
RNN, LSTM, GRU Hyperparameters,
Autoencoder and Embedding Layer

M . F . M U L D E R S

ON THE SEQUENTIAL
DATA MODELS IN
SIDE-CHANNEL ANALYSIS

On the Sequential Data
Models in

Side-Channel Analysis
RNN, LSTM, GRU Hyperparameters,
Autoencoder and Embedding Layer

by

M. F. Mulders
to obtain the degree of Master of Science in Computer Science

at the Delft University of Technology,
to be defended publicly on Thursday November 12, 2020 at 10:00 AM.

Thesis committee: Dr. S. Picek TU Delft, Supervisor
Prof. dr. ir. R. L. Lagendijk, TU Delft, Chair
Dr. P. K. Murukannaiah, TU Delft

Copyright © 2020 by Maurits Mulders
An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
A sidechannel attack is performed by analyzing unwanted physical leakage to achieve a more effective
attack on the cryptographic key. An attacker performs a profiled attack when he has a physical and
identical copy of the target device, meaning the attacker is in full control of the target device. Therefore,
these profiled attacks are known as the most powerful attacks in the sidechannel analysis. This phys
ical leakage is analyzed by machine learning and, in the last years, mostly deep learning, which both
are used as a profiling tool to perform a sidechannel attack. The best known deep learning technique
for sidechannel analysis at this moment is the convolutional neural network (CNN).

However, this thesis investigates a wellknown deep learning model that is never used before in
sidechannel analysis. The deep learning models RNN, LSTM, and GRU are tested and evaluated
to look for the best hyperparameters. We show the influence of different models, amount of layers,
dropout, activation function, units, recurrent dropout, and batch sizes in the experiments. We also
show that using different sequence length gives a speedup in training. To reduce the sequence length,
we use a linear regression technique. After that, we show that sequential data models are a suitable
alternative for sidechannel analysis; however, their results do not surpass the CNNs.

After this, we experiment with an autoencoder as a preprocessing algorithm to ”clean” noisy traces.
We show that the LSTM autoencoder easily removes a hiding countermeasure with noise. However,
a hiding countermeasure with delay is more challenging for the LSTM autoencoder. Combining both
countermeasures seems impossible for the LSTM autoencoder. The performance we see when clean
ing the traces also affects the guessing entropy.

Lastly, we use an embedding layer as the first layer for MLP, CNN, and a sequential data model
in the sidechannel analysis. We experiment with different output dimensions and conclude that an
embedding layer is a valid alternative to change the data dimension when using an MLP or a sequential
data model.

iii

Preface
In front of you lies my hard work that should finish my master at the TU Delft. Starting with this thesis
around October 2019 makes it almost a year of hard work. When I started, I expected to finish before
the summer holidays. However, working from home and finding a new working routine took more time
than expected. Nonetheless is reaching the finish line of a master thesis an achievement that I should
be proud of. I would not have finished this research project without some people’s help, which I like to
thank here.

First of all, I would like to thank my daily supervisor, Stjepan Picek. Having you as my supervisor
was an interesting choice. Meeting with you almost every week and discussing both research work as
personal topics. Bragging that you are good at asking ”smart” questions, after which I had enough to
do for the rest of the week. For me, the combination of discussing research work and making fun of
everything else kept me motivated to keep on working. So a big thank you for helping me to put down
this achievement.

Secondly, I want to thank everyone at the university who has helped me when working on my
thesis. First of all, Marina, for our short Friday meetings, preparing me for the meeting with Stjepan.
But also for proofreading the whole story and correcting most of the grammar issues. Moreover, the
other master students, Tim, Clinton, Jorai, Cas, Daniel, Felix, Jehan, Roy, and Tristan, with whom we
held the competition being first to have a place on the 6th floor and had terrific lunches/coffee brakes.
And of course, the most critical person, Sandra, who was able to give our coffee when we needed it.

Finally, I want to thank the people who have actively supported me during my studies in Delft. These
are mostly my parents, who even made it possible for me to study and gave me the space to find the
right study. But also my brothers, friends, and girlfriend. Who kept asking about how I was doing with
my research project but had no clue what I was doing.

Without the people above, I could not have finished this thesis. Even more, to graduate at the
university where I have studied for eight beautiful years.

M. F. Mulders
Delft, November 2020

v

Contents

Abstract iii

Preface v

1 Introduction 1
1.1 Research Question . 2
1.2 Scientific Contribution . 3
1.3 Outline . 3

2 Background 5
2.1 Cryptography Advanced Encryption Standard. 5

2.1.1 Existing Attacks on AES . 6
2.2 SideChannel Attacks . 7

2.2.1 Profiling SCA . 7
2.2.2 Nonprofiling SCA . 7
2.2.3 Countermeasures . 8
2.2.4 Guessing Entropy . 8
2.2.5 Leakage Models . 9

2.3 Machine Learning . 10
2.3.1 Neurons . 11
2.3.2 Evaluation. 11
2.3.3 Activation Functions . 12
2.3.4 Weight Initializer . 13
2.3.5 Multilayer Perceptron. 14

2.4 Deep Learning . 14
2.4.1 Recurrent Neural Networks . 14
2.4.2 Long ShortTerm Memory . 16
2.4.3 Gated Recurrent Unit. 16
2.4.4 Convolutional Neural Network . 17
2.4.5 Autoencoder . 18

2.5 Natural Language Processing . 18
2.5.1 Attention Model . 19
2.5.2 Bidirectional Layer . 19
2.5.3 Embedding . 19

2.6 Datasets . 20
2.6.1 DPAv4. 20
2.6.2 CHES 2009 . 20
2.6.3 ASCAD . 21

3 Related work 23
3.1 Machine Learning in SideChannel Analysis . 23
3.2 Deep Learning in SideChannel Analysis . 24
3.3 Recurrent Neural Network . 24
3.4 Natural Language Processing techniques. 25
3.5 Research questions . 25

4 Evaluation of Sequential Data Models 27
4.1 Methodology . 27
4.2 RNN, LSTM, and GRU . 28

4.2.1 DPAv4 with Sequence Length of 3000 . 28
4.2.2 DPAv4 Selected Time Window of Size 450 . 30
4.2.3 DPAv4 Selected Time Window of Size 150 . 35

vii

viii Contents

4.3 Reducing the Sequence Length . 36
4.3.1 Pearson Correlation Dataset . 36
4.3.2 Preprocessing with Linear Regression . 37

4.4 Bidirectional Layer . 39
4.5 Advice on using Sequential Data Models in SCA . 40

4.5.1 AES with Random Delay . 40
4.5.2 Hamming Weight Leakage Model . 41
4.5.3 ASCAD Dataset . 42

4.6 Conclusion . 43

5 Denoising with Autoencoder 45
5.1 Translation Problem . 45
5.2 Methodology . 46
5.3 CNN Baseline. 46
5.4 Autoencoder . 49
5.5 Results . 50

5.5.1 Comparing New Traces . 50
5.5.2 Attack After Cleaning by Autoencoder. 52

5.6 Conclusions. 53

6 The Power of Embedding 57
6.1 Methodology . 57

6.1.1 Dataset Preparation for Usage of Embedding Layer 57
6.2 RNN, LSTM, and GRU with Embedding. 58

6.2.1 DPAv4 Dataset . 58
6.2.2 AES with Random Delay Dataset . 59
6.2.3 ASCAD Dataset . 59

6.3 MLP with Embedding. 60
6.4 CNN with Embedding . 61
6.5 Different Embedding Output with LSTM. 63
6.6 Different Embedding Output with MLP . 63
6.7 Different Embedding Output with CNN . 64
6.8 Conclusion . 64

7 Conclusions and Future Work 67
7.1 Evaluation of Sequential Data Models. 67
7.2 Denoising with Autoencoder . 68
7.3 The Power of Embedding . 69
7.4 Future Work. 70

Bibliography 73

A Implementation Details 79
A.1 Reproducibility . 79

B List of Abbreviations 83

List of Figures 85

List of Tables 89

1
Introduction

”Something that tells you something about something without knowing
that something.”

It was this sentence on the slides of a lecture during System Security that got our attention. The
word something has been used many times, which could be considered annoying. However, in this
instance, it means something powerful; an attacker can retrieve much valuable information and perform
an effective attack, a sidechannel attack. This thesismainly dives into the practical sidechannel attack.
Even though the quote sounds very abstract, the usage of a sidechannel attack is well known. For
example, an old school movie, where a thief tries to break into a safe. The thief uses a stethoscope
to listen for the pin to fall into the right position. The sound produced by the lock is an undesired side
channel that can be compromised and helps the thief find the correct key even faster.
To get a hold of what a sidechannel attack is, we could look at it even in a broader context. What
about a good friend who has a secret for us? Maybe he is in love with someone we know, but he is not
willing to tell us. There are many social sidechannels that we can use to retrieve information from him.
For example, him blinking his eyes or him brushing through his hair. This will give the attacker more
knowledge of his secret.

The above example shows how an attacker retrieves valuable information with common sense and
general knowledge. Since the number of systems connected to the internet increased exponentially,
the domain for sidechannel attacks also got more popular. The first academic sidechannel attacks are
based on statistical methods and date back to the late 1990s [30]. Nowadays, examples are above our
imagination. With the use of a computer, more specifically, with machine learning and deep learning, we
see a new way of sidechannels that have not been seen before. Machine learning in computer science
has made it possible to see patterns and correlations in big data without human interaction. Therefore,
it is possible to collect big datasets and use machine learning techniques generated by a computer
to find the dataset’s relevant information. A contrived action involving constant pursuit game started
between producers of systems and adversaries looking for relevant information that those systems
were leaking. The defenders started to use countermeasures like hiding and masking; the attackers
use deep learning techniques to counter those countermeasures. This ongoing pursuit is still taking
place, and with the computer hardware getting cheaper every year, even the amount of time of an
attack is not an issue anymore.

A sidechannel attack can be divided into two types: profiled sidechannel attacks and nonprofiled
sidechannel attacks. Where the nonprofiled attack makes simple assumptions, the profiled side
channel attack is more powerful. In the profiled setting, the attacker has a ”copy” of the target device.
We can generate this clone because we know the possible hardware is used (version and firmware) into
the under attack systems, neglecting the environment noise when capturing the traces. The strength
of this sidechannel attack is based on the correctness of the clone device. This attacker uses this
physical copy of the device to train a profiling model. Then this trained model could be used to attack
the real device. In this setting, the attacker has full access to the copy device. In the nonprofiled case,
the attacker has no access to the victim’s training device and has less information.

As described above, an attack is possible, and attackers are at the winning hand. However, from
the scientific domain, we are always at the defending side of the story. The only possible way to defend

1

2 1. Introduction

ourselves against attacks is to know, or at least get a glimpse, what an attacker is capable of. To
get that knowledge, we perform many attacks and use various models. Then we can try to introduce
countermeasures. These countermeasures are used to make it harder for the attacker to profile the
traces. When we find out how good a specific countermeasure is performing against a single attack, we
can determine how good the designed countermeasure is. We do this by creating a baseline and find out
if another countermeasure is performing better. This baseline that is needed for defending is what the
scientific community is publishing. In current work, we see considerable interest in using deep learning
techniques, specifically convolutional neural networks. These techniques are powerful and extremely
good at dealing with countermeasures such as masking and hiding [57]. Therefore, there is now a
shortsightedness approach to convolutional neural networks. Everyone is focusing on these models,
and with that, most people forget to take a look at the big picture of the deep learning domain. One
model that is neglected is the recurrent neural network. Moreover, everyone at sidechannel related
conferences said they want to do further research in recurrent neural networks. Meaning, researchers
are addressing the topic a lot, but only one research paper has been published.

That is where this thesis finds its place. This thesis looks at a completely different deep learning
technique that rarely has been used before in the sidechannel domain. Moreover, the thesis will be
the first deep dive into these new models. The models used in this thesis are part of the sequen
tial data models; these are recurrent neural networks, long shortterm memory, and gated recurrent
unit. These models are mostly used in the natural language processing domain [11, 73, 75]. There is
another domain where these models are used, namely the health care domain and especially on elec
troencephalogram (EEG) data [16, 33, 47, 50, 51, 64, 68]. From the perspective of the sidechannel
domain, using these sequential data models is entirely new. Only one paper [38] used the long short
term memory model. Their results are only compared to the baseline and were relatively poor. How
ever, a good explanation was not given. It was just a run and evaluate, with no further research on the
hyperparameters or explaining why the models performed poorly.

The sidechannel domain is a small group of researchers exploring a specific topic. Meaning, there
are not many datasets to work on, and most information to make better attacks is publicly known. This
results in the fact that most publications compete against each other like S. Picek said: ”Squeezing out
the last molecule of improvements.” People are competing with each other by reducing the size of a
model or time of training. For the lasts years, there has not been a big jump of research topics inside
this domain.

Finally, to the best of our knowledge, sequential data models is not a definition used in literature.
In literature, the collective name for recurrent neural networks, long shortterm memory, and the gated
recurrent unit is RNN. However, to make a clear distinction between the use of the recurrent neural
network and the three in total, we use in this thesis the term sequential data model as a collective
name for the recurrent neural network, long shortterm memory, and gated recurrent unit.

1.1. Research Question
The goal of this thesis is to take a broader look into the sequential data models. We look into three
sequential data models: the recurrent neural network, the long shortterm memory, and the gated
recurrent unit. How do these models perform on sidechannel data? What is the best way to use
them? Moreover, what should be done to let them perform at their best? There is much knowledge
for these models on different data types, but not for this specific data used with sidechannel attacks.
Therefore, general research questions in this thesis will be:

• How can sequential data models be used in the sidechannel analysis?

• What kind of preprocessing techniques from the sequential domain can be used to improve the
quality of the sidechannel attack?

• What kind of natural language processing techniques can be used to make a sidechannel attack
more efficient?

More specific research questions and why these questions are novel and needed for sidechannel
analysis are stated in the related work (Chapter 3).

1.2. Scientific Contribution 3

1.2. Scientific Contribution
This thesis answers the questions mentioned above. This is done by carefully looking into the research
of other domains and finding the strengths that could also work for the sidechannel domain. Further
more, we evaluate different setups for the sequential data models and compare these with the current
baseline. We give a final recommendation of applying these models in sidechannel attacks. In short,
the scientific contributions of this thesis are:

• A wellsubstantiated advice in using or not using sequential data models in sidechannel attacks,
where the advice is also explained.

• A new baseline for using sequential data models in sidechannel attacks in datasets with masking
and hiding countermeasures.

• A new way of preprocessing datasets for sidechannel attacks where the sequence length is
reduced, but the information is still present.

• A novel way of removing noise from datasets in the preprocessing stage of the dataset.

1.3. Outline
This thesis is a broad study of the abovestated research question. The rest of the thesis is outlined as
follows: Chapter 2 covers the background of this thesis. We explain the sidechannel analysis, AES,
machine learning, deep learning, recurrent neural networks, long shortterm memory, gated recurrent
unit, and the datasets used. As stated in Chapter 3, all related work is discussed. It will include
information about stateoftheart sidechannel attacks, why it is relevant to look into another model,
and why deep learning is used in sidechannel attacks. In the following chapters, we discuss the
contribution of this thesis. In Chapter 4, we evaluate the use of sequential data models and gather
evidence for our advice. In Chapter 5, we look into using autoencoders with long shortterm memory to
clean the data and remove the noise. In Chapter 6, we look into using embedding as a preprocessing
technique to improve the sequential data models, which we also tested with stateoftheart multilayer
perceptron and convolutional neural network. In Chapter 7, we answer the research questions from
section 1.1; there, we also address future work for this thesis. In the attachment is a section with the
implementation details and example code for reproducibility.

2
Background

We start with an introduction of advanced encryption standard(AES), after which we also explain the
known attacks on AES. We consider only the AES algorithm in this thesis because we see most side
channel attacks attacking this encryption standard. From there, we take an indepth look into the
sidechannel analysis, explain types of sidechannel attacks, and the countermeasures that are known
in the field. The third section covers an explanation of machine learning, how to evaluate, and what kind
of hyperparameters we can tweak when dealing with machine learning. Also, the multilayer perceptron
and the neural networks are explained. The fourth section explains the deep learning models used in
this thesis. These are recurrent neural networks, long shortterm memory, gated recurrent units, con
volutional neural networks, and an autoencoder. The fifth section examines specific information about
natural language processing techniques. This thesis uses many techniques used in the natural lan
guage processing domain and, therefore, particularly from recurrent models. The last section explains
the different datasets that are used in this thesis.

2.1. Cryptography Advanced Encryption Standard
The Advanced Encryption Standard, developed by Joan Daemen and Vincenet Rijmen in 2001 and a
subset of the Rijndael block cipher [14], is the new common encryption standard used in the industry
after winning a competition of the US National Institute of Standard and Technology. The Data Encryp
tion Standard (DES), published in 1977, has been superseded by the Advanced Encryption Standard
(AES). AES algorithm is a symmetrickey algorithm, meaning it uses the same key for encryption and
decryption. The Rijndael algorithm supports key sizes of 128, 160, 192, 224, and 256 bits and block
sizes of 128, 160, 192, 224, and 256 bits. However, AES’s specific implementation is used with a block
size of only 128 bits and three different key sizes, namely 128, 192, and 256. The key size of the AES
decides how many rounds are used. AES can have 10, 12, or 14 rounds, respectively, for the 128,
192, and 256bit keys.

AES encryption consists of four main parts.

1. KeyExpansion
• Round keys are derived from the cipher key using Rijndael’s key schedule. AES requires

a separate 128bit round key block for each round plus one more.

2. Initial round
• Add Round key: A bitwise XOR is used to add each byte of a state with a block of the round

key

3. Rounds (9,11 or 13 rounds)
Each round consists of four steps.

• SubBytes: a nonlinear step where each byte is replaced by another byte using an 8bit
𝑆𝑏𝑜𝑥.

5

6 2. Background

• Shiftrows: the last three rows of the internal state is shifted a certain number cyclically.
• MixColums: A linear step where matrix multiplication is used as Galois Field 28.
• AddRoundKey: A bitwise XOR is used to add each byte of a state with a block of the round

key

4. Final round (adding the total round up to 10,12 or 14).

• SubBytes: a nonlinear step where each byte is replaced by another byte using an 8bit
𝑆𝑏𝑜𝑥.

• Shiftrows: the last three rows of the internal state is shifted a certain amount of times
cyclically.

• AddRoundKey: A bitwise XOR is used to add each byte of a state with a round key block.

A visual example of the AES encryption and decryption scheme can be found in Figure 2.1.

Figure 2.1: AES Encryption (left side) and Decryption (right side).

2.1.1. Existing Attacks on AES
Breaking a cipher in a cryptographic context means anything faster than performing a bruteforce attack.
For that reason, a cipher can be called broken before an attacker assumes the cipher to be broken,
i.e., it still takes too much time to break the cipher. A bruteforce attack is an attack where the attacker
submits all the possible passwords or keys to retrieve the correct one. The attacker has to calculate
every possible combination that could make up the secret information. As the length of the password
increases linear, the time of the attack increases exponentially. In the past, some attacks have been
proven to be faster than a brute force attack. The first keyrecovery attack on AES was launched in
2011 [7]. This attack was a biclique attack and resulted in being four times faster than a brute force
attack. For example, the key recovery attack on AES128 can be computed with a computational
complexity of 2126.1. However, all the known attacks are not computationally feasible.
Sidechannel attacks that attack the algorithm do not consider the cipher as a blackbox. Instead of
that, they attack the cipher on the hardware or other software systems that leak data. An example of a
published attack was in December 2009, where differential fault analysis was used. That attack allows
key recovery of the key with a computational complexity of 232.

2.2. SideChannel Attacks 7

2.2. SideChannel Attacks
A SideChannel Attack (SCA) is an attack based on information gained from the implementation of
the hardware. The attack is thus different from most attacks because it does not use the implemented
algorithm’s weakness. For a sidechannel attack, the attacker needs some knowledge of the system. In
case the adversary has the profiling device, the attack is called a profiling sidechannel attack (explained
in 2.2.1). In case the adversary does not possess a clone device, the attack is called a nonprofiling
sidechannel attack (described in 2.2.2). In the last case, the attacker only has access to the physical
leakages of the device. Within every section, the different attacks are explained. An overview of which
attack belongs to which category can be seen in Figure 2.2.

Figure 2.2: Categories of sidechannel attacks.

To implement a sidechannel attack, there needs to be some kind of leakage. These different forms
of physical leakages a device is generating will be used to attack. The following list includes some
examples of different types of leakages a device has and how this leakage is measured:

• Timing leakage:
This attack is based on how much time it takes for the device to compute various computations.
The physical leakage is thus the timing of a computation.

• Power Consumption leakage:
This attack is made by measuring the power consumption of the hardware during the computation
of the cipher. The physical leakage is thus power consumption.

• Electromagnetic leakage:
This attack is based on electromagnetic radiation. Because of the electromagnetic radiation the
device is leaking, an attacker can directly get plain texts and other information. The physical
leakage is thus electromagnetic radiation.

• Acoustic leakage:
This attack looks like a power consumption attack but uses the sound produced instead of the
power. The physical leakage is thus sound of computation.

2.2.1. Profiling SCA
With this analysis, the adversary owns a profiling device. The attack is known as themost powerful SCA
in the literature and consists of two steps. The adversary owns a copy of the target device (profiling
device). The target device is then profiled and characterized by manipulating the data and capturing
the leakages and the clone device’s behavior. In the second step, the adversary performs an attack
with the target device’s model (profiling model) in the keyrecovery phase. The set of possible attacks
are then: template attack[10], linear regression analyses [6], and machine learningbased attacks[23].

2.2.2. Nonprofiling SCA
Nonprofiling sidechannel analysis, compared to profiling SCA, is much weaker. The adversary has ac
cess to the target device’s physical leakage and, thus, not the actual device itself. Therefore the adver
sary tries to recover the secret key by performing statistical calculations or relate the countermeasures

8 2. Background

that can be roughly divided into two categories to detect dependency between leakage measurements
and the secret key. The set of possible attacks for this method are then: Differential Power Analysis
(DPA)[31], Correlation Power Analysis (CPA)[8], and Mutual Information Analysis [15].

2.2.3. Countermeasures
The stateoftheart attacks result in the fact that several countermeasures are being placed in hard
ware by the industry. These countermeasures are set in place to make it harder to execute an effective
and efficient sidechannel attack. We divide the type of countermeasures into two groups. First, a
physical countermeasure, making it harder to obtain traces from a device. The other group contains
software and hardware related countermeasures which eliminate the relation or correlation between
the leaked information and the intermediate value.
The first group in which physical countermeasures are practiced is called shielding. In this group, the
countermeasures make it harder to collect the traces from the device. With this type of countermea
sure, an attacker needs more knowledge about the device. If the attacker owns more advanced and
more expensive equipment to capture the traces, he will still capture the traces. Therefore, this coun
termeasure has a limited effect but will most likely work against script kiddies. The second group, which
is more implementation based has two types of countermeasures:

• The first countermeasure in this group is called hiding countermeasures [41]. A hiding counter
measure is a countermeasure that eliminates or reduces the information leaked by the system.
There we want to hide the real traces inside the hardware model. So the goal of a hiding coun
termeasure is to change characteristics directly. An example of doing this is to add random noise
to the signal or let every computation cost the same amount of power. More common techniques
also included random delay or shuffling. Random delay countermeasure is a technique where
timing difference is created between the data points. Random operations fill in the gaps that are
created by this method without any meaning for the encryption. These hiding countermeasure
aims at decreasing the SignaltoNoise ratio (SNR) because the method increases the noise and
decreases the signal. However, some patterns that identify the trace can still be present in the
captured data. For example, convolutional neural networks can deal with these hiding techniques
and, therefore, may find the pattern that is in the trace.

• The second countermeasure in this group is calledmasking countermeasures [42]. This counter
measure can eliminate the sensitive leakages from the model. A common way to mask an AES
encryption is to alter the output of the 𝑆𝑏𝑜𝑥 with boolean values [61]. Normally we XOR the input
with the round key and use that with the 𝑆𝑏𝑜𝑥; now, a mask is added after the 𝑆𝑏𝑜𝑥 operation.

Normal situation: 𝑂𝑢𝑡 =𝑆𝑏𝑜𝑥[𝑖𝑛𝑗⊕ 𝑟𝑘𝑗],
Masked situation: 𝑂𝑢𝑡 =𝑆𝑏𝑜𝑥[𝑖𝑛𝑗⊕ 𝑟𝑘𝑗] ⊕𝑚𝑎𝑠𝑘𝑗

(2.1)

In Equation (2.1) is 𝑖𝑛𝑗 the input at round 𝑗, and 𝑟𝑘𝑗 the round key at round 𝑗. Masking can be
done in higher orders. Then we speak about a higher order mask with the order of 𝑛. In these
higher orders masks, 𝑛 random masks are picked to mask the data like in the masked situation in
Equation (2.1), masked situation. A higherorder attack can still break a masked implementation.
This attack should be of the order 𝑛 + 1. The attacker could then select 𝑛 + 1 points of interest
and try to correlate these points with each other.

To conclude, many countermeasures are designed and integrated, but the reality is that every coun
termeasure can be dealt with by the attacker. In the current state of sidechannel analysis, it is advised
to combine the abovediscussed countermeasures. The complexity of the attack increases when using
different countermeasures. This is visible in Figure 2.3.

2.2.4. Guessing Entropy
In every evaluation problem, there is a need for a metric. Usually, machine learning problems use
metrics such as accuracy, precision, or recall. However, we see that those metrics do not evaluate a
sidechannel attack well enough. Therefore we use a metric called Guessing Entropy (GE) [62].
The GE of a model indicates the average number of key guesses that need to be tested before the

2.2. SideChannel Attacks 9

Figure 2.3: Visualization of how different techniques increase the complexity of the model. On the Xaxis is the
number of traces related to the countermeasure. On the Yaxis is the average number of queries to reach a SR of
90%. The figure was found at [43].

attacker recovers the correct key byte. When attacking the trained model, the attacker creates an
array (with the size of the keyspace) with the key guesses sorted descending on all the probabilities for
each key. This means the key at position 0 has the highest probability to be the right key. To calculate
this GE over multiple traces, the log function of the probability is calculated. In this setting, the amount
of traces is optimized by getting the correct intermediate value at position 0 in the array. We write down
the amount of traced needed before reaching that setting. Meaning a GE of 0 after using 200 traces is
better than reaching a GE of 0 after using 400 traces because the model needed fewer traces to get
the correct key at position 0. A GE that never reaches 0 means that the model is not able to find the
right key.
However, what should be noted is that GE could be dependent on which traces it sees first. Some
traces could be more helpful for finding the right key than others. It would make a difference whether
these traces are in the beginning or at the end of the attack. To overcome this problem, we always
calculate the GE with a different permutation of the attack traces. This is done 100 times with random
permutations. Every single GE that is calculated is called the Partial Guessing Entropy (PGE). Then
the average GE of the 100 PGEs is calculated to come with a final GE for a particular experiment.

