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Abstract

This master thesis investigates the potential of vector field stimulation as an innova-
tive technique for enhancing visual cortex stimulation [1]. An algorithm was designed
and implemented to evaluate this concept, utilizing COMSOL simulations to model
the generated electric fields. The algorithm was validated using Green functions,
which serve as analytical approximations to the Poisson equation solved in COM-
SOL. The interior point method was employed in the algorithm to minimize visual
error [2], a concept introduced in the literature and adjusted to our problem. Re-
sults indicate that vector field stimulation improves targeted stimulation precision
noticeably compared to traditional bipolar stimulation methods. Additionally, it was
observed that incorporating the minimization of input current alongside visual error
further enhanced the algorithm’s performance. Despite challenges such as numerical
errors and the algorithm getting trapped in local minima, the findings highlight the
need for future research to improve microstimulation techniques. This report empha-
sises the promising potential of vector field stimulation and the supporting algorithm
in improving visual cortex stimulation.

Keywords: Visual prostheses, COMSOL, Vector field stimulation, Current Steering,
Poisson equation, phosphenes, activating function, microelectrode arrays (MEAs), in-
tracortical microstimulation, Finite element modelling (FEM), Visual error (VSE),
Interior point method
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Chapter 1

Introduction

1.1 Background

Blindness is a condition that affects millions of people around the world [3, 4, 5]. The

World Health Organization estimated in 2019 that there were around 1 billion blind

and moderately to severely visually impaired people worldwide [6]. All indications are

that this number is only going to go up in the upcoming decades due to the ageing

of the population [5]. This illness has a big negative impact on its patient’s lives,

hence, several investigations have placed blindness at the same level as cancer, as the

second most feared condition to suffer from [7]. Therefore, there is a clear need for

the development of a treatment or a device that could enable these people to have

a much better quality of life. This is where visual prostheses come into play. These

devices are designed to restore vision using electrical stimulation [8]. Throughout

this project, the focus is going to be on a type of visual aid known as cortical visual

prostheses.

1.2 Problem statement

Cortical visual prostheses aim to restore vision by implanting electrodes into the

patient’s cortex and electrically stimulating its neurons to artificially evoke sight.

The visual cortex is organized in such a way that, electrically stimulating in a 2D

1



grid of neurons directly evokes the same shape of light in the visual field. Hence,

the higher the spatial density of electrodes, ideally matching the density of neurons,

the higher the quality of visual restoration. However, since the human cortex has

a surface area of around 1000 𝑐𝑚2 and contains approximately on the order of 4–6

billion neurons [9], covering the entire visual field with single neuron resolution would

require 4 to 6 billion electrodes. Implanting such a high number of electrodes poses

severe challenges in terms of surgical risks and power-consumption for the stimulation

electronics, which can lead to heat increase and tissue damage. Therefore, there is a

critical need to enhance the spatial resolution of stimulation without increasing the

number of electrodes. This project seeks to investigate a novel technique known as

Vector Field Stimulation and to develop an optimization algorithm to advance this

approach, aiming to achieve high spatial resolution while minimizing the need for

additional electrodes.

1.3 Chapter organization

This thesis will be outlined as follows: First, Chapter 2 presents the background

knowledge and theory related to visual prostheses and visual cortex microstimulation.

Chapter 3 compiles a literature review, providing an overview of current optimization

methods for stimulation and state-of-the-art region of interest stimulation techniques.

Also, in Chapter 3, a novel method for stimulation, vector field stimulation, is intro-

duced.

Chapter 4 details the methods used to simulate the generated electric fields, as well

as the development and implementation of the optimization algorithm. The results

of the algorithm and its comparison to bipolar stimulation are presented in Chap-

ter 5. Finally, Chapter 6 discusses the results and provides future recommendations,

concluding with Section 6.3.
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Chapter 2

Background and theory

2.1 Visual prostheses

Visual prostheses are created to restore sight in patients who suffer a loss of their

visual function Fig. 2.3. The three main tasks these devices must perform are: ob-

taining information about the environment in which the user is located, processing

this information, and finally transmitting it to the patient [10].

The visual pathway is the route in which visual stimuli are transmitted from the eyes

to the brain for their interpretation. Photoreceptor cells, that are found in the retina,

capture the light that enters through the eyes and convert it to electrical signals.

These signals are sent along the optic nerve to the lateral geniculate nucleus (LGN)

where the first processing occurs, next, information is transmitted to the primary vi-

sual cortex in the occipital lobe of the brain where the information is reprocessed and

interpreted to get a perception of the visual input (see Fig. 2.1) [11]. To restore lost vi-

sual function, several sites in the visual system can be stimulated, some of the regions

studied throughout the literature are the subretinal, suprachoroidal, and epiretinal

region of the eyes (for retinal prostheses); the optic nerve, the lateral geniculate nu-

cleus (LGN) and the visual cortex (see Fig. 2.2) [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The focus of this research is on cortical visual prostheses since the visual cortex has

some advantages over the other mentioned sites. Their design can be supported by

already existing accurate mathematical models that describe the visual cortex [7, 24].
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Figure 2.1: Human Visual pathway [12].

Figure 2.2: Possible stimulation sites for a visual prosthesis [23].

Moreover, they can succeed when other stimulation sites do not. For instance, in

cases where the retina is damaged or there is another problem along the visual path-

way, visual cortical prostheses would be effective since they are placed higher up the

visual pathway [25]. Some examples of conditions that cannot be treated by pros-

theses placed in the early stages of the visual pathway, such as the retina or optic

nerve, are glaucoma and diabetic retinopathy (DR) [25]. DR is a secondary effect of

diabetes mellitus and is a microvascular complication that leads to progressive retinal

damage. On the other hand, glaucoma is related to the circulation of fluids in the eye

which can be caused by either a tumor, inflammation, or damage in the retina caused

by trauma and causes irreversible vision loss by degeneration of retinal ganglion cells

[25].
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Figure 2.3: Cortical visual prostheses system [8]. Where the following components
can clearly be distinguished: an image-capturing device, the glasses (a,d), an
intra-cortical microstimulation array (e), and an image-processing device, the

computer (c).

2.2 Microstimulation of visual cortex

2.2.1 Target regions of cortical visual prostheses

Cortical visual prostheses work by electrically stimulating neurons in the visual cortex

to artificially evoke sight. Small light dots are generated by stimulating the visual

cortex, known as phosphenes. These phosphenes can be plotted onto a map of the

visual field, generating an intuition of the relationship between certain areas of the

visual cortex and the phosphenes it generates. By combining several phosphenes, it

is possible to create an artificial pixelized image [3][24].

The visual cortex forms part of the cerebral cortex and oversees visual perception

and cognition [24], it is divided into five regions (V1-V5) (see Fig. 2.4b) and as

you move from one region to the next the information becomes more abstract [10].

Region V1, also known as the primary visual cortex, acts as the end point of the LGN

(see Fig. 2.1) projections and, therefore, is a key region in the visual pathway [25].

V1 is vertically divided into 6 layers. Layers 2 and 3 are known as supragranular

layers, indicating their involvement in higher-order processing, they contribute to the

integration of information from other cortical areas. On the other hand, layer 4 is the

input/granular layer, that receives the direct input from the LGN [5]. This makes it
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an ideal target for stimulations since its neurons are likely to evoke visual percepts.

Finally, layers 5 and 6 are known as the infragranular which are in charge of sending

information to other cortical areas, they are involved in the control and coordination

of motor responses based on visual stimuli [26][27] (see Fig. 2.4a).

Based on the literature [28] layers 4 and 5 presented the highest neuronal stability

after electrode implantation, making them more suitable for long-term stimulation

scenarios like this one. Also, in the literature, the V1 region has been reported as a

region able to evoke higher-resolution images due to its larger magnification factor in

comparison to retinal prostheses [3]. Therefore, intracortical visual prostheses aim to

target layer 4 of V1 [25, 24, 26, 29].

Figure 2.4: a) Layers of V1 , b) Regions of Visual cortex
(Figure adapted from [30, 31]).

2.2.2 Intracortical vs surface microstimulation

There are two main approaches to stimulate the target area, layer 4 of V1. Cortical

surface stimulation and intracortical stimulation [24]. In the first approach, electrodes

are placed right on the surface of the brain where electrical stimulation is applied. On

the other hand, with intracortical stimulation, penetrating electrodes are implanted

right in the target region layer 4.
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Although the intracortical approach is more invasive, it would be the method used

in the implementation of this project. This is because the stimulation amplitudes

needed to evoke phosphenes are much lower, and it would avoid some problems such

as cross-talk between other electrodes characteristic of the surface stimulation tech-

nique. Furthermore, Meikle et al. [32] claimed that the smallest phosphenes were

produced by the electrodes that were implanted into the cortex. This phosphene

type is desirable for achieving high-resolution images [32]. Moreover, Foroushani and

his group (2018) probed that only a current from 1.9–25 µA was needed for evok-

ing phosphenes when using intracortical microelectrodes that were placed in a 2mm

depth of the human V1 [3]. They also claimed that from the first intracortical visual

prostheses, it was observed that a current 100 times lower than the one required for

surface electrodes was needed to evoke phosphenes. Furthermore, it is possible to

implant hundreds of electrodes on a very small surface of the cortex [5]. With all

the listed advantages, this application favors intracortical stimulation over surface

stimulation.

2.2.3 Current mode vs voltage mode

Electrical stimulation in the cortex can be applied mainly using two methods: voltage

mode stimulation (VMS) and current mode stimulation (CMS). This project will be

developed on the basis that the method of stimulation used will be current mode

stimulation. This choice of methodology is because it has proven to be safer since it

allows for the control of the amount of charge delivered to the patient [23].

Otherwise, if too much charge were to be delivered there would be an accumulation of

it in the electrode-tissue interface that could lead to non-reversible oxidation reactions,

harming that way the patient and the electrode [25].

To understand how this method works, it would be useful to look at the generalized

form of Ohm´s law, which describes the relationship between voltage and current in
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the following way:

𝐼 = 𝑉/𝑍.
(2.1)

This states that the current is equal to the voltage divided by the impedance (Z).

The impedance is non-linear and accounts for the opposition that both the electrodes

and the tissue make to the electrical current flux [33]. In the tissue, this opposition

combines the resistance generated by the intra and extra-cellular fluid, and the mem-

brane’s capacitive reactance [33]. In CMS, a constant current source is applied to

the tissue, so in this case, the user can control the current which is kept constant,

and the voltage is regulated based on changes in tissue impedance [34]. Unlike in

VMS, the amount of current delivered to the tissue is independent of the impedance

[35], which is a much safer option for both the tissue and the electrodes used. How-

ever, this comes at the cost of power efficiency since there are power conversion losses

[24]. Therefore, energy consumption must be taken into account at every step of the

development of this project, and efforts must be made to ensure its optimization.

2.2.4 Phosphene generation

To induce phosphenes, the activation of neurons is essential. To achieve this, the

injected currents must be able to induce the opening of the voltage-gated sodium

channels within the cell membranes of the V1 neurons. If these currents can depolar-

ize the membranes over their resting potential of -70mV, an influx of sodium occurs,

amplifying the depolarization. This process initiates an action potential, which sub-

sequently propagates along the neurons, enabling communication with other neurons

[36]. In Fig. 2.5 a schematic representation of these action potentials can be studied.

