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Abstract
Key message  Despite showing a cost-effective potential for quantifying vertical forest structure, the GEDI and ICE-
Sat-2 satellite LiDAR missions fall short of the data accuracy standards required by tree- and stand-level forest 
inventories.
Abstract  Tree and stand heights are key inventory variables in forestry, but measuring them manually is time-consuming 
for large forestlands. For that reason, researchers have traditionally used terrestrial and aerial remote sensing systems to 
retrieve forest height information. Recent developments in sensor technology have made it possible for spaceborne LiDAR 
systems to collect height data. However, there is still a knowledge gap regarding the utility and reliability of these data in 
varying forest structures. The present study aims to assess the accuracies of dominant stand heights retrieved by GEDI 
and ICESat-2 satellites. To that end, we used stand-type maps and field-measured inventory data from forest management 
plans as references. Additionally, we developed convolutional neural network (CNN) models to improve the data accu-
racy of raw LiDAR metrics. The results showed that GEDI generally underestimated dominant heights (RMSE = 3.06 m, 
%RMSE = 21.80%), whereas ICESat-2 overestimated them (RMSE = 4.02 m, %RMSE = 30.76%). Accuracy decreased further 
as the slope increased, particularly for ICESat-2 data. Nonetheless, using CNN models, we improved estimation accuracies to 
some extent (%RMSEs = 20.12% and 19.75% for GEDI and ICESat-2). In terms of forest structure, GEDI performed better 
in fully-covered stands than in sparsely-covered forests. This is attributable to the smaller height differences between canopy 
tops in dense forest conditions. ICESat-2, on the other hand, performed better in thin forests (DBH < 20 cm) than in large-
girth and mature stands of Crimean pine. We conclude that GEDI and ICESat-2 missions, particularly in hilly landscapes, 
rarely achieve the standards needed in stand-level forest inventories when used alone.

Keywords  Light detection and ranging (LiDAR) · Global ecosystem dynamics investigation (GEDI) · Ice cloud and land 
elevation satellite-2 (ICESat-2) · Height metrics · Canopy height model · Convolutional neural network (CNN)
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ATL08	� Land and vegetation height product of 
ICESat-2

GDF	� Turkish general directorate of forest
GIS	� Geographic information systems

Introduction

Stand height is one of the essential parameters in forest 
inventories. It is needed to characterize the vertical struc-
ture of forest ecosystems to estimate aboveground bio-
mass, carbon stocks, stand volume, site index, and many 
other silvicultural or biodiversity-related metrics (Dun-
canson et al. 2020; Özkal et al. 2021; Potapov et al. 2021; 
Liu et al. 2022). The future growth of the forest may also 
be simulated at the stand or landscape level based on the 
height information when other inventory parameters are 
known (Laar and Akça 2007). Thus, the long-term sus-
tainability of forests and their ecosystem services can 
be ensured with more accurate and up-to-date data for 
informed decision-making (Bettinger et al. 2009; Baskent 
2020; Biber et al. 2020).

In conventional forest inventories, stand height is calcu-
lated based on in situ tree height measurements performed 
using mechanical or electronic hypsometers (e.g. Blume-
Leiss, Vertex). Many stand height calculation approaches 
exist in the literature, including the arithmetic mean height 
(ħ), Lorey’s mean height (hL; mean height weighted by 
trees’ basal area), and dominant height (h100) (Laar and 
Akça 2007). While the ħ averages the height values of all 
trees in a sample plot, the h100 averages only dominant 
trees’ heights, taking 100 trees per ha. hL, on the other 
hand, calculates the mean height weighting by individual 
trees’ basal area. Regardless of which approach is used, 
height measurement in forest environments is a daunting 
task by manual means (Hyyppa et al. 2020a). Moreover, it 
may have systematic or random errors stemming from the 
operator, sampling schemes, measurement devices, and/or 
terrain slope (Sibona et al. 2017; Ganz et al. 2019; Pers-
son and Stahl 2020). Therefore, for practical reasons, tree 
heights are often estimated by regression models (a.k.a. 
h–d models or height curves) based on the relationship 
between diameter-at-breast height (DBH) and height in 
many countries (Vidal et  al. 2016; Bolat et  al. 2022). 
These regression models also have estimation errors due 
to the embedded statistical assumptions (Laar and Akça 
2007; Persson and Stahl 2020) and improper use across 
different eco-regions (Bolat et al. 2022; Seki and Sakici 
2022a; 2022b). That is why the permissible error limit 
for tree height is more flexible than other forest inven-
tory parameters, such as the area coverage of stands. For 
example, an error rate of 15% is permissible for tree height 

measurements, while it is only 5% for the sub-compart-
ment area (Qiu et al. 2018).

Given the limitations mentioned above, researchers try 
to measure or model the stand height using active remote 
sensing systems. Light Detection and Ranging (LiDAR, 
a.k.a. laser scanning − LS) is one of the active systems 
measuring the distance of objects or surfaces from the 
sensor using laser pulses. LiDAR systems may be clas-
sified in different ways according to the laser altimetry 
technique (i.e. discrete return, full-waveform, photon-
counting) or their platforms (airborne LS/ALS, terrestrial 
LS/TLS, mobile LS/MLS, drone LS/DLS, spaceborne LS/
SLS) (Wang and Fang 2020). Each system has its unique 
advantages and disadvantages for specific fields of appli-
cation. Discrete return systems, for example, detect a few 
returns from each short pulse during the flight of the sys-
tem. The discrete returned peak points are recorded in 
the waveform, which may limit the estimation of actual 
canopy height. By contrast, full-waveform systems record 
the whole energy returning at equal intervals. Thus, they 
can record many returns yielding a more detailed repre-
sentation of forests’ vertical structure (Salas 2021). The 
photon-counting sensors, on the other hand, are able to 
collect energy with individual photon-sensitive detectors 
(Marcus et al. 2017).

