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We report the first complete characterization of single-qubit and two-qubit gate fidelities in silicon-based
spin qubits, including cross talk and error correlations between the two qubits. To do so, we use a
combination of standard randomized benchmarking and a recently introduced method called character
randomized benchmarking, which allows for more reliable estimates of the two-qubit fidelity in this
system, here giving a 92% fidelity estimate for the controlled-Z gate. Interestingly, with character
randomized benchmarking, the two-qubit gate fidelity can be obtained by studying the additional decay
induced by interleaving the two-qubit gate in a reference sequence of single-qubit gates only. This work
sets the stage for further improvements in all the relevant gate fidelities in silicon spin qubits beyond the
error threshold for fault-tolerant quantum computation.

DOI: 10.1103/PhysRevX.9.021011 Subject Areas: Mesoscopics, Nanophysics,
Quantum Information

I. INTRODUCTION

With steady progress towards practical quantum com-
puters, it becomes increasingly important to efficiently
characterize the relevant quantum gates. Quantum process
tomography [1–3] provides a way to reconstruct a complete
mathematical description of any quantum process, but has
several drawbacks. The resources required increase expo-
nentially with qubit number and the procedure cannot
distinguish pure gate errors from state preparation and
measurement (SPAM) errors, making it difficult to reliably
extract small gate error rates. Randomized benchmarking
(RB) was introduced as a convenient alternative [4–7]. It
estimates the gate fidelity as a concise and relevant metric,
requires fewer resources, is more robust against SPAM
errors, and works well even for low gate error rates.
Various randomized benchmarking methods have been

investigated to extract fidelities and errors in different
scenarios. In standard randomized benchmarking, sequen-
ces of increasing numbers of random Clifford operations
are applied to one or more qubits [5,6] (for a single qubit,

the Clifford gates are precisely the gates that rotate states
along the x̂, ŷ, or ẑ axis on the Bloch sphere to each other).
Then, loosely speaking, the average Clifford gate fidelity
is extracted from how rapidly the final state diverges from the
ideally expected state as a function of the number of random
Clifford operations. For multiqubit systems, the degree of
cross talk can be characterized by simultaneous randomized
benchmarking, in which random single-qubit Clifford oper-
ations are applied simultaneously to different qubits [8].
In practice we will often be more interested in the fidelity

of a particular quantum gate than the average fidelity of a
gate set. To characterize this fidelity, we can make use of
interleaved randomized benchmarking, in which a sequence
of random Clifford gates is interleaved by a particular
quantum gate. The fidelity of the interleaved gate can then
be estimated by comparing the deviation rate from the ideal
state with that obtained from standard randomized bench-
marking [9], called the reference fidelity in this context. It
must be noted, however, that interleaved randomized bench-
marking does not provide an exact characterization of the
fidelity of the interleaving gate but rather gives an estimate
together with upper and lower bounds. These upper and
lower bounds, which are essentially due to the fact that the
fidelity of the composition of two gates is not necessarily
equal to the product of the fidelities of the two gates, grow
closer together with increasing reference fidelity [9,10].
A major drawback of these traditional randomized

benchmarking methods is that the number of native
gates that needs to be executed in sequence to implement
a Clifford operation can rapidly increase with the
qubit number. For example, it takes on average 1.5
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controlled-phase (CPHASE) gates and 8.25 single-qubit gates
to implement a two-qubit Clifford gate [11]. This in turn puts
higher demands on the coherence time, which is still a
challenge for near-term devices, and leads to rather loose
bounds on the gate fidelity inferred from interleaved
randomized benchmarking [9,10]. Therefore, in early work
characterizing two-qubit gate fidelities for superconducting
qubits, the effect of the two-qubit gate projected in single-
qubit space was reported instead of the actual two-qubit gate
fidelity [12,13]. For semiconductor spin qubits, even though
two-qubit Bell states have been prepared [14–17] and simple
quantum algorithms were implemented on two silicon spin
qubits [15], the implementation issues of conventional
randomized benchmarking have long stood in the way of
quantifying the two-qubit gate fidelity. These limitations can
be overcome by using native gates that compile efficiently
[17], which is, however, not always possible. Another option,
whichwe pursue here, is to use a newmethod called character
randomized benchmarking (CRB), which we developed in
Ref. [18].CRBallowsus to extract a two-qubit gate fidelityby
interleaving the two-qubit gate in a reference sequence
consisting of a small number of single-qubit Clifford gates
only. This results in lower compilation overhead and thus
lower demand on coherence times. Moreover, CRB will
generically lead to higher reference fidelities and thus sharper
bounds on the fidelity of the interleaved gate. As a final
benefit, CRBprovides detailed information on separate decay
channels and error correlations.
Here we supplement standard randomized benchmarking

with character randomized benchmarking for a comprehen-
sive study of all the relevant gate fidelities of two electron
spin qubits in silicon quantum dots, including the single-
qubit and two-qubit gate fidelity as well as the effect of cross
talk and correlated errors on single-qubit gate fidelities. This
work is of strong interest since silicon spin qubits are highly
scalable, owing to their compact size (<100 nm pitch),
coherence times up to tens of milliseconds, and their ability
to leverage existing semiconductor technology [19,20].

