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Summary 
 
We explore and develop POD-based deflation methods to accelerate the solution of large-scale linear systems 
resulting from two-phase flow simulation.  
 The techniques here presented collect information from the system in a POD basis, which is later used in a 
deflation scheme. 
The snapshots required to obtain the POD basis are captured in two ways: a moving window approach, where 
the most recently computed solutions are used, and a training phase approach, where a full pre-simulation is run.  
We test this methodology in highly heterogeneous porous media: a full SPE 10 model containing O(10^6) cells, 
and in an academic layered problem presenting a contrast in permeability layers up to 10^6. Among the 
experiments, we study cases including gravity and capillary pressure terms. 
 With the POD-based deflated procedure, we accelerate the convergence of a Preconditioned Conjugate 
Gradient (PCG) method, reducing the required number of iterations to around 10-30 %, i.e., we achieve speed-
ups of factors three to ten. 
 
 



Introduction

For some reservoir simulation problems, difficulties arise when solving the pressure resulting linear
systems, which, depending on the rock or fluid properties, may contain high contrasts in the matrix
coefficients and may become very large. In this work, we explore the use of a new methodology for the
acceleration of the solution of such ill− conditioned systems.

A widely-used approach to speed up the solution of difficult large-scale systems of equations is combin-
ing iterative solvers with preconditioning techniques. The latter, speed up the convergence of the iterative
methods by changing the system into another one with the same solution but a smaller condition number
(Saad et al., 2000). However, in some cases, a small set of extreme eigenvalues is responsible of the
large condition number and preconditioning techniques are no longer effective.

Therefore, new techniques have to be developed, that together with the usual preconditioned iterative
methods can find approximate solutions in a faster way. Recently, Proper Orthogonal Decomposition
(POD) methods (Markovinović and Jansen, 2006; Astrid et al., 2011; Pasetto et al., 2017; Diaz-Cortes
et al., 2018) and deflation techniques (Vuik et al., 1999, 2002; Diaz-Cortes et al., 2016) based on system
information, have been studied to accelerate iterative methods for large and ill-conditioned problems.
An extensive literature exists, with new and innovative ways of approaching deflation and POD method-
ologies.

Deflation techniques can be used to remove the influence of extreme eigenvalues by creating a subspace
where they are no longer present, and an approximate solution can be found in a faster way. For an
optimal performance, it is necessary to find good deflation vectors that contain most of the system’s
variability. If a good selection is made, we can obtain an important decrease in the total simulation time,
with only a small increase in the required computing time per iteration but a significant reduction of the
number of iterations.

Currently, the selection of the deflation vectors is mainly based on some standard approaches: approx-
imated eigenvectors, recycling solutions (Clemens et al., 2004; Diaz-Cortes et al., 2018), subdomain
deflation vectors (Vuik et al., 2002) and multigrid and multilevel-based deflation matrices (Tang et al.,
2009; Smith et al., 1996). However, a good selection of deflation vectors is problem-dependent, which
implies the need of finding good deflation vectors for each kind of problem.

POD methods are based on the collection of a series of snapshots, i.e., solutions of the system with
slightly different characteristics, from which essential system information will be condensed in a basis
that can accurately represent the system. Acceleration with POD methods has been approached with
diverse ways of collecting and recycling the information.

Some state-of-the-art POD acceleration strategies can be found in, e.g. Astrid et al. (2011), who propose
the capture of system information in an offline phase for a later reuse, accelerating problems with slightly
modified parameters in a smaller subspace created with this basis. This approach is particularly useful
for optimization or history-matching problems where multiple very similar systems need to be solved.
Alternatively, Markovinović and Jansen (2006) propose using the solution computed with POD to find a
more accurate initial guess, while Pasetto et al. (2017) construct a preconditioner based on the reduced
model for the acceleration of a Krylov-subspace iterative method.

Combining the strength of POD and deflation methods could lead to even higher acceleration factors and
it could become a general way to select deflation vectors. In this work we introduce this acceleration
approach, to which we refer to as a POD-based deflation method, and we study its applicability and
properties.
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Ill-conditioned linear systems in reservoir simulation

We consider the solution of systems of linear equations resulting from the iterative (Newton-based) solu-
tion of spatially and temporally discretized partial differential equations, as used in reservoir simulation.
In particular we consider immiscible two-phase (oil/water) flow, including gravity and capillary forces.
We use the fractional flow formulation to decouple pressure from saturation and we solve the resulting
system with sequential schemes. To obtain the linear pressure system and to solve the transport equation
we use the Matlab Reservoir Simulation Toolbox (MRST, Lie (2013)).

In many cases, reservoir simulation involves large and highly heterogeneous problems, i.e., problems
with large variations in the permeability coefficients Kα , also known as ill-conditioned problems, which
lead to large computing times. Furthermore, if we have a time-varying problem, we must compute a
large number of simulations, which makes the solution of the problem very expensive.

Sometimes, the solution of large and ill-conditioned linear systems is only possible with iterative meth-
ods, and new ways to overcome the difficulties resulting from strong heterogeneities to solve such sys-
tems are required. In this work we explore and develop a new methodology for the solution of these
problems. The technique here introduced is based on some well-known methodologies commonly used
to solve reservoir simulation problems. In the next section we give a brief overview of these methods.

