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Abstract

In the task of music style transfer, the symbolic music representation based on
Musical Instrument Digital Interface (MIDI) files has always been a popular
research medium. By using such representation, some mature models for im-
age style transfer can also be applied to this scenario, such as Cycle-consistent
Generative Adversarial Networks (CycleGAN). However, this MIDI-based data
representation is not suitable for guitar music because it does not support unique
expressive information of guitar playing, such as bending, sliding, or other play-
ing techniques. DadaGP, a dataset made up of guitar-specific format files (tabla-
tures) and their rendered text-like tokens, enables us to perform symbolic guitar
music style transfer leveraging expressive guitar playing information, and to pro-
duce playable guitar tablatures. We first adopt K-hot encoding to transform
the task from sequence generation to binary classification of multiple variables,
and use top-k sampling to reproduce sequences from output K-hot vectors. We
then propose a novel model we call CycleGMT, a CycleGAN-based model for
symbolic guitar music style transfer. Finally, to mitigate the severe sparsity in
the data and its resulting content loss, we adopt a skip connection between the
input and output of the model, successfully achieving style-transferred music
whose quality being competitive with human-composed remixes, while the mu-
sical complexity of the style-transferred music can be controlled by adjusting
the value of k in top-k sampling.
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“DON’T ONLY PRACTISE YOUR ART, BUT FORCE YOUR WAY INTO
ITS SECRETS.” – LUDWIG VAN BEETHOVEN
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Chapter 1

Introduction

The concept of style transfer can be explained as follows: For a sample with
Style A, assume its information is composed of two parts, one representing
content and the other representing style. With the objective of preserving the
content information as much as possible, the style information is transformed
from domain A to domain B, resulting in a new sample with the same content
but of Style B.

When it comes to the field of music, the style transfer task becomes more
specific, that is to transfer the genre (style in terms of music) of a music piece
while keeping the basic pattern of its melody and rhythm to ensure that the
audiences can recognize the original music from its style-transferred version.
This defines the task of music style transfer. Many studies have attempted
and successfully employed deep learning models to tackle this challenge. Clas-
sic choices among these are deep generative models, such as VAE (Variational
Auto-encoders) [12] and CycleGAN (Cycle-Consistent Generative Adversarial
Networks) [75], because they can effectively learn the underlying style feature
distribution of samples.

For music style transfer and similar generative tasks based on music, the po-
tential musical representations typically include symbols [45], audio waves [33],
and spectrograms [51]. Among all these three forms of representations, symbolic
representation, where notes, their duration, velocities, and other attributes are
explicitly encoded, offers a higher-level view of music. Symbolic music style
transfer thus manipulates those structured properties of music, such as the pat-
terns, rhythms, chord progressions, and other features. Moreover, since it’s not
working directly with waveforms but with musical notations, and sounds are
produced from those notations using synthesizing tools, it allows for intricate
manipulations without altering the sound quality.

In this thesis, We propose a novel model we call CycleGMT (CycleGAN-based
model for symbolic guitar music style transfer) with the inspiration of G.Brunner
et al. [8] and the contribution of DadaGP dataset [60]. Being the first guitar
music dataset consists of guitar tablatures and fully leverages expressive guitar
playing information by a unique encoding-decoding protocol, DadaGP provides
a solution for symbolic representation of guitar music. Based on this, we develop
a special use case of K-hot encoding to encode the text-like data that DadaGP
provides, resulting in high quality and controllable musical complexity of gen-
erated style-transferred music. We also propose some measures to mitigate the
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negative effect of the sparsity in the K-hot encoded data, including a skip con-
nection outside of the CycleGMT model. As a result, the negative impact of
sparsity on preserving the original content was largely mitigated. However, the
issue of model outputs becoming homogeneous due to sparsity remains unre-
solved. It would cause the style-transferred music to have a certain sense of
repetition over a long time dimension, but it does not have a significant impact
on the overall quality of the style-transferred music.

The remainder of this chapter explains the differences between guitar tabla-
ture and stave notation 1.1, and based on this, introduces the research question
of this thesis 1.2. The final section outlines the structure of the thesis, accom-
panied by a schematic diagram to facilitate the reader’s understanding 1.3.

1.1 Guitar Tablatures and Stave Notation

Considering that symbolic music style transfer is based on musical notation
systems, the choice of which notation system to use for style transfer becomes
paramount. In Classical music, the stave notation [69], using 5 horizontal lines
and the 4 spaces between them to represent pitches, has been widely used due
to its outstanding musical representation capabilities and universality across
a large number of Classical instruments. It communicates the pitch, rhythm,
dynamics and other facets of a composition, making it a versatile language of
music. For this reason, those partition of tasks of music technology who focuses
on symbolic representation of music are mainly looking at stave notations and
MIDI (Musical Instrument Digital Interface) piano rolls [45].

Nevertheless, when it comes to guitar music, another form of notation which
is more intuitive for guitar playing was employed, named guitar tablature. As
shown in Figure 1.1, guitar tablature contains basic musical information includ-
ing pitch and rhythm as well, but all of them were represented based on the
desired finger positions on the six strings of guitar rather than directly exhibit-
ing which note to play. The numbers indicate the the exact fret of a string where
the musician should place his or her fingers on to produce a particular note or
sound. In addition to this, a salient advantage of guitar tablature lies in their
ability to provide specific guitar-playing techniques. Such information contrib-
utes to the production of more sonorous and pleasing music, characterized by
more nuanced stylistic traits.

1.2 Motivation and Research Question

As an enthusiast of the guitar, I have been continually paying attention to
works related to guitar music within the Music Information Retrieval (MIR)
field. However, such endeavors are not frequently encountered in the literature.
I argue that the primary reason for it is that much of the preceding work in MIR
domain is centered around Musical Instrument Digital Interface (MIDI) files. A
MIDI file [7] is a common format of storing music with a digital symbolic repres-
entation that contains sequences of messages or commands representing musical
events, where a musical event may contain note and pitches, duration, velocity,
etc. While the symbolic representation provided by MIDI can be equivalently
converted to a stave notation, this conversion does not support guitar tabla-
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Figure 1.1: Comparison between stave notation and guitar tablature
with the example of We Will Rock You by Queen [55]. The top
stave notation and bottom guitar tablature are equivalent pairs. The
stave notation directly shows which note to play, while the guitar
tablature instructs the finger position on a guitar fretboard rather
than exhibiting the note itself. The letter p.m. (stands for Palm
Mute), let ring and the bending arrow represents different guitar
playing techniques, which are provided by guitar tablature only and
are not supported in stave notation.

tures and excludes the expressive guitar playing information specific to guitar
tablatures.

However, the advent of DadaGP [60] offers a solution to this issue. DadaGP,
a novel guitar music dataset released by Pedro et al. in 2021, consists of over
26,000 guitar songs, all notated in GuitarPro format [67] as digital guitar tab-
latures. Furthermore, they introduced an encoding-decoding scheme accompa-
nying the dataset that achieves the conversion of guitar tablatures into musical
events represented by text-like tokens [32], perfectly integrating the expressive
information exclusive to guitar tablatures. This initiative fills the previous gap
in symbolic representation of guitar music caused by the inability of MIDI files
to encode guitar tablatures, thereby paving the way for potential explorations
on symbolic guitar music information retrieval tasks.

The research question for this thesis then emerges:

‘ How to achieve symbolic guitar music style transfer based on guitar
tablatures, in order to leverage the expressive guitar playing inform-
ation and produce playable guitar tablatures? ’

This general research question can be further divided into 3 sub-questions that
are more specific:

Research Question 1 How to utilize the text-like tokens provided by DadaGP?
And correspondingly, what kind of modeling approach should be applied?

Research Question 2 How to choose and design an appropriate model struc-
ture to achieve symbolic music style transfer?

Research Question 3 How to quantitatively evaluate the performance of mu-
sic style transfer?

1.3 Thesis Structure

The Thesis mainly consists of four parts:
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• A literature review of music style transfer and recent works related to
guitar music is provided in Chapter 2. Section 2.1 collects works based
on the different musical representations used, which are musical symbols,
audio waves and spectrograms. Section 2.2 explores supervised and unsu-
pervised approaches. The last Section 2.3 presents review on recent works
that focus on guitar music modeling.

• An introduction of DadaGP dataset [60] and our solution to Research
Question 1 by K-hot encoding with probability modeling is presented in
Chapter 3. DadaGP provides the foundational possibility for achieving
symbolic guitar music style transfer. In Section 3.1, we explain the data
structure of DadaGP and further explore the data distribution within
DadaGP through statistical summarization. In Section 3.2, we explore the
methodology of encoding the DadaGP data samples, as they are provided
in the format of text-like tokens. We firstly present the initial attempt
on integer encoding and sequential modeling in 3.2.1 and then the K-
hot encoding and probability modeling that perfectly solves Research
Question 1 in 3.2.2. Additionally, guitar roll, an extended visualisation
form that is very similar to a piano roll, is also presented in 3.2.3.

• The proposed model, CycleGMT (CycleGAN-based model for Symbolic
Guitar Music Style Transfer), is presented in Chapter 4 to resolve Re-
search Question 2. CycleGMT is built upon a Cycle-consistent Gen-
erative Adversarial Network (CycleGAN) [75]. Section 4.1 explains the
structure and working mechanism of a CycleGAN, and in Section 4.2 we
address the instability in our CycleGAN training due to an over-powered
discriminator by modifying the structure to a Wasserstein GAN (WGAN)
[2]. In Section 4.3, we discuss how the severe sparsity in the training data
affected our result and propose several mitigation measures.

• The evaluation experiments conducted to test the generative quality of
CycleGMT and analysis results are provided in Chapter 5, solving Re-
search Question 3. By combining an objective evaluation introduced in
Section 5.2.1 that uses a genre classifier, and a subjective test presented in
Section 5.2.2 by paper survey, we found that the quality of style transfer
produced by CycleGMT was compatible with those samples composed by
humans artists. Moreover, when we blend it with other two human-made
style transfers, participants found it challenging to discern which one was
generated by CycleGMT, indicating a high musical quality of the model
output.

To facilitate reading, we further illustrate the thesis structure in Figure 1.2.
The figure exhibits the chapters and sections of the thesis in sequential manner,
as well as their interconnections with each sub research question. The sections
where novelty lies in are marked with yellow. The dependencies between each
section are represented with arrows.
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Figure 1.2: Structure of this thesis. The yellow color marks the sections
where novelty lies in, and black arrows represent the dependencies
between each section. Note that some of the sections are not included
in this figure.
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Chapter 2

From Image Style Transfer
to Music Style Transfer

The concept of style transfer was initially originated from computer vision field,
referring to the task of rendering the content of one image into the style of
another. Gatys et al. [20] first introduced the neural style transfer approach,
in which Convolutional Neural Networks (CNNs) [50] are adopted and trained
to separate and recombine content and style information. The famous cycle-
consistent adversarial network (CycleGAN) structure, proposed by Zhu et al.
[75] is another remarkable work designed for unpaired image-to-image transla-
tion. It contains two sets of generators and discriminators to transfer samples
between domain A and domain B while preserving content features. This is
ensured by cycle loss, which is designed to guarantee a successful transfer-back.
As a modified version, Wasserstein generative adversarial network (WGAN) was
further proposed [2]. Gradient penalty [24] and Wasserstein distance [58] were
brought into the original CycleGAN structure to stabilise its training procedure.

