correct scope graphs. These
primitives enable the creation of scopes, establishment of
scope relationships, storage of data, and efficient querying
within the type checking process. The specific implementa-
tion of these primitives can be found on GitHub4.

3.2 Phased Algorithm
To address the challenges outlined in Section 2, we developed
a phased type checker. While mini-Statix automatically han-
dles query scheduling, tracking critical edges and delaying
queries until all edges are constructed [5], the Haskell library
takes a different approach. It explicitly manages the phasing,
providing fine-grained control over the order of operations to
prevent monotonicity errors. This enables the type checker
to operate in distinct phases, each targeting a specific aspect
of the program. Hence, the core algorithm of the type
checker consists of the following main phases, which will be
exemplified through the scope graph in Figure 6.

0

1 23

A @ 1 B @ 2

C @ 3

x: Int x: Boolean

x: Inty: Int

x

P PP

WI

O O

O

V V

V EI

Figure 6: Scope graph representation of the name-clash in Figure 4.

4Primitives Implementation: https://github.com/heft-lang/hmg/
blob/master/src/Free/Scope.hs

1. Establishing the parent object sinks along with their cor-
responding scopes.

2. Incorporating variable declarations into the graph.

3. Handling imports by including the relevant sinks and
edges in the graph.

4. Type-checking of declaration bodies in relation to the
scope graph.

Phase 1: Allocating Object Scopes
The initial step involves traversing the program, encompass-
ing parent objects with the potential for nested objects, dec-
larations, and imports. By commencing with a global import
denoted as 0, we capture all parent objects such as A, B, C.
Subsequently, a dedicated scope is allocated for each parent
object (1, 2, 3), establishing a coherent connection between
the global scope and the corresponding object sinks. This in-
tricate process draws parallels to the workings of mini-Statix
in terms of object declaration methodology.

Phase 2: Declaring Variables
Moving on, we proceed to declare variables within each ob-
ject, ensuring their encapsulation within the corresponding
scopes. In our example, we declare the two instances of vari-
able x, as well the one of y. By prioritizing the construction
of declarations, we facilitate the possibility of forward refer-
encing and import accessibility. This ordering is crucial, as
exemplified by the inability to copy the explicitly imported
name without the prior declaration of variable x.

Declarations encompass a range of elements, including
definitions, type aliases, and child objects. This implemen-
tation closely aligns with the specifications of mini-Statix,
where the declaration of variables follows a similar approach.
For values and types, we introduce a V or TY sink (labels
VAL & TYPE in mini-Statix) within the associated scope. In
the case of definitions, we add a V sink to the correspond-
ing scope and establish a new scope for the parameters and
body of the definition. To establish the connection between
the parent scope and the definition scope, we introduce a D
edge, a step not performed in mini-Statix. The treatment of
child objects mirrors that of parent objects, following a simi-
lar procedure.

Phase 3: Import Resolution
One notable distinction between our approach and mini-
Statix lies in the handling of imports. In mini-Statix, im-
ports are defined as a sequence of scopes connected by the
label B, which is passed alongside the current lexical scope.
Consequently, name resolution occurs within the appropriate
scope. Conversely, in our implementation, we handle spe-
cific imports by copying the explicitly imported names within
the scope of the importing object. This deviation from mini-
Statix simplifies the process of specific imports but elimi-
nates the concept of sequenced imports, which carries cer-
tain drawbacks discussed in detail in Section 4. Additionally,
when dealing with wildcard imports, we establish WI edges
between the scopes of the importing and imported objects,
which reflects the behavior in mini-Statix.

Illustrating this with our example, upon encountering the
specific import of object A, we query for object A and check

https://github.com/heft-lang/hmg/blob/master/src/Free/Scope.hs
https://github.com/heft-lang/hmg/blob/master/src/Free/Scope.hs


if the variable x exists within its scope. Upon confirming its
presence, we proceed to copy x using an EI edge within the
imported scope of object C. Similarly, when importing object
B, which is a wildcard import, we simply establish a WI edge
from scope 3 to scope 2.