The nervous system is composed of several types of neurons, each with its unique

functions. The activation threshold that needs to be achieved to produce action po-

tentials changes among these different types. Several studies have shown that the

predominant neuron type in V1 that mediates phosphene induction is pyramidal neu-
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Figure 2.5: Action potential graphical representation [37].

rons [3], which have an activation threshold from -60mV to -55mV [38]. So, to evoke

phosphenes the applied stimulus should surpass the targeted neuron activation thresh-

old. Another relevant term that should also be considered is phosphene threshold,

which refers to the minimum stimulus required to evoke the perception of phosphenes

in a patient. Several factors can influence this term, including the depth in which the

electrodes are implanted, the materials and impedance of the electrodes, the spacing

between different electrodes, and the established parameters for the applied stimula-

tion [3, 39].

Therefore, the strength of the applied stimuli, its amplitude, the pulse polarity

(cathodic-first or anodic-first), the pulse duration, the frequency, the inter-train inter-

val, and the train length of the applied stimulus have a direct impact on the phosphene

threshold.

The most optimal values reported in the literature for some of these parameters have

been frequencies from 100-200 Hz which have been stated as the most effective in

humans [40, 3], and pulse durations between 0.01 and 1 ms [40, 3]. Regarding the

pulse polarity, for intracortical electrodes, cathodic-first pulses have been proven to

be more effective in generating phosphenes when compared to anodic-first pulses [40].

For the amplitude, several values have been reported, as they tend to vary based on

the user and the specific type of electrodes used [3]. For example, [3] reported that

with amplitudes 1.9–25, µA phosphenes were evoked using intracortical microelec-
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trodes that were placed 2 mm inside the V1 region.

Moreover, [3] asserted that introducing brief interruptions during prolonged stimula-

tion trains enhances the duration over which phosphenes are perceived.

Additionally, some other assumptions that can be concluded from their study are

that a decrease in phosphene threshold could be triggered by increasing any of these

parameters: electrode depth, distance between electrodes, frequency, pulse duration,

train length, or the number of stimulation electrodes. However, the number of times

the stimulation is applied will cause the phosphene threshold to increase, making it

harder to evoke phosphenes in the patient.

2.3 Microstimulation: Fundamental concepts and Safety

2.3.1 Microelectrode arrays (MEAs)

An accurate way to deliver precise electric microstimulation to specific neurons in the

V1 is by using MEAs. Generally, the microelectrodes used in microstimulation have

surface areas of less than 2000µm2 [35].

A common MEA used in long-term human clinical studies, which has been approved

by the Food and Drug Administration (FDA) is the Utah array [41, 42]. It is made

of a silicon-based matrix that encases a grid of penetrating microelectrodes. The

arrays range in configuration from 2x2 to 12x12 microelectrodes per array [43]. These

electrodes are spaced by 400 µm and have a 1.5mm length (see Fig. 2.6). The most

common materials used for stimulation electrodes are platinum and iridium oxide

(IrOx) [35], which are used to coat the microelectrodes tips, to enhance their ability

to deliver current [5]. For stimulation applications, IrOx presents high charge storage

capacity and lower impedance in comparison to other electrode materials [44].

2.3.2 Electrode tissue interface

The interaction between intracortical electrodes and the neural tissue of V1 is known

as the electrode-tissue interface. Many electrochemical reactions take place in this
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Figure 2.6: Utah array [45]

region that determine the efficiency and safety of the microstimulation [35]. The

electrode potential applied to the intracortical electrodes influences the behavior of

the water molecules in the tissue, generating the electrode double layer.

When an electrical potential is applied to the intracortical electrodes embedded

in V1, the water molecules in the nervous tissue orient themselves in response to

the potential and get attached to the electrode surface forming a layer classified as

Helmotz layer in the literature [8], surrounding it is the diffuse layer which is formed

by charged ions in the tissue that are attracted to the electrode by the polarity of the

electric field that was created by the applied stimulation. This layer is more movable

and is also surrounded by water molecules (see Fig. 2.7). This double layer can be

electrically considered as a charged capacitor and can influence the effectiveness of the

stimulation applied [8]. High current densities could destroy this bilayer, which would

lead to a dielectric breakdown. At this point, the capacitance of the electrodes is lost

and Faradaic reactions can occur. These reactions can cause the microelectrodes to

reduce or oxidize and could lead to tissue damage [8].

Therefore, to ensure safety, the Faradaic effect should be limited and charge balance

should be guaranteed during microstimulation.

2.3.3 Safety thresholds

Two main threshold limits should be taken into account when applying microstimu-

lation, one is the tissue damage threshold, and the other one is the electrode damage
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Figure 2.7: Electrode double layer [34].

threshold.

An important parameter to establish these threshold values is the type of stimulation

pulses used. Typically, for cortical microstimulation the type of stimulation pulses

used are biphasic with a leading cathodic phase, with the charge in the leading phase

equal to the charge in the trailing phase (see Fig. 2.8 ). Two parameters based on

Figure 2.8: Biphasic stimulating pulse, cathodic-first [46].

these pulses that will affect determining the tissue and electrode damage thresholds

are:
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• Charge per phase: which is defined as the current times the pulse width:

𝐼𝑐 × 𝑡𝑐 = 𝑞𝑐
𝜇𝐶

ph
(2.2)

• Charge density : which is the charge per phase divided by the geometric

surface area of the electrode used.

2.3.3.1 Tissue damage threshold:

This threshold establishes the limit in which safe stimulation is delivered to the pa-

tient, it indicates the amount of current that can be injected without causing tissue

damage [47].

The most reported value in literature for a safe limit on the charge density of a stim-

ulation pulse is 30 µC/𝑐𝑚2 [48, 46]. This limit was reported by Shannon with the

Shannon equation Eq. (2.3) [49], where 𝐷 is charge density, 𝑄 is charge per phase,

and 𝑘 is the adjustable parameter. Shannon summarized the observations from a

study by McCreery et al [50] where they evaluated the tissue damage observed in the

brains of animal models after electrical stimulation.

log(𝐷) = 𝑘 − log(𝑄)

(2.3)

Moreover, most safety values given in the literature are given for big area electrodes,

also referred to as macro electrodes, in the order of 10−3𝑐𝑚2, mostly used in spinal

cord stimulation or Deep Brain Stimulation (DBS). However, the study case of this

project is based on a much smaller target area where microelectrodes are needed

which are in the order of 10−4𝑐𝑚2.

Cogan and their research group also studied the same for cases where penetrating

microelectrodes were used [46]. They observed that the tissue damage thresholds

for the microelectrode cases do not follow the Shannon line anymore, and in almost
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every instance the injected current density was well above 30 µC/𝑐𝑚2 [47]. Based on

their observations, the tissue damage threshold for long-term microstimulation with

microelectrodes embedded in the cortex should be 4nC/ph [47]. However, the tissue

damage threshold is not only dependent on the charge per phase but also on the

frequency of the pulses and the duty cycle of the stimulation [47].

Therefore, these conclusions should be taken into account when defining the tissue

damage threshold of this project.

2.3.3.2 Electrode damage threshold:

This threshold is established for the electrodes themselves since the amount of charge

density injected can also damage the electrode. Surpassing this threshold could cause

the electrode to degrade or malfunction [51]. As mentioned in Section 2.3.2, for

electrode safety, water electrolysis should be avoided. Table 2.1 shows the charge per

phase threshold for the most common materials used in microelectrode manufacturing

[46].

For 2000 µ𝑐𝑚2 Electrode Charge per phase (nC/ph)
Platinum 2

Iridium Oxide 60
Titanium Nitride 20

Table 2.1: Electrode damage thresholds in charge per phase [46].

2.3.4 Activating Function

The activating function (AF) is a mathematical approximation that computes the

electric-field gradient along the axons of the neurons. It is useful to assess where neu-

rons will be activated, giving an intuition of what areas are receiving the strongest

excitation. This is possible because this function helps estimate the generation of

action potentials in the targeted neuron. Consequently, it helps evaluate the spatial

extent of neuronal activation.

The AF is proportional to the inward and outward currents along a neuron and its

deviation from the resting potential [52]. It pinpoints the sites of elevated hyperpo-
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larisation and depolarization caused by the electric field that is acting on the neuron.

The AF is based on the cable theory model of the axons of neurons. This model

assumes that neurons can be represented as core conductors with electric circuits

that approximate the behavior of the membrane see (Fig. 2.9a). The derivation of

the cable equation comes from applying Kirchhoff’s law and Ohm´s law over the

model [53, 54]. According to this theory, the transmembrane voltage dynamics of the

different axonal segments can be described by the following equation [55]:

𝐶𝑚𝑑𝑉𝑖

𝑑𝑡
=

[︂
𝑑

4𝜌𝑖

(︂
𝑉𝑖−1 − 2𝑉𝑖 + 𝑉𝑖+1

Δ𝑥2
+

𝜑𝑖−1 − 2𝜑𝑖 + 𝜑𝑖+1

Δ𝑥2

)︂
−
∑︁

𝐼 𝑖𝑜𝑛𝑛

]︂
(2.4)

Where d is the diameter of the axon which normally is reported to be between 1 to

10 µm; 𝑉𝑖−1,𝑉𝑖 and 𝑉𝑖+1 are the transmembrane voltages of the neighboring axonal

compartments; 𝐶𝑚 is the membranes capacitance per unit square that has a value of 1

µF/cm; 𝜌𝑖 is the resistivity of the axoplasm which is 300 Ω·cm; 𝜑𝑖−1, 𝜑𝑖 and 𝜑𝑖+1 refer

to the extracellular potentials in the vicinity of axonal compartments,
∑︀

𝐼 𝑖𝑜𝑛𝑛 is the

sum of all intrinsic ionic currents and x is the direction of the axonal fiber. The cable

model is visualized in Fig. 2.9b. To predict the membrane response from the cable

model Fig. 2.9 it is assumed that at the beginning of the stimulation, the capacitive

currents across the membrane are predominant over the intracellular currents. Based

on this approximation the initial polarization of the membrane is proportional to the

source term of the cable equation, this is called activating function [58, 59]. In its

generalized form, the activating function is defined as the second spatial derivative of

the potential multiplied by a constant Eq. (2.5).

𝐴𝐹 =
𝑑

4𝜌𝑖
* 𝜕

2𝑉

𝜕𝑥2
(2.5)

When analyzing this function, it should be noted that a positive value indicates

depolarization of the membrane, while a negative value indicates hyperpolarisation
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Figure 2.9: Cable model of the axon of the neuron. a) Experimental setup used for
deriving the cable equation. It assumes that the total stimulus current (I𝑖), which
has an axial flow inside the axon, decreases with distance since part continually

crosses the membrane to return as a current (I𝑜) outside the axon. It also considers
the axon to have an infinite length. b) Circuit model of an axon. Figure adapted

from [56, 57].

[60].

2.3.5 Current Steering

Current steering is a technique that manipulates the distribution of electrical potential

around different electrode sites. This method involves delivering current simultane-

ously to adjacent electrodes, allowing stimulation to be directed to a point in between

the contacts. This is achieved by adjusting the proportion of current delivered to each

electrode pair [61].

Normally interactions between electrical fields are aimed to be avoided since they can

produce the activation of undesirable locations and produce unwanted responses in

the body such as seizures [62]. However, this technique uses these interactions to

its advantage. By overlapping individual electrode fields, current steering can focus
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or redirect the current to excite different tissue sites. This way allows to increase

the number of stimulating channels beyond the fixed number of physical electrode

contacts [63, 26, 61, 32, 62]. This concept is illustrated in Fig. 2.10.