In the forestry field, there is numerous research con-
ducted with different LiDAR platforms. Kanja et al. (2019), 
for example, modeled stand height using ALS-derived met-
rics in a Mediterranean forest dominated by Calabrian pine 
(Pinus brutia (Ten.)). Their multiple regression models 
explained 73% and 80% of the variations in the dominant 
and mean heights, respectively. The relative RMSEs of 
the models were about 15% (ca. 2 m) which were within 
the permissible error limits for most forest inventory mis-
sions (Qiu et al. 2018; Hyyppa et al. 2020a). However, ALS 
data provision is expensive, especially for undeveloped and 
developing nations, because it is captured via overlapped 
flight lines in the areas of interest (Sefercik et al. 2021). 
Alternatively, transects are used for sampling the popula-
tion in question (Coops et al. 2021). Therefore its spatial 
coverage is often limited, like DLS applications (Ganz 
et al. 2019). In addition, the insufficient sampling density 
of ALS point clouds might be another limitation in some 
cases. The sparse point clouds used by Kanja et al. (2019) 
had a sampling density of 8–9 points/m2, and they stated 
that the height models could be improved significantly by 
increasing point density. In this sense, close-range LS pro-
vides a clear advantage over ALS (Sefercik et al. 2021). In 
a handheld MLS-based study by Vatandaşlar and Zeybek 
(2021), more than 3000 points fell per m2 in a mixed forest 
plot. Using an MLS system, dominant stand heights can be 
directly captured without modeling with a bias of less than 
1 m (3.4%) at the forest level (Vatandaşlar et al. 2022). If 
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static TLS systems are used, the bias decreases even more 
(Cabo et al. 2018; Liang et al. 2019). Nevertheless, TLS of 
a forest may not be the best approach due to the occlusion 
problem and the device’s weight (Vatandaşlar and Zeybek 
2020, 2021). Thus, one of the most reliable and practical 
approaches for the dominant height estimation today seems 
to be the use of Simultaneous Localization and Mapping 
(SLAM)-based MLS (Vatandaşlar et al. 2022; Hyyppa et al. 
2020a, b), sometimes added-on to drones (Liang et al. 2019; 
Hyyppa et al. 2021).

As airborne (ALS, DLS) and terrestrial platforms (TLS, 
MLS) provide only local-based data for a limited area 
(Coops et  al. 2021), new generation SLS systems have 
been launched to fill the need for forest monitoring glob-
ally. SLS differs from other LS instruments in the sense 
of its mission because they are specifically designed for 
global monitoring purposes. SLS also uses full-waveform 
or photon-counting techniques, while discrete return and 
full-waveform are common in conventional ALS. Regarding 
resolution, footprint size varies between 12 and 25 m in SLS 
systems. Meanwhile, it ranges from 0.1 m to 3 m for small 
footprints, and 10 m to 30 m for large footprints of ALS 
(Beland et al. 2019). NASA’s Global Ecosystem Dynamics 
Investigation (GEDI) is the first full-waveform SLS system 
that specifically collects data on forest structure (Duncan-
son et al. 2020). Combining the GEDI and Landsat data, a 
30-m-resolution forest canopy height map of the world has 
been generated for 2019. Taking the global validation data 
and available ALS resources as the reference, the RMSE 
and R2 values of the map were found as about 6 m and 0.60, 
respectively (Potapov et al. 2021). On the other hand, Liu 
et al. (2021) assessed the accuracies of GEDI and ICESat-2 
height metrics using ALS data as a reference. They revealed 
that GEDI outperformed ICESat-2 for canopy height esti-
mations in forestlands of the US. In another study, Liu et al. 
(2022) integrated GEDI, ICESat-2, and Sentinel-2 data to 
produce China’s national canopy height map. They applied 
the neural network (NN)-guided interpolation method and 
estimated canopy height with RMSEs between 4.88 m and 
5.32 m and R2 values between 0.55 and 0.60 using three 
validation datasets. Fayad et al. (2021a) also applied a con-
volutional NN-based approach to GEDI data to estimate the 
canopy height of Eucalyptus stands in Brazil. Different sce-
narios showed that the RMSE values ranged from 1.54 m 
to 1.94 m, with R2 values varying between 0.86 and 0.91.

Another mission of NASA is Ice, Cloud, and Land Eleva-
tion Satellite-2 (ICESat-2), launched in 2018. It is a photon-
counting laser altimeter focusing on Polar Regions, glaciers, 
and seas (Markus et al. 2017). ICESat-2 is the continuation 
of its predecessor, the Geoscience Laser Altimeter System 
(GLAS) on the ICESat, which was the first spaceborne laser 
altimeter operated between 2003 and 2009. It also focused 
on ice thickness estimation and monitoring of the Arctic 

Ocean and Antarctic ice sheets (Neuenschwander et  al. 
2020; Markus et al. 2017). Studies on ICESat and ICESat-2 
showed that they could provide consistent forest biomass and 
canopy height estimates, as well. Using ICESat data, Lef-
sky et al. (2005) estimated biomass (R2 = 73%) and canopy 
height (RMSE <  ~ 12.7 m) over Brazil and the US. Helmer 
et al. (2009), on the other hand, combined ICESat and Land-
sat data to estimate the accumulation rates of forest biomass 
in Brazil. Recent studies have also shown the performance 
of ICESat-2 data in forest research. For instance, Sun et al. 
(2020) used both Landsat and ICESat missions and moni-
tored the change in canopy height over China from 2005 
to 2019. Combining ICESat-2 and Sentinel-1 data, Nandy 
et al. (2021) modeled canopy height and aboveground bio-
mass with R2 values of 0.84 and 0.83, respectively. Neuen-
schwander and Magruder (2019) studied the boreal forests 
of Finland and estimated canopy heights with an RMSE of 
3.2 m using ALS data as a reference. They stated that the 
4-year time difference between the ICESat-2 and ALS data 
might negatively affect the estimation accuracy. Finally, 
Neuenschwander et al. (2020) compared canopy heights 
derived from ICESat and ALS data over the boreal forests 
of Finland. They concluded that RMSE reaches up to 2.7 m 
during winter when the terrain is covered with snow. They 
also stated that forest stands whose canopy cover ratios were 
between 40 and 85% yielded the most accurate estimation 
in their study.

