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If light is man's most useful tool, polarized light is the quintessence of utility.

W. A. Shurcliff
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SUMMARY

The polarization of light has become a powerful tool for scientists in recent years, a
key that opens countless doors to knowledge. Astronomy, climatology, chemistry, and
medicine are only a few sectors turning toward this light feature to produce a finer de-
scription of the media they study.

Despite the growing number of applications that use the knowledge of polarization,
measuring this property of light remains a problematic task placed on the shoulders of
opticians. When it comes to measuring polarization in the space environment, where
the operating conditions of optical instruments are among the harshest, the difficulty of
producing reliable instruments is even greater.

Until now, the polarization measurement method has evolved in two directions: one
that uses a static approach, with fixed optical elements occupying a rather significant
volume, and a dynamic direction that uses rotating or variable optical elements. Both
methods are bulky and risky when it comes to use in space. The volume occupied by
such instruments, the large number of components, and the presence of rotating parts
are very challenging considering space missions’ ergonomic and safety constraints.

It is in this context that this research was initiated. The main goal was to find a
method of measuring any type of polarization at different wavelengths that could be
translated into reliable instruments for use in space.

The starting point of our quest was a solution proposed by William Sparks et al.1

Employing several prisms from a birefringent material, this approach was promising for
most of the space constraints: it was compact, robust, stable, and able to cover all polar-
ization states instantly.

However, a solid scientific foundation for this way of accessing the polarization was
still needed. In addition, because it was a general procedure, countless possibilities of
implementing it could be foreseen. It was still unknown if some optical designs are bet-
ter than others or if they must be avoided. After all, it was utterly unknown if this method
could be implemented experimentally and if it could lead to good instruments with re-
spect to the existing ones.

We embarked with curiosity and interest in the analysis of this idea. We wanted to
see if it can be scientifically supported and if it can lead not only to robust and compact
instruments but also to performant ones.

Five scientific questions guided this research:

1. Does the signal detected with an instrument using this method correspond to a
single state of polarization?

2. How do potential instruments built according to this method behave in noisy con-
ditions?

1W. Sparks et al., “Compact and robust method for full Stokes spectropolarimetry”. In: Applied Optics 51, No.
22 (Aug. 1, 2012), p. 5495, doi: 10.1364/AO.54.007377
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xii SUMMARY

3. Which procedures can be applied to retrieve the polarization, and how reliable are
they?

4. Can this method be experimentally implemented?

5. How can it be exploited in the future?

To answer these questions, a plan in four steps was implemented:

1. The first step was dedicated to the problem of the uniqueness of the solution. We
searched to see if an univocal relation can be established between the detected
signal and the type of polarization. Multiple equivalent proofs were brought to
this question.

2. Once the possibility of an instrument using this method was established, it re-
mained to be seen how well it would perform under real conditions when noise
is also present. The analysis of behavior in noisy conditions also provides the first
hints about the requirements that should be met to achieve robust instruments for
complete polarization measurement.

3. Furthermore, the polarization retrieval based on this new method should use spe-
cific algorithms to demodulate the detected signal. These algorithms depend on
the potential characteristics of the optical system: spectral resolution, number
of pixels from the detector, etc. This thesis investigated how these factors influ-
enced the measurement process and identified additional practical requirements
for building high-performance instruments.

4. After the theoretical foundation of the project and the determination of the tech-
nical requirements for obtaining reliable instruments, the last step was taken: the
experimental implementation of the project. The new device was tested to mea-
sure the polarization following a detailed experimental characterisation. It fully
confirmed the expectations.

Overall, this thesis introduces a new method for measuring any type of polarization
at various wavelengths. It describes the theoretical principle of this method and, with
the help of a laboratory prototype, provides an experimental validation.

The advantages of this new polarization measurement method are significant. With
its help, robust and compact instruments can be built, thus meeting the needs of the
space domain.

Perhaps the most important advantage is versatility. It is a complete polarization
determination method that can be transposed into different types of instruments (with
or without wide spectral coverage, with or without imaging capabilities), always keeping
its compact and robust character.

For this reason, the possible applications go beyond the space domain. Instruments
built based on this method can be relatively easily assembled on ground-based astro-
nomical telescopes, equip drones or be adapted for medical investigations.

The most important stage in the development of this new method of spectropo-
larimetry was completed through this thesis. However, there is still a long way to go.



SUMMARY xiii

The imaging working mode needs to be further developed. The demodulation proce-
dures of the polarimetric information must be perfected, and for the different types of
applications calibration methods must also be developed.





SAMENVATTING

De polarisatie van licht is de afgelopen jaren een krachtig hulpmiddel geworden voor
wetenschappers, een sleutel die talloze deuren naar kennis opent. Astronomie, klimato-
logie, scheikunde en geneeskunde zijn slechts enkele sectoren die zich tot deze lichtei-
genschap wenden om een fijnere beschrijving te produceren van de media die ze bestu-
deren.

Ondanks het groeiende aantal toepassingen dat gebruik maakt van de kennis van po-
larisatie, blijft het meten van deze eigenschap van licht een problematische taak die op
de schouders van opticiens rust. Als het gaat om het meten van polarisatie in de ruimte,
waar de omstandigheden van de optische instrumenten tot de zwaarste behoren, is het
nog moeilijker om betrouwbare instrumenten te produceren.

Tot nu toe is de technologie om polarisatie te meten in twee richtingen ontwikkeld:
een die gebruikmaakt van een statische methode, met vaste optische elementen die een
groot volume innemen, en een dynamische richting die gebruikmaakt van roterende of
variabele optische elementen. Beide methoden zijn omvangrijk en riskant als het gaat
om gebruik in de ruimte. Het volume dat door dergelijke instrumenten wordt ingeno-
men, het grote aantal componenten en de aanwezigheid van roterende onderdelen vor-
men een grote uitdaging gezien de ergonomische en veiligheidsbeperkingen van ruim-
temissies.

In deze context is dit onderzoek gestart. Het hoofddoel was om een methode te vin-
den om de polarisatie bij verschillende golflengten te meten, die vertaald kan worden
naar betrouwbare instrumenten voor gebruik in de ruimte.

Het startpunt van onze zoektocht was een oplossing voorgesteld door William Sparks
et al.2. Deze aanpak, waarbij gebruik werd gemaakt van meerdere prisma’s van een dub-
belbrekend materiaal, was veelbelovend voor de meeste beperkingen voor een instru-
ment in de ruimte: het was compact, robuust, stabiel en in staat om direct alle polarisa-
tietoestanden te dekken.

Er was echter nog steeds een solide wetenschappelijke basis nodig voor deze ma-
nier om de polarisatie te meten. Bovendien konden, omdat het een algemene procedure
was, talloze mogelijkheden voor implementatie worden voorzien. Het was nog steeds
onbekend of sommige optische ontwerpen die er gebruik van maakten beter waren dan
andere of dat ze moesten worden vermeden. Het was immers volkomen onbekend of
het experimenteel kon worden geïmplementeerd en of het kon leiden tot goede instru-
menten in vergelijking met de bestaande methodes.

We zijn met nieuwsgierigheid en interesse begonnen aan de analyse van dit idee. We
wilden zien of het wetenschappelijk onderbouwd kon worden en of het niet alleen tot
robuuste en compacte instrumenten kon leiden, maar ook tot instrumenten met goede

2W. Sparks et al., “Compact and robust method for full Stokes spectropolarimetry”. In: Applied Optics 51, nr.
22 (1 aug. 2012), p. 5495
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prestaties. Vijf wetenschappelijke vragen vormden de leidraad voor dit onderzoek. Deze
vragen zijn:

1. Komt het signaal dat met een instrument met deze methode wordt gedetecteerd
overeen met één enkele polarisatietoestand?

2. Hoe gedragen potentiële instrumenten die volgens deze methode zijn gebouwd
zich in lawaaierige omstandigheden?

3. Welke procedures kunnen worden gebruikt om de polarisatie te meten en hoe be-
trouwbaar zijn ze?

4. Kan deze methode experimenteel worden geïmplementeerd?

5. Hoe kan deze in de toekomst worden benut?

Om deze vragen te beantwoorden, werd een plan in vier stappen geïmplementeerd:

1. De eerste stap was gewijd aan het probleem van de uniciteit van de oplossing. We
onderzochten of er een eenduidige relatie kon worden vastgesteld tussen het ge-
detecteerde signaal en het type polarisatie. Er werden meerdere equivalente be-
wijzen voor deze vraag aangedragen.

2. Nadat de haalbaarheid van een instrument dat deze methode gebruikte was vast-
gesteld, moest nog worden afgewacht hoe goed het zou presteren onder reële om-
standigheden wanneer er ook ruis aanwezig is. De analyse van gedrag in omstan-
digheden met veel ruis geeft ook de eerste hints over de vereisten waaraan moet
worden voldaan om robuuste instrumenten te verkrijgen voor volledige polarisa-
tiemeting.

3. Bovendien moet de polarisatie meting op basis van deze nieuwe methode speci-
fieke algoritmen gebruiken om het gedetecteerde signaal te demoduleren. Deze
algoritmen zijn afhankelijk van de potentiële kenmerken van het optische sys-
teem: golflengte, spectrale resolutie, aantal pixels van de detector, enz. Dit proef-
schrift onderzocht hoe deze factoren het meetproces beïnvloedden en identifi-
ceerde aanvullende praktische vereisten voor het bouwen van hoogwaardige in-
strument.

4. Na de theoretische basis van het project en de bepaling van de technische vereis-
ten voor het verkrijgen van betrouwbare instrumenten, werd de laatste stap gezet:
de experimentele implementatie. Na een gedetailleerde experimentele karakteri-
sering werd het nieuwe apparaat getest om de polarisatie te meten. Het bevestigde
volledig de verwachtingen.

Over het geheel genomen brengt dit proefschrift een nieuwe methode aan het licht
voor het meten van elk type polarisatie bij verschillende golflengten. Het beschrijft het
theoretische principe van deze methode en biedt, met behulp van een laboratoriumpro-
totype, een experimentele validatie. De voordelen van deze nieuwe polarisatiemeetme-
thode zijn aanzienlijk. Met behulp hiervan kunnen robuuste en uiterst compacte instru-
menten worden gebouwd, die voldoen aan de behoeften van ruimtemissies.
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Het belangrijkste voordeel is echter misschien wel de veelzijdigheid. Het is een com-
plete polarisatiebepalingsmethode die kan worden omgezet in verschillende soorten in-
strumenten (met of zonder brede spectrale dekking, met of zonder beeldvormingsmoge-
lijkheden), waarbij het altijd zijn compacte en robuuste karakter behoudt. Om deze re-
den gaan de mogelijke toepassingen verder dan het ruimtedomein. Instrumenten die op
basis van deze methode zijn gebouwd, kunnen relatief eenvoudig worden gemonteerd
op aardse astronomische telescopen, kunnen gemonteerd worden op drones of kunnen
worden aangepast voor medisch onderzoek. De belangrijkste fase in de ontwikkeling
van deze nieuwe methode van spectropolarimetrie werd voltooid met dit proefschrift.
Er is echter nog een lange weg te gaan. De beeldvormingswerkmodus moet verder wor-
den ontwikkeld. De demodulatieprocedures van de polarimetrische informatie moeten
worden geperfectioneerd en voor de verschil- lende soorten toepassingen moeten ook
kalibratiemethoden worden ontwikkeld.
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ABBREVIATIONS

AoLP Angle of linear polarization
DoCP Degree of circular polarization
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S⃗ Stokes vector
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ψ Apex angle prism 3
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INTRODUCTION

Polarization is a property of light that can open countless doors for knowledge. In ad-
dition to the detection of light intensity, this property can tell much more about the
medium interacting with the waves reaching us. Scientists have realized this potential
since the formulation of the wave theory of light.

The use of light polarization has grown continuously since then and continues to
grow.

Astronomy was among the first fields to benefit from the help of this optical phe-
nomenon. A surge of polarimetric studies of celestial bodies marked the beginning of
the 20th century. The Sun, the solar system’s planets, and the asteroids underwent a po-
larimetric analysis. This helped us gather much more knowledge about them. Properties
inaccessible otherwise, such as the intensity of the magnetic field, the concentration of
specific elements, or the graininess of distant bodies, could be inferred. Based on such
details, essential steps forward, like the Moon landing or the understanding of the Sun’s
activity, became possible.

However, the use of polarimetry was not limited to astronomy. Other fields gradually
discovered its importance. Biology, chemistry, climate study, and medicine are some
examples. Thus, polarimetry plays a critical role today in detecting and characterizing
aerosols in the atmosphere, which are crucial in influencing the climate. In medicine, the
contribution is also significant. Polarimetry has proven to be a powerful tool for near-
instantaneous detection of cancer-affected tissues by reducing diagnostic times and pre-
cise localisation of the affection.

Despite this undeniable contribution to a better knowledge of the world around us,
this branch of optics remains somewhat exotic. The main reason for this fact is the very
manifestation of the polarization of light. Most often, polarization reaches us in small
quantities: only a tiny part of the detected light shows a specific type of polarization.
The rest has an entirely random polarimetric behavior. This brought high pressure on
those trying to build devices to detect polarization. They had to find solutions to extract
information about this small polarized part while reducing the impact of noise or the
effect of polarization induced by the detecting instrument itself.

The challenges faced by opticians seeking new methods to improve polarization de-
tection have grown with the needs of science and the expansion of fields of applicability.
Thus, for instance, the use of polarimetry in space comes with significant constraints re-
lated to the structure and performance of the instrument. These instruments’ compact-
ness, rigidity, and thermal behavior are as important as their performance. They must
occupy a small volume, withstand launch into space, perform optimally in that harsh
environment, and not bring supplementary risks to the space mission. In addition, they
must detect as many types of polarization as possible. Designing an instrument that
satisfies all these constraints becomes a challenging task. This is probably the main rea-
son why we do not have a spectropolarimeter able to cover any state of polarization and

xxi



xxii INTRODUCTION

operate in space.
Having space-based access to all types of polarization at different wavelengths can

open the way to new approaches in astronomy or simplify the monitoring of various
processes. For instance, in monitoring the Sun, simultaneous and instantaneous access
to the polarization’s linear and circular components can streamline the magnetic field’s
measurement. The same types of polarization, but doubled by a high sensitivity of the
instrument, can be used to observe exoplanets directly. Polarization has long been the-
orized as a possible solution for detecting life on other planets. In addition, access to
elliptical polarization over a large wavelength band can contribute to space monitoring
activities by helping to characterise distant objects in orbit around the Earth.

Adding imaging capabilities to spectral and polarimetric detection could also be a
big step forward. Processes and observations that require precise localization of spectral
and polarimetric features can benefit from this. Cloud polarimetry and remote sensing
are two possible fields that could benefit from such development.

Unfortunately, most of today’s access to polarization procedures do not fully comply
with the demands of the space sector. The main techniques use voluminous structures
or risky elements that can bring supplementary risk and jeopardize the missions.

Our research is included in this context of the challenges in the space field and the
need for excellent and complete polarimetric knowledge at various wavelengths. Start-
ing from the fundamental constraints that must be satisfied by a polarimeter intended
for use in space, we set out in search of a solution for these problems faced by polarime-
try.

We identified a potential candidate for this solution in a method of complete spec-
tropolarimetry proposed in 2012 by Sparks et al 3. Using a compact structure without
rotating elements, which could bring additional risks for a space mission, this approach
seems to answer most of the requirements of the space field. The critical component
was the polarization modulator. Imagined being built from three prisms of Magnesium
Fluoride (MgF2), glued together in a compact optical part, this component was respon-
sible for the capacity to detect any polarization. It was a novel optical design, an attrac-
tive proposal from an engineering point of view, but it still needed scientific proof. In
this idea, we saw an instrument and a method for conceiving countless new spectropo-
larimeters, which can be easily tuned for various applications.

Our efforts have been directed then toward exploring this new method of accessing
the polarization of light. In a certain way, it was an uncharted territory, a new method of
spectropolarimetry. It required a continuous adaptation of the classical analysis meth-
ods, a constant interrogation about what is essential and what is less important, what is
critical and what can be neglected. Five questions guided our research:

1. Does the signal detected with an instrument using this method correspond to a
single state of polarization?

2. How do potential instruments built according to this method behave?

3. Which procedures can be used to retrieve the polarization, and how reliable are
they?

3W. Sparks et al., “Compact and robust method for full Stokes spectropolarimetry”. In: Applied Optics 51, No.
22 (Aug. 1, 2012), p. 5495
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4. Could this method be experimentally implemented?

5. How can it be exploited in the future?

To answer these questions, this thesis was divided into two parts. The first part deals
with the theoretical aspects of the research, while the second part closely follows the ex-
perimental testing of a prototype of the instrument. The theoretical approach is divided
into eight chapters, while the experimental activities are detailed in three.

The first chapter reviews the primary uses of polarization, which were only briefly
mentioned in this introduction. The second chapter is a foray into the formalism used
to describe polarization. Stokes’ formalism, Mueller’s calculus, and the fundamental no-
tions of birefringent media are introduced here. The third chapter deals with the issue of
light polarization measurement. We detail the preferred methods developed over time
and the figures of merit that allow an understanding of how polarization is measured in
various conditions. Some examples of instruments are presented and compared at this
point, along with their main characteristics.

In the fourth chapter of the first part, step by step, we describe the key component of
the spectropolarimeter analyzed within this work, the modulator. The geometry, optical
properties, polarimetric properties, and mode of operation are reviewed. Using numer-
ical simulations, we show how different types of polarization can be determined with
such a method based on the modulation it can generate at the light intensity level in a
particular direction.

The main criteria such a concept must fulfil to become a reliable instrument are re-
lated to the modulation scheme’s uniqueness and excellent noise mitigation. A special
effort was dedicated to this analysis. The results, published in the Journal of Astronom-
ical Telescopes, Instruments, and Systems (JATIS) 4, indicate a unique character of the
modulation scheme and the existence of optical configurations capable of ensuring al-
most ideal noise mitigation. All these discoveries are presented in the fifth chapter.

Despite being a static approach, where no movement or modification of the optical
properties of the components is required to generate the modulation of intensity, pa-
rameters like the size of pixels, number of pixels, binning of pixels, or spectral resolution
play a vital role in the reliability of the measurements. In chapter six, we discover how
all these parameters influence the key figures that describe the modulation scheme. In
their turn, these researches are the subject of an article published in Optics Express 5.

One crucial question must be answered in preparation for the practical implemen-
tation of this new method for measuring polarization: how do we choose a design? This
question is answered in chapter seven.

Before passing to the experimental activity, which benefited from the ample sup-
port of the Netherlands Organisation for Applied Scientific Research (TNO), a series of
simulations were performed in parallel in Zemax and MATLAB. The compatibility of the
results once again proved the reliability of the concept. This topic is covered in chapter
eight.

4Bogdan Vasilescu, Yaël Nazè, Jérôme Loicq, “Solution uniqueness and noise impact in a static spectropo-
larimeter based on birefringent prisms for full Stokes parameter retrieval,” J. Astron. Telesc. Instrum. Syst.
6(2), 028001 (2020), doi: 10.1117/1.JATIS.6.2.028001

5Bogdan Vasilescu, Pierre Piron, and Jérôme Loicq, "Performance analysis of a spectropolarimeter employing
a continuous phase variation," Opt. Express 31, 21078-21092 (2023), doi: 10.1364/OE.487335
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The second part of the thesis is dedicated to the experimental validation of the pro-
posed concept. With the help of TNO, the central part of our instrument, the modulator,
was procured.

Chapter nine presents the main components of the optical setup used throughout
the different stages of the tests. The configurations for characterizing the modulator and
its wedges are also offered here.

Being about optical elements produced from MgF2 and having a geometry of critical
importance for the operation of the instrument, the first round of experiments aimed
at characterizing the separate components of the modulator. A series of tests and new
procedures have been developed to optically and geometrically characterize these op-
tical prisms. Global characterization of the assembled modulator followed the separate
characterization at several wavelengths from the visible spectrum. Due to the complex
structure, traditional characterization methods have limited applicability. For this rea-
son, new characterization procedures had to be developed, and their results are pre-
sented in chapter ten.

After analyzing the optical components of the modulator and the response under
the incidence of different polarizations, the instrumental matrix of the spectropolarime-
ter was determined for a wavelength of 514 nm. Later, multiple demodulation tests of
various types of elliptical polarizations were performed. All these tests proved to be a
success. They demonstrated the instrument’s ability to serve to determine any polar-
ization in a single shot. The results of these last and crucial inquiries are presented in
chapter 11.

The last chapter is dedicated to the conclusions. We present here the lessons learned,
underlying what can be done differently, what should be improved, and what should be
deepened to benefit from this concept fully. In addition, we explore briefly the future
potential developments, like the imaging working mode, which can drastically enlarge
the field of applicability for such a concept.
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POLARIZING PROCESSES AND THE

POLARIZATION USAGE

Everything excellent is as difficult as it is rare.

B. Spinoza

1
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2 1. POLARIZING PROCESSES AND THE POLARIZATION USAGE

1.1. SOURCES OF POLARIZATION
Polarization is a widespread phenomenon in nature. For the light described as an elec-
tromagnetic transverse wave, this property refers to the orientation of the electric field. It
is a property that goes completely unnoticed by our eyes and most optical detectors. We
need complex instruments to observe it. Wherever light encounters a dichroic or bire-
fringent medium, is reflected or scattered, a total or partial polarization is also generated.
Sometimes, light emission is characterized by a specific polarization, as in the Zeeman
or Hanle effects (Crutcher and Kemball, 2019). However, these are much rarer phenom-
ena, of particular interest to astronomers. From the point of view of the shape described
by the vector associated with the electric field at a given location along the propagation
path and during an interval of time, the polarization can be elliptical, circular, or linear.
The next chapter will offer a deeper incursion into the formalism of polarization and a
proper description of this property of light.

1.1.1. RAYLEIGH SCATTERING
Rayleigh scattering is probably the most widespread and well-theorized phenomenon.
It refers to molecules’ absorption and re-emission of light and has been theorized since
1899. Using a simplified representation of molecules as spherical dipoles, Rayleigh demon-
strated that the intensity of light emitted by molecules depends on 1/λ4, where λ is the
wavelength of the incident light. Simply put, short wavelengths are more strongly scat-
tered than large wavelengths, whose medium is much more transparent. This is also
why, in general, the color of the sky is blue (Bucholtz, 1995).

The Rayleigh scattering cross-section of the particles situated in the air is:

σR = 8π

3

(2π

λ

)4(n2 −1

n2 +1

)2
r 2, (1.1)

where λ is the wavelength of the incident beam, n is the refractive index of the spheres
used to represent the molecules, and r is the radius of the spheres. The Rayleigh scatter-
ing does not explain only the variation of scattered light intensity with the wavelength.
It also explains the appearance of certain types of polarization through this process. A
simplified representation of the formation of different kinds of polarization is shown in
Fig. 1.1. Therefore, let us consider the case of a non-polarized incident wave, which
propagates from left to right along the Oz axis and meets a molecule located at the ori-
gin of the chosen reference system. The electric field components of the incident wave
can be represented as two vibrations in orthogonal directions (Ox and O y) and of equal
amplitude. The molecule’s behavior under each action can be explained by considering
the two orthogonal vibrations independently. Thus, the electric field of the light along
the x-axis will cause an oscillation of the dipole in the same direction and light emission
with the same frequency and wavelength as the incident light. However, the emission
will occur in a plane perpendicular to the direction of oscillation of the electric field of
the incoming light, i.e., in the y z plane (see components (1)) of the emission). On the
other hand, the field component of the incident wave oscillating along the O y line will
determine an emission of the dipole in the (xz) plane in the form of component (2).
Looking closely at the global result of this phenomenon of absorption and re-emission,
we notice that the re-emitted light is completely linearly polarized in specific directions
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Figure 1.1: Schematic representation of the Rayleigh scattering

The degree of linear polarization, which is nothing else but the fraction of light being
linearly polarized, varies like (Leroy, 2000):

P = sin2(α)

1+cos2(α)
, (1.2)

where α is the angle between the incident ray and the direction of observation. Accord-
ing to formula (1.2), an observer located at 90° about the direction of the incident light
will be able to detect a complete linear polarization coming from the molecule. However,
in practice, the degree of polarization that can be detected is generally lower. In fact, the
light reaching the observer is not a single photon scattered by a single molecule but the
cumulative effect of multiple scatterings on multiple molecules of many photons. Con-
sequently, instead of a single angleα, we have to associate the beam of light with various
values for α. This will result in a detected degree of polarization inferior to 1 for almost
any observing conditions.

Combined with polarization, the photometric study of scattered light at different
wavelengths and different angles can allow the characterization of molecules. The re-
fractive index or the diameter of the molecules can thus be deduced.

Different types of polarization can be produced when the molecules’ shape no longer
corresponds to a sphere. Therefore, chiral molecules are known as a source of circular
polarization when the incident light is non-polarized or linearly polarized (Gassó and
Knobelspiesse, 2022). In addition, multiple scattering taking place before reaching the
observer can also be a source of circular polarization (Slonaker et al., 2005).
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1.1.2. THOMSON SCATTERING
When charged particles replace the molecule previously considered, and the wavelength
of the scattered light is much greater than the Compton wavelength of the particle (λC =
h/mc, where h is the Planck constant, m is the mass of the particle and c the speed
of light), we speak of Thomson scattering. This follows the same principle as Rayleigh
scattering, the only difference being that the cross-section is no longer related to the
wavelength:

σT = 8π

3
r 2

e (1.3)

where r 2
e is the radius of the charged particle.

The difference is significant and widely used in astronomy. It allows, among others,
to separate the polarization generated by the interstellar medium from the polarization
of the light coming from the stars. In general, the polarization coming directly from the
stars is produced by Thomson scattering and, therefore, independent of the wavelength.
Therefore, by making observations at several wavelengths, the polarization produced by
the interstellar medium can be separated from the polarization coming from the stars.

1.1.3. MIE SCATTERING
When the particles responsible for light scattering have a diameter smaller than 0.1λ, the
Rayleigh model accurately describes the phenomena and can predict the value of the
intensity detected in different places. When the particles in question have a size greater
than 0.1λ, the Rayleigh approach can no longer provide correct values of the intensity of
the diffused light. The Mie model must be used in this case.

Rayleigh
scattering

Incoming
light

D ≤ λ
10

Mie
scattering

D ≥ λ
10

Figure 1.2: Intensity distribution for Rayleigh and Mie scattering. The diameter of particles (D) determines
the type of scattering.

In Mie scattering, the expression of the intensity becomes a sum of series with an
infinite number of terms. This results from describing the interaction of electromagnetic
radiation with the particle using the Maxwell equations (Born et al., 1999). Because of its
complicated expression, the value of the scattered intensity is most often inferred using
a numerical approach and well-established algorithms.

As with Rayleigh scattering, Mie scattering depends on the wavelength, particle shape
parameters, and viewing angle. The near-spherical symmetry manifested in the case of
Rayleigh scattering is no longer valid here. In Mie scattering, at least two asymmetric
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lobes are present in the intensity pattern, with a maximum distribution in the direction
of light propagation. As with Rayleigh scattering, the diffuse light is linearly polarized,
with a degree of polarization depending on the scattering direction. However, in this
case, the degree of polarization is also affected by the shape factor and the particle con-
centration. This is why the maximum degree of polarization is no longer located at 90◦
to the direction of light propagation and is less than 100%. In this way, Mie scattering
becomes an excellent tool for estimating particle concentration and size.

It should be emphasized, however, that if both Rayleigh and Mie scattering refers
only to linear polarization, this does not mean that only this type of polarization de-
serves attention. Circular and elliptical polarization can be equally detected following
multiple scattering or pointed out in specific directions. The presence of molecules or
organic substances, for instance, in the path of light, can, in turn, generate a circular po-
larization (Gassó and Knobelspiesse, 2022). For this reason, a complete determination
of the polarization is necessary even when observing the scattering phenomenon (van
der Laan et al., 2015).

1.1.4. ZEEMAN EFFECT
The Zeeman effect is one of the most investigated phenomena in the spectropolarimet-
ric study of stars and the interstellar medium. Starting from determining the linear and
circular polarization components, this effect allows the measurement of the star’s mag-
netic field projection in the plane of the sky or along the line of sight.

The Zeeman effect consists of splitting the spectral lines of an atom (in emission or
absorption) in the presence of an intense magnetic field. The emitted light can be lin-
early or circularly polarized. The type of detected polarization provides a clear indication
of the orientation of the magnetic field in which the atom is placed. A clear distinction
between spectral lines is sometimes challenging in a weak magnetic field. For these sit-
uations, a spectropolarimeter can help to differentiate between the lines.

In its initial formulation, the Zeeman effect only considers the existence of the orbital
angular momentum of the electron. As a result, the transition energy is split into ml

levels in the presence of a magnetic field, where:

ml =−l ,−l +1, ..., l −1, l , (1.4)

in which l is the angular momentum number:

l = 0,1,2, ...,n , (1.5)

where n is the principal quantum number.
When the electron’s spin angular momentum is also considered, the transition en-

ergy will be split into m j levels instead of ml . For the case of the electron, of spin s =± 1
2 ,

we have: {
j = l ± 1

2

m j =− j ,− j +1, ..., j −1, j
(1.6)

Therefore, according to the selection rules of transitions in the dipole approximation, we
can have only ∆m j = 0,±1.
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• ∆m j = 0 (π transition): in a transverse view (perpendicular to B⃗) the emitted radia-

tion is linearly polarized in a direction parallel to B⃗ ; in a longitudinal view (parallel
to B⃗) the transition is forbidden.

• ∆m j =±1 (σ transition): in a transverse view, the emitted radiation is linearly po-
larized in a plane perpendicular to the field; in a longitudinal view, the polarization
is circular.

Figure 1.3: a) Zeeman splitting for the iron line (5D0 ↔7 D1), at λ= 525.02nm. b) Schematic representation of
the detected polarizations for different directions of observation.

The separation of the spectral lines depends on the intensity of the magnetic field.
The Stokes parameters, commonly used to describe the polarization and corresponding
to the detected emission (or absorption), are also related to the magnetic field 1:{

S1 ∝ B 2

S3 ∝ B
, (1.7)

where S1 is the Stokes parameter that describes the fraction of light that is linearly hor-
izontal or vertically polarized, and S3 is the circularly polarized fraction. Measuring S1

and S3 parameters of the Stokes vector can give access to the value of the magnetic field.
The geometry of the problem, together with the example of the Zeeman effect for iron
at 525.02 nm, are presented in Fig. 1.3. We notice here how an observer located in the
plane (x y), perpendicular to the direction of B⃗ , will detect three emissions (or absorp-
tion) lines, all carrying a linear polarization (horizontal or vertical). On the contrary, an

1More details about Stokes’s formalism can be retrieved in the next chapter.
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observer looking along the magnetic field will detect only two circular polarizations cor-
responding to σ transitions. In this case, the sign of the polarization will be influenced
by the direction of the magnetic field.

A spectropolarimeter able to measure any polarization at various wavelengths will be
paramount in studying the Zeeman effect and determining the magnetic fields of stars.

1.1.5. HANLE EFFECT
Besides the Zeeman effect, the Hanle effect is also a widely used phenomenon that can
reveal the magnitude of a star’s magnetic field (Bommier, 2012). However, in contrast
to the Zeeman effect, the Hanle effect needs a much weaker magnetic field to be visi-
ble. In principle, this is nothing else than a scattering effect taking place in the presence
of a magnetic field. Therefore, using the representation of a vibrating dipole excited by
electromagnetic radiation in the presence of a magnetic field, given the existence of the
Larmor precession, this dipole will have two movements: a vibration and a precession.
The emission of this dipole will also move constantly, as it should always stay perpendic-
ular to the direction of movement. The following situations can occur (see Fig. 1.4):

• B⃗ = 0: if there is no magnetic field (situation a)), then we are in the presence of
Rayleigh scattering. An observer looking in the y direction will perceive a linearly
polarized wave oriented along the x-axis.

• B⃗ ̸= 0 and B⃗ along x-axis (situation b)): in this case, there will be no change in the
detected polarization.

• B⃗ ̸= 0 and B⃗ along z-axis (situation c)): if B is very small or very big, then it does
not affect the detected polarization. Otherwise, it will determine a decrease in the
degree of polarization detected.

• B⃗ ̸= 0 and B⃗ along y-axis (situation d)): if B is weak, then the detected linear polar-
ization will be tilted. If B is strong, a complete depolarization will happen.

In practice, the Hanle effect is used to diagnose magnetic fields between several G
and until 100 G. Thus, for the Sun corona, where B ≈100 G, it is the most suited (Raouafi
et al., 2016).

In contrast with the Zeeman effect, the Hanle effect yields only linear polarization
components (S1 and S2).

1.2. POLARIZATION IN ASTRONOMY
The use of polarization in astronomy has a long tradition. It is probably the field that
first used this property of light to gather information about distant bodies. The first as-
tronomical polarimetric observations were made more than a century ago by Arago, who
was curious to look at the Moon through a polarimeter (Dollfus et al., 1971). However,
in the beginning, the relevance of these observations was negligible, considering that
plausible information could hardly be deduced starting only from the polarimetric mea-
surements. It took time and laborious experimental work to establish an empirical rela-
tionship between the texture and composition of reflective surfaces and the polarization
of light (Spadaccia et al., 2022).
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Figure 1.4: Hanle effect under excitation with a linearly polarized wave.

The most used effects and processes in astronomy that use the polarization of light
are, apart from those already described previously, the Umov effect, the inversion angle,
and the opposition effect.

The Umov effect refers to the relationship between the linear polarization of an at-
mosphereless body and albedo. According to this empirical correlation, for large phase
angles, the degree of linear polarization of a celestial body is inversely proportional to its
albedo (Mazarbhuiya et al., 2021). This behavior is mainly related to the multiple scat-
tering in the regolith. In the case of the bodies with an atmosphere or of the comets,
this effect is visible only for small phase angle values (Zubko et al., 2018). Another phe-
nomenon used extensively in astronomy is the inversion angle. This corresponds to the
phase angle2 accompanied by a rotation with 90◦ of the linear polarization of the re-
flected light. This phase angle depends on the granularity of the reflective surface as
well as the wavelength. It is a range rather than a single value. Thus, for instance, for the
Moon, the inversion angle is situated between 15◦ and 27◦.

Another polarimetric phenomenon related to the observed object’s phase is the op-
position phenomenon or opposition surge (Belskaya and Shevchenko, 2000; Shkuratov
et al., 2002). This phenomenon manifests itself for phase angles close to zero and con-
sists of a strong increase in the intensity of the light reflected by the observed body. The
phenomenon is explained by an interference of the incident light with the light reflected
from the surface. It occurs for particles with a dimension comparable to the wavelength
of the incident light and a distance in between greater than this wavelength. When these

2Just like in the Rayleigh scattering, the phase angle is the angle between the direction of the incident light and
the direction of observation.
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conditions are fulfilled, the incident light can interfere with the scattered light, increas-
ing brightness (Akkermans et al., 1986; Hapke et al., 1993). Information about the parti-
cles ’ size can be obtained based on the polarimetric observations of the inversion phe-
nomenon.

Figure 1.5: Opposition effect observed by Hayabusa2 probe on the surface of the asteroid Ryugu. In the image
b) the opposition effect is encircled in red. The black dot represents the shadow of the space probe. (Image
credit: JAXA)

The use of polarization in astronomy is not limited to the characterization of the sur-
faces of distant bodies or the determination of the magnetic field. With the help of linear
and circular polarization measured on a broad spectrum, for instance, the interstellar
medium can be characterized (Jones and Whittet, 2015). In addition, polarization can
be used to confirm the detection of exoplanets and to search for their biosignature (Wik-
torowicz and Stam, 2015). The mechanism is based on the fact that the light coming from
the stars is unpolarized when considered for the entire disk. However, the light reflected
by the planets has a degree of linear polarization that depends on the scattering phe-
nomenon that occurs and on the phase angle (Buenzli and Schmid, 2009). The evidence
of this linear polarization remains difficult, considering that the light flux is dominated
by the light coming from the star. Applications can go even further, aiming to detect the
presence of organic compounds or the signature of life on other planets (Keller et al.,
2020).

1.3. OTHER APPLICATIONS
Astronomy is not the only field that intensively uses the polarization of light. In recent
years, fields such as climatology, defense, and medicine have begun to call more and
more attention to this property of light. In the defense sector, for example, it can be-
come a formidable tool for identifying camouflaged targets (Hickman et al., 2017; Jin-
Zuo, 2007). In climatology, it allows the identification and characterization of aerosols
in the atmosphere or the characterization of the surface of the oceans (El-Habashi et al.,
2021; Zubko et al., 2024). However, one of the most remarkable and impactful applica-
tions is the one in medicine. Here, spectropolarimetry has proven a noteworthy con-
tribution to cancer detection (Novikova et al., 2012). Initially, the applications targeted



1

10 1. POLARIZING PROCESSES AND THE POLARIZATION USAGE

Figure 1.6: Skin cancer detection using linear polarization. Source: (Jacques et al., 2000)

only skin conditions (Jacques et al., 2002). Later, however, it was discovered that it could
also be used to detect other types of cancer (Ivanov et al., 2020; Le Gratiet et al., 2021;
Vizet et al., 2017). The novelty brought by polarimetry is that it allows for the rapid iden-
tification, in vivo, of the affected tissues, thus allowing for the rapid onset of treatment
or usage during the surgery.
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2
DESCRIPTION OF POLARIZATION

Evolution is not a cause but the description of a process

George Gabriel Stokes
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The polarization of light was observed long ago. Its story is related to the discovery
of the Icelandic spar, a crystal through which, in certain conditions, the image of objects
seems to be doubled. Famous scholars bumped their heads at this renowned rock, try-
ing to explain what was happening with the light that passed through. Rasmus Bartholin,
Christiaan Huygens, Biot, Young, Brewster, Arago, and Malus are just a few names. How-
ever, hundreds of years were necessary to explain the optical processes in such media.
This was possible only after Fresnel formulated the wave theory of light. After that, the
concept of polarization was forged and received a complete mathematical description,
which agreed with the observations. In this way, the light split in the Icealing spar was
also explained and related to the polarization phenomenon.

Despite its long history and the well-established analytical apparatus that describes
it, polarization remains a complex concept. To deal with polarization and achieve its
measurement, we need to use a special mathematical formalism and particular materi-
als capable of altering or converting the polarization into an observable property.

This chapter summarizes the physical interpretation of the polarization of light. In
addition, it offers the mathematical apparatus necessary to deal with this property of
light in the research framework conducted here.

We concentrate our attention on Stokes and Mueller’s formalism even though one
can also consider Jones’s formalism. The reason behind our choice for the Stokes for-
malism is related to the need to cover the partial polarization, which is only possible
with the help of the Stokes vector.

2.1. THE POLARIZATION OF LIGHT
The formalism used in this research is the Mueller-Stokes formalism. This is one of the
most widely used mathematical apparatus to describe the different polarizations of light
and the transformations undergone by the polarization when light passes through vari-
ous media. Numerous sources exist that provide an in-depth presentation of this formal-
ism. We can cite here, for instance (Goldstein, 2011), (Hecht, 2017), or (Collett, 2005).

Let us consider light as an electromagnetic transverse wave, for which the electric
and magnetic fields vibrate in orthogonal planes. Then, the polarization can be defined
with the help of the orientation of the electric field of light, as seen by an observer looking
along the direction of propagation of the beam (see Fig. 2.1). Therefore, to explain the
concept of polarization scientifically, we need to understand how the electric field of
light propagates.

The Maxwell’s equations represent the starting point of this story. In summary, by
adopting a harmonic solution for the electromagnetic disturbances in Maxwell’s equa-
tions, we can find that the x and y components of an electric field propagating in the
direction k⃗ can be expressed as:

{
Ex (⃗r , t ) = E0x cos(ωt − k⃗ · r⃗ +φx )

Ey (⃗r , t ) = E0y cos(ωt − k⃗ · r⃗ +φy )
(2.1)

Considering, for simplicity, that the direction of propagation k⃗ is parallel to the z-axis
of the cartesian system, then we have:
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Figure 2.1: At left: representation of an electromagnetic wave in a reference frame where the direction of the
x−axis coincides with the direction of B⃗ , y−axis with E⃗ , z−axis shows the direction of propagation. At right,
the electric field is decomposed in an arbitrary reference frame x y z, where the z−axis is oriented towards the
wave’s propagation direction. The case of E⃗ oscillating in a single plane is depicted here.

{
k⃗ = k · e⃗z = 2π

λ · e⃗z

r⃗ = z · e⃗z
, (2.2)

where λ is the wavelength of light. For a wave with a frequency f = 1/τ, where τ is the
period of the oscillation, we obtain from the two sets of equations:{

Ex (z, t ) = E0x cos(ωt −kz +φx )

Ey (z, t ) = E0y cos(ωt −kz +φy )
(2.3)

where k = 2π/λ is the wavenumber,ω= 2π f is the angular frequency, E0x and E0y are the
maximum values of the amplitudes along x and y directions, and φx , φy are the phases.
Taking ∆φ = φy −φx , the phase difference between the two components of the electric
field, and eliminating the propagator (ωt −kz), the expressions (2.3) lead to:

Ex (z, t )2

E 2
0x

+ Ey (z, t )2

E 2
0y

− 2Ex (z, t )Ey (z, t )

E0x E0y
cos(∆φ) = sin2(∆φ) (2.4)

which is the general expression of an ellipse in the plane (x, y). Freezing a point in space
along the z-axis, an observer looking in the direction of propagation will see the variation
of Ex and Ey components during the observing time (see Fig. 2.2).

Equation (2.4) tells us that the two components of the electric field will generally
describe an ellipse. However, for certain values of δ, E0x and E0y , the shape described by
the Eq. (2.4) can embrace degenerate forms, becoming a circle or a line with a specific
orientation. This shape is referred to as the polarization state of light. The linear and
circular polarization states are the most encountered in practice. For the circular states,
a clockwise movement of the field, as seen by an observer on the z-axis, is called right
circular polarization (RCP). The counter-clockwise development of the field is the left
circular polarization (LCP).
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Figure 2.2: Intuitive representation of linear and right-circular states of polarizations. We notice that to have
a linear state of polarization, the two components of the field should be in phase (∆φ= 0). On the contrary, a
circular or elliptical polarization state is generated when the phase difference is different from zero (∆φ=π/2).
Several possible orientations of the E vector are highlighted to help visualize the general shape described by
the electric field.

2.1.1. THE POINCARÉ REPRESENTATION

The main parameters of the ellipse described by Eq. (2.4) are the orientation angle (ψe )
and the ellipticity (χe ). These angles are defined by:

tan(2ψe ) = 2E0x E0y

E 2
0x−E 2

0y
, ψe ∈ (0,π]

tan(2χe ) = 2E0x E0y sin(∆φ)

E 2
0x+E 2

0y
, χe ∈ (−π

4 , π4 ], ∆φ ∈ (0,2π]
. (2.5)

An orientation angle and an ellipticity then define any polarization state. Based on
this property, Poincaré proposed an alternative representation of polarization in a three-
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dimensional system (see Fig. 2.3). Any state of polarization can then be represented by
a point on a sphere of radius unity and having as coordinates:


x = cos(2χe )cos(2ψe )

y = cos(2χe )sin(2ψe )

z = sin(2χe )

. (2.6)

x

y

z

L− 45P L+ 45P

RCP

LCP

LHP

LV P

2ψe

2χe

P

Figure 2.3: Poincaré representation of a polarization state P and of the main degenerate states. The location
of any polarization state on the sphere can be directly retrieved using Eq. (2.5) and (2.6).

The Poincaré sphere is essential in visualizing the polarization states and is a handy
instrument in the algebra that deals with polarization transformations. Nevertheless, it
does not help us to measure this property of light. All the parameters involved in this
representation are not directly measurable.

The optical detectors are sensitive to the intensity of light. Because of this, the as-
sessment of polarization should also be reduced to the intensity measurement. To solve
this challenge, Stokes proposed using four parameters embedding all the information
about polarization and having the dimension of intensity.

Thus, after taking the time average of the relation (2.4), one can introduce the further
notation:


S0 = E 2

0x +E 2
0y

S1 = E 2
0x −E 2

0y

S2 = 2E0x E0y cos(∆φ)

S3 = 2E0x E0y sin(∆φ)

. (2.7)
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The first Stokes parameter, S0, stays for the total intensity of light, S1 describes the
difference between the horizontal and the vertical polarization, and the S2 term repre-
sents the difference between the polarization at 45◦ and −45◦. In contrast, the last term,
S3, measures the difference between RC P and LC P . Overall, any polarization state will
be described by a vector:

S⃗ =


S0

S1

S2

S3

 . (2.8)

A very common notation for the Stokes vector, often used in the specialized litera-
ture, is:

S⃗ =


I
Q
U
V

 .

Therefore, the degenerate states of polarization most often used are described by the
following vectors:

• Linear horizontal polarization (LHP):

S⃗ = S0


1
1
0
0


• Linear vertical polarization (LVP):

S⃗ = S0


1
−1
0
0


• Linear 45◦ polarization (L+45P):

S⃗ = S0


1
0
1
0


• Linear −45◦ polarization (L-45P):

S⃗ = S0


1
0
−1
0
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• Right circular polarization (RCP):

S⃗ = S0


1
0
0
1



• Left circular polarization (LCP):

S⃗ = S0


1
0
0
−1



The parameters S1, S2, and S3 describe the state of polarization like x, y , and z in the
relation (2.6). It can be easily shown that:


S1 = S0 cos(2χe )cos(2ψe )

S2 = S0 cos(2χe )sin(2ψe )

S3 = S0 sin(2χe )

(2.9)

Equation 2.1 describes an infinite wave train of constant frequency and constant
value of phase difference. An observer located in the direction of propagation will al-
ways see a unique pattern described by the oscillation of the electric field. As we have
seen, this pattern can be a line, a circle, or an ellipse. However, the emission of light by
an atom is a very short process. It takes about 10−8s for an atom to radiate. We would
perceive a certain polarization if we could observe the wave train in this short interval.
However, our eyes or electronic detectors use an integration time much greater than the
emission time. We are detecting the result of multiple emissions. If the orientation of
the electric field of these separate emissions contained in the detected light varies con-
tinuously, then we are talking about unpolarized light. This is the case with natural light.
However, when a pattern appears in the random orientations of the electric field, we are
talking about partially polarized light. In the extreme case, when all the emitted wave
trains are characterized by the same orientation of the electric field, then we are dealing
with total polarization.

One of the most essential advantages of Stokes formalism is that it can describe
equally the complete and the partial states of polarization. Thus, the degree of polar-
ization (DoP ) is defined by:

DoP =
√

S2
1 +S2

2 +S2
3

S0
, DoP ∈ [0,1] (2.10)

and the light can be represented all the time as the sum of a fraction that is not polarized
and of a fraction that is completely polarized:
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S⃗ =


S0

S1

S2

S3

= (1−DoP )


S0

0
0
0

+DoP


S0

S1

S2

S3

 (2.11)

When DoP = 1, we deal with completely polarized light, whereas DoP = 0 stays for
the unpolarized light. In addition, the degree of linear polarization is defined as:

DoLP =
√

S2
1 +S2

2

S0
(2.12)

and the degree of circular polarization:

DoC P = |S3|
S0

. (2.13)

Using Eq. (2.5) and (2.7), the orientation of the ellipse (ψe ) and the ellipticity (χe ) can
also be expressed in terms of Stokes parameters:ψe = 1

2 tan−1
(

S2
S1

)
χe = 1

2 sin−1
(

S3
S0

) (2.14)

The ellipticity sign also determines the polarization’s handedness (right for positive and
left for negative). Thus, the orientation angle provides information about the ratio be-
tween (45◦,135◦) linear polarizations and linear horizontal or vertical polarization. On
the other hand, the ellipticity shows the ratio of the light that is circularly polarized.

2.2. BIREFRINGENT MATERIALS
When the light reaches an optical medium, the electrons will absorb and reemit the light.
Driven by the vibration of the electric field of the incoming wave, these electrons will
start to vibrate in the same direction as the electric field and then will radiate. In an
isotropic medium, the same binding forces manifest in all directions. This will be trans-
lated into the existence of a single refractive index and the same speed of propagation in
all directions within the medium.

When this symmetry in the biding forces is no longer present, we are talking about an
anisotropic material. Of particular importance are, in this category, the optical crystals
that still present a symmetry direction characterized by the same binding forces of the
electrons. These are uniaxial crystals. We can cite calcium carbonate (CaCO3) or calcite,
magnesium fluoride (MgF2), or calcium fluoride (CaF2) here.

Around this symmetry direction, also called the optical axis of the crystal, the atom-
ical arrangement is symmetrical. Because of this, the same optical properties will man-
ifest within this plane of symmetry, thus in a direction perpendicular to the optical axis.
On the contrary, in all other crystal directions, the optical properties will differ from one
point to another.
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Figure 2.4: Crystalline structure of MgF2. The left image shows the structure seen looking down along the
optical axis, while the right image is a view perpendicular to the optical axis. Credits: (“The Materials Project”,
2024)

The mathematical description of the wave propagating through such materials can
be complex. Therefore, it can be helpful to summarize the main effects of such a crystal
through an imaginative exercise.

First, let us consider the case of an electron situated inside such a uniaxial crystal
and excited by a natural source of light (unpolarized light) (see Fig. 2.5).

Optic axis

v⊥ v⊥

v⊥

v⊥

v‖

v‖

Negative uniaxial crystal

Optic axis

v⊥ v⊥

v⊥

v⊥

v‖

v‖

Positive uniaxial crystal

o−wave

e−wave

e−wave

o−wave

Figure 2.5: Propagation of wavelets in uniaxial negative and positive crystals. Representation adapted after
(Hecht, 2017)

Because the electric field of the incoming wave vibrates randomly in all directions,
the electron will also vibrate and emit in all directions. The wavelets originating in this
electron that present an electric field perpendicular to the optical axis of the crystal in
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all directions will see the medium like an isotropic one. Because of this, they will form
spherical wavelets, expanding with the same speed in all directions, v⊥. This is called
the ordinary wave (o−wave).

On the contrary, the wavelets with an electric field perpendicular to the optical axis
when propagating along this direction and parallel to this when moving orthogonally
will encounter different optical conditions. This wave is called the extraordinary wave
(e−wave).