It has been experimentally incorporated into different devices, such as retinal, optic

nerve, cochlear, cortical, and facial muscle implants [32].

Overall, this technique offers a great opportunity for enhancing the performance of

neurostimulation devices by improving the range of stimulation possibilities they can

achieve. Therefore, its implementation will be considered in the course of this project.

Figure 2.10: Current steering using electrode pairs. The electric fields generated by
the stimulation are represented by a continuous line for electrode 5 (E5), a dotted
line for electrode 6 (E6), and a dashed line for simultaneous stimulation of both

electrodes. A) Both electrodes are stimulated with the same amount of current. B)
E5 is stimulated with 30 % of the total current, while E6 is stimulated with 70 % of

the current [61].
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2.4 Problem statement

The literature shows that location, proximity, and number of electrodes placed in

the brain dictate the resolution of artificial vision [32]. Moreover, several studies

have reported that to restore visual sight around 1500-2000 phosphenes would be

needed [32]. Therefore, knowing that conventionally each physical electrode evokes

one phosphene [32], it can be concluded that thousands of electrodes are required to

restore normal vision. However, implanting that number of electrodes will harm the

brain [64]. The more electrodes implanted, the greater the tissue damage. Therefore,

there is a need for stimulating methods that would improve the resolution of the

visual cortical implants without increasing the number of electrodes that would be

implanted into the brain. This project aims to address this issue and try to find a

way to enhance microstimulation in the visual cortex.
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Chapter 3

Prior work

3.1 Electric field shaping

This section will delve into electric field shaping methods, what techniques are cur-

rently used in clinical practice, in what areas of the body, and how they can improve

the stimulation of the visual cortex.

3.1.1 Current steering

The predominant field shaping technique mentioned within the literature is current

steering, which concept was introduced in 2.3.5. This study aims to investigate its

potential to enhance visual prosthesis performance.

For example, Firszt et al. in their study probed that additional pitch precepts could

be generated using current steering in cochlear implants through concurrent stimu-

lation of contiguous electrodes [63]. Moreover, the study by [26] indicated that the

current steering effect is lost when electrodes are placed in different layers of the

cortex. However, when they were placed in a single layer or parallel to the cortical

surface, there was a clear current steering effect.

Also, from their single-layer measurements, they observed a positive relationship be-

tween the current level, shift, and spread of the stimulating electrodes. They also

concluded that the lack of a current steering effect in the multi-layer approach was
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due to the spread of neural activity throughout the cortical column and not to ex-

perimental errors [26].

In addition to its application in cochlear implants, [61] studied the feasibility of in-

corporating this technique in retinal prostheses. They wanted to redirect the current

to excite different tissues. To do so, they split the current between the electrodes by

Eq. (3.1).

𝐼𝑎 = 𝑅× 𝐼𝑡 (3.1)

Where 𝐼𝑎 resembled the current on the first electrode of the pair, 𝐼𝑡 was the total

current, and R is the current ratio from 0 to 1 which determines the proportion of

current sent to the first electrode. Therefore, the current of the second electrode

follows:

𝐼𝑏 = 𝐼𝑡 − 𝐼𝑎. (3.2)

They generated a cortical spatial map for each ratio by plotting the spike rate across

all their different recording channels. Then they plotted all centroids for each current

ratio of an electrode pair on a single cortical map to evaluate how centroids shifted

based on the ratio applied.

Their results showed that it was possible to relocate the centroid of cortical spike ac-

tivation with current steering within the retina using numerous electrode pairs with

different retinal distances. They observed that greater adjustments in the current

ratio and larger distances (for both virtual and physical electrodes) corresponded to

more substantial shifts in the cortex centroid. While they couldn’t determine the

limit of electrode pitch for active current steering, they successfully demonstrated the

feasibility of generating additional virtual electrodes between two physical electrodes.

Moreover, they suggested that applying current steering in two dimensions (2D) could

enhance this process further.

In line with our goal, [32] investigated the feasibility of using current steering to

enhance the resolution of artificial vision provided by intracortical prosthesis while

minimizing the need for additional physical electrodes in the brain. In their study,
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they used a 64-channel, four-shank microelectrode array implanted in the visual cor-

tex of rats. They aimed to study how the position of neuronal activation could be

steered by varying the charge distribution between two stimulating electrodes sepa-

rated by either 300𝜇m, 400 𝜇m and 500 𝜇m.

To assess current steering viability across different electrode array configurations, they

explored the relationship between the spread of neural activity, the pitch between elec-

trodes, the peak shift of neural activity, and the stimulation amplitude. Their results

suggested that achieving precise phosphenes requires selecting the lowest current am-

plitude that reliably shifts neural activity peaks without reaching saturation. They

concluded that 6 𝜇A was the ideal current for inducing minimal neural activity spread

with a stable peak shift across various electrode separation distances. Additionally,

they proposed using retinotopic maps of the visual cortex to predict the spatial loca-

tion of evoked phosphenes based on the current steering response [65].

Moreover, [32] compared two models that predicted current steering response based

on single electrode responses. They concluded that a weighted model, scaling cortical

response to each electrode when individually stimulated, was more accurate than a

linear additive model. The cumulative model is formulated as Eq. (3.3).

𝑑×𝑅𝐸1 + (𝑑− 1)×𝑅𝐸2 = 𝑅𝐸1𝑥𝑑+𝐸2×(1−𝑑)1
(3.3)

Where d is the current ratio of the first electrode, R is the evoked response, and I

the current. Finally, their results suggested that current steering could be used to

increase the resolution of intracortical electrode arrays without altering the number

of physical electrodes, hence, power consumption, tissue damage, and potential heat

dispersion issues would be diminished.

Expanding the scope of other papers that focused on increasing the number of elicited

phosphenes with “virtual electrodes” generated by simultaneous stimulation of elec-

trode pairs, [62] proved that virtual electrodes could be generated using 2D current

steering with up to 6 electrodes.

Moreover, [66] implemented current steering into a retinal prosthesis, and they demon-
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strated how using different return electrode geometries could modify the overall cur-

rent density delivered. Their results suggested that the number and orientation of

the return electrodes could have an important role in the patient’s visual perception.

This concept was further supported by [67], who conducted experiments to steer the

injected current of retinal prostheses by employing various combinations of return

electrodes. Through theoretical analysis and experimental validation using immersed

electrodes, they demonstrated the feasibility and effectiveness of adjusting current

distribution within the retina.

In conclusion, current steering has proven to be an interesting research topic for many

stimulation devices. It has been successfully implemented in many research scenarios

from DBS, cochlear implants, and retinal prosthesis to even sacral nerve electrostimu-

lation to enhance their performance [68]. Throughout the literature, it has introduced

additional pitch percepts in cochlear implants and even improved resolution in retinal

prostheses. Furthermore, apart from current steering, [23] introduced similar tech-

niques that can be included in the field shaping families, such as current focusing,

virtual electrode stimulation, and phased array stimulation. The main difference [23]

states between them is their main purpose, current steering focuses on controlling the

direction and spread of the stimulation; virtual-channel stimulation aims to create a

stimulus perception in between the primary sources of stimulation (create a virtual

electrode) and current focusing tries to limit the extent of activation and concentrate

the activation at the target location [23].

3.1.2 Vector field shaping

Vector Field stimulation is a novel technique that aims to achieve region of interest

target stimulation [1]. It involves simultaneous current stimulation across multiple

electrodes, hence multichannel stimulation. Unlike traditional current steering meth-

ods, which focus on controlling individual electrode stimulation levels, VFS seeks to

regulate the overall electric field distribution generated by adjusting each electrode’s

contribution, see Fig. 3.1.
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Figure 3.1: The figure demonstrates the Vector Field Shaping technique from [1].
On the left, the top images show the electrodes activated after differential

stimulation, while the bottom images represent the resulting activation field. On the
right, the images illustrate the activation pattern achieved with Vector Field

Shaping, where more electrodes are activated, leading to a more precise activation
field.

3.1.3 Proposed Implementation

Previous literature often uses paired electrodes for targeted stimulation [23, 63, 32, 65].

In contrast, our approach aims to independently control current delivery to each elec-

trode to achieve a specific electric field configuration, thereby eliminating the need

for electrode pairing constraints. The primary objective is to develop an optimiza-

tion algorithm based on VFS that calculates the necessary current for each MEA

electrode to generate a predefined potential field. By focusing on manipulating the

overall electric field rather than individual channel currents, VFS introduces a novel

perspective on current steering concepts.

Therefore the following section will explore different optimization techniques previ-

ously used in microstimulation.
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3.2 State-of-the-art methods to optimize electrical

stimulation processes

Throughout the years, many research groups have tried to optimize the problem

of electrical microstimulation of neurons. While this project primarily focuses on

intracortical microstimulation, this study of literature will also delve into additional

techniques.

Based on the reviewed literature a common setup for the optimization process consists

of 3 steps:

1. Calculate individual electrical contributions of each electrode using FEM

2. Optimize objective function

3. Analyse the resulting electric field

3.2.1 Calculate individual electrical contributions of each elec-

trode using FEM

One of the first approaches studies take to optimize electrical stimulation is to calcu-

late the electric potential field generated in their region of study by applying unitary

currents to their electrodes. They do this by solving Poisson equation Eq. (3.4) using

Finite Element Analysis (FEA) [60, 48, 1, 69, 2, 70, 7, 71, 72]. Where V is the re-

sulting electric potential, 𝐽𝑝 is the primary current density, and 𝜎 is the conductivity

of the medium.

∇2𝑉 =
∇𝐽𝑝
𝜎

(3.4)

The purpose is to create a current density transfer matrix, that applying the super-

position principle will serve as a basis to approximate all possible combinations of

active contacts, exploiting the advantage of the system’s linearity.
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3.2.1.1 Origin of Poisson equation

Maxwell’s equations describe the behaviour of electric and magnetic fields generated

by neuronal activity or external stimulation in a continuous medium [59]:

∇ ·D = 𝜌 (3.5)

∇ ·B = 0 (3.6)

∇× E = −𝜕B
𝜕𝑡

(3.7)

∇×H = J𝑝 + 𝜎E +
𝜕D
𝜕𝑡

(3.8)

Where E represents the electric field, D is the displacement field, H the magnetic

field, B the magnetic induction, and 𝜌 is the volume charge density. Furthermore,

B= 𝜇 H, where 𝜇 represents the magnetic permeability.

Also, the scalar potential V and the vector potential A can be related to the electric

field E through:

E = −∇𝑉 − 𝜕A
𝜕𝑡

(3.9)

Making Eq. (3.8):

∇×H = J𝑝 + 𝜎(−∇𝑉 − 𝜕A
𝜕𝑡

) +
𝜕D
𝜕𝑡

(3.10)

The speed at which the electromagnetic waves described by these equations propagate

in a vacuum is the speed of light (𝑐 = 3 * 108𝑚/𝑠). Bioelectric sources, such as action

potentials, typically operate at frequencies below 1 kHz. At these low frequencies, the

dynamic propagation effects of electromagnetic waves can be neglected. Instead, the

fields are dominated by resistive and capacitive properties of the biological medium,

leading to a much slower effective propagation speed compared to the speed of light

[59]. In this case, all time-varying quantities in these equations would have a small

effect on the overall electromagnetic field distribution. Therefore, a quasi-static ap-

proximation can be made, where these time-varying quantities are neglected.