As seen, previous studies were conducted at the global 
(Potapov et al. 2021), national (Liu et al. 2022), or regional 
(Duncanson et al. 2020; Dorado-Roda et al. 2021) levels. 
That is why their estimation accuracies rarely satisfy the 
needs of forest-stand inventories, mostly conducted at the 
landscape level. Qui et al. (2018) state that the maximum 
permissible error for tree height measurements is 15% in 
operative forest management. On the other hand, published 
studies generally use ALS as reference data, which may 
cause additional errors in height estimates. From a forest 
management perspective, there is a need to assess the accu-
racy of satellite-based height data using field-based refer-
ence measurements. Minimizing the errors of the height data 
by advanced modeling techniques, e.g. machine learning, 
deep learning and artificial intelligence, is also necessary 
for properly characterizing forest ecosystems. With the 
increase in new data sources, the amount of data collected 
has also increased considerably. In this context, systems 
similar to nerve neurons in the human brain and computer-
controlled or unsupervised deep learning methods have 
been developed. The relationship between the remote sens-
ing data and field-measured forest attributes can be built 
by methods including conventional ones, such as linear 
regression and multiple regression; or up-to-date machine 
learning algorithms, such as random forest, artificial neural 
network, and convolutional neural network (CNN) (Coops 
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et al. 2021; Fayad et al. 2021b; Özkal et al. 2021; Colkesen 
et al. 2022; Ercanli et al. 2022). Amongst them, the supe-
rior performance of CNN has been shown by researchers 
for forest height estimates (Narin et al. 2022), forest cover 
mapping (Ferreira et al. 2021), and canopy modeling (Shah 
et al. 2020). CNN is a sort of deep learning approach, having 
four layers (input, convolution, pooling, and fully-connected 
layers) within its architecture. Thus, it is capable of process-
ing one-, two-, and three-dimensional data in the forms of 
signal, image, or video (Li et al. 2018). Here, we use one-
dimensional CNN architecture, as will be illustrated in the 
Methodology section in detail.

The main objective of the present study is to estimate 
stands’ dominant heights using SLS systems at the landscape 
level. Specifically, we focus on (1) assessing the accuracy 
of GEDI and ICESat-2 data by taking the field-measured 
heights as a reference, (2) determining which stand types 
achieve the best estimation results, and (3) developing a 
CNN model for minimizing error rates in dominant height 
estimates. This is one of the first studies focusing on a direct 
comparison of forest stand height information retrieved 
from the GEDI and ICESat-2 sensors. Moreover, the verti-
cal structure of Crimean pine (Pinus nigra) forests will be 
evaluated through SLS data for the first time. The findings 
of this study would be useful to forest managers and timber 
surveyors in their regular forestry operations.

Material and methods

Study area

The study area is located in the central Anatolian region of 
Turkey (Fig. 1) and consists of two state forest enterprises, 
i.e. Hocalar and Sinanpaşa. Nearly one-third of it is forested, 
covering a total area of 145,649 ha. Less than half of the for-
est (20,906 ha) is characterized by productive stands whose 
canopy cover ratio is > 10%. The remainder of the forest 
(28,974 ha) is degraded due to the past anthropogenic pres-
sure and unfavorable climate condition in this region (GDF 
2015a, b). Turkey’s macro climate map shows the region is 
in the Central-West Anatolian climate zone (Türkeş 2010). 
The average annual precipitation total and air temperature 
are reported as 466 mm and 12 ℃, respectively (TMS 2015). 
While the number of frost days is 95 in a year, the minimum 
and maximum air temperatures are −  22 ℃ and 39.8 ℃. That 
is why the forest is dominated by Crimean pine (Pinus nigra 
J.F. Arnold subsp. pallasiana (Lamb.) Holmboe), a common 
tree species resistant to natural disturbances (Seki and Sakici 
2022a). It is followed by oak (Quercus sp.), juniper (Junipe-
rus comminus, J. oxycedrus), and Lebanese cedar (Cedrus 
libani) species. Productive forests are mostly covered by 
pure, even-aged stands of Crimean pine at different devel-
opmental stages. Given the forest management plans, the site 

Fig. 1   Location of the study 
area, field-measured plots, and 
LiDAR data points with main 
land use & land covers
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quality class changes from moderate (3rd bonitet class) to 
poor (5th bonitet class). There is no high-quality site in the 
study area. While the altitude is between 920 and 1940 m 
asl, the average slope is 25% for the entire area. The average 
slope increases to 35% in forestlands. The steep forested 
slopes can be seen in the hillshade map shown in Fig. 1.

Satellite data

Different data sets from two satellite missions were 
employed in the current investigation. The first mission was 
GEDI and the second one was ICESat-2. GEDI launched 
its mission in late 2018 with the main goal of global forest 
monitoring. It has a full-waveform laser altimeter system 
mounted on the International Space Station (ISS) (Potapov 
et al. 2021). Between latitudes 51.6° North and 51.6° South, 
the system scatters laser beams in the range of 1064 nm (the 
electromagnetic spectrum’s near-infrared region). The World 
Geodetic System 1984 (WGS84) coordinate system is used 
by GEDI to collect data (Dubayah et al. 2020).