The success of style transfer implementations in image-related fields rapidly
brought this concept to other domains, such as music [15]. Style transfer can be
explained in this case, as preserving the content information of a musical piece
(melody, rhythm, etc) while changing its genre.

2.1 Regarding Musical Representations: Sym-
bols, Spectrograms and Audio Waves

Due to the diverse forms of musical representation, a number of style transfer
methods have been developed regarding these different forms of expression.

2.1.1 Symbolic Representation

As shortly mentioned in section 1.2, symbolic representation stores musical in-
formation based on events which have explicit musical meaning, such as pitches,
duration, velocity etc. Typical digital symbolic representation includes Mu-
sicXML [21] and MIDI (Musical Instrument Digital Interface) piano roll repres-
entation. A piano roll was initially invented as a music storage medium used
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Figure 2.1: Figure from [68], exhibiting a MIDI piano roll where the
Y-axis are pitches represented by piano keys and X-axis represents
time stamps.

to operate a player piano [68]. Specifically, it is a paper with holes in it, where
each hole encodes note parameters like pitch and duration. It provides a more
intuitive understanding over traditional sheet music, and is further adopted in
MIDI files as a standard protocol for controlling and synchronizing digital in-
struments [48]. As Figure 2.1 illustrates, a MIDI piano roll displays time stamps
horizontally and pitches vertically and uses rectangles to stand for consecutive
notes.

Huang et al. (2017) made a significant contribution to the domain of symbolic
music generation by proposing the MuseGAN algorithm [17] , with their model
capable of generating music with multiple tracks, demonstrating the effective-
ness of Generative Adversarial Network (GAN) for style transfer in symbolic
music. G.Brunner et al. in [8] introduced the idea of symbolic music style
transfer with a CycleGAN. The music samples were stored in MIDI files and
then rendered into piano rolls, which gives them an image like quality and there-
fore allows to apply CycleGAN, which was an image-style-transfer technology.
Another work by Wu et al. embedding Transformer-based architecture into
a Variational Auto-encoder (VAE) [70] was proposed to exploit advantages of
both model to achieve an improved performance of music style transfer.

2.1.2 Spectrograms and Audio Representation

MelGAN-VC [51] proposed another solution based on the Mel-spectrograms of
music, in which the idea similar to an image style transfer was also adopted.
Lu et al. adopted a multi-modal structure also upon Mel-spectrogram based
representations and achieved timbre-enhanced music style transfer [41]. Hung
et al. [33] introduced an audio-based method, which focuses on disentangling
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latent factors such as pitch and timbre directly from audio waves of arbitrary
music source and thus learning its composing features. These features are then
recombined to produce different composing arrangement, thus achieving music
style transfer. The work of McAllister et al. [42] explored music style trans-
fer with another interesting representation of music, which is the Constant-Q
transformed [6] spectrograms.

2.2 Supervised and Unsupervised Approaches

2.2.1 Unsupervised Approaches

Another technical point of distinction is whether to use supervised or unsuper-
vised learning. Most of the works in this field, including ones mentioned above
and [46] were using unsupervised method because of the difficulty of acquir-
ing paralleled data for training. In this context, generative models that can
be trained with unsupervised methods, like CycleGAN [8] and VAE [7] [70],
becomes popular. Such models are capable of learning the latent feature distri-
butions within data samples of different style, thereby defining distinct styles
and accomplishing style transfer based on this learned understanding.

2.2.2 Supervised Approaches

The work of [14], [13] and [12] instead focuses on one-shot music style transfer
using self-supervised learning. A synthetic method [14] [12] was used to mitigate
the problem of lacking paired training data by using synthetic tools to synthesize
different style versions of the original song, and then apply supervised training.
This could indeed be a solution but the power of the system is therefore limited
by the performance of chosen synthetic tools.

2.3 Recent Works on Guitar Music

Due to the superior music representation capacity of the stave notation and its
universality across a variety of classical instruments, most work in music style
transfer centers around stave notation and MIDI symbolic representations. In
2021, Sarmento et al. introduced a dataset for guitar music incorporating guitar
tablatures with more than 26K songs [60]. Along with it, inspired by [32], they
also provided an encode-decode algorithm to render the digital guitar tablatures
into text-like tokens representing musical events, successfully achieved symbolic
representation for guitar music with tablatures. This novelty lies the found-
ation of implementing guitar music information retrieval tasks using symbolic
guitar music representation. Another one of their recent works [61] has already
explored the feasibility of guitar music generation with DadaGP dataset [60].
They adopted a Transformer-XL structure [16] and implemented sequence gen-
eration to generate musical tokens one by one according to the previous token.
Additionally, they made successful attempts on controlling the instrumentation
and genre of the generated music by adopting control tokens at the beginning
of each song in the training corpus for pre-conditioning.
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In addition to the guitar music generation that Sarmento et al. have been
researching, there are many previously vacant guitar music information retrieval
tasks that can now be accomplished through the symbolic guitar music repres-
entation provided by DadaGP, such as the guitar-bass transcription [56], and
the guitar music style transfer that we are going to investigate in this thesis.
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Chapter 3

Guitar-tablature-based
Music Dataset and
Encoding Methodologies

This chapter firstly provides insights of the DadaGP dataset [60], which is a
guitar music dataset based on guitar tablatures in the format of GuitarPro [67]
files. The existence of DadaGP is the foundation for achieving symbolic guitar
music style transfer, as previous works mainly focused on Musical Instrument
Digital Interface (MIDI) files [7], in which guitar music symbols are not suppor-
ted. Meanwhile, the expressive tokens that DadaGP contains (guitar playing
techniques, rhythm arrangements etc.) make it possible to use them to enhance
the performance of guitar music style transfer.

The second section of this chapter addresses the Research Question 2. Two
encoding and modeling approaches, integer encoding with sequence modeling
and K-hot encoding with probability modeling, are introduced and qualitatively
evaluated. While the latter one turns to perform significantly better than the
former by ensuring that the produced style-transferred music has rational music
structure and its musical complexity can be controlled by top-k sampling method
[38], it also can be extended to a form of visualization named guitar roll, which
is very similar to a piano roll mentioned in Section 2.1.1.

3.1 DadaGP Dataset: A Guitar Music Dataset
based on Guitar Tablatures

3.1.1 Introduction to DadaGP

DadaGP [60] is a dataset consisting of tokenized GuitarPro songs. GuitarPro
[67] is a type of guitar music editing software, and it also serves as a popu-
lar electronic format for guitar tablatures, which can also be manipulated and
analyzed using a Python package: PyGuitarPro [59]. DadaGP collects 26,181
guitar songs from more than 700 musical genres, with all of them represented
with guitar tablatures in GuitarPro format. Same as other well-known musical
formats like MIDI, GuitarPro contains accurate pitch and rhythm information
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Figure 3.1: A figure from [60], displaying a measure with a distor-
ted guitar, bass and drums in GuitarPro’s graphical user interface
(left), and its conversion into token format (right). As an example,
orange rectangles mark the electrical distorted guitar (E-Gt) track
on the left and its corresponding text-like tokens on the right, and
blue rectangles mark those for the electrical bass (E-Bass).

and works with multi-instrument tracks as well. In each line of guitar tablature,
it provides an equivalent stave notation reference to annotate the notes. Inspired
by event-based MIDI encoding protocol [32], the authors also developed an en-
coding/decoding algorithm to achieve conversion between GuitarPro format and
text-like tokens, whose protocol can be explained by Figure 3.1 presented in pa-
per [60].

3.1.2 The Data Structure of DadaGP

All the tokens in DadaGP dataset can be roughly classified into 3 categories:

• Note tokens. This refer to those tokens containing a ‘note’, for instance,
distorted0 : note : s5 : f0. The structure of these kinds of notes follows
Instrument : note : String : Fret where the string and fret instructs
which position on the guitar. Each of these tokens represents a single note
with the selected pitch played on a specific instrument, and multiple note

12



tokens can be played simultaneously to produce one complex, harmonized
sound.

• Positional tokens: tokens that appear only at the start or at the end
of a song (artist :, downtune :, temp : ...), or tokens indicating the separ-
ation of musical bars or harmonized sounds (new measure, wait:). These
tokens are necessary components for the decoding mechanism of DadaGP.
Additionally, wait: tokens are paid extra attention to as they perform as
the positional indicators of actual sounds. Each wait: token represents a
certain time interval between two harmonized sounds, where a harmonized
sound consists of one or more note tokens.

• Expressive tokens. The tokens containing information related to gui-
tar playing techniques and other expressive notes e.g. nfx : let ring, nfx
: vibrato. According to the encoding-decoding protocol of DadaGP, the
presence of these tokens will affect all the notes played by arbitrary in-
strument at that moment. This means if a set of tokens between two wait:
tokens contains an expressive note, then all the tokens in this set will share
that effect.

Traditional Music Information Retrieval (MIR) tasks [9] often starts from the
audio itself or graphical notations such as piano rolls. However, this text-like
encoding allows music data to be treated as discretized and sequential data,
analogous to tasks in natural language processing. Therefore, many models
that have been proven successful in discrete data domain can be applied. Sim-
ultaneously, this text encoding fully retains the specific information on guitar
playing techniques which are not supported by conventional representations,
making it a learnable feature which could potentially enhance the performance
of the desired guitar music style transfer.

3.1.3 The Selection of Genres based on Statistics of DadaGP

For a music style transfer task, the selection of the two genres to be trans-
ferred will have a pivotal impact on the performance of the transformation. To
determine such choices, we conducted the following statistical analysis on the
dataset:
Amount of songs in each genre. A genre refers to the category of music,

for example, as per typical western colloquialism, Rock and Classical. Every
song in DadaGP is labeled with one or more genre labels. Firstly, the two
selected genres must contain sufficient data to support training, thereby ensuring
the performance of the model. According to the genre distribution of the dataset
shown in Figure 3.2, we initially decide the subset of candidate genres including
Rock, Metal, Jazz, Blues, Classical and Folk, as each of them contains at least
hundreds of songs.
Proportion of note tokens in each genre. When a genre has a higher

proportion of note tokens, or to say a higher content proportion, it generally
means that it is more focused on the melody itself and has a lower musical com-
plexity in terms of musical effects arrangement and guitar playing techniques.
On the contrary, those genres with lower content proportion are likely to be more
dependent on expressive components to create a specific musical atmosphere.

13



Figure 3.2: The distribution over the number of songs of a subset of
candidate genres in DadaGP dataset (songs with genre label blues rock
are considered as Blues).

In order to make the effect of the music style transformation more pronounced,
we should select two genres with as large a difference in content proportion as
possible to create a contrasting effect.