As we can notice from Fig. 2.5, the e−wave will propagate in a direction perpendic-
ular to the optical axis with speed v∥, whereas along the optical axis, it will present a
speed v⊥. The difference in speed is determined by the difference in the refractive in-
dices along the two directions. In turn, this originates in the anisotropy of the material
and, more precisely, in the variation of the permissivity with the direction. We notice that
the wavelets are no longer spherical in the case of the e−wave. They have an ellipsoidal
shape. The indices of refraction these wavelets encounter also evolve on an ellipsoid.

The difference ∆n = ne −no , where n0 = c/v⊥ and n0 = c/v∥ is called birefringence.
The crystals having ∆n ̸= 0 are called birefringent crystals. If ∆n < 0, and there is a sin-
gle axis of symmetry, we are dealing with a negative uniaxial crystal, whereas if ∆n > 0,
the crystal is uniaxial positive. The direction of propagation corresponding to the high-
est speed of light, thus having the smallest refractive index, is called the fast axis of the
crystal. In contrast, the direction characterized by the higher refractive index is called
the slow axis. Thus, following the examples presented in Fig. 2.5, for a negative crystal,
where ne < no , the fast axis is perpendicular to the optical axis of the crystal, whereas,
for a positive crystal, the fast axis is in the direction of the optical axis. Even though the
Huygens constructions used to describe the propagation of waves in an isotropic mate-
rial are not the most accurate instrument when describing the situation of birefringent
media, they are still used today. They can help to build a very intuitive representation
that is easy to follow. Therefore, let us consider the case in Fig. 2.6, where a plane wave
passes from the air into a birefringent crystal. We assume that the incoming wave is
unpolarized.

Each atom from the interface of the material excited by the wavefront AB will become
a source of wavelets inside the crystal. When these sources are excited by the o−wave,
characterized by an electric field vibrating perpendicular to the optical axis in any direc-
tion, then the wavelets propagating in the crystal will have a spherical shape. The time
necessary for the wavelet to travel from A to D equals the time necessary for the wave-
front to travel from B to C . The tangent from C to the circle of radius AD provides the
direction of propagation of the o−ray inside the crystal (S⃗o). Given that the o−ray en-
counters an isotropic medium, its precise direction of propagation can be inferred from
Snell’s law.

Let us focus on the extraordinary ray (right schema in Fig. 2.6). We know that in a
direction perpendicular to the optical axis, we have an isotropic medium with a refrac-
tive index no for this ray. In a direction parallel to the optical axis, the refractive index is
ne . Assuming we are dealing with a negative uniaxial crystal, ne < no . The time from the
wavefront AB to arrive from B to C now equals the time of the disturbance propagating
from A to E , where AE is the semi-major axis of the ellipse described by the wavelet.
Given that we have ne < no , then AE > AD . Just like in the previous case, the direction of
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propagation of the energy inside the material will be provided by the tangent to the el-
lipses centered on the points along AC distance and having the major axis perpendicular
to the optical axis of the crystal (S⃗e ).

o-ray propagation e-ray propagation

�S0

�Se
�S0

A

B

C

D

Air

Crystal

A

B

C

E

Optic
axis

Optic
axis

Incoming light Incoming light

Figure 2.6: Huygens constructions for light propagation inside the birefringent negative crystal. The drawing
on the left shows the propagation of o−waves, while the drawing on the right illustrates the case of e−waves.
The two cases have been separated to make the schematic easier to follow. Representation adapted after
(Hecht, 2017)

Due to the different directions of propagation for the e− and o−waves inside a bire-
fringent material, an incoming light that is not polarized can emerge, in certain condi-
tions, as two beams carrying orthogonal states of linear polarization. Returning to the
story of the Icelandic spar from the beginning, this explains the formation of two images
while looking through such crystal and the relation with the polarization process.

Even more, if the incoming ray is orthogonal to the optical axis, like in the situation
depicted in Fig. 2.7, the o− and e−ray will travel in the same direction inside the crystal.
The o−ray, generated by the field’s E⃗x component, which is always perpendicular to the
optical axis, will see a refractive index no inside the material. The e−ray, in exchange,
will encounter a medium of refractive index ne . Thus, when exiting the slab of material
of thickness d , a phase difference ∆φ will exist between the E⃗x and E⃗y components of
the field, characterizing o− and e−rays:

∆φ= 2π

λ
∆n(λ)d , (2.15)

where λ is the wavelength of light, and ∆n(λ) is the birefringence of the crystal:

∆n(λ) = ne (λ)−no(λ) (2.16)

In this way, by choosing an appropriate angle of incidence and orientation of the
optical axis, a birefringent crystal can be used to control the phase difference between
the orthogonal components of the field. It is by this principle that optical retarders are
produced.
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o−ray
e−ray

x

y

z
�Ex

�Ey

Incoming light

Air Crystal

Optical axis

Figure 2.7: Huygens constructions for light propagation inside the birefringent crystal when the plane of inci-
dence is perpendicular to the direction described by the optical axis and to the surface of the crystal.

The most notorious examples are the quarter-wave plate (QW P , ∆φ = π/2), half-
wave plate (HW P , ∆φ=π), or the full-wave plate (FW P , ∆φ= 2π). If, instead of chang-
ing the propagation speed for one of the orthogonal components of the field, the crystal
can attenuate one of them completely, we are speaking about a property called dichro-
ism. Such crystals are used to produce linear polarization.

2.3. MUELLER CALCULUS
One must use Mueller’s or Jones’s calculus to deal with polarization propagation through
different media. Both approaches can quantify how a given medium can affect the elec-
tric field’s orthogonal projections and how it can polarize/depolarize a wave or induce a
specific phase difference between the field components. The advantage of Mueller cal-
culus is that it can also contain the scattering effect (Shurcliff, 1962) and deal with the
light partially polarized. The two approaches are compatible, and there is a simple and
elegant way of switching between them. However, because we chose Stokes formalism
to represent the states of polarization, the most appropriate tool now is Mueller calcu-
lus. According to this, any optical element acting on the polarization state of light can be
represented by a 4×4 matrix:

M =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

= M00


1 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 , (2.17)

The lowercase notation, mi j , with i , j = 0, ..,3, is often used for the normalized Mueller
matrix. The Mueller matrix is the transformation matrix of a Stokes vector from a par-
ticular position on the Poincaré sphere to another location on another Poincaré sphere.
This transformation is given by:

S⃗out = M · S⃗i n , (2.18)
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where S⃗i n is the state of polarization of the light entering the system described by M ,
and S⃗out is the state of polarization of the emerging light.

2.3.1. PHYSICAL INTERPRETATION OF THE MUELLER MATRIX
The previous relation can help us understand the meaning of the terms from a Mueller
matrix. An easy imaginary exercise can be carried out for this. Adopting the notation
S⃗out = (S′

0,S′
1,S′

2,S′
3)T for the resulting Stokes vector, where T denotes the transposition

operator, and S⃗i n = (S0,S1,S2,S3)T for the incident vector, it is useful to rewrite Eq. 2.18:
S′

0
S′

1
S′

2
S′

3

=


M00S0 +M01S1 +M02S2 +M03S3

M10S0 +M11S1 +M12S2 +M13S3

M20S0 +M21S1 +M22S2 +M23S3

M30S0 +M31S1 +M32S2 +M33S3

 . (2.19)

Let us suppose that the incoming light is completely unpolarized now. The incoming
Stokes vector is S⃗i n = (S0,0,0,0)T . When this light passes through the medium charac-
terized by the matrix M, it will result in a new polarization state:

S′
0

S′
1

S′
2

S′
3

= S0


M00

M10

M20

M30

 . (2.20)

Recalling the meaning of the different parameters of a Stokes vector, the term M00

tells us how light intensity is attenuated when passing through the medium. The next
term, M10, tells what fraction of the incoming light is converted into linear horizontal or
vertical polarization, M20 what fraction becomes ±45◦ polarized, and M30 what fraction
is circularly polarized. Because the incoming light is nonpolarized, whereas the resulting
light is polarized, the vector (M10, M20, M30)T is called the polarizance vector. Shortly
said, it describes how the optical medium polarizes an unpolarized wave.

Let us consider that the incoming state is a linear horizontal or vertical polarization,
S⃗i n = (S0,S1,0,0)T . Consequently, the resulting Stokes vector is:

S′
0

S′
1

S′
2

S′
3

= S0


M00

M10

M20

M30

+S1


M01

M11

M21

M31

 . (2.21)

Therefore, aside from polarizing the incoming light, the optical medium can also
convert, in this case, that fraction of the incoming light that is linearly polarized at 0◦,
90◦ in all the other types of polarizations. Therefore, M01 tells us what fraction of S1 is
attenuated, M11 what fraction remains polarized at 0◦, 90◦, M21 what part of S1 becomes
±45◦ polarized, and M31 what part is converted into circular polarization. Therefore,
M21 and M31 can be considered as crosstalk terms. Repeating this exercise for hypo-
thetical incoming vectors like (S0,0,S2,0)T and (S0,0,0,S3)T we will see that the third
column of the Mueller matrix describes the transformation of the S2 into other states of
polarizations. In contrast, the last column shows the transformation of the circular po-
larization. Summarizing all these effects, we can represent the Mueller matrix in terms
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of the transformation of the incoming state S⃗i n = (S0,S1,S2,S3)T into the outgoing state
S⃗out = (S′

0,S′
1,S′

2,S′
3)T :

M =


S0 → S′

0 S1 → S′
0 S2 → S′

0 S3 → S′
0

S0 → S′
1 S1 → S′

1 S2 → S′
1 S3 → S′

1
S0 → S′

2 S1 → S′
2 S2 → S′

2 S3 → S′
2

S0 → S′
3 S1 → S′

3 S2 → S′
3 S3 → S′

3

 . (2.22)

Aside from the polarizance vector located in the matrix’s first column, we can now
notice that the first line describes how the optical medium attenuates the different po-
larization states. For this reason, this row forms the diattenuation vector. The diagonal
terms of the matrix tell what part of the incoming polarization passes unaltered. The rest
of the terms, as already underlined, are crosstalk terms. They inform about transforming
an incoming polarization state into a different one.

As underlined by (del Toro Iniesta, 2003), the Mueller matrix terms must fulfill several
necessary conditions1:

• The attenuation term is always positive: M00 ≥ 0

• M00 ≥
√

M 2
01 +M 2

02 +M 2
03

The vector D⃗ t =
(
M01 M02 M03

)T
is called the diattenuation vector. For more

details about the properties of this vector, see (Lu and Chipman, 1996).

• M00 ≥
√

M 2
10 +M 2

20 +M 2
30

The polarizance vector also belongs to the Poincaré sphere.

When the optical system is composed of multiple elements, described by the ma-
trices M1, M2,...,Mn , through which the light passes in the same order, then the total
Mueller matrix of the compound is:

Mtot = Mn ·Mn−1 · ... ·M1 (2.23)

with M1 being the first element in the stream of light.

2.3.2. MUELLER MATRICES OF IDEAL COMPONENTS
Two optical components are particularly interesting: linear polarizers and waveplates.
The linear polarizers allow the passage of the electrical field component that vibrates
in a given direction, which is called the transmission direction. At the same time, they
block the vibration in the orthogonal direction. The linear polarizers do not change the
handedness of the polarization. They only allow the passage of a fraction of polarization
or completely block this passage.

Both the waveplates and polarizers are usually made from a birefringent material.
The difference is that we use materials that can attenuate one electric field component
for polarizers. The capacity to induce a phase difference between these components

1The necessary and sufficient condition that a Mueller matrix must fulfill to become physically realizable was
exposed by (Givens and Kostinski, 1993).
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is exploited for waveplates. A nonpolarized light passes unaffected, from the point of
view of polarization, through a waveplate. The polarizance vector of such a medium
is 0⃗. In addition, because it only changes the phase difference without absorbing one
component of the field or another, the diattenuation vector of such a medium is also
zero.

The precise Mueller matrices for these types of optical elements are:

• Linear polarizer oriented at an angle θ:

1

2


1 C S 0
C C 2 C S 0
S C S S2 0
0 0 0 0

 (2.24)

where C = cos(2θ), S = sin(2θ).

• Wave-plate of phase difference ∆φ and orientation of the fast-axis (optical-axis) θ:


1 0 0 0
0 C 2 +S2 cos(∆φ) C S(1−cos(∆φ)) −S sin(∆φ)
0 C S(1−cos(∆φ)) S2 +C 2 cos(∆φ) C sin(∆φ)
0 S sin(∆φ) −C sin(∆φ) cos(∆φ)

 (2.25)

Examples of matrices corresponding to linear polarizers or particular waveplates,
like the quarter-wave plate (QW P ) and half-wave plate (HW P ), are presented in the
Addendum of this thesis.

2.3.3. MEASURING THE MUELLER MATRIX OF AN ARBITRARY ELEMENT
Multiple methods have been developed for measuring an optical element’s Mueller ma-
trix (Hielscher et al., 1998; Manhas et al., 2006). All are based on the measurement of
the intensity of light when different incoming states of polarization, chosen from the
Poincaré sphere, are used. The fastest and most imprecise method uses 16 measure-
ments to infer the 16 terms of the matrix, whereas the most complex uses 49 measure-
ments. The available optical elements (polarizers, QW P , HW P , etc.) can be the driving
reason for choosing one method or another. Hereafter, we present the method used dur-
ing the experimental part of our research. It makes use of two linear polarizers and two
quarter-waveplates. A linear polarizer followed by a quarter-waveplate that can be ro-
tated for different orientations forms what is here called a polarization state generator
(PSG). This combination of optical elements allows us to obtain any polarization start-
ing from unpolarized light.

1. Determination of line 1: M00, M01, M02, M03

• Necessary setup: PSG+Test element+Detector

Assuming that the Mueller matrix of the optical element under test is provided by
the relation (2.17), then the first line of M can be measured using a polarization state
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generator (PSG), and the element to be tested. If various incoming states generated with
the help of the PSG are passing through the element under study, and then the intensity
is detected by an optical detector, we have:

S′
0 = M00S0 +M01S1 +M02S2 +M03S3. (2.26)

Therefore, choosing successively as incoming states of polarization
S0

0
0
0

 ,


S0

±S1

0
0

 ,


S0

0
±S2

0

 ,


S0

0
0

±S3

 , (2.27)

with 100% degree of polarization, then the parameters M00, M01, M02, M03 can be im-
mediately inferred.

2. Determination of line 2: M10, M11, M12, M13

• Necessary setup: PSG+Test element+ LP (β)+Detector

• β=(0◦,90◦)

3. Determination of line 3: M20, M21, M22, M23

• Necessary setup: PSG+Test element+ LP (β)+Detector

• β=(45◦,135◦)

To measure the terms of the second and the third lines, a rotating linear polarizer
(LP ) should be inserted into the optical system between the element to be characterized
and the detector. This component plays the role of a polarimetric analyzer. The orien-
tation of its transmission axis is β. The expression of the detected intensity becomes
then:

S′
0 =

1

2

(
S0

(
M00 +M10 cos(2β)+M20 sin(2β)

)
+

S1

(
M01 +M11 cos(2β)+M21 sin(2β)

)
+

S2

(
M02 +M12 cos(2β)+M22 sin(2β)

)
+

S3

(
M03 +M13 cos(2β)+M23 sin(2β)

))
,

(2.28)

where β is the orientation of the analyzer to the horizontal. The rest of the terms can
be retrieved using the same incoming polarization as in the previous series of measure-
ments and choosing the appropriate values for the angle β. In order to retrieve the terms
of the first line, one series of measurements for all the polarization states (2.27) should
be conducted with LP oriented at β=0◦, and a second series with β=90◦.

The analyzer must be oriented at β=45◦ and β=135◦ to measure the Mueller matrix
third line. The minimum number of measurements to retrieve all the terms Mi , j , for
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i = 1,2 and j = 0, ..,3 is 16. However, higher precision can be achieved by varying β

between 0◦ and 360◦ with a small step (for instance, 1◦) and fitting then the expression
(2.28) to the experimental data.

4. Determination of line 4: M30, M31, M32, M33

• Necessary setup: PSG+Test element+QW P (90◦)+LP (β)+Detector

• β=(45◦,135◦)

In the end, the last line of the Mueller matrix can be accessed by placing a quarter-
wave plate (QW P ) oriented at 90◦ with respect to the horizontal of the optical system
between the element under study and the analyzer. This helps us to convert the circular
component resulting from the passage through the medium under study into a linear
component, which can then be modulated with the rotating analyzer. The expression of
the intensity emerging from such a system is:

S′
0 =

1

2

(
S0

(
M00 +M10 cos(2β)+M30 sin(2β)

)
+

S1

(
M01 +M11 cos(2β)+M31 sin(2β)

)
+

S2

(
M02 +M12 cos(2β)+M32 sin(2β)

)
+

S3

(
M03 +M13 cos(2β)+M33 sin(2β))

))
,

(2.29)

therefore, using orientations at 0◦ and 90◦ for the analyzer, the four remaining terms,
M30, M31, M32, M33 can be determined using at least eight measurements. Overall, the
entire Mueller matrix can be retrieved with 32 measurements.

However, just like in the case of lines two and three, the fourth line can also be re-
trieved from the fit of the expression (2.29) to the experimental data collected for mul-
tiple values of β between 0◦ and 360◦. This procedure will ensure the minimization of
the errors. The detailed procedure for determining the Mueller matrix is presented in
Table 2.1, where we adopted a notation of the detected intensity with I instead of S′

0 to
simplify the reading. For each term of the matrix, we explain in this table the required
states of the polarization used as input, the number of measurements, and the system’s
composition between a non-polarized source and the detector.

The formula used to compute each term is presented in the last column of the Table
2.1. The notations I+ and I− refer to the intensities measured for the two configurations
of the system required. Therefore, when the two options concern the angles (45◦,135◦),
the I+ corresponds to the configuration 45◦, and the I− to 135◦. By extension, the same
principle applies to the options (0◦,90◦). The values of the terms A and B , present in the
computation of Mi j , are displayed in Table 2.2.
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Mueller matrix measurement
Terms Pol. Nr. System Formula
M00 - 1 M M00 = I

S0

M01 ±S1 2 LP1(0◦,90◦)+M M01 = M00
I+−I−
I++I−

M02 ±S2 2 LP1(45◦,135◦)+M M02 = M00
I+−I−
I++I−

M03 ±S3 2 LP1(0◦)+QW P (45◦,135◦)+M M03 = M00
I+−I−
I++I−

M10 - 2 M+LP2(0◦,90◦) M10 = M00
I+−I−
I++I−

M20 - 2 M+LP2(45◦,135◦) M20 = M00
I+−I−
I++I−

M30 - 2 M+QW P (90◦)+LP2(45◦,135◦) M30 = M00
I+−I−
I++I−

M11 +S1 2 LP1(0◦)+M+LP2(0◦,90◦) M11 = B1 I+−A1 I−
I++I−

M21 +S1 2 LP1(0◦)+M+LP2(45◦,135◦) M21 = B2 I+−A2 I−
I++I−

M12 +S2 2 LP1(45◦)+M+LP2(0◦,90◦) M12 = B3 I+−A3 I−
I++I−

M22 +S2 2 LP1(45◦)+M+LP2(45◦,135◦) M22 = B4 I+−A4 I−
I++I−

M31 +S1 2 LP1(0◦)+M+QW P (90◦)+LP2(45◦,135◦) M31 = B5 I+−A5 I−
I++I−

M32 +S2 2 LP1(45◦)+M+QW P (90◦)+LP2(45◦,135◦) M32 = B6 I+−A6 I−
I++I−

M13 +S3 2 LP1(0◦)+QW P (45◦)+M+LP2(0◦,90◦) M13 = B7 I+−A7 I−
I++I−

M23 +S3 2 LP1(0◦)+QW P (45◦)+M+LP2(45◦,135◦) M23 = B8 I+−A8 I−
I++I−

M33 +S3 2 LP1(0◦)+QW P (45◦)+M+QW P (90◦)+LP2(45◦,135◦) M33 = B9 I+−A9 I−
I++I−

Table 2.1: Mueller matrix measurement procedure for an arbitrary optical element, M .

A1 = M00 +M10 +M01 B1 = M00 −M10 +M01

A2 = M00 +M20 +M01 B2 = M00 −M20 +M01

A3 = M00 +M10 +M02 B3 = M00 −M10 +M02

A4 = M00 +M20 +M02 B4 = M00 −M20 +M02

A5 = M00 +M30 +M01 B5 = M00 −M30 +M01

A6 = M00 +M30 +M02 B6 = M00 −M30 +M02

A7 = M00 +M10 +M03 B7 = M00 −M10 +M03

A8 = M00 +M20 +M03 B8 = M00 −M20 +M03

A9 = M00 +M30 +M03 B9 = M00 −M30 +M03

Table 2.2: Additional terms used in the computation of the Mueller matrix.

2.4. FRESNEL TERMS
When the light encounters a surface at an oblique angle, the transmitted and the re-
flected beams are linearly polarized. The degree of polarization depends on the medium’s
refractive index and the incidence angle. The phenomenon is described by the Fresnel
equations and, by extension, by the Mueller-Stokes formalism applied to Fresnel reflec-
tion and transmission.

Therefore, if we consider a beam of light incident at an angle i on a surface of refrac-
tive index n, then the degree of polarization of the reflected beam will be:
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DoPr =
∣∣∣∣cos2(α−)−cos2(α+)

cos2(α−)+cos2(α+)

∣∣∣∣, (2.30)

whereas for the transmitted beam, we have

DoPt =
∣∣∣∣cos2(α−)−1

cos2(α−)+1

∣∣∣∣, (2.31)

where α− = i − r , and α+ = i + r , for r the refraction angle.

0 10 20 30 40 50 60 70 80 90

Angle of incidence (°)

0

20

40

60

80

100

D
e
g
re

e
 o

f 
p
o
la

ri
z
a
ti
o
n
 (

%
)

Brewster

 angle

DoP
r

DoP
t

Figure 2.8: The degree of polarization corresponding to the reflected and transmitted beam after encountering
a medium of refractive index n=1.4.

The reflected beam’s polarization reaches a maximum of 100% when i + r = 90◦. The
corresponding incidence angle is the Brewster angle (see Fig. 2.8). A surface acts like a
linear polarizer. Because of this, its effect depends on the polarization of the incident
light. Thus, considering that Es and Ep are the components of the incident field which
are perpendicular, respectively parallel to the plane of incidence, and Rs , Rp the corre-
sponding reflected components, then, using the notations proposed by (Collett, 1971,
2005), we have: ρs =

(
Rs
Es

)2 =
(

sin(α−)
sin(α+)

)2

ρp =
(

Rp

Ep

)2 =
(

tan(α−)
tan(α+)

)2 . (2.32)

Similarly, if Ts , Tp are the transmitted components of the field, then, for transmission,
we have: τs =

(
Ts
Es

)2 = sin(2i )sin(2r )
sin2(α+)

τp =
(

Tp

Ep

)2 = sin(2i )sin(2r )
sin2(α+)cos2(α−)

. (2.33)

How the Fresnel coefficients depend on the angle of incidence can be observed in
Fig. 2.9. We notice here that the effect of the passage from one medium to another
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depends on the polarization of the incident light. At the Brewster angle, the reflection
of an incoming light polarized parallel to the incidence plane vanishes completely. This
phenomenon can be used to establish the orientation of the transmission axis of a linear
polarizer.
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Figure 2.9: Fresnel coefficients for reflection (ρ) and transmission (τ), for p and s states of polarization of the
incoming beam.

The Mueller matrices associated with the reflection and transmission are:

Mρ = 1

2


ρs +ρp ρs −ρp 0 0
ρs −ρp ρs +ρp 0 0

0 0 2
p
ρsρp 0

0 0 0 2
p
ρsρp

 (2.34)

Mτ = 1

2


τs +τp τs −τp 0 0
τs −τp τs +τp 0 0

0 0 2
p
τsτp 0

0 0 0 2
p
τsτp

 (2.35)

In the case of the incidence on a birefringent material, the two light components are
seeing different media; therefore, they are refracted differently. Consequently,α+ andα−
terms should be computed separately for the two components. In addition, an eventual
split of rays would also require two different matrices for each type of ray.
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3
METHODS FOR THE MEASUREMENT

OF POLARIZATION

Polarizers come in many different configurations (...). There is, however, one underlying
property that they all share: there must be some form of asymmetry associated with the

process.

E. Hecht

37
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We saw in the previous chapter that any polarization state can be described using
the four parameters of the Stokes vector. Polarization measurement means determining
these parameters. Consequently, when the polarization recovery can be formulated as
a system of equations, at least four measurements are required. In practice, however,
the complete determination of polarization may require more than four measurements.
The presence of noise is one of the main factors that dictate the use of a larger num-
ber of measurements. Over time, two significant directions emerged for the polarization
measurement (del Toro Iniesta, 2003; Dong and Zhou, 2020; Mignani et al., 2019; Tyo
et al., 2006). One, called division of aperture, supposes light split into multiple channels
with different optical configurations. Each channel provides access to a Stokes param-
eter or a well-established combination of them. Finally, polarization determination is
generally done by solving equations that have as unknown the Stokes parameters. Since
constructing optical channels with different configurations usually requires a larger vol-
ume of deployment of the optical elements and can also become extremely expensive,
this procedure tends to use the minimum number of necessary equations. The second
approach, called time division, operates by sequential measurements. Particular mod-
ulation schemes are produced by rotating specific components within the instrument
or changing their properties (birefringence, fast axis orientation) with a defined tempo-
ral frequency. Each new measurement provides a light intensity value that depends on
the instantaneous configuration of the optical system as well as the polarization state of
the incident light. The measured intensity values constitute a modulation containing in-
formation about the light’s polarization state. Using different demodulation techniques
of this signal, such as fitting with a theoretical function or Fourier transforms, the four
Stokes parameters can finally be recovered. When addressing the need to determine
the full Stokes vector, both methods are difficult to use in the space environment and
have significant drawbacks (Hagen and Kudenov, 2013; Tyo et al., 2006). Therefore, the
first method often involves considerable bulk and possible redundancy of some optical
components. Its drawbacks are the risk of misalignment or limitations related to the vi-
sual field. Over time, however, this approach became increasingly compact and adapted
much better to the rigors of use in outer space. The second method presents a higher
risk, especially due to the rotating elements.

3.1. MEASURING THE POLARIZATION

Perhaps one of the easiest ways to measure any polarization is to take several measure-
ments using only a linear polarizer, then add a quarte-wave plate (QW P ) in front of this
element, and take one more measurement (Collett, 2005). Therefore, if one uses only a
linear polarizer oriented at an angle θ to the x−axis of the reference frame (see Fig. 3.1),
then, according to Eqs. (2.18, 2.25), the detected intensity is:

I = 1

2

(
S0 +S1 cos(2θ)+S2 sin(2θ)

)
. (3.1)
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Figure 3.1: The first setup structure required for polarization measurement comprises only a linear polarizer
and a detector. The dashed line indicates the orientation of the transmission axis of the linear polarizer.

The unknowns S0, S1, and S2 can be retrieved using three different values for θ. For
instance, one can use:


θ = 0◦ ⇒ I0 = 1

2 (S0 +S1)

θ = 90◦ ⇒ I90 = 1
2 (S0 −S1)

θ = 45◦ ⇒ I45 = 1
2 (S0 +S2)

, (3.2)

where I0, I90, and I45 are the detected intensities for the three different orientations of
the linear polarizer. Solving for S0, S1 and S2 we obtain:


S0 = I0 + I90

S1 = I0 − I90

S2 = 2I45 − (I0 + I90)

. (3.3)

Of course, no information about the circular state of polarization can be obtained
with only a linear polarizer. Adding instead a QW P , oriented at 0◦, in front of the polar-
izer allows us to convert the circular polarization into linear and to change the handed-
ness of the circular polarization (see Fig. 3.2). Thus, the expression of intensity becomes:

I = 1

2

(
S0 +S1 cos(2θ)+S3 sin(2θ)

)
. (3.4)

With this configuration, S3 can be accessed. Placing, for instance, the linear polarizer
with the transmission axis at 45◦ to the horizontal, we obtain:

θ = 45◦ ⇒ IQ45 = 1

2
(S0 +S3), (3.5)

where IQ45 is the detected intensity with this optical configuration.
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Figure 3.2: The second setup structure required for the retrieval of the S3 parameter. A QW P was added in
front of the linear polarizer.

Using (3.3) the value of S3 is immediately retrieved:

S3 = 2IQ45 − (I0 + I90). (3.6)

The equations (3.2) and (3.5) can be written in a system:


I0 = 1

2 (S0 ·1+S1 ·1+S2 ·0+S3 ·0)

I90 = 1
2 (S0 ·1+S1 · (−1)+S2 ·0+S3 ·0)

I45 = 1
2 (S0 ·1+S1 ·0+S2 ·1+S3 ·0)

IQ45 = 1
2 (S0 ·1+S1 ·0+S2 ·0+S3 ·1)

. (3.7)

This is a very simple procedure for measuring the polarization of light. However, even
such a rudimentary approach can be challenging to be converted into a robust and re-
liable instrument. First, it must be underlined that this procedure does not measure
the polarization instantly. It supposes the existence of four independent measurements
conducted with different configurations at different moments in time. In addition, we
saw that three rotations of the linear polarizer are required, as well as the insertion of a
QW P for the last measurement. All these rotations and changes in the optical configu-
ration can become extremely challenging and risky when implementing the method in
a space instrument. Coming back to the Eq. (3.7), by using a matrix form, one can write:


I0

I90

I45

IQ45

= 1

2


1 1 0 0
1 −1 0 0
1 0 1 0
1 0 0 1

 ·


S0

S1

S2

S3

 . (3.8)

Let us consider that I⃗ = (I0, I90, I45, IQ45)T is the vector of intensities detected dur-
ing this polarization measurement procedure, T representing the transposition opera-
tor, and S⃗ = (S0,S1,S2,S3)T is the incoming Stokes vector. The overall determination of
S⃗, embraces then the following form:
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I⃗ = 1

2


1 1 0 0
1 −1 0 0
1 0 1 0
1 0 0 1


︸ ︷︷ ︸

W

·S⃗, (3.9)

where W is called the procedure’s modulation scheme (or the modulation matrix). When
four measurements are performed to measure the incoming Stokes vector, W is invert-
ible if it is not singular, and the polarization can be immediately assessed:

S⃗ =W −1 · I⃗ . (3.10)

It should be underlined that in the literature, the factor 1/2 is very often omitted from
the definition of the modulation scheme, even if it is present in the modulation and the
demodulation procedure.

3.2. THE ASSESSMENT OF THE MODULATION SCHEME
Most polarimeters designed for the complete measurement of polarizations use the pre-
viously described principle, based on the production of a modulation scheme, W . Since
this modulation can take countless forms, leading all the time to the same Stokes pa-
rameters, insightful procedures for comparing different modulation schemes have been
developed over time. This allows the comparison of the working principle of the instru-
ments as well as the achievable performance. However, it should be stressed that these
figures of merit apply only to what we call full Stokes polarimetry, i.e., the methods capa-
ble of retrieving any state of polarization. Instruments that only aim to determine linear
or circular polarizations elude these procedures. However, this has no consequence on
the quality of such instruments. A great example from this category is the SPEX instru-
ment, described in the Addendum of this thesis.

3.2.1. THE CONCEPT OF EFFICIENCY OF THE MODULATION
The modulation matrix W dictates the quality of a method for retrieving the Stokes pa-
rameters (del Toro Iniesta and Collados, 2000). It describes which kinds of measure-
ments are conducted and which changes are operated in the optical system during the
measurement procedure, and it also provides information about how external factors
like misalignment, spectral resolution, or noise could influence polarization determi-
nation. All these factors are translated into a change of the recorded intensity, which
propagates during the demodulation process in the retrieval of the Stokes parameters.
Therefore, the quality of a method for determining polarization is related to how a vari-
ation of intensity, depending on various external factors, is transmitted in the computed
Stokes parameters. An optimal modulation scheme was defined as one able to minimize
the propagation of errors and, accordingly, to minimize the uncertainty on the Stokes
parameters (del Toro Iniesta, 2003; del Toro Iniesta and Collados, 2000).

If for the W matrix we use most often the name of modulation matrix, then W −1 is
known as the demodulation (or instrumental matrix). For simplicity, we adopt here the
notation D =W −1.
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Significant theoretical advancements have been made in assessing the modulation
matrices when the source of uncertainties is the photon noise. Thus, if all the readings
of intensity comprised in the vector I⃗ have the same uncertainty σ, due to the photon
noise, then, according to (del Toro Iniesta and Collados, 2000), the uncertainties on the
Stokes parameters are:

σ2
i =σ2

N−1∑
j=0

D2
i j , i = 0,1,2,3, (3.11)

where N represents the number of measurements (here, N = 4), i refers to the Stokes
parameters, and σ is the photon noise, which is the same for all the measurements.

For the example studied above and having the modulation matrix W from Eq. (3.9),
the demodulation matrix is:

D =W −1 =


1 1 0 0
1 −1 0 0
−1 −1 2 0
−1 −1 0 2

 . (3.12)

That means the uncertainty corresponding to the four Stokes parameters are:
σ2

0 = 2σ2

σ2
1 = 2σ2

σ2
2 = 6σ2

σ2
3 = 6σ2

. (3.13)

We learn from this that, despite the fact that the system of equations built to retrieve
the Stokes parameters grants equal access to all four terms of the Stokes vector, it does
not form the best method. The linear (45◦, 135◦) polarizations and the circular left and
right are more affected by noise than the other two parameters.

Comparing the uncertainties of different modulation schemes is a good strategy to
assess the quality of a method for the determination of polarization as long as the num-
ber of measurements remains unchanged. When the modulation schemes use different
numbers of measurements, the associated W matrices have different numbers of lines,
and consequently, D will have different numbers of columns. In order to make possible
a correct comparison of the modulation schemes, Toro Iniesta (del Toro Iniesta and Col-
lados, 2000) introduced then the modulation scheme’s efficiency concept. It is closely
related to the uncertainty, but it is normalized with the number of measurements, N :

ξi = 1√
N

N−1∑
j=0

D2
i j

, i = 0,1,2,3

ξtot =
√
ξ2

1 +ξ2
2 +ξ2

3

, (3.14)

where ξi are the efficiencies associated to the Stokes parameters, and ξtot is the total ef-
ficiency of the modulation scheme. If the factor 1/2 is not comprised in the definition of
W , as is often the case in the literature, then the previous expression must be multiplied
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by 2. A certain efficiency ξi characterizes each parameter of the Stokes vector. It can be
proved (del Toro Iniesta, 2003), that the average uncertainty affecting a Stokes parameter
is related to the efficiency of the modulation scheme through:

σi
2 = σ2

ξ2
i

, (3.15)

which means that the accuracy of the Stokes parameters increases with the efficiency.
The higher the efficiency for a Stokes parameter, the lower the uncertainty that we may
have for this parameter.

Returning to our example from the beginning of the chapter, we can compute these
efficiencies with the help of the matrix D (Eq. (3.12)) and N = 4:

ξ0 = 0.7071

ξ1 = 0.7071

ξ2 = 0.4082

ξ3 = 0.4082

ξtot =
√
ξ2

1 +ξ2
2 +ξ2

3 = 0.9129

. (3.16)

That means the imagined polarimeter can provide better results for measuring S0

and S1 terms than for S2 and S3. This will be translated into an uncertainty almost double
for S2 and S3 than for the rest of the Stokes terms in the presence of noise. This result
perfectly agrees with Eq. (3.13).

Having a criterion to compare different methods for determining polarization is not
enough. We have also to know where to stop the process of amelioration. For this pur-
pose, an optimum modulation matrix is needed. Two situations may occur:

1. The polarimeter is an ideal one.
In this case, the lines of the matrix W , representing the diattenuation vector of the
Mueller matrix of the polarimeter, have the property:

3∑
i=1

W 2
j i = 1, j = 0,1,2, .., N −1, (3.17)

For this case, it has been proved (del Toro Iniesta, 2003; del Toro Iniesta and Colla-
dos, 2000) that W is an optimal modulation matrix if it converges towards a value
satisfying the relation:

W T W = N


1 0 0 0
0 ξ2

1 0 0
0 0 ξ2

2 0
0 0 0 ξ2

3

 , (3.18)

where
√
ξ2

1 +ξ2
2 +ξ2

3 = 1.

The maximum values of the efficiencies which can be attained are:
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ξ2
max,i =

N−1∑
j=0

W 2
j i

N
, i = 0,1,2,3, (3.19)

In the best case, when efficiencies on the Stokes parameters are the same, we have
ξi = 1/

p
3, for all three parameters S1, S2, and S3. This optimal modulation matrix

(W ) has been defined starting from the idea that the Di j terms must be minimized
in order to obtain the highest efficiencies. The optimum demodulation matrix has
then the form:

D = (W T W )−1 ·W T . (3.20)

This expression is not a random one. As we will see in the next section, this is
nothing else but the formulation of the pseudoinverse matrix of W when W has
more than four lines.

2. The polarimeter is a non-ideal one.
In this case, the lines of the matrix W have the property:

3∑
i=1

W 2
j i < 1, j = 0,1,2, .., N −1, (3.21)

Minimizing the Di j terms is not a trivial task in this case. However, it has been
proved that a matrix W that satisfies the relation:

W T W = N



N−1∑
j=0

W 2
j 0

N 0 0 0

0

N−1∑
j=0

W 2
j 1

N 0 0

0 0

N−1∑
j=0

W 2
j 2

N 0

0 0 0

N−1∑
j=0

W 2
j 3

N


, (3.22)

where the diagonal terms represent the maximum accessible efficiencies. Like in
the ideal scenario, the optimum demodulation matrix is defined by:

D = (W T W )−1 ·W T . (3.23)

From the relations (3.18), (3.19) and (3.22), it results that ideal and non-ideal cases
are converging towards the same values of the efficiencies.
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3.2.2. CONDITION NUMBER AND EQUALLY WEIGHTED VARIANCE
Other figures of merit that can help us assess the quality of the modulation matrix in
the presence of noise are the condition number (C N ) and the equally weighted variance
(EW V ) (Foreman and Goudail, 2019; Goudail, 2016). The theoretical studies that treat
these concepts generally use two interpretations of noise. On the one hand, it is consid-
ered the case where the noise is additive, originating in some of the components of the
optical system (like the detector or the electronics). Such noise has a normal distribu-
tion and is called Additive White Gaussian Noise (AW GN ). This noise can be seen then
as independent of the detected signal. On the other hand, the noise is related to the sig-
nal and, most precisely, to the counting of photons done with the help of the detector.
This noise tends to be more significant at small signal values (small number of photons)
and decreases with the number of photons. Both concepts, the condition number and
the equally weighted variance, are discussed in the literature in relation to these two
types of noise. Despite their mathematical equivalence, demonstrated by (Foreman and
Goudail, 2019), the interpretations of the two concepts are slightly different. Thus, if the
condition number informs about how well-suited a matrix is for inversion, the equally
weighted variance, as defined in the case of a polarimeter, provides direct information
on how optimal the modulation matrix is and which covariances on the Stokes parame-
ters could be expected. In other words, the condition number tells us how the variations
in the detected intensity due to the presence of noise are propagated into the retrieved
values of the Stokes parameters. The equally weighted variance in exchange tells us if
the modulation matrix we are using is close to an optimal one in terms of the previously
described efficiency.

THE EQUALLY WEIGHTED VARIANCE (EWV )
In section 3.1, we saw the example of a method for determining polarization, which em-
ploys a configuration based on a linear polarizer and, eventually, a QW P . Using the
Mueller calculus, we retrieved the modulation matrix W corresponding to this applica-
tion. Considering now that a general Mueller matrix describes the instrument (see Eq.
2.17), then W can be written as:

W = 1

2



1 m0
01 m0

02 m0
03

1 m1
01 m1

02 m1
03

1 m2
01 m2

02 m2
03

· · · ·
· · · ·
1 mN−1

01 mN−1
02 mN−1

03

 , (3.24)

where m0i (i = 1,2,3) are the terms of the diattenuation vector from the Mueller matrix
of the optical system, and the superscript indicates the system’s configuration.

In an ideal case, we need to have (del Toro Iniesta and Collados, 2000):

3∑
i=1

(m j
0i )2 = 1, j = 0,1, ..., N −1. (3.25)

Adopting the contracted notation used by (Foreman and Goudail, 2019), the relation
(3.24) can be written as:



3

46 3. METHODS FOR THE MEASUREMENT OF POLARIZATION

W = 1

2


1 w⃗0

T

1 w⃗1
T

· ·
· ·
1 ⃗wN−1

T

= 1

2
(⃗r Q), (3.26)

where r⃗ is a N ×1 vector with all the elements equal to 1, while Q is a N ×3 matrix com-
posed of the diattenuation vectors of the modulation scheme (see Eq. (3.24)). In other
words, we have:

r⃗ =


1
1
·
·
1

 , and Q=


w⃗0

T

w⃗1
T

·
·
⃗wN−1

T

=



m0
01 m0

02 m0
03

m1
01 m1

02 m1
03

m2
01 m2

02 m2
03

· · ·
· · ·

mN−1
01 mN−1

02 mN−1
03

 , (3.27)

where, just like before, the superscript T designates the transposition operator. One of
the problems with polarimeters using more than four measurements is that the mod-
ulation matrix W is no longer invertible. Consequently, relation (3.10) cannot be ap-
plied directly. We can use either the left inverse (the pseudoinverse) or the singular value
decomposition to retrieve the inverse of W . According to the left inverse method, the
pseudoinverse of W is:

W † = (W T W )−1W T , (3.28)

which is nothing else than the optimum demodulation matrix presented in the previous
section. This expression can be used if the product W T W is well-conditioned for inver-
sion. When this is no longer possible, the singular value decomposition (SV D) can be
used. For the moment, however, we will consider that the left inverse could be applied
successfully.

Therefore, coming back to the problem of the measurement in the presence of noise,
if we imagine that we are dealing with additive Gaussian noise, then the detected inten-
sity is:

I⃗ =W · S⃗ + ∆⃗I , (3.29)

where ∆⃗I is a N ×1 random vector of covariance σ2 · 1. Multiplying at left (3.29) with W †

we obtain:

W † I⃗ = S⃗ +W †σ2. (3.30)

Adopting the notation Ŝ =W † I⃗ , this relation becomes:

Ŝ = S⃗ +W †σ2. (3.31)

Therefore, Ŝ is nothing else but a maximum likelihood estimate of S⃗. It is a vector that
has S⃗ as a mean value, and the covariance matrix:
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KS⃗ =σ2W †(W †)T . (3.32)

Using the algebraic properties of the transposition operator it is immediate that:

KS⃗ =σ2(W T W )−1. (3.33)

The diagonal elements of KS⃗ represent the variances on the Stokes parameters. A
modulation matrix W is then considered optimal when the covariances on the Stokes
parameters reach the minimum. In other words, we need to have Tr (KS⃗ ) = mi n, where
Tr is the trace operator. This condition is identical to the one used by del Toro Iniesta to
evaluate the optimal modulation scheme, as we already saw in the previous section.

The concept of equally weighted variance (EW V ) has been introduced in this con-
text. It represents the trace of the covariance matrix and should be minimal for optimal
modulation.

EW V (W ) = Tr (KS⃗ ). (3.34)

In the presence of additive Gaussian noise, EW V is:

EW V (W ) =σ2Tr [(W T W )−1]. (3.35)

It has been proven (Foreman and Goudail, 2019) that the product (W T W ) which can
minimize the EW V has the form:

W T W = N

12


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.36)

Consequently, the covariance matrix of an optimal modulation scheme is:

KS⃗ = 4

N
σ2


1 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

 . (3.37)

Therefore, the minimum value of the EW V in the presence of Gaussian noise is 40
N σ2.

Relation (3.37) also tells us that, ideally, when the modulation scheme can provide access
with equal uncertainties to the Stokes parameters S1, S2, and S3, these uncertainties are
three times higher for S1, S2, and S3 than for S0. Knowing the intensity value and noise
variance can give us a clear idea about the achievable precision of the Stokes parameters.

On the other hand, if a non-additive Poisson noise perturbs the system, then the
vector ∆⃗I is no longer of covariance σ2 · 1. Instead, its covariance will depend on the
Stokes parameters. Therefore, the elements of the covariance matrix of S⃗ are (Dai et al.,
2018; Goudail, 2009):

(KS⃗ )i j =
3∑

k=0
Sk

N−1∑
n=0

W †
i nW †

j nWnk , i , j = 0, ..,3. (3.38)



3

48 3. METHODS FOR THE MEASUREMENT OF POLARIZATION

If W is an optimal matrix, then the diagonal elements of the covariance matrix con-
verge towards: {

(KS⃗ )00 = 2S0
N

(KS⃗ ) j j = 6S0
N , j = 1,2,3

. (3.39)

Therefore, the minimum value of the EW V in the presence of Poisonian noise is 20S0
N .

As expected, the variations of the Stokes parameters in the presence of a non-additive
noise are related to the intensity (S0). As with Gaussian noise, they are three times larger
for S1, S2, and S3 than for S0, but the correlation term is now the intensity, S0. On the
other hand, both results demonstrate that increasing the number of measurements has,
as a consequence, a decrease in uncertainty. The only condition is that the number of
measurements should not be increased by reducing the optimal quality of the matrix W .
This must remain an optimal matrix.

THE CONDITION NUMBER

Another metric that can be used to assess the quality of a modulation scheme is rep-
resented by the condition number (κ). This is an algebraic notion with a more subtle
meaning. A brief mathematical description can prove very useful for understanding it
(Belsley et al., 1980). The condition number applies to a system of linear equations of
the type Ax⃗ = b⃗, where A is an invertible matrix, x⃗ is the vector of unknowns, and b⃗ rep-
resents the vector of the linear equations’ solutions. For various reasons, such as noise,
systemic problems, etc., b⃗ can record a δ⃗b variation about the expected value. This will
eventually translate into a variation of the determined solutions δ⃗x. The same is true if
matrix A undergoes a change δA. There may be situations when a slight variation of δ⃗b
or δA can lead to an explosion of δ⃗x. In other words, returning to the studied polarimet-
ric system, a small variation of the detected intensity or the modulation matrix can cause
an extremely large error in the measured polarization. The extent of this phenomenon
is determined exclusively by the matrix A. Thus, let us write the general system of linear
equations:

A · x⃗ = b⃗, (3.40)

and suppose that the matrix A does not undergo any changes now. There is only a change
δ⃗b, which triggers a variation δ⃗x of the solution:

A · (⃗x + δ⃗x) = b⃗ + δ⃗b. (3.41)

Multiplying at left by A−1 we obtain:

x⃗ + δ⃗x = A−1b⃗ + A−1δ⃗b. (3.42)

Therefore, we can write:

δ⃗x = A−1δ⃗b. (3.43)
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Taking the norm of this expression and using the property that tells us that ||AB || ≤ ||A|| ·
||B ||, true for any m ×n matrices, we obtain:

||δ⃗x|| ≤ ||A−1|| · ||δ⃗b||. (3.44)

Applying the norm to the Eq. (3.40):

||⃗b|| ≤ ||A|| · ||⃗x||. (3.45)

In the end, by multiplying the relations (3.44) and (3.45) we obtain:

||δ⃗x||
||⃗x|| ≤ ||A|| · ||A−1|| · ||δ⃗b||

||⃗b||
. (3.46)

From here, we can define the condition number associated to the matrix A:

κ(A) = ||A|| · ||A−1|| ≥

( ||δ⃗x||
||⃗x||

)
( ||δ⃗b||

||⃗b||

) . (3.47)

Similarly, if we suppose that the cause of the variation of b⃗ is a variation of A, we can
quickly obtain:

κ(A) = ||A|| · ||A−1|| ≥

( ||δ⃗x||
||⃗x+δ⃗x||

)
( ||δA||

||A||
) . (3.48)

That means the condition number is the ratio between the relative error on the un-
knowns of the system and the relative error on solutions of the systems. Translated into
the domain of polarimetry, where the place of the matrix A is taken by W , the condition
number will represent the ratio between the relative error on the Stokes parameters and
the relative variation of the intensity.

A high value of the condition number signifies that slight variations in the detected
intensities are converted into significant variations of the retrieved Stokes parameters.
While the equally weighted variance deals with noise propagation, the condition num-
ber only refers to the W matrix. Therefore, it can help assess the impact of the systematic
errors.

Optimizing the modulation matrix means finding the form with the smallest κ.
Using the relations (3.47), (3.48), and (3.28) we have:

κ(W ) = ||W || · ||W †||. (3.49)

Considering that the norm is the Frobenius norm, we can write:

||W || =
√

Tr (W W T ) =
√

Tr (W T W ). (3.50)

Based on (3.36) we have:
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||W || =
√

Tr (W T W ) =
√

N

2
, (3.51)

and, from (3.33, 3.37):

||W †|| =
√

Tr ((W †)T W †) =
√

Tr [(W T W )−1] =
√

40

N
. (3.52)

Therefore, based on (3.49), (3.51) and (3.52), the minimal value of the condition num-
ber, corresponding to an optimal modulation matrix is:

κ(W ) =
√

N

2
·
√

40

N
=p

20 ≈ 4.472. (3.53)

3.3. EXAMPLES OF INSTRUMENTS
As mentioned at the beginning of this work, two important directions have developed
over time in polarization measurement methods. One of the directions, known under
the name of temporal division, calls for a repetitive modification of the optical system
to produce new configurations that generate the modulation matrix W . Each line of this
matrix is produced at a specific moment in time so that in addition to the integration
time of the polarimetric signal at the detector level, the instrument also requires time to
pass from one configuration to another. This additional measurement delay is one of the
main impediments of this method when it comes to its application to scenes with very
fast polarimetric dynamics.

The second method, called aperture division, uses several optical channels with dif-
ferent polarimetric configurations simultaneously. The N measurements of the modula-
tion scheme are performed simultaneously. The immediate advantage of this technique
is that the possible delays generated by the preparation of a new configuration, faced
by time division, are eliminated. A possible disadvantage is that the light flux is divided
between several channels, which causes a decrease in the detected intensity at the level
of each channel. Consequently, noise can become more problematic for this measure-
ment method, especially in conditions where the integration time of the detector cannot
be extended very much.

When dealing with stable polarimetric scenes, temporal division can be more robust
than the aperture division method. In addition, the division of time remains open, in
general, to other polarization determination procedures, such as the fit with a theoret-
ical function or the isolation of specific frequencies associated with different types of
polarization.

Both methods present an important series of advantages and disadvantages. The
aspects that weigh the most in adopting one method or the other depend on the type
and field of application. Otherwise, both methods can lead to the formation of optimal
modulation schemes and can embrace the form of highly performing instruments. The
main advantages and disadvantages of these methods, valid for any field of application,
are summarized in Tables 3.1 and 3.2.