Solution methods for linear systems

Iterative techniques are preferred over direct methods to approximate the solution of ill-conditioned
and large sparse linear systems, and the Conjugate Gradient (CG) method preconditioned with the In-
complete Cholesky (IC) factorization is a popular choice to solve Symmetric Positive Definite (SPD)
systems, that usually appear in reservoir simulation. In this section we present this method together with
some acceleration techniques.

The Conjugate Gradient (CG) method (der Vorst and Dekker, 1988; Kahl and Rittich, 2017), is a
Krylov subspace method (der Vorst, 2003; Golub and Loan, 1996) used for SPD matrices, that searches
for approximate solutions, xk, in directions that minimize the error, ek = ||x− xk||A, in the A−norm,
being x the true solution. The implementation of this method is given in Algorithm 1, and an upper
bound for the error is presented in Equation (1).

Algorithm 1 Conjugate Gradient (CG) method, solving Ax = b.
Give an initial guess x0.
Compute r0 = b−Ax0, and set p0 = r0.
for k = 0, ..., until convergence do

wk = Apk

αk =
(rk,rk)
(wk,pk)

xk+1 = xk +αkpk
rk+1 = rk−αkwk

βk =
(rk+1,rk+1)
(rk,rk)

pk+1 = rk+1 +βkpk
end for

||x−xk+1||A ≤ 2||x−x0||A

(√
κ2(A)−1√
κ2(A)+1

)k+1

, κ2(A) =
λmax

λmin
. (1)

The convergence of the CG method is related to the condition number, κ2(A), see Equation (1), which
depends on the eigenvalues of the system matrix. Therefore, reducing the condition number of the matrix
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A results in a better performance. As the condition number of an SPD matrix is related to the largest
and smallest eigenvalues of the matrix, a reduction can be obtained by clustering the spectrum, i.e., by
putting together the extreme eigenvalues, or by removing them from the spectrum. In the next section,
we introduce some acceleration techniques here implemented to attain this reduction. When iterative
methods do not achieve convergence in a reasonable amount of time, acceleration of these methods
is necessary. In this section, we present some basic information on preconditioners, together with a
description of the deflation method, which are the foundations for the acceleration methods implemented
in this work.

Preconditioning. Iterative methods can be accelerated by modifying the spectrum of the system,
σ(A). With preconditioning strategies, the original system is multiplied by a matrix M−1 that clus-
ters the spectrum and reduces κ accordingly (Aubry et al., 2008; Saad et al., 2000).

κ(M−1A) =
λmax(M−1A)

λmin(M−1A)
< κ(A). (2)

For this methods to be effective, the matrix M should approximate A, and M−1 must be cheap to com-
pute, and the resulting preconditioned system,

M−1Ax = M−1b, (3)

should have the same solution as the original system.

Some common choices of preconditioners are based on the LU factorization, M = LU which, for SPD
systems, becomes the Incomplete Cholesky (IC) factorization M = L0LT

0 . For the CG method, IC is
commonly used, and the convergence bound of the preconditioned system is given by:

||x−xk+1||A ≤ 2||x−x0||A

(√
κ2(M−1A)−1√
κ2(M−1A)+1

)k+1

. (4)

Even when the spectrum of a preconditioned system is more favorable, a few eigenvalues can, nonethe-
less, spoil the performance of the iterative method. Deflation techniques involve a further reduction in
the condition number. This reduction is attained by removing some of the extreme eigenvalues hamper-
ing the solver’s convergence by making use of available system information.

Deflation. To apply the deflation methodology, we need to find a set of de f lation or pro jection vec-
tors, that will be used for the construction of the deflation-subspace matrix Z ∈ Rn×m, such that, the
effect of extreme eigenvalues on the convergence of an iterative method is annihilated (Vuik et al., 1999;
Löhner et al., 2011). Given an SPD matrix A∈Rn×n, the deflation matrix P∈Rn×n is defined as follows
(Tang, 2008; Tang et al., 2009):

P = I−AQ, Q = ZE−1ZT , E = ZT AZ, (5)

where, the invertible matrix E is known as the Galerkin or coarse matrix. To obtain the solution of a
linear system Ax = b with deflation procedures, it is necessary to solve the deflated system: PAx̂ = Pb
for the deflated solution x̂, which is related to the original system solution x as (Tang, 2008; Diaz-Cortes
et al., 2018):

x = Qb+PT x̂.
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The deflated linear system can also be preconditioned by an SPD matrix M, and the error of this precon-
ditioned deflated system for the kth iteration is bounded by:

||x−xk||A ≤ 2||x−x0||A

(√
κe f f (M−1PA)−1√
κe f f (M−1PA)+1

)k

,

were κe f f =
λmax(M−1PA)
λmin(M−1PA)

is the effective condition number and λmin(M−1PA) is the smallest non-zero

eigenvalue of M−1PA.

The main challenge of deflation methodologies is to select a set of vectors that effectively capture system
information and reduce the condition number efficiently. Our proposal is to base the selection of the vec-
tors on POD basis vectors. To better understand this method, a brief introduction to POD is presented in
the next section, followed by some state-of-the-art applications of this method and deflation techniques,
together with some common choices of deflation vectors. Finally we give a detailed description of the
methodology here introduced.

Proper Orthogonal Decomposition (POD). With the POD method, a high-order model is projected
onto a space spanned by a small set of orthonormal basis vectors. These basis vectors, {ψ j}p

j=1, are p
eigenvectors corresponding to the largest eigenvalues {σ j}p

j=1 of the data snapshot correlation matrix R.