II. DEVICE AND QUBIT OPERATION

Figure 1 shows a schematic of the device, a double quan-
tum dot defined electrostatically in a 12-nm-thick Si=SiGe
quantum well, 37 nm below the semiconductor surface. The
device is cooled to ∼20 mK in a dilution refrigerator. By
applying positive voltages on the accumulation gate, a two-
dimensional electron gas is formed in the quantum well.
Negative voltages are applied to the depletion gates in such a
way that two single electrons are confined in a double well
potential [15].A617-mTmagnetic field is applied in the plane
of the quantum well. Two qubits,Q1 andQ2, are encoded in
the Zeeman split states of the two electrons, where spin-up
represents j1i and spin-down represents j0i.
Single-qubit rotations rely on electric dipole spin reso-

nance (EDSR), making use of the transverse magnetic field
gradient from three cobalt micromagnets fabricated on top

of the gate stack [21]. The longitudinal magnetic field
gradient leads to well-separated spin resonance frequencies
of 18.34 and 19.72 GHz for Q1 and Q2, respectively. The
rotation axis in the x̂-ŷ plane is set by the phase of the
on-resonance microwave drive, while rotations around the ẑ
axis are implemented by changing the rotating reference
frame in software [22].
We use the CPHASE gate as the native two-qubit gate. An

exchange interaction JðεÞ is switched on by pulsing the
detuning ε (electrochemical potential difference) between
the two quantum dots, such that the respective electron
wave functions overlap. Because of the large difference in
qubit energy splittings, the flip-flop terms in the exchange
Hamiltonian are ineffective and an Ising interaction
remains [15,16,23,24]. The resulting time evolution oper-
ator in the standard fj00i; j01i; j10i; j11ig basis is given by

UJðtÞ ¼

0
BBBB@

1 0 0 0

0 eiJðϵÞt=2ℏ 0 0

0 0 eiJðϵÞt=2ℏ 0

0 0 0 1

1
CCCCA: ð1Þ

FIG. 1. Device schematic. A double quantum dot is formed in
the Si=SiGe quantum well, where two spin qubits Q1 (blue spin)
and Q2 (red spin) are defined. The green-shaded areas show the
locations of the accumulation gates on top of the double dot and
the reservoir. The blue dashed lines indicate the positions of three
Co micromagnets, which form a magnetic field gradient along
the qubit region. MW1 and MW2 are connected to two vector
microwave sources to perform EDSR for single-qubit gates. The
yellow ellipse shows the position of a larger sensing quantum dot
(SQD) which is used as a charge sensor for single-shot readout.
Plunger gates P1 and P2 are used to pulse to different positions in
the charge stability diagram as needed for initialization, manipu-
lation, and readout, as well as for pulsing the detuning for
controlling the two-qubit gate.
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Choosing t ¼ πℏ=JðϵÞ and adding single-qubit ẑ rotations
on both qubits, we obtain a controlled-Z (CZ) operator

Z1

�
−
π

2

�
Z2

�
−
π

2

�
UJ

�
πℏ
JðϵÞ

�
¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

1
CCCA; ð2Þ

with ZiðθÞ a ẑ rotation of qubit i over an angle θ.
Spin initialization and single-shot readout of Q2 are

realized by energy-selective tunneling [25]. Q1 is initial-
ized to its ground spin state by fast spin relaxation at a hot
spot [26]. For readout, the state of Q1 is mapped onto Q2
using a conditional π rotation [15,24], which enables
extracting the state of Q1 by measuring Q2. Further details
on the measurement setup are provided in Appendix A.

III. INDIVIDUAL AND SIMULTANEOUS
RANDOMIZED BENCHMARKING

In standard randomized benchmarking, sequences of
random multiqubit Clifford operations are applied to a
number of target qubits, followed by a final Clifford
operation that, in the absence of errors, maps the qubits’
state back to the initial state. A “survival probability” is
then extracted by measuring the system in a basis

containing the initial state. Repeating this procedure for
many random sequences of Clifford gates and averaging
over the resulting survival probabilities yields an average
survival probability. This in effect symmetrizes the noise
process in the system such that the qubits are effectively
subject to a depolarizing channel. The average survival
probability P then decays exponentially with the number of
Clifford operations m, under broad assumptions [27–29].
By fitting the decay curve to

P ¼ Aαm þ B; ð3Þ
where only A and B depend on the state preparation and
measurement, the average fidelity of a Clifford operation
can be extracted in terms of the depolarizing parameter α as

Fav ¼ 1 − ð1 − αÞ d − 1

d
; ð4Þ

where d ¼ 2N and N is the number of qubits.
In the present two-qubit system, we first perform

standard RB on each individual qubit (filled data points
in Fig. 2), finding Fav ¼ 98.50� 0.05% for Q1 and
Fav ¼ 97.72� 0.03% forQ2 (all uncertainties are standard
deviations). By dividing the error rate over the average
number of single-qubit gates needed for a Clifford oper-
ation, we extract average single-qubit gate fidelities of
99.20� 0.03% for Q1 and 98.79� 0.02% for Q2.