Proportion of playing-techniques-related tokens in each genre. This
statistic is similar to the former one, while it targets on those expressive
tokens representing guitar playing techniques which always start with a nfx:
or bfx:. By collecting such tokens and calculate its frequency of appearance
across the genre, the assumption of how much a genre relies on expressive gui-
tar playing information like playing techniques could be made. Similarly, for
this statistical indicator, the two genres we choose should ideally have as large a
difference as possible, thereby allowing the model to more easily capture those
differences and learn how to achieve style transfer effectively.

Content Proportion Nfx Proportion

Rock 0.824 0.090
Jazz 0.829 0.067
Classic 0.872 0.062
Popular 0.846 0.087
Folk 0.814 0.115
Blues 0.790 0.096

Table 3.1: Statistics of DadaGP dataset. Nfx Proportion stands for
the proportion of nfx: or bfx: tokens that are related to expressive
guitar playing techniques.

Table 3.1 exhibits the statistics mentioned above. Many Classical music pieces
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in the dataset come from Classical instruments such as the piano, so they typ-
ically do not contain information specific to guitar performance, and Classical
music generally focuses more on melody, hence it has the highest content propor-
tion and the lowest nfx proportion. Conversely, Blues and Folk music are often
played on the guitar, thus containing more guitar playing technique information
and effects. They have higher arrangement complexity, and thus possessing a
lower content proportion and a higher nfx proportion. Considering that there
is more Blues music in terms of data volume, and the guitar playing techniques
used in Blues music such as bending or sliding are more prominent in auditory
perception, we eventually chose Blues as the target genre for music style transfer
and Classical music, which has a lower complexity, as the original genre.

3.2 To Encode Text-like Tokens: Integer Encod-
ing or K-hot Encoding?

To utilize the text-like tokens that DadaGP dataset provides, we need to first
encode them to a format conducive to processing by deep learning models.
Moreover, the choice of the encoding protocol is likely to have a significant im-
pact on the overall performance of the model. In this context, we will introduce,
analyse and compare two approaches: integer encoding and K-hot encoding.

3.2.1 The Initial Attempt with Integer Encoding and Se-
quential Modeling

Encoding the text-like tokens with integers is a common way of tokenization in
Natural Language Processing (NLP) tasks [65], which simply uses integers to
represent different words. By using integer encoding in our case, musical events
are regarded as words and consecutive bars can be regarded as sentences [5].
After inspecting the vocabularies with respect to each genre (shown in Table
3.2), a dictionary with vocabulary size of 1512 is built by collecting all tokens
that appeared in song samples belonging to genre ‘Classical’ and genre ‘Blues’.
Tokens from all other genres are not included in this dictionary as these genres
may contain unique instruments or arrangements not found in Classical or Blues
songs. Including these could potentially introduce interference. Furthermore, if
these tokens appear in the output, they are likely to affect the genre identifica-
tion of the output results.

Jazz Folk Pop Blues Rock Classical

Vocab size 726 1009 1223 1446 1819 1235

Table 3.2: Vocabulary size of each genre

By working with additional embedding processes, integer encoding is suitable
for both Sequence-to-sequence (Seq2seq) models [53] and Convolutional Neural
Networks (CNNs) [50]. The task itself can now interpreted very similar to a
text style transfer task [34]. However, certain drawbacks are introduced with
this approach regarding the specific features of DadaGP dataset, these are:
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1. Relatively poor quality of generated music due to improper ar-
rangement of wait: tokens in the output sequence. With integer
encoding, all tokens are collected and converted into integers according to
the established dictionary, including the wait: tokens mentioned in Sec-
tion 3.1. These tokens have significant impact on the length of output
music samples and decides which tokens will be assembled together to
form a harmonized sound on a beat. For instance, we assume that an in-
put integer-encoded sequence has length 128 and includes 9 wait: tokens
which separates the music represented by this sequence to 10 harmonized
sounds with a certain rhythm pattern. If the model failed learning to prop-
erly reproduce those wait: tokens, for example, only generating 5 wait:
tokens in the output sequence, the resulting music will perceptually have
the auditory length of only five harmonized sounds. Additionally, each
harmonized sound would contain about twice the musical events than the
original input music, causing it to sound significantly different and may
even come across as strange and grating to the listener.

In other words, the generated style-transferred music samples will sound
totally different from the original song even if they share the same melody
notes if wait: tokens are located in bad positions or assigned unappropri-
ated values. During experiments with models leaning on integer encoding,
it was found that they essentially fail to learn how to properly utilize the
wait: tokens in the output samples, resulting in music outputs of subpar
quality that were not capable of bearing similar characteristics and lengths
to the input music.

2. The Dilemma of Determining Output Target Length. The first in-
tuition would be to set the target length of the output same as the length
of the input sequence to ensure that the input and output shares a similar
content, also providing more convenience for loss calculation. However,
this is not applicable in our context. In the task of music style trans-
fer, we must account for the complexity differences between the original
and target musical genre. Within our musical samples, compared to Clas-
sical music samples which are predominantly characterized by melodies,
the expression in Blues music samples heavily relies not only on melodies
based on Blues scales but also on a myriad of accompaniments and ex-
pressive information to evoke a particular ambiance. Consequently, Blues
samples exhibit greater complexity, demanding more tokens for repres-
entation. This leads to Blues samples having a larger average of number
of tokens in harmonized sounds separated by wait: tokens comparing to
Classical music samples, as evidenced by Table 5.2. Hence, determin-
ing the target length for the output sequence presents a dilemma: If it’s
set equal to the input sample length, the complexity difference between
input and output cannot be properly maintained, which may harm the
performance of style transfer. However, if the target length for the output
sequence is set slightly longer than the input, the natural question arises:
how much longer is appropriate? Moreover, when the lengths of input
and output differ, how should the loss function be defined and computed?
This is a rather vague problem and finding a satisfactory resolution proves
challenging, thus we decided not to pursue further exploration on it.
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3. The Gradient cut-off due to non-differentiable sampling oper-
ation when using cyclic structure like a CycleGAN. By taking
integer encoded sequences as input, both Seq2seq model and CNNs tend
to output Softmax [19] activated probability distributions over all cat-
egories of each token in the sequence, usually with shape (sequence length,
category length).

But when using cyclic structure like a Cycle-Consistent Generative Ad-
versarial Network (CycleGAN), the output of one sub-model (generator)
should be able to be reused as the input of another sub-model (another
generator) with the same model structure, which emphasises the consist-
ency between the data type and shape of input and output. But, as men-
tioned above, for Seq2seq or CNN models, the output would be probability
distributions when using integer sequences as input, failing to address such
consistency.

To tackle this, a sampling process [10] could be adopted to reproduce in-
teger sequences from the probability outputs of the sub-models, and reuse
them as the input of another sub-model. However, this approach would
introduce extra sampling uncertainty into a CycleGAN, and would also
cause a more serious problem: Gradient cut-off. The sampling approaches
that produce discrete sequence from a probability distribution are all non-
differentiable operations, which means the back propagation calculated on
the corresponding loss was cut off and were not able to flow back to adjust
the model parameters. In this case, the gradients are thus not applicable
for losses calculated on sampled sequences and the generators can not be
trained properly. A mitigation solution for this issue could be sequence
generative adversarial nets with policy gradient (SeqGAN) [73], in which
GANs are updated in a reinforcement learning (RL) manner by calculat-
ing policy gradients to avoid gradient cut-off. While it almost addresses
the problem, after a set of experiments we found that the calculated policy
gradients are not effective enough in terms of preserving the input con-
tent and we believe that the performance of the model is unavoidably
compromised, which still can not make integer encoding an outstanding
choice for pre-processing methodology.

3.2.2 K-hot Encoding with Probability Modeling Solves
the Problem

In order to better utilize the dataset and take into account the auditory exper-
ience and musical structure of the output music, K-hot encoding is employed
in this context. The primary function of K-hot encoding is to transform the
sequence generation task, which uses integer encoding, into a task of binary
classification on multiple continuous variables. This is done while ensuring that
the output music has the same duration and basic musical structure as the ori-
ginal input music, ensuring the input and output music are at a comparable
level.

Technically, the K-hot encoding protocol exploits the characteristic of the
wait: tokens to segment a music piece into several sequential harmonized sounds,
as mentioned in Section 3.1.2. All the tokens in the entire dataset are split
with wait: tokens, and the tokens between each two wait: tokens are collec-
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Figure 3.3: Illustration of the K-hot encoding protocol. First, data are
separated into harmonized sounds by wait: tokens (which are then
removed from the data). In this example, the text-like tokens consists
of four harmonized sounds, and each of them has two token compon-
ents: one clean guitar note token and one nfx expressive token. Next
step is to encode the text-like tokens to integers according to the es-
tablished dictionary and then apply K-hot encoding, i.e. the vector
[289, 1243] will result in the 289th and 1243rd element in the K-hot vec-
tor to be 1 and others to be 0.

ted and represented by a single k-hot vector. In other words, we extract the
positional tokens from the data to leave pure content data for training, and
re-insert the extracted positional tokens into the model output to reproduce
music with reasonable structure. A more detailed explanation is provided in
Figure 3.3. Each k-hot vector therefore represents one harmonized sound which
is produced by playing the multiple note tokens and performing the specific ex-
pressive tokens that are marked with 1 in the K-hot vector together at the same
time. By sequentially assembling a fixed amount of such harmonized sounds,
a music piece is formed and can be represented by a K-hot matrix with shape
(sequence length, vocabulary size), which is suitable as an input to models in-
cluding Seq2seq model and CNNs. We choose to gather 24 harmonized sounds
together as a single training music sample. To build the dictionary, we collect all
the tokens that appeared in Blues and Classical songs and resulted in a vocab-
ulary size of 1512. The reason for not including tokens used in songs of other
genres into the dictionary is to eliminate interference and to compress the depth
of the dictionary as much as possible, so as to reduce the sparsity of the K-hot
matrix. Hence, we finally have K-hot matrices with shape (24, 1512) for training.

Comparing to integer encoding, K-hot encoding has the following significant
advantages:

1. Outputs music with more rational structure and better quality.
While training or inference stage, the input to models are K-hot matrix
in which wait: tokens are not included. By inserting a set of wait: tokens
assigned with the same duration value between each harmonized sound,
the original input music and the produced output music are guaranteed to
share the same musical duration and fundamental rhythmic relationship
between measures. This means that, regardless of whether the model can
retain detailed information such as the melody or beat of the original song,
it ensures the input and output at least share similar musical dimensions
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and have comparability in a musical sense.

2. Can be seen as a continuous binary classification problem that
assign 0 or 1 to multiple variables simultaneously. The task of
the generator can now be reduced from sequence-to-sequence generation
to a multi-class classification problem. Each element in the K-hot vector
represents the binary class of a token component, where 1 indicates its
appearance in the harmonized sound and 0 means absence. The total
number of token components is equal to the amount of tokens in the
dictionary and they are not mutually exclusive, which means there could
be several classes labeled with 1 at the same time. The output of the
generator should therefore be a probability vector of the same shape, where
each element is activated by a Sigmoid [26] function:

f(x) =
1

1 + e−x
(3.1)

A Sigmoid function maps its input to an output of a certain range, typic-
ally 0 to 1. Each value thus represents the probability of the corresponding
token class being 1, or to say the likelihood of its occurrence within the
harmonized sound. This also avoids any gradient-related problem from
happening, as now all the data included in the training loop are regarded
continuous and therefore no non-differentiable sampling happens in the
gradient flow.