R :=
1
p

XXT ≡ 1
p

p

∑
i=1

xixT
i , X := [x1,x2, ...xp], (6)

where X∈Rn×p is the matrix containing a series of m previously obtained snapshots. The p eigenvectors
contain almost all the variability of the snapshots. Usually, they are chosen as the eigenvectors of the
maximal number, p, of eigenvalues, σ , satisfying:

∑
p
j=1 σ j

∑
p
j=1 σ j

≤ α, 0 < α ≤ 11, (7)

with α close to 1 (Markovinović and Jansen, 2006).

Sometimes, the snapshots are averaged, xav =
1
p ∑

p
j=1 x j, and the average is substracted from the original

set of snapshots, x̄ j = x j−xav. This results in the covariance matrix

R̄ :=
1
p

X̄X̄T ≡ 1
p

p

∑
i=1

x̄ix̄T
i , X̄ := [x̄1, x̄2, ...x̄p], (8)

which is the matrix used throughout this work.

POD-based deflation method. In this work, we develop a methodology that combines deflation tech-
niques with POD to further accelerate the solution of iterative methods, exploiting in this way the main
advantages of both methods: with POD we obtain the most relevant system information in a basis used
as a subspace deflation matrix, Z, to annihilate the effect of extreme eigenvalues in a deflation procedure.

To obtain the basis, a set of snapshots has to be collected; the acquisition of the snapshots is done using
two different schemes:

i. Moving window approach: the snapshots are captured ’on-the-fly’, i.e., they are the solutions of

1Here σ j are ordered from large (σ1) to small (σp).
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the system obtained during the previous time steps. The first p time steps are computed with
the CG method preconditioned with IC, and with these snapshots, the POD basis is obtained and
used as deflation-subspace matrix to compute the next solutions with the deflated preconditioned
CG method (DICCG). The basis is updated at every time step. The pseudo-code is presented in
Algorithm 3.

ii. Training phase approach: a full simulation is run, where the right-hand sides (rhs) are randomly
varied by changing the pressure in the production wells, and the solutions of this simulation,
obtained with the ICCG method, are used as snapshots to compute the POD basis. This basis is
used as deflation-subspace matrix to solve diverse problems with similar characteristics, but fixed
well pressures. The pseudocode is given in Algorithm 4.

Algorithm 2 Computing the POD basis from a set of snapshots.
Given a set of snapshots,

X1:p = {x1,x2, ...,xp}, where, Xa:b := {xa,xa+1, ...,xb}
compute the average value of the set,

xav =
1
p ∑

p
j=1 x j

substract the average from the original set,
x̄ j = x j−xav

construct the covariance matrix,
R̄ := 1

p X̄X̄T , X̄1:p = {x̄1, x̄2, ..., x̄p}
obtain the SVD of the covariance matrix,

VDVT = R̄
construct the basis (Ψ) with the eigenvectors (vi ∈ V) corresponding to the p largest eigenvalues
(λi ∈ diag(D)),

Ψ1:p = {v1, ...,vp}.

Algorithm 3 Deflation, moving window variant, solving Atxt = bt .
Compute the solution of the first p time steps with ICCG.
for t = 1, ..., p do

xt = A−1
t bt

end for
Compute the POD basis from collected the snapshots, Algorithm 2.

Z = Ψ1:p = [v1, ...,vp]
Compute the solution of the remaining time steps with DICCG.
for t = p+1, ..., steps do

xt = A−1
t bt

Update the POD basis with the recently computed solution, Algorithm 2.
Z = Ψt−p+1:t = [vt−p+1, ...,vp]

end for
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Algorithm 4 Deflation, training phase variant, Atxt = bt .
Run a training phase simulation with ICCG varying randomly the producer’s pressure in a range
[p1, p2], i.e., bt ∈ [b1,b2],
for t = 1, ..., steps do

xt = A−1
t bt , bt = rand, rand ∈ [b1,b2]

end for
X1:steps = {x1,x2, ...,xsteps}

Compute the POD basis from the snapshots, Algorithm 2,
Z = Ψ1:p = {v1, ...,vp}

Run various simulation with fixed pressure in the wells using DICCG,
for t = 1, ..., steps do

xt = A−1
t bt

end for

We study acceleration of linear systems resulting from simulation of water flooding in highly heteroge-
neous porous media. To achieve this acceleration, we use the POD-based deflation methodology, with
the above-mentioned approaches. We analyze the performance of the method for diverse cases, includ-
ing 2D and 3D problems, gravity and capillary pressure terms. These examples are presented in the
following section.

Experiments

In this section, we present a series of experiments were we test the deflation method with a POD basis
as subspace-deflation matrix. We study water flooding problems in a highly heterogeneous 2D and 3D
reservoirs for immiscible fluids (oil and water). For the 3D case, we include gravity terms.

Model problem. We model water flooding in a reservoir initially filled with oil. The test cases are an
academic layered problem and the SPE 10 benchmark (Christie and Blunt, 2001), presenting a contrast
in permeability coefficients up to O(107).

We focus on the solution of systems of linear equations for the pressure, resulting from the discretiza-
tion of the governing partial differential equations. We use the fractional flow formulation to decouple
pressure from saturation and we solve the resulting system with sequential schemes. To obtain the linear
pressure system and to solve the transport equation we use the Matlab Reservoir Simulation Toolbox
(MRST, Lie (2013)) .

Transport solver. We use an implicit transport solver combined with an aggregation-based algebraic
multigrid (AGMG) method (Notay, 2010; Napov and Notay, 2012; Notay, 2012) implemented in MRST
to solve the transport equation.

