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Polar perspectives: a deep dive into geo-referencing historical 
Antarctic photos
Felix Dahle, Roderik Lindenbergh and Bert Wouters

Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, The Netherlands

ABSTRACT  
The utility of historical image repositories is often limited due to the lack 
of geo-referencing. A good example is the TriMetrogon Aerial (TMA) 
archive, a collection of historical aerial images of Antarctica between 
1940 and 2000. These images are difficult to use, as their geolocation 
is only approximately, with location errors in the order of tens of km. 
This study addresses this challenge by developing an automated 
geo-referencing workflow that leverages recent advancements in 
machine-learning-based tie-point matching. We use the algorithm 
LightGlue, to establish tie-points between geo-referenced Sentinel-2 
satellite imagery and historical non-geo-referenced aerial images. To 
aid the process, we use already known approximate positions of the 
historical images. Due to the sub-optimal and inhomogeneous quality 
of the aerial images, only a portion of the images can be geo- 
referenced directly by matching. For the remaining images, we 
employed alternative means of geo-referencing, again based on 
tie-point matching. Out of a subset of 4,459 images located inside the 
research area, 3,393 images could be geo-referenced, a percentage of 
76%. Reasons for the geo-referencing failing are insufficient contrast 
or an approximate position too far away from the real position. The 
workflow can easily be applied to historical images from other 
archives, to enhance the usability of historical image repositories for 
scientific research.
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1. Introduction

Historical aerial imagery offers a window into the past, granting access to valuable information 
from before the satellite era. Many of these images, initially produced for military purposes on a 
large scale, were consigned to archives and their contents were inaccessible. However, in recent 
years these archives have been digitized and made available to the public. Consequently, the poten-
tial of these historical image repositories has been recognized across a spectrum of scientific disci-
plines, with applications ranging from archaeological (Cowley and Stichelbaut 2012; Usmanov et al. 
2018), environmental (Heisig and Simmen 2021; Nicu and Stoleriu 2019) to cryospheric sciences 
(Geyman et al. 2022; Pope et al. 2014).

In cryospheric research, historical aerial images can provide information on the state of the ice 
sheet before the satellite era for a wide range of subjects: they can be used for evaluating glacier mass 
balance, shedding light on both historical states and recent changes (Denzinger et al. 2021; Kors-
gaard et al. 2016), aid in understanding the structure, dynamics, and flow of ice sheets over time 

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this 
article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. 

CONTACT Felix Dahle f.dahle@tudelft.nl

INTERNATIONAL JOURNAL OF DIGITAL EARTH 
2024, VOL. 17, NO. 1, 2406384 
https://doi.org/10.1080/17538947.2024.2406384

http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2024.2406384&domain=pdf&date_stamp=2024-09-21
http://creativecommons.org/licenses/by/4.0/
mailto:f.dahle@tudelft.nl
http://www.digitalearth-isde.org/
http://english.aircas.ac.cn/
http://www.tandfonline.com


(Yu et al. 2022), and provide insight into past ice extents in specific regions (Cook and Vaughan 
2010). Additionally, these images are valuable for monitoring non-ice-related phenomena, such 
as identifying areas of coastal erosion (Wang et al. 2022) or observing thermo-erosion gullying 
processes (Morgenstern et al. 2021; Perreault et al. 2017).

The use of historical aerial images is not confined to 2D analyzes. Advanced techniques like 
Structure-from-Motion (SfM) enable the generation of historical 3D models from these images 
(Child et al. 2020; Knuth et al. 2023; Zhang, Rupnik, and Pierrot-Deseilligny 2021).

However, processing archives of historical images often face a significant challenge that limits 
their use: many images are not, or incorrectly, geo-referenced. In this context, geo-referencing 
refers to the process of associating specific points within an image with their corresponding real- 
world locations. This typically involves identifying tie-points, which are points on two distinct 
images representing the same geographical location. Working with un-referenced images requires 
researchers to manually identify similar structures and pin-point tie-points. This is arguably the pri-
mary reason these valuable historical images are underutilized in research.

Efforts have already been made to automate this process (Chen and Tseng 2016; Cléri, Pierrot- 
Deseilligny, and Vallet 2014; Karel et al. 2013) by using tie-point detection and feature matching. 
Furthermore, geo-referencing has expanded beyond mere image comparison; photogrammetric 
methods like Structure from Motion (SfM) have also been employed (Frankl et al. 2015; Giordano, 
Le Bris, and Mallet 2018; Heisig and Simmen 2021). However, these methods typically rely on hav-
ing scenes with rich textures to provide distinct features for tie-point matching. Furthermore, in 
general, images of the same type, such as aerial-to-aerial, are compared. Geo-referencing and 
SfM are particularly challenging when geo-referencing images of the cryosphere, where many 
images lack contrast and only have few distinct landmarks. Matching is further hindered, as corre-
sponding modern aerial imagery for these regions is generally not available which implies that 
historical areal images can only be matched to contemporary satellite imagery.

To address these challenges, we have developed a workflow that applies recent advancements in 
neural-network-based tie-point matching techniques to historical aerial images. Our approach aims 
to identify tie-points between historical aerial imagery and contemporary satellite imagery, streamlin-
ing the geo-referencing process as much as possible. Recognizing the inherent difficulties in matching 
aerial and satellite images, we have also devised several algorithms for indirect geo-referencing.

We applied our workflow to images from the TriMetrogon Aerial (TMA) archive, a collection of 
historical photographs of Antarctica, acquired between 1940 and 2000, with the majority of the 
images taken in the 1960s. The archive has been exploited before to gain insights into the condition 
of Antarctica prior to the satellite era, in studies focusing on individual or a subset of glaciers, for 
which manual geo-referencing suffices (Child et al. 2020; Cook et al. 2005; Kunz et al. 2012; Zhao 
et al. 2017). For the total of around 330,000 images in the archive, such a manual approach is unfea-
sible. In this study, we present a workflow that can be executed with minimal user interaction and in 
a reasonable amount of time. We specifically target the Antarctic Peninsula due to its extensive cov-
erage by overlapping images, which facilitated the evaluation of our geo-referencing accuracy.

While our code was tailored for this specific archive, its design allows for adaptation to other 
non-referenced datasets. The geo-referencing code and the resultant geo-referenced images are 
accessible at GitHub (Dahle 2024a). Additionally, we will provide the footprints and transformation 
matrices for each geo-referenced photograph of the TMA archive. Over time, we aim to geo-refer-
ence and publish the entire archive.