2.2.5. Leakage Models
SCA does have a variety of leakage models. In the previous section, the conclusion was made that
the device is leaking information. The difference with a leakage model is how we notate the leakage,
how the leakage is captured stays the same. This thesis uses two different leakage models, which are
commonly used in literature, which are hamming weight and intermediate values.

Hamming weight (HW) is a way of notating values and named after Richard Hamming [17]. The
hamming weight is calculated by counting the number of ones in a binary representation of the leak
ing value. The advantage of the hamming weight leakage model is that it has fewer classes in the
classification phase, which results in a smaller training complexity. Because of the fewer classes, this
dataset also suffers from class imbalance. Equation (2.2) is an example of calculating decimal values
to hamming weight. In this example, we can see a class imbalance since most of the values have a

10 2. Background

hamming weight of 4.

𝐻𝑊(131) = 𝐻𝑊(100000112) = 3,
𝐻𝑊(106) = 𝐻𝑊(011010102) = 4,
𝐻𝑊(45) = 𝐻𝑊(001011012) = 4,
𝐻𝑊(230) = 𝐻𝑊(111001102) = 5,
𝐻𝑊(32) = 𝐻𝑊(001000002) = 1.

(2.2)

Intermediate value (ID) is the most standard way of notating the leakage model and most commonly
used in software models. In this case, the model has 256 classes, which are equal to the intermediate
key values. Here we classify directly to the key values and do not suffer from class imbalance. However,
because of the enormous class vector space, the training complexity increases and makes it harder for
the model to classify the right traces to the right ID value.

2.3. Machine Learning
Machine learning (ML) is a mechanism that has been used a lot in the past twenty years. Humans are
the ones that program machines and make algorithms to follow a certain set of ordered instructions. If
humans instruct these machines to learn from the past data, the machines can learn and adapt to these
past experiences way faster. This phenomenon is called machine learning. A machine that is solving a
task without having specific instructions on how to solve the task, but learning itself to give instructions
based on past data. In computer science, we divide these machine learning algorithms roughly into
three groups. The first group is supervised learning, the second group is unsupervised learning, and
the last group is reinforcement learning.

• In supervised learning, a model learns from the data using features in the data to identify the
difference between different objects. In the training phase, the model has access to the different
labels of the objects. The model does learn what features correspond with which label. Then,
when the model sees a new object, it looks into that object’s features. It will classify the new
object with a label from the training phase. In supervised learning, new unseen data has always
to be classified to the known classes.

• In unsupervised learning, a model also learns from the data using features present in the data.
The big difference between unsupervised and supervised learning is that we do not have labels
for the input data. The machine will cluster the different objects according to their features and
tell afterward which objects look the same. Here the machine can make extra ’labels’ which can
create more classes but also increase sparsity.

• In reinforcement learning, the model works on the principle of feedback. When we give an object
to the model, it will identify the object based on features and characteristics. The model puts
a label on the object, which is followed by giving feedback to the model. If the object was not
labeled correctly, the machine will adapt its identifiers to the right values and, therefore, will better
recognize comparable objects.

Thus, a machine learning model is something that maps an input to an output. Where every ob
ject in that input has a feature vector of 𝑛 features which is represented as �⃗� = (𝑥1, 𝑥2, ..., 𝑥𝑛). In the
sidechannel domain, this object will be a trace holding at every time step a feature with sidechannel
information. This feature depends on which leakages are measured. The label of these traces is the
intermediate values or intermediate keys. Those labels are typically represented as 𝑦. A machine
learning algorithm tries to create a function that maps those inputs to the outputs. This function is rep
resented as follow: 𝑓 ∶ 𝑋 → 𝑦. There are different machine learning techniques. In this thesis, we will
mainly focus on the neural networks and the classification problem.

We can dividemachine learning classification problems into four different categories. See Figure 2.4
where the input is the black box. The steps in the algorithm are the blue box, and the yellow box is the
output. In the following itemize, we explain the four different categories of the figure.

• One to one classification, where the input consists of one value, and also the output is singular.

2.3. Machine Learning 11

• One to many classifications, where the input consists of one value, and the output can be classi
fied into more classes.

• Many to one classification, this is where the input consists of many inputs, and the output is a
singular value. For example, this is a problem with a single trace as input (where the trace has
multiple timesteps), and this has to be classified into one intermediate key value.

• Many to many classifications, this is where the input and the output consist of many values. We
see this type with translation problems where one sentence with multiple words is translated to
the other sentence with multiple words.

Figure 2.4: Graphical visualization of different categories of classification problems.

For every training, the model can be tweaked. These configurations that are given to the model
before training are called hyperparameters. So, the hyperparameters are set at the beginning of the
training phase and can be optimized by the user. This thesis is a broad study of what are the right hy
perparameters for sequential data models. Possible hyperparameters are dropout, recurrent dropout,
amount of layers (more broadly architecture), batch size, epochs, and activation functions. Increasing
the number of epochs will increase the number of training runs. Therefore we could find the optimal
value between overfitting and underfitting.

2.3.1. Neurons
Since we focus on artificial neural networks in this thesis, we explain neurons. In this subsection, we
shortly discuss these neurons. The idea of these neurons is taken from the brain’s function, and they
are the building units of the artificial neural networks. These neurons take specific inputs, calculate
the weighted sum and then apply an activation function, generating an output used for the next neu
ron/layer. These neurons’ inputs can be the output of a previous layer or the original input from the
dataset. The weights are then applied and will be updated every batch size according to the optimiza
tion algorithm or in every epoch of the training phase. The neuron then uses an activation function,
and, based on that, it fires its outputs to the next layer. The bias value, which can be seen in Figure 2.5,
is added to the neuron before calculating the activation function. This bias term is also something that
is learned but is a constant factor that is added to the neuron. When an input of the dataset is all 0, the
neuron’s output is always zero. However, when the output should be 1, this can be compensated with
the bias term.

2.3.2. Evaluation
When training a machine learning model, the process should always be evaluated. Therefore, after
the training phase, there is a validation phase. In the beginning, we always make a split of the data.
Often we do this split into an 80/20 ratio. Here 80% is used as training data where the model can use
the labels and the features to train its parameters. After the training phase, it will use the other 20% of

12 2. Background

Figure 2.5: A zoom in view of an artificial neural network. In the figure is visualized how the output of a neuron is
calculated.

the data, but it will not know the labels. So, the model will classify the features of the last 20% to the
right labels. These labels are then compared with the original labels, and based on that comparison,
we can calculate an accuracy based on the formula in Equation (2.3).

Accuracy = number of correct predictions
number of predictions

(2.3)

We have to do this split in training and validation data so that the model uses new data. It is hard
to conclude something from a 100% accuracy when the model is evaluated on the same data as it
was trained. However, when this is the case and even worse on its training data during the evaluation
phase, the model has not learned the features from the data well enough. We briefly go into the two
terms overfitting and underfitting. When amodel is overfitted, it means themodel cannot generalize and
therefore fails to make correct predictions on the new data. The model has seen too much data similar
to each other or has seen different objects too much. The model cannot interpret different changes to
the features of objects it has not seen before and will not work well.
A model could also be underfitted during the training session. This means the data is too similar in the
training set and cannot make reasonable distinctions between the different labels and corresponding
features. It could also mean that the model has not seen enough data and has not learned well enough
how to describe a label and which features correspond to these labels.

2.3.3. Activation Functions
One of the hyperparameters that are tuned in the model is the activation function. The output of the
model is calculated by this function and will make a significant impact on the performance of the model.
Without an activation function, the neuron’s mathematical operation consists of dot products between
the weights matrix and the input vector. This dot product will only result in linear formulas, and therefore
the neuron will only be able to capture linear formulas. With the use of the activation function, the
model can learn nonlinear functions. In this thesis, we will use the following four activation functions.
Therefore, we will briefly describe the own characteristics of each activation function here with the
corresponding formulas.

The first activation function is the TanH activation function. This activation function limits the output
between 1 and 1. The activation functions are nonlinear in characteristics, and therefore we can
stack layers when using this activation function. However, this activation function also suffers from the
vanishing gradient problem. TanH is mostly used in recurrent neural networks. The formula of the
TanH function can be seen in Equation (2.4).

𝑇𝑎𝑛𝐻(𝑥) = 2
1 + 𝑒−2𝑥 − 1 (2.4)

The second activation function is the rectified linear units (ReLU) function and is defined in Equa
tion (2.5). This activation function returns a 0 for every negative value and returns the same value for

2.3. Machine Learning 13

any other values, which makes this activation function cheap to compute. The activation function does
not suffer from the vanish gradient problem, having many advantages; this activation function also has
some disadvantages. Because the ReLU function is returning 0 for every negative value, there is a
high chance that once a neuron is 0, it will never activate again. This is also known as the dying ReLU
problem. This activation function is mostly not used in recurrent neural networks because the output
is mapped linearly. In RNNs, the output can get remarkably big, and therefore using a ReLU function
will make the value so big that it will be lost out of sight.

𝑅𝐸𝐿𝑈(𝑥) = {0 if 𝑥 < 0
𝑥 if 𝑥 >= 0 (2.5)

The third activation function is the sigmoid activation function. This activation function maps every
value from minus infinity to plus infinity to a value between 0 and 1. The formula of the sigmoid function
can be found in Equation (2.6). There are some downsides to using the sigmoid function. For exam
ple, the exponential(𝑒𝑥) function of the sigmoid function is computationally expensive. Moreover, this
activation function also suffers from the vanish gradient problem.

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (2.6)

The last activation function that will be used in this thesis is the softmax activation function. The
formula behind this can be seen in Equation (2.7). This activation function’s logic is to turn the numbers
that come as input into probabilities that sum to one. The output of this function is a vector that repre
sents the probability distribution of the possible outcomes. This softmax activation function is mostly
used for the last layer because it can classify the output to the different classes and gives the highest
probability for the class that is most likely the correct label.

𝑆(𝑦𝑖) =
𝑒𝑦𝑖
Σ𝑒𝑦𝑗 (2.7)

2.3.4. Weight Initializer
Another hyperparameter that is tweaked in a deep learning model is the weight initializer. With an op
timal start value of the weights, the model will achieve the most in minimum time. Selecting the correct
starting value for the weights will make it harder to get stuck in local minima by gradient descent. A
weight initialization gives the starting value of the model and therefore influences the learning behavior.
In this thesis, we will be using the following weight initializers:

LeCun uniform, draws samples from a uniform distribution within [−𝑥, 𝑥]. This x value, or also called
limit, is calculated in the following way:

𝐿𝑖𝑚𝑖𝑡 = √ 3
𝑖𝑛𝑝𝑢𝑡 . (2.8)

The input listed in Equation (2.8) is equal to the number of input units in the weight tensor.

He uniform looks a lot like the previous discussed LeCun uniform. However, the number in the
square root is now equal to 6. See Equation (2.9).

𝐿𝑖𝑚𝑖𝑡 = √ 6
𝑖𝑛𝑝𝑢𝑡 (2.9)

Glorot uniform also draws samples from a uniform distribution. This initializer is the standard initial
izer of the model’s kernel used in this thesis. The uniform distribution draws the values between two
limits, which are calculated by the following formula

𝐿𝑖𝑚𝑖𝑡 = √ 6
𝑖𝑛𝑝𝑢𝑡 + 𝑜𝑢𝑡𝑝𝑢𝑡 . (2.10)

14 2. Background

In Equation (2.10), the input is again the units in the weight tensor. The output is the number of output
units in the weight tensor.

Uniform distribution is the most classic initializer. The values are drawn from a random distribution
where the limits can be specified. By default, the values are drawn between 1 and 1.

2.3.5. Multilayer Perceptron
In this thesis, we use the multilayer perceptron (MLP). We do not design a new MLP, but we use
already designed and described MLP models from related work; we only briefly discuss the multilayer
perceptron’s architecture. We will not dive deep into every layer and its function. This model consists of
one input layer, at least a hidden layer, and an output layer. The MLP hidden layers can be configured
with an infinite amount of neurons where the hidden layers are the layers that pass on the information
from the input to the output layer. The neurons’ size for the input layer should be equal to the number
of features, where the neurons in the output layer are equal to the number of classes. The output from
one layer to another is dependent on all the neurons in the previous layer. The output per neuron is
calculated, and then, based on the activation function, a new output is calculated and fired to all the
neurons in the next layer. The output of every neuron will be weighted; these weights can change per
layer and per neuron. The network can learn the best configuration of weights for learning the input to
the right output. MLPs are mostly used in stochastic research.

2.4. Deep Learning
Deep learning is a part of machine learning, which is most often based on artificial neural networks
(ANN). In this thesis, we see many models that are part of two commonly used deep learning architec
tures. These architectures are the recurrent neural networks and convolutional neural networks. The
most common use cases for deep learning techniques are computer vision, machine vision, speech
recognition, natural language processing, audio recognition, machine translation, social network filter
ing, image restoration, and sidechannel analysis.

Based on artificial neural networks, deep learning is inspired by the way the brain works and pro
cesses information. The way deep learning models can grow and extend their power has proven to
be comparable or even surpass the human performance considering logic analysis. Their strength is
finding and acting accordingly with massive datasets. Something that for a human would take ages to
learn and find relations in it. When using deep learning, there is a constraint to call it ’deep’ learning.
This comes from using multiple layers inside a network. Using only one layer does not make it a deep
learning network. The amount of layers is unbounded; however, every layer’s size should be chosen
and is therefore constrained.

In this thesis, we will use six commonly used deep learning models. This section explains these
models and how their cells work, including which formulas are used to update the weights. The first
section is a brief explanation of neurons and cells. In the second subsection, the recurrent neural
networks are explained. In the third subsection is a brief explanation of the long shortterm memory.
In the fourth subsection, the gated recurrent unit is explained. After that, the following sections briefly
discuss the convolutional neural network and autoencoder.

2.4.1. Recurrent Neural Networks
Recurrent Neural Networks (RNN) is a neural network that is called recurrent because it performs the
same function on every input data and stores the output for the next input. This means the RNN stores
the previous step input and merges that information with the current step input. With this feature, the
network can have some kind of memory. The output of the neural network is thus dependent on past
computation. Because the RNN has a memory, it is especially useful in training on sequential data.
Sequential data is a stream of interdependent data. Sequential data could be, for example, the words in
a sentence of a conversation or the data of a stock market. RNNs are also used for speech recognition.

An simple RNN is presented in Figure 2.6, with an input 𝑋𝑡, a hidden layer 𝐴 and an output ℎ𝑡. The
formula for the current state can be written like

ℎ𝑡 = 𝑓(ℎ𝑡−1 + 𝑥𝑡), (2.11)

where 𝑓 is the activation function and for RNNs, usually the TanH activation function. The hidden

2.4. Deep Learning 15

Figure 2.6: On the left side a visualization of an simple RNN. On the right side it is unrolled for better visualization.

state has weights for specific neurons. Say 𝑊ℎ are the weights of the current state, and 𝑊ℎ−1 are the
weights of the previous state. Then function (2.11) can be written as

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑡−1 ∗ ℎ𝑡−1 +𝑊ℎ ∗ 𝑥𝑡). (2.12)

Considering a standard RNN, it has one major drawback. RNNs suffer from the vanishing gradient
and exploding gradient problem. This makes the training of the neural network a challenging task. The
vanishing gradient problem arises when there are multiple hidden layers. The data input has a wide
range because an activation function, like the sigmoid or the TanH function, maps all the inputs to a
small output. Therefore an enormous change in the input will give only a small change in the output.
Therefore the gradient will be small. This problem does not arise with shallow networks, yet it does
when more layers are used, and it results in the gradient being too small for practical training. A small
gradient means that the layers’ weight will not be updated as they should, which results in a significant
inaccuracy of the network. The most straightforward solution given by related work is using the ReLU
activation function. The second solution given by related work is to normalize the data before the acti
vation part of the activation function.

A mathematical example of how this RNN works is as follows, take a sample input [0.1, 0.3, 0.6,
0.8]. The initial hidden state is commonly set to 0, and for the weight value, we chose a constant factor
of 0.4 for every step, meaning we get the following Equation (2.13)

ℎ0 = 𝑇𝑎𝑛𝐻(𝑊0 ∗ ℎ0 +𝑊0 ∗ 𝑥0),
ℎ0 = 𝑇𝑎𝑛𝐻(0.4 ∗ 0 + 0.4 ∗ 0.1),

ℎ0 = 𝑇𝑎𝑛𝐻(0.4),
ℎ0 = 0.003998,

ℎ1 = 𝑇𝑎𝑛𝐻(𝑊0 ∗ ℎ0 +𝑊0 ∗ 𝑥1),
ℎ1 = 𝑇𝑎𝑛𝐻(0.4 ∗ 0.003998 + 0.4 ∗ 0.3),

ℎ1 = 𝑇𝑎𝑛𝐻(0.1215992),
ℎ1 = 0.1210034,

ℎ2 = 𝑇𝑎𝑛𝐻(𝑊1 ∗ ℎ1 +𝑊1 ∗ 𝑥2),
ℎ2 = 𝑇𝑎𝑛𝐻(0.4 ∗ 0.1210034 + 0.4 ∗ 0.6),

ℎ2 = 𝑇𝑎𝑛𝐻(0.28840136),
ℎ2 = 0.28066276,

ℎ3 = 𝑇𝑎𝑛𝐻(𝑊2 ∗ ℎ2 +𝑊2 ∗ 𝑥3),
ℎ3 = 𝑇𝑎𝑛𝐻(0.4 ∗ 0.28066276 + 0.4 ∗ 0.8),

ℎ3 = 𝑇𝑎𝑛𝐻(0.432265104),
ℎ3 = 0.407212550.

(2.13)

16 2. Background

As stated before, this is the most simple form of a sequential data model. In the following subsec
tions, we present different variants of the RNN, including their mathematical formulas.

2.4.2. Long ShortTerm Memory
The Long ShortTerm Memory (LSTM) is a variant of the RNN that has been explained in the previous
section. A socalled unrolled LSTM can be seen in Figure 2.7. As the name may already give away, the
network can have a long memory, longer than the normal RNN has. This makes them more functional
for data where the data’s relationship is more spread over the complete trace. The LSTM was found in
1997 by Sepp Hochreiter and Jurger Schmidhuber [22]. One of the advantages of the LSTM network
is that it deals with the previously discussed vanishing gradient problem. This is because LSTM cells
have the option to let the gradient go unchanged to the next iteration. Therefore, the gradient will not
vanish. Unfortunately, LSTMs are still vulnerable to the exploding gradient problem.

A simple LSTM cell looks as presented in Figure 2.7, with an input 𝑥𝑡. First the LSTM decides which
information is important and what should be discarded. This decision is being made by the forget gate
layer and is mathematically presented by Equation (2.14). The output is somewhere between 0 and 1
where 0 means forget and 1 remember the input 𝑥𝑡.

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.14)

The next step in the LSTM is to update the cell state output. Equation (2.15) calculates which value
has to be updated. Then new candidates are being calculated by Equation (2.16). These two formulas
are combined which results in a new potential candidates for the cell state in the next LSTM cell.

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.15)

̃𝐶𝑡 = 𝑇𝑎𝑛𝐻(𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (2.16)

In this part the next cell state is actually calculated by Equation (2.17). This is a combination of the
formulas seen before. Forgetting what we should forget and adding the new candidate values.

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ̃𝐶𝑡 (2.17)

The last step is to output the information and give this to the next cell state. This output is depended on
the current cell state and the relevant information from previous cell and the input. So first is decided
what is the relevant information. That is calculated in Equation (2.18), then this formula is used in
combined with a TanH activation of the current cell state which results in Equation (2.19).

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.18)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑇𝑎𝑛𝐻(𝐶𝑡) (2.19)

2.4.3. Gated Recurrent Unit
The Gated Recurrent Unit (GRU), which is visualized in Figure 2.8, is introduced by Cho et al. in
2014 [12]. This unit aims to solve the vanishing gradient problem, which comes with the standard
RNN. This updated version of the RNN looks and works similar to the LSTM. In most cases, the GRU
and the LSTM perform equally. The GRU does this with his internal update and resetgate. This gives
the GRU two vectors which are trained to learn what to forget and what not. The first step in this
process is the update gate. This update gate can be calculated with Equation (2.20). As we can see in
the formula, the input is multiplied with the weight, and the output of the last cell is multiplied with the
own weight. This update gate helps the model determine how much of the past information is relevant
for the future and should be passed on.

𝑧𝑡 = 𝜎(𝑊(𝑧) ∗ 𝑥𝑡 + 𝑈(𝑧) ∗ ℎ𝑡−1) (2.20)

After the update gate, there is also a reset gate in the GRU. This gate kind of resets the GRU and
decides whether the past information should be forgotten or used for the current step. The output of
the gate can be calculated using Equation (2.21).

𝑟𝑡 = 𝜎(𝑊(𝑟) ∗ 𝑥𝑡 + 𝑈(𝑟) ∗ ℎ𝑡−1) (2.21)

2.4. Deep Learning 17

Figure 2.7: A grahpical visualization of a LSTM cell.

The formula looks the same as the one in the update gate. The difference is only in the weights that
are used and where it comes back in the gate. Then we take the current memory of the GRU by using
the formula written in Equation (2.22).

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ∗ 𝑥𝑡 + 𝑟𝑡 ∗ 𝑈 ∗ ℎ𝑡−1) (2.22)

Here we store the current memory, which contains the relevant information from the past.
In the final step, we need to calculate the current unit’s relevant information and what should be

passed on to the next unit. Therefore we need the update gate together with the output of the current
memory. The mathematical expression can be written as Equation (2.23).

ℎ𝑡 = 𝑧𝑡 ∗ ℎ𝑡1 + (1 − 𝑧𝑡) ∗ ℎ𝑡 (2.23)

Figure 2.8: A graphical visualization of a GRU cell unrolled.

2.4.4. Convolutional Neural Network
In this thesis, we use the Convolutional Neural Network(CNN). We do not design new CNN models,
but we use CNNs from related work, and here we discuss the general CNN architecture and specifics.

18 2. Background

CNNs are mostly used in analyzing visual images. CNNs are most known because they are shift
invariant. They do have some overlap with the aforementioned MLPs but have a different approach
towards regularization. The architecture of a CNN consists of an input layer, hidden layers, and an
output layer. The power of the CNN is in these hidden layers. For a neural network to be ’deep’ as
used in deep learning, there should be multiple hidden layers. The hidden layers in CNNs are mostly
convolutional layers that convolve with somemultiplication. After the activation function, which is mostly
a RELU activation, a pooling layer, then a fully connected layer, and a batch normalization layer are
followed. The output layer will be a dense layer to make a classification into the right class.

2.4.5. Autoencoder
An autoencoder is a part of the family of artificial neural networks. The network tries to encode a value
by using the encoder part of the network and then can decode the value by using a decoder to a value
almost similar to the original value. An autoencoder is, by design, specialized in reducing and ignoring
noise in data. An autoencoder consist of four parts:

• Encoder Here, an encoded representation is constructed from the input. This happens by re
ducing the input dimension and then gives a compressed value of the input. The result is the
encoded representation.

• Bottleneck This is the middle of the autoencoder. Here are the values that are compressed by
the encoder.

• Decoder Here, the model learns how to reconstruct the original data from the encoded values.
The results should be as close as possible as the original values.

• Reconstruction loss Here is the evaluation performed. This part checks how much the output
after the decoder looks like the original input.

In a sidechannel analysis, an autoencoder can be used to clean traces before learning them. The
autoencoder architecture is also used in natural language processing because of translating one lan
guage to another. An autoencoder is a particularity designed for many to many classification problems.
However, every model can be used to build an autoencoder, as long as the encoder and decoder are
doing the inverse of each other. We could, for example, use an LSTM as encoder and decoder, but
also a convolutional layer as input and deconvolutional layer as output. The mathematical part of the
autoencoder depends on the models used for encoding and decoding. To conclude, an autoencoder
is a system of known models that reads the input, encodes it, decodes it, and then tries to recreate the
output.

2.5. Natural Language Processing
The first natural language processing technique published was in 1950, published by a famous com
puter scientist Alan Turing [63]. In this publication, the writer tries to define a criterion of intelligence;
something is now known as the Turing test. It is only till the late 60’s when the first Natural Language
Processing(NLP) systems are developed. When looking at NLP, we can briefly divide these into two
subjects. Rulebased versus static NLP. Rulebased is by writing grammar for the language, which
is done in the turning tests. The statical NLP, which became popular in the late 1980s, is based on
machine learning techniques.

In this thesis, we mostly use recurrent models. These models have a massive use case in the nat
ural language processing domain. The natural language processing domain is a subfield of artificial
intelligence. The domain is mostly focusing on the interaction between human language and comput
ers. The most common use case is for computers to understand the human language and learn the
language with enormous datasets. This task is more challenging than it seems because a language
is alive, and everything in a language could have more meanings. Therefore there are some specific
natural language processing techniques. This domain has some specific techniques used a lot for
recurrent networks, which are also commonly used with the human language.

In the following three subsections, we explain these natural language processing techniques. In
the first subsection, the attention model is explained. The second subsection briefly discusses the

2.5. Natural Language Processing 19

bidirectional layer. The last subsection explains the embedding layer and gives an example of how this
layer works.

2.5.1. Attention Model
The attention model was first introduced by [5]. Attention is commonly used nowadays as extra features
for sequential data models. A sequential model feeds a particular state’s weight to the next state,
creating one significant feature vector with all the previous words. This gives one big problem; features
can vanish over time. Now the LSTM gives a solution to that problem, to make a direct connection from
the beginning to the end of the cell. Therefore themodel can pass one value immediately to the last part.
However, when there are more exciting features of the sequence, what then? That is where attention
takes place. Attention computes every single internal state like the model did before. However, then
it creates an extra vector looking at the different options. Instead of a value that is being predicted at
timestep ten, using an internal state vector generated by timestep nine and before. It can, for example,
only look at the internal state at time steps three and five. So this attention vector that is generated can
look closely at individual values in the sentence and can skip some values. The weights in the attention
vector are between 0 and 1 and per vector has to sum up to 1. The context vector, which combines
the attention vector and the internal state vector, is multiplied and then summed to make a context
vector. This context vector, including the last internal state, is used for the next prediction and then
concatenated, resulting in a final vector. This is helping the sequential model to look more specifically
to the right part of the sequence. These attention weights are produced differently per model and can
be tweaked by the user; in research, this is mostly called the alignment score. Examples of these
scores are Global attention, local attention, dot product, hard attention. Mathematically we describe
this as in Equation (2.24).

Internal states produces per CELL:
ℎ1, ℎ2, ℎ3, ℎ4..

attention weights produces per cell:
𝑒1, 𝑒2, 𝑒3, 𝑒4..