Phase 4: Type-checking the Program
Finally, we proceed to type check the bodies of all declara-
tions. During the type checking process, when encountering
an identifier, we perform a query that encompasses both the
current object and the imported objects, utilizing the resolu-
tion regex pattern: P*D*WI?(EI|V). It is worth noting that
in mini-Statix, the regex pattern B*(PB*)*(I|W)?VAL is em-
ployed for variable resolution. The main distinctions lie in the
block atoms, as our approach does not support them, and the
representation of explicit imports as sinks rather than edges.
Consequently, our regex pattern provides the flexibility to se-
lect paths between values and explicitly imported names.

In our example, by selecting the shortest path, the correct
resolution of the x is ensured. The type checker prioritizes the
explicit import A over the wildcard import B (i.e. violet path),
even though it is farther away, adhering to Scala’s preference
for explicit imports. As a result, the value of 21 from ’A.x’ is
appropriately chosen, mitigating any potential ambiguity or
erroneous outcomes that could arise from name clashes.

3.3 Handling Name Resolution
Our techniques and design choices ensure proper scoping,
member access, and resolution rules within objects, while
innovative strategies address conflicts and maintain desired
scoping semantics for different import mechanisms. In or-
der to illustrate the effectiveness of the phased algorithm in
handling these complex name resolution scenarios, this sec-
tion provides one more comprehensive example. This ex-
ample highlights the advantages of the phased approach in
ensuring proper name resolution and avoiding conflicts, ul-
timately contributing to the robustness and reliability of the
type checking process.

(a) Program

object O {
def f : Int = g
import N._
def g : Int = h

}

object N {
import O.f
def h : Int = f

}

(b) Scope graph
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Figure 7: A program and its associated scope graph to exemplify the
phased type checker.

Figure 7a and its corresponding scope graph in 7b exem-
plify the challenge of handling mutually recursive definitions
with imports, specifically in the context of circular dependen-
cies between objects O and N. Such circular dependencies can

introduce monotonicity errors in name resolution and type
checking. In Scala, the semantics allow for mutually recur-
sive definitions within an object, enabling forward references,
while imports follow sequential rules, restricting references
to imported names until after the import statements [5].

The phased type checking process addresses this challenge
by sequentially creating the scope graph and declaring ob-
jects O and N in the first phase, without performing name
resolution. Subsequently, the definitions are declared, fol-
lowed by the processing of imports within each object. In the
scope graph, the absolute import in object O is represented
by a WI edge, establishing a link between the object scopes,
allowing complete access to object N’s scope from object O.
Conversely, the explicit import O.f is reflected by copying the
named import f into the scope of object N. Finally, the defi-
nitions are type-checked, leveraging the resolved imports and
mitigating the risk of monotonicity errors, as depicted by the
colored paths in Figure 7.

3.4 Reflection upon Encountered Challenges
The phased nature of the type checker poses challenges in
coordinating and sequencing the different phases, especially
in complex programs with interdependent components. Co-
ordinating the order of execution and ensuring the correct
propagation of information across phases can become intri-
cate. Additionally, changes in one phase may necessitate cor-
responding adjustments in subsequent phases, adding to the
complexity of maintaining the overall integrity of the algo-
rithm. However, these challenges are addressed through a
rigorous implementation, which carefully handles the depen-
dency between each phase.

Moreover, the phased approach effectively addresses the
challenge of monotonicity errors. By carefully ordering the
operations, critical edges, which can disrupt query stability,
are introduced only after processing all relevant declarations
and imports. This preserves the formal property of query sta-
bility and ensures consistent and reliable type checking re-
sults.

Finally, the mini-Statix approach encounters challenges re-
lated to the complexity of scope graph-based type checking
rules, precedence conflicts, and ambiguity caused by shad-
owing. These challenges require careful consideration and
effective handling. Our phased approach offers a potential
solution by systematically addressing these complexities, en-
suring clearer and more robust resolution of name bindings
and scoping rules. Coordinating the sequencing and inter-
actions between the phases mitigates rule complexity, prece-
dence conflicts, and shadowing ambiguity, resulting in more
accurate and effective type checking.