2. Data

2.1. TMA-archive

The TMA archive is a collection of photographs retrieved by the U.S. Navy between 1946 and 2000 
along the margins of Antarctica at approximately 125,000 locations, consisting of about 330,000 
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images. This archive consists of black and white trimetrogon (a camera system mounted on airplanes 
pointing left, right and nadir) aerial photos. Some examples are shown in Figure 1. While acquiring 
TMA data, airplanes flew along so-called flight paths: approximate straight lines with more or less 
constant height. About 15,000 images were collected on the Antarctic Peninsula, most of them col-
lected in the mid-1960 s. The imagery has been digitally scanned at high resolution (25 micron/1000 
dpi) by the US Geological Survey (USGS) and the Antarctic Geospatial Information Center (Univer-
sity of Minnesota) and is publicly available at (Polar Geospatial Center 2023).

To date, the aerial photographs within the collection have not been geo-referenced on a large 
scale. Nonetheless, as can be seen in Figure 2, digitized flight lines exist, which by visual inspection 
provide approximate locations of the actual flight paths and camera positions. These flight lines are 
distributed with various attributes such as the altitude of the airplane and the acquisition date. 
However, these attributes are not consistently available for every camera position, and their accu-
racy cannot be assured.

In this work, we focus on the images with nadir view, as these are most straightforward to geo- 
reference. The camera position is consistent for each triple of left-right-nadir images. Therefore, 
although the initial goal is to geo-reference the 4,459 available nadir images located in the research 
area on the Antarctic Peninsula, a successful procedure will enable a relatively easy consecutive geo- 
referencing of corresponding left-right images as well.

2.2. Sentinel-2 satellite imagery

For our geo-referencing method, the historical images must be compared with already geo-refer-
enced data. In our study, we employ imagery from Sentinel-2, an Earth observation mission 
under the Copernicus program of the European Commission. This mission offers freely available 
optical imagery characterized by a medium spatial resolution. Although our research is based on 
Sentinel-2 imagery, it is important to mention that other geo-referenced datasets can also be 

Figure 1. Example images from the TMA archive.
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suitable. The Sentinel-2 data used for geo-referencing spans from 2016 to 2023. Using Google Earth 
Engine, these images are compiled into a cloud-free composite by masking cloud-cover pixels and 
computing the median value for each pixel. Given our objective of geo-referencing this data with 
the historical aerial imagery, we extract bands 2, 3, and 4 to produce an RGB representation. 
The spatial resolution for these bands is 10 meters. To ensure radiometric consistency with histori-
cal images, all images are standardized to an 8-bit format, with RGB values ranging from 0 to 255.

3. Methodology

In our geo-referencing approach, we employ tie-point matching techniques between images, mak-
ing use of recent technological advancements to design a workflow that can automatically geo-refer-
ence historical images.

Figure 3 illustrates the workflow of our methodology. The workflow is specified in detail below: 
first, we prepare the TMA images for matching and geo-referencing by creating approximate foot-
prints (Section 3.2). Second, we geo-reference part of the TMA images using Sentinel-2 imagery and 
subsequently perform a quality assessment (Section 3.3). Due to the mixed quality of the historical 
images, many of them cannot be geo-referenced directly on the first attempt. Therefore, we apply 
alternative in-direct strategies to also ensure successful geo-referencing for these challenging images 
(Section 3.4). Due to the importance of geo-referencing in almost every step, our tie-point matching 
workflow is explained first in Section 3.1.

3.1. Tie-point matching

Various tie-point detection and matching techniques can be incorporated into our geo-referencing 
workflow. In this research, we use ‘LightGlue’ (Lindenberger, Sarlin, and Pollefeys 2023), a 

Figure 2. Study area with the digitized flight lines for the TMA-archive with their respective recording date. The green dots high-
light the position of the use cases discussed in Section 4: (a) Shoesmith glacier (b) McMorrin Glacier (c) Fleming Glacier (d) 
Somigliana Glacier (e) Unnamed Glacier near Mt. Wilcox (f) Sibelius Glacier (g) Rothera Research station. The bold red line high-
lights a non-straight flight path discussed in Section 5.
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successor to the popular tie-point matching algorithm ‘SuperGlue’ (Sarlin et al. 2020). Both algor-
ithms leverage the tie-point detection method ‘SuperPoint’ (DeTone, Malisiewicz, and Rabinovich 
2018). SuperPoint is a fully convolutional deep neural network, trained to detect interest points 
(unique points in an image) and compute their corresponding descriptors between pairs of images. 
Given a collection of these points and descriptors, LightGlue can be used to identify matches 
between the images.

It is noteworthy, that both LightGlue and SuperGlue were primarily trained on datasets without 
historical or aerial images. Moreover, the specifics of their training parameters remain undisclosed, 
rendering retraining for historical images impractical. Nevertheless, they are among the most profi-
cient tie-point matching techniques currently available that can match images of varying sizes and 
are already used successfully in many geo-science related applications (Ghuffar et al. 2023; Maiwald, 
Feurer, and Eltner 2023).

However, certain constraints exist: the algorithms are not rotation-invariant and the maximum 
rotation between two images should not surpass more than 45 degrees, as otherwise fewer matches 
are found (Tyszkiewicz, Fua, and Trulls 2020). Furthermore, image pairs must fit within the GPU mem-
ory, while scanned historical images typically have high resolutions, often surpassing 10,000 pixels in 
width or height. While downsizing the images is a potential solution to fit the images into the memory, 
it reduces the information content and consequently the number of detectable tie-points. To maintain a 
dense distribution of tie-points, we devised a workflow that optimizes tie-point detection using Light-
Glue, specifically for large images. Our tie-point matching workflow is divided in four different steps, as 
depicted in Figure 4. Only the first step is mandatory, all other steps can be applied optionally.

3.1.1. Initial tie-point matching
In the initial matching, the selected matching algorithm (in this case ‘LightGlue’) is applied to 
resized images. Both images are resized iteratively by 10% until the matching process fits into 
GPU memory. Parts of the images can be masked to ignore certain areas for tie-point matching. 
To account for the rotational dependency of the matching algorithm, the image on the right is 
matched four times, for four different rotations of 0, 90, 180 and 270 degrees, respectively. The 
rotation with most matches is fixed for the further workflow. Finally, the tie-point coordinates 
are converted to original images size. Figure 5 shows an initial matching between the two images, 
which are resized from 10000× 10000 pixels to ∼2000× 2000 pixels (a reduction of 96 % in image 
size). The red lines indicate matches that are masked, while the green lines represent successful 
matches that will be kept for the further workflow.