Based on this assumption, and by taking the divergence of Eq. (3.10) we obtain Pois-
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son´s equation Eq. (3.4).

When simulating the behavior of electrical stimulation, it is also necessary to define

appropriate boundary conditions (BC). These conditions will ensure the simulation

accurately represents the real world [59]. The choice of these boundary conditions

differs between studies. Dirichlet and Neumann are the most used ones in stimulation

applications [60, 48, 1, 2, 7].

• Dirichlet Boundary condition

When electrodes are used to apply electrical stimulation, each electrode gets a

voltage 𝑉0 assigned to it relative to the ground, which conventionally is set to

0 V. Therefore, Dirichlet BC dictates the value of the potential field V at the

boundaries [59]:

𝑉 = 0 on the ground electrode (3.11)

𝑉 = 𝑉0 on the stimulating electrode (3.12)

Although this BC is commonly used [60, 48, 1], it does not account for the

potential drop that occurs in the electrode-tissue interface introduced in the

Section 2.3.2.

• Non-homogenous Neumann Boundary Condition

Unlike Dirichlet, this condition does account for the drop in the electrode-tissue

interface. It is used to model the flow of charge between the electrode and tissue

and is defined in the following way:

𝜎∇𝑉 · n =
𝐼

𝑆𝑒𝑙𝑒𝑐

(3.13)

Where 𝜎 is the conductivity of the tissue, n is the normal vector to the boundary

at each point of the electrode surface, I is the injected current, and 𝑆𝑒𝑙𝑒𝑐 is the

electrode surface area. It states that the normal component of the electrical

current density at the electrode boundary is equal to the injected current per

unit area [2, 7].
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3.2.2 Optimize objective function

The objective function that must be optimized depends on the electrical stimulation

application. The most repeated objective in the literature was to maximize the cur-

rent density within the targeted regions while minimizing it across the rest of the

domain [60, 48, 1, 2, 70, 72].

As with the objective function, the way the optimization problem is formulated

strongly depends on the application for which the electrical stimulation is meant:

spinal cord stimulation [60], deep brain stimulation (DBS) [48, 72], cervical stimula-

tion in the spinal cord [1], electrical brain stimulation (EBS) [2], electrical stimulation

of visual cortex [70, 7] or electrical stimulation of the retina [69].

A recurring approach in several studies was to use the activating function, previously

introduced in Section 2.3.4. The main idea is to maximize this function in the regions

of interest (ROI). Most investigations study this function in the context of 1 dimen-

sion (1D) [60, 72]. This approach represents the relationship between changes in the

membrane potential at one point along the axon, caused by the delivered stimulation,

and the likelihood of generating an action potential at another point along the same

linear structure. Eq. (2.5) represents this relationship, which can approximate acti-

vation along a 1D fiber. Fig. 3.2 visualizes this concept, it presents the 1D activation

produced by a surface electrode, for a fiber horizontal to the electrode (Fig. 3.2 c)),

and a fiber vertical to the electrode (Fig. 3.2 d)). In [48, 1] they deviate from 1D and

study the activating function in a 3D context. They used a generalization of the acti-

vation function to approximate the activation of neurons in all directions. They used

a Hessian matrix Eq. (3.14), a mathematical structure formed by second-order par-

tial derivatives of the electric potential. This method enabled them to approximate

neural activation in a 3D space.

𝐻 =

⎡⎢⎢⎢⎣
𝜕2𝑉𝑒

𝜕𝑥2
𝜕2𝑉𝑒

𝜕𝑥𝜕𝑦
𝜕2𝑉𝑒

𝜕𝑥𝜕𝑧

𝜕2𝑉𝑒

𝜕𝑥𝜕𝑦
𝜕2𝑉𝑒

𝜕𝑦2
𝜕2𝑉𝑒

𝜕𝑦𝜕𝑧

𝜕2𝑉𝑒

𝜕𝑥𝜕𝑧
𝜕2𝑉𝑒

𝜕𝑦𝜕𝑧
𝜕2𝑉𝑒

𝜕𝑧2

⎤⎥⎥⎥⎦ (3.14)
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Figure 3.2: a) Set-up example where the electrode is in the coordinate system
(X,Y,Z). This electrode is located on the surface (grey plane), and the centre of the

coordinate system corresponds to the centre of the electrode. b) Schematic
representation of the electrode (red) and horizontally oriented axon (green) on (X,Z)
plane (Y=0). Activating function representation for c) horizontal and d) vertically
oriented fibers, where red represents the areas of depolarization and blue areas of

hyperpolarization [55].

This 3D approximation can be of great value to this project since it will allow us to

study how the neurons interact and it will also help us understand how the electrical

signals are propagating in our tissue.

Apart from AF optimization, [7] introduced another interesting objective function,

visual error minimization. They introduced this concept in the context of visual cortex

stimulation. This error was quantified in pixels, it accounts for the error generated
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by exciting location (j) when trying to excite location (i) by the following equation:

Δ𝑗𝑖 =

√︁
[𝑥𝑖 − 𝑥𝑗]

2 + [𝑦𝑖 − 𝑦𝑗]
2

𝑃𝑠𝑧

(3.15)

Where Δ𝑗𝑖 is the visual error in pixels, j is the location excited by mistake, i is the

targeted location, and 𝑃𝑠𝑧 is the desired pixel size which is defined as:

𝑑𝑛𝑒𝑖𝑔ℎ𝑏𝑗 = min

√︁
[𝑥𝑣𝑖𝑠𝑘 − 𝑥𝑣𝑖𝑠𝑗]

2 + [𝑦𝑣𝑖𝑠𝑘 − 𝑦𝑣𝑖𝑠𝑗]
2

𝑘=1..𝑁𝑙𝑜𝑐,𝑘 ̸=𝑗
(3.16)

𝑃𝑠𝑧 =
1

𝑁𝑙𝑜𝑐

𝑁𝑙𝑜𝑐∑︁
𝑗=1

𝑑𝑛𝑒𝑖𝑔ℎ𝑏𝑗 (3.17)

Where 𝑁𝑙𝑜𝑐 is the number of brain locations in the region of study (ROI). The desired

pixel size represents the size and spacing between pixels and is obtained with the

average distance between nearest neighbor phosphenes (𝑑𝑛𝑒𝑖𝑔ℎ𝑏𝑗). So if the pixels are

large and very spaced, the resolution of the visual field will be low, each pixel will

represent a larger area of the visual field, so there will be fewer pixels to capture the

details of the image. Based on Eq. (3.15), larger pixel sizes correspond to a reduced

impact of individual pixels on visual error.

On the other hand, if the pixels are small and close to each other, the resolution of

the visual field will be high, where each phosphene will represent a finer detail.

By normalizing the distance between points by the pixel size in Eq. (3.15) visual error

can be compared between different grid sizes (resolutions). Furthermore, to compute

the total visual error, they sum all the errors obtained from all of the unwanted

regions that had been excited:

Δj = min (Δji) , i = 1...Non 𝑎𝑛𝑑 𝑗 = 1 . . . 𝑁𝑈𝐷𝐸 (3.18)

Δ𝑡𝑜𝑡 =

𝑁𝑈𝐷𝐸∑︁
𝑗=1

Δ𝑗 (3.19)

Where 𝑁𝑜𝑛 is the set of target locations (locations we would like to excite) while

29



𝑁𝑈𝐷𝐸 represents the number of locations that should have remained unexcited but

were excited by mistake.

See Fig. 3.3 for a visual interpretation of this concept. Although the optimization

Figure 3.3: Visual interpretation of the described visual error in [7]. Where red
represents the excited locations (j) and the green represents the target locations (i)

algorithm will strongly depend on how the optimization problem is formulated, most

studies reported in this literature use convex optimization. The following table com-

piles all the different objective functions used in the commented literature, their

constraints, and the optimization approach they used to find a solution:

Table 3.1: Compilation of optimization problem formulations across the literature
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3.2.3 Analysis of the resulting electric field

After optimizing electrical stimulation, some studies validated their results. For in-

stance, [48] used NEURON software to validate the neural activation results obtained

with their optimization algorithm. NEURON is a simulation software that allows the

modeling of individual neurons and networks of neurons [73].

Furthermore, although in [70] is used to obtain the input to their algorithm, Benson´s

retinotopic template could offer the possibility to validate the algorithm’s predicted

activation patterns with experimental data obtained from retinotopic studies. This

template associates V1 locations to the visual field [74].

3.2.4 Conclusion

From all these studies there are some valuable insights we could use for our project,

for instance, most of the studies, calculated the potential generated by different

electrodes by solving the Poisson equation with FEM. Furthermore, in numerous

cases, it was assumed that the region of study was homogenous and isotropic.

Although this does not resemble the reality of our medium of interest, it would be a

good first assumption to simplify our model.

Moreover, most of the problems defined in the literature were convex optimization

problems, which established the current state-of-the-art to solve this kind of problem,

optimization of electrical stimulation of neurons. Although all cases differ in the

problem definition of the model they studied, their selected objective function and

constraints could serve as a baseline or inspiration to define our model. Therefore, a

good first step is to decide our objective function and desired constraints to formulate

the optimization problem properly. Moreover, once our objective function is clear,

we could use the problem formulations compiled in this literature as inspiration to

develop our framework and as benchmarks to compare with.

Other observations made from this review, are that the safety current limits should

be carefully selected, as well as the neuron excitation threshold, which are often

calculated using HH models of the neurons.
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Moreover, from these studies we can obtain some benchmark values to compare and

validate our results, such as the visual error introduced in Abouelseoud et al. papers

[2, 70, 7] or the activation thresholds obtained for pyramidal cell’s activation in other

studies. Furthermore, the results obtained in some of this paper could be used to

compare the feasibility of the proposed algorithm.

3.3 Problem statement and research question

The goal of this project is to develop an optimization algorithm that would be able

to enhance V1 microstimulation while adhering to all safety constraints required for

a cortical visual prosthesis. This includes limiting the amount of current delivered

to the brain, evading non-Faradaic reactions, avoiding or minimizing stimulation

of undesired regions to ensure that there are no undesired reactions from the

microstimulation delivered, and maximizing activation of all desired locations. The

algorithm will be based on vector field stimulation, we want to be able to output

the amount of current that is necessary to be delivered by each electrode in the

MEA based on a desired electric field without the necessity of having the electrodes

paired, as the recently introduced in Section 3.1.2. The main objective is to enhance

the way microstimulation of the primary visual cortex is performed right now. The

research question that this approach aims to solve is:

How does vector field stimulation affect visual error and power efficiency in a cortical

visual prosthesis?

• How would these parameters be affected if we limit the number of electrodes

that are allowed to be activated at a time?

• What happens if the electrodes within the MEA are grouped, and only one

electrode in each group can be activated simultaneously?

• In this approach, the visual cortex will be represented as a grid. Can this
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technique increase the percentage of possible activated points in the grid when

compared to bipolar stimulation?

3.4 Project plan

Based on the literature discussed in this chapter, this project aims to demonstrate the

advantages of the novel technique discussed, Vector Field stimulation (Section 3.1.2),

over the methods currently in use. To do so, the questions discussed in the last section

are to be solved. The plan is to follow the steps discussed in Section 3.2:

1. Calculate individual electrical contributions of each electrode in the MEA using

FEM.