GEDI data were downloaded from http://​www.​daac.​
ornl.​gov and processed in R (R Core Team 2020) using the 
rGEDI package (Silva et al. 2020). Within the scope of this 
study, all data coded as “Quality_flag 1” were used because 
a quality flag value of zero means that such data was of 
insufficient quality. First, all available data were downloaded 
for the year 2019 (July 4, July 13, Sep. 7, Sep. 16, Sep. 29, 
Oct. 11) but the data dated Sep.16 was not used since its 
quality flag was zero. Thus, a total of 2344 data points were 
analyzed for GEDI. During the study, only the relative height 
values at the 95th percentile (RH95) metric were evaluated. 
We applied no additional filtering because the number of 
data points was limited for our area of investigation.

The ICESat-2 satellite provided the second data source. It 
began collecting data in 2018 as a follow-up to the ICESat/
GLAS satellite. A photon-counting laser altimeter system 
with a beam wavelength of 532 nm (the electromagnetic 
spectrum’s green region) is used in the ICESat-2. The sys-
tem’s temporal resolution is approximately three months. 
It gathers data between the latitudes of 88° North and 88° 
South (Neuenschwander and Magruder 2019).

The Advanced Topographic Laser Altimeter System 
(ATLAS) instrument aboard ICESat-2 generates a variety of 
products for various missions, including global geolocated 
photon data product (ATL03), land ice elevation (ATL06), 
sea ice elevation (ATL07), land and vegetation height 
product (ATL08), atmosphere (ATL09), ocean elevation 
(ATL12), and inland water height (ATL13) (Marcus et al. 
2017). The ATL08 product (Neuenschwander et al. 2020) 
of the ICESat-2 was downloaded for this study on http://​
www.​opena​ltime​try.​org (Khalse et al. 2020). This product 
collects elevation data for land and vegetation. Covering the 
year 2019 (Feb. 28, Aug. 1, Aug. 29, Oct. 29, and Oct. 30), a 
total of 833 data points were used from ICESat-2. However, 
only the “h_canopy” metric was evaluated because other 
metrics were outside the scope of this study.

Methodology

In situ measurements and height calculations

In situ measurements were based on forest inventory data 
included in the management plans of the two forest enter-
prises (GDF 2015a, b). Forest inventory surveys were per-
formed by forest professionals from the Turkish General 
Directorate of Forest (GDF). In order to renew the for-
est management plans, sample plots were systematically 
distributed to forestland in GIS. The size of the circular 
plots were 400 m2, 600 m2 and 800 m2 for fully-covered 
(canopy cover > 70%), medium-covered (40% − 70%) and 
loosely-covered (10% − 40%) stands, respectively. The dis-
tance between the plot centers was roughly 300 m × 300 m. 
Each plot was visited during the summer of 2014. All trees 
with DBH equal to or more than 8 cm were measured and 
recorded in the plots. Other measured/identified inventory 
parameters were as follows: tree species, age and heights 
of dominant trees, canopy cover ratio, timber quality, and 
forest health.

Tree heights were measured from the dominant 
trees using an electronic hypsometer having a sensitiv-
ity of ± 1 cm. The age of the dominant trees was also 

Table 1   The age and site class 
information for natural Crimean 
pine forests of Turkey (Kalıpsız 
1963)

a The standard (a.k.a. base) age is 100 years for Turkey’s growth and yield tables

Age class Class boundaries Midpoint of 
the age class

Site quality class Dominant height 
at standard agea

Dominant height 
at the class mid-
point

1 0–20 years 10-year-old 1 (very high) 30–34 m 32 m
2 21–40 years 30-year-old 2 (high) 25–29 m 27 m
3 41–60 years 50-year-old 3 (moderate) 20–24 m 22 m
4 61–80 years 70-year-old 4 (low) 15–19 m 17 m
– – – 5 (very low) 10–14 m 12 m

http://www.daac.ornl.gov
http://www.daac.ornl.gov
http://www.openaltimetry.org
http://www.openaltimetry.org
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determined by counting annual rings collected with a 
Haglöf increment borer. Thus, site quality (a.k.a. bonitet) 
classes were identified for each plot based on Crimean 
pine’s national site index table (Kalıpsız 1963). Further 
details on the field methods used for height measurement 
in these forests may be found in Laar and Akça (2007).

Since forest surveys were carried out in 2014, we 
updated the inventory data measured from 1242 sample 
plots across two state forest enterprises. However, only 
633 of them overlapped with the LiDAR data points and 
this subset was used in the analyses. Adding five years 
to each, stand ages were forwarded to late 2019, the data 
acquisition year of the satellites. Accordingly, measured 
tree heights were recalculated given the Crimean pine 
growth and site index tables generated by Kalıpsız (1963). 
Stand height and age class information for the Crimean 
pine forests in Turkey can be seen in Table 1.

Growth and yield models are useful tools in forest man-
agement for developing predictions of future states of stands. 
However, they generally require several assumptions to sim-
plify and track the problem (Bettinger et al. 2009). Thus, we 
used some assumptions suggesting that forest stands undis-
turbedly develop in a controlled environment, which is a 
rare situation in a real forest. Table 2 specifies the assump-
tions made when updating stand ages based on the site index 
model (Kalıpsız 1963; Table 1). In Table 2, the readers can 
also see why those assumptions are necessary and whether 
they are valid for the case study areas.

GIS analysis

First, the updated stand heights were entered into the attrib-
ute tables of the forest cover maps in the GIS environment. 
Then, the maps of the two forest enterprises were combined 
into one GIS layer. The new layer was spatially joined to 
LiDAR data points based on the intersect rule using the 
“Join One to Many” command in ArcGIS 10.2 (ESRI 2012).

In a next step, the “Target Field ID” column was summa-
rized by averaging the heights of the LiDAR data points that 
fell into each polygon. Here, the polygons represent stand 
types in the landscape. Each stand type has unique forest 
inventory parameters, such as species mix, dominant height, 
age & site classes, canopy cover ratio, and developmental 
stage.