Pressure solver. For the solution of the linear pressure equation, we implement the Deflated Pre-
conditioned Conjugate Gradient method, with IC as preconditioner (DICCG). A POD basis is used as
deflation-subspace matrix. We compare the results with the non-deflated method, ICCG. For each iter-
ation, the computational cost to solve one time step using the ICCG method is 31n for a 2D case, and
39n for a 3D problem of size n. The required flops for the DICCG method using p deflation vectors is
(31+4p)n for 2D and (39+4p)n for 3D cases. This implies that the DICCG method requires ∼ 1+ 4p

30
of ICCG operations for the 2D case, and ∼ 1+ p

10 for the 3D case (see Diaz-Cortes et al. (2017)). In
Table 1 we present the extra work per iteration for the DICCG method when compared with the ICCG
for various number of deflation vectors p.
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Table 1 Extra work per iteration.
Dimension Extra work p = 5 p = 10 p = 20

2D 4d
30 0.7 1.3 2.6

3D d
10 0.5 1 2

Deflation procedures. The deflation-subspace matrix Z consists of a POD basis obtained using two
different approaches: a moving window or a training phase.

Moving window: In this approach, we start with computing a set of p snapshots to obtain a POD basis,
used later as deflation vectors to solve the rest of the time steps using the DICCG method with the vectors
of the POD basis as deflation vectors. The basis and, as a consequence, the deflation matrix have to be
updated ’on-the-fly’ at each time step (see Algorithm 3).

Training simulation: For this case, we use a training phase, where we run the simulation for all the time
steps with the ICCG method, randomly varying the pressure in the production wells. A POD basis is
computed from the solutions of the training phase and it is used to construct a deflation matrix with the
basis vectors as deflation vectors. We solve a series of problems with the same conditions as the training
phase, but with different pressures in the wells, i.e., different rhs (see Algorithm 4). For more details of
the POD-based deflation method we refer to Diaz-Cortes et al. (2016, 2017, 2018).

As stopping criterion we use the relative residual, defined as the 2-norm of the residual of the kth iteration
divided by the 2-norm of the rhs of the preconditioned system,

||M−1rk||2
||M−1b||2

≤ ε.

The tolerance of the solvers is presented for each problem.

Results and discussion

a)

b)

Figure 1 Rock permeability, layers
a) y direction, b) x direction.

Heterogeneous permeability layers We study water injection
through the left boundary of an academic system consisting of
equal-sized layers with a constant porosity field of 0.2 and dif-
ferent permeability values (see Figure 1). A set of layers with
permeability κ1 = 1 mD is followed by layers with permeability
κ2 = 101 or 106 mD. The domain consists of a Cartesian grid of
35 x 35 cells, and the layers are placed in the x and y direction.
For the relative permeability, we use the Corey model, with ex-
ponents nw = nnw = 2 (see Table 2). The first set of experiments
does not consider capillary pressure terms. We study two cases
with different accuracy for the solution methods: ε = 5 · 10−4,
and ε = 5 ·10−7.

Water is injected through the left boundary at a rate of 4 m3/day,
into a reservoir with an initial pressure of 100 bars inside the
reservoir and zero at the right boundary (See Table 3). The sim-
ulation is run during 300 time steps with a time step of 5 days
(see Table 3). The moving window approach is used to construct
the deflation subspace matrix, consisting of five or ten deflation
vectors.

The pressure field and the water saturation are presented in Fig-
ure 2 and Figure 3 for both directions, x and y, and for different
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Table 2 Fluids properties.

Water Oil Units

µ 1 10 cp
ρ 1000 700 kg/m3

kr (Sw)
2 (1−Sw)

2

Cp 10∗ (1−S) bars

Table 3 Boundary conditions and temporal param-
eters.

Temporal parameters Boundary conditions
Tsteps 300 P0,x 6=(0,Lx) 100 bars
dT 5 days Px=Lx 0 bars
Ttotal 1500 days Qx=0 4 m3/day

a) b) c) d)

Figure 2 Pressure field for the last time step, contrast between permeability values of a) 101, b) 106,
layers in the x−direction, c) 101, d) 106, layers in the y−direction.

a) b) c) d)

Figure 3 Water saturation during the last time step, contrast between permeability values of a) 101, b)
106, layers in the x−direction, c) 101, d) 106, layers y−direction.

contrast between permeability layers during the last time step. We observe that the pressure is higher at
the boundary, where water is injected and it decreases towards the right boundary.

The number of iterations necessary to achieve convergence are summarized in Table 5 and Table 4,
where the first column contains the contrast between permeability layers (κ1/κ2). In the second, we
present the number of deflation vectors used, p. The third one shows the number of iterations necessary
to achieve convergence with the ICCG method only. The number of iterations necessary to compute
the snapshots with the DICCG method is presented in the fourth and fifth columns (DICCG). For these
examples we use the moving window approach; therefore, it is required to compute the first p snapshots
with ICCG (fourth column), the rest of the time steps are computed with DICCG (fifth column). The
total number of iterations needed to perform the DICCG method (p time steps computed with ICCG +
total-p computed with DICCG) is presented in the sixth column. In the last column, we compute the
percentage of DICCG iterations with respect to the total number of ICCG iterations.