Most of the time, the advantages of the temporal method pale in comparison to the
disadvantages when it comes to spatial applications. The risks of misalignment of optical
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Division of time

Advantages Disadvantages

Tunable modulation schemes Difficulties with very dynamic scenes

Low impact of noise Risk related to misalignment

Can accept multiple demodulation procedures Compute-intensive demodulation
Rotating mechanism

Table 3.1: Main advantages and disadvantages of the division of time procedure

Division of aperture

Advantages Disadvantages

Can deal with very dynamic scenes Higher impact of noise

Low risk of misalignment Voluminous

Fast demodulation Frozen modulation scheme

Table 3.2: Main advantages and disadvantages of the division of aperture procedure

components or the difficulties of monitoring scenes with rapidly changing polarization
make this method one with limited applicability.

Due to the greater interest in the static aperture division method when it comes to
space applications, we have chosen to present some examples of tools based on this ap-
proach in the following section. At the same time, based on the available data, the mod-
ulation schemes’ efficiency, the equally weighted variances, and the condition number
are computed and compared for these examples.

3.3.1. DOAP SPECTROPOLARIMETER

An excellent example of the division of aperture instrument for complete Stokes deter-
mination is the one proposed by (Compain and Drevillon, 1998) (see Fig. 3.1). This is
one of the possible developments from a principle devised by Azzam in 1982 (Azzam,
1982). The advantage of the design (called DOAP) is that it can be easily tuned to achieve
high efficiency in the modulation scheme. The working principle supposes the split of
the incoming light into two directions with the help of an uncoated dielectric prism (see
Fig. 3.3).
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Figure 3.3: Experimental design of DOAP. Figure adapted after (Compain and Drevillon, 1998).

The two beams, reflected and transmitted, have a polarization depending on the an-
gles of incidence φ1 and φ2 and on the refractive index of the prism. Further, these two
beams pass through a Wollaston prism (W1 and W2), separating the incident polariza-
tion’s orthogonal components. Four beams will arrive on the detectors, carrying the in-
tensities i1, i2, i3 and i4.

The modulation matrix (W ) associated with this method of determining polarization
can be theoretically computed for various wavelengths with the help of the Fresnel terms
for transmission and reflection.

For instance, according to (Compain and Drevillon, 1998), the theoretical value of W
for λ=458 nm is :

W =


1 −0.577 0.816 0
1 −0.577 −0.816 0
1 0.619 −0.065 0.782
1 0.619 0.065 −0.782

 . (3.54)

Applying the relations (3.14) and (3.20), the efficiencies of this scheme can be easily
computed: 

ξ0 = 0.999

ξ1 = 0.598

ξ2 = 0.577

ξ3 = 0.512

ξtot =
√
ξ2

1 +ξ2
2 +ξ2

3 = 0.997

. (3.55)
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Using the relation (3.49), the condition number of the matrix W can also be com-
puted:

κ(W ) = 4.4915. (3.56)

It can be noticed that the values of the efficiencies are very close to the ideal ones
(1/

p
3 ≈ 0.5774). However, a slight difference exists between the three parameters, trans-

lated into the fact that the uncertainty on S1 will be the smallest, while that on the cir-
cular polarization will be the highest. On the other hand, the value of the condition
number, which is also slightly different from the optimal one (4.472), is another hint that
the W matrix is not optimal. The conditions for a W matrix to be optimal are expressed
by the relations (3.18) and (3.20). In the case studied here, we can find that the product
W T W is:

W T W = 4


1 0.021 0 0

0.021 0.358 0 0
0 0 0.335 −0.0254
0 0 −0.0254 0.3058

 . (3.57)

This matrix differs from the form obtained when W is optimal. In conclusion, we can
say that the polarimeter model presented here is very close to an ideal one, ensuring an
almost equal uncertainty on Stokes parameters. However, it is expected to work better
to determine the linear polarization.

3.3.2. SFSIP IMAGING SPECTROPOLARIMETER

Another example of a division aperture instrument is the one proposed by (Mu et al.,
2015). The snapshot full-Stokes imaging polarimeter (SF SI P ), tested with a 480 nm
bandpass filter (FW H M =10 nm), also reaches a very high modulation efficiency and,
through its geometry, can be considered a precursor of our project. The instrument uses
an array of Wollaston prisms, W P1, W P2, and W P3 (see Fig. 3.4). The last one is cou-
pled with a quarter-wave plate (QW P ) situated in front. The orientation of the fast axes
is indicated in Fig. 3.4. The three different compounds are followed by a lens array that
projects six images of the object, each providing different polarimetric information.

Thus, the first Wollaston prism from the top will split the received beam into two
beams carrying orthogonal polarizations (horizontal and vertical). The second Wollas-
ton prism, from the middle, has the optical axes oriented at 45◦ and 135◦, which will
split the received light into two beams of orthogonal polarizations. We obtain informa-
tion about 45◦ and 135◦ of linear polarization this time. Ultimately, the last compound of
QW P+Wollaston will split the light according to the circular polarization. The emerging
beams will be linearly polarized in orthogonal planes. However, their intensities will be
related to the circular component of the incoming light. Therefore, in the end, on the
detector, we will obtain 6 regions carrying information about linear (0◦, 90◦, 45◦, 135◦)
and circular (left and right) polarizations.

The ideal modulation matrix of this instrument is (Mu et al., 2015):
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W =



1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1

 . (3.58)
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Figure 3.4: Design of the SFSIP imaging polarimeter. The part of the instrument responsible for the polariza-
tion measurement comprises three Wollaston prisms (W P1, W P2, W P3) and one QW P . The optical axes of
each component are presented in blue and red. This instrument provides six images of the same object, each
with a distinctive polarization: linear (0◦, 90◦, 45◦, 135◦) degree and circular left and right. Figure adapted after
(Mu et al., 2015)

The efficiencies, calculated with the relation 3.14 are:

ξ0 = 1

ξ1 = 0.5774

ξ2 = 0.5774

ξ3 = 0.5774

ξtot = 1

. (3.59)

These efficiencies are the highest achievable and correspond to an optimal modula-
tion scheme. They show that equal uncertainties characterize the Stokes parameters. If
we compute now the product W T W , we obtain:

W T W = 6


1 0 0 0
0 0.333 0 0
0 0 0.333 0
0 0 0 0.333

 , (3.60)

which proves that the W matrix is an optimal one. Also, the condition number for this
case is κ(W ) = 4.472, which is the smallest value achievable for a polarimeter. However,
obtaining such a matrix in practice is almost impossible. The effect of the Wollaston
prisms depends on the wavelength, and the extinction ratio is never zero. Thus, experi-
mentally, the modulation matrix obtained in this case by the authors of the study was:
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W = 1

2



1.0846 0.9514 −0.0040 0.0766
1.0778 −0.9746 −0.0098 −0.0784
1.0910 0.0080 0.9558 −0.0814
1.1052 −0.0080 −0.9624 0.0698
1.1596 −0.0282 0.1122 0.8288
1.0510 0.0502 −0.0940 −0.8382

 . (3.61)

Normalizing this matrix by 1.1596, we can compute the experimental efficiencies:

ξ0 = 0.9444

ξ1 = 0.4793

ξ2 = 0.4802

ξ3 = 0.4178

ξtot = 0.7968

. (3.62)

Therefore, we see that, in reality, the efficiencies are below the theoretical value, and
equal uncertainties no longer characterize the retrieval of the Stokes parameters. The
spectropolarimeter will perform the best for the measurement of the linear 45◦, 135◦
polarizations and the worst for the circular polarizations.

3.4. SPECTROPOLARIMETRY AND IMAGING SPECTROPOLARIME-
TRY

Measuring the polarization of light at different wavelengths can be of critical importance
in a situation where the polarization is wavelength-dependent. We recall, for instance,
that in the case of the Zeeman effect, the polarization was related to the spectral lines,
which are only precise wavelength values. Also, in another field, such as climatology, de-
tecting all polarization states at different wavelengths can drastically improve our knowl-
edge of aerosols (Gassó and Knobelspiesse, 2022). This need is not manifested only in
these two areas. Most of the time, as we will see in Chapter 8, the study of polariza-
tion from scattering requires a wider spectral coverage. This allows a much more pre-
cise identification of the sources of polarization. Going further and adding an imaging
capability to a spectropolarimeter can increase the information obtained with such in-
struments. This feature would allow us to locate a scene’s polarimetric characteristics
precisely. Such property proves to be very important in domains that require precise
identifications of the areas characterized by different polarimetric features. Medicine
and defense are just two examples that can benefit from imaging spectropolarimetry.
However, adding a spectral or spatial dimension to polarimetry complexifies the mea-
surement of polarization even more. Most polarimetric measurements require a colli-
mated beam passing at a precise angle through the modulating components. Because of
this, these instruments are very limited in terms of field of view. In the same way, the po-
larizing elements used to modulate or analyze the polarization are spectrally dependent,
and, therefore, ensuring good efficiency on a large waveband is also difficult.

Following the methods of polarimetry’s division, imaging spectropolarimetry has
evolved into a sequential approach and a snapshot approach (Hagen, 2012). Because we
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are concerned here with the division of the aperture technique of polarimetry, snapshot
imaging spectropolarimetry is the development that best suits our interests. A snap-
shot imaging spectropolarimeter is an instrument that simultaneously collects spatial,
spectral, and polarimetric information in a single shot. Since spatial information is two-
dimensional, all these data form a hypercube as a whole. An instantaneous spectropo-
larimeter can display such a hypercube layer by layer. The same scene (spatial coordi-
nates (x, y)) will be observed at different wavelengths, and for each "voxel", which is an
elementary hypercube of information, spatial coordinates, spectral features, and polari-
metric properties can be determined.

Snapshot imaging spectrometry is the basis of snapshot imaging spectropolarimetry.
In most approaches, snapshot imaging spectrometry uses a diffractive element such as
an optical prism, a grating, or a grism placed in the collimated part of the light stream.
As we saw previously, the polarimeter also requires a collimated light. As a result, the
best positioning of the polarimetric optics is right in front of the diffractive element in
the same collimated region. The type of modulation required to extract the polarimetric
information dictates the details of such an optical arrangement.

3.4.1. INTEGRAL FIELD SPECTROMETRY WITH LENSLET ARRAY (IFS-L)

For example, one of the methods used in imaging spectrometry is the Integral Field Spec-
trometry with Lenslet array (IFS-L) (Hagen, 2012; Hagen and Kudenov, 2013). The oper-
ating principle is presented in Fig. 3.5.

Figure 3.5: IFS-L principle. Source: (Hagen and Kudenov, 2013)

The light collected by an objective lens or a telescope is focused on a plane where
a lenslet array is arranged. Each microlens will capture the light coming from different
fields of view. A collimator placed after the microlens array leads to the collimation of
the light coming from each field and to the image’s magnification. The dispersion is
subsequently applied in a direction dictated by the lenslet array’s geometry to avoid the
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images’ superposition. Finally, the light is refocused on the detector.
The characteristic of such a design is that the lenslet array must lead to a smaller

f-number than the objective lens, which can result in difficulty in obtaining separate
images in the detector plane. The compromise found in practice to solve this difficulty is
using a pinhole mask in tandem with the lenslet array at the cost of the quantity of light
transmitted (Sugai et al., 2009).

An example of an instrument that uses the IFS-L principle is LATIS (Dwight and
Tkaczyk, 2017). This instrument, designed for fluorescence microscopy, allows almost
instantaneous access to multiple spectral bands of a scene (hyperspectral datacubes or
lambda stacks) through a tunable optical design.

The operating principle closely repeats the IFS-L scheme. The peculiarity of the de-
sign lies in the fact that the lenslet array, with a hexagonal structure, can be rotated to
avoid overlapping the spectral dispersion. In addition, the spectral dispersion can be
adjusted by changing the focal distance of the collimator and reimaging optics.

Figure 3.6 illustrates how one can obtain an extension of the spectral dispersion by
changing the focal length of the re-imaging optics. However, this measure leads to over-
lapping images from different targeted fields in the first step. To correct this effect, a
rotation of the lenslet array is necessary.

Figure 3.6: LATIS tunability. Source: (Dwight and Tkaczyk, 2017)

3.4.2. INTEGRAL FIELD SPECTROMETRY WITH SLICING MIRRORS (IFS-M)
Another approach for instant access to spatial and spectral information is the Integral
Field Spectrometry with Slicing Mirrors (IFS-M) (Hagen, 2012). The technique, applied
for example, in creating the ISS instrument (Gao et al., 2010), involves using an image
slicer. This is a stack of micro-mirrors (16mm×160µm in the case of ISS) with different
tilt angles, which can reflect the various fields in different directions. The reflected light
is later collected by a collimator that forms multiple pupils in the pupil plane. Further-
more, with the help of a beam expander, the stream of light is adjusted to the size of the
detector. The magnified pupils are later dispersed using an optical prism. Finally, the
different fields are imaged at the detector level using re-imaging lenses.
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If IFS-L is much more adapted for high spatial resolution, IFS-M is a more suitable
approach for applications requiring high spectral resolution. Overall, the latter tech-
nique has the advantage of a higher throughput but comes with more significant manu-
facturing difficulties.

Figure 3.7: IFS-M optical design. Source: (Gao et al., 2010)

3.5. POLARIMETRY WITH METASURFACES

Metasurfaces can successfully replace classical optical elements to achieve both diffrac-
tion and determination of light polarization. Metasurfaces are diffractive optical ele-
ments smaller than the wavelength of light obtained by lithographic methods, whose
geometric arrangement and size influence light diffraction and phase difference.

The main advantage of metasurfaces is compactness. They allow the creation of op-
tical instruments in which the polarimetric and the diffractive elements are compressed
into a single piece of a tiny size compared to the size of the classical elements. An exam-
ple of an instrument that integrates a metasurface intended for imaging polarimetry is
the one developed by (Li et al., 2023) and presented in Fig. 3.8. According to this scheme,
the metasurface is placed at the entrance of the optical instrument. It is provided with
orders of diffraction that act as analyzers for the different polarization states (Fig. 3.8, a,
b). After the metasurface, the optical imaging part follows, which allows obtaining po-
larimetric images. Particular attention should be given to the control of the field of view
(FoV ). Since the metasurface is characterized by its own diffraction angle, a FoV that is
too large can lead to overlapping images in the detector’s plane. This effect can be easily
controlled with the help of a field stop. The example reproduced here allows the mea-
surement of the entire Stokes vector on a narrow waveband. To cover a wider waveband,
the design must be modified so that the spectral and polarimetric modulation do not
overlap in the plane of the detector. Examples of instruments based on metasurfaces
that allow obtaining spectropolarimetric images can already be found in the literature
(Rubin et al., 2018, 2019, 2022).
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Figure 3.8: Schematic representation of an instrument that uses a metasurface to obtain polarimetric images.
With the help of a metasurface grating (a), the light is deflected in four distinct directions depending on the
type of polarization. Four distinct images with different polarimetric properties are obtained using imaging
optics in the detector’s plane. A fifth image, the central one, carries information about the light intensity. We
notice from the panel d) how compact this instrument may become. Source: (Li et al., 2023)

Manufactured by a lithographic method, the metasurface from the experiment men-
tioned here uses a TiO2 substrate (Devlin et al., 2016). It consists of pillar-like dielectric
elements, which act as tiny birefringent plates. The size of these pillars influences the
variation of the light phase, while their geometric arrangement determines the position
of the fast axis.

Metasurfaces demonstrate great versatility and allow the construction of highly com-
pact instruments adapted for different observation conditions and applications. Certain
limitations related to the precision of the manufacturing process continue to manifest
themselves. Over time, they will probably become smaller, which is why metasurfaces
represent a future field for spectropolarimetry and spectropolarimetry imaging.
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If you wish to make an apple pie from scratch, you must first invent the universe.
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4.1. THE STARTING POINT
Light polarization measurement technology is quite advanced today. Polarimetry, spec-
tropolarimetry, and snapshot spectropolarimetry can be performed today using differ-
ent approaches, depending on the applications for which these instruments are intended.
Polarization measurement is a relative process: the accuracy of the instruments and the
types of polarizations that can be measured depend on the intrinsic requirements of the
application domains. Polarimetric remote sensing of clouds and aerosols thus requires
measuring degrees of linear polarization starting from at least 0.5% (Dubovik et al., 2019;
Waquet et al., 2009). Studying exoplanets requires instruments capable of detecting cir-
cular polarization up to 10−7 (Kemp et al., 1971; Li et al., 2023). Such constraints dictate
the optical design of these instruments.

When it comes to instruments designed to measure polarization in space, the accu-
racy exigencies are compounded by the considerable constraints of the operating envi-
ronment. The instruments’ mass, volume, or robustness thus play a crucial role. The
history of this optics domain proves that gathering all these qualities in a single device
remains challenging.

A promising direction for the development of spectropolarimetry was opened in 2012
(Sparks et al., 2012). Aiming at the development of a spectropolarimeter capable of de-
tecting the entire Stokes vector, with a sensitivity of the order of 10−4 for circular polar-
ization so that biologically induced polarization becomes detectable in remote sensing,
the authors of this study proposed a variety of concepts capable of satisfying most of
these requirements.

CCD detector
Birefringent wedge

and polarizer
Slit perpendicular

to page

Along the slit
Wavelength

Phase delay
increases with
wedge thickness
in spatial direction;
imprints modulation
due to polarization

Dispersive

element

Figure 4.1: Concept of spectropolarimeter employing a birefringent wedge. Source: (Sparks et al., 2012)

The new approach uses a birefringent wedge, playing the role of a polarimetric mod-
ulator, followed by a linear polarizer and a dispersive element (see Fig. 4.1). The variable
thickness of the birefringent wedge ensures a continuous variation of the phase differ-
ence between the orthogonal components of the light electric field in the direction of
the slit. In contrast, the dispersive element ensures a spectral dispersion in a direction
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perpendicular to the direction of the slit. The variation of the phase difference causes
an incident light, characterized by a particular polarization, to undergo a continuous
change of the state of polarization in the direction of the slit after passing through the
birefringent wedge.
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Figure 4.2: Hypothetical modulation produced by the wedge-spectropolarimeter. The units for the x-axis are
µm, and for the wavelengths, nm. Source: (Sparks et al., 2012)

This variation of the polarization state in the vertical direction is transformed into
an intensity variation with the help of the analyzer. Overall, in the plane of the detec-
tor, in the perpendicular direction of the slit, the spectral dispersion is obtained. Along
the slit, the intensity variation caused by the change of the incident polarization by the
wedge will be observed (see Fig. 4.2). No polarimetric modulation can be obtained if the
incident light is not polarized.

This design is highly compact but does not allow for determining all polarization
states, as we will see in what follows. To overcome this shortcoming, at least one more
birefringent element must be added to the setup, with an optical axis different from the
first one. In this sense, (Sparks et al., 2012) have proposed using a component simi-
lar to the one shown in Fig. 4.3. This design allows the complete determination of the
Stokes vector over a spectral range that depends on the material used to manufacture
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the prisms.

Figure 4.3: Structure proposed for full Stokes spectropolarimetry. The red arrows (continued and dashed)
indicate the orientation of the fast axes for the birefringent wedges. Source: (Sparks et al., 2012)

A further step in exploiting this spectropolarimetric design idea was made by (Perte-
nais et al., 2015).

Figure 4.4: Types of modulators studied by Pertenais et al. The red dashed lines from figure a) indicate the
orientation of the optical axes of the prisms. Source: (Pertenais et al., 2015)

The design from Fig. 4.4, a) uses four prisms glued two-by-two. The first two prisms
from the left have an apex angle ξ and fast axes oriented at 45◦ and −45◦ (the red dashed
lines) with respect to the y−axis. The first wedge introduces a phase shift φ1, varying
in the vertical direction, whereas the second wedge is characterized by a phase shift φ2.
The following two wedges bonded together in a single prism, with the fast axes oriented
at 0◦, respectively 90◦, are introducing a phase shift of 2φ1, respectively 2φ2.

In a second approach, Fig. 4.4, b), the authors proposed to replace the four prisms
with a single block of three prisms optically glued together. The first wedge from the
left of the new type of modulator has an apex angle ξ, and the fast axis is oriented here
at α =0◦ with respect to the y−axis. The middle prism has a fast axis along the z−axis,
which is the direction of light propagation. In the third prism, the fast axis is placed at
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45◦ with respect to the y−axis. The apex angle of this last wedge is 2ξ. In this way, if the
first prism determines a phase shift of φ, the last prism will be characterized by a phase
shift 2φ.

Both approaches proved extremely promising, ensuring a complete determination of
the Stokes vector and satisfying the constraints related to mass, volume, and robustness
imposed by the necessity of use in space. The type of modulator shown in Fig. 4.4 b) was
identified by (Pertenais et al., 2015) as the most robust and most suitable for space ap-
plications. It has the smallest number of surfaces and can also ensure the minimization
of the risks related to the misalignment of the optical components.

As a result, we focused our attention on this modulator model. Previous studies
(Pertenais et al., 2014, 2015) have demonstrated its potential. The following sections will
dissect this modulator concept in detail. We will closely see where the need for a triple
structure comes from, how it acts on polarized light, and how it can facilitate polarization
determination. In addition, for the first time, we will discuss the geometrical parameters
of this instrument concept. We will see how its performance is influenced by the values
these parameters can take, which are the most suitable geometries to be realized prac-
tically, and the polarimetric signal demodulation methods at hand. Furthermore, some
hints for obtaining spectropolarimetric images will be proposed.

4.2. TOWARDS A COMPACT STRUCTURE

The crystal chosen to build the modulator, the critical component of the instrument
studied here, was MgF2. This salt has an excellent transmission between UV and IR, with
more than 94% in the interval [0.2,6]µm, at normal incidence. The birefringent property
also spans the same broad spectrum, making the material a good choice for spectropo-
larimetric applications. In addition, it is less brittle than CaF2 and can be easily man-
ufactured in different shapes and polished. Moreover, the behavior of the crystal with
temperature or humidity is well studied, and comprehensive data is available (Tropf and
Spie, 1995). Figure 4.5 displays the variation of the refractive index with the wavelength,
in agreement with Dodge’s study of MgF2 (Dodge, 1984).

0 2 4 6

 [ m]

1.3

1.4

1.5

1.6

1.7

R
e
fr

a
c
ti
v
e
 i
n
d
e
x

n
e
 and n

o
 for MgF

2
 at T=20°C

n
o

n
e

0 2 4 6

 [ m]

0.005

0.01

0.015

R
e
fr

a
c
ti
v
e
 i
n
d
e
x

 n=n
e
-n

o
 for MgF

2
 at T=20°C

Figure 4.5: Birefringence of MgF2. Used model: Dodge

The Sellmeier model devised by Dodge for the two indices of refraction is:
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{
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Figure 4.6: Transmission of MgF2, for normal incidence and 5 mm thick sample. Source of data: Thorlabs

This modulator in MgF2 has three parts. These are three wedges from the same mate-
rial, cut so that the fast axes are differently oriented in each of them. The reason for using
wedges is that, in this way, the length of the optical path will vary inside each prism, and
thus, the phase difference between the orthogonal components of the electric field of
light will also vary.

Let us consider the simple example of a prism in MgF2, upon which the light, with
a wavelength λ, arrives orthogonally from the left side (see Fig. 4.7) and for which the
fast axis makes an arbitrary angle ρ with the x-direction. Suppose this optical wedge is
followed by a linear polarizer, oriented at angle θ to the same x−direction. In that case,
the intensity detected at the position y in the vertical direction is:

I = 1

2

(
S0 +S1m(ρ,θ,φ(y,λ))+S2n(ρ,θ,φ(y,λ))+S3p(ρ,θ,φ(y,λ))

)
, (4.2)

where m,n, and p are modulation functions determined by the modulator’s features and
the analyzer’s orientation, and Si , i = 0,1,2,3 are the Stokes parameters of the incoming
light.
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Figure 4.7: General schema of a polarimeter employing a single prims in MgF2 as modulator.

With the help of the Mueller calculus and ignoring the Fresnel terms, which are very
small for normal and close to normal incidence, the functions m, n, p can be easily
computed:

m(ρ,θ,φ(y,λ)) = cos(2θ)
(
C 2 +S2 cos(φ)

)
−C S sin(2θ)

(
cos(φ)−1

)
n(ρ,θ,φ(y,λ)) = sin(2θ)

(
S2 +C 2 cos(φ)

)
−C S cos(2θ)

(
cos(φ)−1

)
p(ρ,θ,φ(y,λ)) =C sin(2θ)sin(φ)−cos(2θ)sin(φ)

, (4.3)

where C = cos(2ρ), S = sin(2ρ), and φ represents the phase difference between the or-
thogonal components of the electric field induced by the prism at the level y .
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Figure 4.8: Geometry of the prism.

This phase difference is given by:

φ(y,λ) = 2π

λ
∆n(λ)D(y), (4.4)

where λ is the wavelength of the in-
coming light, and ∆n(λ) = |no(λ)−ne (λ)|
is the birefingence of the prism.

The distance, D(y), traveled by the
light inside the prism at the level y can be
easily computed using the notations from
Fig. 4.8:

D(y) = d0 + (h − y) tan(ξ). (4.5)

In this equation, h is the height of the wedge, and ξ is the apex angle, whereas d0 is
an additional thickness that can be foreseen to strengthen the prism’s body and facilitate
the manipulation.

The advantage of such a design is that it ensures an almost complete modulation of
the polarization. One can retrieve the incoming Stokes vector from a single shot with
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enough readings or illuminated pixels in the vertical direction. Still, there is an indeter-
minate. When the incoming light is linearly polarized at the same angle as the fast axis
orientation of the prism, or orthogonal to this, then there will be a single component of
the electric field. No phase difference will be imposed between the field components for
these cases. Consequently, the intensity of the light having these polarizations will be
constant in the y direction. Because of this, such linear polarization states will remain
indeterminate and indistinguishable from unpolarized light. A second prism (see Fig.
4.9) can be placed after the first to overcome the undetermination. If the fast axis of the
second prism is differently oriented, then a modulation can also be obtained for the lin-
ear state that is parallel or perpendicular to the first axis. Various orientations of the fast
axes for the two prisms can be chosen. As long as these two axes are neither parallel nor
perpendicular to each other, a complete modulation of the polarization can be achieved.
Such a modulator, followed by a linear analyzer, can serve as a full Stokes snapshot spec-
tropolarimeter. The expression of the intensity in the detector plane can be computed
using the Mueller calculus.

d0

d0

h

ξ

ξ

z

x
y

o

Figure 4.9: Hypothetical design that can solve the un-
determination of the linear state. The orientation of the
fast axes is represented in red.

As a simple illustration of what can be
obtained with this configuration, one can
imagine the situation of two prisms with
the fast axes oriented at 0◦, respectively
45◦, and presenting the same apex angle.
This would be a robust design with paral-
lel faces. For this configuration, the phase
difference determined by the first prism
is:

φ1 = 2π

λ
∆n(λ)

(
d0 + (h − y) tan(ξ)

)
, (4.6)

whereas in the second prism is:

φ2 = 2π

λ
∆n(λ)

(
d0 + y tan(ξ)

)
. (4.7)

With the help of the Mueller calculus
(Eq. 2.25), the Mueller matrices associ-

ated with the two prisms can be easily computed. Therefore, the first prism from the
left, with a fast axis oriented along the x−axis, has the matrix:

M1(ρ = 0) =


1 0 0 0
0 1 0 0
0 0 c1 s1

0 0 −s1 c1

 (4.8)

where c1 = cos(φ1), s1 = sin(φ1). We see now clearly that the first prism lets the incom-
ing state of polarization S⃗i n = (S0,S1,0,0)T unaffected. Globally, its effect on the Stokes
parameters can be summarized as follows:
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S0 → S0

S1 → S1

S2 →
{

S′
2

S′
3

S3 →
{

S′
2

S′
3

, (4.9)

where S⃗out = (S′
0,S′

1,S′
2,S′

3)T is the resulting Stokes vector, recorded on the exit face of
the prism. In other words, the linear horizontal and vertical polarizations will pass un-
affected through the prism. In contrast, the linear ±45◦ and circular polarizations will
be converted into one another in a certain amount, depending on the position on the
vertical at which the light passes through the prism.

Using again the relation (2.25), the Mueller matrix of the second prism, having a fast
axis oriented at 45◦ with respect to the x−axis, can be retrieved:

M2(ρ = 45) =


1 0 0 0
0 c2 0 −s2

0 0 1 0
0 s2 0 c2

 (4.10)

where c2 = cos(φ2), and s2 = sin(φ2). As is expected, the second prism lets unaffected
state ±45◦ while it converts the linear horizontal-vertical and circular polarizations into
one another in a certain amount. The global transformation of an incoming Stokes vec-
tor after passing through this wedge is:

S0 → S0

S1 →
{

S′
1

S′
3

S2 → S2

S3 →
{

S′
1

S′
3

, (4.11)

The compound represented in Fig. 4.9 has a total Mueller matrix M:

M = M2(ρ = 45) ·M1(ρ = 0) =


1 0 0 0
0 c2 s1s2 −s2c1

0 0 c1 s1

0 s2 −s1c2 c2c1

 (4.12)

This result shows that any state of polarization arriving from the left side is converted
into a new form of polarization by the block of two prisms. The type of the new polar-
ization depends on the position in the vertical direction. If we look closely at the matrix
(4.12), we notice that the transformations undergone by the Stokes parameters can be
summarized like:
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S0 → S0

S1 →
{

S′
1

S′
3

S2 →


S′

1

S′
2

S′
3

S3 →


S′

1

S′
2

S′
3

, (4.13)

The variation of the outgoing vector with the position y in the vertical direction can
also be observed with the help of the Poincaré sphere. Figure 4.10 shows how, starting
from the incoming vector S⃗ = (1,1/

p
3,1/

p
3,1/

p
3)T (the black dot), arbitrarily chosen,

a series of completely new vectors (green dots) is obtained all around the sphere.

Figure 4.10: Poincaré representation of the outgoing states resulting after the passage of light characterized by
the Stokes vector S = (1,1/

p
3,1/

p
3,1/

p
3)T (the black dot) through the prism 1 (red dots), through the prism

2 (blue dots) and through the block formed by the two prisms (green dots).

.

If, after this block, we add a linear polarizer, with the transmission axis oriented at
an angle θ with respect to the same x−axis, then the resulting Muller matrix of the entire
optical system is:
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M = MLP (θ) ·M2(ρ = 45) ·M1(ρ = 0) = 1

2


1 cc2 cs1s2 + sc1 −cs2c1 + ss1

c c2c2 c2s1s2 + c1cs −c2s2c1 + s1cs
s c2cs css1s2 + s2c1 −s2c1cs + s1s2

0 0 0 0


(4.14)

where c = cos(2θ), and s = sin(2θ). The Stokes vector resulting after the passage of light
after this optical system is:

S′
0

S′
1

S′
2

S′
3

= (MLP (θ) ·M2(ρ = 45) ·M1(ρ = 0)) ·


S0

S1

S2

S3

 (4.15)

Therefore, the intensity (Iout ) detected by an optical detector placed after the linear po-
larizer is represented by the first term of the resulting Stokes vector:

Iout = S′
0 =

1

2

(
S0 +S1(cc2)+S2(cs1s2 + sc1)+S3(ss1 − cs2c1)

)
(4.16)

Consequently, the functions m, n, and p, previously presented (Eq. (4.3)) become
now:


m(y,θ,φ1,φ2) = cc2 = cos(2θ)cos(φ2)

n(y,θ,φ1,φ2) = cs1s2 + sc1 = sin(2θ)cos(φ1)+cos(2θ)sin(φ1)sin(φ2)

p(y,θ,φ1,φ2) = ss1 − cs2c1 = sin(2θ)sin(φ1)−cos(2θ)cos(φ1)sin(φ2)

. (4.17)

The drawbacks of this design are mainly related to the deviation of light after the
passage from the first into the second prism. Both ordinary and extraordinary vibrations
from the first prism will be split into two new ordinary and extraordinary rays according
to the orientation of the fast axis inside the second prism. The phenomenon will be more
visible in the upper part, as the rays will travel longer in the second prism at this level.
It is a design proposed in 2012 (Pertenais et al., 2015). The two prisms can be placed in
an antiparallel configuration to compensate for this effect. A third prism can be inserted
in the middle to ensure an almost constant index of refraction and keep the light on the
z-axis (see Fig. 4.11). If the fast axis of this middle body is also oriented along z, then
this prism will not affect the polarization of light. From a polarimetric point of view, it
will be an inactive medium, serving only the purpose of keeping everything together in
a compact structure. If the two active wedges have the apex angles ξ and ψ, then the
phase difference induced by each of them will be:{

φ1 = 2π
λ ∆n(λ)(d0 + (h − y) tan(ξ))

φ3 = 2π
λ ∆n(λ)(d0 + (h − y) tan(ψ))

, (4.18)

where φ1 is the phase difference determined by the first prism from the left, and φ3 is
the phase difference induced by the third prism. In the scenario when the fast axis from
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the first prism is oriented at 0◦, along the x-axis, while the third prism makes an angle of
45◦ with the same x-axis, in the x y plane, the modulation functions are provided by the
relations (4.17), where φ2 is replaced with φ3.
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Figure 4.11: Modulator with triple prism structure. The orientations of the fast axes are marked in red.
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Figure 4.12: Code V representation of a 45◦ linear polarization passing through the modulator. No analyzer
was considered for this simulation. We notice the continuous variation of the resulting polarization in the
vertical direction. Because along the x−axis, there is no intensity modulation, the same state of polarization
will emerge along the entire x−length of the prism.

4.3. THE WORKING PRINCIPLE
The working principle of a spectropolarimeter employing the above modulator is illus-
trated in Fig. 4.13 and 4.14.
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Figure 4.13: Schematic representation of the spectropolarimeter employing the triple prism modulator.

Therefore, the light arriving collimated from the left side passes through the modu-
lator (the triple prism compound) and a linear polarizer before arriving on the detector
(CCD). A spectral filter or a dispersive element should be introduced to select a partic-
ular wavelength between the linear polarizer and the CCD. The polarized (partially or
entirely) light will be modulated in intensity in the vertical direction, whereas the op-
tics will only attenuate the nonpolarized light. All polarization will generate a particular
intensity pattern in the detector plane along the vertical. This pattern is related to the
wavelength and the type of polarization. The ideal expression of the intensity detected
by a pixel situated at the level y , at the wavelength λ, when the light carrying the state of
polarization S⃗ = (S0,S1,S2,S3)T passes through the system is:

I (y,θ,φ1,φ3) = 1

2

(
S0 +S1 ·m(y,θ,φ1,φ3)+S2 ·n(y,θ,φ1,φ3)+S3 ·p(y,θ,φ1,φ3)

)
, (4.19)

where the modulation functions m, n and p are:


m(y,λ,θ) = cos(2θ)cos(φ3)

n(y,λ,θ) = sin(2θ)cos(φ1)+cos(2θ)sin(φ1)sin(φ3)

p(y,λ,θ) = sin(2θ)sin(φ1)−cos(2θ)cos(φ1)sin(φ3)

, (4.20)

and the phase differences corresponding to the first (φ1), respectively, the third prism
(φ3) are provided by Eq. (4.18).
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Figure 4.14: Illustration of the principle of functioning for the spectropolarimeter: the polarized light, coming
collimated from the left side, passes through the modulator, the analyzed, and, then, a dispersive element (or
a spectral filter). A distinctive intensity pattern in the vertical direction will characterize each wavelength. The
prisms’ apex angles and the modulator’s size are exaggerated compared to the other instrument components.

We assumed in this expression that the light is perfectly collimated and orthogonal
to the modulator. In addition, the impact of the Fresnel terms is neglected as the Mueller
matrix corresponding to the transmitted beam is close to the unity matrix when the apex
angles are very small. Using the relations (4.19) and (4.20), the intensity pattern can be
simulated for any polarization and any wavelengths or conditions of observations.

Figure 4.15 displays the modulations obtained for the arbitrary state of polarization
S⃗ = (1,0.3,0.3,0.3)T , at two different wavelengths (0.5µm, respectively 0.7µm), and a
signal-to-noise ratio (SN R) of 50, when the analyzer has the transmission axis arbitrarily
oriented at 73◦ to the x-axis. The normalized intensity displayed here corresponds to the
modulation associated with the normalized Stokes vector.

The signal-to-noise ratio is defined as:

SN R = S0

Noi se
(4.21)

It can be noticed that increasing the wavelength spreads the pattern more. The phe-
nomenon is due only to the fact that the birefringence of MgF2 decreases with wave-
length.

The degree of polarization (see Eq. 2.10) is translated into the amplitude of the vari-
ation. Completely polarized light has a higher amplitude than partially polarized light
(see Fig. 4.16).
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Figure 4.15: Simulated modulation for an incoming Stokes vector S⃗ = (1,0.3,0.3,0.3)T , and two different wave-
lengths, λ = 0.5µm, and λ = 0.7µm. The 2D representations from the left simulate the image the detector
displays, while the right plots present the intensity variation along a column of pixels.
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Figure 4.16: Smaller degrees of polarization (DoP ) are translated into smaller modulation amplitudes.

Mitigating background noise and adjusting the integration time remain the best strate-
gies to access the tiniest degrees of polarization. In addition, due to the redundancy on
the horizontal, multiple lines of pixels can be used to access the state of polarization,
decreasing the impact of noise in this way. A certain pattern characterizes each polariza-
tion passing through this type of modulator. As we can observe from Fig. 4.17, the shape
of the variation changes from one polarization to another. Therefore, the Stokes param-
eters of the incoming light could be retrieved by fitting the detected intensity pattern
with the theoretical function from Eq. (4.19).

Still, some fundamental questions should be answered before considering this con-
cept of spectropolarimeter as a reliable and efficient approach for the snapshot mea-
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surement of any polarization. These questions are:

• Does any polarization correspond to a unique pattern of intensity?

• What is the best choice for the modulator’s apex angles?

• What is the best orientation of the analyzer?

• How could the observing conditions (spectral resolution, noise, temperature) im-
pact the polarization retrieval?

All these questions will be answered in the next chapter.

Figure 4.17: Simulated modulation for three different polarization states: linear horizontal polarization (top),
linear 45◦ (middle), and circular right polarization (bottom).

4.4. RETRIEVING THE POLARIZATION OF THE INCOMING LIGHT
Finding the Stokes vector of the incoming light means inferring the terms of this vector
starting from the pattern of intensity in the detector plane. Two approaches are possible.
The first, exploited mainly in the first part of this research, uses the fit of the modulation
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function I (y,θ,φ1,φ3) to the intensity data. The second approach uses the determina-
tion of a modulation matrix, W , and from here the inverse of W , called the instrumental
matrix. Knowledge of the instrumental matrix makes retrieving incoming Stokes vectors
through a simple matrix product possible (see Eq.(3.10)). At this point, a short clarifica-
tion is necessary for these two methods.

Therefore, the first method, employing the fit, is an exquisite one, using the instru-
ment’s theoretical design. With the help of built-in algorithms from MATLAB or Python,
the Stokes parameters can be quickly inferred (see Fig. 4.18). Still, there is a problem that
this method should face before becoming applicable. It requires an exact knowledge of
the modulator: fast axis orientations, apex angles, and birefringence, which can also be
altered by humidity or temperature; all these parameters must be well determined. In
addition, it is primarily applicable to the central field of view.

Any uncertainty we may have on these parameters is translated into errors. The im-
pact can be considerable, even for tiny deviations.

• Uncertainty on the apex angles

Thus, starting from an arbitrary design of the modulator, in which the first apex angle
is ξ=2.2◦ and the third angle is ψ=3◦, Fig. 4.19 maps the relative error on the degree of
polarization as a function of the uncertainty that we may have for these angles.

The formulas used to calculate this error are:


∆DoLP (ξ,∆ξ) = 100 · |DoLP (ξ+∆ξ)−DoLP (ξ)|

DoLP (ξ)

∆DoLP (ψ,∆ψ) = 100 · |DoLP (ψ+∆ψ)−DoLP (ψ)|
DoLP (ψ)

, (4.22)

where ∆ξ and ∆ψ are the deviations of ξ and ψ from the considered values (ξ =2.2◦,
ψ=3◦), and DoLP (ξ), DoLP (ψ) are the degrees of polarization retrieved when the apex
angles correspond exactly to the reference values.

We notice how strong the impact of a small uncertainty can be. Thus, an error of the
order of 0.05◦ degrees is translated in an error of the order of 10% on the degree of po-
larization. To stay below 5% with the error, we need a precision of approximately 0.04◦
degrees for the first angle and of approximately 0.02◦ for the second one. If the demod-
ulation is very sensitive to the precision we can have on the apex angles, the situation is
different in the case of the orientation of the fast axes (see Fig. 4.20).



4

80 4. A NEW DESIGN OF SPECTROPOLARIMETER

0 1 2 3 4 5 6 7
y-axis (m) 10-3

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 (n
or

m
al

iz
ed

)

SNR=50; Sfit=(1,-0.0005,0.0005,0.998)T ; R2=0.998

data
fitted curve

0 1 2 3 4 5 6 7
y-axis (m) 10-3

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 (n
or

m
al

iz
ed

)

SNR=50; Sfit=(1,0.5783,0.5779,0.5781)T ; R2=0.998

data
fitted curve

0 1 2 3 4 5 6 7
y-axis (m) 10-3

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 (n
or

m
al

iz
ed

)

SNR=50; Sfit=(1,0.0006,1,-0.0007)T ; R2=0.998

data
fitted curve

0 1 2 3 4 5 6 7
y-axis (m) 10-3

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 (n
or

m
al

iz
ed

)

SNR=50; Sfit=(1,0.9986,0.0005,-0.0004)T ; R2=0.998

data
fitted curve

𝑆!" =

1
1
0
0

𝑆!" =

1
0
1
0

𝑆!" =

1
0
0
1

𝑆!" =

1
1/ 3
1/ 3
1/ 3

Figure 4.18: Examples of polarization retrieved with the fit procedure: a set of data corresponding to four
incoming vectors (S⃗i n )) describing a totally polarized light is generated with the help of the function (4.19).
Here, we used an arbitrary pixel size of 3.5µm and a wavelength of 0.5µm. We then apply an arbitrary level of
noise to this data. Ultimately, we fit the distorted data with function (4.19) and recover the Stokes parameters
(S⃗ f i t ).
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An error of approximately 2◦ on the orientation of the fast axes translates into an
error of less than 1.8% on the determined degree of polarization.

Figure 4.19: Relative error on the degree of polarization (%) as a function of the uncertainty on the apex angles
ξ and ψ.

Figure 4.20: Relative error on the degree of polarization (%) as a function of the uncertainty on the orientation
of the fast axes in the first and the third prism.

A similar formula with Eq. (4.22) was used to compute this error, and the only dif-
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ference now comes from replacing the angles ξ and ψ with the orientations of the fast
axes.

• The field of view

Another extremely sensitive parameter that must be considered in the analysis of the
functioning of this instrument is the field of view (FOV ). All previous simulations and
illustrations were based on the hypothesis of a point source of polarized light that was
perfectly collimated and had a normal incidence on the modulator. In other words, only
the effect of the central field was monitored (the red field from Fig. 4.21). In reality,
however, for an extended light source, the rays will be focused not on a point but on
a surface (Petzval surface). As a result, the source of the collimator situated in front of
the modulator will not be a point but an extended object. Consequently, the modulator
will be crossed by the light coming from the central and off-axis fields. This overlap will
propagate up to the level of the detector. This situation is intuitively represented in Fig.
4.22. Therefore, most pixels will be illuminated by a cone of light, the opening being
determined by the FOV from which they receive the light.

Figure 4.21: Schematic representation of the situation when FOV is different from zero. The light collected by
the telescope (not presented here) converges in the focal plane. A collimator placed after the telescope’s focal
plane helps us collimate the light for the polarimetric part. Only the central field will have a normal incidence
on the modulator. The rest of the fields will have an oblique incidence, depending on the focal length of the
collimator and the image size from the focal plane.

Although this lighting cone is not necessarily symmetrical for all the pixels about the
z−axis of the reference system, to simplify the simulations, we will place ourselves in
this hypothesis (see Fig. 4.22). Therefore, the total intensity detected by a pixel with the
extension ∆y along the vertical direction is:

Iout =
∫ ∆yi

∆yi−1

∫ +α

−α
I (y,α)d ydα. (4.23)

where I is the function from Eq. (4.19). This means that each pixel will receive light
from the central field and the other fields located between 0 and the maximum angle
α= FOV /2. The difference between the rays belonging to the central field and the others
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Figure 4.22: The FOV translated into the conditions of illumination of a pixel. The angle α corresponds here
to FOV /2

lies, from a polarimetric point of view, in the fact that the off-axis rays will go through
a different phase delay. It is not just a simple phenomenon of magnification. It is a
phenomenon of superposition of modulations from various regions of the modulator.

The consequence of the existence of the FOV ̸= 0 is the reduction of the visibility
of the intensity pattern. The difference between the minimum and maximum intensity
values recorded along the vertical direction decreases as the field of view increases. The
essential parameters that now intervene in forming the intensity pattern on the detector
plane are the FOV (or α) and the distance between the detector and the modulator (l ).
Thus, as the distance between the modulator and the detector increases, the projected
size of the pixels in the modulator plane will also increase. The integration of the inten-
sity modulation over an increasing distance results in a blurring of the intensity varia-
tions. In fact, when the light collected by a pixel is coming from a cone of light with an
opening α, the phase variation of the light collected by this pixel is no longer expressed
by Eq. (4.18). The optical path traveled inside each of the prisms varies, which will affect
the phase variation. The new expressions of the phase difference induced by the prisms
1 and 3 are:

∆φ1(y,α) = 2π

λ
∆n(λ)

1

cos(α)

[ l + y tan(ξ)

1− tan(α) tan(ξ)

]
, (4.24)

∆φ3(y,α) = 2π

λ
∆n(λ)

1

sin(α)+ cos(α)
tan(ψ)

[(
3l +h(tan(ξ)+ tan(ψ))

)
tan(α)+ l + y tan(ψ)

tan(ψ)

]
,

(4.25)
where α is the angle of incidence, and l is the distance between the entry face of the
modulator and the detector. The blurring of intensity can be observed in Fig. 4.23.
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Figure 4.23: The effect of the field of view and the detector-modulator distance on the intensity pattern. The
top plot shows the case of the gradual increase of α from 0◦ to 1◦ for a modulator-detector distance of 5 mm.
The second plot shows the same gradual increase ofα, when the detector is located at 5 cm from the modulator.

Thus, after correcting the expression of the phase difference in the three prisms of
the modulator, to take into account an oblique incidence, we simulated the detected
intensity forα between 0◦ and 1◦, and for two different distances modulator-detector (l ).
In order to compute the intensity value, we used again a simplified model. The middle
part of the modulator continues to have a negligible role in the signal modulation, and
the Fresnel terms are ignored. Figure 4.24 details the case of a detector located at 5 mm or
5 cm away from the modulator. For a distance of 5 cm, we notice a strong "attenuation"
of the pattern when α increases.

The modification of the pattern of the intensity with the angle α influences the error
level in the determination of the Stokes parameters. To see this effect, a series of simu-
lations were performed starting from an arbitrary input vector, S⃗ = (1,0.5,0.5,0.1)T . The
results are represented in Fig. 4.24.

The first plot from the top in Fig. 4.24 shows the intensity pattern corresponding
to the central field. The second graph shows the effect of increasing α from 0◦ to 0.1◦,
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Figure 4.24: The effect of the field of view on the modulation quality.

under the conditions of a detector located 5 cm away from the modulator. Based on this
pattern, the last graph shows the relative error in determining the Stokes parameters
using the fit method when the field increases.

As explained above, the existence of an α angle different from zero changes the in-
tensity pattern. And this will translate into the demodulation quality. Determining the
polarization is based on fitting the intensity function to the values in the detector plane,
which calls only for the theoretical expression of the intensity corresponding to the cen-
tral field. The extended function, which also considers the existence of a field of view,
fails to produce a good fit.

Because of this constraint, the error in the polarization reconstruction will increase
with the α angle. For the values considered in this simulation, we note that an α=0.05◦
will cause an error of approximately 5% in determining parameters S2 and S3 and ap-
proximately 2% for S1.

Creating an instrument in which the distance between the detector and the modu-
lator is so small is, however, very difficult. Suppose we increase this distance up to, say,
10 cm (see Fig. 4.25). In that case, we notice that to stay within the limits of the same
order of magnitude of the errors, we will have to decrease α around 0.03◦, a value con-
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sistent with the values currently used in astronomy.
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Figure 4.25: Same simulations as in Fig. 4.24, but for a detector situated at a distance of 10 cm to the entry face
of the modulator.

Both simulations show that the field of view strongly affects the quality of the de-
modulation.

Thus, for a particular configuration of the optical system, which assumes a fixed dis-
tance between the modulator and the detector, the increase of the field of view results in
a blurring of the intensity pattern and an increase in the error in determining the polar-
ization (see Fig. 4.23). The contrast of the pattern was defined here as:

C = 100 · Imax − Imi n

Imax + Imi n
, (4.26)

where Imax stands for the maximum value of the intensity detected, and Imi n for the
minimum value.

However, it should be emphasized that this is valid only in the case of demodulation
based on the fit with the theoretical function. The main reason for the increase in error
is not necessarily the decrease in the visibility of the pattern but the fact that the the-
oretical function no longer accurately describes the intensity variation at the detector
level. As pointed out above, the reason behind this deviation is that only the function
corresponding to the central field can be used for the fit.
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Figure 4.26: Contrast degradation as a function of α and l .

If, instead, the demodulation is based on the determination of the instrumental ma-
trix, then the field of view’s effect is considered and included in the demodulation pro-
cess. It no longer leads to an additional error. In the case of demodulation based on the
instrumental matrix, the SN R value is the decisive factor, together with the degree of
polarization. The latter plays an equally important role as the field of view, as it has the
same effect on the intensity pattern.

The decrease in the degree of polarization of the incident light is also translated into
a reduction in the visibility of the pattern. As an elementary rule, it can be noted that, at
a constant SN R, the polarimetric sensitivity decreases by increasing the field of view so
that only high degrees of polarization can be perceived. Reducing the field of view has
the opposite effect: weaker degrees of polarization become accessible.