(a)

(b) (c)

FIG. 2. Individual and simultaneous standard randomized benchmarking. (a) Circuit diagrams for individual single-qubit RB onQ1 (left)
andQ2 (right), and simultaneous single-qubit RB (middle). (b) Probability for obtaining outcome 1 uponmeasurement in the σz ⊗ I basis as
a function of the number of single-qubit Clifford operations. For the blue solid stars, Q2 is idle while a Clifford operation is applied toQ1
(C ⊗ I). For the blue open stars, random Clifford operations are applied to Q1 and Q2 simultaneously (C ⊗ C). For each data point, we
sample 32different randomsequences,which are each repeated 100 times.Dashed lines are fit to the datawith a single exponential.A constant
offset of −0.06 is added to the open data points in order to compensate for a change in readout fidelities between the two data sets, making
comparison of the two traces easier.Without SPAMerrors, the data pointswould decay from 1 to 0.5. (c) Analogous single-qubit RB data for
Q2, withQ1 idle (red solid stars) and subject to random Clifford operations (red open stars). A constant offset of−0.05 is added to the open
data points. Throughout, single-qubit Clifford operations are generated by the native gate set fI; XðπÞ; Yð�πÞ; Xð�π=2Þ; Yð�π=2Þg.
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In practice, single-qubit gates are normally applied
simultaneously to multiple qubits during quantum compu-
tation. Driving one qubit can lead to errors on the other
qubit gates due to cross talk effects such as an undesired
excitation, residual qubit coupling, or heating effects. In
order to assess the effects of cross talk, we next perform
single-qubit RB while simultaneously applying random
Clifford operations to the other qubit (Fig. 2, open data
points). Following Ref. [8], we denote the corresponding
depolarizing parameter for qubit i while performing ran-
dom gates on qubit j as αijj. In contrast to standard RB
which is insensitive to SPAM errors, we have to assume
here that operations on one qubit do not affect the readout
fidelity of the other qubit [8]. Comparing with individual
single-qubit randomized benchmarking results, we find that
simultaneous RB decreases the average single-qubit gate
fidelity for Q1 by 0.44% to 98.76� 0.02% while the
fidelity for Q2 decreases by 1.85% to 96.94� 0.05%.
Since the difference in qubit frequencies of 1.38 GHz is
almost 3 orders of magnitude larger than the Rabi frequen-
cies (∼2 MHz), this cross talk is not due to limited
addressability. Furthermore, the cross talk on Q2 persists
when the drive on Q1 is applied off-resonantly; hence, it is
an effect of the excitation and not a result of performing
random gates on Q1. Attempting to understand how the
excitation leads to undesired cross talk, we performed
detailed additional studies (see Ref. [15] and Appendix F),
ruling out a number of other possible sources of cross talk,
including the ac Stark effect and residual coupling between
the qubits. In addition, we observed an anomalous fre-
quency shift on Q2 while driving Q1 [15], although larger
frequency shifts did not correlate with a faster Rabi decay
of Q2. Increasing the driving power did not yield a higher
quality factor of the Rabi oscillations, as reported in
Ref. [30], which indicates that heating could contribute
to their decay. Whether heating from driving Q1 also
reduces the fidelity of Q2 needs to be confirmed by further
studies. Finally, cross talk in the experimental setup is
likely to be symmetric, so the observed asymmetry indi-
cates that the microscopic details of the quantum dots must
also play a role.

IV. TWO-QUBIT RANDOMIZED
BENCHMARKING

To characterize two-qubit gate fidelities, the Clifford
group is expanded to a four-dimensional Hilbert space. We
first implement standard two-qubit RB, sampling Clifford
operations from the 11 520 elements in the two-qubit
Clifford group. Each two-qubit Clifford operation is com-
piled from single-qubit rotations and the two-qubit CZ gate,
requiring on average 8.25 single-qubit rotations around x̂ or
ŷ and 1.5 CZ gates. The measured probability to success-
fully recover the initial state is shown in Fig. 3. From a fit to
the data using Eq. (3) and applying Eq. (4), we extract an
average two-qubit Clifford fidelity Fav of 82.10� 2.75%.

The large number of native gates needed to implement a
single two-qubit Clifford gate leads to a fast saturation of the
decay, within about eight Clifford operations, leading to a
large uncertainty on the two-qubit Clifford fidelity estimate.
In addition, this fast saturation makes the randomized
benchmarking data vulnerable to deviations from a single
exponential decay due to different error processes being
associated to each applied gate, possibly biasing the fidelity
estimate [29,31,32]. Importantly, interleaving a specific gate
in a fast decaying reference sequence also yields a rather
unreliable estimate of the interleaved gate fidelity. In the
present case, interleaving a CZ gate in the reference sequence
of two-qubit Clifford operations is not a viable strategy to
extract the CZ gate fidelity. Furthermore, the compilation of
Cliffordgates into twodifferent types of nativegates—single-
qubit gates and the CZ gate—makes it impossible to con-
fidently extract the fidelity of any of the native gates, such as
the CZ gate, by itself. This is different from a recent experi-
ment on silicon spin qubits where only a single physical
native gate was used, the conditional rotation, in which case
the error per Clifford operation can be divided by the average
number of conditional rotations per Clifford operation for
estimating the error per conditional rotation [17].