4 Experimental Setup and Results
In this section, the evaluation setup (4.1) and procedure (4.2)
used are described to assess the effectiveness and perfor-
mance of the phased type checker. This is based on a compare
and contrast between the phased approach and the existing
type checker in the Statix library, whose results are analysed
and reflected upon in 4.3.



4.1 Evaluation Setup
To comprehensively evaluate the type checker, we con-
structed a diverse test suite based on the existing Scala pro-
grams from the mini-Statix implementation’s test suite5. The
mini-Statix test suite consists of 108 well-crafted test cases
designed to specifically address and assess the challenges of
name resolution, object structures, and various import scenar-
ios. Additionally, we expanded the test suite by incorporat-
ing new tests that cover edge cases and more intricate name
resolution scenarios, including the program examples high-
lighted in this paper. As a result, the test suite grew to a total
of 113 tests, as depicted in Figure 8. This augmented test
suite formed the foundation for comparing the performance
and correctness of our type checker against mini-Statix’s type
checker.

Due to time constraints, our approach prioritized core func-
tionalities and omitted support for import renaming, hiding,
and nested lexical scopes in definition bodies, resulting in 16
unsupported test cases. While these cases are excluded from
evaluation, they serve as potential areas for future optimiza-
tion. The subsequent subsection focuses on the remaining five
unsupported test cases, enabling us to concentrate on evalu-
ating supported features and identifying opportunities for en-
hancement.

Figure 8: Test suite overview.

Property # Test Cases # Unsupported Tests
Comprehensive 4 2
Definitions 18 -
Expressions 11 2
Imports 25 9
Precedence 35 7
References 7 1
Statements 8 -
New tests 5 -

Total 113 21

4.2 Evaluation Procedure
The test suite (comprising of the remaining 92 tests with sup-
ported features) was systematically executed to evaluate the
performance of our phased type checker. The analysis of the
results involved assessing the number of true positives, true
negatives, false positives, and false negatives. True positives
are tests that pass in both mini-Statix and our approach, in-
dicating consistent and correct behavior. True negatives are
tests that fail in both implementations, indicating agreement
on identifying errors. False positives are tests that fail in
mini-Statix but pass in our approach, suggesting improved
accuracy. False negatives are tests that pass in mini-Statix but
fail in our approach, highlighting areas for further refinement.
These findings are presented in Figure 9, providing a visual
representation of the performance metrics.

5Test suite: https://github.com/MetaBorgCube/scala.mstx/tree/
master/tests
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Figure 9: Bar graph highlighting results.

4.3 Results

The bar graph in Figure 9 highlights the great performance of
our approach compared to mini-Statix across 92 tests. With
an accuracy rate of 87 out of 92 tests, our approach demon-
strates a high level of reliability and precision. This accuracy
is crucial as it minimizes the chances of name conflicts, ambi-
guity, and incorrect type assignments, resulting in improved
program quality, efficient debugging, and increased produc-
tivity.

It should be noted that the false positives are due to the
lack of support for sequenced imports in our approach, as
discussed in Section 3.2, resulting in two test failures. Ad-
ditionally, there is one false positive and two false negatives
observed in specific nested tests that examine wildcard shad-
owing. While time constraints prevented the resolution of
these issues, addressing them would be a valuable considera-
tion for future work.

To resolve the lack of support for sequenced imports, we
can enhance the type checker by incorporating sequential im-
port processing, like mini-Statix does. In addition, to ad-
dress the false positives and false negatives related to wild-
card shadowing, we can refine the scoping rules and name
resolution algorithm. This may involve introducing advanced
mechanisms to handle conflicts and ambiguity caused by
wildcard imports, such as prioritizing local declarations or
providing disambiguation options.