2. Optimize the objective function of our problem, which will be defined based on

Vector Field stimulation. It was also discussed in this chapter, that most studies

that tried to optimize microstimulation used the one-dimensional activating

function to estimate the distribution of neural activation. However, in this

problem formulation, I would like to use a 3D approximation approach since it

will allow us to study how the neurons interact and help us understand how

electrical signals propagate in our tissue.

3. Analyse the resulting electric field to prove the feasibility of this new technique.

The end goal of this thesis is to develop an optimization algorithm that validates the

potential of this novel technique for use in cortical visual prostheses.
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Chapter 4

Methods

4.1 Introduction

Based on the findings made in Chapter 2 and Chapter 3, the goal of this project is

to develop an optimization algorithm that enhances V1 microstimulation while ad-

hering to all safety constraints required for a cortical visual prosthesis. This includes

limiting the amount of current delivered to the brain, evading non-Faradaic reactions,

avoiding or minimizing stimulation of undesired regions, and maximizing activation

of all desired locations. Additionally, this project aims to address the research ques-

tion discussed in Section 3.3 regarding the effectiveness of the optimization algorithm

under different constraints.

A robust and comprehensive problem formulation is essential to achieve these objec-

tives. This chapter outlines the approach to designing, validating, and implementing

the optimization algorithm.

4.2 Problem formulation

To solve the problem, and based on the information gathered in the literature Chap-

ter 3, the main objective was determined to be minimization of the visual error. This

error, as introduced in Section 3.2.2, is quantified in pixels and accounts for the dis-

crepancy between the generated phosphenes and the desired locations.
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The optimization algorithm must comply with several constraints to ensure safety in

a cortical visual prosthesis. These constraints are:

• Activation Constraint: The points activated in the original pattern must also

be activated in the resulting pattern.

• Current balance constraint: This constraint ensures that the sum of the currents

delivered to all electrodes over a complete stimulation cycle is zero. This ensures

that there is no net charge accumulation across the electrode array as a whole.

However, this does not prevent individual electrodes from becoming polarized

within a single cycle. To prevent charge accumulation on individual electrodes,

it is necessary to manage the currents in the time domain, ensuring that any

positive current applied to an electrode is followed by an equivalent negative

current within the same cycle. Since our work focuses on static simulations, we

do not address this dynamic current balance.

• Maximum Injected Current Constraint: This limits the current that can be

injected into each electrode, set to a maximum of 5 mA per electrode based on

safety restrictions outlined in [2].

Therefore, a general formulation of the problem would be Eq. (4.1).

minimize 𝑉 𝑆𝐸(𝑃𝑟𝑒𝑠, 𝑃𝑜𝑏𝑗)

subject to
𝑛∑︁

𝑖=1

𝐼𝑖 = 0 (Current Balance Constraint)

𝐼𝑖 ≤ 5mA ∀𝑖 (Maximum Injected Current Constraint)

∀ pos ∈ positions_toactivate, 𝑇res[𝑝𝑜𝑠] ≥ threshold (Activation Constraint)

(4.1)

VSE represents the visual error function which has as arguments the objective pattern

𝑃𝑜𝑏𝑗, and the achieved activation pattern 𝑃𝑟𝑒𝑠 and n is the total number of electrodes.

Additionally, 𝑇𝑟𝑒𝑠 represents the transfer matrix, which will be introduced later.

To fully define the objective function and the optimization process, several key con-

cepts need to be introduced. The following sections will outline the flow of the
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problem, starting from data collection, which serves as input to the algorithm, and

proceeding to the selection and description of the optimization algorithm. Fig. 4.1

provides an overview of the problem flow, which will be progressively detailed in the

next sections.

Figure 4.1: Problem formulation flow chart

4.3 Data collection

As described in Section 2.3.1, MEAs are an accurate way to deliver precise micros-

timulation in the visual cortex. As an input to our algorithm, we need a potential

field distribution basis, the electric potential fields generated by each electrode in the

MEA when a unit current is injected into them.

4.3.1 Model description

To calculate the individual contribution of each electrode, the MEA was modelled

using FEM in the COMSOL Multiphysics software [75]. In COMSOL, the Poisson

equation Eq. (3.4) is solved for each element. This equation serves as a quasi-static ap-

proximation of the Maxwell equations, as detailed in Section 3.2.1.1. This assumption

is valid only if the considered signals are less than 100MHz [76, 77, 7], in those cases
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the propagation medium, the biological tissue, can be considered as memory-less, the

signal at any moment depends only on the input at that moment, not on any previous

inputs. This feature makes the use of a stationary model an appropriate choice, as

the system’s behaviour is stable and predictable over time based on present inputs

alone. Therefore, when setting up the simulation study, a stationary 3D analysis

was selected using the AC/DC interface which is based on Maxwell´s equation and

specifically designed to simulate the behaviour of electrical and magnetic fields [75].

In the first step, the geometry of the model is defined, see Fig. 4.2. This study is

based on a version of the UTAH array [78] that has been FDA-approved for human

use since 2004. This is the Neuroport Array model PN 4383 designed by Blackrock

Neurotech [79]. For computational efficiency reasons (faster processing times, reduced

memory usage), instead of the original 10x10 grid, the model designed in this project

consists of a 3x3 array of 1.5 mm long microelectrodes which are separated from each

other by an electrode pitch of 400 𝜇m. Each electrode had a cone-like shape, with a

base radius of 40 𝜇m. The dimensions of our simplified MEA are 1.2mm x 1.2mm.

The MEA was embedded in a cube that simulates the brain, of dimensions 2000 𝜇m

x 2000 𝜇m x 2000 𝜇m. Furthermore, it is important to mention that all sharp corners

were smoothed using fillets of 10 𝜇m, to avoid singularities in the numerical solutions.

Several studies have highlighted the problems of having sharp corners in a compu-

tational mesh such as generating singularities in the numerical solution and causing

abrupt changes in gradients [80, 81, 82].

In the next step, material properties are assigned to each component of the model.

For that, the material properties of each element of the MEA were specified as dis-

played in Fig. 4.3. The electrodes are defined to have an exposed tip length of 50 𝜇m,

where each tip is coated with Platinum (Pt), which has an electric conductivity of

8.9e6 [S/m] [83] (see Fig. 4.3a). The rest of the electrode and the base of the MEA

were given the properties of Polymide, with a conductivity of 1e-12 [S/m] [83] (see

Fig. 4.3b), an electrical insulating material with properties similar to the ones used

in Blackrocks Microsystems model [79]. The cube in which the MEA is embedded

is considered to be made of grey matter, which has a conductivity of 0.587 [S/m]
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(a) 3D Geometry of the model (b) 3D Geometry of the model top view

Figure 4.2: 3D Geometry of the model with the defined measures

[84] (see Fig. 4.3c). After setting up the material properties, the following boundary

conditions (BC) were defined:

• Current conservation: This BC was applied in all boundaries of the model, to

ensure that the total current that enters the system equals the total current

that leaves it, which is established by Kirchoff´s Current Law [85]:

∇ · J = 𝑄𝑗,𝑣 on all highlighted structures in Fig. 4.4a. (4.2)

J = 𝜎E + J𝑒 on all highlighted structures in Fig. 4.4a (4.3)

E = −∇𝑉 on all highlighted structures in Fig. 4.4a (4.4)

Where J is the current density vector, 𝑄𝑗,𝑣 is the volumetric charge density, 𝜎 is

the electrical conductivity of the material, E is the electric field vector and V is

the electric potential.

• Electric Insulation: This BC is also known as the homogeneous Neumann bound-

ary condition, and it is used to simulate every insulating element of the model

properly:

n · J = 0 on all highlighted structures in Fig. 4.4a. (4.5)

Where n is a normal vector to the insulating boundary and J is the current
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(a) Platinum-Pt tips (𝜎=8.9e6[S/m]) (b) Polymide (𝜎=1e-12 [S/m])

(c) Grey matter (𝜎=0.587 [S/m])

Figure 4.3: Material properties of the model, the highlighted element in each figure
represents the section of the model to which each specific material is assigned.

density vector.

• Dirichlet Boundary Conditions: With this BC the value of the potential field

is set at every boundary. The ground in this model was defined in the outer

boundary of the box-like tissue, setting there:

𝑉 = 0 on all highlighted structures in Fig. 4.4b (4.6)

This condition ensures that the outer boundary acts as a reference potential

(ground). On the other hand, in the rest of the boundaries V was set to 𝑉0

which was originally initialized as 0V Fig. 4.4b. This BC sets the starting
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conditions for the simulation. While 𝑉0 starts at 0 V, it allows flexibility for

adjustments if different potential values are required for other simulations or

scenarios.

• Current terminal: This BC condition is applied in any surface in which the

current is going to be injected. In the project, this BC will be changed for every

simulation into the electrode we want to activate at each time:

∫︁
Ω

J · 𝑛d𝑆 = 𝐼0 on all highlighted structures in Fig. 4.4c (4.7)

To numerically solve the problem, COMSOL discretizes the domain into elements. For

the discretization of the electric potential, quadratic Lagrange elements were selected.

These elements approximate the solution using piecewise second-degree polynomial

functions [59]. This choice is crucial as it offers superior accuracy and smoothness

compared to linear elements. Quadratic elements are particularly effective in captur-

ing sharp gradients and maintaining solution continuity across the domain [59, 86].

Finally, to ensure the accuracy of the MEA simulation, a tetrahedral mesh with "ex-

tremely fine" resolution was defined, as depicted in Fig. 4.5. The mesh had a maxi-

mum element size of 4 * 10−5 m and a minimum element size of 4 * 10−7 m. In static

simulations, using a fine mesh is important for accurately resolving spatial variations

in the electric field intensity around the microelectrodes. It is also important to accu-

rately model the interface between the microelectrodes and the cortex, as explained

in Section 2.3.2. Nine different simulations with this model were conducted, each

activating a different electrode. To extract data from the 3D model, a cut plane was

created at 1 µm above the tips of the electrodes (see Fig. 4.6), capturing the electric

potential field distribution in that 2D plane. To mitigate numerical errors originat-

ing from the discretization inherent in COMSOL’s Finite Element Method (FEM),

a smoothing operation was applied during data extraction. For each electrode, the

potential values were saved in matrices named T1 through T9. These electric po-

tential results were then used as input for the optimization algorithm, which will be

discussed further in this chapter.
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(a) Current Conservation and Electric In-
sulation BC

(b) Dirichlet BC. 1) Ground, 2) Initial Values

(c) Current terminal

Figure 4.4: Boundary conditions, the highlighted element in each figure represents
the section of the model to which each specific BC is assigned.
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Figure 4.5: Mesh defined for the simulations

Figure 4.6: Cut plane at 1 µm over the microelectrodes tips.

4.3.2 Model validation

To ensure simulation accuracy and reliability, several validation steps were performed.

First, the overall injected current was evaluated by doing a surface integration of the
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normal current on the terminal in each simulation to confirm that a 1 A current was

being accurately injected. The normal component of the current obtained from this

operation was 0.9998 A, indicating a 0.2 mA error. This deviation may be due to the

limitations of the surface integration method in COMSOL, which is known to have

some inaccuracies.

Next, as discussed in Section 3.2.1, the system is linear due to its governance by the

Poisson equation. Therefore, superposition can be used. This principle states that

the net response caused by two or more sources is the sum of the responses that

would have been caused by each stimulus individually. This principle is defined by

two properties [87]:

ℱ(𝑉1 + 𝑉2) = ℱ(𝑉1) + ℱ(𝑉2) Additivity property (4.8)

ℱ(𝑎𝑉 ) = 𝑎ℱ(𝑉 ) Homogeneity property (4.9)

To validate this principle, several test cases were performed. For example, the po-

tential field generated by the first and third electrodes was calculated individually in

COMSOL, and the electric potential values from these simulations were saved into two

separate matrices. These matrices were then summed and compared with a separate

simulation where both the first and third electrodes were activated simultaneously.