Finally, the GIS summary table was transferred to an 
Excel sheet for further data analysis. All analyses were sepa-
rately performed for GEDI and ICESat-2 data sets. Thus, it 
could be possible to assess the dominant height estimates 
of the two satellite systems at the stand level. Table 3 sum-
marizes how many samples we have for different data types.
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Modeling (CNN)

We developed convolutional neural network (CNN) mod-
els based on the strong relationship between field-measured 
and satellite-derived height values to estimate the dominant 
heights of stands more accurately. To generate CNN mod-
els, a one-dimensional network was preferred. Because our 
data points were limited, they were not classified during the 
model development stage based on slope, species mix, and 
canopy cover classes. Namely, the GEDI and ICESat-2 mod-
els were developed for all stands (i.e., unclassified data). 
However, we used the K-fold cross-validation technique 
repeated four times.

The CNN models were developed using the R program-
ming language (URL1). We used keras (Allaire and Chollet 
2022) and caret (Kuhn 2022) packages for the model devel-
opment, whose architecture was depicted in Fig. 2. The input 
layer in the figure included both field-measured and satellite-
derived dominant height data. The filter and activation func-
tions in the convolutional layer were set to “256” and “relu”, 
respectively. The dense layer was divided into two levels. In 
the first level, the units and activation functions were “1024” 
and “relu”. In the second level, the same parameters were “1” 

and “linear”. Finally, we ran the model with a large number of 
epochs and batches of 250 and 16, respectively.

Accuracy assessment

We assumed the updated in situ measurements were true and 
used them as the reference dataset for evaluation. Then, the 
accuracy of GEDI- and ICESat-derived dominant heights 
estimated by models were assessed based on the root mean 
squared error (RMSE), relative RMSE (%RMSE), bias, and 
Pearson’s correlation coefficient (r) statistics. They were cal-
culated using the following formulas:

(1)RMSE =

√

1

n

∑n

i=1

(

yact
i

− ycal
i

)

(2)%RMSE =

√

100 ∗
1

n

∑n

i=1

(

yact
i

− ycal
i

)

(3)bias =
(

ycal
i

− yact
i

)

Table 3   Summary table for the 
number of data collected and 
used in the assessment

a While the values outside the parenthesis are the total number of data that fell in the entire study area, the 
values in parenthesis show the number of data used in the analyses
b Not applicable because GEDI and ICESat-2 points are not overlapping with ground sample plots exactly
c Not applicable because some of the forest stands are the same in GEDI and ICESat-2 coverages

GEDI RH95 metric ICESat-2 ATL08 
(h_canopy metric)

Grand total GIS data type

The number of LiDAR data 5510 (2344) a 1848 (833) 7358 (3177) Point
The number of sample plots N/A b N/A b 1242 (633) Point
The number of forest stands 806 (249) 320 (116) N/Ac Polygon

Fig. 2   The model architecture 
for the CNN developed. Both 
GEDI and ICESat-2 models are 
composed of one convolution, 
one flatten, one output, and two 
dense layers
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where n is the number of samples; yact
i

 is the field-measured 
height; ycal

i
 is the estimated height by satellite missions or 

the CNN models; yact
i

 and ycal
i

 are the average field-measured 
and estimated height values, respectively.

Error statistics were separately calculated for GEDI and 
ICESat-2 using their whole datasets (all stands). To under-
stand the potential error sources, we also classified the 
data given several stand types and recalculated the same 
statistics. The assessed stand types and their characteris-
tics can be seen in Table 4.

Results

GEDI data

The residuals for satellite-based dominant heights were 
shown as box plots in Fig.  3. Considering all stands 
together (N = 249), a bias of − 0.55 m was seen between 

(4)r =

∑

�

yact
i

− yact
i

��

ycal
i

− ycal
i

�

�

∑

�

yact
i

− yact
i

�2�

ycal
i

− ycal
i

�2

in situ measurements and GEDI data (Table 5). When only 
fully covered stands were assessed, the bias decreased 
to −   0.38  m. In contrast, it increased to −   1.20  m for 
sparsely covered stands. Regarding the development stage, 
both thin- (DBH < 20 cm) and large-girth (DBH > 20 cm) 
stands’ heights were underestimated with biases of − 0.58 m 
and − 0.52 m, respectively.

We also assessed the RH95 metric regarding the terrain 
slope and species mix classes (Fig. 3c, d, e). Accordingly, 
a bias of −  0.62 m was found between GEDI and the refer-
ence data for pure stands, and it decreased to −  0.23 m for 
mixed stands. However, it should be noted that the number 
of samples for mixed stands (N = 25) was significantly lower 
than the pure ones (N = 223). Figure 3e also showed that 
the residuals were mostly negative in the box plot. While 
RMSEs were close to each other, the pure stands had smaller 
residuals, 10% lower %RMSE, and a much higher R2 value 
(Table 5). The terrain slope, on the other hand, did not sig-
nificantly affect the accuracy of dominant heights (Fig. 3c). 
Even though RMSE and R2 values were lower for flatter 
areas than steep slopes, their %RMSE values were close to 
each other. Table 5 showed that RMSE and %RMSE for 
unclassified data were 3.06 m and 21.8%, respectively. Other 

Table 4   The definitions for 
stand characteristics used for 
data classification

a Degraded forests (canopy cover < 10%) are excluded from the analysis because they have no reliable field-
measured height data
b As long as the second tree species does not exceed 10% of the total number of trees, it is considered a pure 
forest
c 35% was used as a threshold because it was the mean slope rate of the forestland in the study area

Stand variable Class name Definition # of plots

Canopy cover Fully-covered forest Canopy cover is more than 70% 459
Sparsely-covered forest Canopy cover is between 10 and 70%a 174

Development stage Medium-tree stage Tree DBH is between 20 and 52 cm 360
Thin-tree stage Tree DBH is equal or less than 20 cm 273

Species mixture Mixed forest Stands with more than one tree species 47
Pure forest Stands with only one tree speciesb 586