Based on the determination of the modulation matrix W , the second approach for
the demodulation of the signal seems to cope much better with the errors and uncertain-
ties related to the system parameters. Thus, instead of trying to assess the uncertainty
of the main parameters of the optical system, this method uses the system’s product as a
whole. By this, it comprises the effect of the actual value of the main parameters. In this
approach, the modulation matrix (W ) and the instrumental matrix (W −1) are, at first,
determined experimentally for the required wavelength and optical setup. Then, the de-
modulation becomes possible from here, using the relation (3.13). The retrieval of the
instrumental matrix is based on a calibration technique that uses a series of well-known
polarization states as input and corresponding modulations (Boulbry et al., 2007). More
details about this procedure are presented in the second part of this thesis. Instead of
propagating errors on the system’s parameters, this method propagates the uncertainty
related to the input Stokes vector.
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The two methods are not incompatible but complementary, and depending on the
context, the more suitable one can be chosen. Thus, if the knowledge of the modulator
can guarantee an error on the Stokes parameters below what we can achieve with a cal-
ibrated polarization state generator (PSG) in the second one, then there is no reason to
choose the determination of the instrumental matrix. Due to the limited available time,
in the current research, we have used the fit method of the theoretical function of the
intensity (Eq. 4.19) to the simulated data in the theoretical exploration of the polarime-
ter. The second method was used for experimental validation. In the last part of this
research, we will see that the second method can produce an excellent retrieval of the
Stokes parameters even without a precise knowledge of the optical system.

• Uncertainty on the temperature

Just like the imprecision on the apex angles, the uncertainty on the temperature can
also largely impact the use of the fit of the theoretical function to the experimental data
to retrieve the polarization. The optical properties of the modulator vary depending on
the temperature. Using the Sellmeier model, the variation of the birefringence of MgF2
with temperature can be determined, and thus, the impact of an inaccuracy on the tem-
perature in determining the Stokes parameters can be simulated (Tropf and Spie, 1995).
Figure 4.27 illustrates the error on the normalized parameters s1, s2, and s3 for the tem-
perature inaccuracy of up to 1 ◦C.

Figure 4.27: Relative error on the normalized Stokes parameters (%) as a function of the uncertainty on the
temperature.

The formula used to compute this relative error is also similar to Eq. (4.22):

∆si (T,∆T ) = 100 · |si (T +∆T )− si (T )|
si (T )

, (4.27)

where si are normalized Stokes parameters (Si /S0, for i = 0,1,2,3), T is the reference
temperature (here 20 ◦C), and ∆T the deviation from this temperature.
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Note that the most affected is the determination of the circular polarization, with an
error of up to 0.4%, followed by the polarization at 45◦. The effect on vertical or horizon-
tal linear polarization is almost negligible.

4.5. SAMPLING CRITERIA
Patterns of modulation resembling those presented in Fig. 4.17 can be obtained for vari-
ous geometrical configurations of the prisms. Considerable freedom exists for choosing
the apex angles and the fast axes orientations for the two active wedges of the modula-
tor. Still, the apex angles should stay at minimal values for a compact structure. This
will also ensure the minimization of the effect of the split of rays and the impact of the
Fresnel terms. If the choice of the fast axes orientation can be dictated by the simplicity
of the model and the necessity to modulate the polarization that passes unaffected by
the first prism, the reasoning for the apex angles is more complex. Therefore, it should
be underlined that a larger apex angle has a faster variation of the phase in the vertical
direction and an increase in the weight of the Fresnel terms for transmission and reflec-
tion. Because the phase affects the polarization modulation through the cos and si n
functions, the Nyquist criteria should be fulfilled when sampling the signal in the detec-
tor plane. That means that the size of the pixels used to collect the signal is smaller than
half of the shortest period of the variation of intensity in the vertical direction and that
the signal is read on a distance at least equal to the largest period. Coming back to the
example presented in Fig. 4.10, where the fast axes were oriented at 0◦, respectively 45◦,
and the apexes were ξ and ψ, then the maximum dimension of a pixel (∆ymax ) and the
minimum distance to be sampled (Ymi n) can be easily inferred using common trigono-
metric identities. Thus, if we consider, for simplicity, that the reference frame is pointing
downwards with the y-axis, and the additional thickness, d0, is zero, then we have the
following criteria, separated by type of polarization:

• Horizontal or vertical incoming polarization: S⃗i n = (S0,S1,0,0)T

– Detected intensity:

Iout (y,θ,φ1,φ2) = 1

2

(
S0 +S1 ·m(y,θ,φ1,φ2)

)
(4.28)

– Maximum pixel size:

∆ymax = λ

2∆n(λ) tan(ψ)
(4.29)

– Minimum sampling distance:

Ymi n = 2 ·∆ymax (4.30)

• ±45◦ linear polarization: S⃗i n = (S0,0,S2,0)T

– Detected intensity:

Iout (y,θ,φ1,φ2) = 1

2

(
S0 +S2 ·n(y,θ,φ1,φ2)

)
(4.31)
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– Maximum pixel size:

∆ymax = λ

2∆n(λ)
(
tan(ξ)+ tan(ψ)

) (4.32)

– Minimum sampling distance:

Ymi n = λ

2∆n(λ)
(
tan(ξ)− tan(ψ)

) (4.33)

• Circular polarization: S⃗i n = (S0,0,0,S3)T

– Detected intensity:

Iout (y,θ,φ1,φ2) = 1

2

(
S0 +S3 ·p(y,θ,φ1,φ2)

)
(4.34)

– Maximum pixel size:

∆ymax = λ

2∆n(λ)
(
tan(ξ)+ tan(ψ)

) (4.35)

– Minimum sampling distance:

Ymi n = λ

2∆n(λ)
(
tan(ξ)− tan(ψ)

) (4.36)

Suppose we choose an arbitrary geometry, with the first apex angle of 2.6◦ and the
second 1.8◦. In that case, we notice that the camera’s pixel size should be smaller than
0.1 mm to make observations at any wavelength. A condition that is easy to fulfill with
most of the CCD cameras existing today. In addition, with a region of interest spanning
at least 4 mm in the vertical direction, any polarimetric signal can be deciphered for any
wavelength between 0.12µm and 0.7µm. Moreover, a geometry with apex angles of 1.5◦
and 3◦ can require an even smaller sampling distance, as shown in Fig. 4.28.
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Figure 4.28: Sampling criteria for two possible modulator configurations.
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However, the sampling distance should not be the only criterion for choosing an ar-
chitecture of this type of modulator. As we proved in our previous research, which can
be retrieved at the end of the next chapter, another concept should also be considered:
the efficiency of the modulation scheme.

The functioning of the modulator supposes a collimated beam arriving orthogonal
on the first prism. However, the spot size can contract or enlarge between this point and
the detector, depending on the intermediary optics. The Nyquist criterion imposes the
limits of this phenomenon of magnifications. Thus, when the spot contracts, we must
pay attention that the smallest period of the signal is spread at the detector level on at
least 2 pixels in the vertical direction. On the other hand, an enlargement of the image
should comply with the necessity to cover, on the detector, at least the length of the
longest signal period.

Inferior limit: Magnification = Pixel size
∆ymax

Superior limit: Magnification = Detector size
∆Ymi n

(4.37)

The Fig. 4.29 presents the results for a modulator with the apex angles 2.6◦, 1.8◦. The
Nyquist criterion is not the only constraint of such design when discussing magnifica-
tion. A magnification can result from the divergence or the convergence of the beam.
However, in this case, this effect will be accompanied by a change in the phase differ-
ence of the orthogonal components of light reaching the detector. In other words, the
detected modulation will be impacted, and the capacity of retrieving the polarization
with the fit method will also be affected. We will discuss these aspects in more detail in
Chapter 7.

Figure 4.29: Magnification limits imposed by the Nyquist criterion. The inferior limit is presented on the
left, and the superior limit is on the right. The system’s magnification should stay between the two curves for
correct signal sampling.

4.6. TOWARDS IMAGING SPECTROPOLARIMETRY
The design presented in the previous pages uses a point source of polarized light. A sin-
gle central field is necessary to illustrate the functioning of the instrument. However,
the modulator can also act on the off-axis fields and be used when extended objects
are observed. As we saw, a limit for the field of view (FoV ) manifests as a limit that
depends mainly on the signal’s strength and the instrument’s desired precision. Never-
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theless, the fact that the modulator can also be used for the off-axis fields means that an
imaging working mode is compatible with this concept. A possible implementation is
presented in Figures 4.30 and 4.31. Figure 4.30 shows a possible development based on
the technique of Integral Field Spectrometry with Microlens Array (I F S−L) (see Chapter
3). In contrast, Figure 4.31 extends the Integral Field Spectrometry with Slicing Mirrors
(I F S −M).
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Figure 4.30: Possible design of a snapshot imaging spectropolarimeter based on the IFS-L method.
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Figure 4.31: Possible design of a snapshot imaging spectropolarimeter based on the IFS-M method.

According to the IFS-L method, the light collected by a telescope assembly or an ob-
jective passes through a microlens array placed in the telescope’s focal plane. Each field
will be then collimated before arriving on the modulator with the help of a microlens ar-
ray. After the analyzer, the light passes through a dispersive element. Then, using again a
microlens array with cylindrical lenslets (not represented in Fig. 4.30), the various wave-
lengths could be spread along the x−axis. In contrast, the y−axis will conserve the mod-
ulation the polarimeter induces. Each voxel of data (hypercube of spectral, spatial, and
polarimetric information) will pass then through a lenslet from the focal plane of the
telescope, will be modulated in intensity by the polarimetric part, and, in the end, af-
ter passing through the dispersive element, will be imaged by a cylindrical lenslet. Each
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cylindrical lenslet should span enough pixels in a vertical direction to ensure the sam-
pling of the polarimetric modulation. This vertical distance will also give the lenslets
the minimum vertical size. In addition, this will also fix the limits of the system’s spatial
resolution in the vertical direction. In the horizontal direction, a mask can be placed be-
tween the dispersive element and the cylindrical microlenses to avoid the overlap of the
dispersed light.

Figure 4.31 shows a possible adaptation of the IFS-M (Gao et al., 2010; Hagen, 2012;
Hagen and Kudenov, 2013) principle for snapshot imaging spectropolarimetry. In this
approach, the light collected by the telescope (1) is reflected by the stack of slicing mir-
rors to a parabolic mirror (4). The latter allows the collimation of the separated fields
with the help of slicing mirrors and placing a polarimeter, respectively, a dispersive el-
ement in front of the detector. With cylindrical lenses, re-imaging optics can focus the
light in one direction and keep the modulation induced by the modulator in the other
direction.





BIBLIOGRAPHY

Boulbry, B., Ramella-Roman, J. C., & Germer, T. A. (2007). Improved method for calibrat-
ing a stokes polarimeter. Appl. Opt., 46(35), 8533. https://doi.org/10.1364/AO.4
6.008533

Dodge, M. J. (1984). Refractive properties of magnesium fluoride. Applied Optics, 23(12),
1980–1985. https://doi.org/10.1364/AO.23.001980

Dubovik, O., Li, Z., Mishchenko, M. I., & et al. (2019). Polarimetric remote sensing of
atmospheric aerosols: Instruments, methodologies, results, and perspectives.
Journal of Quantitative Spectroscopy and Radiative Transfer, 224, 474–511. http
s://doi.org/10.1016/j.jqsrt.2018.11.024

Gao, L., Kester, R. T., Hagen, N., & Tkaczyk, T. S. (2010). Snapshot image mapping spec-
trometer (IMS) with high sampling density for hyperspectral microscopy. Optics
Express, 18(14), 14330. https://doi.org/10.1364/OE.18.014330

Hagen, N. (2012). Snapshot advantage: A review of the light collection improvement for
parallel high-dimensional measurement systems. Optical Engineering, 51(11),
111702. https://doi.org/10.1117/1.OE.51.11.111702

Hagen, N., & Kudenov, M. W. (2013). Review of snapshot spectral imaging technologies.
Optical Engineering, 52(9), 090901. https://doi.org/10.1117/1.OE.52.9.090901

Kemp, J., Wolstencroft, R., & Sweldun, J. (1971). Circular Polarization: Jupiter and Other
Planets. Nature, (232), 165–168. https://doi.org/10.1038/232165a0

Li, L. W., Rubin, N. A., Juhl, M., Park, J.-S., & Capasso, F. (2023). Evaluation and char-
acterization of imaging polarimetry through metasurface polarization gratings.
Applied Optics, 62(7), 1704. https://doi.org/10.1364/AO.480487

Pertenais, M., Neiner, C., Bernardi, P., Reess, J.-M., & Petit, P. (2015). Static spectropo-
larimeter concept adapted to space conditions and wide spectrum constraints.
Applied Optics, 54(24), 7377. https://doi.org/10.1364/AO.54.007377

Pertenais, M., Neiner, C., Parès, L. P., Petit, P., Snik, F., & van Harten, G. (2014). UVMag:
Space UV and visible spectropolarimetry. In T. Takahashi, J.-W. A. den Herder, &
M. Bautz (Eds.), Space telescopes and instrumentation 2014: Ultraviolet to gamma
ray (Vol. 9144). SPIE. https://doi.org/10.1117/12.2060561

Sparks, W., Germer, T. A., MacKenty, J. W., & Snik, F. (2012). Compact and robust method
for full stokes spectropolarimetry. Applied Optics, 51(22), 5495. https://doi.org
/10.1364/AO.51.005495

Tropf, W. J., & Spie, M. (1995). Temperature-dependent refractive index models for BaF2,
CaF2, MgF2, SrF2, LiF, NaF, KCI, ZnS, and ZnSe. Optical Engineering, 34(5),
1369–1373. https://doi.org/10.1117/12.201666

Waquet, F., Cairns, B., Knobelspiesse, K., Chowdhary, J., Travis, L. D., Mishchenko, M. I.,
& Schmid, B. (2009). Polarimetric remote sensing of aerosols over land. Journal
of Geophysical Research: Atmospheres, 114. https://doi.org/10.1029/2008JD010
619

95

https://doi.org/10.1364/AO.46.008533
https://doi.org/10.1364/AO.46.008533
https://doi.org/10.1364/AO.23.001980
https://doi.org/10.1016/j.jqsrt.2018.11.024
https://doi.org/10.1016/j.jqsrt.2018.11.024
https://doi.org/10.1364/OE.18.014330
https://doi.org/10.1117/1.OE.51.11.111702
https://doi.org/10.1117/1.OE.52.9.090901
https://doi.org/10.1038/232165a0
https://doi.org/10.1364/AO.480487
https://doi.org/10.1364/AO.54.007377
https://doi.org/10.1117/12.2060561
https://doi.org/10.1364/AO.51.005495
https://doi.org/10.1364/AO.51.005495
https://doi.org/10.1117/12.201666
https://doi.org/10.1029/2008JD010619
https://doi.org/10.1029/2008JD010619




5
THE UNIQUENESS OF THE

SOLUTION AND THE BEHAVIOR IN

NOISY CONDITIONS

To be prepared is half the victory

M. de Cervantes Saavedra, 1615

97



5

98 5. THE UNIQUENESS OF THE SOLUTION AND THE BEHAVIOR IN NOISY CONDITIONS

To be able to measure any polarization with an instrument employing the modulator
presented here means, at first, to prove the uniqueness of the modulation. We have to
show that each state of polarization corresponds to a unique intensity pattern.

Looking closely at the model of the instrument presented in the previous Chapter
(see Fig. 4.13), we notice that the continuous variation in the vertical direction of the
phase difference induced by the prisms of the modulator can be translated into a con-
tinuous variation of the Mueller matrix of the modulator in the same direction.

At each level y in the vertical direction, we will have a certain value of the phase dif-
ferences φ1(y) and φ3(y), and, accordingly, a specific Mueller matrix M(y) of the com-
pound formed by the modulator and the analyzer.

An incoming state of polarization S⃗i n = (S0,S1,S2,S3)T , homogeneous over the entire
entry face of the instrument, will be converted, at any position y along the vertical, in a
state S⃗out (y) = (S′

0(y),S′
1(y),S′

2(y),S′
3(y))T :

S⃗out (y) = M(y) · S⃗i n . (5.1)

The intensity that can be detected at the level y by the pixel of a hypothetical detector is:

Iout (y) = (
M00(y) M01(y) M02(y) M03(y)

) · S⃗i n , (5.2)

where Mi j (y), (i , j = 0,1,2,3), are the terms of the first line of the Mueller matrix M(y),

and Iout is the first term of the Stokes vector S⃗out . We adopt the notation with Iout to
simplify the reading.

The values taken by the Iout in the vertical direction follow a specific pattern as a
function of the incoming polarization.

Considering that we have N readings of the intensity in the vertical direction, corre-
sponding to different values of y we can transform the previous equation into a system
of equations:



Iout (y0)
Iout (y1)
Iout (y2)

·
·

Iout (yN−1)

=



M00(y0) M01(y0) M02(y0) M03(y0)
M00(y1) M01(y1) M02(y1) M03(y1)
M00(y2) M01(y2) M02(y2) M03(y2)

· · · ·
· · · ·

M00(yN−1) M01(yN−1) M02(yN−1) M03(yN−1)

 · S⃗i n , (5.3)

where each line Mi j (yk ), (i , j = 0,1,2,3, k = 0, .., N − 1) is the first line of the Mueller
matrix associated to the optical compound at the position yk in the vertical direction.

In a contracted vectorial form, we saw (Eq. 3.10) that this system can be written as:

I⃗ =W · S⃗i n , (5.4)

where I⃗ is the vector of the intensity readings and W is the modulation matrix of the
instrument.
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For the case of the model of the instrument studied, the theoretical expression of the
intensity is provided by the Eq. (4.19), reproduced here by considering only the depen-
dency on y :

Iout (y) = 1

2
(S0 +S1m(y)+S2n(y)+S3p(y)), (5.5)

where the functions m(y), n(y) and p(y) are provided by Eq. 4.20. The modulation ma-
trix W of the optical system can then be written in terms of the functions m, n, and p:

W =



1 m(y0) n(y0) p(y0)
1 m(y1) n(y1) p(y1)
1 m(y2) n(y2) p(y2)
. . . .
. . . .
1 m(yN−1) n(yN−1) p(yN−1)

 (5.6)

Using these notations, the question is whether the previous system of equations ad-
mits a single solution for the vector S⃗.

Several methods can be used to answer this question. It can be demonstrated, for
instance, the independence of the functions m, n, and p responsible for polarization
modulation. This method was explored closely in our previous research (Vasilescu et al.,
2020), and its demonstration is reproduced at the end of this chapter. A second method
that can be used, equivalent to the first, is based on the orthogonality of the functions m,
n, p. We presented this method at the International Conference in Space Optics - ICSO
2020 (Vasilescu et al., 2021). Despite being comparable to the first method, it comes
with the advantage that it is much easier to adapt to the different characteristics of the
optical system: the size of pixels, the wavelength, or the number of pixels can be much
more easily considered. Finally, a numerical method can also be applied. This involves
the calculation of the rank of the modulation matrix, W . Unlike the first two methods,
the latter has the advantage of considering the actual optical system. After experimental
determination, the technique can be applied directly to the modulation matrix.

Another important concept that must be discussed is the efficiency of the modula-
tion scheme, as defined in Chapter 3. This concept opens the door to finding the best
geometry of the modulator and a suitable analyzer orientation. A general presentation
of this notion can be retrieved in one of our previous papers (Vasilescu et al., 2020).

The additional investigation of the efficiency conducted in (Vasilescu et al., 2021) es-
tablishes a clear relationship between the orthogonality of the functions m, n, p and
the efficiency of the modulation scheme for the studied spectropolarimeter. Also, this
study identifies the modulator + analyzer system configurations with the highest effi-
ciency. This is an essential step towards the experimental implementation of the spec-
tropolarimeter studied here. Thus, based on this analysis, we can identify which is the
best orientation of the analyzer or which apex angles should have prisms 1 and 3 of the
modulator.
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5.1. THE UNIQUENESS OF THE SOLUTION: THE RANK OF THE

MODULATION MATRIX
Let us consider an arbitrary system of linear equations:

Ax⃗ = B⃗ , (5.7)

where A in a n ×m matrix, x⃗ is the vector of the unknowns (m ×1) and B⃗ is the vector of
solutions (n ×1).

Then, this system has a unique solution if

rank(A) = rank(A|B) = number of rows in x⃗. (5.8)

The rank of a matrix is defined as the maximum number of linearly independent
rows. The matrix (A|B) is called the augmented matrix and is formed by adding at the
end of the columns of A the column of B⃗ .

If the vector B is equal to 0, then the system Ax⃗ = 0 will have a unique solution, the
trivial solution x = 0, if and only if rank(A)=number of rows in x⃗.

Coming back to our model of spectropolarimeter, let us consider again the intensity
pattern detected by a column of N pixels (see Eq. 5.3) when a state of polarization S⃗ A

i n =
(S A

0 ,S A
1 ,S A

2 ,S A
3 )T enters the system. The vectorial system (5.4) becomes:

I⃗ =W · S⃗ A
i n (5.9)

Suppose now that there exists a second state of polarization, S⃗B
i n = (SB

0 ,SB
1 ,SB

2 ,SB
3 )T ,

different from S⃗ A
i n , but generating the same pattern of intensity, I⃗ . We can write then:

I⃗ =W · S⃗B
i n . (5.10)

Subtracting Eq. (5.9) from Eq. (5.8):

0⃗ =W ·∆S⃗i n , (5.11)

where
∆S⃗i n = S⃗ A

i n − S⃗B
i n . (5.12)

This way, the question about the uniqueness of the intensity pattern is reduced to
the question of the uniqueness of the solution of the system (5.11).

A trivial solution of this system is∆S⃗i n = 0. According to the definition, if rank(W )=4,
then ∆S⃗i n = 0 is the only solution of this system. In addition, the rank of these matrices
is four if the lines of W are linearly independent.

However, the lines of the matrix W depend on many parameters. The positions y , the
pixel size over which the signal is integrated, the wavelength, and the spectral resolution
are just a few factors that can be considered in the computation of this matrix.

One possibility for answering the question is to use the numerical approach.
Simulations can be performed for different pixel size values, wavelength, spectral

resolution, etc. In our case, all these simulations revealed that, for an ideal instrument
where the noise can be ignored, the rank of the matrix W is four.
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Nevertheless, in the case of a real optical system, the polarimetric parameters and
noise can generate numerical combinations that can decrease the rank of the W matrix.
Besides the fact that this will affect the uniqueness of the modulation scheme, a rank
lower than four will also mean that this concept of an instrument cannot be used for
full Stokes polarimetry. For this reason, a practical realization of this spectropolarime-
ter must comprise a prior check of the rank of W to guarantee the uniqueness of the
solution.

The argument behind the retrieved result is that the columns of the W matrix are lin-
early independent. The leading cause of this is that the components of the polarimeter
differently impact the incoming polarization states. Therefore, an incoming S1 state is
modulated only by Prism 3, a state S2 is impacted only by Prism 1, and S3 or any other
combination is affected by Prism 1 and 3 (see Fig. 4.11).

5.2. THE UNIQUENESS OF THE SOLUTION: THE WRONSKIAN OF

THE MODULATION FUNCTIONS
When the terms of the matrix W are seen as continuous functions, then the problem of
the linear independence of the columns of W becomes the problem of linear indepen-
dence of the functions m, n, and p.

A different mathematical apparatus must be used in this situation. Thus, to answer
the question of uniqueness, we used the Wronskian notion in our research, which allows,
just like the orthogonality, to assess linear independence. The following pages detail the
method based on the computation of the Wronskian, as it was published in the Journal of
Astronomical Telescopes, Instruments, and Systems (Vasilescu et al., 2020). In addition,
the instrument’s behavior in noisy conditions also received special attention. Consider-
ing the situation of the additive noise, independent of the signal, the uncertainties on
Stokes parameters are computed for different configurations of the modulator. Based
on this, the efficiency of the modulation scheme (see Chapter 3) was established for the
same series of configurations. In the end, we proved that the modulation scheme’s total
efficiency (see Eq. 3.14) is close to the maximum value, and a large series of configu-
rations (apex angles and orientations of the analyzer) exist where the efficiencies corre-
sponding to the Stokes parameters are also close to the optimum.
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1 Introduction

The study of the polarization of light is an excellent way to get information about remote objects.
Measuring this property leads to gathering essential information about the environment and
the optical sources. In astronomy, for instance, with the help of the Zeeman or Hanle effect,
the polarization becomes the best method to determine the magnetic field of stars.1,2 Moreover,
during the last years, polarimetry has also been found to be a possible interesting tool for the
detection and study of exoplanets.3–5

With scattering theories, the polarization also brings information about the size, the shape,
and the distribution of scattering particles, helping to characterize the surface or the atmosphere
of astronomical bodies.1,2,5 Combining polarization with spectral properties, the collected data
become even more important for the description of the medium. Moreover, the applicability of
the polarization goes far beyond astronomy. Chemistry, biology, and medicine are also making
extensive use of this technique. Generally, the instruments used for polarization determination
are based on a modulator (which can be a polarizer, a phase shifter, or a rotator) and a polarizer
(analyzer). The role of the modulator is to convert any incoming state of polarization into a
predetermined type of polarization, which will then be studied with the help of the analyzer.
Because most of the detectors (such as CCD, CMOS, etc.) are only sensitive to light intensity,
the structure of the polarimeter must convert the parameters relative to the polarization of light
(Stokes parameters) onto a level of detected intensity.6,7

*Address all correspondence to Bogdan Vasilescu, E-mail: bvasilescu@uliege.be
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It can be proven that the measured intensity depends both on the phase difference induced by
the modulator and on the orientation of the analyzer.8 In the past, two significant families of
measurement techniques have been developed to evaluate the polarization states of light: one
using rotating components and another using amplitude division.

In the first case, by varying the relative position of the analyzer and the modulator, a sequen-
tial (or temporal) modulation of the measured intensity is obtained. At least, four different con-
figurations are required to determine all four Stokes parameters describing the polarization of the
light. The second technique, which is static, is based on the use of birefringent elements such as
Wollaston prisms, Babinet compensators, and Glan–Foucault prisms. In this way, precise mod-
ulations of the light intensity can be obtained at different positions in space with regard to the
optical path of the incoming ray.

Thereby, the determination of the polarization can follow either a discrete method, either a
continuous one, according to the number of modulations received by the outgoing intensity of
light, and used to compute the incoming polarization. Most of the time, both measurement pro-
cedures occupy a relatively large volume and make use of complex mechanisms. The consid-
erable dimensions and the need for rotating parts are the most significant drawbacks for the space
usage of these classical types of polarimeters. Indeed, they directly impact the cost, the design,
and the safety of space missions.

In this context, the methodology proposed by Sparks9 and further developed by Pertenais
et al.10 for single-shot full Stokes polarimetry has the advantage of being extremely compact
and robust, without any moving components.

The originality of this concept, hereafter referred to as STAS (static spectropolarimeter), is
based on the modulation of the incoming signal due to the chromatic birefringence of the modu-
lator ΔnðλÞ combined with a specific geometry of the device.10,11 Any incoming polarization
state will acquire a continuous modulation depending simultaneously on the wavelength and
the position. The concept can be used on a large wavelength range by choosing an appropriate
material for the modulator. For instance, the use of magnesium fluoride (MgF2) gives access to
the entire spectrum between 0.12 and 7 μm,12,13 whereas with calcium fluoride the working
window is even larger, from 0.13 to 9.7 μm.14,15 Because of the wavelength dependence of the
modulation characterizing the received intensity, the instrument can be converted into a spec-
tropolarimeter only by placing a spectrometer after the analyzer.

The key part of the design is the modulator, formed by two antiparallel birefringent uniaxial
wedges, with fast axes oriented at 45 deg one about another (see Fig. 1). By continuously varying
the phase difference between the orthogonal components of light, the first wedge will modulate
along the vertical direction any incoming state of polarization, except the Q state. This one will
pass unaffected because the optical axis is oriented along the x direction (see Fig. 1). A second
birefringent wedge, having the fast axis at 45 deg with respect to x direction will drastically
simplify the computations and will lift the Q state degeneracy.

Fig. 1 The incoming light arriving from the left-hand side is collimated and perpendicular to the
surface of the instrument, the (xy plane). After passing through the polarimeter, the emerging light
has an intensity modulated along the vertical direction (along the y axis). The spectrometer then
leads to a wavelength dispersion along the horizontal direction (x axis). The observed intensity
profile represented here corresponds to an arbitrary state of polarization S ¼ ½1; 0.4; 0.3; 0.5�T and
to a modulator build in MgF2, with the apex angles ξ ¼ 1.5 deg and ψ ¼ 3 deg. The orientation of
the analyzer was θ ¼ 90 deg. Additionally, it was considered that the entire incoming beam is
identically polarized, being characterized by a single polarization state, i.e., the vector S.

Vasilescu et al.: Solution uniqueness and noise impact in a static spectropolarimeter. . .
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In this paper, we discuss three questions on this new concept of a spectropolarimeter. First,
the uniqueness of the solution: we demonstrate in Sec. 3 that in the ideal conditions of the
absence of noise, any pattern of the intensity from the detector plane is associated with a single
state of polarization.

The second question concerns the quality of the measurement under noisy circumstances.
What is the precision of this instrument when the noise is present? The answer to this question is
detailed in Sec. 4.

The third question is related to the efficiency of the modulation scheme, as it was defined by
del Toro Iniesta.8 We study it in Sec. 5 for different orientations of the analyzer, different apex
angles, and various modulation schemes. Answering this question allows us to compare the
model with other existing instruments and to find an optimal architecture.

2 Static Spectropolarimeter Concept

The key part of STAS is the modulator based on three birefringent uniaxial elements made of the
same material (Fig. 1). Two antiparallel wedges [parts (1) and (3) in Fig. 1] of very small apex
angles ξ and ψ are optically glued together with the help of a third piece placed in between
[element (2)]. The fast axis has a specific orientation in each component of the modulator: par-
allel to the x axis in the first wedge, parallel to z axis in the middle part and at 45 deg with regard
to x axis [in the ðxyÞ plane] in the last wedge.9,10,16

In addition to the modulator, the polarimeter needs a linear polarizer (or analyzer), oriented at
an angle θ about the x axis, in the plane ðxyÞ. After the passage through the polarimeter, the light
is spectrally dispersed by the spectrometer over the x axis.

2.1 Working Principle

The description of the polarization is performed with the Stokes formalism. According to this,
the information about polarization is encoded into the Stokes vector:

EQ-TARGET;temp:intralink-;e001;116;392S ¼

2
664

I
Q
U
V

3
775: (1)

Its components have the dimension of intensity and are associated with specific types of
polarization of the incident light.7 I represents the total intensity, Q is the linear horizontal
or vertical polarization, and U is the linear polarization at 45 deg or 135 deg, whereas V is the
circular left or right polarization:

EQ-TARGET;temp:intralink-;e002;116;2708>>>>><
>>>>>:

I ¼ E2
0x þ E2

0y

Q ¼ E2
0x − E2

0y

U ¼ 2E0xE0y cos ϵ

V ¼ 2E0xE0y sin ϵ

: (2)

Under this notation, E0x and E0y are the amplitudes associated with the orthogonal compo-
nents of the electric field of light, and ϵ is the phase difference between these components.
Another useful notion is the degree of polarization:

EQ-TARGET;temp:intralink-;e003;116;144p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ U2 þ V2

p
I

; 0 ≤ p ≤ 1; (3)

with p ¼ 1 in the case of the totally polarized light and p ¼ 0 for the nonpolarized light.

In a more detailed definition, the degree of linear polarization is given by plin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ U2

p
∕I

while the degree of circular polarization is pcirc ¼ V∕I.

Vasilescu et al.: Solution uniqueness and noise impact in a static spectropolarimeter. . .

J. Astron. Telesc. Instrum. Syst. 028001-3 Apr–Jun 2020 • Vol. 6(2)



To deal with the passage through an optical element like the modulator or the analyzer, the
Mueller calculus is used. Principles of this state that to any polarizing element one may associate
a Mueller matrix M, 4 × 4, such as

EQ-TARGET;temp:intralink-;e004;116;699Sout ¼ M · Sin; (4)

where Sout is the Stokes vector of the outgoing polarization, after its travel through the instru-
ment, and Sin is the incoming polarization. Every subelement of the optical assembly is repre-
sented by its Mueller matrix, giving the combination:

EQ-TARGET;temp:intralink-;e005;116;633M ¼ Mn · Mn−1 · : : : · M1; (5)

where Mn is the last element crossed by light.
Based on this formalism, we analyze in this section each component of the modulator,

emphasizing the need for a triple structure.

2.2 Single Wedge and Analyzer

Being composed of a birefringent uniaxial material with the fast axis oriented along the x axis,
the first element acts as a variable waveplate (see Fig. 2).

Indeed, because the distance travelled by the light inside the wedge decreases upward,
the phase difference (Δϕ1) varies linearly with y following the relation:

EQ-TARGET;temp:intralink-;e006;116;481Δϕ1 ¼
2π

λ
ΔnðλÞðh − yÞ tan ξ; (6)

where λ is the wavelength of the incoming light,ΔnðλÞ ¼ jnoðλÞ − neðλÞj is the absolute value of
the difference between the ordinary and the extraordinary indices of refraction of the element (1),
h is the height of the wedge, y is the position on the vertical axis of the incidence point for the
incoming ray, and ξ is the apex angle. Due to this geometry, periodically, at certain levels along
the y axis, the phase difference will embrace particular values such as π

2
, π, or 2π. At these precise

positions, the wedge will behave like a quarter-wave plate, half-wave plate, and full-wave plate,
respectively. Because of this, any incoming homogeneous state of polarization, described by

Fig. 2 General representation of the first block, (1), followed by an analyzer. The fast axis of the
element (1) is oriented along the x axis. The analyzer, which is a linear polarizer, has its optical
axis oriented at an angle θ with respect to the same x direction, in the ðxyÞ plane.
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Eq. (2), will see its U and V parameters varying along the vertical. Given the orientation of the
fast axis in the first wedge, theQ term cannot be affected by this polarizing element. Any incom-
ing linear polarization, horizontal or vertical, is passing through the system without changes.
A comprehensive representation of the transformations endured by light travelling through the
instrument is obtained via the Mueller calculus. The general Mueller matrix of a rotated wave-
plate [with a rotation angle α with regard to the x axis, in the ðxyÞ plane] is given by7

EQ-TARGET;temp:intralink-;e007;116;663M ¼

2
664
1 0 0 0

0 c2 þ s2 cos Δϕ ð1 − cos ΔϕÞcs s sin Δϕ
0 ð1 − cos ΔϕÞcs s2 þ c2 cos Δϕ −c sin ϕ

0 −s sin Δϕ c sin Δϕ cos Δϕ

3
775; (7)

where c ¼ cos 2α, s ¼ sin 2α, and Δϕ is the phase difference induced by the birefringent
medium between the ordinary and the extraordinary rays. Because in the present case c ¼ 1,
s ¼ 0, the corresponding Mueller matrix can be easely computed. The Mueller matrix of an
analyzer oriented at an angle θ is given by7

EQ-TARGET;temp:intralink-;e008;116;543MAðθÞ ¼
1

2

0
BB@

1 c s 0

c c2 cs 0

s cs s2 0

0 0 0 0

1
CCA; (8)

in which the notation c ¼ cos 2θ, s ¼ sin 2θ was again adopted for θ the angle between the
optical axis of the polarizer and the positive x axis, in the ðxyÞ plane.

Using Eqs. (7) and (8) and the general rules for the Mueller calculus [Eqs. (4) and (5)],
we find the outgoing Stokes vector Sout corresponding to an incoming polarization
Sin ¼ ½Iin; Qin; Uin; V in�T:

EQ-TARGET;temp:intralink-;e009;116;409Soutðθ; y; λÞ ¼
1

2

0
BB@

Iin þQincþUins cos Δϕ1 − V ins sin Δϕ1

cIin þQinc2 þ Uincs cos Δϕ1 − V incs sin Δϕ1

IinsþQincsþ Uins2 cos Δϕ1 − V ins2 sin Δϕ1

0

1
CCA: (9)

This vector depends on the orientation of the analyzer through c ¼ cos 2θ and s ¼ sin 2θ, on
the position on the vertical direction of the incidence point of the incoming ray ðyÞ and of the
wavelength of this ray ðλÞ. For a static design, the angle θ is fixed. The first term of the vector is
the outgoing intensity, which can be measured by a detector. In the present case, we have

EQ-TARGET;temp:intralink-;e010;116;287Ioutðθ; y; λÞ ¼
1

2
ðIin þQincþUins cos Δϕ1 − V ins sin Δϕ1Þ: (10)

Taking measurements of the intensity at different positions along the y axis and at a given
wavelength, one finds different values, because of the phase difference variation (Δϕ1).
Nevertheless, no matter the number of equations that are obtained for different values of the
phase, the Iin and Qin terms cannot be determined from this configuration of the polarimeter.
In any system of equations that is build, the columns corresponding to Iin and Qin are just multi-
ple of one another. The only solution to this problem is to insert a second wedge between the first
one and the analyzer. If the fast axis of this second birefringent element is oriented in a different
way with respect to the first, then the Q state will also acquire a modulation, and the systems of
equations that can be build to express the outgoing intensity become entirely determined.

2.3 Compound Structure

The best architecture able to ensure a full modulation of the Stokes parameters then has the form
presented in Fig. 1. A second wedge [element (3) in Fig. 1] of apex angle ψ and antiparallel to the
first one is added along the light path. In order to ensure the stiffness of the compound and
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a homogeneous index of refraction so that the deviation of light to be minimized, an intermediary
element [labeled with (2) in Fig. 1] is placed in between. This middle part of the polarimeter
plays no role in the modulation of light. Indeed, since the fast axis lies along the z axis (α ¼ π

2
),

the ordinary and extraordinary rays are traveling at the same speed along the z axis, and because
of this, the phase difference is constant for any position along the vertical axis. The Mueller
matrix of the element (2) is then the identity matrix, 1. Considering that the element (3) has
a fast axis oriented at an angle α ¼ π

4
with respect to the x axis in the ðxyÞ plane, the phase

difference acquired here is Δϕ3 ¼ 2π
λ ΔnðλÞðh − yÞ tan ψ , and then, with the help of the

Eqs. (7) and (8), the Mueller matrix of the entire birefringent block can be calculated. The reason
for choosing α ¼ π

4
is mostly related to simplification of computations, this value ensuring an

elegant form for the Muller matrix of the element (3). Multiplying this matrix with the Stokes
vector of the incoming light, Sin ¼ ½Iin; Qin; Uin; V in�T, the outgoing Stokes vector can be
obtained

EQ-TARGET;temp:intralink-;e011;116;574Soutðθ; y; λÞ ¼
1

2

2
664

Iin þQincc3 þ Uinðsc1 þ cs1s3Þ þ V inðcc1s3 − ss1Þ
IincþQinc2c3 þ Uinðcsc1 þ c2s1s3Þ þ V inðc2c1s3 − css1Þ
IinsþQincsc3 þ Uinðs2c1 þ css1s3Þ þ V inðcsc1s3 − s2s1Þ

0

3
775; (11)

where the following contracted notations were used

EQ-TARGET;temp:intralink-;sec2.3;116;489

c ¼ cos 2θ s ¼ sin 2θ

c1 ¼ cos Δϕ1 s1 ¼ sin Δϕ1

c3 ¼ cos Δϕ3 s3 ¼ sin Δϕ3:

The terms c and s are constants as they describe the orientation of the analyzer, which is
considered fixed. However, the terms c1, s1 and c3, s3 are variables, depending simultaneously
on the vertical position and on the wavelength. The intensity measured by a detector placed after
this polarimeter is given by the first element of the vector [Eq. (11)]:

EQ-TARGET;temp:intralink-;e012;116;373Ioutðθ; y; λÞ ¼
1

2
½Iin þQincc3 þ Uinðsc1 þ cs1s3Þ þ V inðcc1s3 − ss1Þ�: (12)

In order the simplify further calculations, an even more contracted form of the outgoing
intensity can be employed:

EQ-TARGET;temp:intralink-;e013;116;307Ioutðθ; y; λÞ ¼
1

2
½Iin þQin · mðθ; y; λÞ þ Uin · nðθ; y; λÞ þ V in · pðθ; y; λÞ�; (13)

where

EQ-TARGET;temp:intralink-;e014;116;254

8<
:

mðθ; y; λÞ ¼ cosð2θÞ cos Δϕ3

nðθ; y; λÞ ¼ sinð2θÞ cos Δϕ1 þ cosð2θÞ sin Δϕ1 sin Δϕ3

pðθ; y; λÞ ¼ cosð2θÞ cos Δϕ1 sin Δϕ3 − sinð2θÞ sin Δϕ1

: (14)

The new architecture of the polarimeter ensures the modulation of the Q parameter, with the
help of the term cos Δϕ3 from the mðθ; y; λÞ function. Reading the intensity at different vertical
positions, a given wavelength (i.e., at a given horizontal position) and with a fixed orientation of
the analyzer, a system of equations can be built
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EQ-TARGET;temp:intralink-;e015;116;735

8>>>>>>>><
>>>>>>>>:

Ioutðy1Þ ¼ 1
2
½Iin þQin · mðy1Þ þUin · nðy1Þ þ V in · pðy1Þ�

Ioutðy2Þ ¼ 1
2
½Iin þQin · mðy2Þ þUin · nðy2Þ þ V in · pðy2Þ�

Ioutðy3Þ ¼ 1
2
½Iin þQin · mðy3Þ þUin · nðy3Þ þ V in · pðy3Þ�

Ioutðy4Þ ¼ 1
2
½Iin þQin · mðy4Þ þUin · nðy4Þ þ V in · pðy4Þ�

:
:

: (15)

This system allows us to determine the polarization state of the incoming light and represents
the modulation scheme of the polarimeter. However, given the complexity of the functions m, n,
and p and the arbitrary number of equations, the uniqueness of the solution for the system
[Eq. (15)] has to be proven.

3 Uniqueness of the Solution

To validate this configuration, the ability of the STAS to distinguish different incoming polari-
zation states must be demonstrated. In other words, we have to prove that any incoming Stokes
vector gives rise to a unique intensity profile. We use a “reductio ad absurdum” method: let us
suppose that, for at least one wavelength, there exist two incoming Stokes vectors Sin1 and Sin2
providing the same intensity pattern Iout on the detector plane

EQ-TARGET;temp:intralink-;e016;116;489

�
Sin1 ≠ Sin2
Iout1ðyÞ ¼ Iout2ðyÞ; for at least one λ and ∀ y;

(16)

where Sin1 ¼ ½I1; Q1; U1; V�T1 and Sin2 ¼ ½I2; Q2; U2; V2�T, whereas Iout1ðyÞ and Iout2ðyÞ are the
received intensities for a given wavelength [Eq. (13)]. Therefore:

EQ-TARGET;temp:intralink-;e017;116;419

�
Iout1ðyÞ ¼ 1

2
½I1 þQ1 · mðyÞ þ U1 · nðyÞ þ V1 · pðyÞ�

Iout2ðyÞ ¼ 1
2
½I2 þQ2 · mðyÞ þ U2 · nðyÞ þ V2 · pðyÞ�

; (17)

where mðyÞ, nðyÞ, pðyÞ are the functions defined in Eq. (14) for the considered wavelength, and
driven only by the instrumental parameters.

Combining Eqs. (16) and (17), we then find that

EQ-TARGET;temp:intralink-;e018;116;336ΔI þ ΔQ · mðyÞ þ ΔU · nðyÞ þ ΔV · pðyÞ ¼ 0; for at least one λ and ∀ y; (18)

where ΔI ¼ I2 − I1, ΔQ ¼ Q2 −Q1, ΔU ¼ U2 − U1, and ΔV ¼ V2 − V1.
A combination ðΔI;ΔQ;ΔU;ΔVÞ different from (0, 0, 0, 0) satisfying this last relation

for any value of y and for at least one wavelength exists only if the functions
½1; mðy; λÞ; nðy; λÞ; pðy; λÞ� are linearly dependent. To test this hypothesis, the mathematical
theorem of the Wronskian is used.17,18 According to this, if for a set of functions fiðyÞ,
i ¼ 1;2; : : : ; n which are n − 1 times differentiable on an interval ½a; b�, we have

EQ-TARGET;temp:intralink-;e019;116;233W½f1ðyÞ; f2ðyÞ; f3ðyÞ; : : : ; fnðyÞ� ¼

���������������

f1ðyÞ f2ðyÞ f3ðyÞ : : : fnðyÞ
df1ðyÞ
dy

df2ðyÞ
dy

df3ðyÞ
dy : : : dfnðyÞ

dy

d2f1ðyÞ
dy2

d2f2ðyÞ
dy2

d2f3ðyÞ
dy2 : : : d2fnðyÞ

dy2

: : : : : : : : : : : :
dn−1f1ðyÞ
dyn−1

dn−1f2ðyÞ
dyn−1

dn−1f3ðyÞ
dyn−1 : : : dn−1fnðyÞ

dyn−1

���������������

¼ 0

∀ y ∈ ½a; b�;

(19)

then the functions are linearly dependent. Thus if there exists y ∈ ½a; b� such as
W½f1ðyÞ; f2ðyÞ; : : : � ≠ 0, then the functions are independent.17,18 In the present case, for any
given λ, the Wronskian can be expressed as
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EQ-TARGET;temp:intralink-;e020;116;522W½1; mðyÞ; nðyÞ; pðyÞ� ¼

������������

1 mðyÞ nðyÞ pðyÞ
0

dmðyÞ
dy

dnðyÞ
dy

dpðyÞ
dy

0
d2mðyÞ
dy2

d2nðyÞ
dy2

d2pðyÞ
dy2

0
d3mðyÞ
dy3

d3nðyÞ
dy3

d3pðyÞ
dy3

������������
∀ y ∈ ½0; h�; (20)

where h is the height of the instrument. Meanwhile, in order to eliminate the possibility to obtain
W½1; mðyÞ; nðyÞ; pðyÞ� ¼ 0 because of the inappropriate choice of the wavelength, the determi-
nantW½1; mðλÞ; nðλÞ; pðλÞ� ∀ λmust also to be calculated for an arbitrary value of y. Both deter-
minants are plotted with regard to y and λ (Fig. 3). Because the functions mðy; λÞ, nðy; λÞ, and
pðy; λÞ depend on the parameters of the system, a structure on MgF2, with apex angles
ξ ¼ 1.5 deg, ψ ¼ 3 deg was chosen for computation, according to the classical design of the
instrument.10

Figure 3 shows that both the determinant computed for any value of y at a given wavelength
and the determinant calculated for any value of λ at an arbitrary y are not constantly zero over
the definition interval.

As a consequence, we may infer that the functions ½1; mðyÞ; nðyÞ; pðyÞ� are linearly inde-
pendent over the entire range of y and for any given λ. The only combination ΔI, ΔQ, ΔU,
ΔV able to satisfy Eq. (18) is (0, 0, 0, 0). As a consequence, the two incoming Stokes vectors
must be equal ðSin1 ¼ Sin2Þ fact which contradicts the hypothesis [Eq. (16)].

In conclusion, for each incoming, Stokes vector will correspond a different pattern of the
intensity on the detector plane. Subsequently, it will be impossible to obtain the same output
from two different incoming polarizations. Nevertheless, the use of a different material, a differ-
ent configuration, or a particular binning procedure will require all the time the computation of
this test for the uniqueness of the solution.

4 Impact of Noise

As a matter of fact, the measurements realized with a real device will be impacted by noise. The
sources of noise are diverse, including many effects as photon counting, detector readout, and
dark current. The previous derivation giving the uniqueness of the solution was performed in an
ideal case exempt of noise. The question then is: how do noise perturbations in the signal impact
the quality of results and the inversion process? In this paper, we will consider that the difference
between the measured intensity and the theoretically predicted value will be mainly generated by
the photon noise. The corresponding distribution is Poissonian, but can be assimilated to
a Gaussian distribution in the (usual) case of a large number of photons.19 Hence, its effects

(a) (b)

Fig. 3 Variation of the normalized Wronskian determinant. The behavior with respect to (a) y is
shown for λ ¼ 0.12 μm and (b) y ¼ 2 mm. To simplify the computation of W ½1; mðλÞ; nðλÞ; pðλÞ�,
a constant birefringence of the medium was assumed, ofΔn ¼ 0.0132, corresponding to the mean
value of the birefringence of MgF2 between 0.12 and 0.4 μm. For the legibility of the graphic,
only the UV part of the spectrum was represented here. Also for the simplicity of computation,
the orientation of the analyzer was chosen to be θ ¼ 90 deg.
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on the quality of the extraction of the Stokes parameters can then be easily statistically
estimated.20,21

In order to evaluate the impact of noise on the Stokes parameters retrieval through the inver-
sion process, a random value σ is applied on the output signal. The variation range of σ defines
the level of noise. Through the triple prism modulator and the grating, the light intensity (y axis)
at any wavelength (x axis) projected on the detector plane is

EQ-TARGET;temp:intralink-;e021;116;663Imeas
out ðyjÞ ¼ I0outðyjÞ þ σðyjÞ; (21)

where Imeas
out ðyjÞ is the noise impacted intensity at the position yj on vertical, I0outðyjÞ is the cor-

responding analytical signal [Eq. (13)], and σðyjÞ is the random noise on any elementary pixel.
Applying the least-squares fit method to Eq. (21), the uncertainties on the Stokes parameters

can be computed.21 This procedure provides information about the quality of the extraction of the
Stokes parameters, for a given configuration of the system and of the modulation scheme. In
order to compare between different configurations of the polarimeter (orientation of the analyzer
and apex angles), the concept of efficiency of the modulation scheme, developed by del Toro
Iniesta8,19,22 and Collados23,24 can be used. Both analyses are developed hereafter.