3. Controllability over the complexity of each bar of the output
music thanks to top-k sampling. After acquiring outputs from the
generator, sampling are done to retrieve integer tokens from probability
vectors. The conventional sampling method uses a threshold to determine
whether a token class value is 1 or 0. However, this method is not suit-
able for the context of this study, as there may be significant differences
between the average probabilities of the produced harmonized sound vec-
tors. For example, if 0.5 is used as the threshold, some output harmonized
sounds may contain as many as dozens of token components that are as-
signed with probabilities larger than 0.5, while others may not contain any
token components above such threshold. The number of token compon-
ents in a harmonized sound directly determines the perceived complexity
of it, with harmonized sounds containing more tokens likely featuring a
greater variety of instruments or playing techniques. The style of a piece
of music also has a strong relationship with this complexity, so uneven dis-
tribution of the number of token components in each harmonized sound
can potentially lead to poor musical perception and makes it harder to
correctly and stably control the style of the generated music.

Instead, the top-k [38] approach is utilized in this study which perfectly
satisfies all the demands. This methodology transforms a probability out-
put into music by selecting the k token components with the highest occur-
rence probabilities in a harmonized sound vector. In the resulting music
output, each harmonized sound consists of exactly k token components,
and between each harmonized sound vector an arbitrary wait token can be
inserted. This avoids the uneven distribution of number of token compon-
ents across each harmonized sound, which thus ensures the consistency in
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musical complexity across the entire musical piece, making the style of the
output music more stable and pronounced. Meanwhile, we can adjust the
complexity of the output music by varying the value of k. For instance,
when we want to transform a certain type of music to folk or Classical,
we might opt for a relatively small k value; for genres like Rock or Blues,
usually performed by a band, often featuring a multitude of instrument
tracks or guitar-playing techniques, we would prefer a larger k value to as-
semble more tokens in a harmonized sound to ensure the complexity of the
output music. A visualized comparison between outputs under different k
values are presented in Chapter 5 in Figure 5.3 and Figure 5.4.

3.2.3 Guitar Roll: Extended Visualisation of K-hot En-
coding

By utilizing K-hot encoding, we also achieve a musical representation similar
to a MIDI piano roll mentioned in Section 2.1.1. It shares a similar concept
of visualising with our K-hot matrices except that the pitches in our case is
replaced by the depth of vocabulary. An example of guitar roll is shown in
Figure 3.4. By this representation, the input music and its style-transferred
output can be compared in a more intuitive way.

3.3 Conclusion

In this chapter, we provided explanation of data structure and statistics of
DadaGP [60], which is the first symbolic guitar music dataset with over 26K
songs represented by guitar tablatures in GuitarPro files [67]. Classical music
is selected as the original genre and Blues as the target genre according to
their large difference on musical complexity illustrated in Table 3.1, in order to
maximize the effect of style transfer.

Furthermore, after encountering challenges with integer encoding and sequen-
tial modeling, we propose a K-hot encoding solution with probability modeling,
which subsequently demonstrated significant improvements and finally allowed
our model to produce playable tablatures with reasonable structure, successfully
addressing Research Question 1. We also developed guitar roll, which is an
extended visualisation of K-hot encoded data and shares similar concept with
a piano roll. It offers a clearer insight into the differences before and after the
style transfer. In the next chapter, we will discuss how to choose and design the
proper model structure for symbolic guitar music style transfer based on K-hot
encoded data.
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Figure 3.4: An example of a guitar roll. X-axis represents time stamps
and Y-axis represents each categorized token in the vocabulary. Each
blue line marks the presence of the corresponding token in the certain
period. The value consists of only 0 and 1 so the middle value in the
color map can be ignored.
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Chapter 4

CycleGMT: Proposed
CycleGAN-based Model for
Guitar Music Style Transfer

In this chapter, the architecture and working mechanism of the proposed model,
named CycleGAN-based Guitar Music Style Transfer Model (CycleGMT) is
discussed, in order to solve the Research Question 2.

Cycle-consistent Generative Adversarial Network (CycleGAN) [75] was ini-
tially proposed and implemented in image style transfer tasks and was a great
success thanks to the two-GAN structure and contribution of cycle loss. Inspired
by the work of Brunner et al. [8] that extended this success of CycleGAN to
symbolic music style transfer tasks, we borrow it as the backbone model and
further update it to CycleGMT by choosing specific generator and discriminator
structure. Furthermore, we extend it to a Wasserstein Generative Adversarial
Network (WGAN) [2] which can achieve a more stable training.

A significant part of this chapter discusses the special mode collapse case in
our experiments due to the sparsity of training data, as well as corresponding
attempts to mitigate such sparsity including adopting weighted binary cross
entropy and a skip connection outside of the model.

4.1 Cycle-consistent Generative Adversarial Net-
work

As the backbone structure of our proposed model, Cycle-consistent Generative
Adversarial Network, introduced by Zhu et al. in 2017 [75], is an extension
of Generative Adversarial Network(GAN) [22] and was particularly efficient on
domain adaption and style transfer tasks in image processing field [35]. The
key contribution of CycleGAN is its ability to learn mappings from one domain
to another with unpaired training data, leveraging a cycle consistency loss to
achieve unsupervised content preservation during style transfer. This section
includes an overview of the architecture and working mechanism of CycleGAN,
in order to provide a clear insight of how it and our proposed model CycleGMT
being able to achieve successful style transfer.
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Figure 4.1: The architecture of a CycleGAN. GAN 1 is responsible for
the domain transfer from A to B and GAN 2 for the opposite direc-
tion. The real domain A samples are fed into GeneratorA2B to pro-
duce fake domain B samples. These fake domain B samples are then
provided to Discriminator B to evaluate its probability of being fake.
Same procedures also happen in GAN 2, except the inputs are real
samples from domain B. The two GANs are connected in such a way:
the generated fake domain B samples and fake domain A samples are
additionally passed to the other GAN’s generator(GeneratorB2A and
GeneratorA2B respectively) to produce cyclic version of real domain
A samples and real domain B samples.

4.1.1 Architecture

A Generative Adversarial Network (GAN) consists of a generator and a dis-
criminator, which are all learnable neural networks. The generator tries to pro-
duce the domain transferred version of its input samples while the discriminator
learns to distinguish between the real samples and fake samples generated by
the generator. During training, a two-player min-max game is played where the
generator improves the quality of the generated fake output to try to fool the
discriminator and the discriminator learns to better identify them. As an ex-
tension of GAN, CycleGAN consists of two GANs, with one of them responsible
for the transformation of style from domain A to B and another for the opposite
direction. The two GANs are connected with a cyclic manner to preserve the
content of input without paralleled data as supervision. Figure 4.1 provides a
more detailed explanation of how a CycleGAN is established.

4.1.2 Working Mechanism

Thanks to its architecture depicted in Figure 4.1, a CycleGAN can have multiple
objectives during training. Inherited from a standard GAN, a discriminator
strives to correctly classify real and fake samples. Mathematically, it should
learn to assign a probability value as close to 1 as possible to a real sample and
0 otherwise. Thus, the loss of a discriminator can be defined as equation 4.1:

LD =
1

2
Ex∼px(x)[(D(x) − 1)2] +

1

2
Ez∼pz(z)[D(G(z))2] (4.1)
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in which LD stands for the discriminator loss. Ex∼px(x) represents the math-
ematical expectation over sampled real data distribution and Ez∼pz(z) denotes
which over the sampled noisy real data distribution. G and D stands respect-
ively for the generator and the discriminator. D(x) stands for the discriminator’s
output for real samples, and D(G(z)) denotes the discriminator’s output for the
fake samples generated from noisy input samples by the generator. As defined
in this equation, D(x) should approach 1 and D(G(z)) should approach 0 to
achieve a minimal LD.

The discriminator loss of a CycleGAN is thus the summation of its two dis-
criminator components:

LD = LDA
+ LDB

(4.2)

where LDA
stands for the discriminator for samples in domain A and LDB

represents the discriminator for samples in domain B.
In the meantime, a generator attempts to deceit the discriminator by gener-

ating fake samples that looks ‘real’, which can be illustrated by an adversarial
loss, explained by equation 4.3:

LA =
1

2
Ez∼pz(z)[(D(G(z)) − 1)2] (4.3)

where LA stands for the adversarial loss. The higher the probability prediction
of the discriminator on the generated fake sample is, the smaller the adversarial
loss is.

Additionally, a CycleGAN necessitates the preservation of original sample
information. Thus, in alignment with the unique structure of CycleGAN which
connects two GANs’ output, the cycle-consistent loss is defined accordingly as
equation 4.4:

LC = Ey∼py(y)[∥G(F (y)) − y∥1] + Ex∼px(x)[∥F (G(x)) − x∥1] (4.4)

where LC stands for the cycle-consistent loss (cycle loss). G and F denote
respectively the mapping function of GeneratorA2B and GeneratorB2A, with
each of them responsible for transferring the samples from domain A to domain
B or vice versa. The x represents the real input samples from domain A and
y represents those from domain B. With ‘∥∥’ representing the L1 norm, the
cycle-consistent loss can be interpreted as the L1 norm of difference between
real samples and the cyclically generated samples for both domain A and B.
For minimizing this loss, CycleGAN should be adept at preserving the original
content information of input real sample after passing it through the generator.
This action ensures that the cyclically generated samples, which are the outputs
after sequential processing by the two generators, can retain the original content
information. Consequently, the difference between these and the input real
samples is minimized, leading to a reduced value of this cycle-consistent loss.

From a more concrete perspective, using images as an example,the cycle-
consistency loss enforces that translating an image from one domain to another
and then back to its original domain should yield a reconstructed image that
is similar to the original input. This principle forms up the core concept of
CycleGAN, which is to enable unsupervised learning of domain transfer without
paired training data.

To further strengthen the preservation of content, identity loss could be ad-
ditionally defined as equation 4.5:

LI = Ey∼pdata(y)[||G(y) − y||1] + Ex∼pdata(x)[||F (x) − x||1] (4.5)
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where LI stands for the identity loss, and same denotation is used as the
definition of cycle loss in equation 4.4. This loss forces that the generators
should generate a sample that is close to the input sample when the fed sample
is from the target domain, e.g. the output of GeneratorA2B should produce
output that is similar to input when fed samples of domain B as input.

Finally, the overall generator loss can be defined as equation4.6:

LG = LAA2B
+ LAB2A

+ LC + LI (4.6)

in which LG denotes the overall generator loss, while LAA2B
and LAB2A

rep-
resenting the adversarial loss of the two generators shown in equation 4.3.

4.2 To Achieve Greater Stability in GAN Train-
ing

Stability is an important part of GAN training, and is a well-know challenge
for the research community. In adversarial training, the goal is not simply to
minimize adversarial loss, but rather to achieve a dynamic balance between the
generator and the discriminator [44]. Only under this dynamic balance can the
model successfully complete the task of style transformation.