The comparison between the approach and Statix revealed
a notable distinction in the phased nature of the type checker,
offering explicit control and advantages in declarability and
extensibility. The approach’s modularization and separation
of concerns allow for easier reasoning and extension. In con-
trast, mini-Statix’s internal query scheduling limits control
and presents implementation challenges.

https://github.com/MetaBorgCube/scala.mstx/tree/master/tests
https://github.com/MetaBorgCube/scala.mstx/tree/master/tests


5 Responsible Research
Responsible research is crucial and highly relevant in the field
of type checking. As researchers and developers, it is our eth-
ical obligation to ensure that our work not only produces valu-
able insights and advancements but also considers the broader
impact on society. Responsible research encompasses vari-
ous aspects such as validity, reliability, transparency, repro-
ducibility, and ethical considerations. By adopting a respon-
sible approach, we can address potential challenges, mitigate
risks, and provide reliable and trustworthy outcomes that con-
tribute to the well-being and progress of the software devel-
opment community and its practical applications.

First and foremost, the validity and reliability of the type
checking process have been thoroughly investigated to mit-
igate the occurrence of false negatives and false positives.
These inaccuracies can have detrimental effects on program
behavior and error detection. It is important to note that while
our approach has demonstrated high accuracy, a few false
positives and false negatives have been observed. As respon-
sible researchers, we acknowledge these instances and rec-
ognize the need for further refinement. Future work will fo-
cus on addressing these false positives and negatives through
continuous experimentation, validation, and algorithmic im-
provements to enhance the overall quality and precision of
the type checking results.

Moreover, accurate and informative error messages play
a crucial role in responsible research and software develop-
ment. Clear and precise error messages aid developers in
understanding and resolving issues in their code, leading to
more efficient debugging and improved program quality. By
providing detailed explanations of type errors, ambiguous ref-
erences, or scoping conflicts, developers can quickly identify
and address potential issues, resulting in more reliable and
robust software. Moreover, user-friendly error messages en-
hance the usability and accessibility of the type checker, em-
powering developers of all levels of expertise to effectively
utilize the tool and promote responsible programming prac-
tices.

In terms of ethical considerations, transparency has been a
key focus throughout the research. Both the research method-
ology and the code implementation have been made transpar-
ent to promote openness and reproducibility. The availabil-
ity of the code on GitHub facilitates the accessibility of the
test suite, enabling others to verify and reproduce the exper-
iments. This transparency helps establish a reliable founda-
tion for further research and ensures the accountability of the
findings.

Additionally, ethical considerations extend to the poten-
tial consequences of the research on practical life. Recog-
nizing the trade-off between expressiveness and complexity
in type checking with scope graphs, recommendations have
been provided to mitigate the risks associated with the misuse
or misinterpretation of the research outcomes. By emphasiz-
ing responsible usage and providing guidelines for proper ap-
plication, the research aims to promote the responsible adop-
tion and utilization of the developed code.

It is important to note that the theory of separatism [10],
which suggests that researchers are only responsible for the

development of the technology and not for how it is used by
others, is inadequate. Instead, a comprehensive approach is
advocated, in which researchers actively engage in both the
development and the implications of how the technology is
utilized. By acknowledging the ethical dimensions and tak-
ing proactive measures, researchers can contribute to the re-
sponsible and beneficial use of the developed tools.

6 Discussion
This discussion revolves around the two sub-research ques-
tions regarding the declarativity and feature extensibility of
the phased approach. They aim to provide a comprehensive
exploration of the strengths, limitations, and potential chal-
lenges associated with our approach. By delving into these
discussions, we gain a deeper understanding of the trade-offs
involved and the implications for practical implementation
and future development.

Based on the findings presented in this paper, it can be con-
cluded that our approach, while effective and promising, is
not as declarative as mini-Statix. The mini-Statix implemen-
tation relies on a rule-based approach for type checking, pro-
viding a high level of declarativity. In contrast, our approach
adopts a phased nature that emphasizes explicit steps and se-
quencing. While this may introduce a departure from strict
declarative rules, our approach compensates for this by offer-
ing greater control, extensibility, and modularity. The trade-
off between declarativity and flexibility is an important con-
sideration when choosing a type checking approach, and our
findings highlight the strengths and advantages of our phased
approach.