FIG. 3. Two-qubit Clifford randomized benchmarking. Proba-
bility for obtaining outcome 11 upon measurement in the σz ⊗ σz
basis, starting from the initial state j11i, as a function of the
number of two-qubit Clifford operations. As the native gate set,
we use fI; XðπÞ; Yð�πÞ; Xð�π=2Þ; Yð�π=2Þ; CZg. The elements
of the two-qubit Clifford group fall in four classes of operations:
the parallel single-qubit Clifford class, the CNOT-like class, the
ISWAP-like class, and the SWAP-like class. They are compiled by
single-qubit gates plus 0, 1, 2, and 3 CZ gates respectively. For
each data point, we sample 30 random sequences, which are each
repeated 100 times. The dashed line is a fit to the data with a
single exponential. The data point for a single Clifford operation
is missing because we absorb the recovery Clifford gate into the
last random Clifford gate, in order to minimize dephasing effects.
Here the probability has been normalized to remove initialization
and readout errors.
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As a first step to obtain quantitative information on the
CZ gate fidelity, we implement a simplified version of
interleaved RB, which provides the fidelities of the two-
qubit gate projected in various single-qubit subspaces, as
was done earlier for superconducting transmon qubits [12]
and hybrid gatemon qubits [13]. In this protocol, the CZ

gate is interleaved in a reference sequence of single-qubit
Clifford operations. When applying a CZ gate, we can
(arbitrarily) consider one qubit the control qubit and the
other the target qubit. When the control qubit is j1i, the
target qubit ideally undergoes a π rotation around the ẑ axis.
With the control in j0i, the target qubit ideally remains
fixed (identity operation). Therefore, projected in the sub-
space corresponding to the target qubit, this protocol
interleaves either a ZðπÞ rotation or the identity operation
in a single-qubit RB reference sequence applied to the
target qubit. The decay of the return probability for
interleaved RB is also expected to follow Eq. (3). The
fidelity of the interleaved gate is then found from the
depolarizing parameter α for the interleaved and reference
sequence, as

Fgate ¼ 1 −
�
1 −

αinterleaved
αreference

�
d − 1

d
: ð5Þ

From the experimental data, we find CZ fidelities projected
in single-qubit space of 91%–95%, depending on which
qubit acts as the control qubit for the CZ, and which
eigenstate it is in (see Appendix E).

V. CHARACTER RANDOMIZED
BENCHMARKING

In order to properly characterize the two-qubit CZ

fidelity, we experimentally demonstrate a new approach
to RB called character randomized benchmarking [18].
CRB is a powerful generic method that extends randomized
benchmarking in a rigorous manner, making it possible to
extract average fidelities from groups beyond the multi-
qubit Clifford group while keeping the advantages of
standard RB such as resistance to SPAM errors. The
generality of CRB allows one to start from (a subset of)
the natives gates of a particular device and then design a RB
experiment tailored to that set. This can strongly reduce
compilation overhead and gate-dependent noise, a known
nuisance factor in standard RB [29,31,32]. Moreover, since
the accuracy of interleaved randomized benchmarking
depends on the fidelity of the reference gates [9,10],
performing (through CRB) interleaved RB with a reference
group generated by high-fidelity gates can significantly
improve the utility of interleaved RB.
Character randomized benchmarking requires us to

average over two groups (the second one usually being
a subgroup of the first). The first group is the “benchmark
group.” It is for the gates in this group that CRB yields the
average fidelity. The second group is the “character group.”

CRB works by performing standard randomized bench-
marking using the benchmark group but augments this by
adding a random gate from the character group before each
RB gate sequence. By averaging over this extra random
gate, but weighting the average by a special function known
from representation theory as a character function, it
guarantees that the average over random sequences can
always be fitted to a single exponential decay, even when
the benchmark group is not the multiqubit Clifford group,
and even in the presence of SPAM errors.
Guided by the need for high reference fidelities, we

choose for our implementation of CRB the benchmark
group to be the parallel single-qubit Clifford group (C ⊗ C,
the same as in standard simultaneous single-qubit RB) and
the two-qubit Pauli group as the character group (see
Ref. [18] for more information on why this is a good
choice for the character group). It is nontrivial that the
C ⊗ C group allows us to get information on two-qubit
gates, since parallel single-qubit Clifford operations cannot
fully depolarize the noise in the full two-qubit Hilbert
space. In fact, for simultaneous single-qubit RB there are
three depolarizing channels, each acting in a different
subspace of the Hilbert space of density matrices, spanned
by I ⊗ σi, σi ⊗ I, and σi ⊗ σi, with I the identity operator
and σi one of the Pauli operators. The three decay channels
are reflected in the recovery probability for the final state,
which is now described by

PC⊗C ¼ A1α1j2m þ A2α2j1m þ A12α12
m þ B; ð6Þ

where αijj is again the depolarizing parameter for qubit i
while simultaneously applying random Clifford operations
to qubit j, and α12 is the depolarizing parameter for the
two-qubit parity (fj00i; j11ig versus fj01i; j10ig). We
note that if the errors acting on both qubits are uncorrelated,
then α12 ¼ α1j2α2j1 [8]. The question now is how to
separate the three decays. Fitting the data using a sum
of three exponentials will be very imprecise. Existing
approaches combine the decay of specific combinations
of the probabilities of obtaining 00, 01, 10, and 11 upon
measurement, but suffer from SPAM errors [8]. As dis-
cussed above, CRB offers a clean procedure for extracting
the individual decay rates that is immune to SPAM errors
and does not incur additional overhead.
Concretely, CRB here proceeds as follows. (1) The two-

qubit system is initialized to j00i, then (2) one random
Pauli operator on each qubit is applied to prepare the
system in a state jϕ1ϕ2i (one of j00i, j01i, j10i, and j11i),
followed by (3) a random sequence of simultaneously
applied single-qubit Clifford operators. In practice, the
random Pauli operator is absorbed in the first Clifford
operation, making the Pauli gates effectively noise-free. A
final Clifford operation is applied which ideally returns the
system to the state jϕ1ϕ2i and, finally, (4) both qubits are
measured. Note that, contrary to standard RB, CRB does not