In the initial phase of our experiment, the CycleGAN model we employed
faced serious training imbalance issues. Ideally, under the influence of the Sig-
moid [26] function (illustrated in equation 3.1), the output range should be
distributed between 0 and 1. However, the actual output vector values were all
centered around 0.5, a phenomenon known as ‘Mode Collapse’. In this section,
we will explain the concept of mode collapse, its underlying causes, and intro-
duce our solution using Wasserstein Generative Adversarial Network (WGAN)
to achieve a stable training.

4.2.1 Consequence of Instability: Mode Collapse

Take the discriminator as an example, if the discriminator’s ability to distinguish
real and fake samples is too weak, then the samples generated by the generator
that are not within the target domain will not be effectively penalized, and as
a result, the generator cannot learn the correct style transformation. On the
contrary, if the discriminator is too strong, which often manifests as the dis-
criminator’s loss rapidly decreasing to zero within a few epochs during training,
then the generator not only cannot obtain gradients that can be effectively used
for training from the discriminator, but more importantly, the generator will be
excessively penalized during the learning phase because the generated samples
are not good enough.

As a result, the generator will not achieve a comprehensive exploration of the
target domain and instead tend to generate some ’safe’ samples, which are not
guaranteed to be realistic but will not be penalized by the discriminator. This
will lead to problems of output homogenization and insufficient diversity, which
is known as mode collapse [39].

In the first experiments, we encountered several situations where mode col-
lapse happened due to the over-powered discriminator. After multiple attempts
with different approaches to address this problem, we found using a WGAN
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instead of a standard GAN to form up the CycleGAN is a relatively effective
solution to stabilise the training.

4.2.2 Wasserstein Generative Adversarial Network: AMuch
More Stable Variant of GAN

Soon after released in 2017 by Martin et al. [2], WGAN drew large attention be-
cause of its superior ability of solving the mode collapse problem and instability
in GAN training. The main modification lies in the usage of the “earth mover’s”
distance [58] or Wasserstein-1 distance as the target for the establishment of loss
function, which tends to produce smoother gradients to address gradient van-
ishing problem in a standard GAN. According to another work of Martin et al.
[1], in a traditional GAN structure, the loss function can be regarded approx-
imately equivalent to the Jensen-Shannon(JS) divergence [43] between the real
probability distribution pr and the generated fake probability distribution pg as
long as the discriminator is trained to its maximum performance. However, this
brought in the problem of gradient vanishing [30] as the JS divergence would
always equal to log2 no matter how far pg is from pr, provided that pg are almost
not possible to have non-negligible overlap.

On the contrary, the “earth mover’s” distance or Wasserstein-1 distance provides
desired gradients and reflection of proximity of pg and pr even if they have no
overlap, therefore works better than the JS divergence as a metric of distance.
It is interpreted by equation 4.7:

W (pg, pr) = inf
γ∈Π(pg,pr)

∫
X×X

d(x, y)dγ(x, y) (4.7)

in which pg and pr represents two probability distributions, and γ ranges over
the set of all joint distributions Π(pg, pr) on X × X, which is the space of all
possible outcomes. d(x, y) stands for the Euclidean distance [66] between point
x and y in space X.

The key idea of WGAN is to replace the discriminator with a critic that
is trained to approximate the Wasserstein distance, rather than to classify in-
stances as real or fake. The optimization objective of the critic is defined as
equation 4.7:

maxEx∼pr(x)[C(x)] − Ez∼pz(z)[C(G(z))] (4.8)

in which max stands for the maximum value, C stands for the critic, and all other
symbols are defined similarly as in equation 4.1. This function is to maximize
the difference between its two outputs for respectively the real samples and the
fake generated samples. Only when this maximum is achieved, the critic loss can
be approximated as the Wasserstein distance. Thus the critic tries to minimize
the opposite of this objective in the training loop, which defines the critic loss
function as equation 4.9:

LC = Ez∼pz
[C(G(z))] − Ex∼pdata

[C(x)] (4.9)

where LC denotes the critic loss, while the same other symbols are used as
the previous equation 4.8. The lower this loss is, the better approximation the
critic can achieve to the Wasserstein distance. As the Wasserstein distance does
not experience gradient vanishing under the optimal critic, it allows us to train
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the critic to optimality during early stage of training. This typically manifests
in a training loop as multiple rounds of optimization performed on the critic
before optimizing the generator. After the critic has achieved a good fit for
the Wasserstein distance, the generator attempts to shorten the Wasserstein
distance between the pr and pg, i.e., to minimize the objective represented by
equation 4.8.

Since the first term of this objective equation only relates to the critic and
the training dataset, and is not related to the generator, the generator only
needs to minimize the second term. The generator loss in a WGAN can hence
be expressed by equation 4.10:

LGW
= −Ez∼pz

[C(G(z))] (4.10)

where LGW
represents the generator loss in a WGAN. The other symbols are

defined similarly as in equation 4.8.

Additionally, the authors proposed methods to ensure that the critic function
lies within the Lipschitz constraint [25]. A function is said to be Lipschitz
continuous if there exists a positive real constant K (known as the Lipschitz
constant), such that for all points x and y in its domain,

|f(x) − f(y)| ≤ K|x− y| (4.11)

where |x−y| represents the absolute value of difference between x and y. Equa-
tion 4.11 guarantees the difference between two points of the target function for
not exceeding a certain constant value. In the case of training a WGAN, making
the critic loss function obey this constraint means limiting the gradient from
changing drastically, thus making the training of WGAN more stable. Initially
the authors implements weight clipping that forces the absolute value of all the
parameters of the critic falls in a certain range, e.g. [-0.01, 0.01] to indirectly
achieve Lipschitz constraint. However, further experiments has proved that the
critic will thus push all its parameters to the two extremes, as its objective of
maximizing the difference between output for real and fake samples requires
larger covariance in the distribution of parameter values.

As a modification, gradient penalty is further proposed [24].The gradient pen-
alty is calculated by taking the gradient of the critic’s output with respect to
its input (which is a randomly interpolated sample between real and fake data),
and then penalizing the critic based on how much this gradient deviates from 1.
This helps ensure that the critic function is Lipschitz continuous. The gradient
penalty is defined mathematically as the following equation 4.12:

GP = λ[(∥∇x̂C(x̂)∥2 − 1)2] (4.12)

in which GP stands for the gradient penalty. ∥∥2 denotes the L2 norm, while
x̂ denotes the interpolated samples. C represents the critic, and ∇x̂ stands for
the gradient with respect to the interpolated samples. λ is the weight hyper-
parameter.

The entire loss function of a WGAN is therefore well established by engaging
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all the losses mentioned above, expressed in equation 4.13:

LGW
= −Ex∼px [C(G(x))] + Ey∼py [∥G(F (y)) − y∥1] + Ex∼px [∥F (G(x)) − x∥1]

+Ey∼py [||G(y) − y||1] + Ex∼px [||F (x) − x||1]

LCW
= Ez∼pz

[C(G(z))] − Ex∼pdata
[C(x)] + λEx̂∼px̂

[(∥∇x̂C(x̂)∥2 − 1)2]

(4.13)

where LGW
and LCW

stands respectively for the overall generator loss and
critic loss in a WGAN. The overall generator loss consists of three parts: the
discrimination loss defined by equation 4.10, the cycle loss explained by equation
4.4 and the identity loss represented by equation 4.5. The overall critic loss is the
combination of equation 4.9 and the gradient penalty explained in equation 4.11,
where Ex̂∼px̂

denotes the mathematical expectation over sampled interpolates
distribution. The key contribution of WGAN is its superior stability during
training, perfectly addressing the mode collapse problem encountered in our
experiments.

4.3 Proposed Architecture: CycleGMT

Based on the goal of the project which is to produce playing-technique-enhanced
and playable style transportation of guitar music, adopting the basic architec-
ture of WGAN to ensure a stable training, CycleGAN for Guitar Music Style
Transfer (CycleGMT) is proposed and implemented.

4.3.1 Generator Structure

Introduced in Section 3.2.2, training data are presented in a ‘guitar roll’ format,
which are K-hot matrices consists of binary values. The length of each K-hot
vector equals to the depth of the dictionary used for encoding. To handle this
form of input, a Convolutional Neural Network (CNN) with a Conv-Deconv
[18] structure that also integrates Residual Network (ResNet) [27], known as
a Residual Conv-Deconv net [18], is a good choice [11], which is also used in
our backbone model borrowed from [8]. Furthermore, we modified this base
structure by replacing Conv2D layers [54] with Conv1D layers [52] and adding
an Embedding layer [49] after the input layer of the model, as illustrated in
Figure 4.2.

ResNet addressed the degradation problem in deep neural networks, where
the model performance intrinsically degrades as the network gets deeper [57].
Rather than continue to learn high level features given the output of last layer,
ResNet tries to learn its residual by using a skip connection which adds the
input to the output. This approach guarantees the output of a ResNet block
for not degrading by combining the newly learnt high level features with the
previous low level features. Figure 4.3 from the original paper [27] presents a
more intuitive depiction of its structure.

Upon adopting Residual Conv-Deconv structure [18], our adjustment is mainly
due to the characteristics of our data. In their work, Brunner et al. [8] had to
process piano roll data transformed from MIDI files with a height of only 84,
as they only selected 84 pitches in the C1 to C8 range as research objects.
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Figure 4.2: Generator and critic (discriminator) structure. For the
generator, after an embedding layer [49] and a standard Residual
Conv-Deconv net [18] (but with Conv1D layers [52]), an extra Conv1D
with 1512 filters (equals to the vocabulary size) is used with Sigmoid
activation 3.1 to produce probability predictions of each event.

However, in our project, the dictionary we use has 1,512 words, so each K-hot
vector is 1,512 units in length. However, typically only 1-3 of these 1,512 binary
variables have a value of 1, which results in severe data sparsity. Due to this
sparsity, the model would struggle to learn useful features. As a solution, we
added an Embedding layer at the beginning of the model to encode these sparse
input data into non-sparse data for the ResNet part of the model to learn [64].
As for the encoded input, they can now be considered as word embeddings,
hence we use Conv1D layers in place of Conv2D layers [36]. In addition to the
differences in the dimensions of their filters, the principal distinction between
Conv2D and Conv1D layers is that the filters of the former slide in both di-
mensions within a 2D space, whereas the filters of the latter slide in only one
dimension. As a result, Conv2D [54] is more suited to processing spatial data,
such as images, while Conv1D [52] is more apt for handling temporal data such
as text and sequential data that is concentrated in one dimension. Taking text
processing as an example, a Conv1D filter slides between each word embedding
[28], that is, it slides along the sequence direction for each set of features in
the word embedding, thus capturing the order information in the training data
samples more effectively.

In this thesis, although in Section 3.2.2 we have transformed the sequence
generation problem into a multi-variable classification problem, the data rep-
resented by K-hot still has sequential properties (the order relationship between
each note), and it is essentially sequential data. Therefore, in order to make
better use of this sequential information, Conv1D layers are used to replace
Conv2D layers. Moreover, Conv1D requires fewer computational resources to
run experiments compared to Conv2D.

