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A B S T R A C T   

In the transition towards higher levels of vehicle automation, one of the key concerns with 
regards to human factors is to avoid mode confusion, when drivers misinterpret the driving mode 
and therewith misjudge their own tasks and responsibility. To enhance mode awareness, a clear 
human centered Human Machine Interface (HMI) is essential. The HMI should support the driver 
tasks of both supervising the driving environment when needed and self-regulating their non- 
driving related activities (NDRAs). Such support may be provided by either presenting contin-
uous information on automation reliability, from which the driver needs to infer what task is 
required, or by presenting continuous information on the currently required driving task and 
allowed NDRA directly. Additionally, it can be valuable to provide continuous information to 
support anticipation of upcoming changes in the automation mode and its associated reliability or 
required and allowed driver task(s). Information that could support anticipation includes the 
available time until a change in mode (i.e. time budget), information on the upcoming mode, and 
reasons for changing to the upcoming mode. The current work investigates the effects of 
communicating this potentially valuable information through HMI design. Participants received 
information from an HMI during simulated drives in a simulated car presented online (using 
Microsoft Teams) with an experimenter virtually accompanying and guiding each session. The 
HMI either communicated on automation reliability or on the driver task, and either included 
information supporting anticipation or did not include such information. Participants were 
thinking aloud during the simulated drives and reported on their experience and preferences 
afterwards. Anticipatory information supported understanding about upcoming changes without 
causing information overload or overreliance. Moreover, anticipatory information and informa-
tion on automation reliability, and especially a combination of the two, best supported under-
standability and usability. Recommendations are provided for future work on facilitating 
supervision and NDRA self-regulation during automated driving through HMI design.   
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1. Introduction 

Vehicle automation has the potential to improve traffic safety by handling (parts of) the driving task. In the transition to fully 
automated vehicles in which the complete driver task is taken care of by the automation (SAE Level 5, Society of Automotive Engineers 
International J3016, 2021) lower level automated vehicles are being introduced. These lower level automated vehicles still impose 
important requirements for the human driver, depending on the level of automation. When driving with partial automation (SAE Level 
2) the driver is required to constantly monitor the driving situation. With conditional automation (SAE Level 3) the driver does not 
need to monitor the driving situation continuously, but has to remain fit enough to take over the driving task when requested. With 
highly automated driving (SAE Level 4) the driver can be completely ‘out of the loop’ as the automation is able to bring the car to a safe 
stop if needed within a designated operational design domain (ODD; the specific conditions under which an automated system or 
feature thereof is designed to function). From a technical perspective, automated driving starting from SAE Level 3 no longer requires 
constant supervision by the driver. The possibility to then engage in non-driving related activities (NDRAs) is one of people’s most 
valued expected benefits of automated driving (König & Neumayr, 2017). With SAE Level 2 and 3 automated driving, however, the 
driver needs to be a back-up for the automation when the automation is unable to handle the driving task. This requires the driver to 
disengage from an NDRA and monitor the driving situation to safely take over (parts of) the driving task when needed. A Human 
Machine Interface (HMI) has the potential to support the driver to optimally fulfil this requirement. When a take-over is imminent, an 
HMI should support the take-over process or, as described by van den Beukel et al. (2016), provide support for intervention. Both when 
a take-over is imminent and during automated driving (especially SAE Level 2 and 3), an HMI should stimulate mode awareness, or 
understanding of the driving mode and the driver’s responsibilities, and prevent mode confusion. This is one of the key requirements 
for supporting both supervision of the driving environment as well as self-regulation of NDRA uptake and disengagement. Most 
research on the role of HMI design in the interaction between driver and automation focuses on support for intervention (e.g. Melcher 
et al., 2015; Mirnig et al., 2017; Naujoks et al., 2014; Petermeijer et al., 2017). Less attention, however, has been given to HMI design 
focusing on support for supervision and NDRA self-regulation. The current research addresses this knowledge gap. 

1.1. Background 

Self-regulation of NDRA engagement is necessary when the driver is expected to perform a supervisory task and maintain take-over 
readiness. Schömig and Metz (2013) proposed a model of NDRA self-regulation during manual driving consisting of three levels: 1) 
Planning; 2) decision; and 3) control. Wandtner et al. (2018) adapted this model for automated driving. On the planning level, proper 
self-regulation consists of performing NDRAs during parts of the trip only with automated driving. On a decision level, the driver 
should assess the current driving situation and should only decide to engage in an NDRA if appropriate, considering estimated NDRA 
duration and predicted system availability. Finally, on a control level, drivers should maintain take-over readiness, such that they can 
take over when requested by the automation. Several studies have shown that drivers self-regulate their NDRA behavior and adjust it to 
the driving situation complexity both during manual driving (Schömig, Metz, & Krüger, 2011; Tivesten & Dozza, 2015) as well as 
during automated driving (Lin et al., 2019; Wandtner et al., 2018). 

There is general consensus that HMI design should communicate transparently to the driver to support the driver with supervision 
and self-regulation. Such communication can be used to avoid mode confusion and automation surprises and facilitate appropriate 
trust and reliance (Carsten & Martens, 2019; Kyriakidis et al., 2019; Martens & van den Beukel, 2013). Several studies have examined 
different types of information presented by HMI design to mitigate these human factors issues. We identified two promising approaches 
in the literature differing in the focus of the communicated information: 1) Communicating automation reliability, and 2) commu-
nicating the required or allowed task. These approaches will be discussed next, followed by the potential benefit of including antic-
ipatory information well ahead of an upcoming change in an upcoming transition. 

1.1.1. Communicating automation reliability 
Driving simulator experiments (Beller et al., 2013; Helldin et al., 2013; Stockert et al., 2015) showed beneficial effects of providing 

continuous information on automation reliability while driving with partial automation. This information was either communicated 
on a continuous scale via a bar display (Helldin et al., 2013; Stockert et al., 2015) or dichotomously through an anthropomorphic icon 
(i.e., a ‘confused emoticon’ in Beller et al., 2013). These studies indicate that continuously providing information on reliability of the 
automation reduces workload (Stockert et al., 2015), facilitates calibrated trust and enhances acceptance (Beller et al., 2013; Helldin 
et al., 2013; Stockert et al., 2015). Moreover, studies investigating information needs demonstrated that drivers appreciate information 
on automation reliability (Beggiato et al., 2015; Feierle et al., 2020; Hecht et al., 2019). 

The effect of continuously communicating automation reliability during NDRA engagement was examined in a study by Large et al. 
(2017) in which participants drove with conditional automation in a simulator. During the drive, information on automation reliability 
was provided through a ‘health-bar’; a colored bar icon. In general, participants attended the health-bar <3% of the time. The health- 
bar was potentially not attended often because the relatively small health bar icon presented behind the steering wheel did not attract a 
lot of attention. Yet, when participants did attend the health-bar, positive effects were observed. One participant adjusted his/her 
posture when reliability decreased, in such a way that a better take-over readiness was achieved. Another participant who regularly 
attended the health bar reported enhanced situation awareness. 

In Yang et al. (2017) participants were provided with continuous information on the automation reliability though an LED strip 
during simulated driving with conditional automation and while engaging in NDRAs. This LED strip was positioned at the bottom of 
the windshield ranging from the outer left to the outer right, ensuring the strip could also be perceived peripherally. The automation 

A.M. Tinga et al.                                                                                                                                                                                                       



Transportation Research Part F: Psychology and Behaviour 87 (2022) 102–119

104

reliability was communicated in three levels indicated by both the color and light pulse frequency. Findings of the study showed that 
especially the worst performers in terms of take-over quality (including minimal time to collision and standard deviation of the lateral 
position) were supported by the HMI. However, the HMI decreased the take-over quality of the best performers. Yang et al. (2017) 
hypothesized that the latter result was caused by participants confusing the reliability information for warning signals. Thus, it could 
be valuable to provide the driver with information on automation reliability when it is ensured that this information is perceived when 
the driver is engaged in an NDRA and that the information is understood correctly. 

1.1.2. Communicating the required or allowed task 
As an alternative HMI approach, information can be provided on tasks that are required of or allowed for the driver, both of which 

are related to the momentary reliability level of the automation. Several studies have investigated HMI designs that inform the driver 
on the need to monitor the automation, in addition to providing take-over requests, while driving with conditional automation. 
Simulator studies described in Yang et al. (2018) and Lu et al. (2019) compared take-over performance when providing the driver only 
with take-over requests to providing the driver with monitoring requests that occasionally resulted in a take-over request and found 
that the latter resulted in better take-over performance. Increased situation awareness and hazard detection were found when 
continuously informing drivers on their monitoring task, rather than not informing (Yang et al., 2018), or when warning the drivers 
only once (van den Beukel et al., 2016). Similar to the study by Large et al. (2017), the study described by Yang et al. (2018) found that 
in response to low automation reliability drivers adjusted their posture to a more upright position in which they could better monitor 
the road. In addition, van den Beukel et al. (2016) demonstrated that information on the driver task provided through colored LEDs at 
the bottom of the windshield better supported the supervisory task than simple auditory tones or display icons. Lu et al. (2019), 
however, also demonstrated that drivers developed overreliance on the request to intervene, even if they were monitoring the road in 
response to the monitoring request. This is an issue that needs to be prevented, as overreliance can degrade take-over performance 
(Feldhütter et al., 2019). 