BENCHMARKING GATE FIDELITIES IN A Si=SiGe … PHYS. REV. X 9, 021011 (2019)
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always measure the probability of returning to the initial
state. Each random sequence is repeated to collect statistics
on the probability Pϕ1ϕ2

of obtaining measurement outcome
00 when starting from jϕ1ϕ2i (note that each Pϕ1ϕ2

averages
over four Pauli operations). We combine these probabilities
according to their character (see Appendix B for more
details) to obtain three fitting parameters:

P1 ¼ P00 − P01 þ P10 − P11;

P2 ¼ P00 þ P01 − P10 − P11;

P3 ¼ P00 − P01 − P10 þ P11:

ð7Þ

Each of these three fitting parameters is expected to decay as
a single exponential, isolating one of the decay channels in
Eq. (6):

P1 ¼ A1α1j2m;

P2 ¼ A2α2j1m;

P3 ¼ A12α12
m:

ð8Þ

Note that there is no constant offset B. This is also a feature
of CRB. The three experimentally measured probabilities
are shown in Fig. 4(a). These contain a lot of useful
information, including not only the separate depolarizing
parameters but also the averaged CRB reference fidelity
and information on error correlations. The blue (red) curve
shows the decay in the subspace corresponding to Q1 (Q2),

spanned by σi ⊗ I (I ⊗ σi). The green curve shows the
decay in the subspace spanned by σi ⊗ σj. This decay can be
interpreted as the parity decay. The fitted depolarizing
parameters are α1j2 ¼ 0.9738� 0.0008, α2j1 ¼ 0.8902�
0.0020, and α12 ¼ 0.8652� 0.0022.
The average CRB depolarizing parameter can be found

from the separate depolarizing parameters as

P ¼ 3

15
α1j2 þ

3

15
α2j1 þ

9

15
α12; ð9Þ

where the weights are proportional to the dimension of the
corresponding subspaces of the 16-dimensional Hilbert
space of two-qubit density matrices. We obtain a reference
CRB fidelity of 91.9� 0.1%, which represents the fidelity
of two simultaneous single-qubit Clifford operators
(C ⊗ C) in the full two-qubit space.
Finally, from the three depolarizing parameters in

Eq. (6), we can infer to what extent errors occur inde-
pendently on each qubit or exhibit correlations between the
two qubits. The fact that α12−α1j2α2j1¼−0.0017�0.0031
indicates that the errors are essentially independent.
Next we perform the interleaved version of CRB, for

which we insert a CZ gate after each single-qubit Clifford
pair. Figure 4(b) shows the three corresponding experi-
mentally measured decays. The fitting parameters we
extract now reflect the combined errors from a single-
qubit Clifford pair followed by a CZ gate. The fitted

(a) (b)

FIG. 4. Character randomized benchmarking. (a) Reference CRB experiment. The probabilitiesP1 (blue triangles), P2 (red stars), and P3

(green diamonds), obtained starting from the initial state j00i followed by a Pauli operation, as a function of the number of subsequent
single-qubit Clifford operations simultaneously applied to both qubits (see the schematic of the pulse sequence, note that the Clifford gates
applied on Q1 and Q2 are sampled independently and are thus generally different). As the native gate set, we use
fI; XðπÞ; Zð�πÞ; Xð�π=2Þ; Zð�π=2Þ; CZg. For each of the 16 Pauli operators, we apply 40 different random sequences, each with
20 repetitions. The dashed lines are fits to the data with a single exponential. Without SPAM errors, the data points would decay from 1 to 0.
(b) Interleaved CRB experiment. This experiment is performed in an analogous way to the reference CRB experiment, but with a two-qubit
CZ gate interleaved after each Clifford pair, as seen in the schematic of the pulse sequence. In both panels, the traces are offset by an
increment of 0.1 for clarity and the probabilities have been normalized to remove initialization and readout errors.
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depolarizing parameters are α1j2 ¼ 0.7522� 0.0060,
α2j1 ¼ 0.7623� 0.0053, and α12 ¼ 0.8226� 0.0030. As
can be expected, the three decays lie closer together than
those for reference CRB: not only does the additional CZ
gate contribute directly to all three decays, it also mixes the
three subspaces. From the depolarizing parameters in
interleaved and reference CRB measurement, we use
Eq. (5) to isolate the fidelity of the CZ gate, now in two-
qubit space as desired, yielding 92.0� 0.5%.
The dominant errors in the CZ gate arise from nuclear

spin noise and charge noise. In natural silicon, the abun-
dance of Si29 atoms is about 4.7%, and the Si29 nuclear
spins dephase the electron spin states due to the hyperfine
interaction [19]. Charge noise modulates the overlap of the
two electron wave functions, and thus also the two-qubit
coupling strength. In the present device, we could not
obtain a sufficiently strong coupling J at the symmetry
point where the coupling strength is to first order insensi-
tive to the detuning of the double dot potential [33,34];
hence, charge noise directly (to first order) affects the two-
qubit coupling strength.