Terrain slope Forests in flatter areas The slope gradient is less than 35%c 371
Forests on a steep slope The slope gradient is equal or higher than 35% 262

Table 5   Error statistics for satellite-based dominant heights by all stands and different stand types

a While the values before the forward slash ( /) refer to GEDI, the values after the forward slash are for ICESat-2

Error statistics GEDI RH95 / ICESat-2 canopy height metrics

Unclassified 
data
(all stands)

Canopy cover Stand development stage Species mixture Terrain slope

Fully-covered Sparsely-
covered

Medium-tree 
(> 20 cm)

Thin-tree 
(< 20 cm)

Mixed stands Pure stands Flat areas < 35% Steep 
slopes > 35%

RMSE (m) 3.06/4.32a 2.78/4.24 3.40/4.64 3.33/4.76 2.61/2.99 3.11/0.99 3.02/4.50 2.70/3.81 3.15/4.87
%RMSE 21.80/30.76 20.20/31.41 23.08/28.50 20.15/28.35 25.15/27.15 30.83/8.65 20.84/31.38 21.34/29.18 20.78/31.96
Bias (m)  −  0.55/1.99  −  0.38/1.89  −  1.21/2.41  −  0.52 / 3.21 − 0.58/0.27  −  0.23/−  0.41  − 0.62/2.30  −  0.62/1.11 −  0.56/3.08
Pearson’s r 0.78/0.79 0.79/0.76 0.81/0.81 0.60/0.68 0.56/0.69 0.10/0.97 0.78/0.78 0.83/0.86 0.71/0.60
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error statistics for different stand types (classified data) can 
be seen in Table 5.

ICESat‑2 data

In the case of analysis for ICESat-2, a total of 116 data points 
were assessed. Considering all stands, a bias of 1.99 m was 
found between in situ measurements and ICESat-2 data. Fig-
ure 3a indicated that ICESat-2 retrieved greater dominant 
height values than the field reference.

The accuracy of dominant stand heights stayed mostly the 
same according to canopy cover classes (Table 5). However, 
we observed considerable differences between the stands at 
the thin- and medium-tree developmental stages (Fig. 3d). 
While the bias for thin stands was 0.27 m, it was 3.21 m for 
the large-girth stands. The difference can be attributable to 
large-girth trees generally taller than smaller-diameter trees. 
Similar %RMSE values for the two development stages (i.e. 
%RMSE = 28.4%, %27.2) supported this inference.

We also assessed the satellite-based dominant heights 
according to species mix and slope classes. Although we 
have limited data points for mixed stands (N = 9), the errors 
in the dominant heights of pure stands were noticeably 

higher than in the mixed stands (Table 5). The box plot for 
the mixed stands (Fig. 3e) was also very narrow, probably 
due to the lesser data points. As expected, the dominant 
height values of the stands on flatter areas were retrieved 
more accurately than those on steep slopes (Table 5).

Modeling results (CNN)

The dominant stand heights estimated by the CNN models 
were plotted against the reference data (i.e., in situ measure-
ments) in Figs. 4b, c, d. The error statistics for the estimates 
can also be seen in Table 6. Except for R2 values, all the sta-
tistics showed that the CNN models provided more accurate 
estimates compared to the raw height metrics of both GEDI 
and ICESat-2. The RMSE values decreased from 3.06 m to 
2.82 m and 4.32 m to 2.77 m for GEDI and ICESat-2 mod-
els, respectively. With a decrease of nearly 11% in RMSE%, 
the estimation performance of the ICESat-2 model was bet-
ter than the GEDI model, which had an improvement of 2% 
in RMSE%.

Regarding the estimation residuals, the GEDI model was 
almost unbiased. Its bias was only −  0.01 m (Table 6), sug-
gesting the CNN technique significantly improved stand 
height retrievals by GEDI. On the other hand, the ICESat-2 

Fig. 3   The box plots demonstrating the residuals of dominant heights retrieved by GEDI and ICESat-2 for a unclassified data, b canopy cover, c 
terrain slope, d developmental stage, and e species mix classes. In situ height measurements are taken as the reference
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model slightly overestimated the stands’ dominant heights 
and showed a slight positive bias of 0.24 m. However, this 
is still much lower than ICESat-2’s raw height metrics. The 
improved estimates can also be observed by comparing scat-
ter plots pairwisely (Figs. 4a, b, Figs. 4c, d).

Discussion

In the present study, we compared the dominant stand 
heights captured by GEDI and ICESat-2 in naturally 
regenerated, even-aged Crimean pine forests. Taking the 
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Fig. 4   The reference height values (field data) plotted against a raw GEDI metric, b modeled GEDI metric, c raw ICESat-2 metric, and d mod-
eled ICESat-2 metric

Table 6   Error statistics for 
CNN-modeled dominant 
heights using GEDI and 
ICESat-2 data

a The values in the parenthesis indicate the error statistics for raw satellite data before modeling with CNN 
method

Error statistics Estimation results for stand dominant heights Improvements compared to 
raw metrics

CNN model for GEDI CNN model for ICESat-2 GEDI RH95 ICESat-2 
h_canopy

RMSE (m) 2.82 (3.06)a 2.77 (4.32) 0.24 2.77
%RMSE (%) 20.12 (21.80) 19.75 (30.76) 1.68 11.01
Bias (m)  − 0.01 (− 0.55) 0.24 (1.99) 0.54 1.75
Pearson’s r 0.78 (0.78) 0.79 (0.79) 0.00 0.00
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in situ measurements as a reference, GEDI underestimated 
dominant heights for all stand types (bias =  −  0.55 m). On 
the contrary, ICESat-2 generally overestimated the same 
inventory parameter with a bias of almost 2.00 m. These 
results are consistent with the recently published works. 
For instance, Potapov et al. (2021) stated that GEDI’s 
global canopy map underestimated dominant heights 
with a bias of −  3.80 m compared to ALS-based valida-
tion data. In another study, Liu et al. (2021) reported a bias 
value of 2.43 m for ICESat-2 canopy heights using only 
strong beams acquired at night.