1.1.3. Communicating anticipatory information 
The above studies investigated the beneficial effect of communicating the momentary status of automation reliability or the 

corresponding task requirements. Aside from communicating momentary states, further support might be provided by communicating 
state changes in advance. Such communication likely supports anticipation and therefore reduces automation surprises (Carsten & 
Martens, 2019; Martens & van den Beukel, 2013). Moreover, it can be valuable to provide information on the reasons for changes. Such 
information, at least when it comes to reasons for changes in automation reliability, can improve system understanding, which can in 
turn support the driver in anticipating when state changes are likely to occur and improve take-over performance (Körber et al., 2018; 
Naujoks et al., 2017; Richardson et al., 2018). Moreover, both Thill et al. (2018) and Ruijten et al. (2018) concluded that providing 
reasons for recommendations provided by a support system improves adherence to the recommendations compared to only presenting 
the recommendation. 

Anticipation of changes can also be supported by communicating the time remaining in the current reliability level or required/ 
allowed driver task. We refer to this time window as the ‘time budget’. When communicating the time budget it is additionally ex-
pected that the HMI should communicate on the expected next state in order to support the driver’s understanding about changes that 
are coming up. The potential value of information on the time budget is first of all raised by drivers themselves, who indicated in 
several user studies (Beggiato et al., 2015; Hecht, Kratzert, et al., 2020) that they would appreciate information on remaining time in 
the current automation level. Communicating the time budget and the upcoming state also has the potential to support supervision and 
NDRA self-regulation, especially on a planning and a decision level. For instance, Wandtner (2018) examined the effect of commu-
nicating on automation availability and upcoming take-over situations in the next 5 km. Participants were informed on the remaining 
distance in which the automation would be engaged, which also provides an indication of the available time budget. The remaining 
distance was communicated by a visual representation including a horizontal bar in which part of the bar was shaded in a color. This 
shaded area depleted with decreasing distance until a change in automation mode. Findings demonstrated the HMI enhanced NDRA 
(dis)engagement and monitoring behavior, especially when it additionally included an explicit pre-alert. A study by Hecht, Kratzert, 
et al. (2020) examined the effect of communicating about the remaining time to an imminent take-over from automated to manual 
driving only seconds before or minutes in advance. The time budget to the take-over was communicated through a text including a 
countdown until the take-over. Results indicated that the HMI supported planning of NDRA engagement at the beginning of the 
automated drive and in some instances between activation and deactivation of the automation, but the HMI did not support prepa-
ration for the take-over. In addition to these findings, it has even been acknowledged that HMI design could aid in planning by also 
providing information over the complete trip, rather than just providing information on the current or near future automation status 
(Hecht, Sievers, et al., 2020). 

1.2. The current study 

Considering the above, it appears that supervision and NDRA self-regulation can be supported by providing 1) continuous infor-
mation on the current mode in terms of automation reliability or the required/allowed driver task and 2) continuous information 
supporting anticipation of upcoming changes in the current mode. This anticipatory information includes information on the available 
time budget, information on the upcoming mode, and reasons for changing to the upcoming mode. Combining the two in a single HMI 
design potentially results in an additive effect in supporting supervision and NDRA self-regulation. The current work explores the 
effects of communicating this potentially valuable information through HMI design. 
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Four different HMI designs are explored by presenting participants with simulated drives online (using Microsoft Teams) with an 
experimenter virtually accompanying and guiding each session. In the simulated drives participants received continuous information 
from one of the four HMI designs (following a within-subjects 2 × 82 design). Two aspects were manipulated in the HMI designs. The 
first aspect concerned the focus of the communicated information: 1) Information on automation reliability, from which the driver can 
potentially infer what task is required (e.g. monitoring) or whether and what type of NDRA is allowed; or 2) direct information on the 
required or allowed task. The second aspect concerned the inclusion or exclusion of information that supports anticipation (i.e., time 
budget, upcoming mode, reasons for changing to the upcoming mode). Manipulating these two aspects allows for exploring the effect 
of information focus and anticipatory information and whether the two aspects interact. 

To be able to support supervision and NDRA self-regulation, it is first of all important to establish whether the information 
communicated by the HMI is understood, usable and accepted. The current study is therefore dedicated to evaluating effects of the 
manipulations to the HMI design on understandability, usability, and user preferences. Understandability refers mainly to whether the 
presented information by the HMI design is correctly understood. Usability includes the perceived usefulness of the provided infor-
mation for both NDRA self-regulation and supervision and includes anticipation of future changes and inferences based on the pro-
vided information (e.g., inferring driver task from automation reliability), as well as the participant’s perceived information load and 
potential overreliance. Evaluation of user preferences focusses mainly on reasons for preferring one HMI concept over another and how 
preferences relate to individual differences, thereby gaining insight into how acceptance in HMI design could be supported. Measures 
of understandability, usability and user preferences were collected by using the concurrent think-aloud procedure (Eccles & Arsal, 
2017), which entailed participants thinking aloud during the simulated drives, and through collecting questionnaire data after pre-
sentation of each HMI design and at the end of the experiment. The exploration of the current study aims to support the next steps in 
HMI design to facilitate supervision and NDRA self-regulation. 

2. Methods 

2.1. Participants 

Sixteen participants (3 female, 13 male, mean age = 41.12 years, SD = 10.51, min = 24, max = 57) were included in the current 
study. The number of participants was based on previous research that used inferential statistics on think-aloud data of about 10 
participants (range 6–17) in total in a within-design or per group in a between-design (Key et al., 2016; Kircher & Ahlstrom, 2018; Rose 
et al., 2019; Walker et al., 2011). Requirements for participation were a valid driving license and experience with assisted driving 
technology (i.e., a lane keeping system and/or adaptive cruise control). To be able to recruit such participants, calls for participants 
were placed on online discussion platforms with a focus on automated vehicles (e.g., fora about Tesla). Participants owned a driving 
license for an average of 21.81 years (SD = 10.19, min = 6, max = 39). The median number of km driven per year was 20,000–50,000 
km (min = <5000 km, max = 50,000–100,000 km). All but one participant owned a car with SAE L2 automation options, with an 
average of 2.53 years (SD = 1.72, min = 1, max = 5). The participant who did not own such a vehicle, did so in the recent past. Two 
additional participants participated, but these participants were excluded from analyses due to insufficient data quality. The study was 
approved by the Research Ethics Committee of the Dutch Institute for Road Safety Research (SWOV). 

2.2. Apparatus 

Simulated driving scenarios were made in Unity 2019.3.13f1 with the virtual environment being built on the openly available 
assets Windridge City (Nature Manufacture) and AirSim (Shah et al., 2018). The viewer’s perspective in the car (see also Fig. 1) was on 
eye height (vertical position) of someone sitting in the middle of the vehicle in between the driver’s seat and the front passenger’s seat 
(lateral position), moved slightly towards the back of the car from the driver’s seat (longitudinal position), looking outside through the 
front windshield (direction). This specific viewer’s perspective ensured a good view on the HMI designs. HMI designs were super-
imposed on the drives and were developed in Max (2020). The experiment took place online (with an experimenter virtually 
accompanying and guiding each session) using Microsoft Teams version 1.3.00.21759. 1 The drives with the superimposed HMI de-
signs were shown and questionnaires were presented to the participants using LimeSurvey Professional Version 3.23.1. The participant 
shared his/her screen through the ‘share screen’ functionality in Microsoft Teams while going through the experiment in LimeSurvey. 
Verbal utterances and the video image showing the participant and his/her screen were recorded using the recording function in 
Microsoft Teams for subsequent transcription. 