We observe an important reduction in the number of iterations when using the DICCG method, and this
reduction appears to be larger for smaller tolerances, except for the case with layers in the x direction and
a contrast of 106; however, in this case, the number of ICCG iterations is already small, and therefore
not much gain can be achieved. We note that the results are slightly better for layers aligned in the y
direction and a tolerance of ε = 5 ·10−4, for which the largest gain is achieved when the contrast between
the permeability layers is 106. For this case, the work required with the ICCG method is the largest of
all the cases, requiring 24255 iterations; meanwhile, the DICCG requires around 2000 iterations, i.e.,
fewer than 10%.
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Table 4 Number of iterations for the layered problem
with injection through the left boundary and a toler-
ance of ε = 5 ·10−7.

κ2
κ1

p Total DICCG Total % of
ICCG ICCG DICCG DICCG ICCG

Layers x direction

101 10 16408 438 3428 3866 24

101 5 16408 438 3573 4011 24

106 10 7228 147 1476 1623 22

106 5 7228 147 1810 1957 27

Layers y direction

101 10 15965 475 2371 2846 18

101 5 15965 475 2914 3389 21

106 10 28621 233 4174 4407 15

106 5 28621 233 4119 4352 15

Table 5 Number of iterations for the layered problem
with injection through the left boundary and a toler-
ance of ε = 5 ·10−4.

κ2
κ1

p Total DICCG Total % of
ICCG ICCG DICCG DICCG ICCG

Layers x direction

101 10 6042 119 810 929 15

101 5 6042 119 965 1084 18

106 10 996 64 356 420 42

106 5 996 64 379 443 44

Layers y direction

101 10 9004 87 937 1024 11

101 5 9004 87 1093 1180 13

106 10 24255 116 1631 1747 7

106 5 24255 116 1891 2007 8

The eigenvalues of the covariance matrix are presented in Figure 4 for all the cases during the 100-th time
step. We note that they are similar; however, for the layers in the direction x, they are slightly larger,
resulting in a small increase in the number of DICCG iterations with respect to the other cases. The
results are comparable when using 5 and 10 deflation vectors, which implies that most of the system’s
variability is contained in the first 5 vectors. In Figure 4, we note that the first five eigenvalues are
significantly larger than the rest.

Figure 4 Normalized eigenvalues of the covariance matrix R = 1
p XXT for the different layered 

problems.

Homogeneous reservoir with gravity driven flow. For this set of experiments, we simulate the flow
in a reservoir containing water in the top part and oil in the bottom part. The water saturation is presented
in Figure 5 for the initial, an intermediate and the last time steps. We observe that the water is at the
top of the reservoir at the beginning of the simulation, whereas at the end, it has completely gone to the
bottom.

We model a reservoir with a porosity field of 1, and a permeability of 0.1 [D]; this example is taken from
MRST (Lie, 2013). The reservoir contains 20 x 20 x 40 cells, 2 m long in the x- and y-directions and 1, 2
and 4 meters long in the z-direction. The simulation is run for 800 steps, with time steps of 75 days. The
solution is obtained with the DICCG method, using ten and five POD basis vectors as deflation vectors,
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a) b) c)

Figure 5 Water saturation during the last time step for gravity driven experiment, s) 1st time step, b)
400-th time step, and c) 800-th time step.

and a moving window approach. We study examples with two tolerances 5 ·10−7, and 5 ·10−4.

The eigenvalues of the covariance matrix are presented in Figure 6 for all the cases during the 200-th
time step. From this plot, we can observe that they are similar; however, as the reservoir height increases,
the eigenvalues become slightly smaller.

The number of iterations required to achieve convergence is presented in Table 6 for a stopping criterion
of ε = 5 ·10−7, and Table 7 for a stopping criterion of ε = 5 ·10−4.

Figure 6 Normalized eigenvalues of the covariance matrix R = 1
p XXT , gravity problem, various 

reservoir heights.

We observe an important reduction in the number of iterations with the DICCG method; for the cells
with the smallest reservoir height, 1 meter, the number of iterations increases, requiring 20% and 26%
of the ICCG iterations for ten and five deflation vectors. If the high of the cells is 2 meters, the reduction
is 14% for ten deflation vectors, and 20% for five. For cells 4 of meters high, we achieve a reduction of
10% of the number of ICCG iterations if we use ten deflation vectors, and 13% if we use five. Therefore,
according to the results, the performance improves for higher reservoirs.

If we compare the eigenvalues of the covariance matrix with the performance of the DICCG method,
we note a better performance when the eigenvalues are smaller, which is the case for the reservoir with
highest cells (4 [m]). We note that using a larger tolerance, ε = 5 ·10−4, the performance is apparently
worse; however, from Figure 7 we note that even if the residual is smaller than 10−4 for the ICCG
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Table 6 Number of iterations for the gravity column
example, tolerance of ε = 5 ·10−7.

p Total DICCG Total % of
ICCG ICCG DICCG DICCG ICCG

Size of the z cells: 1 [m]

10 25659 529 4506 5035 20

5 25659 529 6127 6656 26

Size of the z cells: 2 [m]

10 36835 530 4665 5195 14

5 36835 530 6843 7373 20

Size of the z cells: 4 [m]

10 45043 664 3974 4638 10

5 45043 664 5257 5921 13

Table 7 Number of iterations for the gravity column
example, tolerance of ε = 5 ·10−4.

p Total DICCG Total % of
ICCG ICCG DICCG DICCG ICCG

Size of the z cells: 1 [m]

10 2642 146 1394 1540 58

5 2642 146 1494 1640 62

Size of the z cells: 2 [m]

10 4013 177 1436 1613 40

5 4013 177 1720 1897 47

Size of the z cells: 4 [m]

10 3808 146 1582 1728 45

5 3808 146 1701 1847 49

method after the first iterations, the true error is still large. The first iteration obtained with the DICCG
method has a true error smaller than 10−4, but the ICCG method achieves this accuracy only after around
40 iterations, this implies that the results presented in Table 7 do not represent the selected accuracy for
ICCG, and the comparison is not proper.

a)d)

Figure 7 Relative residual and true relative error for various methods, gravity driven flow.