In general, the raw metrics of GEDI and ICESat-2 (i.e. 
RH95 and canopy height) provided less accurate data 
for the stand dominant height variable. Modeled with 
the CNN technique, the data quality could be improved 
clearly. Even though R2 values remained somewhat the 
same, RMSE, %RMSE, and bias decreased to some extent. 
While the GEDI RH95 data yielded RMSE = 3.06  m, 
%RMSE = 21.80%, and bias =−  0.55  m compared to 
in  situ height measurements, the CNN-based GEDI 
model estimated dominant heights with RMSE = 2.82 m, 
%RMSE = 20.12%, and bias = 0.01  m. Similarly, the 
error statistics for the ICESat-2 canopy height data were 
RMSE = 4.32 m, %RMSE = 30.76%, and bias = 2.00 m. 
After modeling, they decrease to RMSE = 2.77  m, 
%RMSE = 19.75%, and bias = 0.24 m. Thus, it can be sug-
gested that CNN is a useful technique in modeling forests’ 
biophysical structures based on active remote sensing data. 
It is also possible to state that the raw ICESat-2 data ben-
efited more from the CNN modeling than the GEDI data 
in our case. It may be attributed to the potential differences 
in the distribution of GEDI, and ICESat-2 data points fell 
into various forest stands. Namely, the low number of data 
in certain stand types made our model development effort 

challenging, particularly during the division of training 
and test datasets in a statistically robust manner. Based 
on this experience, we recommend that future studies be 
conducted in data-rich areas to better train a CNN model. 
Aside from CNN, our results showed that the accuracy 
of the raw GEDI data was higher than that of the raw 
ICESat-2 data without modeling. Liu et al. (2021) also 
found that GEDI outperformed ICESat-2 in canopy height 
estimations in their study conducted in the forestland of 
the US.

The accuracy of dominant heights may change when the 
data are grouped based on certain stand parameters. The 
GEDI RH95 metric, for example, provided better results for 
fully-covered forest stands than sparsely-covered stands. The 
bias values differed nearly three times in the same direc-
tion (Table 5). This can be attributed to the fact that fully-
covered forests demonstrate a smoother and more lateral top 
layer with continuous tree crowns (Fig. 5a). In the sparsely-
covered forest, contrastingly, there are small or large gaps 
among tree crowns, resulting in significant height differences 
between the canopy and forest floor (Fig. 5b). Using ALS 
data for coniferous forests of Italy, Sibona et al. (2017) had a 
similar experience on this sense. Their data accuracy signifi-
cantly decreased in shorter trees with irregular canopy cover. 
Thus, they concluded that height predictions with ALS data 
are more reliable for taller trees with a homogeneous canopy 
structure. While this is the case for GEDI and ALS data, 
the canopy cover class had almost no impact on the data 
accuracy of ICESat-2 in our case. This is an interesting 
research question that needs to be deeply examined by for-
est and remote sensing professionals with comparative stud-
ies conducted in vast forestlands. Nevertheless, a possible 
answer could be the difference between the laser altimetry 
techniques of the two missions. Although photon-counting 

Fig. 5   Illustration of typical 
canopy structures for a fully- 
and b sparsely covered forests. 
The variation in height metrics 
(LiDAR beams) is generally 
smaller in fully covered forests 
owing to their compact canopy 
top surfaces. In contrast, it is 
generally greater in sparsely 
covered forests because some 
beams may directly hit low veg-
etation or ground (forest floor) 
due to large forest openings
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(ICESat-2) and full-waveform (GEDI) are both state-of-the-
art SLS techniques, they have their technical advantages and 
disadvantages depending on the application area. Therefore, 
Liu et al. (2021) state that it may be unfair to directly com-
pare the terrain or canopy height values retrieved by GEDI 
and ICESat-2 for a limited area of investigation.

Regarding tree size classes, we observed no considerable 
differences in the data quality of GEDI (Fig. 3d). However, 
ICESat-2 yielded better results for thin stands (Table 5). The 
errors in the dominant heights generally started to increase 
with stand maturation. While RMSE was 2.99 m for young 
stands (DBH ≤ 20 cm), it increased to 4.76 m in mature 
stands with large-girth trees (20 cm < DBH < 52 cm). This 
is attributable to the larger variations in stand variables of 
mid-aged and mature forests of Crimean pine, as previously 
shown by Seki and Sakici (2017). Based on our experience 
from this limited study, the photon-counting laser altimetry 
technique of ICESat-2 seems more vulnerable to changes 
in forests’ biophysical structure than the GEDI system. A 
possible reason for this might be the uninterrupted nature 
of the GEDI’s full-waveform technique recording the total 
energy (Salas 2021).

As for the slope effect, the data quality of ICESat-2 
decreased in forest stands located on steep slopes. The 
dominant heights of stands on flatter areas were retrieved 
by ICESat-2 raw data with an RMSE and bias of 3.81 m 
and 1.11 m, respectively. When the mean slope exceeded 
35%, the same statistics increased to 4.87 m and 3.08 m, 
in the same order. To the best of our knowledge, no study 
focuses on the effect of slope on ICESat-2’s data quality. 
For GEDI, however, Fayad et al. (2021a) investigated data 
quality based on different slope ranges in Brazilian planta-
tion forests. They concluded that terrain slope affected vol-
ume estimations more than canopy height estimates. While 
the dominant heights of Eucalyptus stands were estimated 
with an RMSE of 2.06 m on flatter areas (slope < 10%), it 
increased to 2.11 m on slopes ranging between 10 and 20%. 
When it exceeded 20%, the RMSE value reached 3.26 m in 
their case. In the present case, GEDI data provided slightly 
better results in flatter areas; nonetheless, it was not as pro-
nounced as in ICESat-2 data.