2.3. Driving scenarios 

Four driving scenarios lasting five minutes each were developed, following the same route between two points, points A and B, in 
the virtual driving environment. Of the four scenarios, two followed the route from point A to B and two followed the route from point 
B to A. These four driving scenarios were presented in a counterbalanced order in which the route from A to B was always followed by 
the route from B to A and vice versa. During each driving scenario seven changes in modes of automated driving occurred due to an 

1 . At the time of conducting the current study it was not possible to perform the experiment in the laboratory due to the COVID-19 pandemic. 
However, all experimental sessions were virtually accompanied and guided by an experimenter to ensure the validity of the current study’s results. 
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event along the route. These events included transitions between different road types (urban, rural, highway), roadworks, no road 
markings, and fog. Except for the transitions between different types of roads, each specific event occurred across the different sce-
narios at two different places along the route. For the two drives from point A to B and the two drives from point B to A, the events 
occurred at a different location along the route. The automation was able to execute the driving task at all times and therefore no take- 
over (request) took place. The routes and the events occurring along the routes are depicted in Figure S1 in the supplementary ma-
terials. Table S1 provides an overview of the modes of automated driving that occurred during the driving scenarios and their rela-
tionship to the events. For the purpose of the current study four different modes were included reflecting both automation reliability 
and required and allowed driver tasks. In Mode 1 the driver should monitor the automation and the on-road conditions as a take-over 
request can be prompted instantly. Therefore, the driver should not perform any NDRA. In Mode 2 the driver should supervise the 
automation and should be aware of short take-over times. Therefore, during this mode the driver would be able to perform an NDRA 
which can easily be disengaged from. An example of such an NDRA is checking messages. In Mode 3 the driver should supervise the 
automation sporadically and there is a sufficient time for take-overs. In this mode the driver would therefore be able to perform an 
NDRA that would take somewhat longer to disengage from, such as watching a movie or working on a laptop. In Mode 4, there is no 
need for the driver to supervise the automation as any take-over request would be optional as the automation can always bring the 
vehicle to a safe state. Therefore, during this last mode any NDRA can be performed and even sleeping would be an option (when this 
would be legally permitted). The four modes were presented an equal number of times across scenarios. Note that Mode 1 and Mode 2 

Fig. 1. Depiction of the Anticip conditions. Above: AR_Anticip, with a LED strip below the window and emoticons communicating on automation 
reliability presented in the center console. Below: DT_Anticip, with icons in the center console communicating the desired driving task associated 
with a continuous transition from a high mode of automated driving (top panel) to a low mode of automated driving (bottom panel). Note that the 
icon on the lowest bottom of the panel was never selected in the scenarios in the current study. 
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occurred in an urban environment, which is currently a challenge for vehicle automation, but not necessarily an unrealistic scenario. 
For example, Andreone et al. (2021) and Tinga et al. (2021) describe pilots with conditionally automated cars and highly automated 
shuttle busses in urban environments respectively. Information on modes and events was fed into the HMI concept in order to use this 
information for communication to the participant. 

2.4. Experimental conditions 

Four experimental conditions of HMI designs were applied in the current experiment: 1) AR_Base; 2) AR_Anticip; 3) DT_Base; and 4) 
DT_Anticip. In the AR conditions (1 and 2) the type of communicated information focused on the automation reliability while in the DT 
conditions (3 and 4) this information focused on the driver task. In the Anticip conditions (2 and 4) information supporting anticipation 
was provided, including information on the available time budget, the upcoming mode, and reasons for changing to the upcoming 
mode. The Base conditions (1 and 3) served as a baseline in which no such information supporting anticipation was provided, only the 
reasons for a change in mode were communicated at the time that a change took place. More details on the information provided in 
each condition and the way in which the information was communicated will be discussed next. For an overview, see Table S2. 

The Anticip conditions are depicted in Fig. 1. The first Anticip condition, AR_Anticip, included an HMI that communicated on the 
reliability of the automation directly through four emoticons (based on Beller et al., 2013, in which a single emoticon was effective in 
communicating certainty of the automation). A pilot study asking participants (N = 10) to rate and rank-order the emoticons on (un) 
certainty demonstrated that these emoticons were effective in communicating (un)certainty. The emoticons are depicted in Figure S2 
in the supplementary materials. These emoticons were additionally coupled to colors that were demonstrated in another pilot study (N 
= 3) to facilitate understanding of the meaning of the emoticons. The color range was as follows with increasing reliability: orange – 
(bright) green – green – (dark) green and is depicted in Figure S3 in the supplementary materials. The emoticons, in their respective 
color, were presented in the center console. The emoticon on the left (being outlined) conveyed information about the current 
automation reliability and the emoticon on the right (without being outlined) conveyed information on the upcoming automation 
reliability. To make the direction of change clearer, an arrow pointing from the emoticon on the left to the emoticon on the right was 
added. A LED strip at the bottom of the windshield was used to communicate the time budget in addition to communicating the current 
and upcoming mode. The LED strip would ‘deplete’ from right to left, where the size of the strip was linearly proportional with the 
remaining time budget (depletion of the LED strip to indicate time in current/time to next level somewhat followed Wandtner, 2018). 
The illuminated portion of the LED strip consisted of two parts. The left part of the illuminated portion indicated the current mode and 
had the same color as the color of the emoticon of the current level. The right part of the illuminated portion indicated the next mode 
and had the same color of the emoticon of the next mode. Additionally, a transition icon was included above the illuminated portion on 
the right to indicate the reason for an upcoming change in mode (e.g., construction work ahead). In addition, ambient light in the car 
was simulated by overlaying the interior of the car with a transparent layer in the color corresponding to the current mode. The in-
tensity of the ambient light effect, here simulated with a changing transparency, also communicated the time budget: The intensity was 
high when there was still a lot of time left in the current mode and the intensity decreased with decreasing time left. 

The second Anticip condition, DT_Anticip, included an HMI that communicated the desired (or allowed non–)driving task asso-
ciated with the automation mode through icons in the center console, which were highlighted in the same color range as used in 
AR_Anticip. Three icons indicated an allowed task (with decreasing mode of automated driving: sleeping, using a laptop, using a 
telephone), and two icons indicated a required task (with decreasing mode of automated driving: paying attention to the road, taking 
over the driving task). These icons were highlighted when they were applicable, of which the icon indicating the lowest mode (taking 
over the driving task) was never selected in the driving scenarios of the current study. The allowance icons were additive: when 
sleeping was allowed, drivers were also allowed to use a laptop and/or to use a telephone, in which case all allowance icons were 
highlighted. The applied icons were deemed suitable in communicating a desired task based on a pilot study asking about the meaning 
of each icon through questionnaires (N = 10), and especially when being highlighted in in their respective color as demonstrated by 
another pilot study (N = 6). The time budget was communicated by the color in which the icon was highlighted. The highlighted area 
‘depleted’ with less time remaining in the current mode. When the next mode was lower, the highlighted area depleted downwards. 
When the current mode would be associated with a required action with the next mode being associated with an allowed action, the 
highlighted area depleted upwards. To make the direction of change clearer, an arrow pointing upwards or downwards was added for 
an upcoming change to a higher or lower mode respectively. In addition, a transition icon indicating the reason for an upcoming 
change in mode was presented next to the icon communicating a desired driver task. Ambient light was used to communicate the time 
budget across all modes. The ambient light was simulated by overlaying the interior of the car with a layer in the highlighted color of 
the icon that was currently applicable. The ambient light effect was centered around the steering wheel with a radius linearly 
decreasing with a smaller time budget. 

Baseline conditions were developed for each of the two Anticip conditions described above: AR_Base and DT_Base. The baseline 
conditions did not feature information that allows for anticipating an upcoming change in mode. In AR_Base only one emoticon was 
presented at a time that communicated the current level of reliability of the automation. In DT_Base only one icon was presented at a 
time that communicated the current desired (or allowed non–)driving task. The baseline versions included the same transition icons 
presenting the reason for a change in the reliability level. In AR_Base, the icon was presented for 5 s next to the emotion on the mid 
console at the moment a transition towards another mode occurred. In DT_Base, the icon was presented at the same location as in the 
DT_Anticip condition, but rather than presenting the icon in advance of a change in mode, the icon was only present for 5 s at the onset 
of such a change. 

The four experimental conditions were combined with the four different driving scenarios, in such a way that each condition was 
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coupled to a drive from A to B and a drive from B to A and that each condition was coupled to events occurring at a different place. 

2.5. Measures 

2.5.1. Think-aloud 
The concurrent think-aloud method (Eccles & Arsal, 2017) was applied in the current experiment to gain insight into the under-

standability and usability of the information communicated by the HMI design in the different conditions. During this method par-
ticipants speak aloud anything that comes to their mind during a certain task. The concurrent think-aloud method has been 
demonstrated to validly provide insight into participants’ thinking (Charters, 2003). Moreover, this procedure has proved to be 
effective in gaining insight into situation awareness during processing of provided information in a study by Rose et al. (2019) 
examining situation awareness during operation of a train simulator. 