The extensibility of scope graphs as a foundation for imple-
menting a type checker in the Scala subset was also explored
during the evaluation process. While scope graphs offer a
solid basis for name resolution and scoping rules, certain lan-
guage features or scenarios may require additional effort to
handle effectively. However, the extensibility of the approach
provides ample room for addressing these limitations through
careful design choices and further research. By incorporating
new language features, refining the resolution algorithm, and
enhancing error reporting, the type checker can be extended
to accommodate a wider range of programming constructs
and provide more accurate and informative feedback to de-
velopers. This focus on extensibility ensures that the type
checker remains adaptable to evolving language requirements
and continues to provide valuable support for developers in
their programming endeavors.

The decision to introduce new phases in the type checking
process for handling new features depends on the complex-
ity and requirements of the features. While some features
can be accommodated within existing phases, more complex
ones may benefit from separate phases to ensure accurate type
checking and maintain code organization. The choice should
prioritize maintainability, clarity, and modularity, striking a
balance between accommodating new features and preserv-
ing the simplicity of the overall type checking algorithm. By
evaluating each feature’s needs, a well-designed type check-
ing process can effectively handle existing and future lan-
guage constructs.



7 Related Work
The related work section plays a crucial role in contextualiz-
ing our approach within the existing literature and highlight-
ing its unique contributions. It allows us to critically evalu-
ate and compare our approach with relevant papers, gaining
valuable insights into the strengths, limitations, and potential
advancements in the field of type checking.

In the realm of name resolution, the use of environments
as a means of expressing name resolution concepts, such as
in Scala, has been common. However, Rouvoet et al. [5] ar-
gue that environments can be limiting in terms of high-level
expressiveness. Scope graphs offer a novel and more flexi-
ble approach, capturing the complex interplay between nested
scopes, imports, and lexical scoping rules. Compared to en-
vironments, scope graphs provide advantages in terms of pre-
cision, modularity, and control over name resolution. While
previous works have predominantly focused on environments
[11], the adoption of scope graphs opens up new possibili-
ties for advanced and reliable type checking algorithms. Our
phased approach leverages the benefits of scope graphs, offer-
ing a more declarative, modular, and extensible type checking
process.

Mini-Statix [5] is a notable implementation in type check-
ing with scope graphs. It provides a language for declara-
tive typing rules and allows for the automatic derivation of
executable type checkers from these rules. In the context
of name resolution, the mini-Statix language employs scope
graphs to handle the complexities of name binding. This ap-
proach offers advantages over manual type checkers by en-
suring soundness and providing a declarative way to define
typing rules. However, challenges remain in implementing
certain language features declaratively using mini-Statix and
scope graphs, necessitating further exploration and refine-
ment.

In comparison, our phased approach emphasizes explicit
control and sequencing in the type checking process, offering
greater flexibility, modularity, and extensibility. While mini-
Statix provides automated query scheduling and ease of use,
our approach grants developers more control over execution
order and avoids dependencies associated with specific lan-
guage workbenches, reducing the learning curve. The trade-
offs between automation and control, as well as the simplicity
of dependencies, influence the suitability of each approach for
different development scenarios.

8 Conclusion
To conclude, this paper successfully addresses the research
questions of whether a type checker for a targeted Scala sub-
set can be implemented using scope graphs and the Haskell
library, and how effectively the approach captures language
declarativity and handles name binding and scoping rules.
The phased Haskell library enables the implementation of
the type checker with four phases, striking a balance be-
tween declarativity and extensibility. While some declar-
ative aspects are compromised, the approach compensates
by offering enhanced modularity and the ability to support
new language features efficiently through additional phases.
This research contributes to the field of type checking by

demonstrating the practicality and advantages of the scope
graph-based phased approach, paving the way for further
advancements in reliable and flexible software development
processes.

The implementation of the type checker establishes a solid
foundation for future extensions and improvements. Address-
ing the unsupported test cases to achieve full coverage and
incorporating the missing functionality from mini-Statix are
important avenues for enhancing the accuracy, capabilities,
and usability of the type checker. These advancements will
align the tool with existing declarative approaches, ensuring
reliable and flexible support for developers working with the
Scala subset. Furthermore, improving error reporting and in-
tegrating external tools for advanced functionality will enrich
the capabilities, efficiency, and overall usability of the type
checker, further empowering developers in their program-
ming endeavors.
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