Figure 3. Geo-referencing workflow. If direct geo-referencing by matching a prepared historical image to recent Sentinel-2 data 
fails, indirect strategies will be used.
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3.1.2. Additional tie-point matching
In the additional matching process, the larger image (or a randomly selected image if both are of the same 
size) is divided into multiple overlapping tiles, similar to the approach in (Zhang, Rupnik, and Pierrot- 
Deseilligny 2021). In Figure 6, the left image is tiled into 30 tiles labeled A to AD. For each tile, all initial 
tie-points within that tile are selected. Corresponding tie-point coordinates are used to create for each tile 
a subset of the right image. To account for outliers in the initial matching process, this subset is adjusted in 
size so that a tile and a subset in both images have identical size. Tie-point matching is then applied 
between the tile and the subset in the original resolution. This is done iteratively for all tiles containing 
initial tie-points, while tiles without tie-points (e.g. the red tiles in Figure 6) are excluded.

3.1.3. Extra tie-point matching
For now, the matching only focused on parts of the image where in the initial matching step 
tie-points were found. To also use information in other parts of the image, a transformation matrix 

Figure 4. Tie-point matching workflow. The first row is mandatory, all other rows can be applied optionally.

Figure 5. Initial matching between two images (IDs CA216632V0282 and CA216632V0283), that are resized to 2000× 2000 pix-
els. 881 valid matches (green lines) and 407 masked matches (red lines) are found.
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is derived from the already established tie-points to determine the spatial correspondence between 
the two images. Again, the left image is tiled in multiple overlapping tiles. For each tile, a corre-
sponding subset on the right image is created by applying the derived transformation matrix on 
the coordinates of each tile. Like in the previous additional matching step, the matching algorithm 
is applied at the original resolution between each tile and its correspondent subset. Subsets pre-
dicted to fall outside the image boundaries based on the transformation matrix are not included 
in this matching step.

3.1.4. Refinement
If additional or extra matching is applied, the tie-points detected in the initial matching are 
removed due to their lower accuracy, as these tie-point were obtained in down-scaled imagery of 
lower resolution. Subsequently, all remaining matches are combined, and two criteria are applied 
as detailed in Table 1: first, duplicate matches (with the same coordinates in both images) are 
removed. Second, based on a five-pixel distance, tie-points within 5px distance are averaged, 
while tie-points exceeding this 5px distance are discarded.

As a final step, tie-points are filtered with two methods. The first method employs the classical 
RANSAC algorithm (Fischler and Bolles 1981) for outlier removal. The second method focuses on 
the angles formed by lines connecting tie-points. If a predominant angle is observed among these 

Figure 6. Additional matching in original resolution: Only tiles with initial tie-points (blue) are matched in original resolution and 
have a corresponding subset in the right image. Red tiles do not contain any tie-points.

Table 1. Example for the refinement of matches: old tie-points T1 and T2 have identical coordinates and are combined to new 
tie-point T1’.

Old tie-points x1 y1 x2 y2

T1 100 100 120 120
T2 100 100 120 120
T3 150 150 170 170
T4 150 150 172 172
T5 200 200 210 210
T6 200 200 220 220

New tie-points x1 y1 x2 y2

T1’ 100 100 120 120
T2’ 150 150 171 171

Note: Old tie-points T3 and T4 have different x2/y2 coordinates, which are closer than 5px. Therefore, they are combined to new 
tie-point T2’. Old tie-points T5 and T6 are more than 5px apart and are therefore discarded.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 7



lines, any tie-point line deviating more than 45 degrees from this angle is deemed an outlier and 
discarded. It is crucial, that the images being matched share the same resolution to ensure paralle-
lism of these lines. To achieve this, the resolution of the smaller image is temporarily adjusted to 
align with that of the larger image.

3.2. Image preparation

To prepare the images for the matching, approximate footprints are calculated and the images are 
enhanced for higher contrast. Both steps are optional, but can can speed up and enhance the quality 
of geo-referencing.

3.2.1. Approximate footprint estimation
Initial positions (x and y in the Antarctic Polar Stereographic coordinate system) and TMA image 
orientation are available from the Polar Geospatial Center (Polar Geospatial Center 2023). For each 
image an estimated position is available, manually determined based on historical flight documents. 
To compute the footprints, the x, y, z position, rotation and the camera’s focal length are required. 
These approximate footprints are neither at the correct position nor have the correct size, but still 
give a good first indication.

For some images, the focal length and camera height are written on the images themselves, as 
illustrated in Figure 8. To extract this information, we use the Character Recognition (OCR) tool 
PaddleOCR (Du et al. 2020), as it offers the best performance for recognizing such handwritten 
text. This tool serves two purposes: extracting metadata such as focal length or height (box A) 
and identifying regions in the images that are excluded from tie-point searching because they con-
tain text (box B). For images where parameter extraction is not possible, we use average values 
derived from all other images on the same flight path.

The boundaries of this footprint are determined using the so-called CameraCalculator, adapted 
from Java to Python (Engel 2020). The determination is initialized with the camera’s horizontal and 
vertical field of view, altitude, roll, pitch, and heading. Four rays are defined to represent the cam-
era’s field of view and are rotated based on the roll, pitch, and yaw parameters. The intersection 
points between these rays and the ground, represented as a flat plane, are computed. These inter-
section coordinates are then aligned with the camera’s actual position, providing the approximate 
footprint’s boundaries.

Figure 7. Extra matching in original resolution: For each tile on the left image the equivalent subset on the right image is calcu-
lated and tie-point matching is applied in full resolution. Tiles that do not have a subset are highlighted in red.
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Subsequently, the initial footprint is used to get the average elevation of the encompassed area. 
The mean elevation is derived from raster elevation data (in this instance, REMA elevation data 
(Howat et al. 2019) specific to the footprint’s bounding box). The camera’s altitude is then adjusted 
to recalculate its height in relation to the surface’s average height instead of sea level. This updated 
altitude is then used to recalculate the footprint, which is usually smaller than the initial estimate 
due to the altitude adjustment.

3.2.2. Image enhancement
Before the geo-referencing with the satellite imagery starts, several enhancement steps are applied. 
These are divided into four primary stages: border masking, resolution adjustment, image rotation, 
and contrast enhancement.

(1) Border masking. Many historical photographs were captured using analogue cameras, often 
featuring borders with fiducial marks. The high contrast between these borders and the main image 
content can introduce numerous false errors during tie-point matching. For the images in the TMA 
archive, all borders adhere to a consistent spatial pattern, allowing for straightforward masking 
during the geo-referencing process.