2.5.2. Questionnaires 
The ITC-SOPI spatial presence scale (Lessiter et al., 2001) was used to evaluate whether the set-up of the current experiment 

induced a sufficient feeling of presence (on a scale from 1 to 5). This evaluation was considered to be of importance, as a sufficient 
feeling of presence would support the validity of the findings on the other outcome measures. 

Several questionnaires were used in order to gain insight into understandability and usability. Participants were asked to rate on a 
scale from 1− 5 to what degree each HMI concept helped the participant to understand where the attention needed to be focused, what 
s/he was allowed to do at what moment and to what degree it supported understanding of future events. The System Usability Scale 
(Brooke, 1986) was used to gain insight into how participants rated the usability of the HMI concepts in the different conditions. This 
scale measures system usability from 0 to 100. The subset of items providing insight into monitoring (i.e., checking in during per-
formance) of the automation-induced complacency scale (Merritt et al., 2019; items 7–10) was used to gain insight into whether 
monitoring performance will be adequate, in order to provide insight into potential overreliance for each condition (on a scale from 
1− 5). The shortened NASA-TLX (Hart & Staveland, 1988) was used to gain insight into task load induced by processing the presented 
information for each condition, with each of the items rated on a scale from 1− 7. In this way insight can be gained into potential 
information overload. 

Regarding user preferences, participants were asked to indicate their preferred HMI concept out of the presented concepts and to 
order the concepts from most preferred to least preferred. 

The NASA-TLX, the ITC-SOPI spatial presence scale and the automation-induced complacency scale were shortened for the purpose 
of the current experiment. In these shortened versions a few items were discarded that were not applicable to the current experiment. 
In this way, only applicable items were answered by the participants. This approach is applied more often in research (e.g. Hart, 2006; 
Tjon et al., 2019). Regarding the NASA-TLX, three items on mental demand, temporal demand and frustration level were selected. 
Regarding the ITC-SOPI, five items were selected, omitting the items of the spatial presence scale focusing on physical interaction, 
following Tjon et al. (2019). For the subset of items of the automation-induced complacency scale one item was omitted. In this way, 
items were excluded which do not apply to a passive task such as watching a simulated drive. All items were translated to Dutch in 
order to ensure the items were understood by participants. 

Additionally, in order to gain insight into characteristics of participants and potential individual differences in relation to pref-
erences, questions on demographics (i.e., age, sex) and driving experience (i.e., years of having a driver’s license, kilometers driven 
each year, whether someone has a car with automated functionalities such as LKS, ACC, and years of owning an vehicle with auto-
mated functionalities) were employed. In addition, questions on trust in automation (Payre et al., 2016), trust in technology (Merritt 
et al., 2013) and driving enjoyment (Ernst & Reinelt, 2017; including the constructs behavioral intention to use an autonomous car, 
personal driving enjoyment, perceived enjoyment of driving an autonomous car, perceived traffic safety of an autonomous car, and 
perceived usefulness of an autonomous car) were used, with each of the items having a scale from 1− 5. 

2.6. Procedure 

Participants received an instruction sheet on the think-aloud protocol when an appointment for participation in the experiment was 
made. The instructions included 1) informing the participant that s/he will watch a simulated drive in a self-driving car while receiving 
information from a system in the self-driving car, 2) asking the participants to verbalize everything they are seeing and thinking, acting 
as if they are alone in the room speaking to themselves (following Eccles & Arsal, 2017; Jaspers et al., 2004), and 3) informing the 
participant that the experimenter would remain silent while watching the simulated drives only to remind the participant to keep 
talking if s/he falls silent (following Jaspers et al., 2004). To prepare participants for thinking aloud during the experiment, the in-
struction sheet also included an example of how one would think aloud when searching for what one would like on his/her sandwich in 
the kitchen. A different setting was used in the example to avoid priming participants on content of a similar context as provided in the 
experiment. A similar approach to train the think-aloud protocol has been used by Key et al. (2016). In addition to these instructions, 
participants were asked to facilitate an uninterrupted session, by ensuring that no other people or animals would enter the same room, 
and by reducing environmental noise to the best extent possible. 

On the day of the experiment, participants first provided informed consent. An opportunity was provided to read the instruction 
sheet on the think-aloud protocol again and to ask questions (following Key et al., 2016). Participants were instructed that they will be 
taking a ride in a self-driving car while they would receive information from a system in the self-driving car. In this short instruction no 
information was provided on the meaning of automation modes or HMI elements. 

A.M. Tinga et al.                                                                                                                                                                                                       



Transportation Research Part F: Psychology and Behaviour 87 (2022) 102–119

109

The four different conditions (AR_Anticip, DT_Anticip, AR_Base, and DT_Base) were presented during four different simulated 
driving scenarios. Experimental conditions were tested within participants, and therefore it was important to ensure that the expe-
rience during the AR and DT Base conditions would not be affected by the participants already having received the associated Anticip 
condition with additional information. Therefore, AR_Base was always shown right before AR_Anticip and DT_Base was always shown 
right before DT_Anticip. This resulted in a selection of four different orders of the four different conditions with the four different 
driving scenarios. The order of the combinations that was presented to participants was determined using block randomization, in this 
way it was ensured that an equal number of participants was included for each of the four different orders (Goodwin, 2009). Before 
starting the first condition’s simulated drive, the experimenter turned off his/her video image. While the participant watched the 
scenario the participant was thinking aloud. The experimenter prompted the participant to try to keep talking after the participant fell 
silent for a fixed interval of 15 s (following Jaspers et al., 2004). When the scenario ended the experimenter asked the participant 
whether s/he wanted to mention anything else. In order to minimize practice effects, participants were not provided with feedback on 
their thinking aloud and no further instruction was given (following Rose et al., 2019). Each time one condition was presented, 
participants answered to the items of the NASA-TLX, the System Usability Scale and the automation-induced complacency scale. After 
being presented with all four conditions, participants answered to the items of the ITC-SOPI spatial presence scale, the items on 
subjective understanding, and participants indicated their preferences. Finally, participants answered to the questions providing 
insight into participants’ characteristics. 

2.7. Data processing and analyses 

The think-aloud recordings were transcribed verbatim and grouped into a series of statements, following Eccles and Arsal (2017). 
Grouping was performed based on temporal adjacency (e.g., a silence of one or more seconds is typically an indicator of a new 
statement) and content (i.e., a change of focus initiates a new statement). After transcribing the recordings completely, the recordings 
were distributed across two experts in human factors in vehicle automation (hereafter: coders) and each transcribed statement was 
coded using a priori coding scheme. For each statement the coders assessed whether its contents expressed awareness in relation to the 
vehicle’s HMI, the automation and/or the driver’s task. If this was the case, the statement was flagged as ‘relevant’. The coders 
categorized relevant statements on the three levels of situation awareness following Rose et al. (2019) and Endsley (1988): 1) 
Perception (i.e., statement referring to a signal), 2) comprehension (i.e., statement about the meaning of the communicated infor-
mation), and 3) projection of future states (i.e., statement referring to a future event or action). For each relevant statement it was also 
determined whether the statement reflected a correct or incorrect understanding about the HMI, automation and/or the driver’s task. 
The detailed coding scheme is presented in Table S3. 

The reliability of the coded data was assessed by calculating inter-rater reliability (hereafter: IRR) with ‘irr’ in R (R Core Team, 
2017) using Cohen’s Kappa (Cohen, 1960). IRR was assessed three times in total. A random transcription was selected for the first IRR- 
assessment. IRR was first calculated for the selection of relevant statements. Subsequently, IRR on the level of situation awareness at 
which the statement was to be judged was calculated only for those statements on which agreement on relevance was found. Likewise, 
IRR on correctness of the statement was calculated only for statements on which both relevance and level of situation awareness were 
in agreement. As a moderate inter-rater reliability of 0.59–0.61 was obtained in the study of Rose et al. (2019), the minimum required 
inter-rater reliability for each variable under review was set at 0.59. This might seem relatively low compared to other types of coded 
data, but note that inter-rater reliability for this coding procedure is not only about how to code the statements but also what should be 
coded (Rose et al., 2019), which makes this coding procedure inherently different from most other coding procedures. In the first two 
IRR-assessments, coders discussed and refined their interpretation of the variables. This resulted in the IRR-assessment meeting the 
aforementioned performance criteria in the first and/or second assessment. Subsequently, the remaining transcriptions were 
distributed across the coders. The last transcription was coded by both coders in the third and last IRR-assessment. The performance 
criteria were met again, suggesting that the IRR was consistently sufficient throughout the coding process. 