The function of merit of the fit is a chi-square function:
EQ-TARGET;temp:intralink-;e022;116;520

χ2ðI; Q; U; VÞ ¼
XN
j¼1

�
Imeas
out ðyjÞ − I0outðyjÞ

σðyjÞ
�
2

¼
XN
j¼1

�
Imeas
out ðyjÞ − 1

2
½I þQmðyjÞ þ UnðyjÞ þ VpðyjÞ�

σðyjÞ
�

2

: (22)

Minimizing this function with respect to I, Q, U, V parameters ð∂χ2∂Si
¼ 0; Si ¼ I; Q; U; VÞ

provides the variances on the Stokes parameters. The partial derivatives yield immediately:

EQ-TARGET;temp:intralink-;e023;116;404

1

2

XN
j¼1

2
666666664

1
σ2ðyjÞ

mðyjÞ
σ2ðyjÞ

nðyjÞ
σ2ðyjÞ

pðyjÞ
σ2ðyjÞ

mðyjÞ
σ2ðyjÞ

m2ðyjÞ
σ2ðyjÞ

mðyjÞnðyjÞ
σ2ðyjÞ

mðyjÞpðyjÞ
σ2ðyjÞ

nðyjÞ
σ2ðyjÞ

nðyjÞmðyjÞ
σ2ðyjÞ

n2ðyjÞ
σ2ðyjÞ

nðyjÞpðyjÞ
σ2ðyjÞ

pðyjÞ
σ2ðyjÞ

pðyjÞmðyjÞ
σ2ðyjÞ

pðyjÞnðyjÞ
σ2ðyjÞ

p2ðyjÞ
σ2ðyjÞ

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

0
BB@

I
Q
U
V

1
CCA

|fflfflffl{zfflfflffl}
S

¼
XN
j¼1

2
666666664

Imeas
out ðyjÞ
σ2ðyjÞ

Imeas
out ðyjÞmðyjÞ

σ2ðyjÞ
Imeas
out ðyjÞnðyjÞ

σ2ðyjÞ
Imeas
out ðyjÞpðyjÞ

σ2ðyjÞ

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

: (23)

Using the contracted notation, this last system can be expressed as

EQ-TARGET;temp:intralink-;e024;116;270B · S ¼ R: (24)

According to the least-squares fit method,21 the variances corresponding to I,Q,U, and V are
given by the diagonal elements of the matrix B−1:

EQ-TARGET;temp:intralink-;e025;116;213

8>>><
>>>:

σ21 ¼ σ2ðIÞ ¼ B−1
11

σ22 ¼ σ2ðQÞ ¼ B−1
22

σ23 ¼ σ2ðUÞ ¼ B−1
33

σ24 ¼ σ2ðVÞ ¼ B−1
44

: (25)

To compute the elements of the matrix B, we will suppose that the noise σðyjÞ is the same all
along the vertical axis [σðyjÞ ¼ σ]. Also we will consider that the uncertainty on the Stokes
parameters is constant over the beam area.9 This assumption is the natural consequence of the
collimation of beam after the telescope assembly. Variations along the x and y axes could appear
due to possible instrumental artifacts, and the calibration of the instrument would imply the
knowledge of these variations and the correction. However, this topic is set aside from this paper.
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The span of the summation from the system [Eq. (23)] N is driven by the Shannon–Nyquist
theorem applied to the signal from Eq. (13) at a given wavelength. According to this theorem, the
minimum sampling frequency should be at least twice the highest frequency contained in the
signal or the Nyquist frequency. In terms of periods, measured along the y axis, we need to have

EQ-TARGET;temp:intralink-;e026;116;687Ys ≤
Ymin

2
; (26)

where Ys is the sampling period and Ymin is the shortest period from the signal, corresponding to
the Nyquist frequency.

Simultaneously, the sampling must cover at least the longest period of the signal (Ymax). The
value of Ymin thus provides information about the maximum size of a pixel (PS), PS ≤ Ymin∕2,
whereas Ymax represents the minimum height of the wedges and the detector. Using the Fourier
transform, the frequencies from the signal provided by Eq. (13) can be found for any value of the
wavelength and any architecture of the modulator. Figure 4 presents the dependency on the
wavelength of the ratio Ymin∕2 and of the minimum height of the wedges Ymax for a modulator
in MgF2, with apex angles ðξ;ψÞ ¼ ð1.5 deg; 3 degÞ.

To sample the signal at any wavelength in the transmission band of MgF2, the size of
the pixels must be smaller than the minimum of the curve from Fig. 4. This minimum
occurs around λ ¼ 0.14 μm and depends on the value of the apex angles. Therefore, for
ðξ;ψÞ ¼ ð1.5 deg; 3 degÞ, the pixels must be smaller than 64.5 μm, whereas for ðξ;ψÞ ¼
ð3 deg; 1.8 degÞ the value should be less than 59.3 μm.

The minimal height of the wedges (and of the detector), which can be inferred from the Ymax

variation, depends on the chosen waveband and the apex angles.
For instance, in order to cover the spectral band 0.12 to 0.3 μm, the prisms (and the detector)

must be at least 0.9 mm high, whereas covering the entire transmission window of MgF2 will
require at least 4.6 cm, in the case of the first geometry, ðξ;ψÞ ¼ ð1.5 deg; 3 degÞ. For the
second geometry, ðξ;ψÞ ¼ ð3 deg; 1.8 degÞ, the minimum height is of about 1.14 mm at λ ¼
0.3 μm and 5.5 cm at 7 μm.

As long as Ymin∕2 ≥ 2 PS, multiple equations [Eq. (13)] can be used to cover a Ymin∕2 dis-
tance [see Fig. 5]. This will increase the precision of the interpolation. Overall, for a detector of
height h ¼ Npx · PS ≥ YmaxðλÞ, where Npx is the total number of pixels from a column of the
detector, a number of N ¼ Npx∕n equations can be associated, where n ¼ 1;2: : : represents the
number of pixels used to build a single equation [Eq. (13)]. If n ¼ 1 brings the highest precision,
a value bigger than 1 may significantly reduce the computation time.

Fig. 4 Variation with the wavelength of the ratio Ymin∕2 corresponding to the maximum pixel size,
and of the minimal height of the wedges Ymax for a modulator in MgF2, with the apex angles
ðξ;ψÞ ¼ ð1.5 deg; 3 degÞ. The covered spectral band (0.12 to 7 μm) corresponds to the entire
transmission window of MgF2. The small graphic from top-left presents a zoom on the region
0.12 to 0.3 μm, where the minima of the curves are located.

Vasilescu et al.: Solution uniqueness and noise impact in a static spectropolarimeter. . .

J. Astron. Telesc. Instrum. Syst. 028001-10 Apr–Jun 2020 • Vol. 6(2)



No matter the value of n, Eq. (21) and all the relations resulting from it must be integrated on
the considered number of pixels n.

Assuming that the uncertainty affecting the detected intensity is the same along a column of
the detector,9 σðyjÞ ¼ σ, then the matrix B can be written as

EQ-TARGET;temp:intralink-;e027;116;301B ¼ 1

2

1

σ2
XN
j¼1

2
66664

1 mðyjÞ nðyjÞ pðyjÞ
mðyjÞ m2ðyjÞ mðyjÞnðyjÞ mðyjÞpðyjÞ
nðyjÞ nðyjÞmðyjÞ n2ðyjÞ nðyjÞpðyjÞ
pðyjÞ pðyjÞmðyjÞ pðyjÞnðyjÞ p2ðyjÞ

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

: (27)

Therefore, we have directly

EQ-TARGET;temp:intralink-;e028;116;192B−1 ¼ 2σ2C−1 (28)

and from Eqs. (25) and (28)

EQ-TARGET;temp:intralink-;e029;116;149σi ¼ σ
ffiffiffiffiffiffiffiffiffiffiffi
2C−1

ii

q
; (29)

where C−1
ii are the diagonal elements of the matrix C−1, and i ¼ 1;2; 3;4, corresponding to

I, Q, U, V parameters.
The ratios σi∕σ can be then plotted for different configurations of the modulator and various

orientations of the analyzer. For instance, with a sampling distance of 10 μm (corresponding to

Fig. 5 Each measurement of the intensity Imeas
out ðy j Þ corresponds to a number of n pixels, with

n · PS ≤ Ymin∕2, where Ymin is the minimum sampling distance resulting from the Nyquist theo-
rem, and PS is the size of a pixel. In practice, the Ymin∕2 of the structure presented above, based
on MgF2, is around 59.4 μm for a modulator with apex angles ðξ;ψÞ ¼ ð3 deg; 1.8 degÞ and about
64.5 μm for ðξ;ψÞ ¼ ð1.5 deg; 3 degÞ. Considering the particular case of the UV domain, these
values are above the common pixel sizes used in this range, situated between 10 and 25 μm. This
allows the combination of multiple number of pixels in the construction of the modulation scheme.
In this figure, the situation having n ¼ 2 was depicted.
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the approximate size of a pixel) and a column of N ¼ 2000 pixels, the variations from Fig. 6 can
be obtained for two different configurations of a modulator in MgF2.

As it was expected, the I uncertainty is independent of the orientation of the analyzer,
whereas the rest of the Stokes parameters are closely related to this angle. Thereby, for two
specific analyzer orientations, 45 deg and 135 deg, the B matrix is no longer invertible because
all the terms containing the mðyÞ function are zero, as it can be noticed from Eqs. (13) and (14).
This leads to an indetermination of the Q parameter.

Apart from the orientation of the analyzer, the general geometry of the modulator also plays
an important role in the spectropolarimeter performances. Figure 6 presents the results for two
different configurations. Each of them is associated with a different couple ðξ;ψÞ representing
the apex angles of the modulator (see Fig. 1). At left, the “classical” case10 of a modulator
with ðξ;ψÞ ¼ ð1.5 deg; 3 degÞ was plotted, whereas at right a case having ðξ;ψÞ ¼
ð3 deg; 1.8 degÞ was considered. We notice, in the second configuration, that similar values
of the uncertainty on Q, U and V parameters can be obtained for orientations of the analyzer
at 17.5 deg and 72.5 deg, 107.5 deg and 162.5 deg, respectively. In contrast, the first scenario has
no intersection points for all the three parameters. The couples ðξ;ψÞ able to minimize the uncer-
tainties on the Stokes parameters can be derived through the study of the efficiency of the modu-
lation scheme. The minimal and the maximal values of the ratio σi∕σ corresponding to the
studied cased are presented in Table 1.

Despite the periodical variation, the average level of this ratio remains close to the ideal one,9

1∕
ffiffiffiffi
N

p
, in both cases (the red horizontal lines in Fig. 6).

5 Efficiency of the Modulation

Because the working principle of this spectropolarimeter is based on the continuous phase varia-
tion of the outgoing rays on the vertical direction, theoretically an infinite number of equations

Table 1 Minimal and maximal values of uncertainties on Stokes parameters.

ðξ;ψÞ ¼ ð1.5 deg;3 degÞ ðξ;ψÞ ¼ ð3 deg;1.8 degÞ

σI
1ffiffiffi
N

p 1ffiffiffi
N

p

Min Max Min Max

σQ
1.45ffiffiffi
N

p ∞ 1.45ffiffiffi
N

p ∞

σU;V
1.27ffiffiffi
N

p 3.27ffiffiffi
N

p 1.45ffiffiffi
N

p 2ffiffiffi
N

p

(a) (b)

Fig. 6 Variation of the ratio σi∕σ, between the uncertainty on the Stokes parameters and the
uncertainty on the measured intensity, as a function of the orientation of the analyzer (the angle
θ). (a) The “classical” case of a modulator,10 with apex angles ξ ¼ 1.5 deg, ψ ¼ 3 deg and
(b) a new geometry having ξ ¼ 3 deg, ψ ¼ 1.8 deg was considered. A uniform uncertainty along
the y axis, on a wavelength of 0.125 μm, is assumed for the detected intensity and the Stokes
parameters. The particular case of an MgF2 medium was considered.
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[Eq. (15)] can be built on the y axis to help retrieve the incoming polarization. Practically,
a limited number must be used, given the finite height of a detector and the pixel size. The
questions about the appropriate number of equations, the best integration distance, and the best
geometry of the modulator can be answered with the help of the concept of efficiency of the
modulation scheme, as it was defined by del Toro Iniesta8,22 and Collados.23,24 Simultaneously,
a comparison of this concept of spectropolarimeter with existing instruments can be inferred
from the computation of the efficiency.

The system [Eq. (15)], describing the modulation scheme of the spectropolarimeter, can be
rewritten under a matrix form as

EQ-TARGET;temp:intralink-;e030;116;628

2
6664
Ioutðy1Þ
Ioutðy2Þ
: : : : : :
IoutðyNÞ

3
7775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Iout

¼ 1

2

2
6664

1 mðy1Þ nðy1Þ pðy1Þ
1 mðy2Þ nðy2Þ pðy2Þ
: : : : : : : : : : : :
1 mðyNÞ nðyNÞ pðyNÞ

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O

·

0
BBB@

Iin
Qin

Uin

V in

1
CCCA

|fflfflfflffl{zfflfflfflffl}
Sin

; (30)

or

EQ-TARGET;temp:intralink-;e031;116;526Iout ¼ O · Sin; (31)

where O is the modulation matrix. Therefore

EQ-TARGET;temp:intralink-;e032;116;483Sin ¼ O−1 · Iout; (32)

where O−1 is the demodulation matrix (also written as D).
As described in Sec. 4 (Fig. 4), the detector plane is subdivided into N integration intervals,

leading to N equations in the modulation scheme. If N > 4, then the matrixO is no longer easily
invertible, and a pseudoinverse matrix must be used:8,19

EQ-TARGET;temp:intralink-;e033;116;403D ¼ ðOTOÞ−1OT: (33)

This works as a left-inverse matrix (D · O ¼ 1). The notion of the efficiency of the modu-
lation as presented by del Toro Iniesta8 can be then introduced

EQ-TARGET;temp:intralink-;e034;116;346ϵi ¼
	
N
XN
j¼1

D2
ij


−1
2

i ¼ 1;2; 3;4; (34)

where i corresponds to each of the Stokes parameters. The four terms vector ϵi provides simul-
taneously information about the “quality” of the extraction of the Stokes parameters and the
modulation scheme (the matrix O). The total efficiency of the modulation scheme is defined by

EQ-TARGET;temp:intralink-;e035;116;258ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ22 þ ϵ23 þ ϵ24

q
: (35)

The maximum reachable efficiency is 1 and is given by the configuration ϵi ¼ 1ffiffi
3

p

for i ¼ 2;3; 4.
The concept of efficiency is also closely related to the uncertainty on the Stokes parameters.

Indeed, from Eq. (32), we have that

EQ-TARGET;temp:intralink-;e036;116;166SinðiÞ ¼
XN
j¼1

DijIoutðjÞ i ¼ 1;2; 3;4: (36)

Applying the propagation of errors, we obtain

EQ-TARGET;temp:intralink-;e037;116;102σ2i ¼ σ2
XN
j¼1

D2
ij; (37)
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where σi is the uncertainty characterizing each of the Stokes parameters, and σ is the error related
to each of the values IoutðyjÞ, supposed to be the same for all the vertical pixels (or pixel com-
pounds, if several are grouped). Combined to Eq. (34), this yields

EQ-TARGET;temp:intralink-;e038;116;699

σi
σ
¼ 1

ϵi
ffiffiffiffi
N

p : (38)

Therefore, the efficiency of the extraction of the Stokes parameters is nothing else but the
inverse of the corresponding uncertainty. Any variation of the efficiency is then translated into a
variation of the uncertainty. Higher is the efficiency for a parameter, lower is the uncertainty
characterizing it and the more it constitutes a better choice for the modulation matrix.
However, finding the best modulation matrix is not straightforward.

An essential role in the optimization of the modulation scheme is played by the number of
equations N and by the number of pixels n used for each equation of the system [Eq. (15)]. This
aspect can be easily proved by observing the evolution of the total efficiency as a function of N,
for different values of n (Fig. 7).

A small integration step ensures a quicker retrieval of the highest efficiency, lowering the
computation time.

The impact of the orientation of the analyzer on the quality of the extraction of the Stokes
parameters, already observed in the case of the uncertainty, can be retrieved as well in the case of
the efficiency.

Figure 8 shows the variation of the efficiency for each Stokes parameters with the orientation
of the analyzer for a modulation scheme, in which 2000 integration intervals were considered
with a pixel size Δy ¼ 10 μm. In order to illustrate the impact of the apex angles, two configu-
rations are presented: ðξ;ψÞ ¼ ð1.5 deg; 3 degÞ, and ðξ;ψÞ ¼ ð3 deg; 1.8 degÞ. Overall, the
total efficiency of the system is around 0.99. This value is above classical cases sush as
ZIMPOL—Zurich Imaging Polarimeter (0.72), ASP—Advanced Stokes Polarimeter (0.88),
or TIP—Tenerife Infrared Polarimeter (0.92)8,24 and proves that the studied model can be an
important candidate at least for the astronomical observation. Also for a modulator with the
apex angles ðξ;ψÞ ¼ ð3 deg; 1.8 degÞ, it can be noticed that orientations of the analyzer at
17.5 deg, 72.5 deg, 107.5 deg, or 162.5 deg the efficiency of Q, U and V is around 0.574, very
close to the ideal value of 1ffiffi

3
p ¼ 0.577.

In order to keep a high level of the efficiency and thus a low level of the uncertainty, the
couple ðξ;ψÞ must be chosen so that the two angles are not multiple one of another (Fig. 9):

Fig. 7 Variation of the total efficiency for a modulator in MgF2 with ðξ;ψÞ ¼ ð3 deg; 1.8 degÞ and
θ ¼ 72.5 deg with respect to the number of equations from the modulation scheme and for two
choices of pixel compounding, n. The continuous line corresponds to an integration pixel by pixel
(n ¼ 1, Npx ¼ N) and the dashed line to an integration on compounds of five pixels (n ¼ 5,
Npx ¼ 5N). The size of a pixel was considered here as being around 10 μm and the wavelength
λ ¼ 0.125 μm.
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EQ-TARGET;temp:intralink-;e039;116;160

�
aÞ for a given ξ∶ψ ≠ kξ; k ¼ 1;2; : : : ∀ ξ

bÞ for a given ψ∶ξ ≠ kψ ; k ¼ 1;2; : : : ∀ ψ
: (39)

Indeed, if the values of ξ and ψ are multiple one of another, then the nondiagonal terms of the
matrix A ¼ OTO are maximized, and because of this theOmatrix is not an optimal matrix of the
modulation.8 Again, just like in the case of the variation with the orientation of the analyzer
(Fig. 8), the concept of efficiency is a good method to asses the best geometry of the modulator.

(a) (b)

Fig. 9 The variation of the efficiency of the modulation scheme as a function of the apex angles.
(a) For a fixed value of ξ ¼ 1.5 deg, the angle ψ varies between 1 deg and 4.5 deg. It is noticeable
the drop of the efficiency for ψ ¼ 1.5 deg and around 3 deg. (b) ψ ¼ 2 deg and ξ varies between
1 deg and 4.5 deg. Again, drops of the efficiency are observed at ξ ¼ kψ , k ¼ 1;2.

(a) (b)

(c) (d)

Fig. 8 Efficiency of the extraction for each of the Stokes parameters and total efficiency as a func-
tion of the orientation of the analyzer θ for two combinations of the apex angles ðξ;ψÞ. For
ξ ¼ 1.5 deg and ψ ¼ 3 deg, (a), (b) the variations of the efficiencies of the extraction of Q, U ,
and V are following different patterns. There is no common maximum. Nevertheless, a (c), (d) dif-
ferent combination of the apex angles permits to have the same efficiency for U and V . Because
the Q term is modulated only by the function m½θ;Δϕ3ðψÞ�, varying the couple ðξ;ψÞ does not
impact the corresponding efficiency. The particular case of λ ¼ 0.125 μm, N ¼ 2000, and
ΔnðλÞ corresponding to MgF2 was considered.
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6 Conclusions

This mostly theoretical description of the STAS concept has shown that in ideal conditions,
exempted of noise, such a device does not interfere with the polarization states: it is impossible
to obtain the same pattern of intensity from different states of polarization.

Nevertheless, when the noise is added to the nominal signal, the determination of any incom-
ing polarization is accompanied by uncertainty. By mapping the uncertainty on the Stokes
parameters with respect to the orientation of the analyzer, it has been shown that angles like
45 deg and 135 deg should be avoided as they are erasing any information about theQ parameter
of the incoming light. Apart from the orientation of the analyzer, the couple of angles ðξ;ψÞ also
plays an important role in the precision of measurements. Therefore, a geometry with ðξ;ψÞ ¼
ð3 deg; 1.8 degÞ can provide equal values of the uncertainties on the Stokes parameters for
orientations of the analyzer at 17.5 deg, 72.5 deg, 107.5 deg, 162.5 deg. The level of uncertainty
corresponding to these positions is 1.73 times higher than in the ideal case of a polarimeter, but it
represents a compromise in which all Stokes parameters are determined with similar low errors
(choosing other angles may improve the situation for one parameter, but degrade it for another).

Because this type of spectropolarimeter is based on the continuous variation of the phase on
the vertical direction, multiple modulation schemes can be imagined. One of the best criteria to
choose among them is the efficiency of the extraction of the Stokes parameters. In this paper, was
investigated the dependency of the efficiency on the orientation of the analyzer and on the geom-
etry of the modulator. Maxima of the total efficiency of about 0.99 are attainable, situating
this concept of spectropolarimeter above classical examples such as ZIMPOL, ASP, or TIP.
The impact of the apex angles on the efficiency has also proved that configurations of the type
ξ ¼ kψ or ψ ¼ kξ, where k ¼ 1;2; 3; : : : must be avoided.
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5.3. THE ORTHOGONALITY OF THE MODULATION FUNCTIONS
As mentioned before, another possible approach for proving the uniqueness of the so-
lution is based on the orthogonality of the functions m, n, and p, which determine the
variation of the intensity in the detector plane (Vasilescu et al., 2021).

Theoretically, two functions f (x) and g (x) are orthogonal on the interval [a,b] if

< f , g >=
∫ b

a
f (x)g (x)d x = 0, (5.13)

where f (x) is the conjugate of f (x). If the modulation functions (1,m(y),n(y), p(y)) are
orthogonal, then they form a basis, and the decomposition of a Stokes vector S⃗ into this
basis is unique.
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Figure 5.1: Variation of the scalar product of the modulation functions (1,m(y),n(y), p(y)), with the integration
distance. It can be noticed that for integration over [0,6.9]mm, [0,13.8]mm, [0,20.7]mm, for arbitrary angles
θ = 50.6◦, ξ= 2.6◦,ψ= 1.6◦, andλ= 0.3µm, the scalar product is zero (zoomed regions aside the main graphic).
Source:(Vasilescu et al., 2021)

Computing the scalar product of the modulation functions for various integration
distances corresponding to the hypothetical sampling distances, we get the results from
Fig. 5.1. For each couple, this scalar product is very close to zero and passes through zero
when the integration distance corresponds to the longest period of the product of two
functions from the scalar product. Therefore, the functions are orthogonal over these
distances, and the decomposition of the Stokes vectors is unique in the basis formed by
these functions.

Aside from the unicity of the modulation scheme, efficiency also plays a crucial role
in assessing the performance of the spectropolarimeter concept. As we saw in the previ-
ous section, in our case, the efficiency is driven by four parameters: the angles ξ and ψ

of the modulator, the angle θ of the analyzer, and the number of pixels.
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Figure 5.2: Efficiency of the modulation scheme and total efficiency as a function of the orientation of the
analyzer (θ), for two couples (ξ,ψ): (1.5◦,3◦) and (2.6◦,1.6◦). The total efficiency as a function of the number of
pixels is also plotted (right). The variations with θ are considered for the case of 1000 pixels of 10µm dimension.
The efficiency as a function of number of pixels is observed for the scenario ξ =2.6◦, ψ =1.6◦, θ =30◦, and
λ=0.3µm. Source:(Vasilescu et al., 2021)

Analyzing the efficiencies of the polarimeter as a function of these parameters, rec-
ommendations for the best geometry, the analyzer’s orientation, or the detector’s dimen-
sion can be inferred.

Concerning the number of pixels required to reach a maximum efficiency, this is in-
fluenced, as we saw before, by the wavelength. The reason behind this dependency lies
in the fact that the wavelength directly impacts the period of the signal. Therefore, work-
ing at λ =0.125µm requires more than 2000 pixels to reach the maximum of total effi-
ciency, while for λ =0.3µm 100 pixels are enough (see Fig. 5.2). Figure 5.2 also shows
that the orientation of the analyzer does not impact the total efficiency. On the contrary,
the efficiency corresponding to the Stokes parameters shows a strong dependency on
the analyzer orientation and the geometry of the prisms. Concerning the apex angles ξ
and ψ, values like (2.6◦,1.6◦), ensure equal efficiency in the determination of S2 and S3.
Simulations conducted for values of ξ and ψ between 1◦ and 4◦ show that for ξ = ψ an
important drop of efficiency is observed (Fig. 5.3). Values of the type ξ = 2ψ or ψ = 2ξ
are also characterized by a certain drop of efficiency, the effect being more important
when the apex angle of the second wedge is bigger than the first, ψ > ξ. The reason for
this efficiency drop is the fact that the scalar product of the modulation functions is no
longer zero if ξ =ψ or ψ = 2ξ. The same situation can be pointed out for ξ = 2ψ. Con-
sequently, the modulation functions are no longer orthogonal in these cases. Therefore,
the uniqueness of the solution is not verified for this configuration of the modulator,
and the uncertainty characterizing the Stokes parameters is maximal. Because of this,
the geometry of the modulator should have:
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{
ψ ̸= k ·ξ, k = 1,2, ...

ξ ̸= k ·ψ (5.14)
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Figure 5.3: Total efficiency as a function of ξ and ψ angles of the modulator. The contour plot shows that
equal values, ξ=ψ, or situations of the type ξ= 2ψ, respectively ψ= 2ξ, should be avoided as they generate a
drop in efficiency. The particular cases of ξ=1.5◦ and ψ=1.5◦ are detailed. At right, the scalar product of the
modulation functions for the particular cases ξ =ψ =1.5◦, and ψ = 2ξ =3◦ is represented. It is noticeable the
high slope of < m,n > and < n,1 > in the case ξ=ψ=1.5◦, characterized also by a huge drop of efficiency, and
the smaller deviation of < n, p > when ξ =1.5◦, ψ =3◦, corresponding also to a local minimum of efficiency.
Source:(Vasilescu et al., 2021)

5.4. CONCLUSION
We have seen in this chapter that several methods are at hand to prove the uniqueness of
the solution for this spectropolarimeter concept. Some are more computationally inten-
sive and difficult to interpret, while others are more suited to experimental implementa-
tions. However, the bottom line is that a unique solution theoretically characterizes this
spectropolarimeter concept. Each input polarization state corresponds to a distinctive
intensity pattern in the detector plane. To assess the "quality" of Stokes parameter ex-
traction, we investigated here the efficiencies associated with the modulation scheme.
We have seen how these efficiencies are affected by the system’s main parameters: the
analyzer’s orientation, the apex angles, and the number of pixels. Thus, we pointed out
that two analyzer orientations (45◦ and 135◦) should be avoided to allow full Stokes re-
trieval. In addition, specific apex angle values must also be avoided for modulator fab-
rication. These are the situations where the angles are equal or entire multiples of each
other.

Theoretically, this spectropolarimeter concept proves its ability to find any polariza-
tion state unambiguously. However, deviations from ideal conditions must be antic-
ipated when dealing with a real instrument using this modulation method. The next
chapter shows how the instrument will work in this case. The modulation scheme will
be analyzed from the perspective of condition number and equally weighted variance.
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If God hadn’t rested on Sunday, He would have had time to finish the world.
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The previous chapters demonstrated that the modulator concept proposed here is
very promising: it is theoretically characterized by the uniqueness of the solution, and
among the countless ways in which it can be configurated, some geometries ensure an
almost ideal efficiency of the modulation scheme. This characteristic allows us to hope
for obtaining minimal and equal uncertainties for all Stokes parameters under noise
conditions.

The different configurations in which such a polarimeter can be built are translated,
among others, into different modulation schemes. The modulation scheme acts as the
coefficients of a system of equations meant to help recover the polarization. It allows us
to convert intensity readings from the detector into Stokes parameter values. But also,
they act like a filter.

The intensity values recovered from the detector are influenced by noise. In addition,
the light reaching the detector passes through optical elements that may deviate slightly
from the theoretical description. A "good" modulation matrix can help us alleviate these
problems. Instead of turning small variations in intensity and optical properties into
large uncertainties on the Stokes parameters, they can help us to restrain these uncer-
tainties.

In the third Chapter, we saw that we have at hand two figures of merit to moni-
tor these aspects for a modulation matrix: the condition number (C N ) and the equally
weighted variance (EW V ). If the modulation efficiency, studied in the previous chapter,
indicates how much the four Stokes parameters can be affected by Gaussian noise, C N
and EW V allow us to extend the analysis to other types of noise and the propagation of
different errors.

In a traditional instrument, the modulation matrix W has a generally fixed structure
and depends on very few parameters. Thus, for instance, the number of pixels or their
size plays an insignificant role in the case of a classical instrument. However, in our case,
these parameters are defining and play a key role in establishing the modulation ma-
trix and, implicitly, the quality of the instrument. The relation (4.19) shows us that the
terms of this matrix depend on the vertical position of the projection of the pixels at the
modulator level, the size of these pixels, the orientation of the analyzer, and the phase
difference determined by prisms 1 and 3. Consequently, special attention was paid to
analyzing the modulation matrices that can be obtained by varying these essential pa-
rameters of the system. The condition number and the equally weighted variance were
used as metrics to determine the quality of the modulation matrices that can be obtained
for various wavelengths, pixel sizes and number of pixels. The results, published in Op-
tics Express1, are reproduced in the next pages. Overall, as in the case of the efficiency of
the modulation scheme, the results of this study show that the concept advanced here
exhibits an almost optimal behavior. For any wavelength and pixel size, there is a mini-
mum number of pixels starting from which C N or EW V approaches the specific values
of an optimal scheme. These new findings further strengthen our conviction that we are
dealing with a method capable of generating multiple optimal polarization modulation
schemes. However, it must be stressed that the variations of the W matrix considered
here, which can influence our precision in determining the polarization, do not cover all

1Vasilescu, B., Piron, P., Loicq, J. (2023). "Performance analysis of a spectropolarimeter employing a continu-
ous phase variation", Optics Express, 31(13), 21078
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the possibilities. In reality, many more factors may come into play to differentiate the
optical setup from the theoretical one. Temperature, humidity, or deviations from plans
in the manufacturing process are just a few examples. For this reason, a realistic assess-
ment of the instrument’s quality can only be made after the experimental determination
of the W matrix. This determination takes into account all the factors that can alter its
shape.
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Abstract: The light emitted or reflected by a medium can exhibit a certain degree of polarization.
Most of the time, this feature brings valuable information about the environment. However,
instruments able to accurately measure any type of polarization are hard to build and adapt to
inauspicious environments, such as space. To overcome this problem, we presented recently
a design for a compact and steady polarimeter, able to measure the entire Stokes vector in a
single shot. The first simulations revealed a very high modulation efficiency of the instrumental
matrix for this concept. However, the shape and the content of this matrix can change with the
characteristics of the optical system, such as the pixel size, the wavelength or the number of
pixels. To assess the quality of the instrumental matrices for different optical characteristics, we
analyze here the propagation of errors, together with the impact of different types of noise. The
results show that the instrumental matrices are converging towards an optimal shape. On this
basis, the theoretical limits of sensitivity on the Stokes parameters are inferred.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The understanding of reality can be hugely improved with the help of polarization. This property
of light, referring to the orientation of the electric field, can be related to many characteristics of
the environment. Therefore, with tremendous success, now we use polarization in astronomy
[1–3], remote sensing [4], medicine, biology, chemistry, etc. [5–9].

However, despite the large number of applications, the measurement of polarization remains
difficult. The main reason for this is the fact that the human eye and the optical detectors are not
sensitive to the polarization of light. We need to use special instruments to measure it. These
instruments are bulky, very sensitive to the measurement conditions, and only measure a limited
set of polarization states.

In recent research, a new method for a non-imaging measurement of polarization was presented
[10–12]. As a novelty, this method employs a new type of optical modulator. This component
allows for overcoming most of the traditional problems related to polarization measurements. It
gives the possibility to build an instrument compact, robust, and suitable even for use in harsh
environments, like space. Moreover, it can measure any type of polarization through a single
shot.

However, in contrast with the traditional way of measuring polarization, where a limited
number of equations are used in the modulation schemes, the new instrument can employ much
more equations. Therefore, the instrumental matrix can have a very large format. In addition,
this matrix will depend on the geometry of the modulator or on the number of pixels, their size,
and the used wavelength. Thus, finding an optimal form for these matrices is no longer easy.

Based on the previous results [10], a specific geometrical configuration can be chosen for the
modulator to obtain the highest efficiency of the modulation scheme [13]. This way, only three
variables are required in the analysis. The system’s quality depends on the number of pixels,
their size and the wavelength. Therefore, the theory of the impact of noise [14–17] can be used

#487335 https://doi.org/10.1364/OE.487335
Journal © 2023 Received 8 Feb 2023; revised 8 Apr 2023; accepted 16 Apr 2023; published 8 Jun 2023
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for different configurations depending on these variables in order to assess the quality of the
instrumental matrices that can be obtained.

This paper uses two main concepts to analyze these matrices: the condition number (CN)
and the equally weighted variance (EWV). The CN provides information about how errors are
propagated through the instrumental matrix. The EWV tells how the retrieved Stokes parameters
are impacted by the type of noise. This way, we can see if the proposed instrument behaves or
not like an optimal one.

The results of simulations show that, in certain conditions, the instrument is very close to
an optimal one. No matter the wavelength, the matrices are converging towards an ideal form.
In conclusion, the proposed design not only solves many practical difficulties related to the
measurement of polarization, but also provides a very high degree of accuracy.

2. Measurement of polarization

The classical methods for the determination of polarization rely on Stokes formalism and on
the Mueller calculus. The Stokes formalism is a straightforward mathematical description of
polarization. At the basis is a vector with four parameters, S⃗ = (S0, S1, S2, S3)T , that can represent
any type of polarization. Here S0 stands for the total intensity of light, S1 for the linear horizontal
or vertical state of polarization, S2 for the linear 45◦ or 135◦ states, and S3 for the circular right or
left polarization, while T denotes the transposition operator. Finding the four Stokes parameters
requires at least four measurements under different configurations of the optical system. The
Stokes vector is related to the structure of the system through the Mueller calculus. Therefore,
the state of polarization, S⃗out = (Sout0, Sout1, Sout2, Sout3)T , emerging from a system described by a
4 × 4 Mueller matrix, M, is:

S⃗out = M·S⃗, (1)

where S⃗ is the incoming state of polarization. Given the fact that the detectors are sensitive
only to the intensity of light, only the first term of the emerging vector, Sout0, must be taken into
consideration for the measurement of polarization. Therefore, the detected intensity is:

Sout0 = M00S0 +M01S1 +M02S2 +M03S3, (2)

where (M00, M01, M02, M03) are the terms of the first line of the Mueller matrix, M. When the
configuration of the system changes, these terms may also change. To simplify the representation
of a system that can embrace N configurations, it is useful then to change the notation from M
into W, and from Sout0 to I, so that:{︄

(M0i)k = Wki+1

(Sout0)k = Ik
for i = 0, .., 3; k = 1, .., N, (3)

where k is the index of the configuration. Consequently, the N equations that allow the
measurement of polarization can be written in the following form [13,18]:
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or, in a more contracted expression:
I⃗ = W ·S⃗, (5)

where I⃗ is the vector of the detected intensities (i.e. number of photo-electrons), W is the
instrumental matrix and S⃗ is the incoming Stokes vector that must be measured.

If the transition from one configuration to another requires the move or the rotation of
certain components of the instrument, then we are dealing with the sequential measurement of
polarization. On the other hand, if the different configurations coexist, then we are speaking
about the division of amplitude procedure.

If W is an invertible matrix, the Stokes vector is immediately accessible via

S⃗ = W−1·I⃗. (6)

Because noise is always present in this kind of measurement, increasing the number of lines of
the system (Eq. (4)) may help mitigate the influence of spurious signals and enhance the precision
of the polarization determination. However, if N>4, then the W matrix is no longer invertible.
The only possibility to solve the system (Eq. (5)) is to use the left-inverse matrix, W†:{︄

W†=(WTW)−1WT

W†W = ⊮,
(7)

where T represents the matrix transposition. According to the theory [19], the left inverse matrix
exists only if the rank of the matrix W(N × 4) is equal to 4, when N ≥ 4. Therefore, the use of
the left-inverse matrix should be conditioned by the verification of this necessary and sufficient
condition. Multiplying at left side the Eq. (5) with W†, we obtain

S⃗ = W†I⃗. (8)

3. Continuous phase variation spectropolarimeter concept

Most of the classical approaches to generate the W matrix are using the sequential method or
the division of amplitude. Therefore, these kinds of instruments often are bulky, limited to
certain types of polarization, or not suitable for harsh environments. In this context, we recently
presented a new concept of spectropolarimeter able to solve most of these difficulties [10–12].
Using the division of amplitude method, the new instrument allows the full determination of the
Stokes vector with a single measurement. Working with a collimated beam, this instrument is
adapted for the non-imaging working mode.

The main part of the instrument, the modulator, is composed of three prisms in Magnesium
Fluoride (MgF2), optically glued together and with the fast axis differently oriented in each wedge
(see Fig. 1, (a, b)). Therefore, the first prism, (1), of apex angle ξ, has a fast axis oriented along
the x-axis. In the middle part of the modulator, (2), the fast axis is oriented along the z-axis, while
in the third wedge, (3), of apex angle ψ, the fast axis makes an angle of 45◦ with the x-axis, in the
(xy)-plane. These particular orientations of the fast axes ensure a complete modulation along the
vertical direction (i.e. the y-axis) of any incoming state of polarization arriving collimated from
the left side of the instrument. Given the variation of the optical thickness along the vertical
direction inside the modulator, the phase difference between the two orthogonal components
of light varies continuously along the vertical direction. Therefore, a continuous variation of
polarization is achieved along the vertical direction on the exit face of the modulator. Because the
phase difference induced by the MgF2 prisms depends also on the birefringence of the material,
the modulation of the signal is also spectrally dependent. By placing a linear polarizer after
the modulator, with the transmission axis oriented at an angle θ with respect to the horizontal
direction, the variation of polarization along the vertical direction can be converted into an
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intensity variation, as it is shown in Fig. 1(c). To avoid a high angular separation between the
ordinary and extraordinary rays inside the modulator, small values of apex angles must be used.
Therefore, the simulations conducted here rely on ξ = 2.6◦ and ψ = 1.8◦, whereas the orientation
of the analyzer was considered θ = 72◦. These values were chosen also in order to ensure a very
high efficiency of the modulation scheme [10,13].

a)

c)

Polarimeter

Signal modulation
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Fig. 1. The general principle of the spectropolarimeter: a) the polarized light arriving
collimated from the left side passes through the modulator, the analyzer, and then is dispersed
horizontally by a dispersive element. Each prism of the modulator has a particular orientation
of the fast axis: along the x axis in (1), along z in (2), and at 45◦ in (3). The modulation
of the signal obtained with this modulator is spectrally dependent (c). The period of the
signal increases with the wavelength. In addition, each incoming state of polarization
is characterized by a unique pattern of the intensity. An arbitrary state of polarization
S⃗ = [1, 0.5, 0.4, 0.3] was simulated here.

Since the modulation of the signal is spectrally dependent, due to the birefringence of the
modulator, (see Fig. 1(c)), a dispersive element can be placed after the analyzer to disperse the
light spectrally along the x−axis, orthogonal to the polarimetric modulation. For an incoming
Stokes vector, S⃗ = (S0, S1, S2, S3)T , the intensity of light in the detector plane is described by the
following equation:

I(θ, y, λ) = 1
2
[S0 + S1·m(θ, y, λ) + S2·n(θ, y, λ) + S3·p(θ, y, λ)] (9)

where θ is the angle of the linear analyzer with respect to the x-axis, y is the position in the
vertical direction, and λ is the wavelength. The functions m, n, p, computed with the help of the
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Mueller calculus, are given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(θ, y, λ) = cos(2θ) cos(∆ϕ3)
n(θ, y, λ) = sin(2θ) cos(∆ϕ1) + cos(2θ) sin(∆ϕ1) sin(∆ϕ3)
p(θ, y, λ) = sin(2θ) sin(∆ϕ1) − cos(2θ) cos(∆ϕ1) sin(∆ϕ3)

, (10)

where ∆ϕ1 and ∆ϕ3 are the phase differences induced by the prisms (1) and (3):{︄
∆ϕ1 =

2π
λ ∆n(λ)(h − y) tan(ξ)

∆ϕ3 =
2π
λ ∆n(λ)(h − y) tan(ψ) , (11)

in which ∆n(λ) = |no(λ) − ne(λ)| is the absolute value of the difference between the ordinary and
the extraordinary indices of refraction, also called the birefringence of the medium, while h is the
height of the modulator.

Discretizing in the vertical direction the height of the ensemble formed by the modulator and
the analyzer into Nt pixels of the same size as the detector pixels, ∆y, then each small part of this
ensemble will act as a polarimeter with a different configuration. Consequently, a column of
Nt pixels from the detector plane will record the signal coming from Nt different polarimeters
disposed on the same vertical. For a precise wavelength and orientation of the analyzer, the
intensity measured by the illuminated pixels is:
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In the following discussions, the number of lines of the instrumental matrix, N, will always
satisfy the relation N ≤ Nt, where Nt = h/∆y is the total number of pixels from a column of
the detector. The number of pixels N used in the construction of the W matrix can take any
value between 4 and Nt. Therefore, using different values of N will not change the received flux
per pixel. In addition, the size of the pixel, ∆y, will be taken into account by considering the
integrated value of the functions m, n, and p over the pixel size (see Eq. (12)). When N>4, W is
no longer invertible. However, working with N>4 may help to mitigate the impact of the noise if
the W matrix is well-conditioned and close to an optimal one. Therefore, the objective of the
current research is to show that the W matrices are converging toward optimal forms for certain
couples of the number of pixels, N, and their size, ∆y.

4. Tools for the analysis of the instrumental matrix

From the Eqs. (10), (11) and (12) we see that, for a given configuration of the polarimeter (i.e.
the angles ξ, ψ and θ, and the height, h), and a given wavelength, the elements of the matrix W,
as well as its dimension and other properties are determined by the number of pixels, N, their
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size, ∆y, and their location in the vertical direction. Therefore, the size of the matrix can span
between 4 × 4 and 4 × N. To see if these matrices W, that can be formed, are suitable or not for
the retrieval of polarization, we need to assess their "quality". The best "instruments" for this
are the condition number and the equally weighted variance [15,20–22]. Both will be analyzed
hereafter. The advantage of the condition number is the fact that allows us to observe if the
inverse of the W matrix can be computed with accuracy. On the other hand, the equally weighted
variance tells us how the retrieval of the Stokes vector is impacted by different types of noise
when a certain W matrix is used.

Both concepts, along with the demodulation of the signal, based on Eqs. (6) and (7), are relying
on the possibility to compute the inverse of the instrumental matrix, W. As was underlined
before, this happens only if the rank of W is 4, for any N ≥ 4 and for any λ. To have a rank
equal to 4, the columns of W should be linearly independent. In addition, more than 4 rows
should also be linearly independent. Our previous paper [10], proved that the functions m, n and
p are linearly independent. Therefore, the columns of W are also linearly independent. A quick
inspection of the Poincaré sphere (see Fig. (2)), where m, n, p are represented on a sphere of
radius 1, reveals also that the points (m(yi), n(yi), p(yi)), (i = 1. . .N) are covering the entire sphere,
for any value of λ. Therefore, the rank of W is 4 and the necessary and sufficient condition for W
to have a left-inverse is satisfied. Furthermore, an arbitrary example can be chosen to verify the
demodulation procedure based on Eq. (8). Therefore, by considering an incoming normalized
Stokes vector s⃗ = (1, 1/

√
3, 1/

√
3, 1/

√
3)T , this procedure was applied to retrieve the polarization,

ignoring, at this moment, any other sources of errors. The results (see Fig. (3)) show that for
N>6, the relative error on the normalized Stokes parameters is of the order of 6.5·10−12. For
N = 4, the highest error is observed on s1 parameter (approximately 5.4·10−8).

Fig. 2. Poincaré representation of the points (m(yi), n(yi), p(yi)), (i = 1, .., N) on a sphere of
radius 1, for two values of N. For these simulations, the size of the pixel was considered to
be ∆y = 10µm and the wavelength λ = 0.35µm.

4.1. Condition number

The condition number provides simultaneously information about how well-conditioned the
W matrix is for inversion and how sensitive the system is to changes. Therefore, a small CN
indicates a well-conditioned matrix. Small changes in the vector I⃗, due to noise, and in the
matrix W, due to integration over pixel size, are converted into small variations of the computed
Stokes vector ˆ︁S with respect to the real incoming state of polarization, S⃗. Meanwhile, for an
ill-conditioned W matrix, (large CN), small changes of I⃗ and W generate large changes in the
computed state of polarization, ˆ︁S [23]. The smallest value of CN is 1 and it corresponds to a
unitary matrix, while the highest value is infinity, corresponding to non-invertible matrices. In
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Fig. 3. Relative error on the normalized Stokes parameters as a function of the number
of pixels, N. For these simulations, the size of the pixel was considered to be ∆y = 10µm,
the wavelength, λ = 0.35µm, whereas the incoming normalized polarization was arbitrarily
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the case of a polarimeter, where W is no longer a square matrix, the CN is defined as [15,22]:{︄
CN(W) = ∥W†∥∥W ∥
∥W ∥ =

√︁
Tr(WTW) , (13)

where Tr is the trace operator. In [22] it was proved that the minimum condition number computed
with this formula for an optimal W matrix is

√
20.

4.2. Equally weighted variance

The error on Stokes parameters has two main sources: the algorithm of computation, through
the matrix W, and the noise. To mitigate the impact of W, the best strategy is to search for the
matrices with the smallest condition number. On the other hand, to assess the impact of noise,
the concept of equally weighted variance (EWV) can be used [15,20–22]. When the noise is
present in the optical system, Eq. (5) must be adjusted:

I⃗ = WS⃗ + B⃗, (14)

where B⃗ is the noise vector. This noise can be related to the electronics of the instrument,
speaking in this case about the Gaussian additive white noise (AWN), or to the number of the
received photons, referred to as non-additive Poisson shot noise (PSN). Multiplying at left side
with W†, the previous relation became:

ˆ︁S = S⃗ +W†B⃗, (15)

whereˆ︁S = W† I⃗ is the corrupted Stokes vector. Because in our case W can embrace various forms,
the purpose is then to see how the precision of the Stokes parameters is impacted by these forms
when the different types of noise are present (see Fig. (4)) . We can assess this impact with the
help of the equally weighted variance. From its definition [20,21,24], the EWV is nothing else
but the sum of the variances on the Stokes parameters of the vectorˆ︁S,

EWV(W) =
3∑︂

k=0
var(ˆ︁Sk) = Tr[Γˆ︁S], (16)

where Γˆ︁S is the covariance matrix ofˆ︁S.
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Fig. 4. Schematic representation of the working principle of the polarimeter in the presence
of noise, for a single wavelength. The vertical modulation of the signal (I⃗), obtained over
a column of pixels, is corrupted by the noise B⃗. Consequently, the measured state of
polarization is Ŝ instead of S⃗. An optimal modulation matrix W allows the minimization of
the difference between Ŝ and S⃗.

Therefore, the imprecision on the Stokes parameters and on the degree of polarization can be
directly accessed. In the case of a Gaussian white noise of standard deviation σ, EWV becomes

EWV(W) = σ2Tr
[︁(WTW)−1]︁ , (17)

and the minimal values of EWV(W) correspond to optimal W matrices [25]. Previous studies
[21,22] have shown that, in the presence of Gaussian noise, for the minimal values of EWV(W),
Γ
ˆ︁S has the form

Γ
ˆ︁S = σ2(WTW)−1 =

4
N
σ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (18)

where N is the total number of lines of the matrix W. For this value of Γˆ︁S, the EWV is 40σ2/N.
In the presence of a Poisson, non-additive noise, the expression of the covariance matrix is

different as it depends on the intensity, and therefore on the Stokes parameters. In this case, the
matrix is given by [14,21]:

Γ
ˆ︁S
ij =

3∑︂
k=0

Sk

N∑︂
n=1

W†
inW†

jnWnk for i, j = 0, .., 3. (19)
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For a design characterized by an optimal modulation scheme, the variances of the Stokes
parameters, corresponding to the diagonal terms of the matrix (19) are [21]:{︄

Γ
ˆ︁S
0,0 =

2S0
N

Γ
ˆ︁S
j,j =

6S0
N , j = 1, 2, 3

, (20)

whereas the covariance between S0 and the rest of the terms is no longer zero. Following Eqs. (13),
and (20), the minimum value of the EWV is 20S0/N.

5. Optical system analysis

The two concepts previously introduced, for CN and EWV , are hereafter explored while applied
to our spectropolarimeter. To simplify the analysis, the structural parameters of the polarimeter
are considered fixed. Therefore, the analyzer is oriented at the angle θ = 72◦, while the prisms of
the modulator, built in MgF2, have the apex angles ξ = 2.6◦, and ψ = 1.8◦. The only parameters
driving the shape of the W matrix for a given wavelength, λ, are in this case the pixel size, ∆y,
and the number of lines, N, corresponding also to the number of pixels in the vertical direction.
As was underlined before, a change in the size or number of pixels is not accompanied here
by a variation of the flux. The limits of variation for ∆y and N are imposed by the size of the
modulator, which is here 2cm × 2cm. Consequently, the questions that we try to answer here
are how many pixels we need to build an optimal modulation matrix and what is the suitable
dimension of these pixels.

5.1. Condition number

Using the Eq. (13), the CN was computed for various pixel sizes, ∆y, and number of lines, N, of
the matrix W. Precise values of the wavelength were arbitrarily chosen within the transmission
range of MgF2. Therefore, the Fig. (5)-left was plotted for λ = 0.35µm, and it shows that ∆y
and N are inversely correlated. An increase of the size of pixel corresponds to a decrease of the
number of lines, N, required to obtain the same value of the CN. In addition, it is noticeable
that the smallest value of CN is situated between 5 and

√
20, and is reachable for almost any

value of the pixel size. This tendency is visible in the Fig. (5)-right. Here, the level of CN was
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Fig. 5. Left: CN as a function of the pixel size, ∆y, and number of lines, N, of the matrix
W. For this example, an arbitrary wavelength λ = 0.35µm was considered. Level lines
corresponding to CN = 20, 10 and 5 were also plotted. Right: CN as a function of the
number of lines, N, for a pixel size ∆y = 10µm and three wavelengths. The dotted vertical
lines correspond to τmax(λ1), τmax(λ2), and τmax(λ3) respectively.
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monitored with respect to the value of N for three different wavelengths. The plot shows that for
any wavelength, the CN converges similarly towards the optimal value of

√
20. The only impact

of the wavelength is to shift the position of the minimum from where the convergence manifests.
Approximately, the convergence occurs after the number of pixels, N, covers along the y−axis a
distance equal to the largest period of the functions m, n, p. From Eq. (10) it can be easily shown
that this period is:

τmax(λ) = λ

∆n(λ)·(tan(ξ) − tan(ψ)) . (21)

6. Equally weighted variance (EWV)

As it was already proved, the notions of condition number and equally weighted variance are
closely related [15]. However, the CN only provides information about the propagation of errors
through the W matrix. It gives no hint about the level of errors on the Stokes parameters when
the noise affects the measurements. For this, the EWV should be studied. This is based on
the covariance matrix of the retrieved Stokes vector (see Eq. (16)). Therefore, it can provide
information about the variances of the Stokes parameters and about the correlation existing
between them.