(2) Resolution adjustment. Historical images are usually scanned at 600dpi, resulting in an high 
resolution, typically measuring ≏ 10, 000× 10, 000 pixels. Aligning with the approximate footprint 
shows that the ground sampling distance is in the order of 60 cm. In contrast, the Sentinel-2 data 
consists of ≏ 1, 000× 1, 000 pixels, corresponding to a pixel spanning 10 m. Conducting tie-point 
matching across such disparate resolutions is challenging. To address this, the larger image (the 
TMA image) is resized based on its approximate footprint to match the spatial resolution of the 
satellite image.

(3) Image rotation. The images are generally not oriented facing North and require a rotation 
based on the known flight path angle. The necessity of this step depends on the tie-point matching 
method in use. For instance, LightGlue is not rotation invariant, and without this adjustment, fewer 
or no matches may be identified. When the rotation angle is not available, an alternative strategy 
involves rotating the images in increments of 90 degrees.

(4) Contrast enhancement. A substantial portion of the images have sub-optimal contrast or 
inconsistent brightness levels, further complicating the tie-point matching process. To account 
for this, a median filter is first applied to reduce image noise. This is followed by a linear contrast 

Figure 8. Historical image (CA182632V0127, located on Foyn Coast) with its metadata (A: image context information, B: height 
information) included in the image.
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stretch and concluded with a gamma adjustment. The enhancement approach is inspired by the 
SpyMicMac repository (McNabb et al. 2020).

3.3. Direct geo-referencing with satellite images

Geo-referencing historical images is based on tie-point matching between these images and con-
temporary satellite data. For this method to be effective, certain consistent structures in both the 
historical and modern imagery need to be available. In most applications, these are human-made 
structures such as houses or streets. While such structures are absent in Antarctica, rock formations 
have proven consistent over time, in this instance, spanning nearly 80 years.

3.3.1. Information content
However, not all images from the TMA archive are suitable for geo-referencing due to a lack of dis-
tinct structures. To address this, we compute an ‘information content’ value for each image prior to 
geo-referencing. The information content is determined based on the count of distinct points in an 
image, as detected by the aforementioned method SuperPoint. A count of 2500 tie-points or more is 
deemed the highest score with a value of 1. Counts below this are calculated as a percentage of 2500. 
This benchmark can be adjusted based on specific requirements and the number of tie-points 
deemed necessary. The footprints of images with too low information content or where the geo- 
referencing with satellite images failed, will be estimated indirectly, as outlined in Subsection 3.4.

3.3.2. TMA footprint relocation
In the case of the TMA archive, the starting boundary of the satellite image (that is used for match-
ing) is defined by the approximate footprint, which however can deviate by several kilometres from 
the real position. To increase the possibility of a successful tie-point matching, two refining steps are 
employed. These adapt the the boundary of the satellite to the most likely location for a more suc-
cessful geo-referencing.

(A) Segment based footprint relocation. Figure 9 illustrates the first refinement step of relocating 
the footprint of the satellite image: the satellite image around the initial approximate footprint is 
segmented into smaller sections, each characterized by the dimensions of the approximate 

Figure 9. Relocating the TMA image (ID CA174632V0181) 20 km from approximate position (grey bounding box) to refined 
approximate position (red bounding box).
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footprint. An initial tie-point matching is performed at the position of the approximate footprint 
(level 1). If the number of recognized tie-points falls below a predetermined threshold, a second 
tier (level 2) is initiated. This phase involves tie-point matching at eight surrounding positions 
(cell 2B – cell 2I) encircling the central location of the approximate footprint. Although the pos-
itions depicted in Figure 9 appear uniformly aligned, this is a simplified representation. In practice, 
these positions exhibit slight overlaps, ensuring tie-points near boundaries are incorporated. In this 
demonstration, a match is found at cell 2D of the second tier. Without a match in the second tier, 
another tier of 16 cells can be added resulting in a 25 km search radius. The search concludes if no 
match is found by this stage. Theoretically, one can endlessly iterate this process, albeit at increasing 
computational costs.

(B) Footprint relocation by tie-point maximization. This new approximate footprint is further 
refined in a second step: the bounds of the footprint are iteratively adjusted to maximize the tie- 
point count. This process is shown in Figure 10. The historical image is segmented into four quad-
rants by bisecting its height and width. The tie-points within each quadrant are counted and 
expressed as a fraction of the total number of tie-points. For each cardinal direction (N, S, E, 
W), the quadrant percentages for that direction (e. g. the percentages of quadrant NE and NW 
are averaged to a percentage for N) are calculated and then multiplied by a manually predefined 
step size of 2500 pixels. This yields a measure indicating the image’s shift in a given direction. 
These values are consolidated (with east and south being negative) to determine steps in x and y 
direction. These adjustments redefine the footprint bounds and a new tie-point matching is exe-
cuted. If the number of tie-points decreases, the refinement is stopped instantly.

Using the refined footprints, a tie-point matching between the historical image and the Sentinel- 
2 image is executed. With a sufficient number of tie-points between the satellite and historical 
images, accurate geo-referencing becomes possible. With the precise bounds of the satellite 
image known, the relative tie-point coordinates in the satellite image are converted to absolute 
coordinates. These serve as the foundation for Ground Control Points (GCPs) that are used for 
the geo-referencing of images. The Python library Rasterio is used next to derive a transformation 
matrix from these tie-points. This matrix is subsequently be applied to geo-reference the TMA 
image. The geo-referenced TMA images are then transformed into polygons, enabling the compu-
tation of the photo-center of the TMAimage.

Figure 10. Fine shifting of TMA image (ID CA181232V0070) to improve the number of tie-points by 473. The images in the top 
row show the process with the steps in x- and y-direction. The bottom images show the tie-points before and after fine shifting.
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3.4. Indirect geo-referencing

While geo-referencing with satellite images proves effective for a significant number of images, 
challenges are encountered in specific scenarios: some images do not yield meaningful tie-points, 
often attributed to factors like cloud cover or an absence of texture. In other situations, the detection 
of too many incorrect tie-points undermines the efficiency of the geo-referencing process. 
Additionally, there are instances where tie-points are primarily concentrated in a corner of an 
image. Even though geo-referencing might technically succeed under such conditions, the resultant 
footprints are unfortunately rendered invalid. For such images, we resort to one of three alternative 
indirect matching methods, proceeding from the first to the last as described below.