The coded think-aloud data were analyzed using zero-inflated regression models, because count data, such as the coded data in the 
current study, exhibit relatively many zero observations and often have a non-normal distribution (Greene et al., 2011; Zeileis et al., 
2008). Thus, generalized linear models (GLMs) with zero-inflation implemented were applied using ‘glmmADMB’ in R to analyze the 
coded think-aloud data. This specific implementation was chosen as it is suitable for mixed models (which is not the case for ‘standard’ 
zero-inflated models in R such as ‘zeroinfl’). These mixed zero-inflated regression models were applied to test the effect of commu-
nicating information supporting anticipation (Base conditions versus Anticip conditions; Anticipatory information), the effect of the 
focus of the communicated information which was either on automation reliability or the driver task (AR conditions versus DT 
condition; Information focus), and the interaction between these two factors. This was tested for statements per level of situation 
awareness and on all levels combined, both for correct and incorrect statements. Participant was added as a random factor to all 
models. Distributions that are theoretically possible for zero-inflated data were fitted to the data on correct statements and to the data 
on incorrect statements. The best fits were applied to the models, resulting in applying models with a poisson distribution for data on 
correct statements and with a negative binomial distribution for data on incorrect statements. The resulting models were evaluated 
with Wald Chi-Squared (W) tests and p-values to assess the statistical significance of the effects. Marginal and conditional R2 were 
calculated using the function ‘r2′ from the package ‘performance’ in R. Marginal R2 expresses the proportion of variance explained by 
the fixed factors and conditional R2 expresses the proportion of variance explained by both the fixed and random factors (Nakagawa & 
Schielzeth, 2012). 

Regarding questionnaire data, items on validated questionnaires (i.e., NASA-TLX, System Usability Scale, automation-induced 
complacency scale, ITC-SOPI, trust in automation, trust in technology) were scored as recommended in the literature. Yet, the 
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items of the NASA-TLX and the automation-induced complacency scale were separately analyzed, as the scales were shortened for the 
purpose of the current experiment. For analyses on items with a rating scale testing the effect of Anticipatory information, Information 
focus, and the interaction between the two, data was analyzed using linear mixed-effects models using ‘LME4′ in R with participant as 
random factor. Regarding analyses on preferences, effects on rankings were tested by fitting a cumulative link mixed model using the 
R-package ‘ordinal’, again Anticipatory information and Information focus were added as fixed factors to the model and participant 
was added as a random factor. To explore what aspects affects preferences, scores on subjective understandability, usability, com-
placency and workload for each participant’s most preferred concept were compared to the scores for each participant’s least preferred 
concept using linear mixed-effects models with participant as random factor. Additionally, individual differences related to the 
preferences were explored by comparing age, years of owning an vehicle with automated functionalities, years of having a driver’s 
license, trust in automation, trust in technology and driving enjoyment in participants preferring a Base concept with participants 
preferring a Anticip concept and in participants preferring an AF concept with participants preferring a DT concept. These comparisons 
were executed using a linear model. All resulting models for the questionnaire data were evaluated with F tests or Chi-Squared (G2) 
tests (cumulative link mixed models), p-values and (marginal and conditional) R2 to assess the statistical significance of the effects and 
proportion of variance explained by the effects. All effects were tested against a significance level of p <.050. 

3. Results and discussion 

3.1. Think-aloud 

Transcription of all participant responses resulted in a total of 2146 statements. Transcriptions indicated that participants focused 
on the presented simulations and did not require reminders to think-aloud. All statements were related to the experimental materials, 
except for two statements that lasted no longer than a few seconds. One participant noted there was a mosquito in the vehicle (which in 
reality was situated in the room in which the participant was located). Another participant mentioned children returning to school 
(who were not present in the room) at the start of the first condition. This participant complied with the think-aloud protocol after 
having been reminded once to focus on what could be seen in the simulation. 

Out of the total of 2146 statements 947 statements were coded as relevant statements, which in turn proved to be correct in 731 
(77.19%) cases and incorrect in 216 (22.81%) cases. Of the 947 relevant statements, 161 were coded as ’perception’ in terms of 
situation awareness level, of which 99.38% were correct. Another 596 were coded as ’comprehension’ (67.62% correct), and 190 were 
coded as ’projection’ (88.42% correct). 

Regarding the effects of the different conditions, results of the statistical analyses testing the effect of Information focus (AR versus 
DT) and Anticipatory information (Base versus Anticip), and the interaction between the two on correct and incorrect statements in 
total and on the three levels of situation awareness are presented in Table 1. The average number of statements on each level of 
situation awareness per condition are presented in Fig. 2 (correct statements on the left, incorrect statements on the right). 

The results of the statistical tests presented in Table 1 demonstrate that, depending on the level of situation awareness, correct 
statements were affected by Information focus, Anticipatory information and/or an interaction between the two. Considering the effect 
of Information focus, more correct statements on a projection level occurred in the AR conditions compared to the DT conditions. 
Considering the effect of Anticipatory information, the Anticip conditions, compared to the Base conditions, led to a smaller number of 
correct statements on a comprehension level, but to a larger number of correct statements on a projection level and in total on all levels 
combined. The interactions between Information focus and Anticipatory information indicate a larger increase in number of correct 
perception statements from DT_Base to DT_Anticip than from AR_Base to AR_Anticip. Yet, the increase in number of correct projection 
statements from the Base to the Anticip conditions was larger for AR than for DT. Regarding the effect of anticipatory information, it 
appears that anticipatory information overall results in more correct statements, which is especially driven by the increase in correct 
projection statements. Although anticipatory information resulted in less correct comprehension statements, the effect size mR2 in-
dicates the increase in correct projection statements is considerably larger (mR2 = 0.84) than the decrease in correct comprehension 

Table 1 
Outcomes of the mixed effects zero-inflated regression models for correct and incorrect statements for a perception, comprehension and projection 
level individually and for all levels combined (mR2 is marginal R2, cR2 is conditional R2).   

Information focus Anticipatory information Information focus * Anticipatory information 

CORRECT W p mR2/cR2 W p mR2/cR2 W p mR2/cR2 

Total 0.00 0.971 0.00/0.51 16.72 <0.001 0.12/0.57 0.75 0.386 0.12/0.57 
Perception 2.59 0.108 0.02/0.55 0.68 0.410 0.01/0.55 5.25 0.022 0.06/0.58 
Comprehension 1.09 0.296 0.01/0.34 8.01 0.005 0.08/0.39 3.27 0.070 0.13/0.42 
Projection 15.80 <0.001 0.33/0.52 59.91 <0.001 0.84/0.88 9.31 0.002 0.86/0.91  

INCORRECT W p mR2/cR2 W p  W p mR2/cR2 

Total 16.60 <0.001 – 0.52 0.470 – 1.11 0.293 – 
Perception Models failed to converge due to the low occurrence of incorrect statements on a perception level (total number of incorrect statements was 2) 
Comprehension 20.05 <0.001 – 2.74 0.098 – 0.28 0.597 – 
Projection 0.00 0.998 – 7.21 0.007 – 0.30 0.581 –  
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statements (mR2 = 0.08). The decrease in correct comprehension statements with anticipatory information can also be driven by the 
fact that grouping of statements was performed based on temporal adjacency and that the highest level of situational awareness was 
coded. For example, a phrase uttered at a comprehension level followed directly by a phrase at a projection level would be considered 
as a single statement on a projection level. All in all, we view the large increase in correct projection statements with anticipatory 
information as more telling for the overall degree of situation awareness than the small decrease in correct comprehension statements. 
Additionally, projection statements are more often correct when information on automation reliability is presented compared to in-
formation on the driver task. Moreover, anticipatory information combined with automation reliability appears to support correct 
projection the most, highlighting the potential value of combining the two. 

Regarding the statistical tests for the incorrect statements, models failed to converge for statements on a perception level as the 
number of incorrect statements on a perception level were averaging around 0. Moreover, for all models on incorrect statements R2 

values were unreliable and therefore these values are omitted. The results presented in Table 1 demonstrate that more incorrect 
statements were uttered on a comprehension level and in total by participants in the DT conditions compared to the AR conditions. 
Additionally, more incorrect projection statements occurred during the Anticip conditions compared to the Base conditions. These 
findings indicate that information on automation reliability was better understood than information on the driver task. The finding 
that more incorrect projection statements occurred with anticipatory information, probably reflects that in general more projection 
statements were made with anticipatory information (N = 173) than without such information (N = 57) regardless of correctness. Note 
also that there are considerable more correct projection statements (N = 168) than incorrect ones (N = 22), and that the absolute 
increase in number of correct statements from the baseline to the conditions with anticipatory information (increase of 140) was 
considerably higher than the increase in number of incorrect statements (increase of 16). The results therefore point towards a stronger 
effect of anticipatory information in supporting projection. 