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑡=5 = ℎ1 ∗ 𝑒1 + ℎ2 ∗ 𝑒2 + ℎ3 ∗ 𝑒3 + ℎ4 ∗ 𝑒4
𝑐𝑜𝑛𝑐𝑎𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑡=5 = [𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑡=5 + ℎ4]

(2.24)

2.5.2. Bidirectional Layer
The bidirectional layer is commonly used in NLP. When using this, we start to play with the time de
pendency. Like the word bidirectional already implies, the model learns in two ways. It connects two
hidden layers of opposite direction to the same output. This results in a model that can learn the input
from left to right and also from right to left. Meaning the model can look into the future before making
a classification. So words that also depend on future words are better classified with this technique.
However, in realworld scenarios, the use case is less convenient because we usually would not know
what is coming next in some situations. For example, learning the stock market with bidirectional lay
ers, knowing that a particular stock is decreasing in the future would make a huge impact, but that is
not a reallife scenario. However, it could be used for handwriting and then recognizing letters in a
word because it would be simpler to know which letter is before and after that particular letter.

2.5.3. Embedding
People refer to embedding as some kind of lookup table which is specific for the dataset. This is be
cause an embedding layer also has weights that need to be learned for the particular dataset. When
using an embedding layer, the input should be integer encoded. Embedding is defined as the first
hidden layer of a model. We explain the function of an embedding with the following example. Take,
for example, the following two sentences:
”This is my thesis”
” This thesis is good”
We then need to integer encode these two sentences, which will give the following two vectors. [0, 1, 2, 3]
and [0, 3, 1, 4]
Considering an embedding layer, we need to give two values when initializing. This is the input di

20 2. Background

mension and the output dimension. The input dimension should be equal to the number of distinct
integers. In our example, that is 5, meaning we have five different words. Then we need to determine
the output dimension. This means how big the output vector should be. In this example, we chose it
to be equal to three. The embedding layer then creates a table which looks like Table 2.1. So here

Index Embedding
0 [0.20, 0.60 , 0.40]
1 [0.35, 0.16 , 0.84]
2 [0.64, 0.78 , 0.09]
3 [0.88, 0.61 , 0.11]
4 [0.45, 0.54 , 0.10]

Table 2.1: Example of embedding matrix.

we see, the length of the table equals five, which is the input dimension and the embedding vectors
have a length of three because we chose that as the output dimension. Changing the output dimension
parameters means we can make the model more complex but also more specific. Now we have every
word represented by a vector of size three instead of having a onehot encoded vector of size five with
4 out of 5 elements as a zero. Also, it should be considered that this size scales linearly with the size of
the dictionary. When using embedding, we can set our own embedding dimension. So not every word
gets replaced by an embedding, but every unique word gets one embedding vector, which is used by
looking up in the embedding table. The embedding values that are assigned to every word (or index)
are also updated during training. Words that are commonly used together or that are holding a relation
get the same values. Therefore we could learn a ’perfect’ embedding space representing some kind
of dictionary in a specific language. This example gives the useability of the embedding layer with
words as an example. Since the sidechannel analysis traces we use are float numbers, we adjust the
embedding technique. This is described in Chapter 6.

2.6. Datasets
In this thesis, we use different public datasets. The reason for using different datasets is because
they all have different characteristics that describe them. Those characteristics can be unprotected
leakages, leakages with high noise, or leakages with random delay or masking countermeasures. In
the sidechannel community, most datasets that are used are the same. First of all, because capturing
a dataset is precise work, much expensive equipment is a need, and even then, the measurement
is sensitive to background noise. The second reason is a more practical tradeoff; when everyone is
using the same datasets, it is easier to compare the results of different models. We will use the following
datasets in this thesis: DPAv4, ASCAD, CHES2009.

2.6.1. DPAv4
The DPAv4 dataset [1] is a dataset generated for the fourth DPA contest, which was organized by
Telecom ParisTech and launched in July 2013. This thesis uses the first implementation where the
traces are a masked implementation of AES256 on an Atmel ATMega163 smart card. The mask
in this dataset is leaking firstorder information [46]. Because of that, we can assume that we know
the mask and therefore transform the implementation into an unprotected scenario. The dataset itself
consists of 100 000 traces where every trace has 3 000 features. The leakage model of this DPAv4
dataset is described as

𝑌(𝑘∗) = 𝑆𝑏𝑜𝑥[𝑃0⊕𝑘∗] ⊕𝑀. (2.25)

In Equation (2.25) 𝑀 is the known mask and 𝑃 the plaintext that is XORed with the round key 𝑘∗

2.6.2. CHES 2009
This dataset has a hiding countermeasure and is mostly referred to as the AESRD dataset[13]. The
dataset is generated on an 8bit Atmel AVR microcontroller, which was running an AES128 implemen
tation, with the random delay countermeasure? The dataset has 50 000 traces where every trace has

2.6. Datasets 21

3 500 features. For this dataset, we attack the first key byte by attacking the first 𝑆𝑏𝑜𝑥 operation. The
leakage function is described in Equation (2.26).

𝑌(𝑘∗) = 𝑆𝑏𝑜𝑥[𝑃0⊕𝑘∗] (2.26)

2.6.3. ASCAD
The ANSSI SCA Database (ASCAD) [4] is a database that provides a benchmark for the sidechannel
community. The authors try to start a similar database as the MNIST database for figures, but for the
sidechannel analysis community. The ASCAD database is generated in July 2018 and has been in
troduced in [56]. The database has 50 000 profiling traces and 10000 attack traces. These traces are
measured and captured from electromagnetic emanation. The target platform has an 8bit AVR micro
controller, which has a running implementation of a masked AES128. The traces captured from this
ATMega8515 are raw added to the database. Likewise, in the MNIST database, there is a preselected
window equal to 700 features for the leakages of the third subkey byte. In this thesis, we use the same
window as the authors set for the database. The leakage function of the masked ASCAD database is
in Equation (2.27).

𝑌(𝑘∗) = 𝑆𝑏𝑜𝑥[𝑃2⊕𝑘∗] ⊕𝑀 (2.27)

In Equation (2.27)𝑀 is the known mask and 𝑃 the plaintext at position three that is XORed with the
round key 𝑘∗.

3
Related work

This chapter discusses the related work for this thesis. We take a look at relevant publications in the
domain of profiled sidechannel analysis. We show what is done within the sidechannel analysis and
where this thesis fits in the domain. Finally, we look at different recurrent neural network publications to
know state of the art in sequential data models. By pointing out the current research, we can conclude
what is missing and formulate three different research questions for this thesis with a few subquestions.

In the first section, we take a look at machine learning in the sidechannel analysis. The second
section looks at the deep learning models in sidechannel analysis. After this, the third subsection goes
into the recurrent neural networks and is also part of the deep learning family; however, it is not yet
used as a suitable sidechannel model. Therefore this section briefly discusses the usability of RNN
in other domains. The last section goes into natural language processing techniques, commonly used
together with RNN models. Looking in the last section at what is state of the art and what kind of use
cases are these techniques used nowadays.

3.1. Machine Learning in SideChannel Analysis
Sidechannel analysis is a powerful way to break encryption using techniques with big data analysis.
Therefore the strength of an attack and the danger of a sidechannel attack goes hand in hand with
the data analytic model. The first published sidechannel attack was in 1996 by [32]. This attack was
the start point for sidechannel analysis; after that, they started to use different attacks, which are Dif
ferential power analysis [31] (1999), Template attacks [10] (2003) and Stochastic approaches by [59]
(2005). From there on, they made a jump to use Machine learning techniques. The first sidechannel
attack using machine learning techniques was by [24] in 2011, there they used the least square support
vector machine (LSSVM). From that point forward, people started to use machine learning techniques
for breaking complex cryptography algorithms. They started to use Random Forest [20, 37] and Sup
port Vector Machines [19, 53] to break protected and unprotected implementations. They showed
the world the power of sidechannel analysis made designers of hardware more aware of the risks.
Therefore there are more countermeasures of both categories present in hardware implementations
nowadays [44]. Unfortunately, these countermeasures are also breaking for the strength of the ma
chine learning models [55]; nevertheless, they do not make it easier. The complete overview was
published in a survey on machine learning techniques in 2020 [18].

In [62] the authors propose a unified framework proposed to evaluate sidechannel analysis, which
is based on the guessing entropy and success rate. This is because the authors argue that accuracy
is not the only way to evaluate the correct key. In the end, the goal is to break the encryption and not
to have a correct intermediate value. In [52] it is proven that accuracy is not the most suitable option
when performing a sidechannel analysis attack with machine learning, but guessing entropy should
be used. This gives more insight into the model’s performance instead of the accuracy; there are even
examples of models with terrible accuracy but with a good guessing entropy. When using guessing
entropy, the order of traces does influence the effectiveness of breaking the encryption. Therefore
guessing entropy has to be done with a random permutation of the attack traces multiple times and
then average the result.

23

24 3. Related work

3.2. Deep Learning in SideChannel Analysis
After machine learning showed strength in sidechannel analysis, the need came to improve the attacks.
Where hardware became cheaper and more secure, the complexity of models became bigger. Also,
countermeasures were a reason for the community to start looking for more complex models. From
then on, the sidechannel domain started to look into deep learning models for sidechannel analysis.
The first model used were multilayer perceptron by [21, 52, 56] and after that also convolutional neural
networks [38, 56, 60]. After those publications, the whole sidechannel domain went looking for better
models in the deep learning domain. Deep learning is a powerful type of machine learning, so it made
some sense that it had better attack results than the previously tried machine learning models. Deep
learning also showed their strength with image recognition, which also, just like sidechannel analysis,
has to deal with high dimensional data. Therefore the transfer to deep learning was a logical step.

In [56], a sidechannel dataset is published, called the ASCAD dataset. In his work, extensive
research is done by analyzing different deep learning models and these networks’ effectiveness on
the newly acquired dataset. The research is mainly focused on finding the best hyperparameters for
the deep learning models, something that is quite a popular strategy for researching sidechannel
analysis. At the moment, the community is trying every possible hyperparameter for convolutional
neural networks, which resulted in a saturation of the results. Scientists and researchers are competing
by how many traces they need to reach a guessing entropy of zero, and then a new publication shows
that some other model is half the size but has similar results [74]. After successful results with current
stateoftheart only minor changes are introduced, while other potential algorithms are not explored.
In this thesis, new interest models will be explored.

As mentioned before, researches are mainly focusing on CNNs now for deep learning models when
performing a sidechannel attack. These have mainly two reasons, which are two valuable strengths
for a CNN in general. The first reason is that CNNs are spatial invariant; this means that the place of
a feature does not matter for CNN to recognize it. This concludes that a hiding countermeasure will be
a bad countermeasure when using a CNN because the model will still be able to extract the features
independent of the place in the feature vector [9]. The second big advantage of CNNs is that they can
extract the essential features without any preprocessing method. That means that other, maybe even
more complicated, preprocessing techniques can be neglected, and then a researcher can only focus
on the performance and the hyperparameters of the CNN [29]. Moreover, the author shows that it is
hard to choose a uniform model for attacking all the different datasets. This means CNN is still really
sensitive for different datasets, and for every other dataset, the architecture has to be designed again.

3.3. Recurrent Neural Network
While the sidechannel community has much evidence that machine learning models and mostly the
deep learning techniques from the machine learning models are quite impressive, the focus has never
really been on recurrent neural networks. These neural networks are part of the deep learning network
and therefore feel like the community forgets them, or the community is making a linear approach with
CNNs without iterating to look for something else. To the best of our knowledge, the first scientific
publication using RNNs for sidechannel analysis is by Maghrebi et al. in [39]. They use different deep
learning techniques to attack DPA Contest v2, where they only use an LSTM for the recurrent family
models. The model converges after 1 000 attack traces. The reason they give is that the leakage of the
hardware is not timedependent. Furthermore, they attack a firstorder masked AES implementation.
However, in the plot with results is no LSTM model. This could mean the results were so terrible that
they chose not to show it. There are no other scientific publications for recurrent neural networks in side
channel analysis. This means the previously mentioned paper has set a baseline, but then no further
investigation occurred, meaning there is a gap of knowledge for the recurrent neural networks in the
sidechannel domain. Why are these networks not explored any further for sidechannel analysis? Can
they be an excellent alternative deep learning model for sidechannel analysis? What is the strength
of these models?

The family of recurrent neural networks, also called sequential data models in this thesis, is bigger
than only the RNN, as it also includes the GRU and LSTM. While the LSTM is commonly used in
machine learning, the use of the GRU model is not very common. Considering LSTM, they’re used
many times in EEG classification [34, 48]. There the authors use LSTM networks to classify EEG brain
waves and find diseases. An interesting aspect of publications using recurrent networks is that they

3.4. Natural Language Processing techniques 25

always use additional methods for the best optimization. For example, in [68], they combine an LSTM
with a CNN to get the best results. Then there is [67], where the author proposes an LSTM model
with a linear regression model. Concluding from these publications, the question arises, what special
method should and could be used for the sequential data models that will be used in this thesis that
work particularly well with sidechannel analysis?

3.4. Natural Language Processing techniques
In this thesis, we will look into preprocessing and cleaning techniques for the traces as input. The rea
son is that research publications argue that autoencoder is better than recurrent neural networks [28].
Especially the use of attention between RNNs [26]. After many improvements in different attention
models, Google came with a publication where they only used attention instead of weights [66]. Here
the feedforward of values is only attention instead of weights. The paper is highly cited and a break
through for the natural language processing domain. They mostly used sequential data models to
translate one language to another; they showed the most effective way was with a transformer model.
This model works like an autoencoder and uses the attention as input and output of the autoencoder.
The use of autoencoder is explored as a preprocessing technique for sidechannel analysis by [72].
When considering preprocessing techniques for sidechannel analysis, we mostly see three different
approaches:

• converting the dataset into another representation,

• Reduce the amount of noise in the trace by a preprocessing technique, or

• An alignment method to make sure the measurement is aligned.

Considering the autoencoder with translation and the previously named publication, we are mostly
interested in the second option, where we reduce the amount of noise in a trace by preprocessing.
Most publications do not name any preprocessing method at all. With this, the questions arise, why
the preprocessing methods are not used? What kind of preprocessing methods are there, and which
ones are suitable for removing noise in the sidechannel analysis?

3.5. Research questions
Considering the related work mentioned above, we here declare the research questions are addressed
in this thesis. These research questions are more precisely formulated questions than the ideas which
were given in section 1.1. The precisely formulated research questions that are addressed in this thesis
are:

• In Chapter 4 the following research question is covered:
RQ 1. How could sequential data models be used for sidechannel attacks?
SubRQ 1.1What are good hyperparameters for sequential data models when dealing with side
channel analysis?
SubRQ 1.2 What is the effect of linear regression preprocessing technique when used before
applying long shortterm memory when dealing with sidechannel analysis?

• In Chapter 5, the following research questions will be researched:
RQ 2. Can an LSTM autoencoder be used to denoise a trace and make a better sidechannel
attack in terms of guessing entropy function?
Sub RQ 2.1 How good do the denoised traces fit on the original traces?
Sub RQ 2.2 How do these denoised traces perform compared to original traces using CNN to
evaluate the performance?

• In Chapter 6 the following research question will be researched:
RQ 3 Should embedding be used as a preprocessing method in sidechannel analysis?
Sub RQ 3.1What output dimension should be used when using an embedding layer?

26 3. Related work

The research questions in Chapter 4 will give us more insight if more deep learning techniques
should be used in sidechannel analysis. We are mostly searching for the best sequential data model
and what optimization is useful when using these recurrent models. Then chapter 5 will give us more
insight if attention is a suitable option for an LSTM model when denoising a trace. We are interested
in a translation model that can denoise a trace in the same way a model translates one sentence to
another trace. Chapter 6 finds it is strength in using a specific technique for recurrent models and see
their value for sidechannel analysis.

4
Evaluation of Sequential Data Models

In this chapter, different setups of RNN, LSTM, and GRU are evaluated in sidechannel analysis. In
the first section, the methodology for this chapter is explained. In the second section, the original
DPAv4 dataset is used, and we explore different hyperparameters and sequence length. We want to
know the influence of different sequence lengths on the sequential data models. In the third section,
a preprocessing method is used as described in [69]. The technique reduces sequence length using
linear regression, which has not been used before in sidechannel analysis. In the fourth section, the
bidirectional layer is investigated. Because till then, the results have not been overwhelming compared
to CNN results. Therefore we introduce a new layer that is typical for sequential data models. The
last section looks at different datasets and leakage models to better understand how sequential data
models perform for the sidechannel analysis domain. This chapter has two goals. The first goal is
to find the best hyperparameters for using these sequential data models in sidechannel data. The
second goal is to give wellsubstantiated advice if these models should be used in the side channel
domain and clearly explain why they should or should not be used. The chapter ends with a conclusion
section that summarizes all the conclusions found in this chapter.

4.1. Methodology
All the experiments in this chapter use the same methodology. First, we do a grid search for the
best hyperparameters values that should be used for the models. The best hyperparameter search is
essential for making a right and wellinformed decision about sequential data models in sidechannel
analysis. From related work, we find what common values are used for the hyperparameters. We can
evaluate a sidechannel attack with a guessing entropy plot. Here we plot the guessing entropy value on
the Yaxis and the amount of traces on the Xaxis. We have used different setups of hyperparameters
and compared the guessing entropy plots. Based on which model reaches a guessing entropy of 0,
the earliest (with the least amount of traces needed) performs better. For the hyperparameter’s effect
on the model’s performance, we explored a big grid with different values. Then, we fix all the values
but only differ one hyperparameter. We can see then how the parameter that is differing influences the
results in the guessing entropy plot [40]. For the experiment’s correctness, every attempt is being run
ten times with the same values for the hyperparameter.

The setup for all the experiments is as follows: The model is trained in a simple form, meaning
without any extra preprocessing and normalizations inside the model [27, 35]. The only preprocess
ing that is happening is a batch normalization before the model is trained. A sequential data model
only accepts threedimensional inputs; however, the dataset’s input is two dimensional. Therefore the
dataset is transformed into a threedimensional dataset. This means the xdimension in the dataset
is a trace, the ydimension is a timestep, and in the zdimension is the value of that timestep. In this
way, the information that holds the new dataset has three dimensions. The dataset is holding the same
information as before but now compatible with a sequential data model. There could even be more
information per timestep in this way; unfortunately, this information is not present in the currently avail
able datasets. Furthermore, we use the categorical crossentropy function as the loss function. The
optimizer used in this whole chapter is the adam function with a fixed learning rate of 0.001.

27

28 4. Evaluation of Sequential Data Models

4.2. RNN, LSTM, and GRU
A full grid search for the best hyperparameters for the RNN, LSTM, and GRU is performed and evalu
ated in this section. We only used the DPAv4 dataset to find the best hyperparameters for the simplicity
of the grid search.

The hyperparameters tested in the grid search experiments are batch size, amount of units, dropout,
recurrent dropout, activation function, weight initializer, training size, and different amount of layers. All
the hyperparameters with different values that are explored can be seen in Table 4.1.

model hyperparameters values

RNN, LSTM, GRU

batch size 1/30, 1/15
units 1, 16, 32, 64, 100
dropout 0.0, 0.2
recurrent dropout 0.0, 0.2
weight initializer Lecun uniform, He uniform, Glorot uniform, Random Uniform
training size 8000, 2 0000, 4 0000
layers 1, 2, 3
activation function ReLU, TanH, sigmoid

Table 4.1: The different evaluated hyperparameters and corresponding values in the different experiments.

This paragraph is an explanation of the chosen values for the hyperparameters. The batch size is
divided into parts of the sequence length. For example, with a batch size of 1/30, the batch size is one
when the sequence length is 30, and ten when the sequence length is 300. Using this technique, the
experiments are still comparable when the sequence length differs between them. The experiments
in literature have the same batch size compared to the sequence length in [45]. More importantly,
the module of the sequence length and the batch size should be a real integer. Otherwise, the last
batch of a trace has a different length than the batches before. In certain cases, this could happen,
then the last part of the sequence length is neglected. According to [58], the number of layers used
should be between 1 and 3. Where 3 is a complex network, and one is shallow but sufficient to capture
the sequential dependencies. The units used in a cell should be the same as the number of data
points at a particular time step. In the case of DPAv4, we only have one value; this means that the
number of units should be equal to 1. However, it is not yet proven that more units work better. In
other research, it is most time advised to use the same amount of units as features. The amount
of units is determined arbitrary and is a multiplication of a byte. The different weight initializers that
are used in this experiment are found in [56]. That paper is another wellcited paper researching the
best weight initializer for CNN using the ASCAD dataset. The different weight initializers should give
insight into the consistency of the model. The dropout and recurrent dropout values are adjusted to
see the difference. However, according to [69], dropout and recurrent dropout does not do much with
the classification of the model. The last hyperparameter that is tweaked is the activation function used
in the model. Mostly the TanH activation function is used in sequential data models because of the
vanishing gradient problem. However, in some specific cases, we saw a difference when using different
activation functions. Therefore we used the three most common ones used in related research and are
compatible with recurrent layers.

4.2.1. DPAv4 with Sequence Length of 3000
The sequential data model should capture and remember the leakage of the model and classify it to
the right intermediate value. In the setup of this experiment, the traces had a length of 3 000 values.
Meaning that there are 3 000 timesteps in a trace, and every time step has one value, the leakage
of the chip at that particular timestep. The number of times the correct key byte is at position 0 after
guessing entropy can be seen in Table 4.2.

In Table 4.2, are the results from the experiment with a sequence length of 3 000. A first glimpse on
the table proves the point made before; the best results are made when the amount of data holding at
each timestep is equal to the number of units in the model’s cell. Therefore we used one unit per cell in
the rest of the experiment. Secondly, there are some ”X” marked in the tables. This is because these
configurations took more than 48 hours to be trained and evaluated. Therefore these experiments have
never been finished and neglected for this table. In these experiments, the batch size and amount of

4.2. RNN, LSTM, and GRU 29

LSTM RNN GRU

1 Layer

Bs 1/30 1/15 Bs 1/30 1/15 Bs 1/30 1/15
Units D\RD 0 0 Units D\RD 0 0 Units D\RD 0 0
1 0 10 10 1 0 10 10 1 0 10 10
16 0 8 7 16 0 9 7 16 0 0 0
32 0 0 2 32 0 5 0 32 0 0 2
64 0 5 0 64 0 4 5 64 0 0 1
100 0 6 0 100 0 8 9 100 0 1 2
1 0.2 10 10 1 0.2 10 10 1 0.2 10 10
16 0.2 9 10 16 0.2 0 8 16 0.2 10 8
32 0.2 0 4 32 0.2 10 10 32 0.2 0 2
64 0.2 2 6 64 0.2 8 10 64 0.2 1 1
100 0.2 2 5 100 0.2 8 9 100 0.2 2 0

2 Layers

Bs 1/30 1/15 Bs 1/30 1/15 Bs 1/30 1/15
Units D\RD 0 0 Units D\RD 0 0 Units D\RD 0 0
1 0 10 10 1 0 10 10 1 0 10 10
16 0 10 2 16 0 0 8 16 0 5 1
32 0 0 3 32 0 0 4 32 0 0 0
64 0 0 1 64 0 1 1 64 0 0 2
100 0 0 6 100 0 0 2 100 0 0 2
1 0.2 10 10 1 0.2 10 10 1 0.2 10 10
16 0.2 2 5 16 0.2 2 2 16 0.2 3 6
32 0.2 9 10 32 0.2 10 8 32 0.2 0 3
64 0.2 4 10 64 0.2 4 5 64 0.2 0 3
100 0.2 3 1 100 0.2 2 4 100 0.2 0 0

3 Layers

Bs 1/30 1/15 Bs 1/30 1/15 Bs 1/30 1/15
Units D\RD 0 0 Units D\RD 0 0 Units D\RD 0 0
1 0 10 10 1 0 10 10 1 0 10 10
16 0 3 3 16 0 0 3 16 0 4 7
32 0 7 0 32 0 0 0 32 0 1 2
64 0 2 6 64 0 1 4 64 0 1 0
100 0 2 0 100 0 2 0 100 0 0 0
1 0.2 10 10 1 0.2 10 10 1 0.2 10 10
16 0.2 1 3 16 0.2 5 3 16 0.2 5 10
32 0.2 0 3 32 0.2 7 7 32 0.2 0 0
64 0.2 0 0 64 0.2 8 8 64 0.2 0 0
100 0.2 0 X 100 0.2 5 X 100 0.2 0 X

Table 4.2: Results of the experiment with 3 000 values, the value in the cell represents the amount of time the model was able
to find the correct intermediate value during the validation phase. The rows represent 1,2 and 3 layers and after that split into
different units and different dropout value(D). The columns represent the three different sequential data models and after that
split in different batch size (bs) and recurrent dropout (RD).

units were large, meaning more parameters to train, which would take more time to finish. However, we
do not expect the cells that now hold an X to have a surprisingly high intermediate value score. Lastly,
we see some other cells holding 10 out of 10 correct intermediate values. These values are neglected
because there is no consistency between the number of layers and the number of used units.

The time of a model to learn and perform an attack on a set of traces is not a critical factor in the
sidechannel analysis. The attack performed is a profiled attack where the attacker already has the
traces and can learn a suitable model in profiling. However, looking at different studies, a very complex
network can break the key within 48 hours of training [74]. When using recurrent dropout, the network
cannot learn a model within these 48 hours, and therefore these values are missing in the table. The
reason for this long computation time is that no GPU speedup is possible because the value of t+1
depends on the value calculated at time t. Because of this, no parallel computation is possible. This
could mean that when the sequence length is shorter, the model’s learning time could reduce, and
then recurrent dropout could be used. However, in this setting, with a sequence length of 3 000, we

30 4. Evaluation of Sequential Data Models

neglected the recurrent dropout of 0.2.
The table only shows the number of times the model is finding the correct intermediate value. It shows
that every sequential data model with one unit, independent of layers or batch size, can find the in
termediate value 10 out of 10 times. However, it does not give any information about which model is
better than the other, which should be concluded by looking at the guessing entropy. From this table,
we can conclude that the chosen layers and batch size modules are suitable options for experimenting
with the best hyperparameter. That we should not explore the number of units any further and that the
dropout and recurrent dropout are also wellpicked values.

First, the number of layers has been considered; see Figure 4.1. Here themean is taken from the ten
experiments when considering the amount of traces for guessing entropy to reach zero. Furthermore,
the mean is taken from the different setups of variables to get an average on a layerbased performance
and on the amount of traces needed to find the correct intermediate value. What can be seen from
this figure is that using more layers increases the performance considering the LSTM and RNN model.
However, the GRU is performing worse compared to the other two models and to itself regarding more
layers. From this experiment, we can conclude that using more layers with RNN and LSTM increases
the performance slightly when a trace consists of 3 000 values.

Figure 4.1: On the Yaxis the number of traces needed to reach a guessing entropy of 0 on the Xaxis the number
of layers in the different models. All the experiments are combined by taking the mean of the different results.

We see that most models reach a GE of zero after around 800 traces. The results of this experiment
should be compared with the state of the art [70]. In those researches, they can break the cipher in the
DPAv4 dataset within ten traces. Comparing those results with these results makes clear that at the
moment, there should be a significant improvement in the sequential data models to win the competition
of state of the art. As explained in the background, sequential data models are used in text and speech
recognition. In those cases, a sequence has a length of, for example, a sentence, 20. Also, current
research in [73] states that the maximum length a sequential data model could capture is around the
length of 1 000. We, therefore, reduced the sequence length in this research.