3.4.1. First option: flight line based footprint estimation
When for a TMA image direct geo-referencing is not possible, according to above criteria, a new 
approximate TMA footprint is estimated from already geo-referenced images from the same 
flight line. Subsequently, these problematic TMA images undergo a second round of geo-referen-
cing with satellite images.

Figure 11 illustrates a segment of a flight path, highlighting the ground-projected camera pos-
itions of images from this trajectory and their corresponding footprints. The green footprints rep-
resent TMA images that were successfully geo-referenced using the direct approach. The 
coordinates of these TMA images are used to fit the flight path by regression. The singular red 
footprint highlights a TMA image that, while geo-referenced, is categorized as an outlier due to 
its position relative to the flight path. For the camera positions associated with the grey footprints, 
geo-referencing has yet to be successful. The grey footprints are estimated from the established 
flight path and the intervals between already geo-referenced images. They will subsequently 
serve as the basis for a renewed attempt at geo-referencing with Sentinel-2 images, since in this 
scenario the position of the footprint and the actual position are more similar, rendering the 
geo-referencing usually more successful.

3.4.2. Second option: matching with neighboring TMA images
Geo-referencing of the TMA images with Sentinel-2 data can sometimes be challenging due to low 
information content, leading to an insufficient number or unfavourable distribution of tie-points 
across an image. However, the aerial TMA imagery from a single flight path has a substantial over-
lap of up to 60%. Since these overlapping images are captured within mere seconds of each other, 

Figure 11. Estimation of footprints (grey) using successfully geo-referenced images (green) and ignoring the outlier image with 
id 56 (red). Ground-projected camera positions are indicated by numbered circles.
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they essentially depict the same scene from slightly different angles. If one image from a sequence is 
already successfully geo-referenced, it is plausible to geo-reference it by tie-point matching with its 
immediate neighbors.

Note that this method is most accurate when limited to TMA images directly geo-referenced 
with Sentinel-2 data. Extending this approach beyond too many iterations may lead to the accumu-
lation of small geo-referencing errors. As a consequence, TMA images successively geo-referenced 
using other TMA images can become increasingly distorted with each iteration.

3.4.3. Third option: extrapolating the footprint
Analogous to the footprint estimation in the first option, another polygon estimation is performed 
here. Between two geo-referenced polygons (from already geo-referenced TMA images from the 
same flight-path), an averaged polygon, is estimated from the weighted (higher weight for closer poly-
gons) size and shape of adjacent polygons, as the new footprint for the un-referenced image. The four 
vertices of the estimated polygon serve as Ground Control Points (GCPs) for geo-referencing the 
image. This modest number of GCPs suffices, given their precise positioning at the four corners.

This method serves as the final solution when all other methods have proven ineffective and is 
also the least accurate among them. It is only operational when the images follow a discernible 
order, adhere to a logical flight path, and possess similar footprints. In the case of the TMA archive, 
this method is viable as the images are sequentially numbered and aligned within a flight path. For 
images aligned in straight lines, a minimum of two images along a flight path must have been suc-
cessfully geo-referenced; however, the accuracy of geo-referencing improves with an increase in the 
number of images available.

3.5. Quality check and metrics

After applying the transformation matrix to a TMA image, images where geo-referencing went 
wrong must be removed.

Image size. A first quality check involves assessing the image size: images that are either too large 
or too small (exceeding a difference of 15% compared to other images in the flight path) are 
excluded, as illustrated by ‘A’ in Figure 12. Rather than solely focusing on the overall size of the 
image, it is also checked whether the pixel size of the image is consistent by deviating no more 
than 10% from other images in the flight path.

Footprint shape. A second quality criterion is related to the shape of the footprints. Given that the 
TMA cameras captured images in a square format, the transformed images should ideally be 
squares as well. However, there are instances where images appear as rectangles, with one side 
longer than the other. In certain cases, the image corners deviate from the expected 90-degree 
angles, resembling a parallelogram instead. Such images, depicted by ‘B’ in Figure 12 (with the 
red image representing both a parallelogram and a rectangle), are also excluded if their corner 
angles fall outside a minimal threshold margin of 10 degrees of a right angle.

Figure 12. Different scenarios for invalid (red) and valid (green) images. Red footprints are rejected because of (A) footprint size, 
(B) footprint shape, or, (C), footprint position.
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Location w.r.t. flight path. In an approach similar to the first step of indirect geo-referencing, 
when analyzing multiple images from a flight path, it is possible to identify TMA images positioned 
inaccurately, as shown by ‘C’ in Figure 12. The calculated photo-centers of these TMA images are 
used to fit a regression line among all points, enabling the identification of outliers (points further 
away then two standard deviations). This approach assumes that the flight path locally follows a 
straight trajectory.

Error vector consistency. Recognizing outliers by position is further enhanced by using the 
original (inaccurate) approximate position of the images. We are calculating a vector between 
the camera center of the real position and the approximate position. If this so-called error vector 
deviates from the other error vectors in the same flight path, we also disregard this image as an 
outlier.

4. Results

In total, 4,459 images were used in the workflow. For the geo-referencing of the images, a desktop 
computer with a Quadro RTX 5000 (16GB video memory) was used. Approximately 42 h of calcu-
lation time was required, with an average referencing time per image of 30 s. First, overall results 
and results summarized per flight path are presented in Section 4.1. In Section 4.2, we present sev-
eral case studies illustrating the application of geo-referenced historical images. For several 
locations on the Antarctic Peninsula, changes observed between historical photographs and mod-
ern Sentinel-2 imagery are discussed.

4.1. Overall results

Out of all images, 3,393 (76%) of the images could be geo-referenced with an average length of the 
error vectors being 28km. Here, an error vector connects the initial, provided location of a TMA 
image with the new position of the TMA image, obtained as a result of the geo-referencing pro-
cedure. Table 2 shows in detail how many images could be geo-referenced by which method. In 
total, there are 77 flight paths with more than 10 images located in the research area. Table A1
in the appendix give an overview of the flight paths and some averaged attributes, like information 
content or the length of the error vector. For 46 flight paths, all images were geo-referenced (over 
99% of the images) while 15 flight paths could only be partially geo-referenced. For 13 flights, no 
images could be successfully geo-referenced.

Figure 13 shows the geo-referenced positions of the footprints, color-coded by the methods they 
were retrieved by. Each footprint has an error vector, that connects the the center of the resulting 
geo-referenced footprint to the center of the initially provided footprint.