6.1. Gaussian noise

When the system is subject to the Gaussian noise, the covariance matrix of the Stokes parameters,
Γ
ˆ︁S, is provided by Eq. (17). In the case of an optimal polarimeter, characterized by an equal

impact of the noise on the Stokes parameters, the covariance matrix embraces the form from
Eq. (18). Therefore, for such a polarimeter, the variances on S1, S2, and S3 are three times higher
than for the intensity term, S0. Because the rest of the matrix is zero, the presence of this noise
brings no correlation between the Stokes parameters. Varying one of them will not affect the
others.

As we saw in the study of CN, by changing the number of pixels, N, or the size of the pixels
on the y direction, ∆y, the shape and the "quality" of W can be changed. Thus, by increasing N,
we noticed that CN converged towards the optimal value of

√
20. Conducting the same type of

simulation for the covariance matrix, we want to see now if this trend can be retrieved again.
To simplify the comparison between the results for our instrument and an optimal case,

described by the Eq. (18), we have monitored the evolution of the terms of the matrix G, defined
by

G = Γˆ︁S· N
4σ2 , (22)

which is a normalized form of the covariance matrix. Therefore, if the modulation provided by
the presented spectropolarimeter converges toward an optimal one, then we should also have:

G N−→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

The upper graph from the Fig. (6) shows that the diagonal terms of the matrix G are converging,
with the number of lines N, towards the values 1 and 3. This convergence occurs approximately
after N = 200. Concerning the rest of the matrix, given the symmetry, only the lower terms are
presented in Fig. (6)-bottom. The plots suggest a convergence towards zero. However, for this
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trend to manifests, a higher value of N is required. Approximately, this value should satisfy the
relation:

N·∆y>10·τmax(λ). (24)

In conclusion, we can say that Eq. (24) is verified for instrumental matrices with a large number
of lines. In this case, in the presence of Gauss noise, the studied model of spectropolarimeter
behaves like an almost optimal one. By reducing N, the correlation between the Stokes parameters
starts to increase. The most affected couples are (S1, S2) and (S1, S3). Therefore, despite the fact
that such modulation of the intensity allows the retrieval of the polarization state with a number
of pixels covering the largest period, τmax(λ), using a larger number proves to be better in the
presence of Gauss noise.
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Fig. 6. Gaussian noise: evolution of the terms of the matrix G with the number of lines of
the instrumental matrix W. An arbitrary value of the pixel size, ∆y = 15µm, was used for
this simulation. The wavelength was set to 0.35µm. To point out the trend of the G terms,
the maximum value of N was fixed now to 2000.

Concerning the value of the EWV , from the Eqs. (16), (17) and (23)) and from the results
presented in Fig. (6), we may infer also that:

EWV(W(N)) = 40σ2

N
, (25)

for N·∆y>τmax(λ). Therefore, the equally weighted variance also converges towards the optimal
value. This trend can be observed in Fig. (7) -left, where EWV was plotted with respect to N for
an arbitrary pixel size of 15µm and λ = 0.35µm. The convergence manifests in this case quicker
than for the G terms because N is considered in the final expression of the EWV .

6.2. Poisson noise

The non-additive noise is dependent on the level of intensity. For our polarimeter, this level varies
from one pixel to another, in the vertical direction, following a sinusoidal shape (see Fig. (1)).
Therefore, the noise will vary also in the vertical direction, distorting differently the pattern of
intensity from one pixel to another. To assume the impact of this non-additive contribution, the
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Fig. 7. EWV as a function of the number of lines of the matrix W, for ∆y = 15µm, and
λ = 0.35µm, in the presence of Gaussian noise (left), and Poisson noise (right). The plotted
values were normalized by σ, supposed to be constant here, in the case of Gauss noise, and
by S0, for the Poisson noise.

relations (16) and (19) must be used. It can be noticed that the covariance matrix is different now
from the case of the additive noise, as the terms of this matrix are related to the incoming state of
polarization.

Using the same procedure as in the case of the Gaussian noise, we have computed the terms of
the matrix G, where

G =
N

2S0
Γ
ˆ︁S, (26)

for an arbitrary incoming Stokes vector S⃗ = (3, 1.5, 1.4, 1.3)T , as a function of the covered distance
on the y direction. Because the obtained covariance matrix was proved to be symmetrical, again,
only the lower part was presented in Fig. (8). The diagonal terms are showing strong convergence
towards the optimal values (see Eq. (20)). However, the rest of the terms are no longer converging
towards zero, as in the previous case. A certain trend or average value can be pointed out for
each term of the covariance matrix, but the variation around these values is stronger than in the
case of additive noise. Using again a large value of N, so that N·∆y ≥ 10·τmax, the covariance
matrix becomes, approximately:

Γ
ˆ︁S → S1

N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1

1 6 0 0

1 0 6 0

1 0 0 6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

Just like in the case of the additive noise, the variances on the Stokes parameters are three times
higher than for the intensity term. However, the Stokes parameters are no longer uncorrelated
now. Therefore, non-diagonal terms of the matrix Γˆ︁S are no longer zero. For small values of
N (i.e. N·∆y ≤ 10·τmax(λ)), there is also a small correlation between all the Stokes parameters.
That means that a variation of one of the Stokes parameters will influence, most likely in a small
amount, the value of all the others.

Concerning the equally weighted variance, Fig. (7)-right shows that for N·∆y>τmax(λ) we
have a superposition between the studied concept and the values corresponding to an optimal
modulation scheme.
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Fig. 8. Diagonal and upper right terms of the covariance matrix in the presence of Poisson
noise. The lower-left part of the matrix is identical to the upper-right part, therefore
the covariance matrix is diagonal. The simulations correspond to an arbitrary pixel size,
∆y = 15µm, and to a wavelength λ = 0.35µm.

7. Conclusions

A new concept of spectropolarimeter based on a continuous phase variation was presented here
and analyzed from the perspective of the instrumental matrix that is produced. In contrast with
the ’traditional’ instruments, employing limited and hardly tunable matrices, the instrument
presented here allows the construction of various matrices. These matrices may vary in dimension
and in the value of each line, according to the sizes of pixels used, and in the number of pixels
chosen to extract the polarimetric information.

We have analyzed these matrices from the perspective of the condition number and the equally
weighted variance. The condition number was used to assess the propagation of errors through
the instrumental matrix. The equally weighted variance showed the impact of different types of
noise on the determination of the Stokes vector.

The main parameters used to monitor different instrumental matrices were the number of lines,
N, that corresponds also to the number of pixels used to read the signal on the vertical direction,
and ∆y, the size of the pixel.

For CN, the simulations showed that after a value of N verifying the relation N·∆y = τmax(λ),
we have a convergence towards the optimal value of

√
20. In other words, the signal must be read

at least over the largest period to achieve this convergence.
Concerning the EWV , the study considered two cases: when the system is affected by the

additive Gaussian noise and when it is affected by the non-additive Poisson noise. Because the
computation of the EWV is based on the retrieval of the covariance matrix of the measured Stokes
parameters, special attention was paid to the latter. Therefore, in the presence of the Gaussian
noise, we discovered that the system converges towards an optimal behavior with the number of
lines of the instrumental matrix. After approximately N·∆y = 10·τmax(λ), the covariance matrix
can be assimilated to the one corresponding to an optimal modulation scheme. However, when
smallest values of N are used, a very small correlation between the Stokes parameters begins
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to manifest. The couples (S1, S2) and (S1, S3) are the most affected. Overall, the covariance on
(S1, S2, S3) is three times higher than for the intensity, S0. Searching in practice to improve the
precision of the Stokes parameters beyond these limits will be impossible.

The system proves to be more sensitive in the presence of the Poisson noise. The covariance
matrix also converges towards the optimal one in this case, but the variations around this limit
value are higher. For short covered distances (N·∆y<10·τmax(λ)) all the Stokes parameters prove
to be correlated. A small variation of one of them affects all the rest. However, just like in
the case of the additive noise, for N·∆y>τmax(λ), the covariance on (S1, S2, S3) is three times
higher than for the intensity, S0. Because the covariance of the Stokes parameters follow closely
the optimal scenario if N·∆y>τmax(λ) for both types of noise, the equally weighted variance
converges also towards the optimal value.

In conclusion, this study provided an evaluation of the modulation matrix that can be obtained
with our instrument and of the error characterizing the Stokes parameters when the noise is
present. We saw that, theoretically, the system can be very close to an optimal one and the limits
of precision were inferred.

Still, in a realistic scenario, the modulation in intensity provided by the modulator may
drastically differ from the theoretical pattern used during our analysis here. The misalignment of
the prisms, of the orientations of the fast axis, or the presence of manufacturing errors related to
the size of angles or to the flatness of surfaces may strongly impact the form of the matrix W.
Because of this, the study presented here must be doubled by experimental validation. Therefore,
laboratory implementation will represent the next step of this research.
Disclosures. The authors declare no conflicts of interest.
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7
OPTIMAL CONFIGURATIONS

Not everything that can be counted counts and not everything that counts can be counted

Albert Einstein
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We discovered in the previous chapters that the method proposed here for the re-
trieval of polarization can sometimes embrace forms close to the optimal one from the
point of view of the modulation matrix, W . We also proposed using this modulation ma-
trix to retrieve the polarization of light instead of fitting the theoretical function of the
intensity to the experimental data. This approach copes much better with a complex de-
sign in which the various parameters are hard to retrieve. In the second part of this work,
we will see the experimental advantage of using the modulation matrix. Until then, the
question that still must be answered is: what are the best choices, from the point of view
of the apex angles of the prisms and orientations of the analyzer, to build an instrument
using this modulator?

In chapter 5, it was underlined that certain orientations of the analyzer should be
avoided. The orientation at 45◦ and 135◦ is forbidden if we intend to measure the entire
Stokes vector. In addition, certain values of the apex angles are also characterized by a
drop in efficiency. The most profound loss of efficiency manifests for equal values of the
apex angles.

This chapter is intended to provide a global image of the impact of these three pa-
rameters (the two apex angles and the orientation of the analyzer) on the efficiency of
the modulation scheme. This way, we can identify the values that should be used to
manufacture the modulator and assemble the polarimeter.

7.1. IDENTIFYING THE OPTIMAL CONFIGURATIONS
The angles ξ and ψ of the two active prisms of the modulator (see Fig. 7.1) should be
kept as small as possible to avoid the increase of the Fresnel terms and the effect of the
split of rays with orthogonal polarizations.

z

Modulator

θ
x

y

x

y

Incoming

light

d0

Analyzer

d0

d0

Figure 7.1: Optical setup composed of modulator and analyzer. The dimensions of the modulator are exag-
gerated to point out the angles ξ and ψ. The analyzer can be freely oriented, the transmission axis making an
angle θ with the x−axis.

Working with values below 3◦ for these angles ensures an angular separation of the
rays emerging from the modulator below 10−4◦ and a maximum separation of the emerg-
ing rays carrying orthogonal polarization states below 1µm for a thickness on the edge
d0 of about 0.5 mm. These values correspond to the scenario of the incoming light colli-
mated and orthogonal to the entry face of the modulator. Therefore, 3◦ was established
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as a superior limit of the apex angles for manufacturing the prisms.

Aside from the influence on the Fresnel terms and the split of rays, the angles of the
two principal prisms of the modulator (ξ, ψ) also play an essential role in the quality
of the modulation matrix (see Eq. (4.20), (5.6)) (Vasilescu et al., 2020). Alongside the
two angles, the orientation of the analyzer, θ, also strongly influences this matrix. We
had already observed these effects in chapters 5 and 6 when we dealt with the efficiency
of the modulation scheme, the condition number, and the equally weighted variance.
Each of these figures of merit can be used to assess the modulation matrix as a function
of these three angles (ξ, ψ, and θ). We concentrated the attention here on the efficiency
of the modulation scheme. We have tried to understand how this efficiency varies as
a function of the three parameters. The purpose was to find in this way those values of
the angles that lead to the highest efficiency and, consequently, allow the manufacturing
of instruments with appropriate modulation schemes. Since we have three parameters
that vary independently, building a global picture of efficiency can be challenging. To
overcome this situation, we have conducted a series of simulations for various values
of θ and apex angles spanning the interval [1◦,3◦]. Figure 7.2 reproduces some of the
results obtained for three arbitrary orientations of the analyzer: 10◦, 30◦, and 60◦. The
simulations revealed that the orientation of the analyzer has a limited impact on the
system’s total efficiency. The exceptions are, of course, observed when θ is 45◦ or 135◦.
This quasi-constant behavior of the total efficiency to the orientation of the analyzer can
be observed in Fig 7.2 (top). We notice here that the values of (ξ,ψ) characterized by the
highest (or lowest) total efficiency are always almost identical. As it was proved before
(see Chapter 5), values of the type ξ=ψ, orψ= 2ξ, when ξ≤1.5◦, orψ= 1/2ξ, when ξ≥2◦
should be avoided, as they are characterized by a drop of efficiency for any orientation
of the analyzer.

The detailed computation of the efficiencies for the Stokes parameters revealed in ex-
change that the orientation of the analyzer can play an essential role in the precision that
we may have for each of the parameters. Therefore, in the same Figure 7.2, we observe
that although the global behavior of the efficiency for each of the parameters follows the
same pattern as the total efficiency, the maximum level is strongly affected by the orien-
tation of the analyzer. Based on these observations, we can elaborate on a series of steps
that can lead us to identify optimal configurations:

1. Choose an arbitrary orientation of the analyzer: θ ̸= (45◦, 135◦).

2. Map the efficiencies as a function of the possible values of the apex angles: (ξ,ψ) ∈
[1◦,3◦].

3. Select a couple (ξ, ψ) from the region of maximum efficiency.

4. For the selected couple (ξ, ψ) verify the variation of efficiency with θ, the orienta-
tion of the analyzer.

5. Point out configurations (ξ,ψ,θ) with the highest efficiency.
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Figure 7.2: Efficiencies of the modulation scheme when the analyzer is oriented at 10◦, 30◦, and 60◦. The
first three plots from the top display the total efficiency, whereas the following rows show the corresponding
efficiencies for S0, S1, S2, and S3 parameters.
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An example of a couple of angles characterized by high efficiency is (ξ = 2.6◦, ψ =
1.8◦), pointed out with a red cross in Fig. 7.3 (left).

However, this is just a random example. Many others can be chosen from the regions
of maximum efficiency. The maximum reachable efficiency corresponding to the Stokes
parameters for such a couple will depend on the orientation of the analyzer. Figure 7.3
(right) shows the value of these efficiencies when the orientation of the analyzer varies
between 0◦ and 180◦.

Total Efficiency, =60°

1 1.5 2 2.5 3

[°]

1

1.5

2

2.5

3

[°
]

0

0.2

0.4

0.6

0.8

1

0 50 100 150

(°)

0

0.2

0.4

0.6

0.8

1

E
ff
ic
ie
n
c
y

=2.6°, =1.8°

Figure 7.3: Efficiency on the Stokes parameters and total efficiency as a function of the orientation of the
analyzer, θ, for ξ= 2.6◦, and ψ= 1.8◦.

We discover again that 45◦ and 135◦ should be avoided because of the indetermina-
tion of S1 for these orientations. In addition, we find from Fig. 7.3 that, no matter the
orientation of the analyzer, S2 and S3 will always be characterized by almost the same
efficiencies. The points of intersections of the three curves, underlined with the help of
the vertical dashed lines, are regions of equal efficiency. The values recorded here are
approximately 1/

p
3, the highest reachable value corresponding to optimal modulation

schemes (del Toro Iniesta, 2003). These equal and maximum efficiencies are located at
17.4◦, 73◦, 107.4◦, and 162.6◦.

Figure 7.4 shows the values of efficiency corresponding to different pairs of angles ξ
and ψ. We observe that as long as the values are chosen from the region of maximum
total efficiency, the effect of the analyzer is the same. However, once we leave this area
(see the case ξ = 1.3◦ and ψ = 2.6◦ ), the behavior of efficiency changes. We no longer
have points of equal value.

In conclusion, this spectropolarimetry method is compatible with multiple optimal
modulation schemes. The apex angles of prisms 1 and 3, which facilitate such schemes,
are those characterized by the highest total efficiency, no matter the orientation of the
analyzer. For a given total efficiency, with the help of the analyzer, we can, in the best
scenario, find orientations that simultaneously maximize the precision of the extraction
of all the Stokes parameters.

The same type of analysis as the previous one can be conducted using the modula-
tion scheme’s condition number (C N ) (Vasilescu et al., 2023). The results are similar in
many aspects. Using this metric, we see again (Fig. 7.5) that a configuration with ξ=2.6◦,
ψ =1.8◦, and θ =73◦ is characterized by a condition number close to the optimal value
(
p

20) (del Toro Iniesta and Collados, 2000).
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Figure 7.4: Efficiency on the Stokes parameters for three different pairs of angles ξ and ψ. The total efficiency
was computed for an analyzer oriented at 60◦.
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Figure 7.5: Condition number of the modulation scheme for different values of the apex angles (left), and for
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the analyzer, corresponding to a minimum of C N .
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Based on this analysis, we chose for the fabrication of the modulator the values ξ=2.6◦
and ψ=1.8◦. These angles generate one of the highest efficiencies when the analyzer is
oriented at one of the four mentioned values. In addition, according to Fig. 7.2, this
couple of angles is located in a region that allows large tolerances.

7.2. CONCLUSIONS
The spectropolarimetric method analyzed in this research can be implemented in vari-
ous ways. The modulator, composed of three birefringent prisms, can present countless
combinations of the apex angles, and the analyzer, also part of the polarimeter, can be
turned freely in any position. However, we proved within this chapter that specific val-
ues of the apex angles and orientations of the analyzer should be avoided. Therefore,
the analyzer should not be placed at 45◦ or 135◦, and the apex angles should satisfy the
following constraints:

• ξ≤ 3◦

• ψ≤ 3◦

• ψ ̸= ξ
• ψ ̸= 2ξ, when ξ≤ 1.5◦

• ψ ̸= 1
2ξ, when ξ≥ 2◦

Because the total efficiency was revealed to be less influenced by the orientation
of the analyzer, the values of the apex angles for the manufacturing of the modulator
should be chosen from the region of maximum total efficiency satisfying the previous
conditions. Furthermore, the orientation of the analyzer should be searched afterward
so that the efficiencies corresponding to the Stokes parameters can be maximized. We
have chosen for the manufacturing of the modulator the values ξ=2.6◦ and ψ=1.8◦. In
addition, the analyzer’s orientation of 73◦ was preferred during the experimental part.
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Whenever a theory appears to you as the only possible one, take this as a sign that you
have neither understood the theory nor the problem which it was intended to solve.

Karl Popper
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The simulations carried out up to this point in our research were based on a MATLAB
model of the polarimeter, which we built step by step according to the questions raised
along the way. This model permanently used a series of approximations and neglected
the impact of certain terms or phenomena, such as the Fresnel terms, the separation of
rays when passing through prisms, or the effect of the intermediate prism on the modu-
lation.

A more realistic check, which considers all these aspects ignored throughout our
analyses, is a necessary step before the practical implementation of this concept.

We carried out this verification with TNO, with which we established a strong collab-
oration in order to implement our spectropolarimeter model in an instrument designed
to detect the polarimetric signature of satellites in orbit around the Earth.

TNO noticed an important potential in the model we studied. The compactness of
the model, its simplicity, and, above all, the ability to detect any polarization in a single
shot with a reduced impact of noise and errors seemed to meet the criteria sought by
TNO perfectly.

We then started a preliminary confirmation work of the spectropolarimeter. TNO
built the same modulator design with OpticStudio (Zemax), an optical design and anal-
ysis software capable of working with polarimetric aspects. This software uses a sequen-
tial ray tracing model, meaning each light ray hits the pre-defined surfaces only once.

Many details can be verified through such a comparison. However, our main objec-
tive was to confirm the intensity modulation pattern for different types of polarization.

8.1. COMPATIBILITY OF THE MODELS
The first series of simulations considered a simple design composed of a point source, a
collimator, followed by the modulator, a linear polarizer, and the detector, as we can see
in Fig. 8.1.

Figure 8.1: Instrument design for the check-up simulations. ©TNO
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The purpose was to see if the same incoming polarization state corresponds to a
similar intensity pattern in the detector plane when the same geometry is used to build
the modulator, the analyzer has the same orientation, and the signal is sampled with the
same pixel size.

Overall, 108 rays were generated in Zemax in a system with a numerical aperture
N A = 0.07. The illuminated area at the level of the modulator was 10×10 mm, and the
detector had 250×250 pixels.

Only the cases of total linear (0◦, 45◦) and circular polarizations were investigated at
this step, as the purpose was only to point out eventual fundamental differences. The
central field was used for the simulations, and the arbitrary wavelength of 0.35 µm was
considered. The noise was ignored entirely in the Zemax construction, whereas in our
model, an SN R = 1000 was used to suppress the effect of noise (see Eq. (4.21)).

All three studied cases (linear 0◦, linear 45◦, and circular) show that a similar intensity
pattern is obtained with both calculus instruments (see Fig. 8.2).

The slight differences manifested as small irregularities in the Zemax intensity profile
are due to the limited number of rays and their distribution. In this simulation, Zemax
generated approximately one ray/µm2. We used a numerical integral over the pixel size
(40×40 µm) to obtain the intensity value corresponding to a single pixel. Therefore, the
signal read from a pixel in Zemax was obtained after a numerical integration of 40 values
read along the vertical direction. On the contrary, the signal obtained with our model
uses the definite integration of the functions m, n, and p (see Eq. (4.20)) over the pixel
height.

However, when studied in detail, the two simulations reveal the existence of other
differences. These are related to the manifestation of a shift between the two intensity
patterns. This fact is illustrated in Fig. 8.3, for two incoming polarizations, circular right
and 45◦, and it also manifests for other states. When superposing the two intensity pro-
files, we observe that in the same positions in the vertical direction, we record different
intensity values. Keeping the pattern obtained with MATLAB fixed, we searched to see
if a good match of the profiles could still be obtained by moving left or right the Zemax
profile. This match is still possible and is periodic. It is enough to shift the Zemax pattern
with several pixels left or right to have a good superposition of the two profiles.

For the two polarization states studied here, a shift of 47 pixels (for the circular state)
and 56 pixels (for the linear state) was necessary to reduce, at minimum, the difference
between the two patterns. We assume that the source of this difference is the deviation
of rays due to the tilted surfaces inside the modulator. This effect was neglected in our
model as it was proved to result in only a shift of the image and not an alteration of the
modulation.

In conclusion, the Zemax check confirmed our MATLAB model. The same pattern
of intensity was retrieved for the chosen sets of polarizations and the same parameters
of the optical system. This confirmation supported the passage to the next step of our
project: manufacturing the modulator and experimental implementation.
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Figure 8.2: Intensity profiles obtained with Zemax and MATLAB for three different incoming Stokes vectors.
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Figure 8.3: Intensity pattern obtained with Zemax and MATLAB for circular and linear polarization. Possible
shifts that reduce the difference between the two intensity patterns are pointed out.
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8.2. CASE STUDY: THE IDENTIFICATION OF SPACE OBJECTS
Spectropolarimetry is a good candidate for space object identification and character-
ization. Among these objects, the geostationary satellites are particularly interesting,
both for space awareness programs and military applications (Bartels et al., 2022; Snel
et al., 2023; Vasile et al., 2023). Theoretical and practical investigations have proved that,
aside from a spectral fingerprint, the objects in orbit around the Earth are also charac-
terized by a polarimetric signature, originating in the Fresnel reflection of light on their
surface. Retrieving these spectral and polarimetric signatures increases the characteri-
zation’s precision.

Figure 8.4: TNO’s telescope from Amsterdam, of 80 cm diameter. ©TNO

The physical phenomenon underlying this application of spectropolarimetry is the
multiple scattering of the light coming from the Sun by the covering material of the satel-
lite. The light coming from the Sun is not polarized. However, the light reflected by satel-
lites is polarized by a certain amount, depending on the phase angle, the wavelength, the
material of the reflecting surface, and the number of reflections, following the Fresnel
equations. Because multiple reflections could occur at the satellite level and between
the satellite and the detector, the spectropolarimetric characterization and identifica-
tion is mostly an empirical approach.

Figure 8.5 displays the simulated Stokes components for two types of alloys (alu-
minum + silicon (Al+Si), silicon + silicon (Si+ Si)) on a spectral band between 300 nm
and 1000 nm. A double reflection was considered to obtain these results, with an inci-
dence angle of 50◦. Depending on the wavelength, we notice that the Al+Si compound
may exhibit a degree of polarization between 11% and 41%, whereas Si+Si shows a de-
gree of polarization between 18% and 56%. The possibility of discriminating between
different types of polarization is of paramount importance. The polarimetric difference
between the two alloys is that Al+Si reflects a stronger circular component, whereas Si+Si
has a strong linear horizontal component.
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Figure 8.5: Spectropolarimetric fingerprint after double reflection for two types of alloys. The top plot displays
the normalized s1 parameter of the Stokes vector. The middle plot refers to 45◦ and 135◦ polarization (s2),
while the bottom plot shows the parameters of circular polarization (s3). Source of data: TNO

Considering that this polarization corresponds to a geostationary satellite, the flux
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received by an 80 cm telescope on the ground (see Fig. 8.4) can be estimated. Figure
8.6 discloses this flux based on the presumption of a magnitude nine object. The curve
was obtained by TNO with the help of Planck’s radiation law and paying attention to the
atmosphere’s absorption. This curve suggests detecting 6 to 35 photons per second per
nm. When using a spectral resolution of 50 nm and an integration time of 30 s, we have
between 10000 and 50000 photons per spectral element.

Starting from the data presented in Fig. 8.5 and 8.6, we conducted a simulation to
determine whether the instrument studied here can detect this target.

Figure 8.6: Flux of photons coming from a geostationary satellite. ©TNO

Therefore, based on the flux data and polarimetric expectations, we built a model of
the point source target. We used the case of Al+ Si as input for the conceptual instrument
(see Fig. 8.7 ), and we built the modulation of this signal for several configurations of the
optical instrument. The spectropolarimetric data used in the exercise, extracted from
the curves from Fig. 8.5, is presented in the following table (8.1).

Al+Si
λ(nm) s1 s2 s3

425 0.00736 -0.2727 0.0677
475 0.01175 -0.3112 0.0688
525 0.01525 -0.3350 0.0668
575 0.0187 -0.3459 0.0639

Table 8.1: Approximated value of the Stokes parameters corresponding to Al+Si alloy.

The main parameters used to simulate the reception of this signal were the wave-
length, the spectral resolution, the integration time, and SNR. The ability to retrieve such
polarimetric features depends on the number of photons. Our concept of the instrument
works based on the modulation in the vertical direction of light intensity. Therefore, if
the number of photons is too low, the visibility of the modulation decreases, and conse-
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quently, the error on the retrieved Stokes increases. We can observe this phenomenon
in Fig. 8.8.

Figure 8.7: The instrument’s optical design as TNO conceived it. The left image presents the Zemax construc-
tion, with the light coming from the right side, whereas the right panel shows the mechanical integration of
the spectropolarimeter. Here, the light arrives from the left and passes first through a slit. Then, the light
passes through a collimator, the modulator, and a linear polarizer (the analyzer). After the analyzer, the light is
diffracted by a prism, and the different wavelengths are focused along the lines of the camera (the red cylinder)
pixels with the help of a cylindrical lens. In the plane of the detector, the horizontal direction will give spectral
information, whereas in the vertical direction, the modulation determined by the polarization should become
accessible. ©TNO
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Figure 8.8: Errors on the Stokes parameters as a function of the number of photons per pixel. The black curves
represent isocurves with the same ∆nphotons = nmax −nmi n , where nmax and nmi n are maximum, respec-
tive minimum number of photons retrieved from the modulation of intensity. We observe how increasing
∆nphotons decreases the error on the retrieved Stokes parameters. This simulation was conducted for a single
wavelength, λ= 525nm. The results for s2 are very close to those for s3.

For an arbitrary wavelength λ =525 nm, we have mapped here the relative error on
the Stokes parameters as a function of the number of photons received per spectral ele-
ment, per pixel, and the polarization of the signal.

To achieve an error below 1% in determining the linear horizontal or vertical polar-
ization coming from Al+ Si alloy, we must collect more than 1000 photons per pixel at
an SN R = 100, and the integration time must be adjusted accordingly. The pixel size for
these simulations was 3.45µm, corresponding to the actual detector used in the exper-
imental part of our research. Because most of the light reflected by Al+Si compounds
carries 135◦ and circular polarization features, retrieving these polarization types will
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require fewer photons. With only 100 photons, we can achieve an error below 1% this
time.

As underlined before, the spectral resolution can also play an essential role in deter-
mining polarization. We took the same example of Al+Si reflection to understand the
extent of this impact. Again, we considered that the pixel size is 3.45µm, whereas the
integration time could be adjusted between 1 s and 290 s.

We demodulated then the constructed signal built with an SN R = 100 by considering
various values of ∆λ for a central wavelength between 400 and 800 nm. Several results
are displayed in Fig. 8.9.
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Figure 8.9: Simulation of the detected signal for various spectral resolutions and integration times. A constant
SNR=100 was considered.

Again, a relatively good assessment of the polarization of the observed target can be
made. Our instrument could be capable of measuring the polarization of such a target.
Of course, this is an ideal scenario. The errors of such measurements, or the polarimetric
sensitivity of the instrument, will depend on the optical characteristics of the manufac-
tured product.

8.3. CONCLUSIONS
We conducted a last investigation here to prepare for the manufacturing of the modula-
tor and the laboratory verification of the studied polarimeter model. Together with TNO,
who joined us in the efforts to transform this idea into an instrument, we compared the
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results obtained with our mathematical model of spectropolarimeter with the results
obtained by TNO with the same model built in Zemax. This comparison was restrained
to the shape of the intensity pattern for different incoming polarizations. Overall, we
obtained almost the same shapes for the considered polarizations.

Furthermore, with our model, we simulated detecting a polarimetric target (a satel-
lite on a geostationary orbit) to see if such an instrument can answer the demands of
TNO. Again, this model proved to be a good candidate for such a task. In the end, we can
say that we have gathered enough proof to pass to the next stage of our investigation: the
laboratory implementation.
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Chaos is merely order waiting to be deciphered.

José Saramago
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9.1. FABRICATION OF THE MODULATOR
The second part of this thesis is dedicated to the experimental validation of the mod-
ulator previously described. For this purpose, two specimens of the modulators were
fabricated in MgF2 with the help of the Eksma Optics company and TNO (see Fig. 9.2,
9.3). In addition, the three prisms forming the modulator were purchased separately
for a detailed study. The manufacturing requirements, together with the tolerances and
schematics of the design, are presented in Table 9.1 and Fig. 9.1. The choices for the
angles of the prisms, the orientation of the fast axis in each section, the dimensions, and
the material were based on the previous analysis. The provided tolerances were carefully
chosen to minimize the consequences of the misalignment or other fabrication defects.
In addition, the thickness on the edge, d , was chosen to enhance the mechanical robust-
ness and reduce the manipulation risks.
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Figure 9.1: Modulator design for manufacturing. The double red arrows indicate the orientation of the optical
axes in each component prism. Accepted dimensions and tolerances are shown in Tab. 9.1.

Fast-axis orientation (◦) Sizes (mm) Apex angle (◦)

Prism (1): along x ±0.1◦ in (x y) plane Thickness: d = 1±0.5 ξ= 2.6◦±0.2◦
Prism (2): along z ±0.1◦ in (xz) plane Height: h = 20±0.5
Prism (3): at 45±0.1◦ in (x y) plane Width: w = 20±0.5 ψ= 1.8◦±0.2◦

Table 9.1: Optical requirements addressed to the manufacturer for the fabrication of a modulator in MgF2.
The notations and orientations are those from Fig. 9.1.

The modulator manufactured by Eksma Optics is represented in Fig. 9.2 and 9.3.
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Upon careful inspection of the images, one can notice the presence of the three prisms
of the optical model, with the orientation of the optical axis of each component indicated
in blue.

Figure 9.2: The modulator fabricated by Eksma Optics. The blue marks indicate the orientation of the fast axes
inside each prism.

Figure 9.3: Detailed view of the modulator on the optical bench

As it can be observed from Fig. 9.2 and 9.3, the delivered specimens of the modulator
present visible deviations from the requirements. The lateral faces of the prisms are not
aligned in the same plane. The microscopic investigation highlights this (see Fig. 9.4).
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Figure 9.4: Microscopic view of the modulator. Source: TNO

However, the apex angles of the wedges correspond to the requirements. The mea-
surements done with the help of the microscopic investigation shows the next set of
values (Tab. 9.2):

Specimen 1 Specimen 2

ξ (◦) ψ (◦)

Face 1 2.4 1.8
Face 2 2.4 1.8

ξ (◦) ψ (◦)

Face 1 2.5 1.7
Face 2 2.6 1.7

Table 9.2: Measured apex angles for the two specimens of the modulator. The measurements were conducted
on the face with the blue marks (see Fig. 9.4), and on the opposite face.

Consequently, the irregularities observed on the side faces are most likely due to a
relative rotation of the prisms. This rotation may result in an angle between the fast axes
of prisms (1) and (3) different from 45◦. From the point of view of the modulation of
the polarimetric signal, this is not a problem because the third prism should ensure a
modulation of the linear horizontal and vertical polarization passing unaltered through
prism 1. Or this modulation can happen for any orientation of the fast axis of the prism
3, which is different from 0◦. However, the efficiency of the modulation scheme and
the rest of the parameters of performance already computed will be affected. Another
consequence of the prisms’ relative rotation could be that the entry and exit faces are no
longer parallel. This can lead to stronger internal reflections and a deviation of the rays
from the z-axis.

Moreover, we conducted a preliminary check of the modulator before performing
any precise optical setup alignment and proper components analysis. It was a raw ex-
periment meant to provide a first confirmation or refutation of what was previously dis-
cussed in this thesis. A linearly polarized and collimated beam, with a wavelength of
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535 nm, was projected through a modulator+linear polarizer assembly. According to the
simulations presented in the previous chapters, this must generate a vertical modula-
tion of the light, regardless of the incident linear polarization angle. Even though this
first optical setup was quickly improvised, without proper alignment and measures to
reduce the external noise, the intensity modulation was evident as the light of the day. It
was a great confirmation of our theoretical endeavor (see Figures 9.5 - 9.9).

Figure 9.5: First light of our instrument. Light modulation in the vertical direction is visible on the screen for
the two arbitrary states of linear polarization used as input.

Figure 9.6: Examples of modulations obtained when the incoming light was linearly polarized horizontally
(top) and vertically (bottom). On the right, the signal variation over a column of 2000 pixels is presented.
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Figure 9.7: Examples of modulations obtained when the incoming light was linearly polarized at 45◦ (top) and
135◦ (bottom).

Figure 9.8: Examples of modulations obtained when the incoming light was circularly polarized.
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Figure 9.9: Examples of modulations obtained for two incoming elliptical polarization states.

This is an experimental validation of the spectropolarimeter model discussed in this
thesis. These first images demonstrate a fundamental aspect of the discussed spectropo-
larimetric method: the existence of intensity modulation in the vertical direction of po-
larized light. It is an essential starting point for in-depth investigations of how this opti-
cal design works.

9.1.1. EXPERIMENTAL OBJECTIVES AND THE BASIC OPTICAL SETUP
The confirmation of the modulation’s existence and the previous observations related to
the misalignment of the prisms in the modulator component put us in front of several
questions that must be answered to understand what is happening in this modulator
and how it acts on light.

Certainly, we are dealing with a modulator that does not fully comply with the tech-
nical specifications only by considering what we can see directly. It continues to produce
a predictable result to a reasonable extent. Still, the impact of deviations on the results
will be difficult to quantify without a good knowledge of these deviations.

Because of this, the questions that must be answered next are:

1. What are the main characteristics (variation of the phase difference of the light and
optical axis orientations) for the components of the modulator and the modulator
as a whole?

2. Can we still use this modulator to measure the polarization of light as we theorized
before?

We devised a two-stage work plan:
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1. The first stage characterizes the prisms 1 and 3 and the modulator. This character-
ization, as we have already mentioned, refers to:

• determining the phase difference induced in the vertical direction by each
prism separately;

• determining the orientation of the optical axis for each prism

• highlighting the differences compared to the theoretical model

• partial determination of the Mueller matrix corresponding to the modulator

2. Checking the possibility of demodulating the polarized signal:

• determination of the optical system instrumental matrix;

• generating test polarization states, recording the corresponding modulation,
and testing the demodulation.

White source

Diaphragm Collimator

Filter wheel

Rotating
linear polarizer

Diaphragm QWP Modulator

Camera

Figure 9.10: Optical setup used during the characterization procedures. The light, coming from the left side,
passes through a diaphragm, a collimator, a filter located in a filter wheel, a linear polarizer located into a
rotating mount, a diaphragm, a QW P (optional), the modulator, the analyzer (linear polarizer), and in the end
reaches the camera.

We used a two-part optical set-up to perform all these practical investigations. The
first part (see Fig. 9.10) contains the white light source, an aperture, a collimator, and
a spectral filter. It is part of the optical configuration that remained almost unchanged
during the post-alignment works. The only interventions concerned the replacement
of the filter. The alignment of this front part of the set-up was mainly about position-
ing the collimator to get a collimated beam with a diameter of 2.54 cm. We obtained a
divergence of approximately 3 ·10−5◦ for λ =515.4 nm and 633 nm. The divergence was
estimated from the size of the spot at different distances. This value remains an approx-
imation because of the diffraction effect around the edges caused by the aperture stop.

The second part of the instrument was generally composed of a linear polarizer (called
hereafter LP1) followed by the modulator, analyzer (called hereafter LP2), and camera.
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However, this part remained variable during the works. Depending on the type of in-
vestigation, various other components (QW P , HW P ) were introduced or, possibly, ex-
tracted. The two linear polarizers used for almost all measurements were placed in ro-
tating mounts, which were computer-controlled. These two polarizers’ mounts were
aligned with the first part of the optical set-up from the beginning.

Each stage of the experimental investigations involved using a particular optical setup.
Sometimes, it was necessary to produce certain types of polarization, which necessitated
the insertion of a QW P between the first linear polarizer and the modulator, and some-
times, the determination of some terms of the Mueller matrix required the introduction
of other components between the modulator and the analyzer. All these changes will be
described in detail in the following chapters as they will be required to determine the
different parameters.

9.2. CHARACTERIZATION OF THE SOURCE
Before proceeding to the polarimetric characterization of the modulator and its com-
ponents, we undertook a characterization of the light source from the point of view of
stability and intrinsic polarization. This was followed by establishing a reference system
by orienting the first linear polarizer with the help of a polarizing beamsplitter. It defined
the horizontal and vertical of our optical system and helped us define a reference for the
orientation of the various rotating components from the setup.

Concerning the intrinsic polarization of the source, the tests conducted by rotating
linear polarizers in front of it (see Fig. 9.11) did not reveal the presence of a linear com-
ponent.

White source of

Collimator

Spectral
Filter

Linear
Polarizer

Camera

x

y

z

(LP1)

Unpolarized

Light

Figure 9.11: The optical setup used to check the linear polarization of the source: the unpolarized light coming
from the left passes through a spectral filter and then a rotating linear polarizer before arriving on the detector.

Figure 9.12 a) shows the results obtained after turning two different linear polarizers
(LP1 and LP2) between 0◦ and 360◦, with a step of 1◦. The transmission axis of LP1 was
oriented, in the beginning, at 0◦ with respect to the x−axis of the reference system of
the laboratory. In contrast, the transmission axis of LP2, which was placed in the same
mount after removing LP1, was oriented at 45◦ at the beginning, even if the mount was
again rotated between 0◦ and 360◦. The global difference between the two variations ob-
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tained for LP1 and LP2 is due to the inherent differences between the two optical com-
ponents. However, the intensity variation follows the same pattern, independently of
the orientation of the transmission axis. The misalignment of the optical components
could explain the phenomenon. Over a complete polarizer rotation, in the case of LP1,
we detect a variation 0.45% around the mean, whereas, for LP2, we have 0.8%.

Concerning the temporal stability of the source, the continuous measurement over
four hours, with an integration time of 14 ms and a frequency rate of 1 Hz, shows a vari-
ation of ±0.17% of the intensity (see Fig. 9.12). More technical details about the compo-
nents of the optical setup can be retrieved in the Addendum of this thesis. The principal
characteristics of the source and the alignment are presented in Tab. 9.3.
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Figure 9.12: a) Rotating two linear polarizers (LP1 and LP2) in front of the source, in the same mount and one
after the other shows that similar intensity variation is obtained for different orientations of the transmission
axis. b) Variation of the mean signal for an area of 1000 × 1000 pixels during 4 hours of observation. The
intensity values were encoded on 8 Bits to reduce the total volume of data.

Source properties & alignement

Variation with LP1,2 [0.45 0.8]%
Temporal variation ≈ 0.17%
Beam divergence 3 ·10−5◦

Table 9.3: Main properties of the source: temporal stability, variation of the intensity with the position of LP1
and LP2, and divergence of the collimated beam.

9.3. GENERAL PROCEDURE FOR THE POLARIMETRIC PART
All the measurements that involved a different setup of the polarimetric part of the in-
strument started with the orientation of the first linear polarizer (LP1) with the help of
the polarizing beamsplitter. The reference frame for the polarization and the polarimet-
ric components was thus established. The polarimetric part of the instrument used for
this procedure contained only the polarizing beamsplitter, LP1, and the camera (see Fig.
9.13).

The rotating mount of LP1 was rotated with a step of 1◦ between 0◦ and 180◦. For
each position, the value of the detected intensity was recorded. Applying Malus’ law,
this procedure allows establishing the orientation of the transmission axis of the linear
polarizer with respect to the 0◦ position of the mount (see Fig. 9.14).
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Figure 9.13: A general schema for the orientation of LP1: the unpolarized light coming from the white source
(left) passes through a collimator, a spectral filter, a polarizing beamsplitter, and the linear polarizer (LP1). In
the end, the camera detects the light. The horizontal polarization exiting the beamsplitter defines the horizon-
tal direction of the optical setup. All the linear polarizers coming after the beamsplitter are oriented according
to this horizontal.

The average intensity value was used for this procedure, corresponding to a region
of interest of 1000× 1000 pixels from the middle of the image. A dark value was sub-
tracted from the intensity readings for each mount orientation. The dark was measured
by obscuring the source with an opaque screen. The Malus’ law, in this case, is:

I (θ) = 1

2
cos2(θ), (9.1)

where θ is the angle between the transmission axis of LP1 and the horizontal axis of the
polarizing beamsplitter.

In general, a second set of measurements was performed after determining the maxi-
mum and minimum positions. This time, a step of 0.05◦ was used on an arbitrary interval
around the maximum. An outcome example is displayed in Fig. 9.15.

0 50 100 150 200

Orientation mount LP
1
(°)

0

1

2

3

4

In
te

n
s
it
y
 (

c
o

u
n

ts
)

10
4 Example of fit: R

2
=0.99998

Data

Fit

0 100 200 300

Orientation mount LP
1
(°)

0

1

2

3

4

In
te

n
s
it
y
 (

c
o

u
n

ts
)

10
4 Max=177.612°, Min=87.612°

Figure 9.14: Malus’ law applied to LP1 in relation to the polarizing beamsplitter. The graph on the right in-
dicates the position obtained for the orientation of the mount, which corresponds to an optical axis of LP1
oriented along the x−axis (maximum) and along the y−axis (minimum).
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Figure 9.15: Malus’ law applied to LP1 in relation to the polarizing beamsplitter. The step of rotation was
decreased to 0.05◦.

After establishing the horizontal corresponding to LP1, the polarization beamsplitter
is extracted from the setup, and LP2 is inserted into its rotating mount, located between
LP1 and the camera. Again, Malus’ law is used to determine the orientation of the LP2’s
optical axis relative to its own mount. For this, LP1 is positioned with the transmission
axis along the horizontal, and the LP2 mount is rotated by a step of 1◦ between 0◦ and
180◦ (see Fig. 9.16).

The extinction ratio for the two polarizers, based on the average intensity corre-
sponding to the region of interest, is presented in Tab. 9.4. This ratio, representing
Imi n/Imax , where Imi n is the minimum of the obtained intensity and Imax the maxi-
mum of the intensity, was established for LP1 based on the polarization obtained with
the polarizing beamsplitter, and for LP2, based on the polarization obtained with LP1.
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Figure 9.16: Intensity values obtained while rotating LP2 and maintaining LP1 with the transmission axis
along the x−axis. The right image shows the positions of the mount LP2 for the maximum and minimum
transmission.

The measurements conducted during this part have used, in general, a set of five
frames for each value of the intensity. On the contrary, for the dark, a single frame was
used. The integration time used for most of the measurements was 14 ms. This inte-
gration time is located in the middle of the detector’s linearity curve for the considered
optical setups. The encoding was, most often, on 16-bit.
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Once the main properties of the source were established, the alignment completed,
and the procedure for the orientation of the linear polarizers was defined, we passed to
the next step: the characterization of the modulator.

Extinction ratio

LP1 1.68 ·10−4

LP2 9.77 ·10−4

Table 9.4: Extinction ratio for the 2 linear polarizers

Measurements conditions

Number of frames 5
Exposure time 14 ms
Encoding 16 bit

Table 9.5: Main settings used for the camera during the acquisition of images.

9.4. A STEP FORWARD: TNO’S IMPLEMENTATION OF THE CON-
CEPT

The auspicious results obtained from our simulations and from the crossed-check mo-
tivated TNO to construct an instrument employing the modulator presented here. We
assisted this process in parallel with our research. The instrument was designed to be
fitted on the 80 cm telescope from Amsterdam. The purpose of such an instrument is
to help characterize the objects on a geostationary orbit around the Earth from a spec-
tropolarimetric point of view. The nearly final form of this instrument is presented in
Fig. 9.17 and follows closely the setup from Fig. 8.7.

The main components of this instrument are:

1. White source (integrating sphere)

2. Collimator

3. Modulator

4. Linear polarizer (analyzer)

5. Optical prism

6. Cylindrical lens

7. Camera

The integrating sphere is used here for characterization and calibration purposes, as
it facilitates the depolarization of the source. Between the integrating sphere and the
collimator, there is a pinhole that allows the passage of light. Instead of a filter wheel,
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this instrument uses an optical prism. A cylindrical lens follows this. This way, the mod-
ulation corresponding to multiple wavelengths can be obtained simultaneously on the
detector plane. This instrument is still in the construction phase. The characterization
of the modulator to retrieve the main characteristics corresponding to this optical align-
ment is foreseen for the near future.

Camera

Cylindrical lens
Optical prism

Linear
polarizer

Modulator

Collimator lens

Integrating sphere

Figure 9.17: Instrument assembled by TNO and using the modulator studied here.
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We saw in the previous chapter that the manufactured modulator can produce a
modulation in the intensity of the polarized light in the vertical direction. We do not
know yet if this modulation corresponds to the theoretical expectations. However, we
noticed some important deviations from the geometrical design. The three prisms were
assembled with a slight rotation from one to the other so that the lateral faces are no
longer in the same plane and the entry and exit surfaces are no longer parallel. Under-
standing these differences’ implications and the manufactured modulator’s properties is
paramount. Only this will help us to understand what is happening with light inside the
prisms, how the modulation is produced in reality, and if (and how) this optical compo-
nent can measure polarization.

Two methods can be used to conduct this characterization. One method, called here-
after the fit of the intensity ratio method (Piron et al., 2018), tests the effect of the optical
element on various linear polarizations in terms of diattenuation, polarizance, and rota-
tion. Based on the results obtained for different positionings of the parallel and crossed
polarizers used within the method, information about the orientation of the fast axis and
the phase can be inferred. The limitations of this method are related to its assumptions:
it considers that the analyzed component behaves like an ideal wave plate, as described
by Eq. (2.25). Specifically, it assumes that the diattenuation and polarizance vectors are
of norm zero or very close to zero. The method fails to produce a reliable result when
these norms differ too much from zero. Another approach, which is more laborious,
should be adopted then. It first consists of fully determining the Mueller matrix of the
studied optical component. Applying the Mueller matrix decomposition (MMD) algo-
rithm (Lu and Chipman, 1996), information about fast axis orientation and retardance
can be retrieved with the help of the computed decomposition.

The theoretical description of these two methods is provided in the next sections.

10.1. METHOD 1: THE FIT OF THE INTENSITY RATIO

Any birefringent element acts as the basis transformation for an incoming Stokes vector.
The associated Mueller matrix of this element is the transformation matrix that converts
the incoming Stokes vector into the outgoing one. By illuminating the tested optical
component with the linear polarization of various angles and measuring the intensities
with an analyzer oriented along the direction of vibration of the incoming ray and in
the orthogonal direction, we can assess the depolarization, the diattenuation and the
rotation effect of the studied element. This is the principle of the fit method. Overall, it
needs only two sets of measurements.

The general set-up employed to obtain the data is presented in Fig. 10.1. In this op-
tical scheme, presenting two steps (A) and (B) in the Fig. 10.1, the light from a polychro-
matic source (PS) passes through a collimator, a spectral filter, and then through a linear
polarizer (LP ), with the transmission axis oriented along the x-axis (see the dashed line
in the Fig. 10.1).

The linear polarization obtained with LP is then converted into a circular polariza-
tion with the help of a QW P , with the fast axis oriented at 45◦ in the x y plane. The
purpose of the first linear polarizer and of the QW P is to minimize the effect of possible
partial polarization of the source.
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Figure 10.1: Optical setup conceived for characterizing the modulator. The unpolarized light, coming from a
polychromatic source (PS), passes at first through a collimator and a spectral filter. Then, circular polarization
is obtained with the help of a linear polarizer (LP ) and a QW P . After the QW P follows a rotating linear polarizer
(LP1), the modulator, and the second linear polarizer (LP2). In the end, the camera receives the light. LP1 and
LP2 are placed in mounts that can be rotated synchronously. The first set of measurements (A) is conducted by
turning LP1 and LP2 with parallel transmission axes. The second set (B) supposes that the transmission axes
are orthogonal in permanence.