4.2.2. DPAv4 Selected Time Window of Size 450
In this subsection, the sequence length is reduced. As stated in the previous section, the results were
not impressive enough to take it to the next step and do a full grid search. One of the reasons we want
to reduce the sequence length is that the results are too far from the stateoftheart attacks; the other
reason is time complexity. For this experiment, the sequence length is reduced to 450 timesteps. These
450 timesteps are taken from timestep 1750 to timestep 2200. This is because, according to [65], there

4.2. RNN, LSTM, and GRU 31

are the most distinctive features that a CNN used to learn and capture the traces. Noteworthy is that
we want the leakage values to be sequential. Therefore only one window size is chosen instead of
selecting multiple smaller windows of a different part of the trace with higher leakage. Furthermore,
only one unit per cell is used because of the previous experiment, and the dimension is not different.

LSTM RNN GRU

1 Layer

Bs 1/15 1/30 Bs 1/15 1/30 Bs 1/15 1/30
Units D\Rd 0 0 Units D\Rd 0 0 Units D\Rd 0 0
1 0 10 9 1 0 10 10 1 0 10 10
1 0.2 10 10 1 0.2 10 10 1 0.2 10 10

2 Layers

Bs 1/15 1/30 Bs 1/15 1/30 Bs 1/15 1/30
Units D\Rd 0 0 Units D\Rd 0 0 Units D\Rd 0 0
1 0 10 10 1 0 10 10 1 0 10 10
1 0.2 10 10 1 0.2 10 10 1 0.2 10 9

3 Layers

Bs 1/15 1/30 Bs 1/15 1/30 Bs 1/15 1/30
Units D\Rd 0 0 Units D\Rd 0 0 Units D\Rd 0 0
1 0 10 10 1 0 10 10 1 0 10 10
1 0.2 10 10 1 0.2 10 10 1 0.2 10 10

Table 4.3: Results of the experiment with a sequence length of 450. The value in the cells represents the number of times a
model was able to find the correct intermediate value.

In Table 4.3, the results of the experiment are presented. Here can be seen that in almost every
experiment, the model can learn and correctly predict the intermediate value. Only in two cases, it
predicts nine out of ten, which should be observed is that in those two cases, it predicted the correct
intermediate value, not a key rank zero but at key rank one. Therefore, we conclude that the window
size is chosen correctly but wonder if the model is stable enough. From this, we can expect that the
experiment is not consistent enough. Because of that, we used different input sizes to see if the model
is sensitive to the dataset size. Also, we want to see if the model has been over or underfitted.

In this experiment, we differentiated the training size and, therefore, also the validation size. The
validation size is in this thesis 20% of the training size. Just to clarify, the different sizes for the dataset
used to work with are 8 000, 20 000, and 40 000 traces, which means respectively a training size of
6 000, 16 000, and 32 000. The sizes to train with have been taken by looking at other research. The
guessing entropy of all the experiments showed using one layer is working way better than two and
three. Therefore Figure 4.2 is only with one layer and for RNN, LSTM, and GRU. The mean is taken
from the ten experiments. Then, we get four different GE’s (for dropout 0.0 and 0.2, recurrent dropout
set to 0, units set to 1, and batch size set to 1/30 and 1/15). These four are also summed and divided by
four, giving an average guessing entropy for different hyperparameters’ values. These are combined
and plotted in Figure 4.2 to compare different training size.

According to Figure 4.2, it is not possible to draw any positive results compared to other sidechannel
analysis research. What can be seen is that the RNN is not performing any better when the dataset
size is increased. For the LSTM model, there is no consistency in finding the key. At first, it looks the
model performs even worse, but then guessing entropy starts to decline to result in around an even
good result than with the smaller data set. Concluding this experiment shows that dataset size does
not influence the model’s effectiveness in the sidechannel context. Moreover, it shows that the best
results are found when the data set size is 8 000. Therefore we kept using that size for the experiments.
The GRUmodel increases over time, which could mean the model’s overfitting when using more traces
in the training and validation phases.

There is no improvement in the consistency after changing the data set size. Therefore, this ex
periment looked into improving the consistency of the model. We expect to see some improvement
by using different weight initializers [3, 49]. For this experiment, we use the following weight initial
izers; Random Uniform, Glorot Uniform, He Uniform, and LeCun uniform. These are also the weight
initializers that are used in [57]. Because in the previous experiment, we saw only the LSTM not being
consistent (rising and then dropping), this experiment only used the LSTM with one layer. Furthermore,
we are using the same setup as previously discussed with one unit per cell, dropout of 0 and 0.2, and
recurrent dropout of 0. Batch size equal to 1/15 and 1/30 and then taking the mean of the four values
to average the performance of the weight initializers inside the layer over different setups. When us

32 4. Evaluation of Sequential Data Models

Figure 4.2: On the Yaxis the amount of traces needed to reach a guessing entropy of 0 on the Xaxis the size of
the dataset used for the model to train and validate on.

ing different weight initializers, all the experiments are more consistent because they reach the right
intermediate value within, on average, the same amount of traces as seen before, so there is no per
formance decrease. Also, every individual experiment reaches the right intermediate value, which was
not always the case in the previous experiments. All these conclusions can be seen in Table 4.4. In
Figure 4.3, there is a visualization of the means of the guessing entropy for the different experiments.
What can be seen is that He Uniform as weight initializer is achieving the bestbuilt, because He Uni
form can get a key rank of zero after around 350 traces, where other weight initializers need at least
500 or 550 traces. Looking at the same setup where the random weight initializers are used, the exper
iments show that there is a big difference between Random Uniform and He uniform weight initializer.
At least we can conclude that using the other named weight initializers decreases the performance of
the model. Furthermore, He Uniform and random weight initializer show good results considering their
performance on the sequential data models. However, until now, we see more consistent results with
the He Uniform weight initializer. Because with the random weight initializer, we saw the experiment
having a guessing entropy which is worse compared to the He Uniform weight initializer. Therefore we
used the He uniform weight initializer from now on in all the experiments.

weight initializers
Successful
experiments
out of 10

GE of experiments
on average over all
different setups

Random Uniform 10 550
Glorot Uniform 10 500
He Uniform 10 350
LeCun Uniform 10 600

Table 4.4: Overview of results of different weight initializer and their corresponding guessing entropy.

We further investigated the best activation function to use in the sequential data model. The stan
dard activation function used by Keras and Tensorflow is the TanH activation function. TanH and sig
moid are mostly preferred when a model needs to learn complex dependencies. This is because the
activation functions are nonlinear and, therefore, better in capturing these complex dependencies. At
first, ReLU does not seems to be a suitable option. This is because the linearity and the values in the
cells do explode over time. However, according to [36], a ReLU activation function can give some extra
stability to the network. Therefore we used the previously discussed activation function in the following
experiment. The setup is the same as discussed before. The results are visible in Figure 4.4.

In Figure 4.4 are the different activation functions with themodels. The ReLU activation function was

4.2. RNN, LSTM, and GRU 33

Figure 4.3: On the Xaxis, the amount of traces needed to reach a guessing entropy of 0. On the Yaxis, the
guessing entropy value corresponding to the amount of traces. In every picture is the other weight initializer used,
the used initializer is written above every subplot.

Figure 4.4: On the Xaxis the amount of traces needed to reach a guessing entropy of zero. On the Yaxis the
guessing entropy value corresponding to the amount of traces. In every figure is a other activation function used,
the used function is written above every subplot.

not able to learn anything when the RNNmodel was used. Therefore this model is not present in the left
plot. Furthermore, we see that all three models respond the same way to an activation function. This
means that the results’ difference is minimal for each sequential data model, looking at every activation
function separately. Comparing the three results, we see that the TanH activation function performs the
worst compared to sigmoid and ReLU, which is interesting because the TanH is the standard activation
function used for sequential data models in Keras. However, this could be explained by the type of
data used in this thesis, which is sidechannel leakages. The ReLU was unstable with RNN; therefore,
we chose to keep using the sigmoid activation function. It also seems that sigmoid giving slightly better
results, however not significant compared to the ReLU activation function.

The last three hyperparameters that need to be explored are batch size, dropout, and recurrent
dropout. The batch size determines howmany times the parameters of the cell should be updated. The

34 4. Evaluation of Sequential Data Models

dropout means how much of the current values should be kept and how much should be dropped; this
prevents the model from overfitting. Recurrent dropout is the same as a dropout in terms of meaning,
but the dropout is applicable for the weights passed through the next value, and recurrent dropout is
to the cell’s inner state. In this experiment, we run the different combinations of setups per model. For
every model we plot the different hyperparameters and compare the differences we see in Figure 4.5
and Figure 4.6.

Figure 4.5: On the Xaxis, the amount of traces needed to reach a guessing entropy of 0. On the Yaxis, the
guessing entropy value corresponding to the amount of traces. In every picture is the other model used; the used
model is written above every subplot. The plots show different hyperparameters used considering the batch size.

Figure 4.6: On the Xaxis, the amount of traces needed to reach a guessing entropy of 0. On the Yaxis, the
guessing entropy value corresponding to the amount of traces. In every picture is the other model used; the used
model is written above every subplot. The plots show different hyperparameters used considering dropout and
recurrent dropout.

We can conclude from Figure 4.5 that the batch size does not influence the results much considering
the RNN model. Also, dropout and recurrent dropout in Figure 4.6 do not influence the model RNN
model. It looks the RNN model is robust against changes in the hyperparameters. Another thing could
be the vanishing gradient problem, which applies to the RNNmodel, or themodel is overfitted. However,
because we do not see this in the other twomodels, we assume that the size of training and testing is not
too much, and therefore we conclude that the RNN is more robust to changes in the hyperparameters
than the LSTM and GRU. We expect that a smaller batch size is better for the performance of the
model. In the GRU model, we can see that this hypothesis is proven. For the LSTM model, we see
that the difference is minimal and that the smaller batch size gave a slightly better result. However,
this difference is not significant. Therefore, we can conclude that a batch size of 1/7 is right for the
LSTM model and the RNN model. For the GRU model, we prefer the batch size of 1/15. Concluding
the dropout and recurrent dropout value, we see that the difference is minimal between the setups.
Only the dropout of 0.2 and recurrent dropout of 0.2 for the LSTM is giving a different result. No further
actions have been taken from this, and the standard dropout and recurrent dropout was either 0.0 or

4.2. RNN, LSTM, and GRU 35

0.2. For the rest of this chapter, we keep using both of them to get more generic results.

4.2.3. DPAv4 Selected Time Window of Size 150
In the previous experiment, we saw a better performing sequential data model. One of the possible ex
planations for this could be the sequence length. Sequential data models are known to be very strong
for sequential data. In other research [73], we see that sequential data models are used mostly in
text and speech recognition problems. For commonly encountered problems, most sentences are not
longer than 20 words. Then getting a dependency between more sentences is seen as a challenging
problem. Therefore we reduce the sequence length even more in the following experiment. In this
thesis, we have seen a sequence length of 3 000, and 450. To get a more brief overview of the possi
bilities of the sequence length that could work well, we do a third experiment with 150 values. For this
experiment, all the parameters were the same as previously discussed. Meaning the recurrent dropout
was 0.0, dropout of 0.0 and 0.2, batch size of 1/30, and 1/15 using one layer and the three different
models. The ten experiments per setup and for every four setups, we took the total mean to represent
the model and his layer for performing in sidechannel data. In Figure 4.7, there is an overview of
different sequence lengths with different layers and using the RNN, LSTM, and GRU.

Figure 4.7: The columns represent the different models and the rows show the number of layers. In every plot are
the three different sequences length. The plot is showing the Guessing entropy for the DPAv4 dataset.

All the results of the experiment can be seen in Figure 4.7. The first thing we can conclude from
this experiment is that the GRU model is performing worse compared to LSTM and RNN. This could
be explained because the GRU model can remember specific events for a long time, but not neces
sarily more. If the leakage in the trace is divided over more timesteps, it would mean that it will only
remember a few leakage timesteps, which will not highly enough correlate with the key because of all
the other noise there is in the trace. Moreover, we can see that decreasing the sequence length does
not influence the model behavior a lot. We see the most difference in performance using two layers on
all the three models and using the GRU model with three layers. However, on the most performance
wise of the amount of traces, we do not see a decrease in performance. From this, we can conclude
that it does not matter for the model’s performance if we use a sequence length of 150 or 3 000. This

36 4. Evaluation of Sequential Data Models

also proves that the windows used do hold the right leakage. However, it should be considered that
decreasing the sequence length 20 times does give a considerable speedup (around ten times) for
the network that needs to be trained. The figure has some strange results which are not consistent.
To make sure it was not a bad run of the experiment, some experiments have been rerun to be sure.
However, no changes have been found.

4.3. Reducing the Sequence Length
In this thesis, we have seen that reducing the sequence length did improve the speedup of the model
used. We also saw that using 150 as sequence length made themodel more consistent than with longer
sequences and gave the model a considerable speedup. However, using these smaller datasets was
found by other papers [65]. The right window on the sequence is found by first learning a CNN on the
dataset and then look at what part of the data the CNN is learning on. It is not very convenient when we
put this situation to a reallife sidechannel attack. Then we first have to learn a CNN (which is at the
moment working better on SCA) to analyze what part of the data it is learning on and then use that data
to find a window to train another sequential data model and show that the sequential data model works.
Therefore, in this section, we use some preprocessing techniques on the complete sequence length
to reduce the length of the sequence to speed up the algorithm’s learning time, but we do not know
what kind of information is hidden at which time step. First, we use a dataset with 50 features, which is
already known in the sidechannel community. Then we use a second approach for something entirely
new for sidechannel datasets. We made a sequence length reduction by using linear regression.

4.3.1. Pearson Correlation Dataset
The first experiment that was conducted is on the Pearson correlation dataset. The dataset is from [54],
and there we can find the specifics about the creation. In short, the dataset exists out of 50 features per
trace, which are generated with a Pearson correlation. Therefore this dataset is commonly referred to
as the ’50 features dataset’. The 50 features are then sorted based on the highest correlation. These
50 features dataset has a more common length from the perspective of the use of sequential data
models. A trace now looks like a few sentences. The same hyperparameters as before are used for
comparability. However, we now only use three layers because we saw the most promising results with
that many layers before.

Figure 4.8: Results of three different experiments when using three different sequential data models. The dataset
used in this dataset is the 50 features dataset.

In Figure 4.8 are the results of the experiment. Having a first glimpse of the guessing entropy,
we can see that the results are not as good as before. Reaching a guessing entropy of zero after
around 1000 traces in the best case, which is RNN. Moreover, reaching a guessing entropy of zero
after around 1600 or even more traces with LSTM and GRU. This means we can conclude that this
dataset is not suitable for the sequential data model. However, what should be considered is that the
dataset is not sequential anymore. Because the timesteps are sorted on the highest correlation, it is
missing any form of sequential dependency, something we should have for sequential data models.

4.3. Reducing the Sequence Length 37

The model hyperparameters used have been concluded as the best setup for the experiment, and
therefore no further tweaking should be necessary. Therefore, we conclude that this experiment has
these disappointing results because of the sequential dependency that is missing inside the dataset.
We need a feature reduction where the sequential dependency is taken into account.

4.3.2. Preprocessing with Linear Regression
Another smart way to reduce the length of a sequence is to use linear regression, as described in [69].
What should be remarked is that using linear regression as a preprocessing technique has not been
done before in a sidechannel context. In this experiment, we entirely follow the methodology, as
described by the paper. We are first using linear regression to reduce the sequence length from 3000
to 150. Using a window size of 20 and calculating a linear (Y=ax+b) formula for a and b to represents
these batches of size 20. This 𝑎 represents the batch slope, being positive, meaning a rising value
and negative is descending. Nevertheless, the value of 𝑎 represents how steep this slope is. The 𝑏
represents how high the values are, the starting value of the linear line. We create two new datasets
from all these 150 formulas—the first one containing all the 𝑎 values per batch, having 150 values per
trace. The second dataset contains the mean of the Y value per window size. This means that for the
formula that is calculated with linear regression. X was all the values between 0 and 19, which results
in 20 different y values. Then the mean was taken from these 20 y values. This means that the dataset
with 3 000 timesteps per trace is now replaced by two datasets with 150 timesteps per trace. 150 is
chosen because we had seen before that themodel was operating very consistent on a dataset with that
sequence length. We also keep the sequential dependencies between the data because the window
that creates the batch moves from left to right. To prove the linear regression technique’s correctness
for reducing the model, we have an example of a trace in Figure 4.9.

Figure 4.9: The blue line representing the original trace between timestep 1 000 and 1400. The red line shows how
the linear regression fits on each window of size 20. On the Xaxis the timesteps and on the Yaxis the leakage of
the trace.

In Figure 4.9 we see on the xaxis the time steps and on the yaxis the corresponding leakage. With
a blue line is the original trace represented. The red line shows the generated linear line for that window
size. What should be noted is that the red line makes big jumps. That is happening when the window
size is equal to 20. Meaning a new linear regression model starts a fit on the new batch of length
20. This jump is at one timestep and therefore does not influence the dataset. However, what could
be acclaimed is that the bigger the jump, the more difference there is between the different windows.
However, we see that the linear regression model is an excellent fit for the original blue line. Much
noise and scatter are removed and replaced by a fluent line that does show the average regression of
the original trace.

The following experiment is a replica of the previously named paper. This means we train two

38 4. Evaluation of Sequential Data Models

separate sequential data models. In the paper, this is an LSTM, but here we also use an RNN because
this sequential data model also showed promising results in the previous subsections; the amount of
layers used in this paper is equal to 4 layers. The first sequential data model is trained on the dataset
containing all the 𝑎 values of the linear regression formula. The second model is trained on the second
dataset with the mean of the 𝑌 values. This means one model keeps track of the slopes while the other
model only keeps track of the heights. In the end, the output of both models is concatenated, resulting
in one output, which is classified using the softmax activation function. The results of the experiment
can be seen in Figure 4.10.

Figure 4.10: The blue showing the mean of the experiment using an LSTM model, where the orange line shows
the mean of using an RNN model. Two models are trained on two different datasets, which are generated by using
linear regression. In the end, the output is concatenated.

In Figure 4.10 are the results of the experiment. The same hyperparameters are used as told before
with ten different runs. In the cited paper, they do not use recurrent dropouts. The mean is taken from
these four different setups to summarize a model’s performance with a linear regression dataset. What
can be seen is that the LSTM model is performing better than the RNN. This was already seen before
and only gives additional evidence that the LSTM performs better than the RNN considering side
channel analysis traces. However, when we compare these results with the results of Figure 4.7, we
see that it is performing way worse than the 150 most important time window we used there.

We can also conclude there is a drop in performing compared to the 3 000 values used before
from the DPAv4 dataset. We can, therefore, conclude that using linear regression as a preprocessing
technique for sidechannel does work. It reduces the sequence length a lot but does not improve the
results of the model. However, when we compare it to more practical aspects, there is some difference.
First of all, the linear regression speed is around the same as with the dataset, where we used a window
of 150 values. This is because the sequence length is the same. In the linear regression approach,
we have to train two separate models, but this can happen in parallel because we have two different
datasets. This means we do need double the hardware to get the same speed, but the speed is around
the same. Also, we use the complete trace as a starting point, which is still a bit doubtful in the previous
scenario, where a window is used. Therefore the experiment is more representing a reallife scenario
but does not improve the quality of the attack. Investigating what happened per hyperparameter, we
can look at Figure 4.11.

In Figure 4.11, we see not much difference considering the LSTM and the hyperparameters used.
The only difference is that the red and green lines for the LSTM model reaching a guessing entropy
of zero a bit earlier than the other two. From this observation, there is a small suspicion that using
recurrent dropout improves the sequential data model. Moreover, when we look at the RNN, we see
the same improvement considering the green line (using a recurrent dropout value). However, looking
at the red line, which is also using dropout value, we see that the results are terrible. We cannot

4.4. Bidirectional Layer 39

Figure 4.11: On the left, the results of the LSTM model having four layers. On the right side, an RNN model
having four layers. Both plots show different hyperparameters, which are explained in the legend of the figure.
The models are trained on the dataset generated by using the linear regression technique.

conclude from these fluctuating results if using recurrent dropout better to use or not in sequential
data models considering sidechannel analysis. To conclude, we see that the LSTM is more stable
than the RNN using different hyperparameters. This could be explained due to the vanishing gradient
problem that applies to the RNN but not for the LSTM. We see when we use this dataset that the
RNN is more sensitive to different hyperparameters than before with the original dataset. Another
reason could be that we make (timewise) jumps of 20 in this setting. If we then also drop values,
the recurrence dependency is decreasing in the dataset. The LSTM shows more stability on these
different hyperparameters as their results are better than the RNN. The difference of the LSTM model
could explain this compared to the RNN model.

4.4. Bidirectional Layer
Until now, we have seen the sequential being able to find the correct intermediate value. However, we
have not seen the sequential data models beating stateoftheart CNN, where DPAv4 is broken within
ten traces [38]. A reason for this to happen could be lying in the way a sequential data model works.
The sequential data model has been explained in the previous chapter and showed their strength
in understanding and reading sentences. Considering sidechannel data, this could mean leakage
of the sidechannel trace is somewhere at the beginning, for example, in the first 100 time steps.
The sequential data model should then remember this leakage when seeing another 2900 timesteps,
after which it makes its classification. The first solution to fix this problem is to run the network using
bidirectional layers. In the following experiment, we did run the same hyperparameters as used in the
previous experiment. The only addition is that the model used has now all bidirectional layers, which
means that the model also learned the reverse order of the trace. The coincidence that the leakage is
in the middle of the trace, which means the bidirectional layer does not change anything, is neglected.
We use the datasets seen before with a sequence length of 150 and 450 values. The model was
slower than before because the bidirectional layer learned it both ways per sequence. The results of
this experiment are in Figure 4.12.

In Figure 4.12 are the results of the experiment where the model uses bidirectional layers. From
this figure, we can conclude that only one layer performs better than using two layers when we use a
bidirectional layer. Before this experiment, we saw that using more layers would improve the results,
but we see the opposite in this bidirectional context. In the model without a bidirectional layer using the
size of a window of 150, we saw slightly better results. In this experiment, most of the guessing entropy
would be around 500/600, where we saw without a bidirectional layer a guessing entropy of 400/500.
The reason that the bidirectional layer is decreasing the performance could be due to the following.
When the leakage is at the beginning of the sequence, an LSTM would learn this. However, because
of the bidirectional abilities, it also has to learn this leakage at the end. Now the leakage in the trace
is less timedependent and more spread over the sequence. This makes the leakage less unique, and
therefore harder to classify for the sequential data model.

40 4. Evaluation of Sequential Data Models

Figure 4.12: The first row shows the models using one layer, the second row are models having two layers. The
first column is with dataset length 150. The second column represents experiments using a sequence length of
450.

4.5. Advice on using Sequential Data Models in SCA
Until now, we have tried a lot of different setups for sequential data models to prove they are working.
Till now, we have not seen better results compared to the stateoftheart sidechannel attacks. To
make the final conclusion on using sequential data models for performing sidechannel attacks, we did
three more experiments. In the first experiment, we used a different countermeasure. In the previous
sections, we had a masking countermeasure, but now we also want a hiding countermeasure, which
is the random delay countermeasure on an AES encryption. Secondly, we use a different leakage
model for the DPAv4 dataset, the hamming weight leakage model [25]. Finally, we experiment with
a different dataset, which is more a representing dataset in terms of countermeasures, to see how
good the model performs on something that is more a realistic scenario. This dataset was the ASCAD
dataset. Till now, there was much research for optimizing the sequential data model. We kept using
those hyperparameters for the experiments. In this section, we did not go into the hyperparameters’
optimization but are mostly interested in how the sequential data models perform over the different
datasets that represent better the diversity in the sidechannel domain. So we can give better advice
on the usability of sequential data models in the sidechannel domain.

4.5.1. AES with Random Delay
In this experiment, we used a dataset that has a random delay countermeasure. Because the DPAv4
dataset does not have this countermeasure, this could indicate an interesting dataset. Also, from the
concept of sidechannel analysis, it does mean we tried both types of countermeasures commonly
used in datasets for sidechannel analysis. The setup of the experiment and the hyperparameters is
the same as before and explained in the methodology. The results can be seen in Figure 4.13.

What can be seen from both plots is that the batch size again influences the guessing entropy of
the model. The left figure reaches a GE of 0 at a maximum of 500; the right figure needs at least 600

4.5. Advice on using Sequential Data Models in SCA 41

Figure 4.13: Using the LSTM model to train a dataset with random delay countermeasures. The left figure using
1/30 of batch size, and the right figure has 1/15 of batch size. The plots have Guessing entropy on the Yaxis and
the number of traces on the Xaxis. Furthermore are the different setups plotted in the figures.

traces. We see, however, slightly better results compared to what we saw before. The best results for
the smallest batch size is around 380. Therefore, we could conclude that the sequential data model is
better in dealing with a random delay countermeasure than with the masking countermeasure. Some
tiny shifts relative to some point do make less sense. The same happens when we read a language
as a person. Two words that are switched is sometimes something we neglect while reading. See the
following example:

I got a dig bilemma
You that read wrong

you read that wrong too

Most people do read the first two lines without any problem and understand what you say. However,
looking at it a second time, you see some spelling mistakes in the sentences. We expect to read
something wrong and therefore interpret the sentence before understanding it entirely. It shows that
relative orders do not matter. However, mixing the complete order (wrong you that read), you probably
recognize it immediately. The sequential data models work in the same way and therefore do work
better than with the DPAv4 dataset.

4.5.2. Hamming Weight Leakage Model
Now we have tried a different countermeasure. We also want to experiment with a different leakage
model. Therefore we did experiment in this thesis with the hamming weight leakage model. The
dataset is commonly used in the sidechannel domain [25]. There could be some more exciting results
in this experiment because we now use many to one classification. This does not happen a lot in the
sequential data model. Moreover, when it is used, the amount of classes to classify to is ideal between
two or four; until now, we have seen 256 classes. Therefore the hamming weight dataset has some
potentials and should be experimented with to conclude if sequential data models are suitable for side
channel data. This experiment did tell if fewer classes for classification is better for sequential data
models. For this experiment, we did only run the best performing models we have seen. That means
a model with three layers and taking the mean of the setup of the different experiments.

In Figure 4.14 are the results of the experiment. The difference in each model’s performance is less
than seen before, which could mean that the different networks are more consistent. The difference in
how the models are performing is more the same then seen before. This could be because the possible
classes are between 0 and 8, and therefore, the difference in relative values is also less. The spread of
values is more central to the value of 4. Looking at the results in Figure 4.14, the amount of traces for
reaching a Guessing Entropy value 0 is around 1600. Which means that the model is performing way
worse than seen before. From this experiment, we can conclude that using the other leakage model
does not improve the sidechannel attack. For now, we can conclude that a different leakage model is

42 4. Evaluation of Sequential Data Models

Figure 4.14: The results of the experiment with hamming weight dataset. For this experiment 3 different models
are used all having 3 layers.

not changing the results we have seen before. Therefore we have additional evidence that sequential
data models should not be used for classification tasks in the sidechannel analysis.

