

REVIVING THE DEGRADED

Planning the unplanned spaces in unproductive landscape

Introduction

Method

Analysis

Challenges and opportunities

Design proposal

Conclusion

Land degradation is a process in which the value of the biophysical environment is affected by a combination of human-induced processes acting upon the land. It is viewed as any change or disturbance to the land perceived to be deleterious or undesirable. Natural hazards are excluded as a cause; however human activities can indirectly affect phenomena such as floods and bush fires.

Source: https://www.internationale-bauausstellungen.de/geschichte/2013-2020-iba-parkstad-parkstad-in-bewegung/

UNDERSTANDING THE LANDSCAPE

INTRODUCTION

UNDERSTANDING THE LANDSCAPE STREAM PLATEAU VAVLEY Section 1 MINNIMES Section 2 Section 3 04 **DESIGN PROPOSAL**

UNDERSTANDING THE LANDSCAPE

Brunsummerheide

River clay soil

Sandy soil

Loess soil fertile but due to intensive agriculture soil has more nitrate content. Erosion.

Maasterras deposits

Marine soils

Heerlen was one of the dominant fortified towns in South Limburg under the Roman commonwealth and served as a transit town between Cologne and Tongeren.

Source: https://www.demijnen.nl/mijnen

Majority of settlements were situated along the brooks and also strategically along trading routes.

Tea worm castle

Hoensbroek castle Source: https://www.demijnen.nl/mijnen

TIMELINE

fields

1800 Agriculture and cow breeding

1900

1920 Oranje Nassau IV Heksenberg

1960 Sigrano quarry

1973 Oranje Nassau IIImining activity ends

Source: Sketch adapted from maria kaik https://www.demijnen.nl

Oranje Nassau 1

Source: https://www.demijnen.nl

Current situation - demolished

Crowded public spaces in 1962

Source: https://www.demijnen.nl

Unoccupied public transport

Panorama of Heerlen in 1962

Source : https://www.demijnen.nl

Panorama of Heerlen in 2016

PROBLEMS

Shrinking degraded landscape unemployment vacancy

Fragmentation
spatial segregation
fragmentation in ecological network
urban and rural fragmentation

Water issues

Polluted water

Open pit mining

drying out streams

drinking water extraction

SHRINKING

Degraded landscape

Unemployment

FRAGMENTATION

Spatial segregation

Fragmentation in ecological network

Urban and rural fragmentation

WATER ISSUES

Polluted water

Open pit mining

Drying out streams

Drinking water extraction

RESEARCH QUESTION

What are **circular water design strategies** and spatial framework in the **degraded** and **fragmented** landscape to reduce water pollution (mine, agriculture, waste) in Parkstad?

- 1. How to integrate the fragmented region and improve spatial quality?
- 2. How can waste nutrients in water and soil be used to develop sustainable landscape?
- 3. Explore spatial design principles for making the area adaptive and resilient.
- 4. Explore the potential of network to improve the quality of water.
- 5. Is it possible to use the principles in future designs for similar locations?

Introduction

Method

Analysis

Challenges and opportunities

Design proposal

Conclusion

METHODOLOGY

Introduction

Method

Analysis

Challenges and opportunities

Design proposal

Conclusion

FRAGMENTED GREEN STRUCTURE

VULNERABLE WATER BODIES

WATER MANAGEMENT

ANALYSIS

Graphic depiction of how the aesthetic perception of water differs to contamination

Graphic depiction of how the water differs to contamination

NUTRIENTS IN WATER

W1 - Mine water

Generally contains heavy metals or additives used in mining industry. Rising mine water can lead to an increase in groundwater level in the overburden. Due to this groundwater is at risk.

Waste landscape

Demolition waste

W2- Waste Water treatment plant

N, K and P there are main nutrients contained in wastewater. pathogens (including bacteria, viruses and protozoa). Helminthes, oils and greases, runoff from streets, parking lots and roofs.

Less recreation value

Waste landscape

W3- Waste water in agriculture area

NHy and NOx in atmospheric depositions, various pesticides, Cd, N and P in inorganic fertilizers, and for Cu, Zn, N and P in animal manure. Theses causes acidification, eutrophication and leaching .