VI. CONCLUSIONS

Character randomized benchmarking provides a new
method to effectively characterize multiqubit behavior. It
combines the advantages of simultaneous randomized
benchmarking and interleaved randomized benchmarking,
and gives tighter bounds on the fidelity number than
standard interleaved randomized benchmarking due to its
simpler compilation. CRB is useful in a wide variety of
settings, far beyond the particular case studied here. The
general approach to exploiting CRB is to start from a set of
native gates that can be implemented easily and with high
fidelity, and to construct a suitable reference sequence
based on this set. The decay for the reference sequence
contains any number of exponentials, which can be
separated without suffering from SPAM errors and which
provide relevant additional information, in the present case
on the fidelity of simultaneously applied gates, cross talk,
and on noise correlations. Comparison with interleaved
CRB allows one to extract the fidelity of specific gates of
interest.
We perform the first comprehensive study of the single-

qubit, simultaneous single-qubit, and two-qubit gate fidel-
ities for semiconductor qubits, where the use of CRB,
which allows for a compact reference sequence, was
essential for extracting a reliable two-qubit gate fidelity.
Summarizing, independent single-qubit gate fidelities are
around 99% in this system, these drop to 98.8% for qubit 1
and to 96.9% for qubit 2 when simultaneously performing
random gates on the other qubit, and the two-qubit CZ

fidelity is around 92%. We expect that by working in an
isotopically purified Si28=SiGe substrate and performing
the two-qubit gate at the symmetry point, a CZ gate fidelity
above the fault-tolerant threshold (>99%) can be reached.

A recent report on the fidelity of controlled rotations in
Si=SiO2 quantum dots already comes close to this threshold
[17]. With further improvements in charge noise levels,
two-qubit gate fidelities above 99.9% are in reach.
All the data and the analysis scripts are uploaded to

Zenodo: [35].
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APPENDIX A: MEASUREMENT SETUP

The measurement setup is the same as the one used in
Ref. [15]. We summarize here a few key points. The gates
P1 and P2 are connected to arbitrary waveform generators
(AWG, Tektronix 5014C) via coaxial cables. Applying
dc voltage pulses to these two gates moves the system
through different positions in the charge stability diagram
for initialization, operation, and readout. Voltage pulses
applied to these two gates are used to pulse the detuning
between the two quantum dots, thereby turning on and off
the controlled-phase gate. Gates MW1 and MW2 are
connected to vector microwave sources (Keysight
E8267D) for achieving EDSR. Each microwave source
has two I=Q input channels, connected to two channels on
the master AWG, which controls the clock of the entire
system and triggers all the other instruments. The fre-
quency, phase, and duration of the microwave bursts are
thus controlled by I=Q modulation. In addition, we use
pulse modulation to obtain a larger on/off ratio of the
microwave bursts than is possible using I=Q modulation
only. A digitizer card (Spectrum M4i.44) installed inside
the measurement computer is used to record the current
traces of the sensing quantum dot at a sampling rate
∼60 kHz. Each time trace is converted into a single bit
value (0 or 1) by the measurement computer using
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threshold detection. The average over many repetitions
gives us the spin-down and spin-up probabilities (0 and 1).

APPENDIX B: MATHEMATICAL
BACKGROUND OF CRB

Character randomized benchmarking is a generic method
for performing randomized benchmarking with finite
groups other than the multiqubit Clifford group. As
mentioned in the main text, CRB requires the user to
specify two finite groups: the benchmark group and the
character group. In this work we chose the benchmark
group to be the simultaneous single-qubit Clifford group on
two qubits and the character group to be the two-qubit Pauli
group. Standard RB and CRB rely on the framework of
representation theory. Representation theory gives us
powerful tools to interpret averages over group elements,
which form a core part of the randomized benchmarking
protocol. In particular, we can use a result called Schur’s
lemma. In the context of randomized benchmarking,
Schur’s lemma states that, assuming for simplicity that
every gate is subject to an identical noise map E, the
average noisy RB operator M (here the average is taken
over the group elements) is of the form

M ≔
X

G1 ;…;Gm
∈C⊗C

GinvEGm � � � EG1

¼

2
66664

1

α1j2I1j2
α2j1I2j1

α12I12

3
77775

m

;

where we are describing all quantum channels in the Pauli
transfer matrix picture, i.e., Mi;j ¼ Tr½σiMðσjÞ�=2, where
σi, σj are Pauli matrices. One can think of the matrix entry
Mi;j as describing how much the noise map M maps the
generalized Bloch sphere axis labeled σj to the one labeled
σi. The submatrices I1j2, I1j2, and I12 of the matrix M are
defined as the identity matrix on the sets of two-qubit Pauli
operators of the form fσi ⊗ Ig, fI ⊗ σig, and fσi ⊗ σjg,
respectively. We would like to estimate the numbers α1j2,
α2j1, and α12 individually in a way that does not depend on
state preparation and measurement. To do this CRB adds
an extra average over another group called the character
group, which we choose to be the two-qubit Pauli group.