4.5.3. ASCAD Dataset
We have seen before that using a different leakage model does not improve or change the results we
have till now. The baseline we created is needing around 300 traces to reach a guessing entropy of
zero. Till now, there is a great preference toward not using a sequential data model to classify side
channel data with the right intermediate value. All the experiments seen before this chapter are done
using the DPAv4 model and the value leakage model. For this experiment, we use our best performing
model to have a guessing entropy of around 300 to attack the ASCAD dataset with the fixed key. More
information about the ASCAD dataset can be found here [56]. We did use the best performing setup.
Which is using three layers with a sequential data model without a bidirectional layer. The results of
this experiment can be found in the following figure. We did attack the third key byte value, which is
masked.

Figure 4.15: The results of the experiment with the ASCAD dataset. For this experiment, we used three different
models, where every model has three layers.

4.6. Conclusion 43

In Figure 4.15 are all the results of the previously explained experiment. What can be seen is that
none of the models can predict the right intermediate value. We used the best performing model setup
with the DPAv4 dataset. Therefore we can conclude that the used sequential data models are not able
to predict the ASCAD dataset. It even looks like the models are learning the same intermediate value,
and therefore we could think that all the models are overfitted on a specific intermediate value or that
it was learning something but not the right thing. From this experiment, we can conclude that using a
different (and harder) dataset does not work with the sequential data model. We did not investigate
the use of sequential data models any further for the ASCAD dataset because none of the models can
converge to the right intermediate value, and considering the best performing setup, we feel this is at
the moment the optimum for the sequential data models.

4.6. Conclusion
This chapter has a broad exploration of the RNN, LSTM, and GRU for sidechannel data. The chapter
aims to explore how the previously named sequential data models can be used and find out which
hyperparameters should be used for the sequential data models. Furthermore, a recommendation on
if and then how to see the further use of sequential data models in the sidechannel domain.

In this chapter, we have experimented with different hyperparameters when using sidechannel
data. We have compared different batch sizes, units, dropout, recurrent dropout, activation function,
training size, and layers for the RNN, LSTM, and GRUmodel. We even tried using a bidirectional setup
for sequential data models. We found that using recurrent dropout is mostly decreasing the model’s
speed and does not improve the convergence a lot. Also, increasing the training size did not improve
the results. We came to the conclusion that we should use the He Uniform weight initializer and that
the sigmoid activation function is working better than the TanH activation function.

We saw a significant improvement when the sequence length was reduced, which is concluded from
most sequential data models research. Where they show that an LSTM does not work with a sequence
length of more than 1 000 [73], sequential data models follow the classic ’Less is More’ statement. We
used a new preprocessing technique with linear regression, and with that, we were able to reduce the
complete sequence length to something that the models were able to learn. After that, the model was
performing the same and therefore proved that using linear regression as a preprocessing technique
is a good alternative for the large sequences in sidechannel data.

Furthermore, we concluded that the number of units should be equal to the dimension, which was
one in this case. For batch size, we recommend a small value, which, of course, decreases the run
time. Recurrent dropout is best lowered to 0, which gives the model GPU speedup. Use three layers
where possible, and preferable the LSTM model.

In all the experiments, we have seen the best of needing 300 traces before having the correct
intermediate value at key guess position 0. There are two ways to compare these results. Suppose we
compare it with the stateoftheart sequential data models in sidechannel analysis [25], where they
have a guessing entropy of 1 000. We could say that this research made a significant improvement in
using sequential data models in sidechannel. Comparing these results with state of the art for side
channel with DPAv4 dataset using any model possible, the results are relatively worse. There they
can find the intermediate keyvalue after having ten traces. Therefore, we conclude that the sequential
data models do not have comparable results considering sidechannel analysis. Moreover, we want to
address that sequential data models are not advised in the many to one classification where we try to
classify the trace with all the time steps to an intermediate value.

First of all, there is an intuition that the traces have not enough leakage to classify one intermediate
value. What can be seen from this chapter is that the sequence length influences the performance.
Having a leakage at 20 timesteps at the beginning of the trace and then remember it to the end where
it classifies seems impossible for the sequential data model. If we compare this to a book with one
sentence that holds the essential information of the whole book, but the rest of the story is just jitter
and noise. Then it is hard for an algorithm to learn to recognize that one sentence. For the trace to be
classified the right way, we should need a high signal to noise ratio over the whole trace. Even more,
they showed not to be sensitive for this data when using bidirectional layers—therefore concluding that
it was less critical where the leakage was in the trace. However, the model was not good at capturing
it.

Furthermore, we see in the last section of this chapter how the sequential data model responds to

44 4. Evaluation of Sequential Data Models

different datasets. We see a slight improvement when a dataset is chosen with random delay coun
termeasures. We, therefore, get the assumption that the sequential data model is performing bet
ter against hiding countermeasures, mostly random delay, then the masking countermeasures, which
does change the leaked signal. Looking at the hamming weight leakage dataset, we see a decrease
in performance. The same happens when we use another dataset, which is more common in the side
channel analysis. If people want to keep using this, more research should be done to find a way how
it will give more comparable results; however, in this research, we have not found this. Things that
should be considered when working further in these models are summed up. The hardware issue a
sequential data model gives, but even worse, the time complexity. It also does not help that GPU speed
up is unavailable when we use recurrent dropout. Maybe even more vital is the example of reading a
sentence, that we do not look at the relative position of a word in a sentence, but we look at the big
picture and take some critical words out of it, which is more the case in a CNN. Lastly, we want to
address that sequential data models show to be a robust model considering text. Here every word in
a sentence has a meaning; in other words, there is almost no noise in the sentence. Comparing this
with sidechannel analysis, we see a big difference. Here the traces do have much noise; the datasets
are not comparable.

Figure 4.16: A visualization of a sequential data model. Where 𝑦𝑛 is the output of a cell at a specific time step n,
𝑥𝑛 the input at a specific timestep x and 𝑤ℎ the weight that is given to the next time step.

A more theoretical explanation is because the problem lies in the way the sequential data model is
built. In Figure 4.16 there is a visualization of an sequential. The problem of a sequential data model
lies in this visualization. This image counts the same amount of cells a sequence length, meaning in our
case, 150, 450, or even 3 000. The 𝑦𝑛 where 𝑛 is equal to the sequence length is used for classification.
However, this does mean that the vector 𝑦 is holding all the information of every step before. This is
a nice opportunity to make mistakes, and therefore, we see sequential data models, not as an option.
We also see that big companies are starting to drop these networks and start using attention instead.

In our opinion, a sequential data model should be used in many to many classifications. Where we
see, it is used now by Siri from Apple, Google assistant from Google, etc. In this standard classification
problem, as described in this chapter, this is a challenging task. That is because there is no dependency
between the output of the intermediate values. That means that when the correct intermediate value
is 108, but the algorithm predicts 90, it is as wrong as when it predicted 11. There is not something
like being close and therefore performing better in sidechannel. There should be some dependency
between the input and the output of what is being classified for this to work if there will be more research
in the many to one classification with sequential data models. We advise the usage of attention.

5
Denoising with Autoencoder

As discussed in the previous chapter, the sequential data models have not been shown to outperform
the stateoftheart sidechannel attacks. However, it was opted to use it for many to many classifi
cations. This means the data holds a dependency between the input and the output. In this chapter,
we explored this even further. Sequential data models are used in the natural language processing
domain; they need to translate a sentence written in language A to a sentence written in language B.
We are going to use this same idea to remove noise from a trace. In this chapter, we first dive into
the theoretical knowledge about translating this text to text problem to a trace to trace the problem. In
the second section, we used an autoencoder to translate the noisy traces to a clean trace. In the third
section, we set a baseline and show how a CNN model is influenced when learning on clean traces
and attacking noisy traces. The fourth section is an indepth analysis of how our autoencoder is built.
In the fifth section, we show the CNN model’s performance on the newly generated clean traces. The
last section is a conclusion of the complete chapter.

The setup for this experiment is of great value for the sidechannel community. This is because we
see many more countermeasures taken place. These countermeasures should make it harder for the
attacker to use the traces produced by the hardware. The research at the moment is mostly interested
in making neural networks better to deal with countermeasures. However, the contribution to removing
the countermeasures before we use a model to learn is neglected. Furthermore, this research could
be the first step towards a unified cleaning process. Imagine a cloud where we can send the original
noisy traces, and these traces are then cleaned and returned such that a model is better in attacking
it. If this is possible, we should know how good this works to make better countermeasures. Therefore
this chapter is of great value. Finally, while capturing a trace, there could be inconsistent results. This
translation solution could be able to correct this problem.

5.1. Translation Problem
Translating a sentence from language A to B is one of the most challenging tasks. A language is
a complex mechanism with specific grammar, own verbs, and every language is using their way of
ordering words. Even then, there is some way of interpreting a sentence and its context. When the
sentences belong together, the model should remember part of the first sentence and use that for the
second sentence. For example, a king talks to his people when we want to say in the second sentence
that he was talking loud. We should know that it was about a king and that a king is a male and therefore
’he’ should be used. All these previous problems make it quite complex to translate one sentence to
another. Because a sentence is a sequence, this problem is mostly referred to as a sequence to
sequence problem.

When we consider a sequence to sequence problem (seq2seq), the most used model is an autoen
coder. Looking at the problem described in this chapter, we could learn the autoencoder on noisy data
as input and original data as output. After that, we could clean never seen noisy data to clean data
and perform a more efficient attack. We did not evaluate the translated traces with sequential data
models. We have seen in the previous chapter that the sequential data models are not sensitive to
hyperparameter tuning. Furthermore, we know that the models do not give a stateoftheart perfor

45

46 5. Denoising with Autoencoder

mance. Therefore we evaluated the model with a CNN. Even more important is that there is already
some research about cleaning noisy data, which is also evaluated with a CNN. Therefore evaluating it
in this thesis with a CNN does make the results more comparable.

5.2. Methodology
In the following sections, we experimented with the proposed translation model. However, first, we
describe the methodology used to evaluate the proposed experiment.

We experimented with a sequential data model to ”translate” a noisy trace to a clean trace. More
over, we did like to know if the model is performing as good on the cleaned trace as on the original trace.
We evaluated this by using the most common dataset in sidechannel analysis, the ASCAD dataset.
The specifics of this dataset are discussed in chapter 2. ASCAD is used because other preprocess
ing cleaning algorithms use this dataset as well; therefore, we can compare our results. Our problem
classification was sequencetosequence; here, we need clean and noisy data. To get this data, we
artificially created some noise in the dataset. For clarity, the traces obtained that are in the original
dataset are called the original traces. We artificially add noise to these original traces, which gener
ated a dataset called noisy traces. We learned an autoencoder on these two datasets and then made
predictions on the noisy traces; the results are called the clean traces. We used three different noise
generation techniques to show the result of our autoencoder. The following hiding countermeasures
are used to generate noisy data:

• Gaussian noise countermeasure, here we add a uniform value between 20 and 20 to each point
of the trace. In Figure 5.1, we see the result of the Gaussian noise that has been added to the
original trace.

• Desynchronization countermeasure, with a maximum of 50 data points. At every trace, a random
uniform integer is generated. This integer is equal to the amount of desynchronization noise
added (how far it looks in the future), and therefore the number of steps this desynchronization
was added. The desynchronization noise is thus equal in once trace but differs per trace. In
Figure 5.2, a original and noisy trace is visualized.

• Random delay interrupts, based on the floating mean method. The trace is fully scanned, and
random delay is added with a change of 50 percent at every point. In case this is added, an
interrupt is added with a value of 10, which was added a random amount of times. An example
of a trace can be seen in Figure 5.3. What can be seen is once the interrupt is added, a recurrent
sinus is visible in the trace.

The autoencoder was then trained with noisy data and the original data. After that, the model did
only get noisy data as input, and then the model did generate clean data. This new clean data (which
is different from the original data) is then used with the best performing literature model, a socalled
baseline model. Generating the guessing entropy of our clean data and comparing the graph with
the guessing entropy of the original data, we can conclude how effective our model has translated it.
This methodology and noise generation techniques are comparable with the convolutional autoencoder
used in [72]. We used only one type of autoencoder, which was built with LSTMs.

5.3. CNN Baseline
First, we need to have a CNN baseline to have an overview of the current reactions of the CNN best
model. When the model is trained and evaluated with the original ASCAD traces, it can reach a guess
ing entropy of 0 after around 100 traces. Furthermore, we want to show the effects of the three noises
in the traces. Therefore we train and evaluate the model on the noisy datasets. The results of a CNN
trained and evaluated with desynchronization traces are in Figure 5.4. Here we see the model can
converge to a key, but this is not the right key. This is not surprising because a CNN is good at han
dling desynchronization, but it converges to the wrong key because of the switch in timesteps. What
should be considered is that the hyperparameters are not tweaked. This experiment is also proof that
something has to be done with the countermeasure because CNN can remove the countermeasure
without any preprocessing.

5.3. CNN Baseline 47

Figure 5.1: A visualization of the artificially added Gaussian noise. Where the blue line represents the trace with
noise, and the orange line is the original trace. What can be seen clearly from this figure is, for example, the
leakage between 540 and 550. The orange lines show a nice fluent line. However, the trace with noise looks
much more unstable because of the noise that is added. Just before timestep 520, we see two nice spikes up and
down in the trace with noise. Here we see that the minimum and maximum noise that is added is between 20 and
 20.

Figure 5.2: A visualization of the artificially added desynchronization noise. Where the blue line represents the
desynchronized trace, and the orange line is the original trace. What can be seen clearly from this figure is the
peak around 520 from the orange line is shifted around 50 places to the right and therefore identical in the blue
line around 580.

In Figure 5.5, we see the model which is trained and evaluated on the traces with Gaussian noise.
Here the model is not able to converge anymore. The reason is that the model should again be tweaked
to the new traces that vary much more than before. These two experiments also indicate that the
desynchronized traces are more accessible for CNN to break the traces than with Gaussian noise. This
can be explained because the signal to noise ratio is barely different when using only desynchronization
countermeasure. The leakage present in a trace is identical but only at another timestep. Changing
this in the whole dataset with a random desynchronization value resulted in some different situations.
However, because CNN is trained and attacked on a dataset with desynchronization, the differences

48 5. Denoising with Autoencoder

Figure 5.3: A visualization of the artificially added random delay interrupt noise. The blue line represents the
random delay interrupt trace, and the orange line is the original trace. The noise is visible by the spikes that are
present in the noisy dataset.

Figure 5.4: A CNN trained and evaluated on traces with a desynchronization countermeasure. What can be seen
from the plot is that the CNN is able to converge but the correct intermediate value is not the most likely key.

are minimal. When considering the Gaussian noise, the signal to noise ratio is changed a lot. This
explains why the guessing entropy for ASCAD with Gaussian noise is performing worse.

In Figure 5.6, we see the model trained and evaluated on the traces with random delay interrupts.
Also, here the results are not better than before. This is because the leakage of the traces can be
tweaked and therefore removed from the trace. For desynchronization, the noise was still present, but
at another timestep. However, in this example, the noise is removed and, therefore, more challenging
for a CNN to attack. Also, extra noise is added at random points, which can be seen because the nice
fluent line ASCAD has is removed. This countermeasure does alter the original trace a lot. Therefore
we expect this countermeasure to be the hardest for the LSTM autoencoder to break.

5.4. Autoencoder 49

Figure 5.5: A CNN trained and evaluated on traces with a Gaussian noise countermeasure. What can be seen
from the plot is that CNN is not able to converge. This can be explained because the Gaussian noise is added to
every point in the trace, meaning the signal to noise ratio is changed a lot.

Figure 5.6: A CNN trained and evaluated on traces with a random delay interrupt countermeasure. What can be
seen from the plot is that CNN is not able to converge. This can be explained because the random delay interrupts
noise changes the signal to noise ratio a lot by adding the spikes at random places in the trace.

5.4. Autoencoder
In this section, we discuss how the autoencoder is built to clean the traces. This cleaning algorithm is a
simple autoencoder build from LSTMs. This means the first LSTM takes a sequence input and encodes
this input. After that is an LSTM that decodes the output and makes a prediction using a dense layer. A
challenging step for the LSTM autoencoder is the difference between sequence length. If we compare
this problem to translation problems, it makes sense that a sentence in one language has a different
number of words than a sentence in another language. However, in our usecase, the ’sentences’
are the same length, which means we do not have this problem. Between the two LSTM blocks of
encoders and decoders is a repeat vector layer. This layer repeats the encoder’s output an N times
before the encoder’s output is passed to the decoder. Using this repeat vector layer, the encoder’s
output is passed N times to the decoder, which results in time distributed output instead of an output

50 5. Denoising with Autoencoder

of time one. The autoencoder has eight layers, 4 LSTM encoder layers, and 4 LSTM decoder layers.
The last layer is a timedistributed dense layer. The input is scaled with a minmax scaler before the
autoencoder is used. The amount of units used inside the autoencoder is equal to 256, 128, 64, and
32; in that order. For the decoding part, the amount of units used is the same; however, in the opposite
order. There is no recurrent dropout because we want GPU speedup, and for dropout, we used 0.2.
The amount of epochs is equal to 200. We have used fewer epochs and fewer layers, but then the
model cannot capture the whole trace. The model is trained on 25000 traces and then predicts the
other 25 000 traces. The model is trained in around three to four days.

5.5. Results
In this section, we look at the results of the experiment. First, we have learned the models to clean the
datasets. After that, we evaluate the cleaned datasets with a guessing entropy function. The models
that are trained are CNN models similar to the one used as a baseline. We first take a look at the
new traces. After that, we trained a network and evaluated this with the guessing entropy function.
This means CNN is not tweaked for the dataset, which could mean the results could be worse than
expected.

5.5.1. Comparing New Traces
The autoencoder has ”cleaned” the traces, and that has resulted in a new dataset. This subsection
looks at the difference between the original, the cleaned, and the noisy traces. From this comparison,
we were able to get a first glimpse of how well the trained CNNs would perform. In Figure 5.7 we see
three different traces. In a time window from 500 to 600, the same time windows as used before. One
trace colored in orange is the original trace; the blue trace is the original trace with noise, in this case,
desynchronization noise. Then the green line is the clean trace. Thus, the autoencoder predicted this
line, trying to be the best fit on the orange line. What can be seen in the figure is that the fit is good
with the original trace. However, what we also see is that the cleaned trace is a smoothed version of
the original trace. Some leakages are neglected, for example, the leakage between timestep 560 and
580. This could have dramatic consequences. In the next section, we attacked these traces to see
what this means for the attack.

Figure 5.7: In this figure we see three different traces. The original traces, the desynchnorized traces, and the
cleaned traces. The traces have been cleaned using an LSTM autoencoder.

In Figure 5.8, we see the same as the other figure but now with the Gaussian noise. The time
window is slightly different, but the colors used are the same as before. We see here that the clean
trace is a perfect prediction on the original trace. So good that we barely see the original orange trace
because the green line is lying on top of this one. The leakage at point 620 is slightly different from the
original point but still follows the line smoothly. This figure suggests better results than the previous one

5.5. Results 51

with the desynchronization countermeasure. We expect that this autoencoder’s result is better because
the values at specific timesteps correspond to the original dataset. We only have to remove the added
noise for Gaussian noise, which can be no more than the maximum added noise (between 20 and
20). In the case of the desynchronization countermeasure, we have to shift it way more. For example,
looking at the leakage just before timestep 520, there the difference is 60, and only ten steps after that,
we see a difference of 0. This makes it much harder to come with an average cleaning algorithm.

Figure 5.8: In this figure we see three different traces. The original traces, the trace with Gaussian noise, and the
cleaned traces. The traces have been cleaned using an LSTM autoencoder.

Lastly, in Figure 5.9, we see three different traces but now, after using the random delay, interrupt
countermeasure. We see that the cleaned traces have much more trouble to follow the original dataset
nicely from this figure. At the beginning of the dataset, it finds the dataset quite nicely (see timestep
120 till 160), but after that, it gets more unstable, and around timestep 240, you see the difficulty it has
with capturing the original dataset. This result could be explained with the following. At first, we think
that the countermeasure used is more challenging than the two datasets seen before. The interrupt
that is present is hard (harder than Gaussian noise). However, the fact of a random delay that we saw
before makes the combination a tough countermeasure. We expect to capture this countermeasure
still nicely if we increase the capabilities of the autoencoder. However, this means the autoencoder
should increase in size, and therefore, even longer experiments have to run before capturing and nicely
removing the countermeasure. In the sidechannel analysis, we like to seek fast and cheap solutions. If
the university’s server with a lot of computational power cannot run and create a clean dataset following
the original trace nicely within four days, we do not expect that other people can even use this type of
attack. Furthermore, the tensors created for such a big autoencoder are too big to run on the current
GPU used in the cluster. So meaning that if anyone else wants to create this autoencoder himself,
this person needs costly equipment. At the same time, there are other cheaper and better solutions
available. Therefore we neglect the option for increasing the autoencoder and accept how the traces
look like now. We try two different datasets for the attack, the whole dataset, which is not nicely fitted
at the last part of the trace. But also the trace with a window from 0 to 300. Chopping of the part of the
trace, which is not nicely aligned with the original trace.

We still want to evaluate the newly generated traces. Therefore we want to evaluate the technique
for sidechannel analysis, and because of that, wewant to evaluate it with the guessing entropy function.
It is not always 1 to 1 that the results are worse if the traces are not identical. Therefore in the following
section, we trained a CNN on the generated cleaned traces and evaluated these with the guessing
entropy function. These results were compared with the actual results and noisy results. After that, we
can say if the cleaning has helped anything.

52 5. Denoising with Autoencoder

Figure 5.9: In this figure we see three different traces. The original traces, the trace with Gaussian noise, and the
cleaned traces. The traces have been cleaned using an LSTM autoencoder.

5.5.2. Attack After Cleaning by Autoencoder
Now, the cleaned traces are ready; we want to know how well these perform when performing a side
channel attack. In the first experiment, we have trained a CNN with the same hyperparameters as
seen before, so no further tweaking to the model has been done. In Figure 5.10 are the results of
a CNN trained and evaluated on the cleaned traces. We see from this figure that the CNN cannot
converge to a guessing entropy of 0. This means that for this cleaning algorithm, the experiment has
failed. It also shows that if it is compared with Figure 5.4, the results have gone worse. This can be
explained because the guessing entropy we see in Figure 5.4 is trained on traces where the same
desynchronization is used in training and attacking. More importantly, the leakage is still present in the
trace only at another timestep. In our cleaned generated traces, we see that the leakage is neglected,
and mostly, the direction of the trace is followed. Thus, we can conclude that the cleaning algorithm
must identify and reproduce the trace’s leakage instead of following the original trace. Where the
shape of the original trace was quite nicely followed, the guessing entropy has gone worse. Therefore
we conclude how important it is that smoothing is not happening.

Secondly, in Figure 5.11, we see the results of a CNN trained and evaluated on cleaned traces that
had been infected with a Gaussian countermeasure. From the figure, we can conclude, if we compare
it with the results of 5.5, that the attack has been improved. In the guessing entropy with only noisy
traces, we saw that the intermediate keyvalue was precisely in the middle, around place 126. In this
attack on clean traces, we found the correct intermediate keyvalue at around 80, meaning that the
intermediate key rank has been improved. Nonetheless, it is still a disliked guessing entropy plot in
terms of converging. We expect that an issue could be lying in the fact of fewer traces to train on. In
this example, the CNN is only trained on 20000 traces where it is usually trained on 50 000 traces.
When looking at the clean traces, we did not expect these results to be this bad. Another reason could
be that CNN is not optimized for the dataset.

Lastly, in Figure 5.12, we see the results of a CNN trained and evaluated on cleaned traces that
had been infected with a random delay interrupt countermeasure. From the figure, we can conclude
that if we compare it with the results of Figure 5.6, the denoising made the effect even worse. We
could argue from these results that the countermeasure was too hard for the autoencoder to deal with.
For the guessing entropy function, we have tried both datasets. The dataset results, which had a time
window between 0 and 300, are performing far worse than the dataset with the complete trace but
having a bad fit after timestep 250. In the figure, we see the guessing entropy of the second named
dataset, making it more comparable with the other figures. We can thus conclude from this experiment
that has seen impossible for the autoencoder to denoise the random delay interrupt from the trace and
make clean traces to make a useful classification.

5.6. Conclusions 53

Figure 5.10: The guessing entropy plot of a CNN trained and evaluated on clean traces. The traces were dirty by
adding a desynchronization countermeasure.

Figure 5.11: The guessing entropy plot of a CNN trained and evaluated on clean traces. The traces were dirty by
adding a Gaussian countermeasure.

5.6. Conclusions
In this chapter, we have looked into the useability of using an LSTM autoencoder. We came with this
solution because we saw no further advantages when using sequential data models in a many to one
classification setting but preferred a manytomany classifications. Looking at sidechannel analysis,
one of the use cases to do this is with generating a cleaning algorithm. An initial thing to look at was
considering a technique called attention. Something used quite often in combination with sequential
data models. We wanted to design an autoencoder cleaning algorithm. In the first design stage, we
already found out that using attention is not necessary. Therefore, this chapter’s first conclusion is that
an autoencoder without attention is strong enough for many to many classifications when considering
sidechannel analysis traces. We can explain this conclusion with two arguments. The first argument
is based on the results of random delay countermeasures and Gaussian noise countermeasures. We
have seen that both countermeasures can be removed when using an autoencoder without attention.
With Gaussian noise, the fit is perfect, almost identical. Considering the desynchronization, we see

54 5. Denoising with Autoencoder

Figure 5.12: The guessing entropy plot of a CNN trained and evaluated on clean traces. The traces were dirty by
adding a random delay interrupt countermeasure.

that the original trace’s fit is quite good but not yet perfect. To conclude this first argument, we see
that the fitting process when using an LSTM autoencoder is quite good. The second argument is time
related. Considering the results of an LSTM autoencoder without attention. We see that it already takes
around 3 to 4 days before we have good results that follow the original trace. When using the attention
technique, we have to do an extra calculation step per timestep, which we also have to use when
generating the new dataset. This means it creates 700 extra arrays per timestep, dependent on which
attention technique is used, looking at different intermediate time steps. This means this autoencoder’s
size with attention will increase significantly, resulting in even more time to produce the model. Trying
to use this setup in the current HPC of the university, we found out that the GPU’s tensors were too
small to use. This means that if we want to use this preprocessing cleaning technique, attention makes
the model just too complex to be used. An argument that other attackers could invest in these more
expensive and, therefore, better equipment that can run the autoencoder with attention can be nullified
because we already have faster and easier techniques that need less expensive equipment (like CNN
autoencoder).