Placing then a linear polarizer of variable orientation (LP1(α)), a constant linear po-
larization could be obtained for any orientation of the transmission axis. LP1 is followed
along the stream of light by the birefringent element we want to characterize, then by a
rotating analyzer (LP2(β)) and a detector. In Fig. 10.1, the modulator was drawn between
the two rotating polarizers. However, any optical component can be placed instead of
the modulator.

Before starting any measurements, the relative orientation of the linear polarizers
is determined following the procedure explained in Chapter 9.3. This also helps estab-
lish the orientation of the transmission axes of LP1 and LP2 to the defined frame of the
laboratory.

We start the first series of measurements by aligning LP1 and LP2 with the transmis-
sion axes parallel (Fig. 10.1, A)). Then, we turn them synchronously, with a step of 1◦. We
took one intensity measurement for each α between 0◦ and 360◦.

The detected intensity for each α will correspond to the first term of the outgoing
Stokes vector, S⃗∥

out (α):

S⃗∥
out (α) = MLP2 (β=α) ·M · S⃗i n(α), (10.1)

where MLP2 (β = α) is the Mueller matrix of the polarizer LP2, S⃗i n(α) is the incoming
Stokes vector, whereas M is the Mueller matrix of the birefringent element that we want
to study.
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For the second set of measurements, at first, the linear polarizers LP1 and LP2 are
positioned into a crossed configuration: β=α+90◦ (Fig. 10.1, B)). Then, like before, the
two linear polarizers are again rotated synchronously, with the angle α taking the same
values. The detected intensity for each value of α is represented in this case by the first
term of the Stokes vector S⃗⊥

out (α):

S⃗⊥
out (α) = MLP2 (β=α+90◦) ·M · S⃗i n(α). (10.2)

Supposing that the Mueller matrix of the birefringent component could be assimi-
lated to a waveplate with a fast axis oriented at an angle θ to the x-axis, in x y-plane and
characterized by a phase difference φ, then, in the ideal scenario where no polarizance
and no diattenuation are present, this matrix is:

M =


1 0 0 0
0 C 2 +S2 cos(φ) C S(1−cos(φ)) −S sin(φ)
0 C S(1−cos(φ)) S2 +C 2 cos(φ) C sin(φ)
0 S sin(φ) −C sin(φ) cos(φ)

 , (10.3)

where C = cos(2θ), and S = sin(2θ).

Substituting the expression (10.3) into Eq. (10.1) and Eq. (10.2), we can then compute
the ratio of the intensities measured for each value of the angle α in the two scenarios:

R f (α) = I⊥(α)

I ∥(α)
= (cos(φ)−1)

(
cos(4(α−θ)

)−1)

3+cos(φ)− (cos(φ)−1)cos(4(α−θ))
. (10.4)

Fitting the theoretical expression for R f (α) to the experimental data ensures the de-
termination of the main parameters of the birefringent element that is characterized:
the phase (φ), respectively the fast axis orientation (θ). It can be easily noticed from
the expression of R f (α) that this method cannot be used for a full wave-plate, for which
φ= 2π.

When the approximation with the theoretical matrix is no longer valid, or the vector
of diattenuation, respectively depolarization, is different from zero, the fit method can-
not give us access directly to the fast axis orientation or the retardance of the element.
In this less favorable scenario, the expression (10.3) must be replaced by a general, nor-
malized Mueller matrix:

M =


1 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 (10.5)

Therefore, the expression of the ratio becomes:

R f (α) = 1−cos(2α) ·T1 − sin(2α) ·T2

1+cos(2α) ·T ′
1 + sin(2α) ·T ′

2

, (10.6)
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where, 
T1 = m11 cos(2α)−m01 +m10 +m21 sin(2α)

T2 = m12 cos(2α)−m02 +m20 +m22 sin(2α)

T ′
1 = m11 cos(2α)+m01 +m10 +m21 sin(2α)

T ′
2 = m12 cos(2α)+m02 +m20 +m22 sin(2α)

(10.7)

Despite the large number of unknowns, this ratio can still be helpful. If the diatten-
uation terms (m01, m02) and the polarizance terms (m10, m20) are at first retrieved with
the help of the procedure described in Chapter 2 (see Tab. 2.1), then the fit can still be
applied for the inner terms (m11, m12, m21, m22) under the supposition that they will
still be close to the expressions from Eq. (10.3). However, specific differences between
these terms and their ideal form should be considered. Because of this, the fit method is
susceptible to significant errors in this case.

10.2. METHOD 2: THE MUELLER MATRIX DECOMPOSITION
The fit method has limited applicability when the difference between the actual Mueller
matrix and the theoretical one becomes hard to predict. In this case, retrieving only a
part of the matrix is insufficient, and we cannot escape the Mueller matrix’s full deter-
mination. Applying the polar decomposition to the measured matrix (Lu and Chipman,
1996; Manhas et al., 2006), the main parameters of the system, the retardance (linear
and circular), the diattenuation, or the fast-axis orientation (θ), can be found. We need
to use this decomposition because the information about the fast axis orientation or the
retardance of the medium cannot be accessed directly from the values of the terms of
the Mueller matrix. We do not know how these terms express these properties. We need
the decomposition procedure of the Mueller matrix to isolate the effects of diattenu-
ation, retardance, and polarization. According to this approach, a Mueller matrix (M ,
normalized) can be decomposed in the product of three matrices, corresponding to a
diattenuator, a retarder, and a depolarizer:

M = M∆ ·MR ·MD , (10.8)

where M∆ is the depolarizer, MR is the retarder and MD the diattenuator. This product
is unique, except in the case of non-invertible Mueller matrices. The three terms of the
previous product are expressed as:

M∆ =
[

1 0⃗T

P⃗∆ m∆

]
, MR =

[
1 0⃗T

0⃗T mR

]
, MD =

[
1 D⃗T

D⃗ mD

]
, (10.9)

In this contracted form, P⃗∆ is a 3×1 vector, related to the polarizance vector, P⃗ , and
D⃗ is the diattenuation vector. m∆, mR and mD are 3×3 matrices.

Using the notations from Eq. (10.5), the normalized polarizance and diattenuation
vectors of the matrix M are:

P⃗ =
m10

m20

m30

 , D⃗ =
m01

m02

m03

 , (10.10)
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whereas the norms are given by

P =
√

m2
10 +m2

20 +m3
30, D =

√
m2

01 +m2
02 +m3

03 (10.11)

In the case of a depolarizing element (i.e, P ̸= 0), the computation of the matrices
M∆, MR and MD follows the next algorithm (Lu and Chipman, 1996):

1. The submatrix mD (3×3) is computed via:

mD =
√

1−D2 · I + 1−
p

1−D2

D2 · D⃗D⃗T , (10.12)

where I is the identity matrix (3× 3). With the help of Eq. (10.12), (10.10), and
(10.9), the MD matrix can be calculated.

2. After computing MD and M−1
D , we multiply at right Eq. (10.8) with M−1

D :

M∆ ·MR = M ·M−1
D = M ′. (10.13)

3. We compute m′, the submatrix of M ′:

m′ = m∆mR (10.14)

4. It can be shown that:
m2
∆ = m′(m′)T . (10.15)

5. Using the Cayley-Hamilton theorem, we infer that:

m∆ =± (
√
λ1 +

√
λ2 +

√
λ3) ·m′(m′)T +

√
λ1λ2λ3 · I

m′(m′)T + (
√
λ1λ2 +

√
λ2λ3+

√
λ3λ1) · I

, (10.16)

the sign of the expression corresponding to the sign of the determinant of m′.

6. By taking m as submatrix of M , then, according to Lu and Chipman, 1996 we have:

P⃗∆ = P⃗ −mD⃗

1−D2 . (10.17)

7. Thus, with (10.9) and (10.17), the depolarization matrix, M∆, can be retrieved. Fur-
thermore, the net depolarization is provided by:

∆= 1−
( |tr (M∆)−1|

3

)
. (10.18)

8. Because MD , M ′ and M∆ are known, MR can be computed now, based on (10.13):

MR = M−1
∆ ·M ′. (10.19)
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9. Therefore, the retardance can be accessed:

R = cos−1
( tr (MR )

2
−1

)
. (10.20)

10. The linear (φ), respectively the circular retardance (ψ) are provided by:

φ= cos−1
(√

(MR (1,1)+MR (2,2))2 + (MR (2,1)−MR (1,2))2 −1
)
, (10.21)

ψ= tan−1
( MR (2,1)−MR (1,2)

MR (1,1)+MR (2,2)

)
. (10.22)

11. Because the total retardance matrix is nothing else but the combination of a lin-
ear retarder (of retardation φ and fast-axis orientation θ to the horizontal) and a
circular retarder (of rotation ψ) Ghosh et al., 2008 it follows that:

MR = MLR ·Mr ot , (10.23)

where MLR is provided by (10.3), whereas

Mr ot =


1 0 0 0
0 cos(2ψ) sin(2ψ) 0
0 −sin(2ψ) cos(2ψ) 0
0 0 0 1

 . (10.24)

Multiplying at right with M−1
r ot the relation (10.23), it follows:

MLR = MR ·M−1
r ot . (10.25)

12. Because the MLR matrix can be also expressed as

MLR =
(
1 0⃗T

0⃗ mLR

)
, (10.26)

then the elements of the linear reatrdance vector, L⃗R = [1,r1,r2,r3]T can be ob-
tained:

ri = 1

2
sin(φ) ·

3∑
j ,k=1

ϵi j k mLR ( j ,k), (10.27)

where ϵi j k is the Levi-Civita symbol.

13. Thus, the fast axis orientation to the x-axis can be obtained:

θ = 1

2
tan−1

( r2

r1

)
. (10.28)

The decomposition algorithm presented here is valid for a depolarizing and diat-
tenuating medium. In the case of a perfect polarizer, certain modifications should be
considered as it was proved before (Lu and Chipman, 1996). Overall, the decomposition
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procedure is a lengthy activity. Many measurements and changes in the optical system
are required to retrieve the complete Mueller matrix. Because of this, this procedure is
prone to errors in alignment. On the other hand, the fit method is much faster and less
exposed to alignment errors as it does not require any change of the optical system (aside
from the rotation of the linear polarizers). As we saw, it is limited by the discrepancies
between the analyzed waveplate and the ideal model or by the complexity of the model
itself.

10.3. TEST OF THE METHOD 1
Before we try it, we cannot know if the fit of the intensity ratio is suitable for character-
izing the prisms and the modulator. Only the fit quality that can be obtained can give
us a clear indication in this sense. Until proven otherwise, this method has undoubted
advantages over the complete determination of the Mueller matrix. For this reason, the
first characterization tests were performed using the fit. However, the first step towards
this application was testing the method on a "well-known" element. This helped us to
verify its accuracy and to familiarize ourselves with the required manipulations. Thus,
the fitting procedure was tested at first on a quarter waveplate (QW P , φ= π/2) with the
optical axis oriented at 0◦ on the x axis. The detected signal from a random pixel for the
two configurations, with aligned and crossed polarisers, is shown in Fig. 10.2.
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Figure 10.2: Left: detected intensity by a single, random pixel, while the angle α varies between 0 and 2π. The
green dots represent the case when LP1 and LP2 are aligned, whereas the red dots correspond to the crossed
orientation of the two linear polarizers. Right: the experimental ratio R f (α) = I⊥(α)/I||(α) for the selected pixel
and the fit of the theoretical curve.

A Thorlabs spectral filter was used for this measurement, with the central wavelength
(CW L) at 515.4 nm and full width at half maximum (FW H M) of 3 nm. The camera’s ex-
posure time was set to 14 ms, and for each value of the angle α, a set of five images was
collected in the aligned and crossed configuration of the linear polarizers. The rotation
occurred between 0◦ and 359◦ with a step of 1◦. Consequently, each dot from the plot
below corresponds to the average value over the five measurements from which the cor-
responding dark value was extracted.
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The pixel-by-pixel approach was favored here as the prisms and modulator charac-
terization will require this procedure. Figure 10.3 shows that the experimental data can
be fitted with the theoretical function R f (α), derived from the Eq. (10.4) ensuring a very
high quality of the fit for most of the pixels.

Figure 10.3: Results of the fit procedure applied to a well-known component, a zero-order achromatic QWP.
The three histograms correspond to an arbitrary area of 500×500 pixels.

The characteristics featured by the manufacturer of the QWP present a retardance of
approximately 0.242 waves with an accuracy of λ/300. The fit results presented in Fig.
10.3 show a value of 0.25± 5 · 10−4 waves. The difference between the two, of approx-
imately 3.3%, comes mainly from the faults in the alignment of our optical set-up and
the dust existing on the optical components.

In conclusion, it can be said that the method of the fit of the intensity ratio can be a
robust procedure for characterizing the prisms and the modulator, at least as long as a
good approximation of the Mueller terms can be made.

10.4. EXPERIMENTAL RESULTS FOR PRIMS 1
The critical components of the modulator are Prism 1 (input prism) and Prism 3 (out-
put). They are responsible for the modulation of the polarized signal. As we saw before,
each wedge was designed with specific characteristics to ensure the proper functioning
of the modulator. A thorough characterization is then compulsory to see how much the
manufacturer could handle the fabrication specifications. The results obtained for the
QW P proved that, with our optical setup, we can successfully apply the fit method to a
waveplate with properties close to the theoretical model. Considering this premise, we
tried to apply the fit method to the first prism.

Just like for the QW P , the measurements were conducted with the spectral filter of
3 nm FW H M , and CW L 514 nm. The width of the filters has a substantial impact on the
quality of the fit. This is because the experimental data corresponds to the integral of
the expression (10.4) over the pixel size and the spectral resolution element. In contrast,
the analytical expression corresponds to R f (α) before integration. Consequently, the
integration intervals should be as small as possible to increase the quality of the fit.

The two prisms were reversed at 90◦, around the z-axis in the experimental set-up.
This positioning was necessary to secure the stability of the prisms on the optical mount.
Because of this, the expected variation of phase induced by each prism should manifest
in the horizontal direction, whereas the expected orientation of the fast axes should be
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90◦ for prism 1, respectively 135◦ for the prism 3.

If, in the case of the QWP, the detected intensity in the parallel or orthogonal con-
figuration of LP1 and LP2 was homogeneous across the detector for each value of the
angle α, in the case of prism 1, we noticed a variation of intensity along the horizontal
direction. This indicates that the prism is, indeed, made of a birefringent element. The
variation of the optical path of the light inside the prism along the x direction is thus
translated into a variation of the phase and, finally, of the intensity.

The slight tilt to the left of the pattern from Fig. 10.4 results from positioning the
prism into the mechanical mount.
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Figure 10.4: Intensity variation along the inclined face for prism 1 for the two relative orientations of LP1
and LP2, when the angle α = 10◦. An area of 1000× 1000 pixels from the middle of the illuminated region
was used during the data analysis to reduce the processing time. The units of the detected intensity (DN ) are
represented here by the number of detected photoelectrons per integration time.

Noticeably, the modulation undergone by light along the inclined face of the prism
is more irregular at higher intensity values when LP1 and LP2 turn in parallel. The main
reason is the Poisson noise that increases with the signal (see Fig. 10.5).
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Figure 10.5: Left: example of the signal displayed by a random pixel when α varies between 0◦ and 359◦, with
a step of 1◦. At right: fit of the experimental ratio with the expression depending on mi , j .
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All attempts to fit a theoretical model to the experimental data, based on the expres-
sion (10.4), in which φ and θ were considered to vary from one pixel to another, have
resulted in small values of R2. In addition, the phase term could not be retrieved.

Therefore, a more generalist approach was favored. Instead of using the ideal ex-
pression of the Mueller matrix (10.3) and the corresponding formula for the ratio (10.4),
the general expression from Eq. (10.6) was adopted. Therefore, the fit’s objective was
to retrieve the mi , j terms (i , j = 0,1,2) characterizing each pixel. This strategy allows a
partial reconstruction of the Mueller matrix and the application of a second fit, using a
different theoretical expression, only to those terms exhibiting the most critical impact
of the phase variation.

Figure (10.6) shows that the terms corresponding to diattenuation and polarizance
are quasi-constant and close to zero.
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Figure 10.6: At left: terms from the diattenuation and polarizance vectors of the Mueller matrix corresponding
to prism 1. The plotted values represent the average over columns of 1000 pixels. A slight and random deviation
from zero is noticeable for all these terms. At right: a part of the inner terms of the Mueller matrix, averaged
over each column of pixels. The modulation produced by the phase terms is noticeable here.

On the other hand, the inner terms m11, m12, m21, m22 display a strong impact of the
phase, as it was expected (see Eq. (10.3)). In fact, if prism 1 was manufactured with the
fast axis oriented horizontally (along the x-axis), then, in the setup described here, with
prism 1 rotated around z-axis, the fast axis should be at θ ≈ 90◦. That means the inner
terms are approximately: 

m11 =C 2 +S2 cos(φ) ≈ 1

m12 = m21 =C S(1−cos(φ)) ≈ 0

m22 = S2 +C 2 cos(φ) ≈ cos(φ)

(10.29)

These relations and Fig. (10.6) show that the experimental result is close to the antici-
pated value. However, a slight variation with respect to this is visible. Problems related to
the misalignment of the optical components, with the internal reflections, scattering, or
ignored Fresnel terms, can justify the deviation from the theoretical value. Nevertheless,
if we assume that the prism has a homogeneous apex angle and is characterized by the
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same orientation of the fast axis along an entire line of pixels, then the inner terms can
be used to retrieve the main parameters of the prism for the considered line of pixels.

The best candidate to apply a second fit is m22. Based on the previous observations,
this term can be written as:

{
m22 = cor r +at t · (S2 +C 2 cos(φ))

φ= c0 + c1 · i nd x
, (10.30)

where cor is a correction term, at t is an attenuation term, and c0 and c1 are the param-
eters describing the linear variation of the phase. To conduct the second fit, we consider
i nd x, the index of the pixels, as a free parameter. The lower and upper bounds for the
researched parameters are established as follows:
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Figure 10.7: Main results of the second fit: phase variation across the region of interest, fast axis orientation,
attenuation term, and correction term.

• cor r ∈ [−0.06, 0.06] : as suggested by diattenuation and polarizance terms;

• at t ∈ [0.75, 0.77]: resulting from the transmissivity of MgF2 and the correspond-
ing Fresnel terms;

• c0 ∈ 2π
λ ∆n(λ)·[d0−0.5, d0+0.5+0.98], where d0 is the additional thickness of the

plate (1 mm), ±0.5 mm is the manufacturing tolerance and 0.98 mm is the maxi-
mum thickness of the plate in the limits of the provided tolerances;
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• c1 ∈ 2π
λ ∆n(λ)∆p · [tan(2.6◦ − 0.2◦), 1000tan(2.6◦ + 0.2◦)], where 2.6◦ ± 0.2◦ is the

apex angle of the prism, and ∆p =3.45µm is the size of a pixel.

The smooth variation of m22 dominated by the phase term ensures a precise deter-
mination of the phase variation across each detector line and the retrieval of the fast axis
angle to the horizontal. The results for the first prism are displayed in Fig. (10.7).

The pronounced tilt retrieved for the fast axis agrees with the tilt of the wedge itself
in the optical mount. In addition, the retrieved phase variation allows us to infer an apex
angle for the first prism with an average value of 2.53◦, which also follows the manufac-
turing requirements for the angle ξ.

10.5. EXPERIMENTAL RESULTS FOR PRIMS 3
The same procedures were also applied to the exit prism. Therefore, a fit was initially
conducted for the experimental data corresponding to the ratio R f (α) with a general
model of the Muller matrix of the prism. Again, this procedure allowed a determination
of the terms mi , j , (i , j = 0,1,2) for each pixel. Further, the inner terms of the Mueller
matrix were compared, and the term presenting the most substantial modulation was
used as a basis for a second fit. The results for the two sets of terms show that this time,
m11 is the best candidate for applying the second fit. This is in agreement with the theo-
retical expression of the inner terms. Because the fast axis is supposed to be oriented at
approximately 135◦, these terms become now:


m11 =C 2 +S2 cos(φ) ≈ cos(φ)

m12 = m21 =C S(1−cos(φ)) ≈ 0

m22 = S2 +C 2 cos(φ) ≈ 1

. (10.31)

Therefore, m11 was used for applying the second fit. The entry data was the index of
pixels in the horizontal direction. Just like in the case of prism 1, the searched parameters
were the correction (cor r ), the attenuation (at t ), and the coefficients of the phase, c0

and c1, respectively. The lower and upper bounds of these parameters were the same as
for prism 1, except for the c1 coefficient of the phase. This should be actualized with the
angle of the wedge, ψ= 1.8◦±0.2◦. The expression fitted to this data was:

{
m11 = cor r +at t · (C 2 +S2 cos(φ))

φ= c0 + c1 · i nd x
. (10.32)

In the end, the second fit gave the possibility to retrieve the main parameters of this
optical element, the phase, and the fast axis orientation. In this case, it should be stressed
again that the second fit does not allow a determination pixel by pixel.

The retrieved parameters characterize an entire line of pixels, and the validity of the
approach is based on the assumption of constant characteristics (fast axis orientation,
c0, c1, at t , and cor r ) along a line of pixels. Of course, the hypothesis should also be
verified horizontally, which means that the retrieved values for these parameters must
prove a small dispersion from one line to another.
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Figure 10.8: At left: terms from the diattenuation and polarizance vectors of the Mueller matrix corresponding
to Prism 3, for an arbitrary line. At right: a part of the inner terms of the Mueller matrix.
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Figure 10.9: Main results of the second fit for prism 3: phase variation across the region of interest, fast axis
orientation, attenuation term, and correction term.

Just like in the case of Prism 1, the applied method can receive further validation by
computing the apex angle. According to the requirements, this angle should be 1.8◦ ±
0.2◦. An average value of 1.67◦ is obtained from the reconstructed phase.

10.6. VERIFICATION OF THE RESULTS
Even though the fit method characterizes the prisms well, the results are still difficult
to apply and reuse. Thus, the values retrieved for the phase and the fast axis, or, more
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generally, for the mi j terms, can be used to anticipate the modulation of a certain state
of polarization passing through the prisms only if the entire optical system has a good
alignment and the deviation of the exit rays is mitigated. Otherwise, it is possible that
the computed mi j terms do not correspond to the same position in the detector plane
for different experiments. In this case, any attempt to anticipate an incoming state or to
build a fit to find the incoming state of polarization fails.

The phenomenon is generated because the orthogonal components of the electric
field of light are encountering two different indices of refraction inside the prisms. There-
fore, on the exit face of prism 1, which is not perpendicular to the direction of propaga-
tion, the two light components will be refracted with a slight separation. The effect will
become evident when the horizontal and vertical polarization patterns are compared.
Things are the same for the third prism. The only difference is that the tilted surface is
the entry surface of the prism. To observe the movement of the image, 45◦ and 135◦ lin-
ear polarizations should be compared. Consequently, the attempt to validate the results
of characterizing the separated prisms should be considered cautiously.
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Figure 10.10: Left: Measured and anticipated signal (normalized) for the prism 1, for an incoming state of
polarization (1,0,1,0)T , and analyzer oriented at an arbitrary angle of 10◦. At right, for the same angle of the
analyzer, a state (1,1,0,0) is passing through prism 3.

Thus, Fig. 10.10 shows the measured and the anticipated signal when a certain po-
larization state passes through prism 1 and 3. For simplicity, a 45◦ linear polarization
was used for prism 1, whereas for prism 3, a linear 0◦. The analyzer was positioned at
an arbitrary angle of 10◦ for both cases. For the incoming 45◦ linear polarization, the
anticipated intensity in the detector plane was computed using:

Iout (β) = 1

2
S0 ·M00

[
(1+m02)+ (m10 +m12)cos(2β)+ (m20 +m22)sin(2β)

]
, (10.33)

whereas for 0◦ it was used the formula:

Iout (β) = 1

2
S0 ·M00

[
(1+m01)+ (m10 +m11)cos(2β)+ (m20 +m21)sin(2β)

]
, (10.34)

where S0 is the intensity of the incoming light, M00 is the transmission term of the Mueller
matrix, β the orientation of the analyser, and mi , j the normalized terms of the Mueller
matrix previously computed. Figure 10.10 proves that a relatively good match of the
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measured and anticipated signal can be obtained for prism 3. This is because prism
3 has a smaller apex angle and, therefore, a more negligible effect of deviation of the
rays due to the refraction and birefringence. On the contrary, prism 1 has an apex an-
gle almost double. The image shift is more pronounced when various polarizations pass
through the prism. Consequently, the terms mi j cannot accurately describe the inten-
sity variation for any possible incoming polarization. They cannot be used successfully
to retrieve the pattern of a specific incoming polarization.

10.7. TEST FOR THE MUELLER MATRIX DECOMPOSITION
Even though it can be extremely fast and simple, we have seen that the fit of the intensity
ratio has limited applicability. To provide information about the analyzed optical ele-
ment obliges us, in some cases, to a series of assumptions and approximations, which,
in the end, require a laborious investigation. For this reason, we turned to the second
characterization method: the decomposition of the Mueller matrix. To find the terms of
the Mueller matrix, we used the procedure exposed in Chapter 3. As in the case of the
fit of the intensity ratio method, we first tested this method of decomposing the Mueller
matrix on a well-known element. We had at hand a Fresnel Rhomb, with the transmis-
sion axis oriented along the x-axis. This waveplate is equivalent to a quarter wave-plate
oriented at 0◦. That means the retardance is π

2 , and the angle of the fast axis is 0◦. The
retrieved matrix for the Fresnel rhomb was:

M =


0.9134 0.0032 0.0068 −0.0053
−0.0028 0.9004 0.1241 −0.1897
0.0095 0.0447 −0.0404 0.8667
−0.0092 0.2563 −0.8690 −0.0757

 (10.35)

After applying the decomposition algorithm, the diattenuation (MD ), the retardance
(MR ) and depolarization (M∆) matrices were obtained.

M∆ =


1 0 0 0

−0.0088 1.0122 −0.0790 0.0766
0.0161 −0.0790 0.9480 −0.0086
−0.0045 0.0766 0.0086 0.9924

 , (10.36)

MR =


1 0 0 0
0 0.9686 0.2158 −0.1230
0 0.1341 −0.0377 0.9902
0 −0.0106 −0.9757 −0.0654

 , MD =


0.9134 0.0032 0.0068 −0.0053
0.0032 0.9133 0 0
0.0068 0 1.0130 0
−0.0053 0 0 0.9133


Based on this decomposition, using the algorithm from Section 9.2, the following

parameters were obtained for the Fresnel Rhomb:

Depolarization (dimensionless) = 0.0158 Circular retardance (rad) = 0.0811
Diattenuation (dimensionless) = 0.01 Total retardance (rad) = 0.52π

Linear retardance (rad) = 1.6363 Fast axis angle (deg) = 3.64◦
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The results were impacted mainly by the misalignment of the quarter-wave plates
used to generate the circular polarization and find the Mueller matrix’s terms. Despite
the minor differences in expected values, this preliminary test proves that the decompo-
sition algorithm can be applied to retrieve the retardance and the fast axis orientation.

10.8. MUELLER MATRIX DECOMPOSITION: PRISM 1
Applying again the steps presented in Table 2.1 from Chapter 2, we measured the Mueller
terms pixel by pixel for prism 1, rotated at 90◦ with respect to the x−axis. The results,
covering a region of interest of 1000×1000 pixels, are presented in Fig. 10.11 and 10.12.
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Figure 10.11: Mueller matrix terms for the prism 1, under illumination at 633nm, and ∆λ= 3nm.
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Figure 10.12: Second part of the Mueller matrix terms for the Prism 1.

The measurements were conducted with a narrow filter of 633 nm central wavelength
and FW H M of 3 nm.

It should be stressed here that in its ideal form, the Mueller matrix of prism 1, rotated
with the optical axis at 90◦, as is the case in this measurement, should be (see Eq. (2.25)):

M =


1 0 0 0
0 1 0 0
0 0 cos(φ) −sin(φ)
0 0 sin(φ) cos(φ)

 . (10.37)
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Therefore, following the ideal expression, it is expected to obtain a strong modula-
tion of the signal, determined by the variation of the phase difference φ, for the terms
m22, m23, m32, and m33. Figure 10.12 proves this strong modulation also manifests ex-
perimentally. However, we also notice a difference from the ideal scenario. The terms
m20, m30, m21, m31, m12, and m13, measured experimentally, show the presence of a
slight modulation, depending also on the phase, whereas, theoretically, they should be
0. The fact that m20 and m30 are slightly different from 0 proves that the prism alters
all the incoming polarizations in small amounts. Ideally, according to the matrix (10.37),
this prism should let the linear horizontal and vertical polarizations pass unaffected. The
cause of this behavior will be investigated hereafter.

For the moment, it should also be stressed that m21, m31, m12, and m13 are different
from zero and display a slight modulation with the phase could be explained through an
improper alignment of the prism. If the fast axis is not perfectly vertical, these terms will
not cancel the phase terms from the Mueller matrix (see Eq. (2.25)).

Coming back to the "strange" behavior of the terms m20 and m30, the prismatic
shape or the fast axis’s orientation cannot explain the presence of a modulation.

The most reasonable explanation of this deviation from the ideal case is based on the
effect of the Fresnel terms for reflection and transmission. In Chapter 2 we saw that, at
the passage from one medium to another, the light undergoes a change of path and a
change in polarization, that depends on the angle of incidence.

Therefore, if the light arriving on the entry surface is not perfectly orthogonal on this
face, it will undergo a slight linear polarization. The principle applies to the exit surface,
too (see Eq. (2.30) and (2.31)).

If this situation occurs for the entry surface of our prism, and the Fresnel terms for
transmission are not negligible, then this surface will act as a linear polarizer. Because
of this, even the linear horizontal and vertical polarizations that should pass unaltered
through prism 1 will be slightly modulated. In addition, even if the incoming light is
unpolarized, a slight modulation of the intensity will occur, and it should be visible even
without an analyzer. This phenomenon was observed experimentally.

Considering the Fresnel terms for transmission corresponding to the exit surface of
the prism, their impact will be more limited. This surface will act as a weak linear polar-
ization filter.

To obtain the full Mueller matrix of the prism, which also takes into consideration
the Fresnel terms for transmission, it would be useful to note the following:

MF 1 = 1

2


a1 b1 0 0
b1 a1 0 0
0 0 c1 0
0 0 0 c1

 , (10.38)

the Fresnel matrix for the transmission corresponding to the entry surface. In the same
way, the matrix for the exit surface is:

MF 2 = 1

2


a2 b2 0 0
b2 a2 0 0
0 0 c2 0
0 0 0 c2

 . (10.39)
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In these expressions, a1,b1,c1,a2,b2,c2 are the Fresnel terms for transmission (Collett,
2005).

In addition, the contracted representation of a general linear retarder can also be
written as:

M =


1 0 0 0
0 A B C
0 B D −E
0 −C E F

 , (10.40)

where 

A = cos2(2θ)+ sin2(2θ)cos(φ)

B = cos(2θ)sin(2θ)(1−cos(φ))

C = sin(2θ)sin(φ)

D = cos2(2θ)cos(φ)+ sin2(2θ)

E = cos(2θ)sin(φ)

F = cos(φ)

, (10.41)

in which θ is the orientation of the fast axis, and φ is the phase difference induced by the
prism.

Consequently, the Mueller matrix (normalized) of a system composed of an entry
Fresnel surface, an ideal modulator, and an exit Fresnel surface is:

Mtot = MF 2 ·M ·MF 1 = 1

4


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 . (10.42)

In this expression, we have:

m00 = a2a1 +b2b1 A

m01 = a2b1 +b2a1 A

m02 = b2c1B

m03 = b2c1C

m10 = b2a1 +a2b1 A

m11 = b2b1 +a2a1 A

m12 = a2c1B

m13 = a2c1C

,



m20 = c2b1B

m21 = c2a1B

m22 = c2c1D

m23 =−c1c2E

m30 =−c2b1C

m31 =−c2a1C

m32 = c2c1E

m33 = c2c1F

. (10.43)

In the situation when θ is slightly different from 90◦, the term B from (10.41) will vary
as a function of cos(φ). This variation, even very small, will become visible in m20. In
the same way, because the term C will vary as an attenuated sin(φ), m30 will be affected
by the phase. This explains the observed variations of these terms from Fig. 10.11 and
10.12. On the other hand, for small deviations from 90◦, the term A will be close to 1. In
addition, because the terms b1 and b2 are also close to zero for small incidence angles,
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it will result that m01, m02, and m03 will be almost constant. This behavior was also
observed experimentally.

After applying the fit for the intensity ratio, the prism was repositioned on the optical
bench, and the complete Mueller matrix of the optical system was retrieved. This matrix
refers to the Eq. (10.42) form, which is altered by the Fresnel terms, and not to the matrix
(10.40) that remains to be determined. The displacement of the optical components was
expected to generate slight variations in the results compared to the fit method. Indeed,
small deviations were retrieved. Thus, the fast axis orientation was now approximately
94◦ (compared to 97.34◦ before), and the apex angle was 2.65◦ degrees, compared to
2.53◦. Therefore, the two methods provide comparable results.

The fit for the intensity ratio approach or the decomposition of the Mueller ma-
trix proved both reliable methods for characterizing the birefringent components of our
modulator. The Mueller matrix decomposition is an almost exhaustive approach, but
still, it is more prone to errors. Even in these conditions, the complete determination
of the Mueller matrix of the system taught us an important lesson: the Fresnel terms
should be addressed for such type of optical system. They are responsible for a slight
effect of polarization that should be investigated before translating this method of spec-
tropolarimetry into an accurate instrument.

ASSESSING THE FRESNEL MATRIX

The passage of light from one medium to another with an angle of incidence different
from zero is accompanied by a linear polarization of the reflected and transmitted wave
(see Chapter 2). This phenomenon is described by the Fresnel coefficients for reflection
and transmission (Collett, 2005).

Overall, the Mueller matrix formulated with the help of the Fresnel coefficients cor-
responding to the interface is:

MF = 1

2


τs +τp τs −τp 0 0
τs −τp τs +τp 0 0

0 0 2
p
τsτp 0

0 0 0 2
p
τsτp

 (10.44)

where the coefficients for transmission are provided by:


τs = sin(2i )sin(2rs )

sin2(α+
s )

τp = sin(2i )sin(2rp )

sin2(α+
p )cos2(α−

p )

(10.45)

s stays for the ray with the electric field perpendicular to the optical axis, and p for the
ray with the electric field parallel to the optical axis.
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Figure 10.13: Left: Fresnel transmission coefficients for s and p polarization incident on the prism 1, for an
angle of incidence i . At right, the variation of the terms of the matrix (10.38) with the angle of incidence.

In addition, we have: {
α+

s,p = i + rs,p

α−
s,p = i − rs,p

, (10.46)

where i is the incidence angle and rs,p is the refraction angle for the ordinary, respec-
tively, extraordinary ray. Therefore, in the notation used in Eq. (10.44) we have:

a = τs +τp

b = τs −τp

c = 2
p
τsτp

. (10.47)

For small values of the incidence angle (i < 5◦), the Mueller matrix associated with
the Fresnel terms is almost constant and close to the identity matrix. Because of this, the
polarizance properties of the prism remain extremely weak. For instance, when i = 5◦,
this matrix is:

MF =


0.9742 4 ·10−4 0 0
4 ·10−4 0.9742 0 0

0 0 0.9742 0
0 0 0 0.9742

 (10.48)

With this example, and based on the global variation described by Fig. 10.13 of the
Fresnel matrix terms, we understand why the diattenuation terms of the total Mueller
matrix are very close to zero, and the depolarization vector also shows a variation very
close to zero.

10.9. CHARACTERIZATION OF THE MODULATOR
The characterization of the modulator as a whole is much more complex than that of
the prisms. The number of parameters involved in the procedure is double if we ignore
the effect of the middle prism. Because of this, evaluating the confidence limits for the
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different terms becomes a very complex task, and the fit of the ratio of intensities fails
to provide an accurate description. However, a more targeted approach can be used in-
stead of quickly turning toward the full determination of the Mueller matrix of the mod-
ulator and then toward the decomposition of this matrix. We saw that the characteristics
of the separated prisms are close to the manufacturing requirements. We may assume
that the modulator is not far from the theoretical model. Under this hypothesis, the en-
try prism of the compound should have a fast axis that is horizontally oriented and the
exit prism at 45◦. Therefore, any incoming ±S1 state arriving on the modulator will pass
unaffected through the first prism, and it can be used to infer the phase difference de-
termined by the third prism. Similarly, a polarization ±S2 can help us understand the
phase difference occurring in the first prism. In addition, in the ideal scenario when fast
axes are close to the requirements, the complete Mueller matrix of the modulator is:

M =


1 0 0 0
0 cos(φ3) sin(φ1)sin(φ3) −cos(φ1)sin(φ3)
0 0 cos(φ1) sin(φ1)
0 sin(φ3) −sin(φ1)cos(φ3) cos(φ1)cos(φ3)

 . (10.49)

We should only try then to find M11 and M22 terms of the entire modulator’s Mueller
matrix to retrieve each component’s phase variation. Therefore, according to Eq.2.28, for
an incoming ±S1 state, observed with an analyzer oriented successively at 0◦ and 90◦, we
have: 

I S1 (0) = 1
2 S0

[
(M00 +M10)+ (M01 +M11)

]
I−S1 (0) = 1

2 S0

[
(M00 +M10)− (M01 +M11)

]
I S1 (90◦) = 1

2 S0

[
(M00 −M10)+ (M01 −M11)

]
I−S1 (90◦) = 1

2 S0

[
(M00 −M10)− (M01 −M11)

] . (10.50)

In these relations, for instance, I S1 (0) is the detected intensity when the incoming Stokes
vector is S⃗ = (S0,S1,0,0), and the analyzer is oriented at 0◦. In the same way, the term
I−S1 (0) corresponds to the Stokes vector S⃗ = (S0,−S1,0,0) and the analyzer at 0◦. In ad-
dition, I±S1 (90◦) corresponds to the incoming vectors S⃗ = (S0,±S1,0,0) and the analyzer
oriented at 90◦. From here, the normalised expression of m11, corresponding to M11/M00

can be retrieved:

m11 = 1−Γ11

1+Γ11
, (10.51)

where

Γ11 = I S1 (90◦)+ I−S1 (0)

I−S1 (90◦)+ I S1 (0)
. (10.52)

A similar procedure can be applied for incoming state S⃗ = (S0,0,±S2,0) in order to re-
trieve the m22 parameter. This time, the necessary orientations of the analyzer are 45◦
and 135◦. Therefore, for this case, the ratio Γ22 is:

Γ22 = I S2 (135◦)+ I−S2 (45◦)

I−S2 (135◦)+ I S2 (45◦)
. (10.53)
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Consequently, the term m22 is:

m22 = 1−Γ22

1+Γ22
. (10.54)

The Figures 10.14 and 10.15 display the ratios corresponding to m11 and m22, ob-
tained over an area of 2000×2000 pixels (left plot), and the variation of this ratio over a
column of pixels (right plot).
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Figure 10.14: Left: the term m11 of the Mueller matrix of the modulator. At right, the fit of this term with the
ideal expression is performed for an entire column of pixels. The name "Ratio", used for the ordinate axis in
the right plot, refers to the generation of data for m11 with the help of the ratio (10.51).
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Figure 10.15: Left: the term m22 of the Mueller matrix of the modulator. At right, the fit of this term with the
ideal expression is performed for an entire column of pixels. The name "Ratio", used for the ordinate axis in
the right plot, refers to the generation of data for m22 with the help of the ratio (10.54).

Just like during the analysis of the separated prisms, we can assume that the terms
m11 and m22 vary like: {

m11 = cor r11 +at t11 ·cos(φ3)

m22 = cor r22 +at t22 ·cos(φ1)
. (10.55)
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Fitting these expressions to the experimental value of the corresponding relations
(10.51,10.54), the phase difference for prism 1 and 3 was reconstructed, pixel by pixel. To
verify the results, the apex angles of the two prisms were inferred from the mathemati-
cal expression of the phase. The results are displayed in the Table 10.1. These results are
consistent with the previous analysis of the separated prisms and also with the manufac-
turing specifications. However, this method does not provide a direct way to determine
the fast axis orientation in each wedge. This information is lost in the complicated form
of the at t and cor r terms.

Modulator Separated prisms
prism 1 prism 3 prism 1 prism 3

att 0.82 0.69 0.77 0.84
corr 1.2 ·10−3 1.2 ·10−3 −0.04 1.1 ·10−3

Apex 2.59◦ 1.70◦ 2.53◦ 1.67◦

Table 10.1: Results extracted from the modulator analysis and from the separated prisms.

Another approach can be used to solve the problem. This is based on the measure-
ment of the deviation from the ideal model. Therefore, we know that if the fast axis of
the first prism is correctly oriented along the horizontal and in the third at 45◦, then any
incoming polarization S⃗ = (S0,±S1,0,0)T arriving collimated on the modulator will pass
unaffected through the first prism (under the supposition that the Fresnel terms could
be neglected). This state will receive a modulation only in the third prism. Therefore,
if the first prism has a fast axis with a different orientation, then the only state that will
pass unaffected will be, again, the linear state (S0,S1,S2,0)T parallel with the real ori-
entation of the fast axis. Thus, by varying the angle of the incoming linear polarization
around the theoretical value of 0◦, we can find the angle of polarization and, therefore,
of the first fast axis that presents the smallest correction with respect to the theory. The
same reasoning can be then applied to the third prism, through which a polarization
S⃗ = (S0,0,±S2,0)T also passes unaffected.

ax1 = 2.4
◦

x

y

ax3 = 48.7
◦

45
◦

Figure 10.16: Fast axes orientation of the two main
components of the modulator to the laboratory frame.

Therefore, with the help of a series of
linear polarizations, with angles close to
45◦, we can also find the orientation of
the third axis that minimizes the error.
The measurements conducted on a inter-
val of ±5◦ around 0◦ and 45◦, with a step
of 0.1◦ show that the best fit of the ideal
functions cos(φ1,3) is recorded for the first
prism for an angle of 2.4◦, and for the
third prism at 48.7◦ (see Fig. 10.16).

That means, instead of having 45◦ be-
tween the first and the third axis, we
have in reality 46.3◦. The relative rotation
with approximately 1.3◦ appears to hap-
pen around one of the edges. This rota-
tion is also responsible for the tilt of the
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fringes visible in Fig. 10.15. Therefore, given this rotation, the rays passing through the
modulator’s right extremity are traveling a longer path inside the modulator than the
rays from the left side. This results in an increasing deviation of the rays upward.

The phenomenon is only visible for the states different from (S0,±S1,0,0)T . As we
can see, this state passes unaltered through the first and second prisms. Therefore, it
sees no rotation of the medium. On the contrary, the other linear states deviate upwards
from the exit of the first prism. This deviation increases with the optical path. When the
prisms are rotated, the entry and exit faces are no longer parallel, and then the light will
travel different distances inside. These artifacts are a lesson learned about how detailed
the manufacturing requirements for such a modulator should be.
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INSTRUMENTAL MATRIX

DETERMINATION

The man with a new idea is a crank until the idea succeeds.

Mark Twain
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The modulator manufactured to test the method of polarization measurement stud-
ied within this thesis was close to the specifications. Still, unexpected manufacturing
deviations were identified as a relative rotation between the component prisms. In addi-
tion, it was also revealed that the Fresnel terms, ignored in the theoretical modelization,
should be considered for a more accurate description of the modulation of polarization.
Because of these differences between the theoretical model of the modulator and the
manufactured part, it becomes impossible to retrieve the polarization through a fit of
the experimental data with the ideal function (4.19), which describes the variation of
the intensity as a function of the Stokes parameters. The only solution for accessing the
polarimetric information remains the determination of the modulation matrix W and,
from here, of the demodulation (or instrumental) matrix, W −1 (see Chapter 3).

An arbitrary polarization state (S⃗i n) that passes through an optical system consisting
of the previously described modulator (of Mueller matrix M) followed by a linear ana-
lyzer oriented at an angle θ, MLP2, (see Fig. 11.1) is converted into the outgoing state
S⃗out following the classical relation:

S⃗out = MLP2 ·M · S⃗i n . (11.1)

Collimator

Spectral
Filter

Camera

z
LP2

Modulator

θ x

y
PS

PSG

~Sin

~Sout

LP1 QWP

Figure 11.1: The light from a polychromatic source (PS) first passes through a collimator and a spectral filter.
A state S⃗i n is generated with the help of a polarization state generator (PSG), composed from a linear polarizer
(LP1) and a QW P . LP1 and QW P can be rotated to produce any desired polarization state. The light polarized
by the PSG passes through the modulator M and the linear polarizer LP2, oriented at an angle θ to the x−axis.
After LP2, the state of polarization is S⃗out . The camera detects the first term of the vector S⃗out , representing
light intensity.

The intensity detected after the passage of light through this optical system is repre-
sented by the first term of the outgoing Stokes vector, S⃗out . If we call this term Iout , then
we can write:

Iout = S⃗out (1) =
(
MLP2 ·M · S⃗i n

)
(1). (11.2)

The previous chapter showed that the actual modulator differs from the theoretical
model, and aberrations due to misalignment of the optical components are inherent.
Because of this, it is expected that the phase will vary not only in the vertical direction
but also very little in the horizontal direction. Therefore, each column of the detector
should be characterized separately. Thus, for a column l of the detector, comprising n
pixels, the intensity displayed by a pixel k is:
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I k
out =

1

2
(S0 ·wk

00 +S1 ·wk
01 +S2 ·wk

02 +S3 ·wk
03), (11.3)

where wk
0i , (i = 0,1,2,3, k = 0 : n − 1) are the elements of the first line of the matrix

MLP2 ·MM , characterizing the pixel (l ,k). Therefore, to the n pixels of the column l of
the detector it can be associated the modulation matrix W l :

W l = 1

2



w1
00 w1

01 w1
02 w1

03
w2

00 w2
01 w2

02 w2
03

... ... ... ...
wk

00 wk
01 wk

02 wk
03

... ... ... ...
wn

00 wn
01 wn

02 wn
03

 , (11.4)

so that the intensity detected by each of these pixels from the line l can be expressed as:


I1

I2

..
In

= 1

2



w1
00 w1

01 w1
02 w1

03
w2

00 w2
01 w2

02 w2
03

... ... ... ...
wk

00 wk
01 wk

02 wk
03

... ... ... ...
wn

00 wn
01 wn

02 wn
03

 ·


S0

S1

S2

S3

 (11.5)

Thus, finding the incoming Stokes vector S⃗i n from the values of the intensity recorded
along the line l of the detector, I⃗ , seems to be trivial:

S⃗i n = (W l )−1 · I⃗ (11.6)

Unfortunately, as long as the actual instrument differs from the theoretical model,
the modulation matrix W l remains unknown, and the polarization cannot be retrieved.
Also, for the same reason, the fit method, consisting of the fit of the retrieved experimen-
tal data with the function (4.19), cannot be successfully applied to find the polarization.

The only solution to this problem is trying to find W l experimentally.
Two methods can be used to determine this matrix. One is based on the singular

value decomposition of an intensity matrix obtained after measuring several well-known
polarization states from the Poincaré sphere. The second is an iterative process consid-
ering the measurements conducted for only seven polarization states.

Both procedures are explained hereafter.

11.1. METHOD I: SINGULAR VALUE DECOMPOSITION
This method exploits the findings from (Boulbry et al., 2007), extending the principle
from an instrument where the orientation of the analyzer varies to our instrument, where
the phase varies.

Therefore, in its initial form, this method (Boulbry et al., 2007) considered the case
of a polarimeter in which the modulation is obtained by changing the orientation of the
analyzer. In our case, however, the polarizer is fixed, and the modulation results from
the phase variation in the vertical direction. In other words, the difference between the
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lines of the matrix W l is determined by the phase difference of the light and not by the
position of the analyzer.

By measuring P incoming states of polarization (well-known), chosen from the Poincaré
sphere, then, for a column of pixels l , the previous relation (11.5) becomes:

Measurement 1, incoming state S1
i n :



I 1
1

I 1
2

.

I 1
k

.

I 1
n


=W l


S1

0

S1
1

S1
2

S1
3



Measurement 2, incoming state S2
i n :



I 2
1

I 2
2

.

I 2
k

.

I 2
n


=W l


S2

0

S2
1

S2
2

S2
3



·
·

Measurement P, incoming state SP
i n :



I P
1

I P
2

.

I P
k

.

I P
n


=W l


SP

0

SP
1

SP
2

SP
3



(11.7)

We can write all these measurements in unique matrix form:



I 1
1 I 2

1 ... I P
1

I 1
2 I 2

2 ... I P
2

... ... ... ...
I 1

k I 2
k ... I P

k
... ... ... ...
I 1

n I 2
n ... I P

n

= 1

2



w1
00 w1

01 w1
02 w1

03
w2

00 w2
01 w2

02 w2
03

... ... ... ...
wk

00 wk
01 wk

02 wk
03

... ... ... ...
wn

00 wn
01 wn

02 wn
03

 ·


S1

0 S2
0 ... SP

0
S1

1 S2
1 ... SP

1
S1

2 S2
2 ... SP

2
S1

3 S2
3 ... SP

3

 (11.8)

This relation should be applied to all the detector lines using the measurements from
the detector plane. Therefore, by ignoring the superscript l , we can write, in a very con-
tracted form:

[I ] =W · [S], (11.9)
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where [I ] is the (n × P ) matrix of intensity, and [S] the (4 × P ) matrix of the states of
polarization used as input. It must be stressed that even if we ignore the superscript l
in our notation, this relation continues to refer to a single line of pixels.