Waste landscape

Unproductive

Water pollution

Introduction

Method

Analysis

Challenges and opportunities

Design proposal

Conclusion

DESIGN PRINCIPLES

-To create identity
-To protect the culture
- reuse industrial waste

- To adapt for climate change Storing water to reduce droughts

Continuity and ease of movement

Create spaces for people

Design for adaptability and reusing water

How to integrate the fragmented region and improve spatial quality?

TYPOLOGIES

Introduction

Approach and methodology

Analysis

Challenges and opportunities

Design proposal

Conclusion

SITE LOCATION

- LANDSCAPE TYPOLOGIES

- 3 WATER ISSUES

- UNPLANNED SPACES

Section 2 Section 3

Based on topography and water catchments each part has its own feature terrain.

SITE LOCATION

LANDSCAPE TYPOLOGIES - 3 WATER ISSUES

- UNPLANNED SPACES

Mine water

Wastewater

Agricultural water

DESIGN PROPOSAL

SITE LOCATION UNPLANNED SPACES

Opportunity to revive the degraded and unplanned

DESIGN PROPOSAL

GREEN STRUCTURE

Blue green network

The aim is to elaborate on the potential of the unused spaces that could become high quality places — the backbone of urban-landscape fabric, spatially and programmatically revitalized.

Water purification, Storage of water, Water management, Energy production.

DESIGN PROPOSAL

CYCLE ROUTE

-Connecting different landscape types

- Connected to the node system
 - knooppunten route

DESIGN PROPOSAL

CHALLENGES- NETWORK DETAILS

POTENTIAL- NETWORK DETAILS

Urbanized area with **flooding issue** and cycling paths not connected High land

Current situation

INTERCEPTOR STREETS

Small scale retrofit in public streets to collect rainfall.

To clean the water using duck weeds. Low lands need improved ground water management in order to maintain soil stability.

Polluted water and no well-connected cycle routes, low land

FLOATING STREETS

Walkways adaptable due to the change in the level of water and spaces to retain water.

Use of unplanned spaces, Low lying areas

MICRO SCALE

AHN3 ruw - Blauw / Groen / Oranje (Dynamische opmaak)

MINE WATER - DESIGN LOCATION 1

HIGH LAND, HIGHLY CONTOURED

ABANDONED LAND

MANY NEIGHBOURHOODS AROUND

NEXT TO FOREST AREA

INDUSTRIAL WASTE

DESIGN PROPOSAL

CHALLENGES MINE AREA

Disconnected to the neighborhood - fenced open spaces

Water pollution

Generally contains heavy metals or additives used in mining industry. Rising mine water can lead to an increase in groundwater level in the overburden. Due to this groundwater is at risk.

Ecologically degraded - mining activities no vegetation -disconnected with ecological area -pollution

POTENTIAL MINE AREA

Next to the high ecological area (Brumssum heide)
Can act as steppingstone in ecological structure

Landmark structures

Source:https://de.wikipedia.org/wiki/Landschaftspark_Duisburg-Nord

Case study: Landschaftspark Duisburg-Nord

Protect industrial heritage

Continuity and ease of movement

Industrial heritage

Park facilities

Community gathering

SYSTEM PROPOSAL

For the community

Hydrophilic park

Water purification

SYSTEM PROPOSAL Flow of nutrients Metals and heavy particles M.N.NO N,K,P,,NO and other waste nutrients

Minimum Area: 490 m²
In the lowest area and are closet to the inlet

Energy for water production and distribution: 33.060 kWh(+/- 12 households)

0.47kWh/m3 drinking water produces

Source: WaterKIP (2008) Op weg naar een klimaatneutrale waterketen.

Energy for water treatment*

ENERGY AND CONSUMPTION

Active treatment

Passive treatment

- Water treatment plants
- Chemical treatment

- Constructed Wetlands
- Algae (Isola duck weed)

NUTRIENTS ABSORBED- AMMONIA, NITRATE, PHOSPHOROUS

DUCKWEED AS FEED

BIOGAS PRODUCTION

COMPOST FOR URBAN FARMING

PRODUCTION OF WATER

Fig. 5. Nitrogen transport and transformation mechanisms in a Duckweed Pond.