Upon closer examination of various flight paths, it is evident that many images are accurately 
positioned, as confirmed by the alignment with geo-referenced images from different flight 
paths. This is exemplified in the top two rows of Figure 14. However, a detailed visual inspection 
reveals discrepancies for parts of some flight paths. Although the algorithms successfully compute 
footprints without distortions or outliers for these images, these images are misplaced and only 
close to their real positions. Examples of this issue are depicted in the bottom row of Figure 14. Cur-
rently, this problem impacts parts of 6 out of 77 flight paths.

Table 2. Number of geo-referenced images by method and non geo-referenced images together with their averaged parameters.

Method Count Information content Tie-points Residuals Calculation time (s)

Direct 412 0.32 254 117.26 147
Indirect: option 1 319 0.28 80 93.94 33
Indirect: option 2 181 0.26 1112 58.18 16
Indirect: option 3 2861 0.13 4 3.32 4
not geo-referenced 665 0.12 n.a n.a n.a
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Unfortunately, no direct numerical estimation of the geo-referencing quality can be given, as the 
images have never been geo-referenced before. To have at least some numerical information, we 
manually placed 20 ground control points distributed over the research area covering different 
flight paths and calculated the distance to their equivalent geo-referenced position. The results of 
this comparison can be found in Table 3.

4.2. Case studies: surface changes revealed by comparing historical and modern imagery

In this section, we demonstrate some practical application of accurately geo-referenced historical 
imagery, by highlighting its value in environmental change analysis. Our analysis is by no means 
meant to be comprehensive, but showcases the potential of the accurately geo-referenced TMA 
imagery for research purposes.

By employing the Structural Similarity Index (SSIM) (Wang et al. 2004), we quantified the simi-
larity between historical images and their modern counterparts from Sentinel-2, considering their 
geo-referenced extents. The SSIM is a metric used to measure the similarity between two images, 
assessing changes in structural information, luminance, and contrast rather than just pixel differ-
ences. Figure 15 provides an overview of the similarity scores associated with these geo-referenced 
images. A blue color indicates high similarity between images, whereas a red color indicates that the 
historical images and their modern counterparts are not similar.

In our analysis, we observed that for most images, particularly those away from coastal regions, there is a 
high similarity score. This indicates that these areas have not undergone substantial changes over time. 
Conversely, images near the coast exhibited greater changes, primarily attributed to factors such as 
changes in sea ice cover. While it is important to note that these variations could also be influenced by 

Figure 13. Real positions of footprints and error vectors on a Sentinel-2 composite of the Antarctic Peninsula. Footprints are 
colored according to the method used for their estimation: direct geo-referencing and indirect option 1 (blue), indirect option 
2 (turquoise) and indirect option 3 (yellow).
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other elements such as cloud cover or deviations in image quality, this initial assessment provides a useful 
baseline for understanding environmental changes in these regions.

With the help of these similarity scores, we identified some locations of interest, i.e. locations in 
Antarctica, exhibiting significant environmental change over a 60-year period. Figure 16 present 

Table 3. Distance in meter between the geo-referenced position and the real position of sample points for different TMA images, 
indicated by their TMA Id.

Nr Id Distance (m) Method

1 CA164432V0071 106 Indirect: option 3
2 CA174632V0171 155 Direct
3 CA182532V0011 108 Indirect: option 2
4 CA183332V0068 33 Indirect: option 1
5 CA184332V0074 99 Direct
6 CA184832V0102 119 Direct
7 CA184832V0120 47 Direct
8 CA184832V0156 14 Direct
9 CA196632V0028 28 Direct
10 CA196632V0056 19 Indirect: option 1
11 CA212332V0016 50 Direct
12 CA212332V0040 83 Direct
13 CA212432V0106 135 Indirect: option 2
14 CA214232V0162 185 Direct
15 CA214232V0193 117 Direct
16 CA216432V0215 12 Indirect: option 1
17 CA216632V0291 161 Indirect: option 1
18 CA216632V0305 67 Direct

avg 85.44

Figure 14. Geo-referenced historical images from flight paths 1801/1856 (a), 2142 (b), 2146 (c), 2141 (d), 1824 (e), 1812/1824 (f) 
overlayed over Sentinel-2 imagery. The dashed line shows the footprint of the images.
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these comparative examples: on the left, the geo-referenced historical imagery, on the right modern 
co-located Sentinel-2 imagery with enhanced natural color visualization. The dates of the historical 
images are given in the figure, the dates of Sentinel-2 satellite images are from the corresponding 
months in 2023. As for subfigure (d) no month is known, the month of January was chosen. The 
positions of these examples are indicated in Figure 2.

In Figure 16, a series of subfigures (a to e) illustrate glacier retreats in various highlighted areas. 
Focusing on subfigure (a), the Shoesmith Glacier on Horseshoe Island is featured, characterized by 
two distinct branches: one leads into Lystad Bay to the west and the other into Gaul Cove to the north-
east. From a direct image comparison, we estimate a retreat of 700 m at the western terminus, con-
trasted with a 300 m retreat at the northeastern terminus. Rodrigo et al. (2021) previously reported a 
retreat of approximately 200 m in the western part from 1999 to 2012, yet no data were available for 
the northeastern part. Coincidentally, a British gravity survey was conducted in this region in 1969, 
aligning with the time of the photograph (Smith 1973). The McMorrin Glacier, showcased in subfi-
gure (b), is located on the Fallières Coast, extending westwards from Mount Metcalfe to Marguerite 
Bay. Based on the partial visibility in the historical imagery, a retreat of 1500 m is estimated, leading to 
the isolation of a small northern sub-glacier. In subfigure (c), Fleming Glacier is depicted, located 
along the Fallières Coast and terminating at the Forster Ice Piedmont, to the east of the Wordie 
Ice Shelf. Zhao et al. (2017) observed a significant decrease in elevation at the glacier’s front, noting 
a reduction of 60 m from 2002 to 2014. Similarly, Friedl et al. (2018) reported a retreat of the ground-
ing line by 6–9 km from 1996 to 2011. These findings are consistent with the historical imagery cover-
ing the northern part of the glacier, which reveals a clear change in the glacier front’s position. In the 
modern image, the glacier front is distinctly visible, whereas in the historical image, the glacier front 
cannot be discerned at the marked position, nor further seawards. subfigure (d) presents the Somigli-
ana Glacier, located on the northern Arrowsmith Peninsula and extending towards Langmuir Cove. 
Analysis reveals a retreat of 2,000 m from 1956 to 2023. Similarly, subfigure (e) examines a glacier near 
Mt. Wilcox, displaying a 600 m retreat from 1966 to 2023. In Cook et al. (2016, 2014), a surface area 

Figure 15. Similarity between historical images and co-located modern Sentinel-2 imagery. Red indicates low similarity, while 
blue indicates high similarity.
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Figure 16. Examples for changes between historical images (left) and modern Sentinel-2 images (right). Notable changes are 
marked with red.
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reduction of 15% (1957 to 2009) and 5% (1940 to 2001) was reported for these glaciers, respectively. In 
subfigure (f), we observe supraglacial melt lakes on the Sibelius Glacier in central Alexander Island. 
Sentinel-2 imagery shows annual lake formations from 2014 to 2023, a phenomenon dating back to at 
least 1966 as per TMA images (Corr et al. 2022; Moussavi et al. 2020). Lastly, subfigure (g) captures 
Rothera Point on Adelaide Island, where the British Rothera Research Station is situated. These his-
torical images predate the construction of the research base. In the satellite imagery, the station’s land-
ing strip is discernible (marked with a red square).