Because we search for the value of W −1, which can give access to the determination
of any incoming state of polarization S⃗, and the only known elements are now the mea-
sured intensity matrix [I ] and the input states of polarization, [S], we can write:

W −1 = [S] · [I ]−1. (11.10)

Here, [I ]−1 is the right inverse matrix of [I ], and, generally, it can be computed via:

[I ]−1 = [I ]† = [I ]T ·
(
[I ] · [I ]T

)−1
. (11.11)

Theoretically, for our system (and not only (Boulbry et al., 2007)), the condition number
of the product [I ] · [I ]T is infinite. Therefore, it cannot be inverted. It is expected that
this product will also be ill-conditioned in practice. In this case, the singular value de-
composition (SV D) could be used instead to retrieve [I ]−1. Using this method, [I ] can
be written as:

[I ] =U ·D ·V T . (11.12)

In this formulation, U is built with the nonzero eigenvalues of [I ], noted here σi . The
columns of U are given by:

ui = 1

σi
[I ]vi , (11.13)

where vi is the eigenvector corresponding to σi . V is the matrix of the eigenvectors of
[I ], and D = di ag (σ1,σ2,σ3,σ4, ...). With this notation, the inverse of [I ] becomes:

[I ]† =V ·D−1 ·U T =V ·di ag (
1

σ1
,

1

σ2
, ...,0, ....) ·U T . (11.14)

If the eigenvalues of the matrix [I ] are equal to zero, we must carefully replace the
expression 1/σi with 0 in the matrix D−1.

After obtaining the value [I ]†, the instrumental matrix W −1 can be easily retrieved
using Eq. (11.10) since the matrix [S] is already known.

11.2. ASSESSING THE INCOMING STOKES VECTORS
The challenge of this method for determining the instrumental matrix W −1 consists of
correctly assessing the input Stokes vectors in the matrix [S]. Without a calibrated polar-
ization state generator (PSG), these vectors must be obtained by combining polarizers
and various waveplates. This fact can be the source of significant errors.

In addition, because every pixel counts in the characterization of the modulator, a
lack of spatial homogeneity in the generated states of polarization across the illuminated
area can also be a source of errors. To explain this phenomenon, we must return to equa-
tion (11.5). The vector S⃗i n characterizes the light entering the modulator at any point of
the illuminated entry face. However, the vector I⃗ contains the intensity detected by each
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pixel of a column l of the detector. The homogeneity of the components of the polar-
ization state generator, the detector, and the noise influences this vector. To completely
avoid any problem related to spatial homogeneity of the incoming polarization, the pro-
cedure described in Eq. (11.5) must be applied pixel by pixel, this time by rotating the
analyzer.

It is an approach that should be considered for future work. However, here, we have
privileged a different approach. Instead of characterizing the modulator by pixels, we
opted for line characterization. The difficulty of this approach is understanding how
the system converts a supposed homogeneous incoming signal into an inhomogeneous
detected signal. We use a rotating linear polarizer (LP1) and a quarter-wave plate (QW P )
to produce the required polarization states (see Fig. 11.2).

Collimator

Spectral
Filter

x

y
PS

PSG

~SinLP1

QWP

α x

y

45◦

z

Figure 11.2: Working principle for the polarization state generator (PSG). By rotating the linear polarizer (LP1)
in front of the QW P oriented at 45◦ to the x−axis, the states described by Eq. (11.16) are obtained. When the
QW P is oriented at 90◦, the states from Eq. (11.17) are generated.

Thus, if the QW P is oriented at 45◦ with respect to the horizontal, then by rotation
LP1 we obtain the states of polarization:

S⃗(α) = 1

2
S0


1
0

sin(2α)
cos(2α)

 (11.15)

where α is the orientation of the transmission axis of LP1 with respect to the horizontal
(see Fig. 11.2). On the other hand, if the QW P is positioned with the fast axis at 90◦, then
we obtain the vectors:

S⃗(α) = 1

2
S0


1

cos(2α)
0

sin(2α)

 . (11.16)

In both cases, S0 is the term corresponding to the intensity of the incident light.
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Figure 11.3: The average states of polarization used for the determination of the instrumental matrix of the
modulator.

If we represent all these states on the Poincaré sphere, we obtain the result presented
in Fig. 11.3. We have a complete encircling of the sphere.

However, the generated Stokes vectors can be different from the equations (11.15),
(11.16). They can vary across the region of interest, from one pixel to another, com-
plexifying the instrumental matrix’s measurement procedure. If we consider the spatial
variation of the source only, which showed a standard deviation of 1.94%, then this dis-
tribution will characterize the S0 parameters of the Stokes vectors reaching each pixel.
The rest of the parameters of the Stokes vectors will be affected by the properties and
alignment of LP1 and QW P .

Thus, if we look at the QW P , we see that the actual physical properties of this compo-
nent are slightly different from the theory. Therefore, at 515 nm, the QW P is not precisely
a QW P , displaying a theoretical retardance of 0.242 waves, according to the datasheet,
and a transmission of 96.64%. The Mueller matrix of the QW P must be adjusted to quan-
tify the impact of these differences. In addition, the QW P should be oriented at 45◦ and
90◦ to produce the necessary polarization states, orientations that can only be obtained
with approximate accuracy. All these deviations will have a direct impact on the gener-
ated Stokes vectors.

To characterize the QW P in the current PSG , we can use the procedure synthesized
in Fig. 11.4.
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Figure 11.4: Generation of the incoming polarization states and assessment of errors
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Figure 11.5: Check of the orientation of QW P with respect to LP1: the unpolarized light from the left side
passes through LP1 oriented at 0◦ and then through QW P with the fast axis at 45◦; therefore, the polarization
state after QW P should be circular. A rotation of LP2 should not display a variation of the intensity with the
position of its transmission axis.

At first, the fit procedure for the ratio of intensities (see Section 10.1) can be used to
retrieve the orientation of the fast axis of QW P under the supposition that the birefrin-
gence of the plate corresponds to the datasheet. To verify the result, we can place the first
linear polarizer (LP1) at 0◦, the QW P at 45◦, and then rotate the second linear polarizer
(LP2) between 0◦ and 180◦ (see Fig. 11.5).

If the QW P is correctly oriented, and the birefringence corresponds exactly to the
datasheet, we should obtain a maximal intensity variation with the angle of LP2 of about
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5%. The definition of variation corresponds, in this case, to the degree of linear polariza-
tion:

DoLP = 100
Imax − Imi n

Imax + Imi n
(11.17)

Having DoLP ̸= 0 means the system cannot produce a perfect circular polarization.
In practice, the retrieved variation of the intensity for this polarimetric configuration

varies between 4% and 16% (see Fig. 11.6) across the region of interest.
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Figure 11.6: Degree of linear polarization (DoLP ) obtained with configurations of the PSG that should pro-
duce, theoretically, circular polarization. Ideally, the two configurations should be equivalent. In practice, we
notice a slight difference between the two. This is due to a possible misalignment of the QW P . The right-side
plots present the intensity variation while turning LP2 of the pixels that exhibit the maximum, average, and
minimum DoLP . The continuous lines correspond to the theoretical model adjusted for the best fit.

In addition, even though a configuration LP1(45◦) and QW P (90◦) should produce
the same variation of intensity, we notice a difference between the two configurations, a
difference which is caused by the misalignment of the setup. We will neglect the magni-
tude of the error due to this misalignment of the QW P for the moment. Instead, taking
an arbitrary line of pixels (for instance, 200) that shows a relatively small average DoLP ,
we will try to adjust the theoretical model of the QW P so that the same DoLP is pro-
duced. We will look at the pixels close to the mean DoLP , those with maximum DoLP ,
and minimum DoLP . These three values will provide the mean values of the adjust-
ments needed for the fast axis orientation and the retardance of the QW P . Ultimately,
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with these adjustments, we can infer the possible values taken by the Stokes vectors cre-
ated with LP1 and QW P .

As can be noticed in Fig. 11.6, the DoLP takes different values in the two cases stud-
ied (LP1(0◦)+QW P (45◦), and LP1(45◦)+QW P (90◦)), and the variation of intensity that
allows the determination of this DoLP embrace distinct patterns in the two cases. In
addition, adjusting the theoretical model for the best correspondence with the exper-
imental data produces only an approximate result. This is because changing the fast
axis and the retardance of the QW P are not enough to compensate for the variation in
the intensity. These two parameters are insufficient to suppress the effects of the mis-
alignment, dust, or other causes. However, by considering these variations of the DoLP
across a single line of pixels, we can compute the approximate extreme values between
which the generated Stokes vectors vary.

The results are presented in Fig. 11.7.
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Figure 11.7: Possible values of the generated Stokes vectors as inferred from the variation of the DoLP across
a single line of pixels.

We notice that with a rotating LP1 and a QW P oriented at 45◦, the most impacted
term is s1, a term that should be zero. For the second configuration, s2 is the most im-
pacted. Again, this is the case of the term that should be zero. A global view of this
phenomenon is presented in Fig. 11.8, where the theoretical ideal value of the Stokes
parameters is also plotted (the red curve) for each of the 360 vectors generated.
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Figure 11.8: Maximal variation of the parameters of [S] (in blue) and ideal value (red). Until the number 180,
the states are generated with the first orientation of the QW P and, after this, with the second configuration.
We observe how the curves corresponding to the normalized Stokes parameters s1, s2, and s3 deviate from the
Eq. (11.15), and (11.16).

The misalignment of the instrument and the improper behavior of the QW P result in
an inhomogeneous linear term. A QW P oriented at 45◦ generates a variable horizontal
or vertical polarization component. On the other hand, a QW P at 90◦ produces a 45◦ or
135◦ linear component. For both configurations, the total degree of linear polarization
never descends below 5%.

Assessing the error in estimating the incoming vectors’ parameters is a relative task.
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It depends on the orientation of the first linear polarizer, LP1. The most affected pa-
rameter in the states generated with QW P at 45◦ shows a variation reaching 34% to the
average of s1 for certain positions of the linear polarizer, LP1. Still, for several orienta-
tions of LP1, this variation is close to zero. Nevertheless, the variation is negligible for
the other two parameters (s2 and s3). Overall, it is below 0.1%. The states generated with
QW P at 90◦ seem even more problematic. In this case, s2, the most impacted parameter,
shows a variation that can reach even 42.5%, whereas the other two parameters also stay
below 0.1%.

Despite the substantial variation of s1 and s2 in both configurations, the repercus-
sions on the instrumental matrix are expected to be minimal. This is because the effect
of these strong variations on the global state of polarization remains limited. Indeed,
these variations are translated into an increase with a maximum of 2% of the DoLP for
the chosen line of pixels. Nevertheless, the values of QW P parameters that best describe
the minimum value of DoLP , the mean and maximum value across a line of pixels, also
dictate the uncertainty of the demodulation. Therefore, by considering the variation of
the incoming Stokes vector across a line of pixels, the relation (11.10) should be rewritten
as:


W −1

mean = [S]mean · [I ]−1

W −1
mi n = [S]mi n · [I ]−1

W −1
max = [S]max · [I ]−1

(11.18)

where the vectors [S]mean , [S]mi n and [S]max are obtained with the parameters of the
QW P that are providing a DoLP close to the average value across the line of pixels, to
the minimum value, respectively the maximum. Each of these instrumental matrices
will drive to a specific demodulated Stokes vector. The variation of the possible outcome
represents the uncertainty of the results. Concerning the demodulation error, assessing
it precisely in the given system configuration is impossible. Let us think, for instance,
of the polarization states generated as a test with a rotating LP1 and the QW P oriented
at 30◦. Like in previous configurations, this polarization state will develop an inhomo-
geneous result along a line of pixels. However, we do not have the corresponding cor-
rection parameters for the QW P to track this inhomogeneity. We can only suppose that
we stay within the same limits as in the previous cases as long as the system is not al-
tered. Therefore, we may say again that the incoming polarization varies across the line
of pixels between the limits imposed by the variation of the retardance and the fast axis.

Based on these hypotheses, we can build the possible outcome of a rotating LP1 and
a QW P oriented at 30◦. The results are presented in Fig. 11.9. We now notice that be-
cause all of the Stokes parameters exhibit a variation with a high amplitude, no such
uncertainties as before are encountered. Again, the most affected parameter is that with
the smallest amplitude, s1. However, overall, the uncertainty with respect to the mean
value stays below 1%.
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Figure 11.9: Incoming Stokes parameters (normalized value) corresponding to the states obtained through the
rotation of LP1 for a QW P oriented at 30◦. The values of the Stokes parameters were simulated starting from
the retrieved characteristics of LP1 and the QW P . The uncertainty corresponds to the interval of variation of
each parameter for every orientation of LP1.

Nevertheless, because there is no other possibility to check the accuracy of the hy-
potheses made to build these vectors, we cannot tell with enough precision what is the
real interval of variation across the line of pixels. Because of this, after demodulation,
there is no reference after which to establish an error. To overcome this situation, a cali-
brated PSG generator must be used in the beginning to retrieve the instrumental matrix,
and then the demodulation should be applied to well-known sources of polarization.

Despite the lack of precision in the PSG functioning and the misalignment assess-
ment, which cannot be compensated by adjusting the QW P properties, the first tests for
the demodulation are very promising. In this test, we have tried to retrieve the 180 states
of polarization generated by rotating LP1 in front of a QW P oriented at 30◦, states that
are presented in Fig. 11.9.

The results of the demodulation process are presented in Fig. 11.10. If we look only
at the mean values of the incoming and demodulated Stokes vectors, we observe that
the relative difference between the parameters stays, on average, below 5% for most
the orientations of LP1. Despite the errors and misalignment present in our optical
setup, these results demonstrate that demodulation of the polarimetric signal can be
performed smoothly for any incident polarization. Access to a better quality polariza-
tion state generator and adopting the pixel-by-pixel instrumental matrix determination
strategy can help improve the results and simplify the calibration procedure.
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Figure 11.10: The first three graphics from the top present the mean value of the incoming Stokes parameters
(red) obtained through simulation. The remaining curves show the retrieved parameters according to the [S]
values used to compute W −1. The second row of graphics shows the variation of the output Stokes parameters
when the different instrumental matrices are used for demodulation.
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Figure 11.11: Relative difference between the simulated mean values of the Stokes parameters and the re-
trieved mean values.

11.3. METHOD II: OPPOSED STATES OF POLARIZATION
A more traditional way to find the modulation matrix is to use the opposed polarization
states chosen from the Poincaré sphere. Therefore, following Eq. (11.3), if non-polarized
light is passing through the system comprising the modulator and an analyzer oriented
at an angle θ, then the detected intensity by the pixel (k, l ) can be expressed as:

Iout = 1

2
S0w00 (11.19)
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Therefore, after preliminary measurement of S0 in the absence of the modulator
and the analyzer, w00 can be obtained for any (k, l ) and for the desired orientation of
the analyzer. Further, using step-by-step the incoming states S⃗ = (S0,±S1,0,0)T , S⃗ =
(S0,0,±S2,0)T and S⃗ = (S0,0,0,±S3)T , where T denotes the transposition operator, the
rest of the terms of the modulation matrix can be retrieved.

For instance, an incoming Stokes vector S⃗ = (S0,±S1,0,0)T will provide, for any pixel
(k, l ), the intensities :

I± = 1

2
S0(w00 ±w01), (11.20)

if we assume a total polarization (|S1| = S0). From here, it can be inferred:

w01 = w00
I+− I−

I++ I−
. (11.21)

The same type of formula can be developed for the rest of the terms, w02 and w03, by
using total polarization at ±45◦ and circular left and right, respectively.

This is a straightforward procedure for determining the matrix W corresponding to
each pixel. Just like in the previous case, its success depends on the knowledge of the
input vectors.
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A new method for the complete measurement of polarization at different wavelengths
was explored in this research. This method will allow us to build compact, robust, and
highly performant instruments which are suitable, among many other domains, for use
in the space environment.

We started our exploration from an idea previously proposed in the literature about
the possibility of conducting spectropolarimetric measurements with the help of a com-
bination of birefringent prisms. We investigated this idea, providing scientific proof
for its principle and exploring the different design possibilities. Analyzing figures of
merit like the efficiency of the modulation scheme, the condition number, or the equally
weighted variance, we identified the configurations leading to a highly accurate mea-
surement of polarization. We also proved that, at least theoretically, this method of re-
trieving the polarization is close to an optimal one: it allows the determination of the
Stokes parameters with equal and highest achievable precision.

In the end, we made the step from theory to practice, and we built a prototype of
the central part of this method, the modulator. The objective was double-folded: to
validate this polarization measurement approach and to learn what is happening with
the polarized light that passes through such optical elements.

Both objectives were, at least partially, fulfilled. Many questions were answered, and
many others arose along the way, requiring a deeper analysis of certain aspects. The
experiments proved that the state of the incoming polarization can be retrieved using
this approach, at least for a specific wavelength and certain bandwidth. At the same
time, many lessons were learned that can help us improve this technique in the future,
expand its field of applications, and explore new possibilities to apply its principles.

Five fundamental questions guided this research, and at least partial answers were
provided.

1. Does the signal detected with an instrument using this method correspond to a
single state of polarization?

Solving the problem of the uniqueness of the solution is of paramount importance
for this method of the retrieval of polarization. This can tell us if a unique intensity pat-
tern in the detector plane characterizes every incoming polarization state.

The main "responsible" for the uniqueness is the modulation matrix of the instru-
ment. We saw that this matrix relates the state of polarization of the incoming light and
the detected intensity. The number of lines of this matrix depends on the number of pix-
els in the vertical direction over which the signal is spread. In addition, the values of the
terms of this matrix are influenced by the wavelength and the spectral bandwidth, by the
dimension of pixels, the angles of the prisms, the birefringence of the material, the ori-
entation of the analyzer, etc. Overall, the problem of the solution’s uniqueness reduces
to the modulation matrix’s characteristics.

Using multiple methods, we proved in Chapter 5 that the uniqueness of the solution
characterizes an optical system employing a modulator in MgF2. Multiple proofs were
brought to this question. The most straightforward, adapted also for the experimen-
tal investigation, is based on the determination of the rank of the modulation matrix.
Proving that this rank is four is a necessary and sufficient condition to demonstrate the
uniqueness of the solution.
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In addition, by exploiting the theoretical form of the terms of the modulation matrix
in the ideal condition, the uniqueness of the solution was demonstrated in two ways. At
first, the notion of Wronskian was used for this purpose. However, an equivalent proof
can be obtained using the modulation functions’ orthogonality.

2. How do potential instruments built according to this method behave in noisy
conditions?

The birefringent modulator proposed within this research is the main component
responsible for the capacity to detect any state of polarization at various wavelengths.
Composed of three birefringent prisms with fast axes that are differently oriented, this
modulator ensures a continuous variation of the phase difference of the incoming light
in a specific direction. Placing a linear polarizer after this modulator, the continuous
variation of phase difference is converted into a variation of intensity in the same direc-
tion. In the end, this variation of the intensity, described with the help of the optical
system’s modulation matrix, ensures the polarization’s determination. Theoretically, the
"quality" of the modulation matrix can be tested for various values of the parameters in-
volved in the modulation with the help of the condition number. Ideally, the condition
number is

p
20 for an optimal polarimeter. In Chapter 6, we also proved that the pro-

posed method’s condition number converges towards
p

20 with the number of pixels.
The condition number offers only limited information about an instrument using

this method of spectropolarimetry. Oversimplifying, we can say that it only informs
about the possibility of inverting the modulation matrix to achieve the demodulation
of the detected signal. However, it brings no information about the uncertainty that may
affect the Stokes parameters. For this, analyzing the optical system in noise conditions
is required. Such a study was conducted in Chapters 5, 6 and 7. Using different types
of noise that may affect the detected signal, the uncertainty on the Stokes parameters
was mapped as a function of the various parameters of the optical system. In this way,
the values of the prisms’ apex angles and the analyzer’s orientations that can ensure the
retrieval with equal precision of all the Stokes parameters were identified. In addition, it
was proved that this method can ensure optimal noise mitigation.

3. Which procedures can be used to retrieve the polarization, and how reliable are
they?

It has been shown in Chapters 4, 5, and 6 that two procedures for retrieving polariza-
tion can theoretically be used within this method. One of these procedures supposes the
fit of the detected intensity value with the theoretical function, and the second is based
on determining the modulation matrix.

The first method requires a good knowledge of the optical system so that the theo-
retical function can correctly describe the passage of light through the different compo-
nents. We used this method in the theoretical investigation of the spectropolarimeter.
However, during the experimental stage, this procedure could not be applied.

The delivered modulator exhibited pronounced differences to the blueprint, differ-
ences which were not parametrized in the theoretical model and could not be investi-
gated numerically in a short time. Also, during the experimental part, it was observed
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that the Fresnel terms, ignored in the model built using the Mueller calculus, should not
be overlooked.

These were the main reasons why, during the experimental part, the retrieved inten-
sity pattern corresponding to various polarization states differed from the anticipated
one. Consequently, the theoretical model could not be used to fit the experimental data
to retrieve the polarization state.

The second demodulation method overpasses the effect of the overlooked Fresnel
terms or the differences between the blueprints and the manufactured modulator. This
method allows us to refer directly to the actual optical system. It requires the determi-
nation of the instrumental matrix, which comprises all the ignored or neglected effects.
The difficulties brought by this method are mostly related to the knowledge of the po-
larization states used to retrieve the instrumental matrix. Therefore, it was pointed out
that a calibrated polarization state generator is paramount for a reliable determination
of this matrix.

4. Can this method be experimentally implemented?

The biggest challenge in translating this method of determining the polarization into
practice is manufacturing the modulator. As a custom optical part that requires high op-
tical manufacturing skills, finding a supplier ready to meet this challenge can be difficult.
We found such a supplier, and the modulator manufactured was very close to specifica-
tion.

The second important step in the practical realization is represented by the optical
characterization of the modulator. The fact that we have the separate prisms of the mod-
ulator made this process easier. Thus, we managed to offer a detailed description of the
variation of the phase difference and the fast axis’s orientation in the modulator’s two
main prisms.

Finally, it was necessary to establish the instrumental matrix to demonstrate the abil-
ity to determine the polarization of light. Although we did not have a calibrated polariza-
tion generator, we completed this stage. The tests performed on 180 polarization states
demonstrated the ability of this instrument prototype to determine all Stokes parame-
ters. A complete set of measurements was carried to a single wavelength, using a spectral
filter. For a broader confirmation of the project, the same type of measurements should
be repeated at different wavelengths.

5. How can it be exploited in the future?

This remains an open question. Supposing that the full confirmation of the non-
imaging working mode is achieved, an entirely new horizon opens. We have the basis to
build very compact and robust non-imaging spectropolarimeters at that moment. Given
the high compactness that can be achieved and the very small volume required by the
polarimetric components, it can be imagined that such instruments will be compati-
ble with various platforms, ranging from microscopes or ground telescopes to drones or
satellites.

At the same time, it was mentioned in this thesis that an imaging working mode can
be built using this method of determining the polarization. Various techniques exist
today to achieve this new functionality. If such a step is made, the contribution of this
instrument would be even more significant.
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12.1. NEXT STEPS
The encouraging results exposed in this thesis represent the most essential steps for val-
idating the new method of measuring the polarization of light. At the same time, they
are opening the way towards multiple topics of research in this field. Questions arising
from the observations made during the experimental part should be answered, and the
investigations carried to a single wavelength should be extended to a broader spectrum.
Moreover, the possibilities of achieving snapshot imaging spectropolarimetry or snap-
shot imaging Mueller matrix polarimetry should be explored. Achieving such capabili-
ties could convert this method of measuring the polarization of light into a very versatile
approach, with applications ranging from the space field to industry or medicine.

The most important steps that must be done next are:

• Completing the theoretical model

The experimental part of our research pointed out several differences between the
results provided by the theoretical model of the modulator and the actual one. These
differences originate in phenomena neglected in the theoretical investigation (like the
Fresnel terms, the temperature, or the inhomogeneity of the birefringent media) or in the
differences between the blueprints of the modulator and the manufactured specimen.

Thus, the theoretical model of the modulator should be corrected to include the ef-
fect of the neglected terms or the relative position of the prisms. Subsequently, this
new model should be validated experimentally. Having a more precise theoretical model
means, after all, a better understanding of the physical processes taking place in the op-
tical components of the instrument. A better theoretical model can help us to apply this
method to various instruments and to better understand the consequences of various
constraints. In addition, an adequate theoretical model can be used in the demodula-
tion process. If such a model is achieved, then the value of the intensity can be related
correctly to the state of polarization of the incoming light. In the end, the analytical ex-
pression of the intensity can be used to fit the recorded data and to retrieve the Stokes
parameters. Such a procedure can be more versatile than determining the instrumental
matrix, as it can comprise the effect of wavelength, spectral resolution, temperature, or
field of view.

Once the theoretical model is completed, it can be tested in the beginning on a
non-imaging instrument. The spectropolarimeter developed by TNO and mentioned
in Chapter 9 represents an excellent opportunity for this step. Using an optical prism to
obtain the spectral separation of light, this design provides simultaneous access to vari-
ous wavelengths. This instrument can be used without a precise theoretical description
if the instrumental matrix is determined. However, its full potential is achieved only if
this description is completed.

• Developing the imaging capability

Perhaps the most essential development of the method of accessing the polarization
exposed in this thesis is its extension into the imaging working mode. This will enable
the realization of the snapshot full Stokes imaging spectropolarimeter. It is a task that
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remains to be done in the future. Many applications need today such capability. As-
tronomy, climatology, defense, industry, and medicine are just a few fields where snap-
shot imaging spectropolarimetry can play a major role. Several methods for achieving
this capability, inspired by snapshot imaging spectrometry, were presented in this the-
sis. However, a more detailed investigation is needed. The different possibilities must
be compared in order to identify which has the higher compatibility with the working
mode of the modulator. In addition, because compactness and robustness are among
the main qualities of this method, they should not be sacrificed while constructing the
imaging working mode.

• Mueller matrix imaging

To push the usage domain even further, it can be easily proved that the imaging work-
ing mode also enables the snapshot Mueller matrix imaging. Through such a technique,
all the terms of the Mueller matrix of a sample can be obtained almost instantly, in an
imaging way, for various wavelengths. It is a unique capability, as it requires fewer in-
put data to achieve the measurements compared to most of the existing instruments
and does not need rotating parts. This is an application of tremendous importance in
medicine, as it can help in the characterization of tissues and the diagnosis of different
diseases.

These are just a few directions of evolution for this new method of measuring the polar-
ization of light. Many other aspects can be considered and investigated along the way,
offering new possibilities for development. We can cite replacing the analyzer with a
polarizing beam splitter. Such a component could sacrifice the simplicity of the opti-
cal design for the benefit of higher accuracy. Even more, we can imagine replacing the
modulator with a metasurface having the same capacity to modify the phase difference
of light. This would enable the construction of highly compact instruments, presenting
almost the same performance. All these are encouraging perspectives. Followed and
investigated with faithfulness, they can lead to more performant and versatile ways of
accessing this feature, which is the polarization of light. In the end, better and easier
access to the polarization of light can be seen as a better understanding of the world
around us.
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A.1. MUELLER CALCULUS
Throughout this research, we used Mueller matrices of different optical components
(LP , QW P , HW P , W P ). Certain differences can be found in the literature between these
matrices, which come mainly from the definition of the direction of rotation and, thus,
of the rotation matrix that allows the calculation of the Mueller matrices for different
orientations. We based our work on the expressions used by (Hecht, 2017, Collett, 2005).

• Arbitrary wave plate of retardance ∆φ and orientation θ:


1 0 0 0
0 C 2 +S2 cos(∆φ) C S(1−cos(∆φ)) −S sin(∆φ)
0 C S(1−cos(∆φ)) S2 +C 2 cos(∆φ) C sin(∆φ)
0 S sin(∆φ) −C sin(∆φ) cos(∆φ)

 , (A.1)

where C = cos(2θ) and S = sin(2θ).

• Mueller matrix of linear polarizer expressed in terms of absorption coefficients
along x and y direction (Collett, 2005):

MLP (px , py ) = 1

2


p2

x +p2
y p2

x −p2
y 0 0

p2
x −p2

y p2
x +p2

y 0 0
0 0 2px py 0
0 0 0 2px py

 , (A.2)

where px,y ∈ [0,1].

• Ideal linear polarizer (LP) with the transmission axis oriented along the x−axis
(px = 1, py = 0, θ =0◦):

MLP (0) = 1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 . (A.3)

• Ideal linear polarizer (LP) with the transmission axis oriented along the y−axis
(px = 0, py = 1, θ =90◦):

MLP (90) = 1

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 . (A.4)

• Mueller matrix of a rotator (angle of rotation θ):

MR (θ) =


1 0 0 0
0 cos(2θ) sin(2θ) 0
0 −sin(2θ) cos(2θ) 0
0 0 0 1

 . (A.5)
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• Linear polarizer oriented at an angle θ with respect to the x−axis:

MLP (θ) = MR (−θ) ·MLP (0) ·MR (θ) =

= 1

2


1 cos(2θ) sin(2θ) 0

cos(2θ) cos2(2θ) cos(2θ)sin(2θ) 0
sin(2θ) cos(2θ)sin(2θ) sin2(2θ) 0

0 0 0 0

 . (A.6)

• Linear polarizer oriented at θ =45◦ with respect to the x−axis:

MLP (45) = 1

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 . (A.7)

• Linear polarizer oriented at θ =135◦ with respect to the x−axis:

MLP (45) = 1

2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 . (A.8)

• Quarter-wave plate (∆φ= π
2 ), fast axis horizontal (θ = 0):

MQW P (0) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 . (A.9)

• Quarter-wave plate, fast axis vertical (θ =90◦):

MQW P (90) =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 . (A.10)

• Quarter-wave plate, arbitrary fast axis orientation:

MQW P (θ) =


1 0 0 0
0 C 2 C S −S
0 C S S2 C
0 S −C 0

 , (A.11)

where C = cos(2θ) and S = sin(2θ).
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• Half-wave plate, fast axis horizontal (θ =0◦):

MHW P (0) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (A.12)

• Half-wave plate (∆φ=π), fast axis vertical (θ =90◦):

MHW P (0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (A.13)

• Half-wave plate, arbitrary fast axis orientation::

MHW P (θ) =


1 0 0 0
0 C 2 −S2 2C S 0
0 2C S S2 −C 2 0
0 0 0 −1

 , (A.14)

where C = cos(2θ) and S = sin(2θ).
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A.2. SPEX SPECTROPOLARIMETER
Another example of an instrument for measuring the polarization of light is the Spec-
tropolarimeter for Planetary Exploration (SPEX). Developed in 2008, this instrument evolved
into a version (SPEXone) that was already sent into space as part of NASA’s mission
Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) (NASA, 2024). The instrument can
simultaneously measure the light intensity, the degree of linear polarization, and the ori-
entation of linear polarization.

Because in the literature, the spectral modulation is expressed in terms of the degree
of polarization and angle of polarization, the Stokes components are embedded into
these two terms, and an efficiency and condition number assessment cannot be made
starting from the classical approach. The classical expression of the detected intensity
(see Eq. 2.26) becomes here (Snik et al., 2009):

S(λ) = 1

2
s0(λ) ·

[
1±DoLP (λ)cos

(
2πδ(λ,T )

λ
+2 · AoLP (λ)

)]
, (A.15)

where s0(λ) is the detected intensity, which is related to the intensity of the incoming
light S0(λ) through the transmission term, t (λ),

s0(λ) = S0(λ)t (λ). (A.16)

The sign from the relation (A.15) is dictated by the orientation of the polarizer (see Fig.
A.1), DoLP is the degree of linear polarization, δ(λ,T ) is the combined retardance of the
two multi-order retarders, and AoLP (λ) is the angle of the linear polarization.

The instrument remains a remarkable achievement through its compactness and ro-
bustness, if not by the theoretical estimations of the figures of merit, which remains to
be done.

Figure A.1: SPEX schematic setup (a) and working principle (b). The solid lines from (a) correspond to fast
axes orientations of the various wave plates. Source: (Snik et al., 2009)

The working principle of the instrument is described in Fig. 3.5. It contains a QW P
with the transmission axis vertically oriented, followed by two multi-order wave plates
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oriented at ±45◦ with respect to the QW P . In the end, a polarizing beam splitter se-
lects the two orthogonal components of the resulting polarizations and sends them in
different directions.

Figure A.2: Optical design of SPEX. Figure a) displays the polarimeter components while b) shows the entire
instrument, containing also the spectrometer. Source: (Rietjens et al., 2010)

Figure A.3: Mechanical design of SPEX (left) and housing of the prototype (right). Source:(Rietjens et al., 2010)

Thus, the polarized light arriving from the left side is first impacted by the QW P .
This orientation of the QW P facilitates the conversion between circular and ±45◦ com-
ponents. An incoming vector (S0,S1,S2,S3)T is converted, ideally, into (S0,S1,−S3,S2)T .
Further, the first multi-order wave-plate, oriented at 45◦, will leave the ±45◦ polarization
unaffected and alter the horizontal and vertical polarization by converting the circular
component into a vertical one. This alteration is a function of the phase difference in-
duced by the wave plate. The second multi-order wave plate will do the same thing as the
first one but for the contrary sign. In the end, the polarizing beam splitter will select the
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orthogonal components of the resulting vertical-horizontal linear polarizations modu-
lated by the phase terms introduced by the multi-order weave plates. Thus, the intensity
detected by the two detectors will depend on the S0, S1, and S2 terms of the incoming
light, S1 and S2 being spectrally modulated by the phase terms of the wave plates. To
cover a large field of view, the instrument uses five viewports, oriented at 0◦, ±20◦, and
±50◦.
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A.3. OPTICAL PROPERTIES OF MAGNESIUM FLUORIDE

The theoretical simulations carried out in this thesis and the experimental works were
based on a magnesium fluoride (MgF2) modulator. This is a birefringent crystal with a
long tradition in polarization-related applications, presenting one of the highest bire-
fringence in the spectral range 0.13µm-0.3µm. The variation of the refractive index of
MgF2 with the wavelength can be accurately described by the Sellmeier dispersion for-
mula:

n2 −1 =
3∑

j=1

S jλ
2

λ2 −λ2
j

, (A.17)

where S j and λ j are the Sellmeier coefficients, experimentally determined.

According to the investigations carried out by Dodge (Dodge, 1984), for ordinary and
extraordinary rays we have:

O ray E ray

S1 0.48755108 0.41344023
S2 0.39875031 0.50497499
S3 2.3120353 2.4904862
λ1 0.04338408 0.03684262
λ2 0.09461442 0.09076162
λ3 23.793604 23.771995

Table A.1: Sellmeier coefficients for MgF2 at 19◦C. Source: (Dodge, 1984)

The impact of temperature on the refractive index of MgF2 was documented by (Tropf
and Spie, 1995). Therefore, the Sellmeier coefficients Si varies with the temperature like:

S j =
2∑

n=0
S j ,nT n , j = 1,2,3 (A.18)

The resonance terms λ j are unaffected by the temperature and remain unchanged.
The refractive indices can be computed with the Sellmeier formula using the new values
of S j .

The transmission of MgF2 is about 93% for the range 0.2µm-6µm. The prisms used
by our instrument have a thickness that varies between 1 and 2 mm. From the point of
view of transmission, this fact has no remarkable influence, at least in the visible field.
As we can see in Fig. A.6, for two windows of 5 and 10 mm, a difference in transmis-
sion starts to show only above 5µm. As a result, it is not expected to observe a variation
in transmission along the vertical direction for the separate prisms studied here in the
visible spectral range.
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Figure A.4: Variation of the refractive indices of MgF2 with the wavelength, according to the Sellmeier model
with Dodge parameters.

O ray: 93.2K ≤ T ≤ 473.2K
n S1,n S2,n S3,n

n = 0 0.49948850 0.38552565 2.3187214
n = 1 −2.62692 ·10−5 3.30746 ·10−5 5.38686 ·10−6

n = 2 −4.99110 ·10−8 4.16987 ·10−8 −9.67447 ·10−8

E ray: 93.2K ≤ T ≤ 473.2K
n = 0 0.42381630 0.49372874 2.4974978
n = 1 −1.33435 ·10−5 1.87922 ·10−5 3.03125 ·10−6

n = 2 −7.58613 ·10−8 6.74060 ·10−8 −9.24950 ·10−8

Table A.2: Sellmeier coefficients for ne and no according to Tropf’s model (Tropf and Spie, 1995)
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Figure A.5: Variation of the refractive indices of MgF2 with the temperature, when λ=0.35µm.
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Figure A.6: Transmission of uncoated MgF2 for normal incidence. Data for 0.1µm-0.22µm interval correspond
to a window of 6 mm thickness (Technologies, n.d.), whereas 0.22µm-10µm correspond to two thicknesses, 5
and 10 mm (Thorlabs, n.d.).
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A.4. EXPERIMENTAL SETUP: THE MAIN PROPERTIES OF THE OP-
TICAL COMPONENTS

The optical elements used in the experimental activities were:

• Source of white light

• Collimator (Achromatic doublet AC254-200-A-ML) from Thorlabs

• Filter

• Linear polarizer

• Quarter-wave plate

• Half-wave plate

• Camera

These elements were chosen following a radiometric budget that indicated the flux,
transmission, and sensitivity needs.

THE SOURCE

The light source was laser-driven, model EQ-99X-FC LDLS, from HAMAMATSU.

Figure A.7: The source of white light. Copyright ©2018 Energetiq Technology Inc.

This source is quite stable in the visible domain, delivering a power close to the max-
imum. Most of the measurements conducted in the experimental part used wavelengths
of 515 nm and 633 nm, where the source emits between 80 µW/nm and 95 µW/nm.

Regarding the temporal stability of the source, the tests carried out for a maximum
duration of four hours, using an integration time of 23 ms and a number of five frames,
showed a variation of approximately 0.17% of the signal.
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Figure A.8: Typical output spectrum of the source. Copyright ©2018 Energetiq Technology Inc.
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Figure A.9: Power output between 317 nm-724 nm based on the general output of the source presented in
Fig.A.7.
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THE COLLIMATOR

The collimator used in the optical setup was an achromatic doublet AC254-200-A-ML
from Thorlabs, with a focal length of 200 mm and 1-inch diameter.
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Figure A.10: Transmission and focal shift of the achromatic lens as a function of the wavelength. Data source:
Thorlabs
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FILTERS

Two filters mainly were used during the laboratory tests and measurements: a hard-
coated bandpass filter of central wavelength (CW) 514.5 nm and full width at half maxi-
mum (FWHM) 3nm, and another one of CW 633 nm and FWHM 3nm. The transmission
of these two filters is illustrated in Fig. A.11.
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Figure A.11: Transmission of the two filters used in the experimental setup. Data source: Thorlabs.
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THE LINEAR POLARIZER

The polarizers used here were two ultra-broadband wire grid linear polarizers from Ed-
mund Optics. These components’ transmission and contrast ratios are presented in Fig.
A.12. The polarizers can be on a very large spectral band, spanning from 300 nm to 3200
nm. In addition, they have a large angle of acceptance without depolarization (±20◦).
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Figure A.12: Transmission and contrast ratio of the polarizers. Data source: Edmund Optics.



A.4. EXPERIMENTAL SETUP: THE MAIN PROPERTIES OF THE OPTICAL COMPONENTS 251

THE QUARTER-WAVE PLATE
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Figure A.13: Transmission, retardance, and impact of the angle of incidence for the achromatic QW P . Data
source: Thorlabs.

A critical component of the optical setup was the quarter-wave plate. We used a mounted
achromatic quarter-wave plate (AQWP10M-580) from Thorlabs, with a retardance accu-
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racy of λ/300. The main properties of this optical element are summarized in Fig. A.13.

THE CAMERA

The last component placed in the stream of light was the camera. This was a BFS-U3-
123S6M-C USB 3.1 Blackfly S Monochrome Camera from FLIR. It has a resolution of
12.3 megapixels (4096× 3000), and a pixel size 3.45µm×3.45µm. The sensing area has
14.3 mm×10.35 mm, and the frame rate is 30 fps. The exposure time can be set between
10µs and 30 s.
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Figure A.14: Quantum efficiency and camera spectral response. Data source: http://softwareservices.flir.com

The detector quantum efficiency and spectral response are presented in Fig. A.14.
For the wavelengths used during the laboratory measurements, 514.5 nm and 633 nm,
the quantum efficiency is close to the maximum value.

http://softwareservices.flir.com


BIBLIOGRAPHY

Collett, E. (2005). Field guide to polarization. SPIE. https://doi.org/10.1117/3.626141
Dodge, M. J. (1984). Refractive properties of magnesium fluoride. Applied Optics, 23(12),

1980. https://doi.org/10.1364/AO.23.001980
Hecht, E. (2017). Optics (5 ed). Pearson Education, Inc.
NASA. (2024). SPEXone polarimeter. Retrieved October 6, 2024, from https://pace.ocean

sciences.org/spexone.cgi
Rietjens, J. H. H., Snik, F., Stam, D. M., Smit, J. M., van Harten, G., Keller, C. U., Verlaan,

A. L., & Laan, E. C. (2010). SPEX: THE SPECTROPOLARIMETER FOR PLANE-
TARY EXPLORATION. International Conference on Space Optics. https://doi.org
/10.1117/12.2309231

Snik, F., Karalidi, T., & Keller, C. U. (2009). Spectral modulation for full linear polarimetry.
Applied Optics, 48(7), 1337. https://doi.org/10.1364/AO.48.001337

Technologies, A. (n.d.). Magnesium fluoride: Mgf2 windows and mgf2 lenses. https://ww
w.alkor.net/MgF2.html (accessed: 26.06.2024).

Thorlabs. (n.d.). Magnesium fluoride windows. https://www.thorlabs.com/NewGroup
Page9.cfm?ObjectGroup_ID=5582 (accessed: 26.06.2024).

Tropf, W. J., & Spie, M. (1995). Temperature-dependent refractive index models for BaF2,
CaF2, MgF2, SrF2, LiF, NaF, KCI, ZnS, and ZnSe. Optical Engineering, 34(5),
1369–1373. https://doi.org/10.1117/12.201666

253

https://doi.org/10.1117/3.626141
https://doi.org/10.1364/AO.23.001980
https://pace.oceansciences.org/spexone.cgi
https://pace.oceansciences.org/spexone.cgi
https://doi.org/10.1117/12.2309231
https://doi.org/10.1117/12.2309231
https://doi.org/10.1364/AO.48.001337
https://www.alkor.net/MgF2.html
https://www.alkor.net/MgF2.html
https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=5582
https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=5582
https://doi.org/10.1117/12.201666




ACKNOWLEDGEMENTS

This work would not have been possible without continuous support from my family,
promotors, supervisor, and colleagues. It was a complex course that navigated count-
less obstacles that were not among the easiest. The financing difficulties we faced at
the beginning of the activity, the outbreak of the COVID-19 pandemic that reshaped our
collaboration, and the transfer from the University of Liege to the Delft University of
Technology (TU Delft) are just a few examples of these obstacles.

First, my gratitude goes to my promotor, Pieter Visser. He is the one who allowed me
to continue the PhD project at TU Delft and to bring this research to a successful end.
His help came at a critical moment when the continuation of the entire activity was in
doubt due to financing difficulties.

The guidance my promotor, Jerome Loicq, provided, which allowed me to find a way
through all these obstacles, is invaluable. Words can hardly express the gratitude I have
for him. He never stopped believing in this project and the importance of our results,
and he spared no effort to overcome the difficulties encountered. In addition, his clear
vision of our project and constructive spirit helped me find a way forward when all the
information became overwhelming or, on the contrary, seemed to lead to a dead end.

I have the same gratitude for my co-promotor, Pierre Piron. His tireless attention
to detail, his experimental skills, and his competencies in polarimetry have helped me
countless times to advance in research and practical implementation.

I want to thank Serge Habraken, my optics professor during college and master’s,
who, for a short time, also played the role of the promotor for the PhD. He is the one who
opened my appetite for optics and space engineering and who offered me all the support
during the period of the activity carried out within the Centre Spatial de Liège. Without
him, none of this would have been possible.

I also have complete gratitude for the support, interest, and openness shown by TNO,
our closest collaborator on this adventure. Their willingness to invest considerably fi-
nancially and in person to transform our ideas into reality is a wonderful reason for joy
and satisfaction. It is the first proof that our work matters and can be helpful. At the
same time, it is the first door open to countless opportunities for learning, discovery,
and innovation in spectropolarimetry.

In addition, I would like to thank my good friend, Colin Dandumont. Our small daily
discussions from the period of activity at the Space Center in Liège brought an extra
charm to my PhD, which I will always miss.

Last but not least, I am grateful to my wife for all her support and understanding. She
has been by my side continuously all these years, putting behind me, most of the time,
the difficulties of raising two small children. She was also a tireless listener. Countless
times, she listened to all the arguments behind this research’s most complex and arid
calculations and not a few times did she help me identify the right path to follow.

255





CURRICULUM VITÆ

Bogdan VASILESCU

Bogdan Vasilescu was born in Craiova, Romania, in 1981. He was passionate about
as much knowledge as possible, so he graduated for the first time from the Faculty of
Philosophy of Babes, -Bolyai University (Cluj-Napoca, Romania) in 2004.

After several years of mass media and communication activity, he returned to his
first love: Physics. He graduated from the Faculty of Physics of the University of Liège
(Belgium) in 2019. Later, he followed a master’s degree in Space Sciences at the same
university.

Attracted by optics and its applications in space, he started a PhD in February 2019
at the University of Liège/Liège Space Center.

In parallel with the doctoral research, between April 2021 and July 2022, he also
worked as an assistant in optics for the Space Center in Lig̀e. It was an excellent op-
portunity to come into close contact with the world of space instruments. He was thus
involved in the calibration of optical instruments (e.g., the SALTO project) and the anal-
ysis of key data parameters (KDP) for the 3MI instrument, part of ESA’s Fluorescence
Explorer (FLEX) project.

In July 2022, he transferred his PhD work to Delft University of Technology (TU Delft).
In September 2024, he started a postdoctoral position at TU Delft, intending to refine the
new polarization measurement method validated during his PhD.

257





LIST OF PUBLICATIONS

JOURNAL PAPERS
2. Vasilescu, B., Piron, P., Loicq, J., Performance analysis of a spectropolarimeter em-

ploying a continuous phase variation, Optics Express, 31.13 (June.19, 2023), 10.136
4/OE.487335.

1. Vasilescu, B., Nazé, Loicq, J., Solution uniqueness and noise impact in a static
spectropolarimeter based on birefringent prisms for full Stokes parameter retrieval,
Journal of Astronomical Telescopes, Instruments, and Systems, 6.2 (Apr.23, 2020),
10.1117/1.JATIS.6.2.028001.

CONFERENCE PAPAERS
3. Vasilescu, B., Piron, P., Veenstra, A., Snel, R., Di Iorio, E., Ouellet, M., Chavet, Q.,

Ferrario, I., Loicq, J., Experimental validation of a full Stokes spectropolarimeter for
space applications, Space Telescopes and Instrumentation 2024: Optical, Infrared,
and Millimeter Wave (Proceedings of SPIE; Vol. 13092), Ed. by L. E. Coyle, S. Mat-
suura, M. D. Perrin, 10.1117/12.3018645.

2. Vasilescu, B., Nazé, Y., Rauw, G, Kintziger, C., Loicq, J., Development of a space
spectropolarimeter for full Stokes parameters retrieval, Proc. SPIE 11852, Interna-
tional Conference on Space Optics — ICSO 2020, 118522J (11 June 2021), 10.1117/
12.2599427.

1. Vasilescu, B., Nazé, Loicq, J., Development of a space spectropolarimeter for full
Stokes parameters retrieval, Proc. SPIE 11451, Advances in Optical and Mechanical
Technologies for Telescopes and Instrumentation IV, 114513V (13 December 2020),
10.1117/12.2562102.

ADDITIONAL PUBLICATIONS
1. Snel, R.C.,Vasilescu, B., Di Iorio, E., Piron, P., Loicq, J., Ferrario, I., Silvestri, F., Spec-

tropolarimetry for space object identification, Electro-optical and Infrared Systems:
Technology and Applications XX, SPIE, 2023 ISBN: 978-1-5106-6703-7.

259

10.1364/OE.487335
10.1364/OE.487335
10.1117/1.JATIS.6.2.028001
10.1117/12.3018645
10.1117/12.2599427
10.1117/12.2599427
10.1117/12.2562102

	Summary
	Samenvatting
	Nomenclature
	Introduction
	I Part I
	Polarizing processes and the polarization usage
	Sources of polarization
	Rayleigh scattering
	Thomson scattering
	Mie scattering
	Zeeman effect
	Hanle effect

	Polarization in astronomy
	Other applications

	Description of polarization
	The polarization of light
	The Poincaré representation

	Birefringent materials
	Mueller calculus
	Physical interpretation of the Mueller matrix
	Mueller matrices of ideal components
	Measuring the Mueller matrix of an arbitrary element

	Fresnel terms

	Methods for the measurement of polarization
	Measuring the polarization
	The assessment of the modulation scheme
	The concept of efficiency of the modulation
	Condition number and Equally weighted variance

	Examples of instruments
	DOAP spectropolarimeter
	SFSIP imaging spectropolarimeter

	Spectropolarimetry and imaging spectropolarimetry
	Integral Field Spectrometry with Lenslet array (IFS-L)
	Integral Field Spectrometry with Slicing Mirrors (IFS-M)

	Polarimetry with metasurfaces

	A new design of spectropolarimeter
	The starting point
	Towards a compact structure
	The working principle
	Retrieving the polarization of the incoming light
	Sampling criteria
	Towards Imaging Spectropolarimetry

	The uniqueness of the solution and the behavior in noisy conditions
	The uniqueness of the solution: the rank of the modulation matrix
	The uniqueness of the solution: the Wronskian of the modulation functions
	The orthogonality of the modulation functions
	Conclusion

	The analysis of the modulation scheme
	Optimal configurations
	Identifying the optimal configurations
	Conclusions

	Preliminary confirmation of the concept
	Compatibility of the models
	Case study: the identification of space objects
	Conclusions


	II Part II
	Instrumental setup and first light
	Fabrication of the modulator
	Experimental objectives and the basic optical setup

	Characterization of the source
	General procedure for the polarimetric part
	A step forward: TNO's implementation of the concept

	Characterization of the modulator
	Method 1: The fit of the intensity ratio
	Method 2: The Mueller matrix decomposition
	Test of the method 1
	Experimental results for Prims 1
	Experimental results for Prims 3
	Verification of the results
	Test for the Mueller matrix decomposition
	Mueller matrix decomposition: prism 1
	Characterization of the Modulator

	Instrumental matrix determination 
	Method I: Singular value decomposition
	Assessing the incoming Stokes vectors
	Method II: Opposed states of polarization

	Conclusions and Perspectives
	Next steps

	Addendum
	Mueller calculus
	SPEX Spectropolarimeter
	Optical properties of Magnesium Fluoride
	Experimental setup: The main properties of the optical components

	Acknowledgements
	Curriculum Vitæ
	List of Publications