These results show that the POD-based deflation method is able to capture information from a gravity-
driven flow and accelerate the solution with this information; however, we also note that the size of
the reservoir influences the performance of the method, where the optimal performance is achieved for
larger cells. Furthermore, the DICCG method give accurate results for the given tolerance; whereas, the
ICCG method does not.

SPE 10

In this section, we perform a series of experiments using the SPE 10 model, injecting and producing
fluids through wells. The permeability field of this model and the position of the wells is presented in
Figure 8. We study a series of cases with the upper layer (60 x 220 cells), and we test the full model (85
layers). For these examples, the POD basis and deflation matrix are obtained offline in a training phase
run with the ICCG method. Once the basis is obtained, a series of simulations are performed with the
DICCG method for diverse values of bhp in the producers.

The pressure of the production wells is varied randomly every 2 time steps during the training phase
between P= 137.5 and P= 275 bars, (see Figure 9). The solutions of this simulation are use to construct
the covariance matrix and to compute the POD basis. Five and ten basis vectors are used as deflation
vectors to compute the solution of slightly different problems using the DICCG method.
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Figure 8 Permeability field SPE 10. Figure 9 Well pressures in the production wells during 
the training run.

The pressure in the injection well is maintained constant at I = 1100 bars for all cases, and the initial
reservoir pressure is 500 bars. For the examples solved with DICCG, we use different pressures in the
producers. The first set of experiments has the same fixed pressure in all the producers, for the second
set, the pressure in one production well is different. The experiments performed are the following:
Equal bottom hole pressure in the producers. For the first experiment, the bhp is P = 275 bars in all the
producers, an extreme value of the training phase run. For the second experiment, it is P = 200 bars,
a value inside the pressure range of the training phase. The final experiment has a pressure of P = 400
bars, outside the training phase pressure range.
Different bottom hole pressure in the producers. One well has a bhp of Pi = 20 bars, and the rest have
the same pressure as the reservoir Pj 6=i = 500 bars.

Figure 10 Eigenvalues of the covariance ma-
trix.

The simulation is run during 500 time steps, with a step
of 100 days until water reaches all the wells. The oil
production and water breakthrough for each well are pre-
sented in Figure 11 for the case when pressure is the same
for all producers P = 200 bars. We note that the fourth
well P4 is the one that produces more oil, followed by
P2 and P3, finalizing with P1; we also observe that water
reaches the wells in the same order.

The eigenvalues of the covariance matrix obtained with
the training run are presented in Figure 10. We observe
that only a few of them are larger than 10−4, which in-
dicates that large part of the system information is con-
tained in these eigenvalues.

a) b)

Figure 11 Oil production and water breakthrough, waterflooding in the the first layer of the SPE 10 
benchmark.
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a) b) c) d) e)

Figure 12 Pressure field for the last time step for the first layer of the SPE 10 benchmark, 
various bhp pressures in the wells a) P2,3,4 = 500 bars, P1 = 20 bars, b) P1,3,4 = 500 bars, P2 = 20 
bars, c) P1,2,4 = 500 bars, P3 = 20 bars, d)P1,2,3 = 500 bars, P4 = 20 bars.

a) b) c) d) e)

Figure 13 Water saturation during the 200-th time step for the first layer of the SPE 10 benchmark, 
various bhp pressures in the wells a) P2,3,4 = 500 bars, P1 = 20 bars, b) P1,3,4 = 500 bars, P2 = 20 
bars, c) P1,2,4 = 500 bars, P3 = 20 bars, d)P1,2,3 = 500 bars, P4 = 20 bars.

a) b) c) d) e)

Figure 14 Water saturation during the last time step for the first layer of the SPE 10 benchmark, 
various bhp pressures in the wells a) P2,3,4 = 500 bars, P1 = 20 bars, b) P1,3,4 = 500 bars, P2 = 20 
bars, c) P1,2,4 = 500 bars, P3 = 20 bars, d)P1,2,3 = 500 bars, P4 = 20 bars.
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The pressure and saturation fields for the last time step are shown in Figure 12 and Figure 14, while
Figure 13 displays the results for the 200-th time step for various cases. The first plot, a), corresponds to
the experiment where the pressure in the production wells is the same P = 200 bars, b)-e) all the wells
have a bhp of Pj 6=i = 500 bars, except for one with bhp Pi = 20 bars. We observe that the water flow
patterns are different for each case, as are the pressure fields.

The resulting number of iterations for the ICCG and DICCG methods is presented in Table 8 for diverse
wells configurations. We observe that the number of iterations does not change considerably for the
different cases. For all the cases, an important reduction in the number of ICCG iterations is obtained,
being around 15% for the case with 10 deflation vectors, and around 22% for the case with 5 deflation
vectors.