The present study also has several drawbacks; for 
instance, no filtering was applied to the raw metrics 
obtained from the satellite data. In other words, we did 
not separate the datasets based on strong/weak photons 
and day/night acquisition. Duncanson et al. (2020) inves-
tigated which photons are better for biomass estimation 
using simulated GEDI and ICESat-2 data. They indicated 
that daytime data of GEDI resulted in a higher error, and 
the low photon rate of ICESat-2 was more sensitive to 
uncertainty in biomass estimation. Although the filtered 
data yields better estimation results statistically, the num-
ber of points per area decreases and this situation limits 

us from filtering. Instead, we examined whether state-of-
the-art modeling techniques could increase the accuracy 
without reducing the number of data points. As seen in 
Fig. 3, even though we applied no filter on LiDAR data, 
there were less than 30 data points in certain stand types, 
which could decrease the statistical quality of the accuracy 
assessment for some classes. For example, N was 25 for 
GEDI points fell into the limited mixed stands (Fig. 3e) 
because the forest complex was dominated by pure stands 
of Crimean pine. This is another drawback of the present 
study that can be resolved by future studies conducted in 
larger and multi-species forest complexes.

As stated earlier, measuring the heights of standing 
trees in the forest is generally harder than measuring other 
inventory parameters (e.g. DBH, basal area, and stand den-
sity) and it is typically error-prone due to many factors 
affecting the measurement (Sibona et al. 2017; Ganz et al. 
2019; Hyyppa et al. 2020a; Özkal et al. 2021). So-called 
h–d models may also be erroneous when used improperly 
(Persson and Stahl 2020; Bolat et al. 2022; Seki and Sak-
ici 2022a; 2022b). Since there was a five-year difference 
between the dates of field and satellite data, we could not 
directly use on-the-ground measurements of sample plots. 
Instead, we simulated ground-measured dominant heights 
based on yield curves developed by Kalıpsız (1963) for 
the Crimean pine forests of Turkey. By doing so, we may 
have introduced additional errors to our reference data 
due to some assumptions made (see Table 2). Bettinger 
et al. (2009) mentioned that accepting some simplifying 
assumptions and uncertainty is inevitable when using 
growth & yield models because forest dynamics are so 
complex and natural disturbances may often be unpredict-
able. The assumptions make the complex problems more 
tractable and resolvable; however, the uncertainty inher-
ent to models needs to be evaluated carefully relying on 
biological realism in forestry (Ercanli et al. 2022). In fact, 
we could use ground measurements just as they are but 
Crimean pine is a dynamic forest tree species, particu-
larly in its early successional stages. The yield curves of 
Kalıpsız (1963) show that the five-year height increment 
of this species could be as high as 2 m (~ 25%) between the 
ages of 10 and 40, particularly in good sites. Therefore, an 
accuracy assessment without considering forest dynamics 
would be more erroneous for LiDAR-derived dominant 
heights. Ideally, researchers should minimize the temporal 
difference between ground measurements and satellite data 
acquisition dates as much as possible.

Finally, it should be noted that naturally regenerated 
stands of Crimean pine mostly cover our case study areas. 
Unlike plantation forests, (near-) natural forests often dem-
onstrate a heterogeneous structure regarding tree height 
diversity and spatial patterns (von Gadow et al. 2012). 
Besides, the dense understory layer on the forest floor 
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includes a lot of shrubs, irregular trees, and deadwood in 
even-aged stands of Turkey (GDF 2015a, b) due to lacking 
vegetation control practices, such as prescribed fire and 
herbicide treatment, even in intensively managed forests. 
These elements, along with the broken topography of the 
study area, might have slightly decreased the estimation 
accuracies reported in this work.

Conclusion

The objective of the present study was to quantify domi-
nant stand heights at the forest landscape level using prod-
ucts from cutting-edge spaceborne laser altimeters. We 
assessed the GEDI RH95 and ICESat-2 canopy height met-
rics in terms of data accuracy through pairwise comparison 
against in situ height measurements for Crimean pine forests 
in Turkey. The potential effects of forest structure on data 
accuracy were also investigated depending on certain stand 
characteristics, including canopy cover, development stage, 
species types, and terrain slope. Furthermore, an advanced 
deep learning technique (i.e. CNN) was employed to develop 
independent models for GEDI and ICESat-2 missions in 
order to estimate dominant heights more accurately.

Based on the study’s findings, the following conclusions 
can be drawn: (i) The dominant height data retrieved by 
GEDI is more accurate (RMSE = 3.06 m) than ICESat-2 
(RMSE = 4.02 m) for near-natural forest stands of Crimean 
pine in Turkey, (ii) in general, GEDI underestimates the 
stand dominant height parameter (bias = − 0.55 m), while 
ICESat-2 overestimates it (bias = 1.99 m), (iii) the data accu-
racy decreases with increasing slope gradient, particularly 
in the ICESat-2 mission, (iv) while GEDI retrievals per-
form better in fully-covered stands, ICESat-2 outperforms 
GEDI in thin and younger stands, (v) the performance of the 
height retrievals can be enhanced using the CNN modeling 
technique (e.g. RMSEs decreased to 2.82 m (20.12%) and 
2.77 m (19.75%) both for GEDI and ICESat-2), (vi) despite 
the fact that GEDI and ICESat-2 are useful for acquiring for-
est height data, their overall accuracies (%RMSEs =  ~ 20%) 
are still insufficient for tree- and stand-level forest invento-
ries since the permissible error for tree height measurements 
is maximum 15% (Qiu et al. 2018).

Nevertheless, the data accuracy of GEDI and ICESat-2 
may be sufficient for operational forest management and 
planning in more homogeneous forests than in the cur-
rent case. Therefore, the focus of future research should 
be shifted from natural and structurally complex highland 
forests toward industrial plantations, intensively managed 
forests, and human-modified woods located in flat lowlands.
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