4.3.2 Critic (Discriminator) Structure

In this model, the construction of the critic, which stands for the discriminator
in a WGAN, still follows the structure based on Conv1D layers [52] in the
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Figure 4.3: A figure from [27], exhibiting block diagram of a ResNet
where F (x) denotes the high level features learnt by the weight layers.
ResNet combines this high level feature with the original input and
apply a ReLU [72] function to guarantee the final output for not
degrading.

generator. This is to enable the critic to make score-like predictions based on
sequential information, while ensuring the generator and critic have performance
in the same dimension to avoid one over dominating the other as the balance
between these two components is most valuable in GAN training. The critic
structure we determined after experimentation consists of four Conv1D layers
(shown in Figure 4.2), while the last Conv1D layer using only one filter to
produce a single value as the critic score for that input, corresponding to the
first or second term in Equation 4.9 depending on the authenticity of the input
sample. The reason for not adopting a more complex critic is to avoid over-
fitting as the volume of training data is relatively low.

4.3.3 Loss Definition

Upon the general loss function presented in equation 4.13, we have to specifically
choose a suitable mathematical form of cycle loss and identity loss regarding the
nature of task and the structure of our data. As mentioned in Section 3.2.2,
the token sequence generation problem has now been reduced to multi-variable
binary classification problems inside each note vector. In this case, cycle loss and
identity loss should use Binary Cross-Entropy (BCE) instead of Mean Absolute
Error (MAE) [74]. BCE is a fundamental loss function predominantly used
for binary classification tasks. Its primary role is to quantify the dissimilarity
between the predicted probabilities and the actual binary labels of the data
points. Expressed by equation 4.14, BCE is more suitable here as it deals with
the probabilities output from the last layer of the model:

L(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (4.14)

where L(y, ŷ) stands for the BCE loss between true binary labels y and predicted
probabilities ŷ. This first term of the equation becomes significant when the
actual label is 1, while the second term is considered when the true label is 0.
BCE penalizes the models more when they are confident but wrong, which is a
desirable property in this problem setting.
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4.3.4 Problems Induced by Sparsity and Their Mitigation
Strategies

Unfortunately, during experiments we noticed that this model has suffered from
two serious troubles:

1. Content loss. In other words, the musical information of the input music
piece is lost during style transformation and the original melody doesn’t
appear in the output at all, which is totally unacceptable to a style transfer
task.

2. Mode collapse. The outputs of the model all sounds similar, which are
like small oscillations around a fixed musical pattern and being completely
independent of the input.

After investigation, we discovered that the issue originated from the cycle loss
and identity loss not functioning properly: the BCE reduced to a number close
to zero within just a few epochs. This is obviously counter-intuitive, as the
model does not seem to preserve the content of the input at all from the result,
even to the point where the output is entirely unrelated to the input. Upon
further investigation, we identified sparsity in the K-hot input as the root cause
of the problem. Since there are only about a thousandth of 1s with the rest
being 0s in the input, the generators learn to cheat the cycle loss and identity
loss terms by simply generating vectors with all values very close to 0 to achieve
a low BCE, rather than learning and memorizing the input content. Though
the added embedding layer has encoded them into non-sparse data inside the
network, it has no contribution to the loss calculations outside of the model.

Apart from the fact the Classical music samples are sparse already, for ex-
ample, generally 1 to 3 one values in a 1235-width vector, the effort of mapping
songs from Classical to Blues makes it even sparser by building a joint dictionary
with a larger width of 1512, while the number of 1s remain unchanged.

Though being homogeneous, the outputs themselves sounds like meaningful
music and are very ’Blues’ even if the output probability of each token is gen-
erally close to 0, as the K-hot encoding protocol ensures that they have a nice
basic musical structure, and top-k sampling ignores the low magnitude of the
values of the output probabilities and picks them on the basis of their relat-
ive magnitude to each other. However, this is far from sufficient for a domain
transfer task where content preservation and diversity of output are significant.

Therefore, we further propose the following attempts to mitigate such sparsity:

4.3.4.1 Loss Modification

Our initial educated guess is to attempt to mitigate the sparsity during the
gradient calculation process by modifying the original loss function [29]. Based
on this, we adopt two improved loss functions:

• Weighted Binary Cross Entropy. On top of the regular Binary Cross
Entropy (BCE), we multiply it with a weight mask. This weight mask
is determined by the distribution of 0s and 1s in the input data and a
Lambda value: for the positions where the input data is 0, the weight is 1;
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for the positions where the input data is 1, the weight is λ + 1, as shown
in equation 4.15:

LC′ = − 1

N

N∑
i=1

(λx + 1)[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (4.15)

where LC′ denotes the modified cycle loss with weight mask. The symbols
are defined same as in equation 4.14, except that λ is added as the weight
hyper-parameter. Ideally, the content will be perfectly preserved if the
chosen λ is large enough to guide the learning process. However, experi-
ments have shown that such large λ will introduce even more instability
into the GAN training, resulting in achieving balance between the gener-
ator and critic for convergence to be crucial. Therefore, it is necessary to
find a suitable value for λ, which can enhance the cycle loss and identity
loss as much as possible while ensuring the stability of training.

• Summation Loss. While the initial attempt being to establish a loss func-
tion ensuring a consistent amount of one values across the input and out-
put, it failed as finding such a differentiable operation is difficult. As
a substitution, we propose a summation loss as equation 4.16, which is
trying to approximate consistency by forcing a close summation between
input and output matrices.

LS =
1

N

N∑
i=1

M∑
j=1

(yij − ŷij) (4.16)

in which LS stands for the summation loss. N and M are the number of
rows and columns of the input K-hot matrix.

4.3.4.2 Skip Connection outside of the Model

After a series of experiments using the above methods, we regrettably found
that while there were some improvements in content preservation, the results
were still not ideal. Therefore, we proposed a somewhat circumventing method,
which allowed us to achieve our current best results. This method involves
adding an extra skip connection during the inference phase outside of the model,
that is, simply adding the original input onto the produced output. However,
it is essential to clarify that this is not a mere superposition of the input song’s
melody onto the output song. In other words, it is not a simplistic overlay of
the melody. Because as mentioned in Section 3.1.2, an expressive token would
affect all the tokens in the same note vector, so the added original content will
also share the musical effect produced in the model output.

This practice would be meaningless in standard style transfer models, but it is
highly applicable to our model and can overcome the issue of cycle loss ineffect-
iveness, achieving complete content preservation. Specifically, in Section 3.2.2,
we mentioned that both the input and output K-hot matrices are composed of
probability values, and we use a top-k method to sample the probability values
into integer tokens during the inference stage, thereby obtaining corresponding
text tokens and the final music. As the output K-hot matrix is activated by a
Sigmoid 3.1 function and has a range of (0, 1), we can simply add the input
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Figure 4.4: An illustration of the skip connection we used. After added
the K-hot encoded input with the Sigmoid-activated 3.1 output, we
obtain the final output vector where all the elements that appeared in
the original content (has value 1 in the K-hot encoded input vector)
are assigned a value larger than 1. These elements are then guaran-
teed to be selected with highest probabilities by top-k sampling since
all other elements are clipped between (0, 1) by Sigmoid function. A
complete content preservation is thus achieved.

directly to the output so that the values of the items that are 1 in the original
input will be greater than 1 in the added vector, thus ensuring they will be
sampled by the top-k algorithm with the highest probabilities. In this way,
content preservation can be achieved completely. An illustration of this skip
connection is shown in Figure 4.4.

Indeed, this type of skip connection is more suitable for situations where the
complexity of the original music style is lower and the complexity of the tar-
get music style is higher, as its concept is actually similar to ResNet. ResNet
uses skip connections to combine the input low-level features with its generated
high-level features, aiming to learn high-level features while preserving the ori-
ginal low-level features, preventing the degradation problem. The use of skip
connections in CycleGMT can also be understood in this way: classical music
inputs composed mostly of guitar note tokens forming pure melodies, with a
relatively small proportion of expressive tokens (according to Table 3.1), can
be considered as low-level features. On the other hand, Blues music, which re-
lies more on expressive tokens and the atmosphere created by drums and other
multiple instruments, is more complex compared to classical music. Thus, parts
of Blues music apart from guitar note tokens can be considered as high-level
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features. Therefore, the skip connection in CycleGMT can be interpreted as
preserving the low-level music melody information while adding high-level ex-
pressive information such as guitar playing techniques, which fits well with the
research goal that is to leverage the expressive guitar playing information to
achieve symbolic guitar music style transfer.

4.3.4.3 The Drawback in CycleGMT

It’s also important to note that the use of skip connections does not mean a
complete abandonment of cycle loss and identity loss, but rather serves as an
immediate enhancement for content preservation. However, this enhancement
is not perfect as skip connection is not part of the training loop, therefore has
no impact on the model’s actual output. If the cycle loss is ineffective, then al-
though the skip connection can forcibly preserve the content of the original mu-
sic, the part of the actual model output representing learned high-level musical
features, may suffer from homogeneity due to the lack of restrictions. Unfortu-
nately, during experiments we have found that the loss modifications we made
were not effective enough to validate the cycle loss and address the sparsity in
the training data. As a result, mode collapse happened: The learned high-level
Blues musical features in actual model outputs were all oscillations around a
fixed musical pattern, regardless of the inputs. This constitutes a significant
drawback in CycleGMT. Due to time constraints, we are not able to fix it in
this thesis and have discussed potential directions of future work for addressing
this in Chapter 7.

4.4 Conclusion

In this chapter, we have introduced the concept of Generative Adversarial Net-
work (GAN) and its application form for domain transfer tasks, CycleGAN,
whose performance lays the foundation for achieving symbolic guitar music style
transfer. We then modify the model to a WGAN structure, which utilizes the
Wasserstein distance to stabilize the overall network training. Upon this, we
proposed CycleGMT to solve the Research Question 2 by adopting Conv1D
layers and Embedding layers in the generator structure to handle the sequenti-
ality in our K-hot encoded text-like data.

The final challenge arose from the sparsity in the training data, which caused
the cycle loss and identity loss for not working properly and resulted in mode
collapse. To tackle this problem, we implemented loss modification by replacing
Binary Cross Entropy (BCE) with Weighted BCE and added a summation loss.
Most importantly, we introduced a skip connection outside of the model to force
an effective content preservation. The preserved content can be mixed with the
expressive tokens in the model output to produce style-transferred music with
high quality. However, the homogeneity in the model output remains unsolved,
necessitating further exploration in future work.
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Chapter 5

Experimental Results

In this chapter, we provide details of training settings and present evaluation
of our guitar music style transfer results to address Research Question 3.
The evaluation methodologies of the performances of music generation or music
style transfer tasks has always been an active research field, as the perception
of music is generally considered subjective and so far there’s no well-established
objective metric for it. To solve the Research Question 3, we have borrowed
the idea from previous works [7] [37] and designed our evaluation to consist
of two parts: the objective evaluation based on a well-trained genre classifier,
and the subjective evaluation by a paper survey on the quality of produced
style-transferred music.