1 layer

Total DICCG Iter % of ICCG
ICCG Method Iter

Pbhp = 275 [bars]

10 90130 12975 14

5 90130 20514 23

Pbhp = 200 [bars]

10 90130 13720 15

5 90130 21522 24

Pbhp = 400 [bars]

10 90130 11374 13

5 90130 18552 21

1 layer, various pressures in producers

Total DICCG Iter % of ICCG
ICCG Method Iter

P2,3,4 = 200 [bars], P1 = 20 [bars]

10 90130 11740 13

5 90130 17855 20

P1,3,4 = 200 [bars], P2 = 20 [bars]

10 90130 10518 12

5 90130 20926 23

P1,2,4 = 200 [bars], P3 = 20 [bars]

10 90130 10518 12

5 90130 17325 19

P1,2,3 = 200 [bars], P4 = 20 [bars]

10 90130 11636 13

5 90130 18693 21

Table 8 Number of ICCC and DICCG iterations for diverse bhp in the production wells, training phase
approach.

In Figure 15, we present the relative residual and the true relative error of the studied methods for the
100-th time step. We note that after the first iteration, the residual and the true solution of the deflated
method are both smaller than 10−4. However, for the ICCG method, the residual is around 10−4 for
the first iterations, but true error is around 10−3, i.e., the approximation is not as accurate as with the
DICCG method. Therefore, the DICCG method gives a better approximation than the ICCG method.

a) a)

Figure 15 Relative residual and true relative error for the waterflooding with a bhp of P = 275 bars
in the wells and I = 1100 bars in the injector.
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85 layers, SPE 10

We model water flooding in the full SPE 10 model, consisting of 85 layers. We run the simulation during
200 time steps with a time step of 1.5 days. We use a training phase scheme randomly varying the bhp of
the production wells to compute the POD basis in a range P = 137.5−275, see Figure 9. Later, we solve
for three cases with different bhp in the production wells, P = [200,275,400]. The water saturation at
an intermediate and final time steps are presented in Figure 16.

The number of iterations required to find an approximate solution with an accuracy of 10−7 for the full
SPE 10 model, containing 85 layers, is presented in Table 9. We can observe a reduction to around 27%
the number of ICCG iterations when using 20 deflation vectors and 31% when using 15. These results
are similar for all the cases presenting diverse pressures in the producers.

d Total Total % of
ICCG DICCG ICCG

3D case, 60 x 220 x 85 cells
No capillary pressure included

Pbhp = 275 [bars]
20 96468 25376 26
15 96468 29658 31

Pbhp = 200 [bars]
20 96468 26730 28
15 96468 31146 32

Pbhp = 400 [bars]
20 96468 26730 28
15 96468 27429 28

Table 9 Number of iterations for the SPE 10
benchmark with injection through wells and a
tolerance of ε = 5 · 10−7, training phase ap-
proach.

a)

b)

Figure 16 Water saturation of the full SPE 10
benchmark, various time steps, a) 50, b) 200.

Figure 17 Eigenvalues of the covariance
matrix.

SPE 10, gravity driven flow. We simulate waterflooding
in a reservoir containing water in the top part and oil in the
bottom part. The water saturation is presented in Figure 18
for various time steps. We model the first 10 layers of the
SPE 10 benchmark. We use 20 x 20 cells for which we av-
erage the porosity and the permeability using the harmonic
average function of MRST. The length of the cells in the x-
and y-direction is 6 and 2 [m] and for the layers we vary the
length, using 8, 10 and 12 [m]. The simulation is run during
800 steps, with a time step size of 40 days.

The number of iterations required to achieve convergence is
presented in Table 10 for a stopping criterion of ε = 5 ·10−7.
The eigenvalues of the covariance matrix are presented in
Figure 17, where we observe that the first nine eigenvalues
are larger than the last one, and among them, the first four
are the largest, which implies that most of the information is contained the corresponding eigenvectors.
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p Total DICCG Total % of
ICCG ICCG DICCG DICCG ICCG

Size of the z cells: 8 [m]
10 17603 315 2550 2865 16
5 17603 315 2823 3138 18

Size of the z cells: 10 [m]
10 19303 304 2473 2777 14
5 19303 304 2802 3106 16

Size of the z cells: 12 [m]
10 20570 309 2456 2765 13
5 20570 309 2647 2956 14

Table 10 Number of iterations for the gravity column
example for the SPE 10 model, tolerance of ε = 5 ·10−7.

a)

b)

Figure 18 Water saturation at the beginning
and the end of the simulation.

a)a)

Figure 19 Relative residual and true relative error for gravity driven flow.

In Figure 19, we present the relative residual and the true relative error for the 400-th time step. We note
that after the first iteration, the residual and the true relative error of the deflated method are both smaller
than 10−4. However, for the ICCG method, the residual is around 10−7, the required accuracy, but the
true error is still large; therefore, the approximation is not accurate.

SPE 10 benchmark including capillary pressure terms. In this section we perform a set of experi-
ments including capillary forces. We model waterflooding for the first layer of the SPE 10, with the same
well configuration and reservoir properties as the previous examples of this section. We compare a case
without capillary pressure with three cases presenting diverse Corey coefficients for the wetting phase,
nw =[2,3,4], and nnw = 2. The curves are presented in Figure 22. We use a linear capillary relationship,
Pc =C(1−S), see Figure 20. The fluid properties are presented in Table 11. We use the training phase
scheme, for which we run a simulation varying the pressure in the production wells. We run the sim-
ulation during 600 time steps, with a step size of 30 days. The pressure field and water saturation are
presented in Figure 21 for all the cases at the last time step.
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a) b) c) d)

a) b) c) d)

Figure 21 Pressure field and water saturation for the last time step, first layer of the SPE 10 benchmark,
a) No capillary pressure, b)nw = nnw = 2, c) nw = 3, nnw = 2, d) nw = 4, nnw = 2.