Yet, incorrect statements are of importance to consider, as a misunderstanding of the communicated information can potentially 
have detrimental effects. There were two frequently recurring themes in the incorrect projection statements when receiving antici-
patory information. The first theme regarded participants relating an emoticon (AR condition) or an icon (DT condition) to an incorrect 
action. Typically, the participants thought they had to be more involved with the driving task than intended with the communicated 
information. For example, when the automation reliability is communicated indicating more attention to the driving environment is 
required, but that no take-over is (yet) required: “And now I see that construction work is approaching and then probably I need to take 
over the steering wheel.” The second theme regarded participants not understanding the meaning of a transition icon when they were 
anticipating an upcoming event, for example: “I am seeing a green bar on my windshield, with - I guess - something like fog that I am 
approaching”. In this case the participant was already driving through the fog; the transition icon announced the end of the fog 
approaching. These misinterpretations might be resolved when a driver would have received more information about the HMI or 
would have had more experience with the HMI. Yet, it might be of value to resolve this through enhancing the clarity of this infor-
mation in future (studies on) HMI design. 

Fig. 2. Average number of statements on each situation awareness (SA) level per condition for correct statements (left) and incorrect statements 
(right). Error bars represent ± 1 standard error of the mean. 

A.M. Tinga et al.                                                                                                                                                                                                       



Transportation Research Part F: Psychology and Behaviour 87 (2022) 102–119

112

3.2. Questionnaires 

3.2.1. Spatial presence 
Spatial presence experienced throughout the complete experiment was rated on average with 3.31 (SD = 0.78) on a scale from 1 to 

5. These obtained ratings indicate a similar feeling of presence as in earlier experiments in which participants passively viewed a 360◦

scenario in the laboratory in virtual reality (Tjon et al., 2019). 

3.2.2. Subjective comprehension and usability 
Results on subjective comprehension and usability of the presented information are depicted on the left in Fig. 3. Participants 

indicated to have a better understanding about when they needed to pay attention to the road in the Anticip conditions (M = 3.75, SD 
= 1.16) compared to the Base conditions (M = 3.28, SD = 1.14), F(1, 47) = 5.75, p =.021, marginal R2 = 0.04, and conditional R2 =

0.57. Additionally, participants indicated to have a clearer understanding about what they were allowed to do when they were not 
expected to pay attention to the road in the DT conditions (M = 3.19, SD = 1.40) compared to the AR conditions (M = 1.88, SD = 1.04), 
F(1, 47) = 30.53, p <.001, marginal R2 = 0.22, and conditional R2 = 0.54. It was also indicated that the Anticip conditions (M = 4.19, 
SD = 0.74) better supported understanding about future events (like a road block) compared to the Base conditions (M = 3.72, SD =
1.17), F(1, 47) = 5.47, p =.024, marginal R2 = 0.05, and conditional R2 = 0.37. No other effects of Anticipatory information and 
Information focus, and the interaction between the two are were found on the items measuring subjective comprehension, all F ≤ 3.07, 
p ≥ 0.086, marginal R2 ≤ 0.22, and conditional R2 ≤ 0.66. 

Regarding data on the System Usability Scale, Fig. 3 on the right, a significant main effect for Information focus was found, F(1, 47) 
= 6.56, p =.014, marginal R2 = 0.09, and conditional R2 = 0.10. This effect demonstrated higher average system usability scores for the 
AR conditions (M = 60.31, SD = 19.89) compared to the DT conditions (M = 47.11, SD = 21.56). No effect of Anticipatory information 
or the interaction between the two factors on the System Usability Scale data was found, both F ≤ 0.10, p ≥ 0.757, marginal R2 ≤ 0.09, 
and conditional R2 ≤ 0.10. 

Considering the findings on subjective comprehension and usability together, the findings indicate that anticipatory information 
supported subjective comprehension about when to pay attention to the road and about whether an event would take place. Addi-
tionally, information on the driver task supported subjective comprehension about what tasks were allowed when there was no need to 
pay attention to the road. Yet, participants subjectively considered information on the automation reliability to be overall more usable 
than information on the driver task. 

Fig. 3. Left: Average scores for each item measuring subjective comprehension and usability per condition. ‘Attention timing’ = ‘The information 
system supported my understanding about when I needed to pay attention to the road.’, ‘NDRA type’ = ‘The information system supported my 
understanding about what I was allowed to do at moments when there was no need to pay attention to the road’, ‘Future event’ = ‘The information 
system supported my understanding of future events (like a road block).’ Right: Average system usability as measured by the System Usability Scale. 
Error bars represent ± 1 standard error of the mean. 
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3.2.3. Complacency 
Fig. 4 presents the average scores on each of the items of the complacency scale, thereby providing insight into potential over-

reliance. One out of four items was significantly affected by the experimental conditions. Namely, carefully watching the HMI concepts 
presented in the DT conditions was considered as taking more time away from more important or interesting things (M = 3.78, SD =
0.91) than carefully watching the HMI concepts presented in the AR conditions (M = 3.09, SD = 1.03), F(1, 47) = 8.48, p =.005, 
marginal R2 = 0.11, and conditional R2 = 0.16. No other effects of Anticipatory information and Information focus, and the interaction 
between the two are were found on the items measuring complacency, all F ≤ 1.83, p ≥ 0.183, marginal R2 ≤ 0.12 and conditional R2 

≤ 0.42. The significant effect found for complacency suggests that when communicating on the driver task compared to when 
communicating on automation reliability other things are considered to be more important or interesting. 

3.2.4. Information load 
No significant main nor interaction effects were found on information load as measured by the NASA-TLX, all F ≤ 3.82, p ≥ 0.057, 

marginal R2 ≤ 0.06, and conditional R2 ≤ 0.21. This indicates that experienced information load was unaffected by the different 
conditions, even though more information was presented to the driver in the Anticip compared to the Base conditions. 

3.2.5. Preferences 
No effects of Anticipatory information and Information focus were found on the rankings of the HMI concepts presented in the 

conditions, all G2 ≤ 0.20, p ≥ 0.654, marginal R2 = 0.00, and conditional R2 = 0.00. This finding indicates that generally participants 
did not have a clear preference for specific information. 

Although no clear preference for a specific concept is demonstrated, the question arises whether a preferred concept is related to a 
difference experience of the concept than a non-preferred concept. We compared subjective experiences between participants’ most 
preferred and least preferred concepts, yielding several significant effects. First of all, for the most preferred HMI concept participants 
indicated that it better supported understanding about future events (like a road block) (M = 4.31, SD = 0.60) compared to the least 
preferred concept (M = 3.63, SD = 1.15), F(1, 15) = 7.35, p =.016, marginal R2 = 0.13, and conditional R2 = 0.47. Participants’ most 
preferred concept was also rated higher on the System Usability Scale (M = 63.75, SD = 25.25) compared to the least preferred system 
(M = 39.84, SD = 17.90), F(1, 15) = 9.71, p =.007, marginal R2 = 0.24, and conditional R2 = 0.24. 

Regarding complacency, the most preferred concept took less time away from more important or interesting things (M = 2.94, SD 
= 1.29) than the least preferred concept (M = 4.00, SD = 0.63), F(1, 15) = 8.76, p =.010, marginal R2 = 0.22, and conditional R2 =

0.22. 
Moreover, an exploration of the NASA-TLX subscales revealed that HMI designs that induced the least information load were 

preferred. First, mental workload was rated lower for the most preferred design (M = 2.75, SD = 1.77) compared to the least preferred 
design (M = 4.13, SD = 1.71), F(1, 15) = 6.32, p =.024, marginal R2 = 0.14, conditional R2 = 0.32. Second, temporal demand was 
lower for the most preferred (M = 1.88, SD = 0.89) compared to the least preferred design (M = 2.94, SD = 1.39), F(1, 15) = 6.66, p 
=.021, marginal R2 = 0.18, conditional R2 = 0.18. 

Fig. 4. Average score for the item ‘Takes time away’ (i.e., ‘Carefully watching this information system takes time away from more important or 
interesting things.’) of the complacency scale. Error bars represent ± 1 standard error of the mean. 
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No other effects were found for the relationship on experiences and preferences, all F ≤ 3.95, p ≥ 0.066, marginal R2 ≤ 0.09, and 
conditional R2 ≤ 0.64. 