5.1 Training settings

In order to maximize the potential performance based on the structure of the
model, the hyper-parameters and setting of the training experiments should be
selected and tested carefully. After filtering the DadaGP dataset according to
genre labels, we collected 396 Classical songs and 202 Blues songs and produce
9563 Classical samples and 5216 Blues samples according to Section 3.2.2. We
also noticed that the number of Blues songs would increase to 896 if we in-
corporate the label ‘blues rock’ while filtering. In the training of a CycleGAN
model, the amount of data in domain A and domain B should be consistent,
typically based on the smaller of the two. Therefore, to maximize the amount
of data, we supplemented our existing Blues samples with samples tagged as
‘blues rock’ until their total quantity reached 9563, matching the number of
Classical samples.

Adopting the general training settings of WGAN [24], we use RMSprop [23]
as the optimizer, with the critic optimized 5 times in each training round. The
batch size is set to 12, with initial learning rates of 0.0004 and 0.0006 for the
generator and critic, respectively. These learning rates will decay according to
equation 5.1 when the epoch exceeds 20:

αG,C = α
101 − E

100 − 20
(5.1)

where αG,C and α denotes the decayed learning rate and the initial learning
rate respectively, while E is the current number of training epochs.
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Figure 5.1: The structure of genre classifier for objective evaluation.
The binary classifier consists of two LSTM layers, two drop out layers
in between and a Sigmoid 3.1 activated dense layers at the end. The
classifier outputs the probability of input sample being labeled with
1, which in our case represents the probability of input sample’s genre
belonging to Blues music.

Some of the generated style-transferred music samples have been made avail-
able for listening 1.

5.2 Evaluation Methodologies

Regarding the evaluation of unsupervised music style transfer, there currently
are no well-suited evaluation metrics to assess the output, as genre identific-
ation is subjective and difficult to interpret objectively. Therefore, we use a
combination of both objective evaluation and subjective evaluation to validate
our results.

5.2.1 Objective Test: Genre Classifier

We train a binary classifier on the Classical and Blues samples used for CycleGMT
training and use it to predict the probability of the output samples belonging
to Blues genre. We utilize a binary classifier composed of 2 long short-term
memory (LSTM) layers [31] and 2 dropout layers [3], the structure of which is
shown in Figure 5.1. We gathered predictions under different k values, with
results as displayed in Table 5.1.

Furthermore, to align with our project goal which is to leverage expressive
information contained in guitar tablatures to contribute to the performance of
symbolic guitar music style transfer, we test the proportion of harmonized sound
vectors that contain nfx : or bfx : tokens (mentioned in 3.1.2) for each output
under different k values for top-k sampling method 3.1.3, which we call an nfx

1Generated music samples available at: https://www.youtube.com/@zhuang4826/videos
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Blues Classical k=2 k=3 k=4 k=5 k=6

Prediction score 0.974 0.026 0.547 0.836 0.915 0.954 0.974

Table 5.1: Prediction results under different k for top-k sampling

frequency. The results shown in Table 5.2 exhibits a clear increasing trend of
such frequency when k gets larger, which indicates that the choice of k values
indeed affects the amount of guitar playing techniques used in the output. An
example of input and outputs under different k values are shown in Figure 5.2,
Figure 5.3 and Figure 5.4 in the format of guitar roll as explained in 3.2.3.

Blues Classical k=2 k=3 k=4 k=5 k=6

Average number of tokens 3.92 2.14 2 3 4 5 6
nfx frequency 0.262 0.136 0.155 0.288 0.336 0.367 0.460

Table 5.2: nfx frequency and average number of tokens in each har-
monized sound vector under different k for top-k sampling

Taking both Table 5.1 and Table 5.2 into consideration, the prediction of
probability of the output music belonging to Blues genre also increases as k
gets larger. However, during experiments we noticed that while a high k value
indicates complexity in each bar of output, the output may sounds noisy if the
k is significantly larger than the average number of tokens in each harmonized
sound vector in the input. Instead, k = 4 is tested to be generally good for
producing music that sounds pleasant while keeping the high level features of
Blues music. Thus, we chose the outputs when k = 4 to be the testing samples
in our subjective test with a paper survey.

5.2.2 Subjective Test: Paper Survey

To further evaluate the style transfer performance of CycleGMT, we design a
paper survey (presented fully in Appendix A) and conduct among groups of
people with different musical involvement levels, of which these differences are
quantitatively analysed by questions extracted from Golden Smith [47]. We
then ask the participants to listen to a clip from Für Elise [63] by Ludwig
van Beethoven, as well as a clip from Bad Feeling Blues [4] written by Blind
Blake as a reference of Blues music, prepared for those participants who barely
knows anything about Blues. After that we ask the participants to listen to 3
Blues-remix versions of that Für Elise clip, with one of them being generated by
CycleGMT and the other two being composed by human artists and uploaded
on MuseScore [71] [62]. For each remix, before getting informed that one of
the remixes is generated by CycleGMT, the participants should rate out of 5
for respectively how ’Blues’ it sounds like, as well as their subjective audience
perception. When all the ratings have been done, they are asked to make
judgments of which remix is most likely to be generated by our model in two
scenarios: without and with the option to listen to those remixes again. Without
playing the music samples to them again, the participants would make decisions
merely base on their first impression to see if the generated style-transferred
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Figure 5.2: Visualization of a K-hot encoded input in the form of guitar
roll, where the X-axis represents time stamps and Y-axis represents
categorized tokens in the vocabulary and the colored lines mark the
presence of a token in the certain period.
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Figure 5.3: Visualization of the K-hot encoded output when k is set to
4 for top-k sampling. The figures shows that the original content of
the input shown in Figure 5.2 are completely preserved in the output
and some extra tokens are added to achieve style transfer.
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Figure 5.4: Visualization of the K-hot encoded output when k for top-
k sampling is set to 6. More tokens are appearing in this output
comparing to that in Figure 5.3 when k = 4, indicating a higher com-
plexity in terms of musical arrangement. This demonstrates that the
choice of k can indeed control the complexity of the output music.

42



Figure 5.5: The experimental setup in a meeting room in TU Delft.
Two speakers are used to play the testing samples.

music could be easily recognised. When listening to each of the remixes again,
the participants will listen carefully to each sample with the knowledge that
one of them is computer-generated music, at which point the quality of the
generated music will be rigorously tested for recognisable flaws.

We were finally able to gather 57 participants comprising individuals of vari-
ous ages and genders, including those with or without musical experience. To
ensure the consistency of the results, we conducted the experiments within the
same room, maintaining uniformity in the experimental facilities and environ-
mental conditions. The experiment could accommodate 1-2 individuals at a
time, and the setup of our experimental environment is depicted in the follow-
ing Figure 5.5:

5.2.2.1 Overall Results

Figure 5.6 shows the overall average of the two ratings and Figure 5.7 exhibits
the proportion of chosen options for the two decisions made, with re-listening
to the three remixes and without, respectively. The results have shown that
the quality of the generated style-transferred music is competitive to the two
other human-made versions, even has higher average than the first remix in both
ratings. As for to identify the generated music from human-made remixes, only
about 35% of the participants provided the correct answer, indicating the high
quality of our generated samples. People found it challenging to distinguish
music generated by CycleGMT from human compositions, even when given a
chance to carefully listen to them again.
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Figure 5.6: The average over ratings (1 to 5) given by 57 participants,
for the two survey questions respectively. The results indicate that
CycleGMT performs well on both the first and second questions,
scoring lower than the 2nd human-made remix but higher than the
1st one. This suggests that the Blues style transfer produced by
CycleGMT is compatible with human-made compositions, in terms
of both genre transferring and audience perception.

Figure 5.7: The distributions of the two decisions made by participants
on which music sample was generated by CycleGMT among the three
Blues remixes we offered in the survey. Without and with re-listening
to the three Blues remixes, only 36.8% and 38.6% of participants cor-
rectly distinguished the CycleGMT-generated sample from the other
two human-made Blues remixes. Also, the proportion of correct
choices made by participants increases after the re-listening. This
indicates that the style transfer generated by CycleGMT is more
likely to confuse people by the first impression, and still has some
recognizable flaws if carefully listened to.
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Figure 5.8: The different ratings given by musically experienced and
inexperienced group of participants. The left figure indicates that
compared to the inexperienced group, the musically experienced par-
ticipants gave more positive evaluations on whether the two human-
made compositions were Blues. Conversely, they gave significantly
more negative evaluations for the sample generated by CycleGMT.
For the right figure, both experienced and inexperienced group gave
competitive ratings for samples produced by CycleGMT comparing
to the other two human-composed remixes, while the rating of the
experienced group is still relatively lower.

5.2.2.2 Different results for Musical Experienced and Inexperienced
Groups of Participants

Moreover, we further investigate whether individuals with different musical
backgrounds perceive the music generated by CycleGMT differently. We cat-
egorized the participants into two groups: The first group comprised individuals
who had practiced a musical instrument or were frequent listeners of blues. This
group, with a stronger musical background, could potentially make judgments
based more on their knowledge of music theory or their familiarity with the
conventions of blues compositions. Their judgments thus hold relatively higher
value in assessing the authenticity and musicality of the generated music. The
second group consisted of participants who had no experience with any musical
instrument and were not particularly familiar with blues. Their ratings and
choices were likely to be more influenced by subjective listening preferences,
and these opinions are also of great significance as their perception represents
the general group. The average rating for both questions of both musical exper-
ienced and inexperienced groups are given in Figure 5.8, and the distribution of
the choices made by both groups after re-listening to the three remixes is shown
in Figure 5.9.
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Figure 5.9: The distribution of choices after re-listening to the
three remixes for musically experienced group and inexperienced
group. Comparing the two pie charts, around 42% of participants
in the experienced group correctly identified the remix generated by
CycleGMT, while this number is reduced to about 31% in the inex-
perienced group. This suggests that potential flaws in the CycleGMT-
generated samples are harder to elude the scrutiny of relatively more
musically knowledgeable individuals.

5.3 Conclusion

In this chapter, we conducted both objective evaluation and subjective evalu-
ation to demonstrate the performance of our symbolic guitar music style transfer
model, CycleGMT 4.3, as well as the capability of K-hot encoding and top-k
sampling 3.1.3, addressing our Research Question 3.

First, we are going to discuss the result of objective evaluation with genre
classifier. Table 5.1 has shown that the style transfers produced have a high
probability to be predicted as Blues by a well-trained genre classifier, especially
when the k value for top-k sampling is set larger than 4. This demonstrates that
the fake Blues music samples generated by CycleGMT is able to cheat a genre
classifier which is trained on the same data domain. Table 5.2 has exhibited an
increasing trend of nfx frequency when k is getting larger. These two tables
together indicate that different k for top-k sampling can indeed control the
musical complexity of an output sample by adjusting the amount of nfx and
bfx tokens included in it, and thus determine its probability of being predicted
as Blues music by the genre classifier. Figure 5.2, 5.3 and 5.4 together provides
visualisation of an input, its output when k for top-k sampling equals to 4 and
the output when k equals to 6, showing the difference they made in the form of
guitar roll.