Water Oil Units

µ 1 10 cp
ρ 1000 700 kg/m3

kr (Sw)
2 (1−Sw)

2

kr (Sw)
3 (1−Sw)

2

kr (Sw)
4 (1−Sw)

2

Cp 10∗ (1−S) bars

Table 11 Fluids properties. Figure 20 Capillary pressure function Cp 
= 10 ∗ (1 − S).

a) b) c)

Figure 22 Relative permeability curves, a) nw = nnw = 2, b) nw = 3, nnw = 2, c) nw = 4, nnw = 2.
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Table 12 shows the number of iterations required to achieve convergence for a stopping criterion of
ε = 5 · 10−7. We note that we require 16% of the ICCG iterations with ten deflation vectors. For the
cases with capillary pressure a reduction of the ICCG iterations; however, we also note a small increment
in the number of iterations when we increase the Corey coefficient. If we observe the eigenvalues of the
covariance matrix, Figure 23, we note that they are similar; however, they are smaller for the case without
capillary pressure and for the smaller Corey coefficient. We also observe a few eigenvalues larger than
10−4, which suggests that most of the information is contained in the corresponding eigenvectors; thus,
if we use ten eigenvectors as deflation vectors, they contain enough information to achieve an important
acceleration.

p Total Total % of
ICCG DICCG ICCG

No capillary pressure
10 102831 16072 16

krw = (Sw)
2, krnw(Snw)

2

10 103849 15087 15
krw = (Sw)

3, krnw(Snw)
2

10 96614 16628 17
krw = (Sw)

4, krnw(Snw)
2

10 94609 18478 20

Table 12 Number of iterations for the gravity col-
umn example for the SPE 10 model, tolerance of ε 
= 5 · 10−7.

Figure 23 Eigenvalues of the covariance matrix, 
diverse Corey coefficients

a) d)

Figure 24 Relative residual and true relative error for ICCG and DICCG methods for a Corey coeffi-
cient of nw = 3.

In Figure 24, we plot the residual and the true error for the case with capillary pressure and Corey
coefficients nw = 3, and nnw = 2. For the first iteration, we note that even if the residual is smaller
than 10−4, the true error is still large. Hence, if we would like to compute an approximation with
this accuracy, the ICCG method will give an incorrect solution. Furthermore, the method reaches the
superlinear convergence region after around 120 iterations, but it does not reach the required accuracy.
By contrast, the approximation obtained with the DICCG method has a true error smaller than 10−5 after
the first approximation; furthermore, the residual presents a similar behavior as the true error. Hence, the
DICCG method for problems involving capillary pressure is also more accurate than the ICCG method.
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Conclusions

The large number of cells and the high contrast in permeability coefficients make the simulation of flow
through porous media an expensive process, in particular for the resulting linear pressure system. We
present new possibilities to accelerate this process using POD basis vectors in a deflation procedure for
the Conjugate Gradient method preconditioned with Incomplete Cholesky ( DICCG).

We studied water flooding with injection of water through boundaries and through wells in an academic
layered heterogeneous porous medium, and for the SPE 10 benchmark problem presenting a contrast in
permeability coefficients up to 107. Among the test cases, we included 2D and 3D problems, the latter
presenting gravity forces; furthermore, we studied cases including capillary pressure. For all the cases,
we achieved important reductions in the number of iterations when compared to a standard method,
Conjugate Gradient method preconditioned with incomplete Cholesky (ICCG). For the POD-based case,
we collected system information with a moving window approach, where the POD basis is computed at
each time step; and with a training phase approach, for which the basis is computed in a pre-simulation.

We noted a relation between the performance of the method and the spectrum of the covariance matrix
obtained during the POD procedure. A large difference between a few large eigenvalues and the rest
resulted in a better performance.

We observed a good performance for all the studied cases using both, moving window and training
phase approaches. For the layered problem, we reduced the number of iterations to less than 10% of the
number of ICCG iterations with five deflation vectors. For the full SPE 10 case, we reduced the number
of iterations to ∼ 27% of the ICCG iterations using 20 deflation vectors.

When using a training phase approach, the flow pattern and the pressure fluctuations on the wells do
not affect significantly the performance of the method. We illustrated this behavior using as deflation
vectors a POD basis obtained running a training phase with randomly varying bottom hole pressures in
the production wells. We used this basis to perform various experiments with diverse well configurations
resulting in various flow patterns; the performance of the method was similar in all cases, also in a case
with bhp slightly outside the training phase range.

We also tested the method for more complex problems; the experiments of gravity-driven flow showed an
improvement in the performance for taller reservoirs. Including capillary pressure terms did not change
dramatically the performance of the method for the studied cases; however, increasing the Corey coeffi-
cients (i.e. increasing the nonlinearity of the underlying flow problem) resulted in a small increment in
the number of iterations for the DICCG method.

Finally, we observed that the residual computed with the DICCG method was very close to the true
error of the approximation. By contrast, while the residual of the ICCG method was small, for some
cases, the true error was still large; hence, the POD-based DICCG solution resulted in a more accurate
approximation. Furthermore, the first DICCG iteration resulted in a solution with a true error smaller
than 10−4 for all the cases. The latter implies that, if the required accuracy is in this range, as usual in
industry, only one DICCG iteration is necessary.
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