This average is weighted by a so-called character function.
This average over the Pauli group projects any initial state
onto a single axis of the Bloch sphere. Which axis is
projected on depends on the character function used for the
weights. By selecting the correct Bloch sphere axes, we can
single out the individual blocks of the matrixM. In order to
isolate the parameter α1j2 we choose to project onto the
Bloch sphere axis associated to σz ⊗ I. Concretely this
means that the character averaged RB operatorM becomes

X
σ∈P2

χσzIðσÞ
X

G1 ;…;Gm
∈C⊗C

GinvEGm � � � EG1σ ¼ MmPZI;

where the function χσzIðσÞ is given in the first row of Table I
and the matrix PσzI has all zero entries except on the
diagonal entry corresponding to the Pauli σz ⊗ I. By
matrix multiplication we see that MmPσzI ¼ αm

1j2PσzI .

This means that the average measured survival probability
in CRB, with input state ρ and measurement operator Q, is
of the form

X
σ∈P2

χZIðσÞ
X

G1 ;…;Gm
∈C⊗C

Tr½QGinvEGm � � � EG1(σðρÞ)� ¼ Aαm
1j2;

where A is a function of Q and ρ. Similarly, we can obtain
estimates α2j1 and α12 by constructing projectors onto the
Pauli operators I ⊗ σz and σz ⊗ σz, respectively. The
character functions for these projectors are given in rows
two and three of Table I, respectively.
As noted in the main text, CRB is a generic procedure,

which can be used beyond its application in this paper.
Another notable example of where we suspect CRB can
offer a benefit is when the device native gates are not
single-qubit gates but rather two-qubit gates, as happens in
Ref. [17]. In this case, compiling multiqubit Clifford gates
is very cumbersome. In the theoretical RB literature
benchmarking groups are discussed that are more suitable
to this scenario, such as the CNOT-dihedral group (for native
CNOT gates) [36] and the real Clifford group (for native
CPHASE gates) [37]. Both of these groups lead to bench-
marking data that mix two exponential decays, but using
the CRB approach these can be fitted individually in a
reliable manner (in both cases the Pauli group is a good
choice for character group, see the example in Ref. [18] for
more information).

TABLE I. Values for the character function χPðσÞ for P ∈ fðσz ⊗ IÞ; ðI ⊗ σzÞ; ðσz ⊗ σzÞg.
σnP II σzI Iσz σzσz σxI Iσx σxσx σyI Iσy σyσy σzσx σxσz σzσy σyσz σxσy σyσx

σzI 1 1 1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1
Iσz 1 1 1 1 1 −1 −1 1 −1 −1 −1 1 −1 1 −1 −1
σzσz 1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 −1 −1 1 1
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APPENDIX C: EXPERIMENTAL
DETAILS FOR CRB

The single-qubit Clifford group is commonly generated
by the gate set fI; XðπÞ; Yð�πÞ; Xð�π=2Þ; Yð�π=2Þg. In
our experiment, we perform Z rotations by changing a
qubit’s reference frame in software [22], which makes Z
rotations error-free. To benefit from this, we generate the
single-qubit Clifford group by the gate set fI; XðπÞ;
Zð�πÞ; Xð�π=2Þ; Zð�π=2Þg instead, as shown in
Table II. Furthermore, we keep the Rabi frequency the
same for all the X rotations; thus a XðπÞ gate has twice
the duration of a Xðπ=2Þ gate. Combined with using
X-Z compilation, we can keep the duration for all the
24 Clifford operations the same thereby avoiding any
unnecessary idle time which would quickly dephase the
qubits.

APPENDIX D: COMPARISON OF STANDARD
AND CHARACTER INTERLEAVED

TWO-QUBIT RB

Although it often goes unmentioned, the estimate for
the fidelity of an interleaved gate given in Eq. (5) is

only exact when the qubit noise is exactly depolarizing.
In the presence of other types of noise (such as
dephasing or calibration errors), this number gives only
upper and lower bounds on the fidelity of the inter-
leaved gate. First upper and lower bounds were given in
Ref. [9], and recently optimal upper and lower bounds
were given in Ref. [10]. These bounds depend strongly
on the fidelity of the gates in the reference sequence; in
particular, they scale as Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − αref
p Þ, where αref is the

reference RB decay constant. This means that our
implementation of CRB, which uses only single-qubit
gates for the reference experiment, has a significant
advantage over standard two-qubit interleaved RB also
in this respect. We can illustrate this advantage by
considering a hypothetical standard two-qubit interleaved
experiment with interleaved CZ gate. Recall from Eq. (3)
that standard two-qubit RB (here considered as a refer-
ence experiment) yielded a reference fidelity of 82% and
thus a depolarizing parameter of α2;ref ¼ 0.73 (sup-
pressing uncertainty for the sake of this exercise).
Assuming an interleaved CZ fidelity of 92% (which is
what we extracted from the CRB experiment) and
assuming that the error on a hypothetical interleaved
two-qubit RB experiment scales multiplicatively (opti-
mistic given the possibility of calibration errors), we
estimate that a hypothetical two-qubit interleaved RB
experiment would have a depolarizing parameter of α2;int.
Using the optimal bounds calculated in Ref. [10], this
would mean we can guarantee only that the fidelity of the
interleaved gate lies in the range [0.58, 1]. From the CRB
experiment we can, however, guarantee that the fidelity of
the interleaved gate lies in the range [0.69, 1], a
significant improvement even in the absolute worst case
scenario discussed in Ref. [10]. We would also like to
note that the bounds given in Refs. [9,10] significantly
overestimate the range of possible interleaved gate fidel-
ities if more is known about the noise process. If, for
instance, the noise on the reference gates is assumed to be
dominated by stochastic errors (as opposed to coherent
errors due to miscalibration), then the upper and lower
bounds can be made significantly tighter. This coincides
with experimental consensus that interleaved RB gener-
ally gives good estimates of the interleaved gate fidelity.
However, since single-qubit gates will typically suffer less
from calibration errors than compiled two-qubit gates, we
argue that interleaved CRB will yield sharper upper and
lower bounds on the interleaved gate fidelity than
standard interleaved RB when more is known about
the noise process.