The electric potential values from this combined activation were also saved in matrix

format. The results showed that the values from the summed matrix and the direct

simulation were the same, thus confirming the validity of the superposition principle.

4.3.3 Analytical input: Green´s Functions

FEM simulations usually generate numerical errors, mainly arising from the dis-

cretization step of the FEA [88]. To accurately validate the optimization algorithm

developed in this chapter, it was crucial to ensure that the inputs were free of nu-

merical errors. Therefore, an analytical setup was defined. The Poisson equation

can be approximated by Green’s functions in free space, especially when the point
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of interest is far from the current source. Although this is not the primary goal of

our problem, it establishes a solid foundation for evaluating the algorithm’s perfor-

mance. According to [89], the solution of the Poisson equation in a finite volume

with either Neumann or Dirichlet boundary conditions can be obtained using Green’s

functions. They introduced Eq. (4.10) as the Green function in free space, which gives

the potential response at point r due to a unit point charge placed at r′.

𝐺(r, r′) =
1

4𝜋|r− r′|
(4.10)

In electrostatics the potential field Φ at a point due to a charge distribution 𝜌 can be

expressed by Eq. (4.11) [89].

Φ(r) =

∫︁
𝐺(r, r′)𝜌(r′) 𝑑3r′ (4.11)

Where 𝐺(r, r′) is the Green’s function in free space Eq. (4.10) and 𝜌 (r′) is the charge

distribution.

Based on this information a code was implemented in Python (see Appendix Ap-

pendix A) to obtain the analytical solution to our problem, the function used to

calculate the potential at each point was :

Φ(r) =
𝐼

4𝜋|r− r′| * 𝜎
(4.12)

Where 𝜎 is the conductivity of the medium and I is the current in Amperes injected

in each electrode.

Also, in this Python implementation, the electrodes were positioned like they were for

the COMSOL simulations. The coordinates of the electrodes as depicted in Fig. 4.7

were used in the analytical solution Appendix A. In this case, data was extracted

from a cutplane located 100 micrometres above the current sources. This distance

was chosen to ensure the validity of Green’s function implementation, which is only

accurate at points far from the source.

This method serves as a first step to validate the algorithm without the discretiza-
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Figure 4.7: Electrode location visualization. Where the region of study is 2000 um.

tion error characteristic of a non-analytical solution. While round-off error, inherent

in any computational solution, remains present, it is considerably smaller than the

discretization error introduced by the Finite Element Method (FEM). Nevertheless,

it is important to note that this data cannot be used to make conclusions about our

problem. For scenarios involving complex geometries, such as cone electrodes, and

studying interactions at close distances, the simplified Green’s function approach may

not be sufficient. The local effects of the electrode geometry and the strong inter-

actions near the tips require a more detailed numerical solution. Therefore, FEM

remains necessary for these cases to capture the accurate potential distribution and

validate the optimization algorithm effectively.

4.4 Objective function

As discussed at the beginning of this chapter, the goal is to minimize the visual error.

To calculate the visual error two patterns are needed:

• Objective pattern (𝑃𝑜𝑏𝑗): This is the pattern of phosphenes that are desired to

be activated.
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• Resultant pattern (𝑃𝑟𝑒𝑠): This is the activated pattern generated by the cur-

rents injected into each microelectrode. These currents are the output of the

algorithm at each iteration.

𝑃𝑜𝑏𝑗 and 𝑃𝑟𝑒𝑠 are binary matrices where 1 represents an activated point, and 0 repre-

sents an unactivated point.

The user provides 𝑃𝑜𝑏𝑗 as a binary matrix input to the algorithm. Several steps are

necessary to achieve 𝑃𝑟𝑒𝑠.

The reference matrices T1 through T9 presented in the previous section Section 4.3

are employed, representing the electric potential fields generated by each electrode

when a unitary current has been applied to them. These matrices were previously

computed using the Finite Element Method (FEM) in COMSOL Multiphysics by

solving the Poisson equation Eq. (3.4) and capturing the potential distribution in a

2D plane.

The activating function (AF) is utilized as a measure for determining neuron ac-

tivation. It can be calculated from these reference matrices due to its linearity as

described in Section 2.3.4. Derived from cable theory, the AF is directional, meaning

its effect depends on the neuron’s orientation relative to the electric field generated

by the stimulation. To account for the unknown orientation of each neuron, the AF

is computed as the average response in two orthogonal directions, x and y. This av-

eraging provides a realistic estimate of the overall probability of neuron activation.

The algorithm employs nine decision variables (a1-a9) to control the current injected

into each electrode. The current density transfer matrices for the original transfer

matrices 𝑇𝑖 where 𝑖 ranges from 1 to 9 are calculated using the following equation:

𝑇𝑖 = 𝐴𝐹 (𝑇𝑖) =
𝑑

4𝜌
[(𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗) + (𝑇𝑖,𝑗−1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗+1)] · (106) ·

1

ℎ2
(4.13)

where 𝐴𝐹 (𝑇𝑖) represents the activating function for 𝑇𝑖, d refers to the axon diameter,

which is usually given in micrometres (µm) and takes values from 1 to 10 µm, 𝜌 is the

resistivity of the axoplasm, given in Ωcm and h is the discretization parameter that

defines the length of the axonal compartments, the resolution of our grid in this case.
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This function is implemented in the Python code by using the central difference

formula as described in [55]. Listing B.1 shows its implementation in Python.

Next, the current density transfer matrix 𝑇𝑟𝑒𝑠 is obtained by summing the individual

contributions of each electrode:

𝑇res =

9∑︁
𝑖=1

𝑎𝑖𝑇𝑖 where 𝑎𝑖 are the decision variables (4.14)

𝑇𝑟𝑒𝑠 is then compared to the threshold of 3*105 nA/𝑐𝑚2 which has been reported in the

literature as the activating threshold value to trigger action potentials in pyramidal

neurons [55]. Based on this comparison, a new matrix, 𝑃𝑟𝑒𝑠, is constructed, where a

value of 1 is assigned if the element in 𝑇𝑟𝑒𝑠 exceeds the threshold, and 0 otherwise.

With both 𝑃𝑜𝑏𝑗 and 𝑃𝑟𝑒𝑠 determined, the visual error is calculated using the vi-

sual_error(matrixObj, matrixRes) function, defined based on the formulation in [2],

(see Listing B.8). This function takes as input the two activated patterns 𝑃𝑜𝑏𝑗 and

𝑃𝑟𝑒𝑠, the resulting transfer matrix (𝑇𝑟𝑒𝑠), and the activating threshold.

The visual error introduced in [2] is extended here to:

Δj = min (Δji) * (Tres[j]− threshold), i = 1...Non 𝑎𝑛𝑑 𝑗 = 1 . . . 𝑁𝑈𝐷𝐸 (4.15)

Δ𝑡𝑜𝑡 =

𝑁𝑈𝐷𝐸∑︁
𝑗=1

Δ𝑗 (4.16)

The introduction of the term (𝑇𝑟𝑒𝑠[j]-threshold) in the original formulation Eq. (3.18)

ensures that the visual error formulation becomes continuous, which is beneficial for

the optimization algorithm. This term measures the deviation of the current den-

sity at Tres[element] from the threshold, thereby increasing the error impact as the

density deviates further from the threshold. Consequently, the objective function is

continuous since it comprises the sum of continuous functions (i.e., the visual error

at each pixel).

To illustrate this, Fig. 4.8 provides a comparison between the original and new formu-

lations of the Visual Error (VSE) cost function. The original formulation often causes

the objective function to be discrete, meaning the VSE would only change when de-
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cision variables varied significantly. In contrast, the new approach ensures the VSE

changes in every iteration, resulting in a smoother objective function. Fig. 4.8b illus-

(a) Cost function based on original formulation by [2].

(b) VSE cost function based on the new formulation.

Figure 4.8: VSE cost functions against the current density introduced at certain
pixels, pink and dark blue. The orange pixel is the original target, and the dark blue
and pink are the undesirably activated pixels.

trates the impact of the distance between the target and the undesired activated point

on the VSE. Specifically, when both undesired activated pixels exceed the threshold

by the same amount, the pixel closer to the target (represented in pink) has a smaller

impact on the VSE compared to the pixel farther from the target (represented in dark

blue).

Additionally, several other functions were created to be used within this VSE function:

• count_ones(matrixObj): This function takes 𝑃𝑜𝑏𝑗 as input and counts the total

49



number of locations that should be activated and their corresponding positions

(see Appendix Listing B.3).

• function_positions(matrixObj):This function takes 𝑃𝑜𝑏𝑗 as input and returns an

array of positions for every location in the matrix (see Appendix Listing B.5).

• undesired_activations(matrixObj,matrixRes): This function returns the number

of undesired activated points and their locations (see Appendix Listing B.4).

• pixel_size(Nloc,positions): This function gets as input the total number of brain

locations that are to be controlled (Nloc) and the coordinates and returns the

pixel size (see Appendix Listing B.7). The calculations follow Eq. (3.17). And

also calls dneigh_function(j, Nloc, position) that calculates the nearest neigh-

bour phosphene distance Eq. (3.16) defined by [2] (see Appendix Listing B.6).

Consequently, the objective function for the problem has been defined (see Listing B.9

). The objective function takes the decision variables 𝑎1-𝑎9, which are updated by the

optimization algorithm in each iteration, and the target activation pattern 𝑃𝑜𝑏𝑗 as in-

puts. Within the function, the previously mentioned steps are performed to calculate

𝑃𝑟𝑒𝑠 in each iteration. Subsequently, the visual error between the newly calculated

𝑃𝑟𝑒𝑠 and the input 𝑃𝑜𝑏𝑗 is determined. The output of the objective function is the

visual error, which the algorithm aims to minimize iteratively.

This function weights each pixel proportional to the distance between the undesired

activated point and the desired activation point. The decision variables in this op-

timization problem (the currents injected into each microelectrode) are continuous,

reflecting the continuous nature of the currents. Given the continuity of the objective

function, the following section will discuss the type of algorithm most suitable for this

optimization problem.

4.5 Optimization algorithm

The continuous and non-linear characteristics of this objective function, coupled with

the presence of constraints (including inequality constraints) and bounded decision
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variables (Maximum Injected Current Constraint), make interior point methods an

ideal choice for solving the defined optimization problem. Additionally, interior point

methods are well-suited for problems with a relatively large number of decision vari-

ables, such as this problem which involves 9 decision variables [90].

The algorithm is implemented using the trust-region option in the scipy.optimize

package in Python [91]. This algorithm is a trust-region method for constrained op-

timization, capable of switching between two implementations based on the problem

definition. Given the inclusion of inequality constraints in this problem, the algorithm

employs trust-region interior point methods.

The ’trust-constr’ algorithm handles inequality constraints by introducing slack vari-

ables and solving a sequence of equality-constrained barrier problems with progres-

sively smaller barrier parameters [91]. The interior point method used in this algo-

rithm is described in [92].