Source: https://edepot.wur.nl/21921

1 fish- 30 -40 liters Growing medium 1000 liters – 40 sq number of growing medium 25 fishes

> Ph water 6-6.5 Fish size 4- 5 inches

Highest level fish tank

How can waste nutrients in water and soil be used to develop sustainable landscape?

In case the pond complex receives wastewater from 2000-3000 capita at hydraulic retention time of 21 days.

The results demonstrated that the combined wastewater and fish aquaculture system produced over 12 tons fish/ha/year, yielding a net annual profit of about US\$ 2000/ha (Gijzen and Ikramullah, 1999; ICDDRB, 1995).

ECOLOGY CONNECTIONS

Most birds have threat of habitat loss whereas some also due to mining and nests predators.

Winter stork

Northern Hover

Collared sand martin

Grassland

Aquatic

Artificial terrestrial

Sedimentation ponds

Duck weed farming

SPATIAL QUALITY

1-3 years 7-10 years

Corten steel

Local stone -mergel lime stone -Veldbrand bricks

Exposed concrete

Salix alba Poular Ash alus Hawthorn hedges Craetgus monogyna

DESIGN LOCATION 2 - WASTEWATER

WATER TREATMENT SITE
LOW LAND, WATER CATCHMENT AREA

CASTELS NEXT TO THE SITE

DESIGN PROPOSAL

CHALLENGES IN WASTEWATER TREATMENT SITE

Unplanned areas

Low ecology value

Wastewater treatment plant

OPPORTUNITIES IN WASTEWATER TREATMENT SITE

Tourist attraction

Production of clean water

Case study: Antwerp park- Ecological swimming pools

Source: https://www.antwerpen.be/

DESIGN OBJECTIVES

Design for adaptability and reusing

Create spaces for people

Reuse of water

Ecological edges

Recreational activities

72

OPPORTUNITIES IN WASTEWATER TREATMENT SITE FOR THE VISITORS **ECOLOGICAL SWIMMING POOL** 6.Recreation pond B.Retention ponds

Public area Semiprivate area Private area

ACCESSIBILITY - ZONNING

DESIGN PROPOSAL

River stones

Wood deck

DETAIL

IN THE RURAL AREA

UNDULATING LAND, TERRACES

NEXT TO THE STREAM

CHALLENGES - AGRICULTURE WATER

LOW PRODUCTIVITY

BROOK DRYING OUT

WASTE NUTRIENTS

NHy and NOx in atmospheric depositions, various pesticides, Cd, N and P in inorganic fertilizers, and for Cu, Zn, N and P in animal manure.

OPPORTUNITIES IN WASTEWATER TREATMENT SITE

Natura 2000

Reuse of water and nutrients

DESIGN OBJECTIVES

Design for resilient landscape

Multifunctionality and diversity

Species variety

Prevent erosion

Ecological edges

Local production

SYSTEM PROPOSAL

AGRICULTURE WATER

- Smaller patches diverse agriculture
- Minimum size 6m -12 m
- Using **crops** rotation which compliment each other and use the nutrients(companion planting)
- Water retention and reuse

DESIGN PROPOSAL

Orchard- typical feature of this region

Ecological edge along the stream

Ponds to retain water in the fields

Wetlands to purify water

Aquaponics production
Diverse farming and native plants

Forest patch to absorb nutrients

Graften to reduce erosion

DESIGN PROPOSAL

ECOLOGICAL VALUE

Introduction

Method

Analysis

Challenges and opportunities

Design proposal

Conclusion

What are circular design strategies and spatial framework in the degraded and fragmented landscape to reduce water (mine, agriculture, wastewater) pollution in Parkstad?

Eco device

Swarm planning theory

Operational landscape

Blue green network system

Socio-ecological balance

"Street is river of life"

-William(urban gorillas)

FLOATING STREETS (storing)

Mine water

Disconnected to the neighborhood

Mine Water pollution

Ecologically degraded

Hydrophilic park

Wastewater

Unplanned areas

Low ecology value

Wastewater treatment

Ecological pool

Agricultural water

Stream drying

Waste nutrients

Low productivity

- Unplanned areas can create multifunctional spaces in urban and landscape fabric to cater sudden change and make the region adaptive.

- Green and blue structure creating a **network** system which acts as development of the region make it resilient.

Thank you for listening