APPENDIX E: INTERLEAVED RB PROJECTED
IN SINGLE-QUBIT SPACE

Figure 5 shows experimental results for the experi-
ment discussed in the main text where a CZ gate is
interleaved in a standard single-qubit RB sequence

TABLE II. Compilation of the single-qubit Clifford group with
X=Y rotations and X=Z rotations. Here, ð−ÞK and ð−ÞK2 denote
Kð�π=2Þ and Kð�πÞ gates (K ¼ X, Y, Z), respectively.

Class X=Y generation X=Z generation

Pauli I X, −X
X2 X2

Y2 −Z, X2, Z
Y2, X2 X, Z2, X

2π=3 X, Y X, −Z, X, Z
X, −Y X, Z, X, −Z
−X, Y −X, −Z, X, Z
−X, −Y −X, Z, X, −Z
Y, X −Z, X, Z, X
Y, −X −Z, X, Z, −X
−Y, X Z, X, −Z, X
−Y, −X Z, X, −Z, −X

π=2 X −Z, X, Z, X, −Z
−X Z, −X, −Z, −X, Z
Y X, Z, −X
−Y X, −Z, −X

−X, Y, X −X, Z2, −X, −Z
−X, −Y, X −X, −Z2, −X, Z

Hadamard X2, Y X, −Z, X
X2, −Y X, Z, X
Y2, X −Z, X, Z, X, Z
Y2, −X −Z, X, Z, −X, −Z
X, Y, X X2, Z

−X, Y, −X −X2, −Z
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applied to one qubit, while the other qubit is in either j0i
or j1i. This experiment provides the CZ fidelity projected
in single-qubit space [12,13], summarized in Table III
for the four possible cases.

APPENDIX F: CROSS TALK

We here provide more information on the cross talk
effects that occur on one qubit when applying a micro-
wave drive to the other (see also Ref. [15] and the
Supplemental Material therein). First, when we perform
spectroscopy on Q2 while driving Q1, we find that the
frequency of Q2 shifts by of the order of 2 MHz
(depending on the power applied to Q1). We compensate
for this known frequency shift by shifting the drive
frequency applied to Q2 when we simultaneously drive
Q1. We note that a frequency shift by a known amount
is not expected to contribute to decoherence. However,
Fig. 6 shows Rabi oscillations for both qubits in the
absence and presence of an excitation to the other qubit.
Clearly, when simultaneously driving Rabi oscillations
on both qubits, we find a faster decay on Q2 compared
to driving Q2 by itself. The effect of simultaneous
driving on Q1 is less pronounced. This is consistent
with the observed effects of simultaneous driving on the
measured single-qubit gate fidelities reported in the main
text. The cross talk effect on Q2 persists when the drive
on Q1 is applied off-resonantly or when dot 1 is
emptied. We do note that the microwave power used
to drive Q1 (∼20 dBm) is substantially higher than that

(b)

(a)

FIG. 5. Interleaved randomized benchmarking projected in
single-qubit space. (a) Probability for obtaining outcome 0 upon
measurement in the σz ⊗ I basis as a function of the number of
single-qubit Clifford operations, interleaved with the CZ operation.
For the red circles (blue squares), Q2 is in j0i (j1i) so Q1 is
expected to undergo the identity operation [a ZðπÞ rotation]. For
each data point, we sample 30 different random sequences for each
Clifford number, which are each repeated 100 times. Dashed lines
are fits to the data with a single exponential. A constant offset of
þ0.045 is added to the blue data points. (b) Analogous data forQ2.

TABLE III. CZ fidelities for different target qubits (QT) and
different states of the control qubit (QC).

QC QC state QT Operation Fidelity

Q1 j0i Q2 I 94.62� 0.24%
Q1 j1i Q2 ZðπÞ 90.79� 0.38%
Q2 j0i Q1 I 95.50� 0.20%
Q2 j1i Q1 ZðπÞ 94.38� 0.25%

(a)

(b)

FIG. 6. Rabi oscillations of Q2. (a) Probability that measure-
ment of Q2 returns spin-up (j1i) as a function of the duration of
the resonant microwave burst driving the qubit. (b) Analogous
data for Q2 when Q1 is simultaneously being driven.
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used for Q2 (∼8 dBm). This difference is needed to
compensate for the tighter confining potential of dot 1
compared to dot 2.
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