The second conclusion we can draw from this chapter is that the LSTM autoencoder is, in some
part, strong enough to clean noise from a trace. We have used three different countermeasures on our
dataset. If we order these countermeasures in terms of how easy to remove, we would say the first
one is Gaussian noise, the second one is desynchronization countermeasure, and the hardest one is
random delay interrupt. We made this order based on averaging. If we averaged every dataset, the
Gaussian noise countermeasure would be the easiest one to attack. If we look at Section 5.5.1, we
see that for the first two of our list, the LSTM autoencoder can follow the original line quite well. We
would say that for Gaussian noise, the newly generated traces’ quality is around 98%, and the quality
of the newly generated traces after desynchronization is around 75%. Both of these numbers are quite
high and therefore satisfy an LSTM autoencoder’s ability to clean traces. When the countermeasure
gets harder, with random delay interrupt countermeasure, we see a 90% fit on the part where it can fit
the original trace. However, after that, it is too hard and loses the trace. We would say the fit there is
around 10%. The conclusion is that the LSTM autoencoder can remove noise from the traces for quite
a simple countermeasure. When the countermeasure gets harder and more noise is added, the LSTM
autoencoder is not a suitable option.

The last conclusion we can draw from this chapter is related to the sidechannel experiments con
ducted in this chapter. The goal was to show that noise reduction could be accomplished and make
a better sidechannel attack in terms of guessing entropy. We have seen that the LSTM autoencoder
can reduce the noise signature from the noisy datasets. However, if we compare the guessing entropy
results on the noisy dataset and the cleaned dataset, the results are not overwhelming. The guessing

5.6. Conclusions 55

entropy for the Gaussian noise part has been increased slightly. The cleaned dataset has somewhat
better results compared to the noisy dataset. Meaning that the cleaning process has worked. However,
the resulting guessing entropy is not something we can work with. For the desynchronization noise, the
results of the cleaned dataset are worse compared to the noisy dataset. Two possible reasons could
explain this. First of all, the cleaned dataset is mostly smoothed in places where some peaks happen
quite fast after each other. This smoothing process could result in less leakage present in the cleaned
dataset, which results in a generalized dataset. The second reason is that desynchronization noise
is only hiding and not a masking countermeasure. A hiding countermeasure is easier to break, even
more, if it is added artificially afterward if we train and evaluate on the hiding dataset. The leakage is
original, and the countermeasure consistent. With the third countermeasure, random delay interrupt,
we combine two different countermeasures. The fact of combined countermeasures makes it harder,
which can be seen from the results. The autoencoder was unable to predict clean traces, which would
nicely fit on the original trace. This was also present in the guessing entropy plot, where we saw that
the plot’s results on clean traces were even worse than on dirty traces. We want to mention that CNN
is not tweaked for the new dataset. We do see potential in cleaning by autoencoder. The guessing
entropy function results can also be explained because we did not search for the proper CNN.

To conclude this chapter, we see a suitable option for LSTM autoencoders to translate and clean
datasets. However, in terms of sidechannel analysis, we have accurate leakage, and the dependency
of this leakage could be vital for the classification of the intermediate values. We see that the noise is too
much for the LSTM autoencoder. This chapter’s conclusion is another example. Looking at the previous
chapter, a sequential data model is not better for sidechannel analysis than CNN. We have now tried
different hyperparameters by our hyperparameter search in the previous chapter. This chapter looked
at a more common way to use a model in manytomany use cases. We saw somehow better results
but not the one which we hoped for. Therefore we want to try one last thing before making our final
conclusion. We want to look at a specific technique used in sequential data models: the embedding
layer. This is something that is always used when people use a recurrent neural network. However,
an embedding space does not sound like a suitable option for sidechannel analysis data. Our data
has less meaning than most data has that are used with sequential data models. In the next chapter,
we will try to determine if this embedding layer is a suitable option for sidechannel analysis and if this
can be used for the whole perspective of sidechannel analysis, not only when using sequential data
models.

6
The Power of Embedding

In this chapter, we dive into something else. We had an indepth look at a different natural language
processing technique. We saw the need for a preprocessing technique in chapter 4; furthermore,
we saw in other research that in combination with sequential data models, mostly a preprocessing
technique is used. The most commonly used preprocessing technique for sequential data models is
the embedding layer. Therefore, we explore the need and power of an embedding layer. Embedding
is a technique commonly used in natural language processing, and there is an assumption that it could
also be used in common sidechannel attacks. The great benefit of embedding is that it turns data from
two dimensions to three dimensions, which always happens when we use a neural network. However,
with this embedding layer, the new dataset holds more information, using less memory because of the
efficient way an embedding space works. So in this chapter, we took a look if it could be applicable for
sidechannel data. Because embedding is being used in sequential data models, we investigate how it
works on the three models explored in Chapter 4, so for RNN, LSTM, and GRU.We furthermore want to
investigate if this embedding layer is something new that could be used in stateoftheart sidechannel
techniques. Therefore we also evaluate it on an MLP and a CNN. We want to give good advice on
what should be done with this embedding layer. Therefore we use three different datasets, namely,
the previously seen DPAv4 dataset, the AES dataset with random delay countermeasure, and , the
ASCAD dataset.

6.1. Methodology
In this chapter, we evaluate and advise on the use of an embedding layer. We are mostly interested in
sidechannel analysis benefits when using an embedding layer as the first layer in a model. Therefore
there is not an extensive hyperparameter search. We did run every experiment with the same values
ten times and averaged it to get themodel’s average result. We used different setups because changing
the model by adding an embedding layer could also change the setup. However, because we do not
want to find the best setup but only prove the layer’s effectiveness, we did not dive deeper into this. To
get a more average result of the model with an embedding layer, we compare the results with stateof
theart results. In terms of the RNN, LSTM, and GRU model, this means we compare the results with
the results of Chapter 4. For the MLP and CNN, we used it as a baseline for the literature’s models.
Every baseline results are discussed in every section, how the embedding technique work can be
found in 2.5.3. Before we start, we want to point out that using an embedding layer could have the
same results as a hiding countermeasure. Therefore, using this layer could make it harder for most
models; however, embedding tries to cluster the different values to groups that act similarly. We can
say that it reduces the hiding countermeasure and therefore is a strength for the sidechannel analysis
dataset with hiding countermeasures.

6.1.1. Dataset Preparation for Usage of Embedding Layer
As input for the embedding layer, we need a dataset that is integer encoded with only positive numbers.
The embedding layer makes then an encoded vector of every integer. When we create a onehot
encoded vector, the dataset’s dimension is closely related to the unique values’ size. If we have 5 000

57

58 6. The Power of Embedding

different words in a dataset, which is quite fast the case in a story, our onehot encoded vector does
consist of 4999 zeros and only one 1, which is ’hiding’ in this long vector length of size 5 000. Therefore
we want the dataset integer encoded. For the embedding input, we need all positive integers, which is
not always the case in how the datasets are formatted. Therefore we use the following techniques to
deal with these problems

• Considering the ASCAD dataset, which consists of all integer values but some are also negative,
we shifted the whole dataset to the number of values needed, this means when the lowest min
value is 100 and the highest positive value 120. We shift the whole dataset 100 values to the
right, creating a dataset that holds values from 0 to 220. This is a more desired input for the
embedding layer.

• Considering the AES and DPAv4 dataset, some more preprocessing is needed because these
values are already normalized and therefore are mostly float values, which are infinite precise.
Therefore we choose anothermethod. We round every value using five values behind the comma;
this gives us more ’unique’ values. Because now 0.0000123 and 0.00001567 are both rounded
to 0.00001 and therefore become equal. Then we count the number of unique values and create
a list that is holding every unique value, and therefore the list has the size of a dictionary. Then we
replace every unique value in the original dataset with the index of the unique value in the created
list. Because the index starts at 0, we create a new dataset, which is integer encoded and still
holds the same sequence as before. What should be regarded as that the rounding of the dataset
decides how accurate the new values were. Because a poor round of 2 means that all values
smaller than 0.01 (e.g., 0.002) are rounded to 0.00, which reduces accuracy. However, rounding it
to 20 means that every value was unique, and we do not see any recurrence of values. Therefore
rounding to 5 is chosen, which is an educated guess by looking at the data. This rounded value
could be optimized in further research.

Another solution to deal with the problem of the DPAv4 dataset we considered is to multiply every
value by a specific factor to eliminate the decimal values. However, when we do this, we need to
multiply with the smallest value, which means that, for example, when we have a value of 0.9, 0.1, and
0.00001. we need to multiply all the values with 10 000, giving us a value of 9 000,1 000, and 1. This
creates a colossal dictionary size of different values, which is not optimal because it could be that many
values (e.g., between 1 and 10 000) are not used. Therefore this option was not used, and we prefer
to round the decimal values to a specific predefined value.

6.2. RNN, LSTM, and GRU with Embedding
For the RNN, LSTM, and GRU, we need to compete with the following baseline:

• DPAv4 dataset: Should be better than the 350 traces reached with the LSTM model, 400 with the
RNN, and around 450 with the GRU model

• AES with random delay dataset: Should be better than the 300 traces reached with the LSTM.
For the other two sequential data models, we do not have a baseline.

• ASCAD dataset: Here, we want to see that it can converge. If that is the case, it would be an
improvement compared to previous results.

In the following section, we see that the embedding layer models do not get close to the baseline.
Therefore we could argue that the model is not optimized for the different datasets that the embedding
creates. Alternatively, we could play more with the dimension output of the embedding layer, which we
experimented with further.

6.2.1. DPAv4 Dataset
In Figure 6.1 are the results of the experiment. Here we see the guessing entropy of the three sequential
data models used in the previous chapter. The output dimension of the embedding layer was equal
to 10. What can be concluded from the figure is that for GRU, the embedding does not have any
effect. Even worse, it decreases performance because, without embedding, the GRU model was able
to converge. The LSTM and RNN can converge to the right key; however, the results are worse than

6.2. RNN, LSTM, and GRU with Embedding 59

what we have seen before. We can also see that the LSTM is doing the best job comparing the
three different sequential data models. A possible explanation for worse results compared to before
is because the embedding output is equal to 10. Meaning that every timestep has ten features; this
was one before (which was the original feature). Changing from 1 to 10 must give some sparsity in the
data. Comparing the results with the results from chapter 4, we see some consistent results. Because
also here, the GRU is performing the worst of the three sequential data models.

Figure 6.1: Guessing entropy of RNN, LSTM, and GRU model against the DPAv4 Dataset. At the beginning of the
model is a embedding layer which creates a three dimensional data space as input with 10 units per timestep.

6.2.2. AES with Random Delay Dataset
In Figure 6.2 are the results of the experiment. We see the guessing entropy of the three sequential
data models used in the previous chapter when trained and evaluated on the AES dataset with random
delay countermeasures. The output dimension of the embedding layer was equal to 10. What can be
concluded from the figure is that only the GRU can converge to the right key. The other models are
converging but cannot reach a guessing entropy of 0 in 4 000 traces. From this, we can conclude that
an embedding layer makes more sense for the hiding countermeasure than for the masking counter
measure, which makes sense when looking at the embedding layer’s abilities. It does change every
value and tries to optimize it. It is some hiding principle, so it should neglect a hiding countermeasure.
Masking is something the embedding does not deal with from its capabilities. However, the results are
the opposite than seen before, making this natural language processing method an interesting choice,
which should be weighted based on the dataset’s countermeasure—comparing the results with the
DPAv4 dataset. We see that this is the only time the GRU model is performing better than the LSTM
and the RNN. We do not see any logical reason why the GRU model performs better in this case than
before.

6.2.3. ASCAD Dataset
In Figure 6.3 are the results of the experiment. Here we see the guessing entropy of the three se
quential data models used in the previous chapter when trained and evaluated on the ASCAD dataset
attacking the third key byte. The output dimension of the embedding layer was equal to 10. What can
be concluded from the figure is that none of the models can converge to the right key. It is hard to draw
any conclusions from this because the models could not break the dataset without the embedding layer,
and with embedding, the layer does not change anything. We could argue that the ASCAD dataset is
too hard for the models or that the models are too weak for the dataset. However, different techniques

60 6. The Power of Embedding

Figure 6.2: Guessing entropy of RNN, LSTM, and GRU model against the AESRD Dataset. At the beginning of
the model is a embedding layer which creates a three dimensional data space as input with 10 units per timestep.

show that it does not break the encryption. From this, we can make a big conclusion about the use of
sequential data models in the ASCAD dataset. The dataset is too hard for sequential data models.

Figure 6.3: Guessing entropy of RNN, LSTM, and GRU model against the ASCAD Dataset. At the beginning of
the model is a embedding layer which creates a three dimensional data space as input with 10 units per timestep.

6.3. MLP with Embedding
For MLP, we need to compete with the following baseline:

• DPAv4 dataset: According to [38], the guessing entropy reaches zero after 40 traces. The model

6.4. CNN with Embedding 61

used has three layers, where the hidden layer has 20 neurons.

• AES with random delay dataset: According to [71], MLP can break the key when using a model
with one layer, 2 000 perceptrons, and six layers with every ten perceptrons. There it can reach
a guessing entropy of less than 30 within 2500 attack traces.

• ASCAD dataset: According to [71], they use the ReLU activation function, with six layers, and
each layer has 200 perceptrons. The guessing entropy reaches 0 after 1 000 attack traces. The
model is also used in [56].

In Figure 6.4 are the results of using three different datasets with an MLP, including embedding.
What we can see is that the MLP can converge with every dataset. However, it is only able to find the
correct key when considering the DPAv4 dataset. Compared with the previous section, we see that the
LSTM is doing better with DPAv4 than the MLP is doing. However, both models are not optimized for
the dataset they are trained on. This could explain the reason why the LSTM is stronger. Interesting
is that only DPAv4 can converge. Previously we saw that that the sequential data models did better
work on the AESRD. Now we see that only the DPAv4 dataset is converging. This could mean that
DPAv4 is simpler to break for the MLP. Another reason could be that embedding in combination with
the ASCAD and AESRD dataset is not a good combination. Because in the previous section, we saw
that embedding with AESRD and ASCAD, no matter which model used, did not have any good results.

Moreover, of course, embedding is a sequential technique and should work better with sequential
data models. Also, embedding is a technique to transform a twodimensional dataset into a three
dimensional dataset. However, the input of an MLP should be two dimensional. Therefore we need a
flatten layer after the embedding layer to make the input work. We could argue that this is not really
convenient, and therefore does not make sense. At last, we see that the results do not come near the
baseline that was set earlier.

Figure 6.4: Guessing entropy of MLP model against three different datasets. At the beginning of the model is an
Embedding layer, which creates a threedimensional data space as input. With an output of 10 units per timestep.

6.4. CNN with Embedding
For CNN, we need to compete with the following baseline:

• DPAv4 dataset: according to [74], there they reach a guessing entropy of 0 within three traces.
The architecture used is one convolutional layer, then a batch normalization and after that average
pooling, flatten, and then two dense layers.

62 6. The Power of Embedding

• AESwith random delay dataset: according to [74], where he reaches a guessing entropy of 0 after
four traces. The architecture used is the same as with DPAv4, but then they use four convolutional
blocks instead of only one.

• ASCAD dataset: According to [56], they can find a guessing entropy of 0 after around 50 traces.
They have five convolutional layers with an average pooling layer, where the convolutional layers
have an increasing number of perceptrons per layer.

In Figure 6.5 are the results of each experiment. At first, we see that the CNN model is not able
to converge on the ASCAD dataset. This is because CNN is more sensitive to different data input,
and therefore changing the input data because of embedding makes it harder for CNN to work. Also,
every timestep now is represented by ten values is an overkill of data for CNN. The other two datasets
are more consistent, converging to some intermediate value but cannot reach a guessing entropy of
0 within 4 000 attack traces. It looks like CNN has problems with the huge amount of extra data that
is used for training. From this aspect, we would say that an embedding layer is not a good option for
CNN. Moreover, CNN has proven not to be working very well with preprocessing layers. The best we
can have is to have the pure form of the data with a CNN. This embedding layer does not improve
the model’s performance. As of last, we would like to mention that AESRD and DPAv4 are at least
converging. The ASCAD dataset is again not having any positive conclusions. This could be since
ASCAD is a harder dataset and, therefore, more sensitive to an embedding layer’s changes in the
data.

Figure 6.5: Guessing entropy of CNN model against three different datasets. At the beginning of the model is an
Embedding layer, which creates a threedimensional data space as input, with an output of 10 units per timestep.

Until now, we have seen one common recurrent issue when using this embedding layer, which
we want to explore further in the next section. This problem could be due to the big dimension we
used in these experiments. To see if there are any problems considering that, we experimented with
different output dimensions in the next section. Using different output dimensions resulted in fewer
data per time step, which could be easier for the model to learn. Therefore, we want to decrease the
embedding layer’s output size to 1, 2, and 5 instead of only 10, making the input data less complicated.
Because of the results, we only investigated further in the DPAv4 dataset because the other datasets
give terrible results, and we saw that it works better on masking than hiding countermeasures. Lastly,
we only look further into the LSTM model from the sequential data models because it showed the best
results.

6.5. Different Embedding Output with LSTM 63

6.5. Different Embedding Output with LSTM
Here we only experiment with the LSTM model because this sequential data model has shown to be
the most potent model of the three sequential data models. We investigate different output dimensions
to see how different embedding size different the function of the embedding layer and how different
units per timestep influence the results.

The results of this experiment are visible in Figure 6.6. The green line results from an embedding
layer, which has an output dimension equal to 5. The orange line has an embedding layer with an
output dimension of 2, and the blue right uses one as the output dimension of the embedding layer.
Here we see that decreasing the output dimension does decrease the results. For an output dimension
of 2 and 5, we see a guessing entropy of 0 after 4 000 traces. The guessing entropy does converge
for an output dimension of 1. From this experiment, we can conclude that there is for the LSTM some
interest in having more features per timestep then and that it does improve the results. However, in the
section 6.2.1, we also used an LSTM with DPAv4 but had an embedding output of 10. There we see
better results than the results in Figure 6.6. This means that using an output dimension of 10 favors
at the moment with the embedding layer when using LSTM. We can not say something about a linear
better performance. This is because, with an output dimension of two and five, they are around the
same. However, between one and ten, we see some linear improvement.

Figure 6.6: Guessing entropy of the LSTM model against DPAv4 datasets. At the beginning of the model is an
Embedding layer, which creates a threedimensional data space as input. Three different embedding outputs are
shown in the figure.

6.6. Different Embedding Output with MLP
The results of this experiment are in Figure 6.7. The green line results from an embedding layer, which
has an output dimension equal to five. The orange line has an embedding layer with an output dimen
sion of two, and the blue line uses one as the output dimension of the embedding layer. Comparing the
results with each other, we see something that looks like a bad run for output dimension 2. Because
of that, we did a rerun, but no different results have been found. Comparing the output dimension
of 1 with an output dimension of 5, we see not much difference. For the output dimension of 5, the
guessing entropy reaches 0 after 3 000 traces. For the output dimension of 1, we see the guessing en
tropy reaching 0 after 2 000/2 500 traces. So the results are a bit better. Comparing these results with
the previous section, where we had an output dimension of 10, we can conclude that the results have
been improved. There we needed 4000 traces before reaching a guessing entropy of 0. To conclude,
it looks like using embedding for MLP does work; decreasing the output dimension makes the results

64 6. The Power of Embedding

better than before. However, the best results are visible with an output dimension of 1. Using an out
put dimension of 1 does not have the power of embedding, which we expect. Using more dimensions
makes the embedding special. Using only one dimension could also mean that the embedding layer
maps every value to the same value.

Figure 6.7: Guessing entropy of the MLP model against DPAv4 datasets. At the beginning of the model is an
embedding layer, which creates a threedimensional data space as input. Three different embedding outputs are
shown in the figure.

6.7. Different Embedding Output with CNN
The results of this experiment are in Figure 6.8. The green line results from an embedding layer, which
has an output dimension equal to 5. The orange line has an embedding layer with an output dimension
of 2, and the blue line uses one as the output dimension of the embedding layer. Here we see how
different embedding sizes are used. It appears that CNN does not work any better with different output
sizes from the embedding layer per timestep. We conclude that using an embedding layer is not a good
option when considering a CNN model from this experiment. This could have several reasons which
are not explored further in this thesis. The most common reason could be that CNN is a shiftinvariant.
Meaning they can select their features and not decrease their performance when performing an attack
to a hiding countermeasure. It feels like CNN is best with the most straight forward and original traces.
This embedding layer does change the input a lot, and therefore the CNN does not work well with it.
Another reason is that CNN is not optimized for the new data set. CNNs are known to be quite sensitive
to new datasets. We did not change any hyperparameter, and the input is changed a lot. Mostly the
dimension is changed, and that could also mean the architecture should be changed.

6.8. Conclusion
In this chapter, we dived into the use of an embedding layer. The reason to look into this was that
having an LSTM that was not trained, only using an embedding layer, converted to the right key. This
shows that the embedding layer on its own has some strength that could be used. Furthermore, we
see it as a standard input layer for the natural language processing domain.

This chapter looked at using five different models, divided into three different sections—the first
section where models with sequential data models; these were RNN, LSTM, and GRU. The second
section had the MLP model, and the third model had the CNN model. We evaluated this embedding
layer by looking at different output dimensions. This is the number of values it uses to describe the

6.8. Conclusion 65

Figure 6.8: Guessing entropy of the CNN model against DPAv4 datasets. At the beginning of the model is an
embedding layer, which creates a threedimensional data space as input. Three different embedding outputs are
shown in the figure.

value. In the first section, this output dimension was fixed to 10. In the section that followed the output
dimension was 1, 2, and 5.

A certain timestep is represented by one value, the power at the particular time step. Embedding
createsmore values that describe this same value; therefore, it createsmore dimensions for a particular
data point. The benefit of this is that an embedding layer always creates threedimensional data, where
we usually have to change the input shape for a recurrent neural network model or a convolutional
neural network. This is now being dealt with by the embedding layer. Changing the output dimension
gives the user the ability to change the sparsity of the data. Because the values assigned in the
embedding layer are updated continuously, we could create extra information on which values look
similar when choosing two output dimensions. We can create a plot of the output of the embedding
layer. There we can see which values are close to each other and which are exceptional. This could
give the attacker more insight into which values are useful for the attack and which not.

Furthermore, an embedding layer could be exported and then be used for other attacks, which
means that one attack can create an adequate embedding space where each integer is mapped to the
right dimension and values. This attacker could do this with a big dataset, for example, the ASCAD
dataset. When someone else is performing an attack with only a few traces, it could use the public
to be available embedding space to map his values to the right embedding output. The embedding
space is then more like a lookup table. We think this is the future for embedding layers in sidechannel
analysis. This lookup table for embedding space is used in natural language processing, where every
language has its own embedding space. This should also be used in sidechannel analysis.

In this chapter, we only looked into the use of this embedding layer for sidechannel analysis. We
took different baselines and experimented with the same models using an embedding layer at the
beginning of the model. We can draw no positive conclusion from these experiments. This is quite
logical from the fact that those results have been achieved after some years of research. We then took
a more indepth look into the use of different output sizes of the embedding layer. We saw that using
an embedding layer for CNN does not improve the model at once. This could be due to the highly
sensitive CNN models, so to see some results, the models should be tuned again or that a CNN does
not work well with more features per timestep. For MLP and recurrent neural networks, we saw that
the models were able to converge. The MLP and the sequential data model look more robust against
different input. However, for the MLP, we do not see much better results. Moreover, the data has to
be flattened again, making the embedding layer as the first layer less logical. The sequential data

66 6. The Power of Embedding

model showed the best results with the embedding layer. After that, the MLP and then CNN are logic
because the embedding layer is used more often with sequential data models. From the sequential
data models, we saw the best results with the LSTM model. We also saw this in the previous chapter
that the LSTM shows to be the strongest models against sidechannel data. Considering different
datasets, we saw that the ASCAD dataset could not get better results. It seems that this dataset is too
hard for the embedding layer. Moreover, with AESRD, we saw not very exciting results. That could
be explained because embedding does change the values. This means it does the same as a hiding
countermeasure. Therefore we can explain why it worked better with DPAv4 because this also has a
masking countermeasure, where we assume the mask is known.

We also saw better results when the output dimension decreased. Except not with the recurrent
models, this could be because the output dimension indicates how many values we get to represent
the original values. For the DPAv4 dataset, there were 115 000 different values in the integer encoded
dataset; having only one value between 0 and 1 to represent those values in the embedding space is
very hard. If we have two or three values, the options are more distinctive. That could also be why the
models were behaving worse on the AESRD and ASCAD dataset when the embedding layer’s output
dimension was equal to 10. Because in those two datasets, the integer encoded datasets only hold 114
and 150 unique values. From this, we could say that the output dimension should be chosen carefully,
taking into account what the original vector space was.

7
Conclusions and Future Work

This thesis’s primary goal was to look at sequential data models in the sidechannel analysis domain,
which we discussed and evaluated in three different chapters. In Chapter 4, we looked into the use
of sequential data models to train a neural network and perform a sidechannel attack. Moreover, this
chapter took a broader look into what hyperparameters should be used when using sequential data
models. In Chapter 5, we looked at the autoencoder. The purpose of the chapter was to prove that
an algorithm can be used to clean sidechannel analysis traces, which means that a countermeasure
added to original traces can be removed when a model can learn on the original and noisy traces. In
Chapter 6, we looked at the embedding layer, a commonly used natural language processing technique.
There we looked in what way these natural language processing techniques could be used in the side
channel analysis. We consider the data, which are the traces, as sentences with words, which is an
entirely new look to sidechannel analysis data. The three chapters are divided into three sections.
The last section looks into this research’s limitations and addresses other research topics to explore.

7.1. Evaluation of Sequential Data Models
There are many challenges when using sequential data models on sidechannel analysis. Therefore,
Chapter 4 investigates the use of sequential data models in sidechannel analysis. This chapter’s cen
tral research question is, how could RNN, LSTM, and GRU be used for the sidechannel attacks? (RQ
1.)
To answer this question, we have experimented with the most common hyperparameters for sequen
tial data models. We have looked into three different types of recurrent neural networks. We also
experimented with different hyperparameters for every type of sequential data model. After that, we
experimented with different preprocessing techniques to develop different setups of experiments for
sidechannel analysis and look for differences in the results. We also experimented with different coun
termeasures used in the traces, which we can divide into three different datasets. First, the DPAv4
where the mask was known; secondly, a dataset with AES encryption, which had a random delay
countermeasure, and lastly, the ASCAD dataset. The hard part is that the trace’s leakage should be
sequential, which is not always the case. In the experiments, we found some promising results, but
none of them better than the CNNs. The use of CNN models has been researched in the last few
years and has been improved by many other researchers. Therefore, the experiments of this thesis,
which performed significantly worse than CNNs, was not surprising. However, the question arises, will
the results for sequential data models in sidechannel analysis become better after a few more years
of research? At the moment, we do not expect that to happen. Sequential data models are a suit
able alternative for sidechannel analysis; they can converge and find the correct key in most cases.
However, when the countermeasures are getting stronger, like with the ASCAD dataset, the sequen
tial data models cannot perform a good attack. The amount of noise present in sidechannel analysis
can explain this. When the dataset has a random delay countermeasure, the sequential data models
are performing the best. When the dataset has a noise countermeasure (like Gaussian noise), the
models perform relatively worse. This can be explained mostly due to the high noise present in the
sidechannel analysis traces. The performance was better when we deployed the same attack on a

67

68 7. Conclusions and Future Work

different dataset without noise. The results are visible in Figure 7.1.