4.5.0.1 Interior Point Methods

These methods work by iteratively improving a feasible solution from within the

interior of the feasible region, rather than from the boundary, which is a common

approach in other methods like the simplex method [90] (see Fig. 4.9). The algorithm

Figure 4.9: Visualization of an example problem at its 3rd iteration: a) Solved by
Simplex method, b) Solved by interior point methods. Image source [90].

used by ’trust-constr’, as described by [92], utilizes a barrier method to decompose

the original problem into a sequence of manageable sub-problems. Each sub-problem

incorporates a barrier term that penalizes violations of the inequality constraints.

51



Consider the original problem formulated as:

min 𝑓(𝑥)

subject to ℎ(𝑥) = 0,

𝑔(𝑥) ≤ 0.

(4.17)

The corresponding barrier subproblem is formulated as:

min 𝑓(𝑥) + 𝜇
∑︁
𝑖

ln(𝑠𝑖) subject to 𝑔(𝑥) + 𝑠 = 0, 𝑠 > 0 (4.18)

Where 𝜇 is the barrier parameter and the s are the slack variables that must be

positive. Each of these subproblems is solved by sequential quadratic programming

(SQP) and trust region techniques [92]. This leads to solving the subproblem to find

an approximate solution (𝑥+, 𝑠+) that satisfies:

𝐸(𝑥+, 𝑠+;𝜇) ≤ 𝜖𝜇 (4.19)

where 𝐸 measures the optimality conditions of the barrier subproblem. After solving

each barrier subproblem, the algorithm updates the barrier parameter to progressively

reduce the influence of the barrier term. This is done by:

𝜇← 𝜃𝜇 where 𝜃 ∈ (0, 1) (4.20)

The algorithm iterates until the optimality condition 𝐸(𝑥, 𝑠; 0) ≤ 𝜖𝑇𝑂𝐿 is satisfied [92].

The implementation is carried out in Python using the scipy.optimize.minimize func-

tion.
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Chapter 5

Results

5.1 Generated Electric Potential Fields

As detailed in Section 4.3, the electric potential fields generated by each electrode in

the Microelectrode Array (MEA) are used as inputs for the algorithm. These fields

were calculated using two different methods:

1. Using the Green´s Functions

The electric potential fields were computed using Green´s Functions as described

in Section 4.3.3. A 2D cut plane 100µm from the current source was extracted

from the analytical solution. This method provides an analytical basis to vali-

date the algorithm performance (see Fig. 5.1a).

2. Using FEM in COMSOL Multiphysics

The electric potential fields were also calculated using FEM in COMSOL Multi-

physics software. This approach involves solving the Poisson equation for each

element. Two versions of these fields were extracted from the COMSOL 3D

model. A 2D cut plane at 100µm from the tip of the electrodes (Fig. 5.1b) and

a 2D cut plane at 1µm from the tip of the electrodes (Fig. 5.1c). The 100µm

cut plane is used for comparing with the solutions obtained from the analytical

input as mentioned in Section 4.3.3.

53



5.1.1 Visualization of the Potential Fields

The generated potential fields for each method are visualized in Fig. 5.1. The po-

(a) (b)

(c)

Figure 5.1: Visualization of the potential fields for a unit current into electrode 1
of the MEA calculated using (a) the analytical approach with Green’s function at
a distance of 100 µm from the source, (b) FEM at a 2D cut plane 1 µm above the
tip of the electrodes, and (c) FEM at a 2D cut plane 100 µm above the tip of the
electrodes.

tential distributions generated by the other electrodes can be found in Appendix C,

Appendix D and Appendix E. These colour plots depict the electric potential field

resulting from a 1 A current injected into a microelectrode. It is crucial to highlight

that this simulation uses a current value significantly higher than those typically em-

ployed in practical microstimulation applications.

In real-world microstimulation scenarios, the currents used usually range from mi-
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croamperes (µA) to milliamperes (mA). Consequently, the electric potential fields

observed in actual applications are expected to be orders of magnitude smaller com-

pared to the plots generated for a 1 A current. For example, with a current of 1

mA, the resulting potential field would be approximately 1000 times less intense than

what is depicted for 1 A.

These figures show that the highest potential is located at the site of the current

injection, with a gradual decrease in potential as the distance from the electrode

increases. This behaviour is consistent across both methods of calculation. Addition-

ally, the figures demonstrate that Green’s Function provides a good approximation

to the Poisson equation, particularly when the plane of study is far from the current

source (100 µm away in this case). This is noticeable in the comparable potential

distributions observed in the cut planes taken at this distance ( see Fig. 5.1b and

Fig. 5.1a). Furthermore, a significantly higher potential near the electrodes can be

observed when studying the cut plane taken close to the electrode tips (see Fig. 5.1c).

This indicates a more intense electric field near the electrodes, highlighting the dif-

ferences in potential distribution at varying distances from the current source.

5.2 Activating Function Response:

As mentioned in Section 4.4, to determine neuron activation, the activating function

was applied to all potential fields generated by each electrode in the MEA and the

current density response was calculated.

5.2.1 Visualization of the AF response

The current density distribution (nA/𝑐𝑚2) generated by electrode one is shown in

Fig. 5.2. The activating function computes the second derivative of the potential

in two dimensions. As a result, the new plot Fig. 5.2b presents negative values

whereas the original plot showed positive values. Furthermore, in Fig. 5.2d the areas

of depolarization (small positive sidelobes) and hyperpolarization (negative peak)

distinct from the activating function can be distinguished.
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(a) (b)

(c) (d)

Figure 5.2: Visualization of (a) the electric potential field for electrode 1, calculated
using Green´s functions at a cut-plane 100 µm away from the source. (b) Its corre-
sponding AF response. (c) 1D plot of extracellular potential represented in (a). (d)
1D plot of the activating function.

5.3 Algorithm Convergence study

The convergence of the algorithm was studied for several different target points to

assess its robustness. The study involved executing the optimization problem 50

times for each target point, where the only thing that changed was the initial point

for the decision values 𝑎1 − 𝑎9, which was randomly assigned in every run. This was

used to explore the algorithm behaviour across various starting points. The results,

depicted in Figs. 5.3 and 5.4, show that the algorithm converges to a point near the

same location across multiple runs. However, noticeable deviations from this point
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Figure 5.3: Visualization of the convergence behaviour of the algorithm over 50 runs
for target point [5,7]. The main plot displays the overall convergence trend where
most runs appear to converge to a similar point. However, as shown in the inset, a
closer examination reveals that not all runs converge to the global minimum; some get
trapped in local minima. The inset magnifies this region, illustrating the variations
among runs that are not visible in the broader view.

are apparent when zoomed in. These deviations indicate that the algorithm may be

converging to local minima rather than the global optimum.

The methodology used in this study to address this issue involved running the

optimization problem 30 times for each target point and selecting the minimum

value obtained as the optimal solution. This approach aims to mitigate the impact

of local minima by increasing the likelihood of finding a global minimum.

5.4 Solution analysis

The resolution selected for all simulations in this study was 100 µm. This resolu-

tion was chosen to adequately capture the interaction of fields between the electrodes
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Figure 5.4: Visualization of the convergence behaviour of the algorithm over 50 runs
for target point [8,4]. The main plot displays the overall convergence trend where
most runs appear to converge to a similar point. However, as shown in the inset, a
closer examination reveals that not all runs converge to the global minimum; some get
trapped in local minima. The inset magnifies this region, illustrating the variations
among runs that are not visible in the broader view.

while managing computational resources efficiently. The study region is initially rep-

resented by a 20x20 pixel matrix corresponding to a physical area of 2000µm by 2000

µm. However, after the activating function (AF), which uses the central difference

formula to compute spatial derivatives, see Eq. (4.13), the matrix is reduced to 19x19

pixels. This reduction occurs because the central difference formula requires neigh-

bouring pixels on both sides for accurate calculations. Since edge pixels lack sufficient

neighbours, the formula cannot be applied at the boundaries, leading to the reduction

of the matrix size to avoid errors and ensure accurate results.

In this study, symmetry is used to optimize the computation of optimal solutions

across the study area. The algorithm is initially applied to a triangular region defined

by the coordinates (0,0), (9,0), and (9,9) within the 19x19 pixel matrix, representing

the study area (see Fig. 5.5a). The choice of this triangular region is due to its sym-
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metrical properties.

The optimal solutions obtained for the pixels within this triangle were then extended

(a) Triangular region, to which the algo-
rithm was applied, having as a target each
of its pixels.

(b) Region studied after diagonal symme-
try (y=x) was applied to the values cal-
culated in the original triangle.

(c) Region studied after vertical symme-
try was applied to the values calculated
in Fig. 5.5b.

(d) Region studied after horizontal sym-
metry was applied to the values calcu-
lated in Fig. 5.5c.

Figure 5.5: Visualization of symmetry operations applied to original solutions from
triangle

by symmetry to cover the entire 19x19 pixel matrix. Thereby optimizing computa-

tional efficiency. Three different symmetry operations were applied, first diagonal

symmetry, by mirroring the values calculated in the original triangle over the line

y=x (see Fig. 5.5b). Then vertical symmetry by further extending the matrix, mir-

roring the previously calculated values from the bottom left quadrant to the bottom

right quadrant (see Fig. 5.5c). Finally, the values from the bottom half were mirrored
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to the top half, as depicted in Fig. 5.5d.

To assess the performance of the algorithm, 6 different study cases were performed.

1. Study case 1: using data extracted from Green Function approximation

2. Study case 2: using data extracted from COMSOL at a cut plane placed 100

µm away from the sources.

3. Study case 3: using data extracted from COMSOL at a cut plane placed 1 µm

away from the sources.

4. Study case 4: adding minimization of injected current sources to the objective

function.

5. Study case 5: multi target VSE minimization.

6. Study case 6: explore focality improvement by exponential objective function.

Furthermore, to ensure that the results from different study cases could be directly

compared, random initial values for the initial guesses were systematically saved and

reused throughout the study. This approach ensures that the results are comparable

across different cases.

5.4.1 Study case 1: using data extracted from Green Function

approximation

In this case, the input matrices to the algorithm were the ones obtained by using

the Green Function approximation previously introduced in Section 4.3.3. For every

target point, the algorithm gave as an output the amount of current needed to be

injected in each pattern to achieve the minimum visual error. Fig. 5.6 shows an

example of a resulting activated pattern given by the optimization output. Where

the relative position between the target and the electrodes can clearly be observed.

In this case, 6 pixels were wrongly activated when attempting to activate pixel [8,8].

In Appendix F all of the outputs given by the algorithm for the pixels contained in
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Figure 5.6: Visualization of resulting activation pattern when attempting to activate
point (8,8). In the figure, the relative position between the target and the electrodes

can be distinguished.

Fig. 5.5a can be observed.

For the overall target data set (Fig. 5.5d), 2.21% of the targets did not converge to

a solution. For the remaining dataset, the average number of undesirably activated

pixels was 46.35 ±32.25, with a minimum of 0 for target points corresponding to the

electrodes and a maximum of 111 undesirably activated pixels. The mean percentage

of wrongly activated pixels was 12.84 ±8.94 % for the overall dataset. The average

execution time for each run was 16 min and 30 seconds ± 9 minutes and 27 seconds,

and the average number of iterations required to achieve an optimal solution was

557.11 ± 312.13. The average VSE was 537.7e6± 791.7. All VSE values along the

report were scaled down by 106 for better visualization.