In addition to the relation between subjective experiences based on the HMI concepts and preferences for those concepts, it was 
explored whether individual differences might play a role in preferring one concept over another. A total of 7 participants preferred a 
concept which communicated information in advance (i.e., AR_Anticip and DT_Anticip), whereas 9 participants expressed a preference 
for a concept which did not communicate such information (i.e., AR_Base and DT_Base). The groups were compared on the following 
variables: age, years of owning an vehicle with automated functionalities, years of having a driver’s license, trust in automation, trust 
in technology, driving enjoyment (including the constructs behavioral intention to use an autonomous car, personal driving enjoy-
ment, perceived enjoyment of driving an autonomous car, perceived traffic safety of an autonomous car, and perceived usefulness of an 
autonomous car. Participants that preferred a Anticip concept had a higher trust in technology (M = 4.42, SD = 0.55) than participants 
that preferred a Base concept (M = 3.96, SD = 0.09), F(1, 14) = 4.65, p =.049, R2 = 0.25, adjusted R2 = 0.20. Differences were also 
demonstrated on driving enjoyment, with participants preferring a Anticip concept having a higher intention to use an autonomous car 
when it’s available (mean intention to use = 4.10, SD = 0.92), expecting a higher traffic safety of autonomous cars (mean perceived 
safety = 4.37, SD = 0.72) and expecting a higher perceived usefulness of autonomous cars (mean perceived usefulness = 4.59, SD =
0.59) than participants preferring a Base concept (mean intention to use = 2.88, SD = 0.83; mean perceived safety = 3.43, SD = 0.83; 
mean perceived usefulness = 3.48, SD = 1.29), F(1, 14) = 7.65, p =.015, R2 = 0.35, adjusted R2 = 0.31 and F(1, 14) = 5.82, p =.030, R2 

= 0.29, adjusted R2 = 0.24 and F(1, 14) = 5.35, p =.036, R2 = 0.28, adjusted R2 = 0.23, respectively. No other significant differences 
were found, all F ≤ 3.21, p ≥ 0.095, R2 ≤ 0.19, adjusted R2 ≤ 0.13. 

In contrast, no significant differences were found for these variables related to individual differences for participants preferring a 
concept communicating on automation fitness (i.e., AR_Base and AR_Anticip, N = 8) compared to participants preferring a concept 
communicating on driver task (i.e., DT_Base and DT_Anticip, N = 8), all F ≤ 2.23, p ≥ 0.158, R2 ≤ 0.14, adjusted R2 ≤ 0.08. 

The results on the preference data suggest that although participants overall did not have a clear preference for a specific concept, 
preferences appear to be related to whether the concept supported subjective understanding about event occurrences, subjective 
system usability, whether the concept is thought to take time away from more important or interesting things, and the subjective 
information load induced by the concept. Additionally, anticipatory information appears to be preferred by participants that have a 
higher trust in technology, a higher intention to use an autonomous car and that expect a higher traffic safety and usefulness of 
autonomous cars. 

4. General discussion 

The current study examined HMI design to continuously support supervision and NDRA self-regulation during automated driving. 
Specifically, effects were examined of HMI design 1) communication on the automation reliability or on the required/allowed driver 
task, and 2) presenting information supporting anticipation (including information on the available time budget, the upcoming mode, 
and reasons for changing to the upcoming mode). In order to assess these effects, participants were presented with simulated drives in 
which they received different types of information from an HMI in the simulated car. Participants were thinking aloud during the 
simulated drives and answered questions about their experience and preferences after the simulated drives. The subsequent analysis 
focused on understandability, usability and user preferences as a result of the manipulations of information focus and (presence of) 
anticipatory information. In the next sections a general discussion on the effects as described in the results and discussion section will 
be provided. 

4.1. Information focus 

The think-aloud data demonstrated that information on automation reliability was better understood and better supported 
anticipation of upcoming changes (as demonstrated by an interaction effect for correct projection statements) than information on the 
driver task. Although communicating on the driver task facilitated participants’ subjective understanding about what they were 
allowed to do when they were not expected to pay attention to the road, it was found that information on automation reliability was 
rated higher by participants on subjective system usability.. Moreover, information on the driver task is potentially more likely to 
induce overreliance as participants considered other things to be more important or interesting than this type of information. Infor-
mation focus did not impact information load, or preference. 

The demonstrated beneficial effects of providing continuous information on automation reliability are in line with findings of 
previous user studies (Beggiato et al., 2015; Feierle et al., 2020; Hecht et al., 2019) and previous driving simulator studies (Beller et al., 
2013; Helldin et al., 2013; Large et al., 2017; Stockert et al., 2015). There are also previous studies (Lu et al., 2019; van den Beukel 
et al., 2016; Yang et al., 2018) that suggest providing information on the desired driver task can be beneficial for increasing situational 
awareness. The current study suggests, however, that it is better to inform on automation reliability than on the desired driver task. 
Yet, these previous studies are different from the current study in an important respect. The current study provided specific infor-
mation about the driver which not only indicated when the driver needed to pay attention but also when NDRA engagement was 
possible including which specific NDRA would be appropriate. Previous studies communicated when supervision was needed, but not 
which specific NDRA was allowed when there was no need for supervision. Therefore, providing information about when the driver 
should take on their supervising task can still be beneficial, especially to prepare the driver for a (potential) take-over. Yet, the current 
study suggests that informing on a specific NDRA might not be beneficial. 
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4.2. Anticipatory information 

The think-aloud data demonstrated that anticipatory information was associated with an enhanced general situational awareness 
(i.e., total correct statements), and specifically supported anticipation of upcoming changes (i.e., correct projection statements). 
Participants also indicated subjectively that anticipatory information supported their understanding about when they needed to pay 
attention to the road and that it supported their understanding about future events (such as a road block). The beneficial effects of 
communicating anticipatory information were attained without impacting information load and complacency, suggesting that even 
though more information is presented to the driver, this is not causing any information overload or overreliance. Although anticipatory 
information had beneficial effects, this information was not subjectively preferred over not receiving such information. 

It is important to realize that anticipatory information also led to more misinterpretations in anticipating upcoming changes (i.e., 
incorrect projection statements). Yet, the beneficial effects of anticipatory information were considerably larger. It is, however, 
important to enhance the clarity of the anticipatory information in future research to prevent such misinterpretations. 

The demonstrated beneficial effects of anticipatory information are in line with research suggesting the value of communicating 
time budgets (Beggiato et al., 2015; Hecht, Kratzert, et al., 2020; Wandtner, 2018) and (reasons for) changes in automation reliability 
(Carsten & Martens, 2019; Körber et al., 2018; Martens & van den Beukel, 2013; Richardson et al., 2018). Although we included 
information on the time left in a current mode as anticipatory information, it could alternatively be valuable to provide information on 
the remaining distance in a current mode. For example, Holländer and Pfleging (2018) and Richardson et al. (2018) found that in-
formation on distance until next take-over was preferred to and considered to be more useful than information on time until next take- 
over. In Holländer and Pfleging (2018), however, time information was provided by using a digital countdown indicating the time 
budget very specifically in minutes and seconds while information on distance was provided by a bar that depleted with less distance 
until a take-over. Therefore, in the study by Holländer and Pfleging (2018) the demonstrated effect could also represent that more 
abstract information on remaining time and/or distance is preferred to more precise information. In Richardson et al. (2018) both time 
and distance information was communicated specifically in seconds or meters respectively. Future studies could examine how to best 
communicate the time budget, including whether it might be better to replace time with distance information. Additionally, it has even 
been suggested that HMI design could aid in self-regulation by also providing information about automation reliability over the 
complete trip, rather than just providing information on the current or near future automation status (Hecht, Sievers, et al., 2020). The 
effect of such information could be examined in future studies. 

It is important to also consider potential implementation of the current findings in real-world settings. For example, the take-over 
paradigm employed in many empirical studies has been criticized as not being sufficiently grounded in real-life issues and hindering 
out-of-the-box research (de Winter et al., 2021). Providing a driver with anticipatory information on automation reliability actually 
has the potential to change the standard studied take-over situation in which a take-over request is only provided maximally 15 s in 
advance. Such small take-over times are thought to be unrealistic in practice and informing a driver a longer time in advance for such a 
change is probably required (de Winter et al., 2021). When implementing communication of anticipatory information the question 
arises whether such information is available to be communicated well in advance. This depends largely on how well the automation is 
able to predict upcoming changes. Initially, predictions might be based on comparing the automation’s ODD with the expected cir-
cumstances on the selected route. These expected circumstances can be derived from, for example, HD maps and real-time weather and 
traffic information. In the European Union’s Horizon 2020 project ‘MEDIATOR’ (No 814735), involving both researchers and experts 
from industry, first steps in deriving such predictions in such a way have already been taken (Cleij et al., 2020; Mano et al., 2022). In 
this project a system is being developed that mediates between driver and automation, taking into account who is fittest to drive. 
Algorithms that derive the required automation time budgets in real-time will be implemented in prototypes and tested in both 
simulator and on-road studies. Such studies will allow for expanding and validating the current study’s findings. The accuracy of time 
budgets can potentially be further improved in the future by cooperative perception technology that extends sensor ranges by sharing 
and combining sensor data of multiple vehicles using vehicle to vehicle communication (Kim et al., 2013; Naujoks et al., 2015, 2017; 
Rauch et al., 2012; Yoon et al., 2021). Future work should examine how predictions can best be made to provide the most reliable and 
useful anticipatory information. Moreover, it should be studied how inaccuracies in the predictions affect the effectiveness of providing 
this information. For example, in the MEDIATOR project the time left in a current mode is foreseen as a likely, but not a certain, time 
window (Cleij et al., 2020). 