With the images now correctly oriented vertically, we can automatically obtain the accurate posi-
tioning of the oblique images, too, which facilitates additional comparisons. As a first example, 
Figure 17 presents a comparative oblique view of the Fleming Glacier (at position c) in Figure 2), jux-
taposing an image from January 1969 with a Sentinel-2 image from January 2023. The latter is artifi-
cially rendered in 3D while approximating the same viewpoint.

Figure 16. Continued. 
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5. Discussion

A large fraction of the images from the TMA archive in our study area have been successfully geo- 
referenced. While in the past only an approximate position was available, which deviated by several 
kilometres and lacked exact image footprints, these images are now situated at their actual position, 
scaled to their true size, and aligned with their genuine orientation. As the cameras for the vertical 
and both oblique directions are located at the same position, the vertical geo-referencing can easily 
be extended to the oblique images.

Given the inherent limitations of the historical data and the lower geometric resolution of the 
Sentinel-2 satellite imagery, geo-referencing accuracy is often confined to several meters. Moreover, 
the quality of some image scans is compromised due to the poor image quality (degradation of the 
images & scanning errors), posing challenges in accurate geo-referencing. This level of precision, 
while not comparable to that of modern images, represents a substantial advancement compared 
to the approximate camera positions.

Even though only 20% of the historical images can be geo-referenced directly with satellite 
images, these images are the key to further successful geo-referencing. They play a pivotal role in 
the broader geo-referencing process and serve as references for geo-referencing adjacent images. 
Furthermore, they prove instrumental as reference points when computing the footprints of the 
remaining images. These direct geo-referenced key images are typically characterized by distinct 
rock structures, which have proven to be remarkably stable for many decades. For most of these 
key images successful geo-referencing is possible; however, there are three limitations: first, for 
some images, the changes between historical and recent images are too substantial to establish 
meaningful tie-points (top part of Figure 18). This issue is particularly prevalent in coastal areas, 
where over time the extent of glaciers and ice shelves has drastically changed. Furthermore, 
long-term and interannual variations in sea ice cover further frustrate the geo-referencing process 
when images contain a large fraction of the ocean. Second, tie-points must be dispersed across var-
ious parts of the image. When distinct structures are concentrated in just one corner of the image 
(middle part of Figure 18), geo-referencing tends to be unsuccessful, as in such cases, while the 
image might be correctly positioned, its footprint becomes distorted due to the imbalanced distri-
bution of reference points. Lastly, even though the information content computed in Subsection 3.3
can serve as a valuable metric to identify these key images, it is not without limitations. In some 
cases, images may lack sufficient meaningful content (right part of Figure 18) or the tie-points 
are randomly distributed, often due to cloud coverage, thus hindering the identification of mean-
ingful tie-points. On the opposite, we found that prevalent shadows in both the Sentinel-2 imagery 

Figure 17. Oblique view on Fleming Glacier from TMA imagery in  January 1969 (left) and a Sentinel-2 3D rendering from January 
2023 (right).
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and the historical images are only marginally influencing the tie-point matching and geo- 
referencing.

The main reason that for some flight paths no images can be geo-referenced, is the low infor-
mation content of all their images. The average information for these flight paths is significantly 
lower (average 0.07) compared to those where geo-referencing is successful (average: 0.18). For 
instance, the images of some flight paths predominantly feature snowfields, leading to monochro-
matic and uniformly white frames. These conditions render even manual inspection methods for 
geo-referencing ineffective, underscoring again the importance of diverse landscape features in 
images for accurate geo-referencing.

Conversely, a high information content can also hinder the geo-referencing. This often indicates 
dynamic landscapes, such as coastal regions, where significant changes in the landscape can occur. 
Images of this flight path feature coastal areas that have undergone substantial alterations, compli-
cating the geo-referencing process. Additionally, images with extensive cloud coverage present a 
high information content as well. However, the clouds obscure essential landscape features, render-
ing the further geo-referencing task impossible.

Despite these challenges, when at least 2 images of a flight path can be geo-referenced success-
fully, the workflow can usually successfully extrapolate the position of the other images. During the 
geo-referencing, it was noticed that some images were scanned with an incorrect rotation, leading to 
accurate footprint extents but misaligned orientations. Furthermore, for some images, there were 
gross errors in the position of the provided approximate footprint: initially, we assumed that pos-
itional deviations in images would be limited to 30 km. However, our recent findings indicate discre-
pancies as large as 70 km. Increasing the search radius of the TMA footprint relocation can detect 
these deviations, but they impose a significant computational burden, increasing processing times 
to approximately 15 min per image (from the majority of images having a calculation time of 46 s).

As described in the results, for some flight paths, the images are technically successfully geo- 
referenced but misaligned from their true positions. This issue predominantly arises for images 

Figure 18. Examples for images where the geo-referencing failed due to changed landscape (left), unequal distribution of tie- 
points (middle) and too few tie-points (right). Modern Sentinel-2 imagery is on the top, historical images are on the bottom.
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geo-referenced with the third option (calculating the position of images), especially those situated 
further from the directly geo-referenced images within the same flight path. Minor discrepancies in 
angle and distance between the directly geo-referenced images accumulate, leading to the misplace-
ment of the images with calculated positions. However, they are generally located in the vicinity to 
their real positions, allowing for the possibility of manual geo-referencing. Additionally, contrary to 
the initial hypotheses that all flight paths are straight lines, it has been observed that some flight 
paths deviate significantly from linear trajectories, incorporating sharp turns (see bold red flight 
path in Figure 2. This leads to greater deviations of the images from their actual positions, challen-
ging the traditional assumption of uniformly straight and predictable flight paths. To address this, it 
is necessary to manually segment the flight path into different sections to guarantee accurate geo- 
referencing.