Figure 7.1: On the Xaxis, the amount of traces needed to reach a GE of 0. On the Yaxis, the guessing entropy
value corresponding to the amount of traces. GE reaches a value of 0 with approximately 20 traces.

If there is still some interest to keep working with these sequential data models, the use of the right
hyperparameters is essential. Therefore one of the subquestions was (SubRQ 1.1); what are good
hyperparameters for sequential data models when dealing with sidechannel analysis? In this chapter,
we have taken a look at different hyperparameters. We have experimented with batch size, units,
dropout, recurrent dropout, weight initializer, training size, amount of layers, and activation functions.
Different values we experimented which are visible in Table 4.1. From the experiments, we conclude
that it is best to use the smallest possible batch size, and the number of units should be equal to the data
dimension. Dropout and recurrent dropout should be used to prevent overfitting. We used a shallow
network using a small number of layers and units. For the activation function, we saw that the sigmoid
function performed better than ReLU and TanH. For the weight initializer, we had the best results when
using the He uniform weight initializer. The best recurrent neural network to use when performing a
sidechannel attack is the LSTM model. This conclusion is derived by using different hyperparameters
with every model, trying every type of recurrent network on different leakage models, and looking at
the attack’s performance. Looking at the overall performance of every individual model, the LSTM has
the best performance.

After the hyperparameter search, we started to improve the results. Themain goal was to find some
thing that would reduce the sequence length while keeping the sequential dependencies (SubRQ 1.2).
In this thesis, we have tried multiple tricks to decrease the input sequence length. We decided to
use smaller sequence lengths because the performance was the same, but the training time would
decrease significantly. Therefore we tried a dataset holding only 50 features generated with Pearson
correlation and a dataset holding 150 features generated with a linear regression technique. We have
proven with the second technique that it is a feasible technique to use and captures most of the original
traces’ information. The conclusion from these experiments is that in terms of recurrent neural net
works, we see that a shorter sequence length does improve the model a lot in terms of speed and that
linear regression is a suitable option to do this as it still captures the relevant information. We saw that
the attacks were comparable with the previous results we had in this thesis regarding the sidechannel
analysis. Therefore, we conclude that linear regression is a suitable option to reduce the sequence
length when performing a sidechannel attack. Moreover, we conclude that reducing the sequence
length when using sequential data models is a must.

7.2. Denoising with Autoencoder
After the previous chapter, we concluded that sequential data models should be used for manytomany
classification. A common way to use manytomany classification would be to translate one dataset

7.3. The Power of Embedding 69

of traces to another dataset. This translation has been done by adding noise to the original dataset
and learning an autoencoder to translate it. This setup resulted in the following main research question
(RQ 2.): Can an LSTM autoencoder be used to denoise a trace and make a better sidechannel attack
in terms of the guessing entropy? The answer is yes; an LSTM autoencoder can be used to reduce
noise from a trace. It can reduce noise with a hiding characteristic; then, the sidechannel attack will be
better. The first sub research question (SubRQ 2.1) is how well do the denoised traces fit the original
traces? This fitting depends on which type of noise is used. In this thesis, we have experimented with
two different types of noise. We saw that a hiding countermeasure was easily removed when the noise
consists of Gaussian noise. The random delay was more challenging for the autoencoder to remove
from the traces. We concluded that an autoencoder is better at removing noise when it is not shifted.
When a leakage value is shifted, the difference between the original value and the shifted value differs
at every timestep. Because of the trace’s sequential shape (sinus shape), they even cross each other,
and then the difference gets negative. Considering Gaussian noise, the difference is always between
the same limit (min and max value of Gaussian distribution) and not timedependent. The third dataset
we used had both random delay and Gaussian noise. There we saw quite clearly that it was quite hard
for the LSTM autoencoder to denoise the dataset. Acquiring denoising results, we wonder in what terms
the significant leakage of sidechannel analysis trace has been brought back in the clean trace or has
been removed from the trace. Therefore we want to evaluate the traces, which resulted in the second
sub research question (SubRQ 2.2). How do denoised traces perform compared to original traces
when performing a sidechannel attack with CNN and evaluate using guessing entropy function? We
have performed an attack with the noisy (artificially added noise) dataset and the cleaned (denoised)
dataset to answer this question. With the first attack, we retrieved a baseline about what would happen
after the noise is added. The second attack is then compared with the baseline. Here we can draw
the same conclusions that we already made when we only looked at the traces. The dataset with
Gaussian noise is performing slightly better than the baseline model. So here we see a performance
increase compared to the baseline. With random delay countermeasures and combined with Gaussian
noise, the other two models perform far worse than the baseline. This means the autoencoder could
reproduce most of the trace but could not precisely reproduce the most critical leakage. We prefer to
have random delay countermeasures instead of Gaussian noise when performing an attack, but we
prefer to have Gaussian noise when removing noise.

7.3. The Power of Embedding
To conclude sequential data models, we want to try a specific layer commonly used in the natural lan
guage processing domain. Therefore we want to explore the embedding layer. Therefore the question
(RQ 3) arises: Should embedding be used as a preprocessing method in the sidechannel analysis?
Embedding could be used as a preprocessing method. We saw that embedding for CNN does not work
well. This can be explained because CNN filters its values and has proven that it does not work well with
data preprocessing. However, with a multilayer perceptron and a sequential data model, we saw better
results. Unfortunately, it does not perform better than the stateoftheart results, but we also consider
that the model’s hyperparameters have not been adjusted to the embedding layer. Furthermore, we
want to address that when using embedding, the model tries to create a vector space by combining
features. Because of the noise in traces, it is harder to divide the traces into clear separate groups,
which happens when using words. This could explain why it was performing worse, and we expect that
it would do even better when we have a good feature selection. Therefore we conclude that embedding
is a good alternative as the first layer when training a sequential data model for sidechannel analysis.

However, the output dimension of the embedding layer should be chosen carefully. Therefore the
following subquestion was part of this chapter (SubRQ 3.1); what output dimension should be used
when using an embedding layer? The output dimension decides the sparsity of the data. Having more
features per timestep does influence the ideal output dimension. In our case, we only have one feature
per timestep. Therefore we should keep the output dimension close to the number of features. In
the experiments, we saw a linear increase between using the dimension output of one and ten, but
a decrease using 2 and 5. Using one as an output dimension does not do much with the embedding
space; therefore, we prefer to use ten as an output dimension.

70 7. Conclusions and Future Work

7.4. Future Work
This work does an indepth study of the use of sequential data models. There are always possible
future works to consider. In the section, we explain the limitations and the future work for the topics
covered in this thesis.

The most significant limitation of this research is that we have worked with networks from the deep
learning domain. Deep learning is considered a blackbox algorithm, and therefore there is no real
understanding of how the network is learning. Since we used the LSTM, RNN, and GRU models
in this work, which are part of the deep learning domain, we have no guarantee that the results are
reproducible. We have tried different hyperparameters, different models, and different datasets with
different characteristics to the best of our knowledge. We are making this research the first guide into a
good setup for sidechannel analysis with sequential data models and, therefore, a good starting point.
However, some minor tweaks or different hyperparameters could mean completely different results.
Furthermore, we limited running time for a single model to a maximum of 48 hours. This could have
been more, but we take more than mentioned as not feasible from the aspect of a sidechannel attack
since there are already better models that perform an attack in less time. The last limitation comes
with the embedding layer. In the best possible option, we have a trained embedding space from the
complete set of data. The data we use for the model can be a subset of this data used to create the
embedding space. In our case, where the embedding space was a completely new suggestion for
sidechannel analysis, we had to train our embedding space with our data. This means our dataset
was equal to the size of the embedding space. Meaning we could not use the effect of the embedding
layer at a full capacity.

In this thesis, we have addressed three research questions and answered them in different chapters.
However, because of the limitations and the scope of the project, not everything has been researched.
In the following paragraph, we address future work that could be done. We start by suggesting that we
should not dive any deeper into looking for the right hyperparameters, considering the characteristics
used with datasets in this thesis, which means that we have tried almost every possible setup, with a
wide variety of possible values. If there is another dataset with new characteristics for sidechannel
analysis, we should look into sequential data models. However, we think that preprocessing and feature
selection is the key to find a better performing model in terms of sidechannel attacks with sequential
data models. Therefore we advise taking a more indepth look into good performing preprocessing
techniques. This is not commonly done with sidechannel analysis; based on the results, we think it is
a relevant topic to explore. More importantly, we would address that a good feature selection should
be used.

Furthermore, we see three additional topics that can be explored considering the sequential data
models. The first thing is to combine themwith CNN and then use it for sidechannel analysis. Secondly,
we can have more features per timestep. Sequential data models are the ideal networks to use with
more units, and therefore we need more features per timestep. We now use the chip’s leakage, but
maybe it works even better if we also use leakage of other chips or other usages inside the hardware
under attack. By doing this, we have more data that can be used for the sequential data model. A
third suitable option for sequential data models is to use the attention technique. This new research
direction could be used with sidechannel analysis, especially with sequential data models.

After the research of Chapter 5, we would like to propose an algorithm to clean traces. Think of
a cloudbased solution where we can send our noisy traces with a hiding countermeasure, and there
is a cleaning algorithm that gives us cleaned traces back on which we can make a faster and better
attack than before. We want an algorithm that can remove countermeasures and has as input to what
extend the countermeasure is used; for example, when removing random delay countermeasure, say
what we expect to be the maximum delay. With this, we get a generic and powerful cleaning algorithm
accessible to everyone. We think this is possible and therefore encourages us to do more research on
the possibilities. On the other hand, we can also add different or more complex countermeasures to
the traces that make this cloudbased cleaning algorithm useless. After the experiments in Chapter 6,
we come with the following future works that are possible to investigate further. The first is that in
this chapter, we have taken a look at the use of an embedding layer. However, the models have not
been optimized for the different outputs from the embedding layer; this could be done in further work.
Also, playing more with the embedding layer, changing the output dimension’s size could influence
the research result. Lastly, which has also been addressed in the limitations of this research, is that
a universal embedding space is built with datasets using the same encryption and leakage. This is

7.4. Future Work 71

something that, after a good build, can be used all around the world. In the same way, there is an
embedding space for every language in the world. Creating this for sidechannel analysis data would
considerably improve the embedding technique and its strength. If this embedding space is well trained,
we could even add extra data points and see which side of the space this data point belongs to. This
could give the attacker information in what way this point is holding leakage information.

Bibliography
[1] Télécom ParisTech DPAv4 Download. URL http://www.dpacontest.org/v4/.

[2] HPC Cluster. URL https://login.hpc.tudelft.nl/.

[3] 7 Types of Activation Functions in Neural Networks: How to Choose?
URL https://missinglink.ai/guides/neuralnetworkconcepts/
7typesneuralnetworkactivationfunctionsright/.

[4] ANSSIFR/ASCAD: Side Channels Analysis and Deep Learning. URL https://github.com/
ANSSIFR/ASCAD.

[5] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations, ICLR
2015 Conference Track Proceedings. International Conference on Learning Representations,
ICLR, sep 2015.

[6] Timo Bartkewitz and Kerstin LemkeRust. Efficient Template Attacks Based on Probabilis
tic Multiclass Support Vector Machines. pages 263–276. Springer, Berlin, Heidelberg, nov
2013. doi: 10.1007/9783642372889_18. URL http://link.springer.com/10.
1007/9783642372889{_}18.

[7] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis of the
Full AES. 2011.

[8] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage
model. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 3156, pages 16–29. Springer, Berlin,
Heidelberg, 2004. doi: 10.1007/9783540286325_2. URL http://link.springer.
com/10.1007/9783540286325{_}2.

[9] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional Neural Networks with
Data Augmentation Against JitterBased Countermeasures. pages 45–68. Springer, Cham,
2017. doi: 10.1007/9783319667874_3. URL http://link.springer.com/10.
1007/9783319667874{_}3.

[10] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. pages 13–28. Springer,
Berlin, Heidelberg, 2003. doi: 10.1007/3540364005_3. URL http://link.springer.
com/10.1007/3540364005{_}3.

[11] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long ShortTerm MemoryNetworks for Machine
Reading. Proceedings of the 30th Annual Conference of the Japanese Society for Artificial Intel
ligence, 2(3):2–4, jan 2016. URL http://arxiv.org/abs/1601.06733.

[12] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the Properties
of Neural Machine Translation: EncoderDecoder Approaches. pages 103–111, sep 2014. URL
http://arxiv.org/abs/1409.1259.

[13] Jean Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay generation in
embedded software. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5747 LNCS, pages 156–170.
Springer, Berlin, Heidelberg, 2009. ISBN 364204137X. doi: 10.1007/9783642041389_12.

[14] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. pages 277–284. Springer, Berlin,
Heidelberg, 2000. doi: 10.1007/10721064_26. URL http://link.springer.com/10.
1007/10721064{_}26.

73

http://www.dpacontest.org/v4/
https://login.hpc.tudelft.nl/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD
http://link.springer.com/10.1007/978-3-642-37288-9{_}18
http://link.springer.com/10.1007/978-3-642-37288-9{_}18
http://link.springer.com/10.1007/978-3-540-28632-5{_}2
http://link.springer.com/10.1007/978-3-540-28632-5{_}2
http://link.springer.com/10.1007/978-3-319-66787-4{_}3
http://link.springer.com/10.1007/978-3-319-66787-4{_}3
http://link.springer.com/10.1007/3-540-36400-5{_}3
http://link.springer.com/10.1007/3-540-36400-5{_}3
http://arxiv.org/abs/1601.06733
http://arxiv.org/abs/1409.1259
http://link.springer.com/10.1007/10721064{_}26
http://link.springer.com/10.1007/10721064{_}26

74 Bibliography

[15] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information analysis:
A generic sidechannel distinguisher. In Lecture Notes in Computer Science (including sub
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5154
LNCS, pages 426–442. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 354085052X.
doi: 10.1007/9783540850533_27. URL http://link.springer.com/10.1007/
9783540850533{_}27.

[16] Nihal Fatma Güler, Elif Derya Übeyli, and İnan Güler. Recurrent neural networks employing
Lyapunov exponents for EEG signals classification. Expert Systems with Applications, 29(3):
506–514, oct 2005. ISSN 09574174. doi: 10.1016/J.ESWA.2005.04.011. URL https:
//www.sciencedirect.com/science/article/pii/S0957417405000679.

[17] R. W. Hamming. Error Detecting and Error Correcting Codes. Bell System Technical Journal, 29
(2):147–160, 1950. ISSN 15387305. doi: 10.1002/j.15387305.1950.tb00463.x.

[18] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Profiled Power Analysis Attacks Using
Convolutional Neural Networks with Domain Knowledge. In Lecture Notes in Computer Sci
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat
ics), volume 11349 LNCS, pages 479–498. Springer, Cham, aug 2019. ISBN 9783030109691.
doi: 10.1007/9783030109707_22. URL http://link.springer.com/10.1007/
9783030109707{_}22.

[19] Annelie Heuser and Michael Zohner. Intelligent machine homicide: Breaking cryptographic de
vices using support vector machines. In Lecture Notes in Computer Science (including sub
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7275
LNCS, pages 249–264. Springer, Berlin, Heidelberg, 2012. ISBN 9783642299117. doi: 10.
1007/9783642299124_18. URL https://link.springer.com/chapter/10.1007/
9783642299124{_}18.

[20] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. SideChannel Analysis of
Lightweight Ciphers: Does Lightweight Equal Easy? In Lecture Notes in Computer Science (in
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol
ume 10155 LNCS, pages 91–104. Springer Verlag, 2017. doi: 10.1007/9783319620244_
7. URL http://link.springer.com/10.1007/9783319620244{_}7.

[21] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. Lightweight Ciphers and their
Sidechannel Resilience. IEEE Transactions on Computers, sep 2017. ISSN 15579956. doi:
10.1109/TC.2017.2757921.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long ShortTerm Memory. Neural Computation, 9
(8):1735–1780, nov 1997. ISSN 08997667. doi: 10.1162/neco.1997.9.8.1735. URL http:
//www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735.

[23] Gabriel Hospodar, Benedikt Gierlichs, Elke DeMulder, Ingrid Verbauwhede, and Joos Vandewalle.
Machine learning in sidechannel analysis: A first study. Journal of Cryptographic Engineering,
1(4):293–302, dec 2011. ISSN 21908508. doi: 10.1007/s133890110023x. URL http:
//link.springer.com/10.1007/s133890110023x.

[24] Gabriel Hospodar, Benedikt Gierlichs, Elke DeMulder, Ingrid Verbauwhede, and Joos Vandewalle.
Machine learning in sidechannel analysis: A first study. Journal of Cryptographic Engineering,
1(4):293–302, dec 2011. ISSN 21908508. doi: 10.1007/s133890110023x. URL http:
//link.springer.com/10.1007/s133890110023x.

[25] Gabriel Hospodar, Benedikt Gierlichs, Elke DeMulder, Ingrid Verbauwhede, and Joos Vandewalle.
Machine learning in sidechannel analysis: a first study. Journal of Cryptographic Engineering,
1(4):293–302, dec 2011. ISSN 21908508. doi: 10.1007/s133890110023x. URL http:
//link.springer.com/10.1007/s133890110023x.

[26] PoYao Huang, Frederick Liu, SzRung Shiang, Jean Oh, and Chris Dyer. Attentionbased Multi
modal Neural Machine Translation. Technical report.

http://link.springer.com/10.1007/978-3-540-85053-3{_}27
http://link.springer.com/10.1007/978-3-540-85053-3{_}27
https://www.sciencedirect.com/science/article/pii/S0957417405000679
https://www.sciencedirect.com/science/article/pii/S0957417405000679
http://link.springer.com/10.1007/978-3-030-10970-7{_}22
http://link.springer.com/10.1007/978-3-030-10970-7{_}22
https://link.springer.com/chapter/10.1007/978-3-642-29912-4{_}18
https://link.springer.com/chapter/10.1007/978-3-642-29912-4{_}18
http://link.springer.com/10.1007/978-3-319-62024-4{_}7
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://link.springer.com/10.1007/s13389-011-0023-x
http://link.springer.com/10.1007/s13389-011-0023-x
http://link.springer.com/10.1007/s13389-011-0023-x
http://link.springer.com/10.1007/s13389-011-0023-x
http://link.springer.com/10.1007/s13389-011-0023-x
http://link.springer.com/10.1007/s13389-011-0023-x

Bibliography 75

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In 32nd International Conference on Machine Learning, ICML
2015, volume 1, pages 448–456. International Machine Learning Society (IMLS), feb 2015. ISBN
9781510810587.

[28] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang,
Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, Shinji Watan
abe, Takenori Yoshimura, and Wangyou Zhang. A Comparative Study on Transformer vs RNN in
Speech Applications. 9(4), 2019. URL http://arxiv.org/abs/1909.06317.

[29] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic. Make Some
Noise Unleashing the Power of Convolutional Neural Networks for Profiled Sidechannel Analysis.
tCHES 2019, 2019(3):148–179, may 2019. doi: 10.13154/tches.v2019.i3.148179.

[30] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. pages 388–397.
Springer, Berlin, Heidelberg, 1999. doi: 10.1007/3540484051_25. URL http://link.
springer.com/10.1007/3540484051{_}25.

[31] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differen
tial power analysis. Journal of Cryptographic Engineering, 1(1):5–27, apr 2011. ISSN
21908508. doi: 10.1007/s133890110006y. URL http://link.springer.com/10.
1007/s133890110006y.

[32] François Koeune and FrançoisXavier Standaert. A Tutorial on Physical Security and Side
Channel Attacks. pages 78–108. Springer, Berlin, Heidelberg, 2005. doi: 10.1007/11554578_
3. URL https://link.springer.com/chapter/10.1007/11554578{_}3.

[33] Shiu Kumar, Alok Sharma, and Tatsuhiko Tsunoda. Brain wave classification using long short
term memory network based OPTICAL predictor. Scientific Reports, 9(1):1–13, dec 2019. ISSN
20452322. doi: 10.1038/s41598019456051.

[34] Shiu Kumar, Alok Sharma, and Tatsuhiko Tsunoda. Brain wave classification using long short
term memory network based OPTICAL predictor. Scientific Reports, 9(1):1–13, dec 2019.
ISSN 20452322. doi: 10.1038/s41598019456051. URL https://www.nature.com/
articles/s41598019456051.

[35] César Laurent, Gabriel Pereyra, Philémon Brakel, Ying Zhang, and Yoshua Bengio. Batch Nor
malized Recurrent Neural Networks. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing Proceedings, 2016May:2657–2661, oct 2015. URL http:
//arxiv.org/abs/1510.01378.

[36] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A SimpleWay to Initialize Recurrent Networks
of Rectified Linear Units. apr 2015. URL http://arxiv.org/abs/1504.00941.

[37] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and FrançoisXavier
Standaert. Template Attacks vs. Machine Learning Revisited (and the Curse of Dimensionality in
SideChannel Analysis). In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9064, pages 20–33. Springer
Verlag, 2015. doi: 10.1007/9783319214764_2. URL http://link.springer.com/
10.1007/9783319214764{_}2.

[38] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryptographic im
plementations using deep learning techniques. In Lecture Notes in Computer Science (in
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat
ics), volume 10076 LNCS, pages 3–26. Springer, Cham, dec 2016. ISBN 9783319494449.
doi: 10.1007/9783319494456_1. URL http://link.springer.com/10.1007/
9783319494456{_}1.

[39] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking Cryptographic Im
plementations Using Deep Learning Techniques. pages 3–26. Springer, Cham, dec 2016.
doi: 10.1007/9783319494456_1. URL http://link.springer.com/10.1007/
9783319494456{_}1.

http://arxiv.org/abs/1909.06317
http://link.springer.com/10.1007/3-540-48405-1{_}25
http://link.springer.com/10.1007/3-540-48405-1{_}25
http://link.springer.com/10.1007/s13389-011-0006-y
http://link.springer.com/10.1007/s13389-011-0006-y
https://link.springer.com/chapter/10.1007/11554578{_}3
https://www.nature.com/articles/s41598-019-45605-1
https://www.nature.com/articles/s41598-019-45605-1
http://arxiv.org/abs/1510.01378
http://arxiv.org/abs/1510.01378
http://arxiv.org/abs/1504.00941
http://link.springer.com/10.1007/978-3-319-21476-4{_}2
http://link.springer.com/10.1007/978-3-319-21476-4{_}2
http://link.springer.com/10.1007/978-3-319-49445-6{_}1
http://link.springer.com/10.1007/978-3-319-49445-6{_}1
http://link.springer.com/10.1007/978-3-319-49445-6{_}1
http://link.springer.com/10.1007/978-3-319-49445-6{_}1

76 Bibliography

[40] Tal G Malkin and Moti Yung. A Unified Framework for the Analysis of SideChannel Key Recovery
Attacks. pages 1–32, 2009.

[41] Thomas Mangard, Stefan, Oswald, Elisabeth, Popp. Hiding. In Power Analysis Attacks, pages
167–199. Springer US, Boston, MA, 2007. doi: 10.1007/9780387381626_7. URL http:
//link.springer.com/10.1007/9780387381626{_}7.

[42] Thomas Mangard, Stefan, Oswald, Elisabeth, Popp. Masking. In Power Analysis Attacks, pages
223–244. Springer US, Boston, MA, 2007. doi: 10.1007/9780387381626_9. URL http:
//link.springer.com/10.1007/9780387381626{_}9.

[43] Marcel_medwed. countermeasures, 2013. URL https://www.cosic.esat.kuleuven.be/
ecrypt/courses/albena11/slides/marcel{_}medwed{_}countermeasures.pdf.

[44] Massoud Masoumi, Pouya Habibi, and Mohammad Jadidi. Efficient implementation of masked
AES on SideChannel Attack Standard Evaluation Board. In International Conference on Infor
mation Society, iSociety 2015, pages 151–156. Institute of Electrical and Electronics Engineers
Inc., dec 2015. ISBN 9781908320483. doi: 10.1109/iSociety.2015.7366878.

[45] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In 6th International Conference on Learning Representations, ICLR 2018
Conference Track Proceedings. International Conference on Learning Representations, ICLR, aug
2018.

[46] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting hidden leakages. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 8479 LNCS, pages 324–342. Springer Verlag, 2014. ISBN
9783319075358. doi: 10.1007/9783319075365_20.

[47] Mohammad Ali Naderi and Homayoun MahdaviNasab. Analysis and classification of EEG signals
using spectral analysis and recurrent neural networks. In 2010 17th Iranian Conference of Biomed
ical Engineering (ICBME), pages 1–4. IEEE, nov 2010. ISBN 9781424474837. doi: 10.1109/
ICBME.2010.5704931. URL http://ieeexplore.ieee.org/document/5704931/.

[48] P. Nagabushanam, S. Thomas George, and S. Radha. EEG signal classification using LSTM and
improved neural network algorithms. Soft Computing, pages 1–23, nov 2019. ISSN 14337479.
doi: 10.1007/s00500019045150.

[49] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activation Func
tions: Comparison of trends in Practice and Research for Deep Learning. nov 2018. URL
http://arxiv.org/abs/1811.03378.

[50] A.A. Petrosian, D.V. Prokhorov, W. LajaraNanson, and R.B. Schiffer. Recurrent neural network
based approach for early recognition of Alzheimer’s disease in EEG. Clinical Neurophysiology,
112(8):1378–1387, aug 2001. ISSN 13882457. doi: 10.1016/S13882457(01)00579X. URL
https://www.sciencedirect.com/science/article/pii/S138824570100579X.

[51] Arthur Petrosian, Danil Prokhorov, Richard Homan, Richard Dasheiff, and Donald Wun
sch. Recurrent neural network based prediction of epileptic seizures in intra and extracra
nial EEG. Neurocomputing, 30(14):201–218, jan 2000. ISSN 09252312. doi: 10.1016/
S09252312(99)001265. URL https://www.sciencedirect.com/science/article/
pii/S0925231299001265.