4.3. Individual differences and preferences 

When considering the proportion of variance that is explained by the effects examined in the current study it becomes apparent that 
in many instances individual differences also play a substantial role. To be precise, the explained variance increases on average when 
the variance of participant as random factor was considered in addition to the main variables as fixed factors. In line with Cohen (1988) 
that defines an R2 value equal and above 0.26 as reflecting a large effect, 5 effects in the current study (all related to think-aloud data) 
would be considered as explaining a large proportion of variance without accounting for individual differences, whereas more than 20 
effects would be considered as explaining a large proportion of variance when individual differences are accounted for. Even though 
individual differences appear to be of importance, the effect of anticipatory information on anticipation of upcoming changes as 
demonstrated for the think-aloud data was so strong (marginal R2 = 0.84) that additionally considering individual differences did not 
account for much extra variance (conditional R2 = 0.88). This finding highlights the importance of communicating information sup-
porting predictability. 

The exploratory analyses on preferences and individual differences also demonstrated that individual differences play a role. No 
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clear preference for a specific HMI concept was found. Yet, overall concepts were preferred that were subjectively experienced as 
supporting understanding about event occurrences, as having a better system usability, as taking less time away from more important 
or interesting things, and as inducing less subjective information load. Moreover, anticipatory information appears to be preferred by 
people that have a higher trust in technology, a higher intention to use an autonomous car and that expect a higher traffic safety and 
usefulness of autonomous cars. Potentially, the subjective appreciation of anticipatory information might be supported by making 
people aware about the potential safety benefits and usefulness of autonomous cars and the trustworthiness of technology. Yet, as the 
role of individual differences in preferences was examined in the current study in an exploratory fashion, these effects of individual 
differences (in subjective experiences) and what the impact would be of intervening on this should be examined in more detail in future 
work. 

4.4. Limitations and recommendations for future research 

In the interpretation of the current findings it is important to take into account that the current study concerned an exploratory 
online experiment with a focus on examining understandability, usability and user preferences. Although the experiment took place 
online, the methodology of the current work was matched to previous think-aloud studies as much as possible, including an experi-
menter virtually accompanying and guiding each session. No interruptions during the session were observed (such as people entering 
the room), suggesting that the instructions sent prior to the experiment to minimize potential distractions were followed. A total of 
99.9% of the think-aloud transcriptions concerned statements about the experimental materials, suggesting that participants focused 
on the experiment during the online sessions. Moreover, the current study suggests a similar feeling of presence as in earlier exper-
iments in which participants passively viewed a 360◦ scenario in the laboratory in virtual reality (Tjon et al., 2019). These findings 
support the validity of the current study’s methodology. While the authors believe that the validity will increase with more realistic 
settings, these findings suggest the current study’s methodology could be employed in future online studies for exploring the effec-
tiveness of HMI designs. We would recommend the experimenter to be virtually present at all times, to send instructions beforehand to 
minimize potential distractions, and to ensure a stable internet connection with high sound quality, such that experimental materials 
are presented without interference and to facilitate subsequent transcriptions. Yet, further validation of this online methodology would 
be valuable, by for example comparing data collected online to data collected in the lab. 

Even though it was demonstrated that the presented scenarios induced a feeling of presence comparable to earlier work in virtual 
reality (Tjon et al., 2019), examining the effectiveness of communicating anticipatory information and information on automation 
reliability in a more immersive setting, such as a simulator or virtual reality experiment, would be an important next step. Such an 
immersive setting would allow for additionally examining the effect of communicating this information on actual driver behavior 
indicative of supervision and NDRA self-regulation, including take-overs. Moreover, the current study communicated four reliability 
modes of automated driving, reflecting both automation reliability and required and allowed driver tasks, instead of just two (on 
versus off) or three modes (on versus off versus monitoring). Communicating effectively on multiple reliability modes could be an 
enabler for introducing SAE Level 3. Approval was recently obtained for an SAE Level 3 system in Germany, the Mercedes traffic jam 
assist, which takes over the driving task in highway traffic jam situations (Templeton, 2021). With such a system, the driver will have a 
supervisory/monitoring role and should remain on standby, ready to take over at any time. The driver will, however, also have the 
opportunity to engage in NDRAs, which could potentially hinder the driver’s supervisory responsibilities in the driving task. It is 
currently unclear whether SAE Level 3 systems will ever be suitable for urban settings, where the highly dynamic environment requires 
ample time for the driver to regain situation awareness before safely taking over control. To avoid risks, some vehicle manufactures 
have proposed to skip SAE Level 3 altogether, and to jump from SAE Level 2 to SAE Level 4 (Schartmüller et al., 2019). Yet, tech-
nologically it is challenging to make such a big step at once. An effective distinction in and communication of reliability modes could 
enable drivers to better understand and take on their role in SAE Level 3 and therewith it could potentially support implementation of 
this level of vehicle automation well before fully automated vehicles will be available. This would also mean that the corresponding 
safety benefits and opportunities to collect data on the road to aid the development of automated vehicles are utilized at an earlier 
stage. The current findings suggest the four modes communicated in the current study were understood well, as evidenced by the 
relatively low number of incorrect statements in the think-aloud data overall even though no instructions on the meaning of these 
modes were provided and a lot of changes in modes were occurring in a relatively short period of time. However, a study by Seppelt 
et al. (2019) demonstrated that, when it comes to labels used to communicate different automation modes to the driver, extremes of 
automation driving modes (e.g., ‘no driving automation’ and ‘driverless’) were better understood than levels falling in between those 
extremes (e.g., ‘conditional self-driving’). Therefore, the authors raise the question if the driver’s understanding in this study of 
(communication on) different levels in between the extremes is high enough for safe operation of automated vehicles. Further research, 
using for example a driving simulator or virtual reality, is needed to examine the effects of communicating four different modes on 
actual driving behavior and NDRA self-regulation. 

Future work could also consider examining effects in a larger sample of participants. Although the number of participants in the 
current study is in line with previous research using inferential statistics on think-aloud data, potentially meaningful effects might have 
remained undetected. For example, no effects were found on information load, with all F ≤ 3.82, p ≥ 0.057, marginal R2 ≤ 0.06, and 
conditional R2 ≤ 0.21. This indicates that for information load there was one statistically insignificant effect that could explain 6% of 
the variance by the fixed factors and 21% of the variance by both the fixed and random factors, which could have potentially turned out 
statistically significant with a higher number of participants. 

It might not only be valuable to examine effects in a larger groups of participants, but also in a more varied group of participants, 
especially since the current findings suggest individual differences play a role. Moreover, the current study only included participants 
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that had experience with assisted driving technology. Yet, HMI design should not only be effective for experienced users, but also for 
first-time users. Therefore, future work should examine the generalizability of the reported effects towards novice users. 

Another important aspect to take into account in interpreting the current findings is that HMI implementations different from the 
ones employed in the current study could be applied to provide anticipatory information and/or information on automation reliability. 
It can only be concluded what exact implementation would be most valuable when the effects of implementations covering the po-
tential design space more broadly have been examined. Moreover, including information in addition to anticipatory information and/ 
or information on automation reliability can also be beneficial. For example, providing information on automation behavior and 
automation perception can also support the supervisory role by improving the driver’s understanding of and trust in the automation. 
Reasons for ongoing maneuvers and previews of next maneuvers of the automation and information on detected surrounding vehicles 
were considered to be valuable in Beggiato et al. (2015). In a study by Diels and Thompson (2017) participants with no experience with 
automated driving functionalities also indicated to prefer a visualization of detection and identification of hazards by the automation. 
Diels and Thompson (2017) and Beggiato et al. (2015) both concluded, however, that there is great variance in the need for this type of 
information depending on the level of automation and depending on the amount of experience with and trust in automation. In sit-
uations where this information on automation behavior and automation perception can be valuable it should be examined how this can 
best be combined with information on automation reliability and anticipatory information without inducing information overload. 

5. Conclusion 

All in all, the findings of the current study highlight the potential of providing the driver with anticipatory information and in-
formation on automation reliability, and especially a combination between the two, to support supervision and NDRA self-regulation 
through HMI design as long as automated vehicles are not yet fully automated. 
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