In conclusion, our observations underscore the multifaceted challenges in geo-referencing aerial 
images. From issues related to low information content and dynamic landscapes to errors in image 
rotation and underestimations of deviations, each factor significantly impacts the accuracy of geo- 
referenced data. As we continue to refine our methodologies and deepen our understanding of these 
complexities, we aim to enhance the precision and reliability of geo-referencing in aerial imaging.

6. Conclusions

In this study, we outlined the methodology for geo-referencing historical aerial photographs. We 
employed advanced neural network-based tie-point matching techniques, creating a unique 
workflow specifically optimized for high-resolution, large historical imagery. Geo-referencing is 
achieved by matching tie-points between the historical photos and contemporary satellite imagery, 
guided by preliminary footprints. If initial attempts are unsuccessful, we employ a tiered approach: 
first, re-attempting with refined footprints from satellite data; second, utilizing geo-referenced 
neighboring images; and finally, computing the image’s footprint directly. Rigorous quality control 
measures are then implemented to guarantee the precision of the geo-referenced outputs. The 
efficacy of our method was showcased in a practical application, in which we successfully geo-refer-
enced 76% of the images of an extensive collection of aerial photographs from the Antarctic Penin-
sula and highlighted differences between the historical and modern images for 7 scenarios.

While our geo-referencing technique proves successful for a majority of the images in the subset 
and these images are geo-referenced on a large scale for the first time, certain challenges persist. 
Many images, due to their sparse informational content, cannot be geo-referenced through tie- 
point matching alone, necessitating the deployment of our tiered strategy. Due to the geometric res-
olution of our modern data and the limited quality of the historical data, our method remains con-
strained to meter-level precision. For the majority of the flight paths in our research area, we were 
able to geo-reference at least some images from the flight path using satellite data, ensuring the fol-
lowing geo-referencing via extrapolations. However, should a flight path entirely lack satellite-based 
geo-referencing, estimating the location of its images becomes unattainable.

For the future, our primary focus is on increasing the number of images that can be directly geo- 
referenced with modern data. This is crucial as it significantly influences the quality of our method. 
Enhancements can be achieved either by refining the tie-point matching process (e.g LoFTR Yuan 
et al. 2022 or DISK Tyszkiewicz, Fua, and Trulls 2020), retraining the neural network for tie-point 
matching with historical images, or by further optimizing the historical imagery to ease the identifi-
cation of tie-points. In the current approach, an initial approximation of the image’s location is 
required, which should be relatively close to its actual location. The step of refining the approximate 
position is notably time-consuming. We plan to employ machine learning, specifically U-nets, for 
this initial approximation refining, allowing for the faster identification of a historical image’s 
location within a larger area. To enhance the functionality of the geo-referencing workflow, non- 
linear flight paths should be automatically recognized in the future and be taken into account 
during the line-fitting. Finally, it would be beneficial to evaluate this workflow’s adaptability to 
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other regions and contexts, including historical aerial imagery from places like Greenland or Sval-
bard, or entirely different settings such as urbanized regions.

Geo-referencing the images from these historical archives offers many opportunities for sub-
sequent research. Potential applications include monitoring changes in glaciers, ice shelves, and 
other cryospheric features over time, thereby furnishing tangible proof of Antarctica’s response 
to global warming. Given that these images overlap, they can be used to construct 3D models 
using Structure from Motion (SfM). These models can then be compared with contemporary 
elevation data, like satellite stereo-photogrammetry and altimetry (e.g. ICESat-2), to procure an 
understanding of elevation and mass variations.
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Appendix

Table A1. Overview of all flight paths located inside the research area.

Flight path Nr. of images Nr. of georef. images information content length error vector (m)
1644 67 66 0.1 26,939
1741 18 0 0.07 n.a.
1742 36 0 0.04 n.a.
1743 28 28 0.02 51,102
1744 10 10 0.07 28,265
1745 16 15 0.03 19,384
1746 19 18 0.12 18,507
1747 15 14 0.08 10,705
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Table A1. Continued.

Flight path Nr. of images Nr. of georef. images information content length error vector (m)
1800 76 76 0.12 20,709
1801 85 85 0.18 11,751
1803 14 0 0.52 n.a.
1804 20 2 0.18 92,024
1805 41 41 0.05 24,839
1807 41 41 0.07 27,766
1809 36 0 0.02 n.a.
1810 61 0 0.03 n.a.
1811 21 0 0.03 n.a.
1812 80 80 0.08 22,013
1813 123 123 0.15 18,837
1814 45 45 0.04 23,785
1815 76 76 0.16 26,304
1816 182 182 0.06 20,490
1817 35 35 0.11 14,912
1818 70 70 0.09 15,613
1821 188 188 0.07 7,203
1822 114 114 0.13 18,893
1823 103 103 0.19 12,645
1824 109 109 0.3 28,286
1825 115 114 0.09 59,068
1826 87 0 0.05 n.a.
1827 62 10 0.24 57,809
1829 45 2 0.06 40,189
1830 54 0 0.05 n.a.
1831 78 78 0.13 79,129
1832 81 81 0.08 57,454
1833 156 156 0.17 17,072
1834 50 50 0.46 32,106
1835 93 93 0.34 17,655
1843 89 89 0.12 13,001
1844 97 97 0.19 56,554
1845 86 86 0.2 91,998
1846 108 107 0.2 9,441
1847 95 95 0.19 13,301
1848 88 88 0.24 5,082
1849 101 101 0.16 160,741
1962 53 53 0.19 66,112
1963 11 0 0.08 n.a.
1965 20 20 0.21 44,150
1966 41 41 0.09 11,386
1967 46 1 0.08 13,889
1968 36 36 0.1 20,710
1969 34 0 0.07 n.a.
1993 26 1 0.14 20,039
2073 89 89 0.02 36,656
2074 73 73 0.02 41,598
2075 91 0 0.0 n.a.
2121 76 75 0.09 36,459
2123 54 54 0.07 5,665
2124 66 66 0.04 6,243
2133 15 1 0.38 55,343
2134 13 13 0.37 6,242
2135 25 0 0.35 n.a.
2141 53 53 0.12 15,077
2142 75 75 0.24 13,084
2160 28 28 0.5 16,189
2161 38 38 0.53 35,423
2163 36 0 0.94 n.a.
2164 48 47 0.52 18,065
2165 26 7 0.76 27,797
2166 67 67 0.6 20,396
2167 37 37 0.23 3,338
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