[52] S ; Picek, A ; Heuser, A ; Jovic, S ; Bhasin, and F Regazzoni. The Curse of Class Imbalance
and Conflicting Metrics with Machine Learning for Sidechannel Evaluations. 2019. doi: 10.
13154/tches.v2019.i1.209237. URL https://doi.org/10.13154/tches.v2019.i1.
209237.

http://link.springer.com/10.1007/978-0-387-38162-6{_}7
http://link.springer.com/10.1007/978-0-387-38162-6{_}7
http://link.springer.com/10.1007/978-0-387-38162-6{_}9
http://link.springer.com/10.1007/978-0-387-38162-6{_}9
https://www.cosic.esat.kuleuven.be/ecrypt/courses/albena11/slides/marcel{_}medwed{_}countermeasures.pdf
https://www.cosic.esat.kuleuven.be/ecrypt/courses/albena11/slides/marcel{_}medwed{_}countermeasures.pdf
http://ieeexplore.ieee.org/document/5704931/
http://arxiv.org/abs/1811.03378
https://www.sciencedirect.com/science/article/pii/S138824570100579X
https://www.sciencedirect.com/science/article/pii/S0925231299001265
https://www.sciencedirect.com/science/article/pii/S0925231299001265
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237

Bibliography 77

[53] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley, Domagoj
Jakobovic, and Nele Mentens. Sidechannel analysis and machine learning: A practical per
spective. In Proceedings of the International Joint Conference on Neural Networks, volume 2017
May, pages 4095–4102. Institute of Electrical and Electronics Engineers Inc., jun 2017. ISBN
9781509061815. doi: 10.1109/IJCNN.2017.7966373.

[54] Stjepan Picek, Annelie Heuser, Alan Jovic, and Lejla Batina. A Systematic Evaluation of Profiling
through Focused Feature Selection. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 27(12):2802–2815, dec 2019. ISSN 15579999. doi: 10.1109/TVLSI.2019.2937365.

[55] Emmanuel Prouff and Robert Mcevoy. FirstOrder SideChannel Attacks on the Permutation Ta
bles CountermeasureExtended Version. Technical report, 2010.

[56] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, andCecile Dumas. Study of Deep
Learning Techniques for SideChannel Analysis and Introduction to ASCAD Database. CoRR,
pages 1–45, 2018.

[57] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, andCecile Dumas. Study of Deep
Learning Techniques for SideChannel Analysis and Introduction to ASCAD Database. CoRR,
pages 1–45, 2018.

[58] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long ShortTerm Memory Based Recurrent
Neural Network Architectures for Large Vocabulary Speech Recognition. feb 2014. URL http:
//arxiv.org/abs/1402.1128.

[59] Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for Differential Side
Channel Cryptanalysis. In Lecture Notes in Computer Science, volume 3659, pages 30–46.
Springer Verlag, 2005. doi: 10.1007/11545262_3. URL http://link.springer.com/10.
1007/11545262{_}3.

[60] Shijie Song, Kaiyan Chen, and Yang Zhang. Overview of Side Channel Cipher Analysis Based on
Deep Learning. Journal of Physics: Conference Series, 1213:022013, 2019. ISSN 17426588.
doi: 10.1088/17426596/1213/2/022013.

[61] François Xavier Standaert, Eric Peeters, and Jean Jacques Quisquater. On the masking coun
termeasure and higherorder power analysis attacks. In International Conference on Information
Technology: Coding and Computing, ITCC, volume 1, pages 562–567, 2005. ISBN 0769523153.
doi: 10.1109/itcc.2005.213.

[62] François Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework for the anal
ysis of sidechannel key recovery attacks. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
5479 LNCS, pages 443–461. Springer, Berlin, Heidelberg, 2009. ISBN 3642010008. doi:
10.1007/9783642010019_26.

[63] A. M. Turing. COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236):433–460, oct
1950. doi: 10.1093/MIND. URL https://academic.oup.com/mind/article/LIX/236/
433/986238.

[64] Elif Derya Übeyli. Analysis of EEG signals by implementing eigenvector methods/recurrent neu
ral networks. Digital Signal Processing: A Review Journal, 19(1):134–143, jan 2009. ISSN
10512004. doi: 10.1016/j.dsp.2008.07.007. URL https://www.sciencedirect.com/
science/article/pii/S1051200408001243.

[65] D van der Valk, S Picek, and S Bhasin. Kilroy was here: The First Step
Towards Explainability of Neural Networks in Profiled Sidechannel Analysis.
Pdfs.Semanticscholar.Org, 2020. URL https://pdfs.semanticscholar.org/9eef/
0f059d9c28c3c376ff618f4af925d7b5679c.pdf.

[66] Ashish Vaswani, Google Brain, NoamShazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Technical report, 2017.

http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1402.1128
http://link.springer.com/10.1007/11545262{_}3
http://link.springer.com/10.1007/11545262{_}3
https://academic.oup.com/mind/article/LIX/236/433/986238
https://academic.oup.com/mind/article/LIX/236/433/986238
https://www.sciencedirect.com/science/article/pii/S1051200408001243
https://www.sciencedirect.com/science/article/pii/S1051200408001243
https://pdfs.semanticscholar.org/9eef/0f059d9c28c3c376ff618f4af925d7b5679c.pdf
https://pdfs.semanticscholar.org/9eef/0f059d9c28c3c376ff618f4af925d7b5679c.pdf

78 Bibliography

[67] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu.
CNNRNN: A Unified Framework for MultiLabel Image Classification, 2016. URL
https://www.cvfoundation.org/openaccess/content{_}cvpr{_}2016/html/
Wang{_}CNNRNN{_}A{_}Unified{_}CVPR{_}2016{_}paper.html.

[68] Ping Wang, Aimin Jiang, Xiaofeng Liu, Jing Shang, and Li Zhang. LSTMbased EEG classification
in motor imagery tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
26(11):2086–2095, 2018. ISSN 15344320. doi: 10.1109/TNSRE.2018.2876129.

[69] Ping Wang, Aimin Jiang, Xiaofeng Liu, Jing Shang, and Li Zhang. LSTMbased EEG classification
in motor imagery tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
26(11):2086–2095, 2018. ISSN 15344320. doi: 10.1109/TNSRE.2018.2876129.

[70] Man Wei, Danping Shi, Siwei Sun, Peng Wang, and Lei Hu. Convolutional Neural Network
Based SideChannel Attacks with Customized Filters. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat
ics), volume 11999 LNCS, pages 799–813. Springer, dec 2020. ISBN 9783030415785. doi:
10.1007/9783030415792_46.

[71] Léo Weissbart, Stjepan Picek, and Lejla Batina. On the Performance of Multilayer Perceptron in
Profiling Sidechannel Analysis. Technical report.

[72] Lichao Wu and Stjepan Picek. Remove Some Noise : On Preprocessing of Sidechannel
Measurements with Autoencoders. Cryptology ePrint Archive, (Report 2019/1474), 2019. URL
https://eprint.iacr.org/2019/1474.

[73] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence classification. ACM
SIGKDD Explorations Newsletter, 12(1):40–48, nov 2010. ISSN 19310145. doi: 10.1145/
1882471.1882478. URL https://dl.acm.org/doi/10.1145/1882471.1882478.

[74] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology for Efficient
CNN Architectures in Profiling Attacks. tCHES 2020, 2020(1):1–36, 2020. doi: 10.13154/tches.
v2020.i1.136.

[75] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning. nov 2016.
URL http://arxiv.org/abs/1611.01578.

https://www.cv-foundation.org/openaccess/content{_}cvpr{_}2016/html/Wang{_}CNN-RNN{_}A{_}Unified{_}CVPR{_}2016{_}paper.html
https://www.cv-foundation.org/openaccess/content{_}cvpr{_}2016/html/Wang{_}CNN-RNN{_}A{_}Unified{_}CVPR{_}2016{_}paper.html
https://eprint.iacr.org/2019/1474
https://dl.acm.org/doi/10.1145/1882471.1882478
http://arxiv.org/abs/1611.01578

A
Implementation Details

All the experiments conducted in this thesis are run on the HighPerformance Cluster(HPC) [2] of the
Delft University of Technology. All the networks have been trained and evaluated on this HPC. The
HPC is running Linux CentOS 7. The Nodes on the cluster are equipped with GTX 1080 Ti graphic
cards with 11 GB of memory and 3584 processing cores. All the experiments’ code is implemented
in Python 3.6.8 using TensorFlow (GPU compatible) version 2.1.0. The TensorFlow version is built
against CUDA 10.1, which uses CUDA Deep neural Network library (cuDNN) version 10.17.6.0.64.

A.1. Reproducibility
For the experiments’ reproducibility, everything is explained in detail in the representative chapter’s
methodology section. In this section is the pseudocode of some of these experiments.
In listing A.1 the source code snippets for the experiments for Chapter 4. In listing A.2 the source code
snippets for the experiments for Chapter 5. In listing A.3 the source code snippets for the experiments
for Chapter 6.

Listing A.1: Python code chapter 4. The X in the code is filled in differently per experiment.

s ize_datase t = 8\ ,000
dataset = np . load (inpu t_data)
key_data = np . load (key_data)
x_ t r a i n = dataset [: s i ze_datase t]
x _ t r a i n = preprocessing . normal ize (x_ t r a i n)
y_ t r a i n = key_data [: s ize_datase t]

x _ t r a i n = np . reshape (x_ t ra in , (x _ t r a i n . shape [0] , x _ t r a i n . shape [1] , 1))
y _ t r a i n = np . reshape (y _ t r a i n l i d , (y _ t r a i n . shape [0] , y _ t r a i n . shape [1] , 1))

batch_size = X
Epochs = X
Dropout = X
a c t i v a t i o n = ” softmax ”
op t im i ze r = Adam(l r =0.001)
recur ren t_dropou t = X
un i t s = X

x_t , x_va l id , y_ t ra in , y_va l i d = t r a i n _ t e s t _ s p l i t (x_ t ra in , y_ t ra in , t e s t _ s i ze =0.2)

y_ t r a i n = t o_ca t ego r i ca l (y _ t r a i n)
y_va l i d = t o_ca t ego r i ca l (y_va l i d)

79

80 A. Implementation Details

model = Sequent ia l ()
model . add (LSTM(un i t s =un i t s , dropout=dropout ,
recur ren t_dropou t= recur ren t_dropout , return_sequences=True))

model . add (LSTM(un i t s =un i t s , dropout=dropout ,
recur ren t_dropou t= recur ren t_dropout , return_sequences=True))

model . add (LSTM(un i t s =un i t s , dropout=dropout ,
recur ren t_dropou t= recur ren t_dropout , return_sequences=True))

model . add (LSTM(un i t s =un i t s , dropout=dropout ,
recur ren t_dropou t= recur ren t_dropou t))

model . add (Dense(256 , a c t i v a t i o n = a c t i v a t i o n))
model . summary ()
model . compile (loss= ’ ca tego r i ca l_c rossen t ropy ’ ,
op t im i ze r=opt im izer ,
met r i cs =[’ accuracy ’])

h i s t o r y = model . f i t (x_t , y_ t ra in , va l i da t i on_da ta =(x_va l id , y_va l i d) ,
epochs=epochs , batch_s ize=batch_size , verbose=2)
score = model . eva luate (x_va l id , y_va l id , verbose=2)
p r ed i c t i o ns = model . p r ed i c t (x_va l i d)

r e s u l t = calc_ge (p r ed i c t i o ns)

Listing A.2: Python code chapter 5. The X in the code is filled in differently per experiment.

X = np . load (one_hot_encode_noisy)
Y = np . load (one_hot_encode_or ig inal)

batch_size = 100
X, x_va l id , Y, y_va l i d = t r a i n _ t e s t _ s p l i t (X ,Y, t e s t _ s i ze =0.5)

X = np . reshape (X, (X . shape [0] , X . shape [1] , 1))
x_va l i d = np . reshape (x_va l id , (x_va l i d . shape [0] , x_va l i d . shape [1] , 1))
Y = np . reshape (Y, (Y . shape [0] , Y . shape [1] , 1))
y_va l i d = np . reshape (y_va l id , (y_va l i d . shape [0] , y_va l i d . shape [1] , 1))

con f igu re problem
n_features = 112
n_t imesteps_in = 700
n_t imesteps_out = 700

model = Sequent ia l ()
model . add (LSTM(un i t s =256 , dropout =0.2 , input_shape =(X . shape [1] , 1)
, return_sequences=True))
model . add (LSTM(un i t s =128 , dropout =0.2 , input_shape =(X . shape [1] , 1) ,
return_sequences=True))
model . add (LSTM(un i t s =64 , dropout =0.2 , input_shape =(X . shape [1] , 1) ,
return_sequences=True))
model . add (LSTM(un i t s =32 , dropout =0.2 , input_shape =(X . shape [1] , 1) ,
return_sequences=False))
model . add (RepeatVector (700))
model . add (LSTM(un i t s =32 , return_sequences=True))
model . add (LSTM(un i t s =64 , return_sequences=True))
model . add (LSTM(un i t s =128 , return_sequences=True))

A.1. Reproducibility 81

model . add (LSTM(un i t s =256 , return_sequences=True))
model . compile (op t im ize r= ’adam ’ , loss= ’mse ’)
model . f i t (X , Y, batch_size=batch_size , epochs=200 , verbose=2)

d3 = model . p r ed i c t (x_va l id , verbose=2)

new_array = np . zeros ((d3 . shape [0] , d3 . shape [1]))
for x in range (0 , d3 . shape [0]) :

for y in range (0 , d3 [x] . shape [0]) :
temp = np . argmax (d3 [x , y])
new_array [x , y]= temp

new_array is used to t r a i n CNN model and evaluated
l i k e the code used in ASCAD paper from p rou f f .

Listing A.3: Python code chapter 6. The X in the code is filled in differently per experiment.

s ize_datase t = 8\ ,000
dataset = np . load (inpu t_data)
key_data = np . load (key_data)
x_ t r a i n = dataset [: s i ze_datase t]
x _ t r a i n = preprocessing . normal ize (x_ t r a i n)
y_ t r a i n = key_data [: s ize_datase t]

batch_size = X
Epochs = X
Dropout = X
a c t i v a t i o n = ” softmax ”
op t im i ze r = Adam(l r =0.001)
recur ren t_dropou t = X
un i t s = X
output_dimension = X

x_t , x_va l id , y_ t ra in , y_va l i d = t r a i n _ t e s t _ s p l i t (x_ t ra in , y_ t ra in , t e s t _ s i ze =0.2)

y_ t r a i n = t o_ca t ego r i ca l (y _ t r a i n)
y_va l i d = t o_ca t ego r i ca l (y_va l i d)

model = Sequent ia l ()
model . add (Embedding (input=unique . s ize , output=output_dimension))
model . add (LSTM(un i t s =un i t s , dropout=dropout ,
recur ren t_dropou t= recur ren t_dropout , return_sequences=True))
model . add (LSTM(un i t s =un i t s , dropout=dropout ,
recur ren t_dropou t= recur ren t_dropout , return_sequences=True))
model . add (LSTM(un i t s =un i t s , dropout=dropout ,
recur ren t_dropou t= recur ren t_dropout , return_sequences=True))
model . add (LSTM(un i t s =un i t s , dropout=dropout , recur ren t_dropou t= recur ren t_dropou t))

model . add (Dense(256 , a c t i v a t i o n = a c t i v a t i o n))
model . summary ()
model . compile (loss= ’ ca tego r i ca l_c rossen t ropy ’ ,
op t im i ze r=opt im izer ,
met r i cs =[’ accuracy ’])

82 A. Implementation Details

h i s t o r y = model . f i t (x_t , y_ t ra in , va l i da t i on_da ta =(x_va l id , y_va l i d) ,
epochs=epochs , batch_s ize=batch_size , verbose=2)
score = model . eva luate (x_va l id , y_va l id , verbose=2)
p r ed i c t i o ns = model . p r ed i c t (x_va l i d)

r e s u l t = calc_ge (p r ed i c t i o ns)

B
List of Abbreviations

Abbreviations Full Term Found in
DES Data Encryption Standard 2.1
AES Advanced Encryption Standard 2.1
SCA SideChannel Attack 2.2
RNN Recurrent Neural Networks 2.4.1
ML Machine Learning 2.3
LSTM Long ShortTerm Memory 2.4.2
GRU Gated Recurrent Unit 2.4.3
GE Guessing Entropy 2.2.4
ASCAD ANSSI SCA Database 2.6.3
HW Hamming Weight 2.2.5
ID Intermediate value 2.2.5
AE Autoencoder 2.4.5
CNN Convolutional Neural Network 2.4.4
MLP Multilayer Perceptron 2.3.5
AESRD Advanced Encryption Standard Random Delay 2.6.2

83

List of Figures

2.1 AES Encryption (left side) and Decryption (right side). 6
2.2 Categories of sidechannel attacks. 7
2.3 Visualization of how different techniques increase the complexity of the model. On the X

axis is the number of traces related to the countermeasure. On the Yaxis is the average
number of queries to reach a SR of 90%. The figure was found at [43]. 9

2.4 Graphical visualization of different categories of classification problems. 11
2.5 A zoom in view of an artificial neural network. In the figure is visualized how the output

of a neuron is calculated. 12
2.6 On the left side a visualization of an simple RNN. On the right side it is unrolled for better

visualization. 15
2.7 A grahpical visualization of a LSTM cell. 17
2.8 A graphical visualization of a GRU cell unrolled. 17

4.1 On the Yaxis the number of traces needed to reach a guessing entropy of 0 on the X
axis the number of layers in the different models. All the experiments are combined by
taking the mean of the different results. 30

4.2 On the Yaxis the amount of traces needed to reach a guessing entropy of 0 on the Xaxis
the size of the dataset used for the model to train and validate on. 32

4.3 On the Xaxis, the amount of traces needed to reach a guessing entropy of 0. On the Y
axis, the guessing entropy value corresponding to the amount of traces. In every picture
is the other weight initializer used, the used initializer is written above every subplot. . . 33

4.4 On the Xaxis the amount of traces needed to reach a guessing entropy of zero. On the
Yaxis the guessing entropy value corresponding to the amount of traces. In every figure
is a other activation function used, the used function is written above every subplot. . . 33

4.5 On the Xaxis, the amount of traces needed to reach a guessing entropy of 0. On the Y
axis, the guessing entropy value corresponding to the amount of traces. In every picture
is the other model used; the used model is written above every subplot. The plots show
different hyperparameters used considering the batch size. 34

4.6 On the Xaxis, the amount of traces needed to reach a guessing entropy of 0. On the Y
axis, the guessing entropy value corresponding to the amount of traces. In every picture
is the other model used; the used model is written above every subplot. The plots show
different hyperparameters used considering dropout and recurrent dropout. 34

4.7 The columns represent the different models and the rows show the number of layers. In
every plot are the three different sequences length. The plot is showing the Guessing
entropy for the DPAv4 dataset. 35

4.8 Results of three different experiments when using three different sequential data models.
The dataset used in this dataset is the 50 features dataset. 36

4.9 The blue line representing the original trace between timestep 1 000 and 1400. The red
line shows how the linear regression fits on each window of size 20. On the Xaxis the
timesteps and on the Yaxis the leakage of the trace. 37

4.10 The blue showing the mean of the experiment using an LSTM model, where the orange
line shows the mean of using an RNN model. Two models are trained on two differ
ent datasets, which are generated by using linear regression. In the end, the output is
concatenated. 38

4.11 On the left, the results of the LSTM model having four layers. On the right side, an
RNN model having four layers. Both plots show different hyperparameters, which are
explained in the legend of the figure. The models are trained on the dataset generated
by using the linear regression technique. 39

85

86 List of Figures

4.12 The first row shows the models using one layer, the second row are models having two
layers. The first column is with dataset length 150. The second column represents
experiments using a sequence length of 450. 40

4.13 Using the LSTM model to train a dataset with random delay countermeasures. The left
figure using 1/30 of batch size, and the right figure has 1/15 of batch size. The plots have
Guessing entropy on the Yaxis and the number of traces on the Xaxis. Furthermore
are the different setups plotted in the figures. 41

4.14 The results of the experiment with hamming weight dataset. For this experiment 3 dif
ferent models are used all having 3 layers. 42

4.15 The results of the experiment with the ASCAD dataset. For this experiment, we used
three different models, where every model has three layers. 42

4.16 A visualization of a sequential data model. Where 𝑦𝑛 is the output of a cell at a specific
time step n, 𝑥𝑛 the input at a specific timestep x and 𝑤ℎ the weight that is given to the
next time step. 44

5.1 A visualization of the artificially added Gaussian noise. Where the blue line represents
the trace with noise, and the orange line is the original trace. What can be seen clearly
from this figure is, for example, the leakage between 540 and 550. The orange lines show
a nice fluent line. However, the trace with noise looks much more unstable because of
the noise that is added. Just before timestep 520, we see two nice spikes up and down
in the trace with noise. Here we see that the minimum and maximum noise that is added
is between 20 and 20. 47

5.2 A visualization of the artificially added desynchronization noise. Where the blue line
represents the desynchronized trace, and the orange line is the original trace. What can
be seen clearly from this figure is the peak around 520 from the orange line is shifted
around 50 places to the right and therefore identical in the blue line around 580. 47

5.3 A visualization of the artificially added random delay interrupt noise. The blue line rep
resents the random delay interrupt trace, and the orange line is the original trace. The
noise is visible by the spikes that are present in the noisy dataset. 48

5.4 A CNN trained and evaluated on traces with a desynchronization countermeasure. What
can be seen from the plot is that the CNN is able to converge but the correct intermediate
value is not the most likely key. 48

5.5 A CNN trained and evaluated on traces with a Gaussian noise countermeasure. What
can be seen from the plot is that CNN is not able to converge. This can be explained
because the Gaussian noise is added to every point in the trace, meaning the signal to
noise ratio is changed a lot. 49

5.6 A CNN trained and evaluated on traces with a random delay interrupt countermeasure.
What can be seen from the plot is that CNN is not able to converge. This can be explained
because the random delay interrupts noise changes the signal to noise ratio a lot by
adding the spikes at random places in the trace. 49

5.7 In this figure we see three different traces. The original traces, the desynchnorized
traces, and the cleaned traces. The traces have been cleaned using an LSTM autoen
coder. 50

5.8 In this figure we see three different traces. The original traces, the trace with Gaussian
noise, and the cleaned traces. The traces have been cleaned using an LSTM autoencoder. 51

5.9 In this figure we see three different traces. The original traces, the trace with Gaussian
noise, and the cleaned traces. The traces have been cleaned using an LSTM autoencoder. 52

5.10 The guessing entropy plot of a CNN trained and evaluated on clean traces. The traces
were dirty by adding a desynchronization countermeasure. 53

5.11 The guessing entropy plot of a CNN trained and evaluated on clean traces. The traces
were dirty by adding a Gaussian countermeasure. 53

5.12 The guessing entropy plot of a CNN trained and evaluated on clean traces. The traces
were dirty by adding a random delay interrupt countermeasure. 54

List of Figures 87

6.1 Guessing entropy of RNN, LSTM, and GRU model against the DPAv4 Dataset. At the
beginning of the model is a embedding layer which creates a three dimensional data
space as input with 10 units per timestep. 59

6.2 Guessing entropy of RNN, LSTM, and GRU model against the AESRD Dataset. At the
beginning of the model is a embedding layer which creates a three dimensional data
space as input with 10 units per timestep. 60

6.3 Guessing entropy of RNN, LSTM, and GRU model against the ASCAD Dataset. At the
beginning of the model is a embedding layer which creates a three dimensional data
space as input with 10 units per timestep. 60

6.4 Guessing entropy of MLP model against three different datasets. At the beginning of the
model is an Embedding layer, which creates a threedimensional data space as input.
With an output of 10 units per timestep. 61

6.5 Guessing entropy of CNN model against three different datasets. At the beginning of the
model is an Embedding layer, which creates a threedimensional data space as input,
with an output of 10 units per timestep. 62

6.6 Guessing entropy of the LSTM model against DPAv4 datasets. At the beginning of the
model is an Embedding layer, which creates a threedimensional data space as input.
Three different embedding outputs are shown in the figure. 63

6.7 Guessing entropy of the MLP model against DPAv4 datasets. At the beginning of the
model is an embedding layer, which creates a threedimensional data space as input.
Three different embedding outputs are shown in the figure. 64

6.8 Guessing entropy of the CNN model against DPAv4 datasets. At the beginning of the
model is an embedding layer, which creates a threedimensional data space as input.
Three different embedding outputs are shown in the figure. 65

7.1 On the Xaxis, the amount of traces needed to reach a GE of 0. On the Yaxis, the
guessing entropy value corresponding to the amount of traces. GE reaches a value of
0 with approximately 20 traces. 68

List of Tables

2.1 Example of embedding matrix. 20

4.1 The different evaluated hyperparameters and corresponding values in the different ex
periments. 28

4.2 Results of the experiment with 3 000 values, the value in the cell represents the amount
of time the model was able to find the correct intermediate value during the validation
phase. The rows represent 1,2 and 3 layers and after that split into different units and
different dropout value(D). The columns represent the three different sequential data
models and after that split in different batch size (bs) and recurrent dropout (RD). 29

4.3 Results of the experiment with a sequence length of 450. The value in the cells repre
sents the number of times a model was able to find the correct intermediate value. . . . 31

4.4 Overview of results of different weight initializer and their corresponding guessing entropy. 32

89

	Abstract
	Preface
	Introduction
	Research Question
	Scientific Contribution
	Outline

	Background
	Cryptography - Advanced Encryption Standard
	Existing Attacks on AES

	Side-Channel Attacks
	Profiling SCA
	Non-profiling SCA
	Countermeasures
	Guessing Entropy
	Leakage Models

	Machine Learning
	Neurons
	Evaluation
	Activation Functions
	Weight Initializer
	Multilayer Perceptron

	Deep Learning
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit
	Convolutional Neural Network
	Autoencoder

	Natural Language Processing
	Attention Model
	Bidirectional Layer
	Embedding

	Datasets
	DPAv4
	CHES 2009
	ASCAD

	Related work
	Machine Learning in Side-Channel Analysis
	Deep Learning in Side-Channel Analysis
	Recurrent Neural Network
	Natural Language Processing techniques
	Research questions

	Evaluation of Sequential Data Models
	Methodology
	RNN, LSTM, and GRU
	DPAv4 with Sequence Length of 3000
	DPAv4 Selected Time Window of Size 450
	DPAv4 Selected Time Window of Size 150

	Reducing the Sequence Length
	Pearson Correlation Dataset
	Preprocessing with Linear Regression

	Bidirectional Layer
	Advice on using Sequential Data Models in SCA
	AES with Random Delay
	Hamming Weight Leakage Model
	ASCAD Dataset

	Conclusion

	Denoising with Autoencoder
	Translation Problem
	Methodology
	CNN Baseline
	Autoencoder
	Results
	Comparing New Traces
	Attack After Cleaning by Autoencoder

	Conclusions

	The Power of Embedding
	Methodology
	Dataset Preparation for Usage of Embedding Layer

	RNN, LSTM, and GRU with Embedding
	DPAv4 Dataset
	AES with Random Delay Dataset
	ASCAD Dataset

	MLP with Embedding
	CNN with Embedding
	Different Embedding Output with LSTM
	Different Embedding Output with MLP
	Different Embedding Output with CNN
	Conclusion

	Conclusions and Future Work
	Evaluation of Sequential Data Models
	Denoising with Autoencoder
	The Power of Embedding
	Future Work

	Bibliography
	Implementation Details
	Reproducibility

	List of Abbreviations
	List of Figures
	List of Tables