Then we are analyzing the outcome of subjective evaluation with paper survey.
When it comes to the subjective evaluation, Figure 5.6 shows that the parti-
cipants are giving competitive ratings for the CyleGMT-generated Blues remix
when comparing to another two human-made Blues remixes, in terms of how
‘Blues’ the remix sounds and the subjective perception of participants to that
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remix. Figure 5.7 illustrated that participants found it challenging to correctly
identify the Blues remix generated by CycleGMT, even if they had a second
chance for listening to the three Blues remixes once again. Taking all figures
above into consideration, all of them demonstrated a high quality of Blues style
transfer generated by CycleGMT that is competitive to human compositions.
Figure 5.8 and Figure 5.9 exhibited the difference of perceptions between mu-
sically experienced and inexperienced participants. Experienced participants,
compared to their inexperienced counterparts, are more adept at discerning the
remix produced by CycleGMT from the other two human-composed remixes,
and they tend to give it a lower score on the question of “how ‘Blues’ it sounds.”
Nonetheless, the evaluation of the CycleGMT-generated remix by the experi-
enced group remained notably high. Moreover, only 40% of them successfully
identified the remix generated by CycleGMT.

In general, the ‘fake’ Blues music generated from Classical music by CycleGMT
successfully fooled the binary genre classifier, and its musical complexity is
demonstrated to be controlable by the k value of top-k sampling. As for audi-
ence perception, the participants of the paper survey gave high ratings that is
competitive to human-made remixes for CycleGMT-generated sample. Also,
both musically experienced and inexperienced participants found it challenging
to correctly identify the CycleGMT-generated sample from human composi-
tions.
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Chapter 6

Conclusions

In this thesis, symbolic guitar music style transfer that transfers Classical guitar
music to Blues guitar music was implemented leveraging DadaGP [60], which
is a symbolic guitar music dataset with over 26K songs presented in guitar tab-
latures. These guitar tablatures are also rendered into text-like tokens. Con-
sequently, our initial educated attempt was to encode these tokens by integer
encoding and employ text generation models, such as a Transformer [64], as
the generator of a CycleGAN. However, such attempts failed due to the unique
structure and discrete nature of DadaGP data. Thus, we proposed the use of
K-hot encoding to transform each original token sequence into a K-hot vector
with fixed length, transitioning the sequence generation task to a multi-variable
binary classification task within each K-hot vector, predicting the probability of
each token appearing in the output music piece. The output K-hot vectors are
then sampled using the top-k sampling method [38] to select the k tokens with
the highest probabilities, reassembling them into the generated style-transferred
music. This approach effectively addressed the issues encountered with integer
encoding and sequence generation, converting the discrete data flow into a con-
tinuous one while fitting perfectly with the unique format of DadaGP dataset.
Additionally, the musical complexity of the style-transferred output can be con-
trolled by setting different values for k used in top-k sampling.

Based on our encoding protocol, and inspired by the work of Brunner et al.
[8], we adopted CycleGAN as our backbone model. For the generator struc-
ture, we chose a Residual Conv-Deconv [18] net composed of Conv1D layers
[52] and an Embedding layer [49] at the front end. Furthermore, we updated
our backbone structure from a standard CycleGAN to a Wasserstein GAN to
stabilise training and address the mode collapse problem we encountered in our
early experiments. The last challenge was to tackle the sever sparsity in the
K-hot encoded data, which caused the cycle loss to be defective. We attemp-
ted to validate the cycle loss by modifying its definition, and introduced a skip
connection which connects the input with the model output to enhance content
preservation. As a result, the contents were successfully preserved and thus
music style transfers with high quality were produced. However, the cycle loss
remained ineffective, causing the model output (without connecting with the
input) being oscillations around a certain pattern, regardless the input.
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It is reassuring to note that even though the issue of model output homogen-
ization was not resolved, the style transfer results obtained merely by enforcing
content preservation through skip connections have already achieved commend-
able outcomes in our evaluation experiments. As the perception of quality of
music style transfer is generally subjective can hardly be defined by mathem-
atical metrics, we follow the idea of paper [37] and designed the evaluation to
consist of one objective evaluation based on a genre classifier and one subjective
evaluation by conducting a paper survey among 57 participants with different
musical background. Results of the objective evaluation have shown that the
outputs have a high probability to be predicted as Blues by the genre classifier
5.1, and demonstrated the controlability over musical complexity by choosing
different k for top-k sampling. In the subjective evaluation, participants of the
survey gave high ratings for the quality of the generated style-transferred music,
and found it challenging to correctly identify the generated one from other two
human-composed remixes.

Back to the research question:

‘ How to achieve symbolic guitar music style transfer based on guitar
tablatures, in order to leverage the expressive guitar playing inform-
ation and produce playable guitar tablatures? ’

Generally speaking, we have successfully provided a solution to it in this
thesis by solving the three sub-questions respectively in Chapter 3, 4 and 5. We
proposed K-hot encoding with probability modeling, together with CycleGMT
to achieve symbolic guitar music style transfer utilizing expressive guitar play-
ing information contained in DadaGP dataset, and the superiority of the com-
bination of K-hot encoding, probability modeling and top-K sampling ensures
the output tablatures to be generally playable and have reasonable structures.
However, this solution is not perfect, as the issue of cycle loss inefficacy due to
sparsity in the K-hot encoded data and the mode collapse it caused is a matter
of future research.
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Chapter 7

Discussion and Future
Work

In this Chapter, we mainly discuss the limitations of the current work and pro-
pose possible directions for future improvement. The most significant challenge
faced in this thesis is the persistent issue of cycle loss inefficacy stemming from
the sparsity of K-hot encoded training data, a subject which was explained in
Chapters 4 and 5. Although we introduced an external skip connection between
the original input and the model output to mitigate the effects of poor content
preservation resulting from ineffective cycle loss, the standalone model output
still demonstrates symptoms of mode collapse. Specifically, the cycle loss be-
comes ineffective, leading the output to be largely independent of the input,
resulting in homogenized model outputs.

Another limitation of this thesis pertains to the selection of the model and its
training precision. These limitations were primarily consequences of time con-
straints and computational resource limitations. Given the considerable wait
times associated with supercomputer server queues, a single experiment typic-
ally takes between 4-7 days. This prolonged timeline restricted us from exploring
other models with potential, such as a Variational Auto-Encoder (VAE), and
confined us to a limited set of parameter combinations.

Based on this, we propose the following possible directions of future work:

7.1 Regarding sparse data

• Further loss modification. In Section 4.3.4.1, we have modified the cycle
loss to a combination of Weighted Binary Cross Entropy (WBCE) and
summation loss. However, the effectiveness of this approach remains lim-
ited. One primary impediment lies in the tuning of the ’weight’ parameter
within the WBCE. If this weight is set too low, it fails to enhance the cycle
loss. Conversely, an excessively high weight can destabilize the training
process. As of the completion of this thesis, an optimal weight magnitude
remains elusive. Future research endeavors might explore the potential
settings of this weight parameter. Moreover, it could be beneficial to seek
loss functions that are more adept than WBCE, ones intrinsically designed
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to mitigate the ramifications of sparsity.

• Dictionary compression. Another attempt could be to compress the vocab-
ulary size of K-hot encoding, resulting in K-hot vectors being much more
narrower. Once the K-hot vectors are narrow enough, the objective is
to abandon the current external skip connection to allow a full change
on melody content. Our current attempt on dictionary compression is to
prune the instrumentation information from note tokens. For example,
modify bass : note : s5 : s0 to s5: s0, which drops the instrumentation
feature but reduces the token space from 1512 to 401. However, further
experiments have proved that a 401-width dictionary is still to sparse for
learning reasonable style transfers. In comparison, earlier work employing
MIDI piano rolls [7] [8] utilized pure pitch as their vocabulary, spanning a
mere width of 84. Consequently, identifying novel methods for vocabulary
compression might offer a foundational solution to the challenges posed by
data sparsity. It is worth noting, however, that such an approach might
likely result in a loss of musical information inherent in the dataset.

7.2 Regarding model structure

• To seek better parameter combinations. Given more time and computa-
tional resources, it is plausible to identify superior parameter combinations
that could potentially unlock improved performance from the model.

• Explore alternative models with potential in style transfer. In the realm
of style transfer, VAEs stand out as a promising area for exploration [40].
Due to time constraints, we were unable to experiment much with it as
a backbone for our model. However, future endeavors can consider com-
bining VAEs with transformers, akin to approaches observed in [70], to
construct generative models, and potentially undertake sequential model-
ing experiments.

7.3 Regarding experiments and evaluation

• Conduct more experiments on different genres. Currently we only ex-
plored the genre transfer between Classical music and Blues music, other
potential candidates could be Rock, Folk or Jazz.

• Modify the binary genre classifier used for the objective evaluation to a
multi-genre classifier with more sophisticated structure. Regarding the
multi-classifier, we have already made attempts. But the multi-classifier
tends to classify based on the melodic information composed of note
tokens, instead of focusing on the differences between the expressive tokens
primarily used in different genres. This is due to that although there
are differences in the proportions of expressive tokens between different
genres, they are all predominantly occupied by note tokens 3.1. This
leads to overfitting and prevents us from achieving the desired classifica-
tion results. Future work could focus on trying out different structure of
a multi-genre classifier and use machine learning technologies to overcome
the overfitting, in order to make more precise genre classifications.
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Appendix A

The Paper Survey

In this appendix, we provide the design of questions in the paper survey con-
ducted for subjective evaluation.

Please circle the most appropriate category:

1. What are the musical genres you mainly listen to? Pop / Rock, Metal
/ Blues, Soul / Folk / Classical Music

2. I listen to music for 0-30 min / 30-60 min / 60-90 min / 2 hrs or
more per day.

3. I engaged in regular, daily practice of a musical instrument (including
vocal) for 0 / 1-3 / 4-9 / 10 or more years. The instrument I play best
is (including vocal):

4. Have you ever played guitar or is familiar with guitar music? Yes / No

Now Please listen to a clip from Für Elise and a piece of Blues music
for reference...

Please listen to the 1st Blues remix version and answer the following
questions:

1. How much does it sounds like Blues? 1 / 2 / 3 / 4 / 5

2. Would you consider it a good Blues remix? Please rate it in terms of
auditory perception and quality: 1 / 2 / 3 / 4 / 5

Please listen to the 2nd Blues remix version and answer the following
questions:

1. How much does it sounds like Blues? 1 / 2 / 3 / 4 / 5
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2. Would you consider it a good Blues remix? Please rate it in terms of
auditory perception and quality: 1 / 2 / 3 / 4 / 5

Please listen to the 3rd Blues remix version and answer the following
questions:

1. How much does it sounds like Blues? 1 / 2 / 3 / 4 / 5

2. Would you consider it a good Blues remix? Please rate it in terms of
auditory perception and quality: 1 / 2 / 3 / 4 / 5

Now that you have listened to 3 versions of the Blues remix:

1. Without listening to them again, which one do you believe was generated
by AI?
1st remix / 2nd remix / 3rd remix / Can not determine with
certainty.

2. Listen to them again, now which one do you believe was generated by AI?
1st remix / 2nd remix / 3rd remix / Can not determine with
certainty.

This is the end of the survey. Thanks for your participation.

Study contact details for future information: x.zhuang-1@student.tudelft.nl
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