Fig. 5.7a and Fig. 5.7b visualize the distribution of the VSE and the percentage of

wrongly activated pixels across the dataset. As VSE is not inherently intuitive, the

percentage of wrongly activated pixels was also calculated for clarity. This percent-

age was determined by dividing the number of undesirable activated pixels by the
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(a) Green function dataset

(b) Green function dataset

Figure 5.7: Representation of how the (a) VSE and (b) the percentage of wrongly
activated pixels distribute along the overall Green Functions dataset
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total number of pixels (361) and multiplying by 100. Additionally, an analysis was

Figure 5.8: Distinction between the targets considered close to electrodes and the
ones considered far.

conducted to differentiate the pixels based on their proximity to the electrodes, cate-

gorized as either close (within 300 µm) or far. This distinction is visualized in Fig. 5.8.

The separated data is presented in Fig. 5.10a and Fig. 5.10b. Furthermore, the points

within the electrode region were distinguished from those outside the electrode area,

as defined in Fig. 5.9.

This distinction is useful since if the MEA used in this setup were to be scaled up,

the results observed within the electrode area could be expected to be extrapolated

to the larger MEA.

In these images, it can be observed how the targeted pixels closer to the electrodes

presented a smaller VSE than those that were farther away. The same can be said

when looking at the percentage of wrongly activated pixel plots.

In a similar manner, Fig. 5.10c and Fig. 5.10d show that the target points that were

within the electrode area generated a smaller percentage of wrongly activated pixels,

than the targets that were outside this area.
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Figure 5.9: Distinction between the areas inside and outside the electrode region.

5.4.2 Study case 2: using data extracted from COMSOL at a

cut plane placed 100 µm away from the sources

As introduced in Section 4.3.3, the Green Functions approximation only holds if the

points of the study are placed far away from the sources. Therefore, to compare the

results obtained from these approximations presented in Section 5.4.1 with the results

obtained in COMSOL, the data was extracted at a cut plane placed 100 µm away

from the current sources, the electrode tips. This data was used to obtain the input

matrices to the algorithm. Furthermore,

Fig. 5.11 shows an example using COMSOL data as input for the same target point

as shown in the previous section. Although the input data for the algorithm came

from different sources, the activated pattern given as an output to the target point

[8,8] looks the same in both cases, proving this way that the Green Functions are a

good approximation for COMSOL solutions when the study points are far from the

source.
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(a) Percentage close (b) Percentage far

(c) Percentage inside (d) Percentage outside

Figure 5.10: Representation of how the percentage of wrongly activated pixels dis-
tribute along the overall dataset distinguishing between points (a) close and (b) far
from electrodes. And between points (c) inside the electrode area and outside of it.
Green Functions dataset

All of the outputs given by the algorithm for the pixels contained in Fig. 5.5a can be

observed in Appendix G. In this case, 12.8 % of the total targets did not converge to

an optimal solution. For the rest of the results, the average number of undesirably ac-

tivated pixels was 52.24 ± 34.04, with a minimum of 0 for target points corresponding

to the electrodes and a maximum of 128 undesirably activated pixels for the overall

dataset. The mean percentage of wrongly activated pixels was 14.47 ±9.43 %. The

average execution time for each run was 21 min and 04 seconds ± 14 minutes and 11

seconds, and the average number of iterations required to achieve an optimal solution

was 734.41 ± 512.67. The average scaled VSE was 820 ± 1965

Fig. 5.12a and Fig. 5.12b visualize the distribution of the VSE and the percentage

of wrongly activated pixels across the dataset. As in Section 5.4.1 the percentage of

wrongly activated pixels was also calculated for clarity over the VSE which is not that
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Figure 5.11: Visualization of resulting activation pattern when attempting to
activate point (8,8) using COMSOL data as an input. In the figure, the relative

position between the target and the electrodes can be distinguished.

intuitive. Additionally, an analysis was conducted to differentiate the pixels based

on their proximity to the electrodes, categorized as either close (within 300 µm) or

far. This data separation is visualized in Fig. 5.13a and Fig. 5.13b. In this case, the

algorithm presented a poorer performance when compared with Section 5.4.1, char-

acterized by a higher VSE rate, higher percentage of wrongly activated pixels, longer

execution times and an increased number of iterations needed to reach an optimal

solution. The observed trend that target pixels farther from the electrodes generate

a higher VSE and therefore a bigger percentage of wrongly activated pixels remains

consistent also in this case. By comparing the results from both cases, Section 5.4.1

and Section 5.4.2, it is observed that the results from the Green function approxi-

mation are similar to those from the Finite Element Method (FEM) across various

metrics, such as the average number of undesirably activated pixels, the percentage of

wrongly activated pixels, execution time, and the number of iterations. This similar-

ity indicates that the Green function provides a sufficiently accurate approximation of
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(a) COMSOL at 100 µm dataset

(b) COMSOL at 100 µm dataset

Figure 5.12: Representation of how the VSE and the percentage of wrongly activated
pixels distribute along the overall dataset extracted from COMSOL at 100 µm cut
plane .

the data extracted from COMSOL. This approximation allowed for a robust evalua-

tion of the algorithm’s performance without the numerical errors typically associated

with the Finite Element Method (FEM).

5.4.3 Study case 3: using data extracted from COMSOL at a

cut plane placed 1 µm away from the sources

In this project, the interactions of the electric field at close distance to the electrode

tips were of particular interest. While previous cases provided valuable insights into
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(a) Percentage close (b) Percentage far

(c) Percentage inside (d) Percentage outside

Figure 5.13: Representation of how the percentage of wrongly activated pixels dis-
tribute along the overall dataset distinguishing between points (a) close, (b) far from
electrodes, (c) inside and (d) outside electrode area for COMSOL dataset extracted
at 100µm cut plane.

the algorithm’s performance, an additional study was necessary to focus on the electric

potential fields in closer proximity to the electrodes. In this study, data was extracted

from a 1 µm cut plane adjacent to the electrode tips to create the input matrices

for the algorithm. The corresponding example, consistent with those presented in

earlier cases, where the target pixel is [8,8] is illustrated in Fig. 5.14. In this case,

the resulting activating pattern differs from the one obtained in the previous cases.

This is because the algorithm may have been stuck in a local minimum. A problem

discussed in Section 5.3 and that we can expect for any point in the study. All of the

outputs given by the algorithm for the pixels contained in Fig. 5.5a can be observed

in Appendix H.

In this study case, 26.59% of the targets did not converge to a solution. For the targets

that did converge, the average number of undesirably activated pixels was 56.93 ±
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Figure 5.14: Visualization of resulting activation pattern when attempting to
activate point (8,8) using COMSOL data at 1µm cut plane as an input. In the

figure, the relative position between the target and the electrodes can be
distinguished.

28.22, with a minimum of 0 for target points corresponding to the electrodes and

a maximum of 117 undesirably activated pixels for the overall dataset. The mean

percentage of wrongly activated pixels was 15.77 ±7.81 %. The average execution

time for each run was 25 min and 16 seconds ± 14 minutes, and the average number

of iterations required to achieve an optimal solution was 1042.828 ± 672.16. The

average VSE was 10416 ± 10002.

Fig. 5.20a and Fig. 5.20b visualize the distribution of the VSE and the percentage

of wrongly activated pixels across the dataset. Again, an analysis was conducted

to differentiate the pixels based on their proximity to the electrodes, categorized as

either close (within 300 µm) or far. And to differentiate between targets inside the

electrode area and outside. These separations can be visualized in Fig. 5.16. The

results in this study showed worse performance compared to the other two cases.

There is an increase in the mean number of undesirably activated pixels, in the per-

centage of wrongly activated pixels, in execution time, and in a number of iterations
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(a) COMSOL at 1 µm dataset

(b) COMSOL at 1µm dataset

Figure 5.15: Representation of how the VSE and the percentage of wrongly activated
pixels distribute along the overall dataset of data extracted from COMSOL at a 1µm
cut plane.

which suggests that using input data that was closer to the electrode tips made it

more challenging for the algorithm to converge. Furthermore, there is an increase in

the VSE that can be visualized when comparing the 3 study cases, as displayed in

Table 5.1.

Consistent with the observation made in the two previous study cases Fig. 5.16 shows

that the target points far from the electrode are the ones that achieved VSE with

higher orders of magnitude.
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(a) Percentage close (b) Percentage far

(c) Percentage inside (d) Percentage outside

Figure 5.16: Representation of how the percentage of wrongly activated pixels dis-
tribute along the overall dataset distinguishing between points (a) close, (b) far from
electrodes, (c) inside electrode area and (d) outside electrode area, for the COMSOL
dataset extracted at 1µm cut plane.

Table 5.1: Comparison of algorithm performance metrics across Study Cases 1, 2,
and 3.

Study case 1 2 3

VSE scaled
(avg±sd) 537.7e6± 791.7 820 ± 1965 10416 ± 10002

Execution Time
(avg ± sd)
(mm:ss)

16:30±
9:27 21:04±14:11 25:16±14:00

N iter
(avg ±sd) 557.11 ± 312.13 734.41 ± 512.67 1042.828 ± 672.16

% of
non convergence 2.21% 12.8 % 26.59%

Und Activated pixels
(avg±sd) 46.35 ±32.25 52.24 ± 34.04 56.93 ±

28.22
% wrongly activated pixels
(avg±sd) 12.84 ±8.94 % 14.47 ±9.43 %. 15.77 ±7.81 %.
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5.4.4 Study case 4: minimization of injected current sources

Another point studied in this project was minimizing the currents injected into the

electrodes, in addition to the original objective of minimizing visual error. This study

aimed to investigate how limiting the number of electrodes activated at a time would

impact both visual error and power efficiency Section 3.3. To address this question,

the original objective function described in Eq. (4.1) was modified to:

minimize 𝑉 𝑆𝐸(𝑃𝑟𝑒𝑠, 𝑃𝑜𝑏𝑗) + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟

where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 =

9∑︁
𝑖=1

𝑎2𝑖 = 𝑎21 + 𝑎22 + 𝑎23 + 𝑎24 + 𝑎25 + 𝑎26 + 𝑎27 + 𝑎28 + 𝑎29

(5.1)

The currentFactor uses the square of the currents to account for both positive and

negative values, avoiding the potential discontinuities that could arise from using

absolute values in the objective function.

From prior study cases, it was observed that the scales of the currentFactor and the

VSE differed significantly. The VSE values varied from as low as 1 to as high as 109,

while the currentFactor ranged from 10−7 to 10−9. Due to these significant differences

in magnitude, both components were normalized to ensure they contributed equally

to the final objective function. Specifically, the VSE values were divided by their

maximum observed value, 109, resulting in a normalized range of 0 to 1. The

currentFactor was normalized using the formula:

currentFactor =
∑︀9

𝑖=1 𝑎
2
𝑖 − 10−9

10−7 − 10−9
(5.2)

The aim of this study was not only to minimize visual errors but also to reduce the

amount of current injected into the patient’s brain for each target.

To assess the performance of the algorithm with this new objective function two analy-

ses were performed, one using the data extracted from COMSOL at a cut plane 100µm

from the electrode tips and one at a cut plane 1µm and its results were compared

with the previously introduced cases Section 5.4.2 and Section 5.4.3. The following

table compares the performance of the algorithm for both types of input data with
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Table 5.2: Comparison of algorithm performance for the different study types with
and without intensity minimization

Study case COMSOL
100µm

COMSOL
100µm and
currentFactor

COMSOL
1µm

COMSOL
1µm and
currentFactor

VSE scaled
(avg ±sd) 820 ± 1965 6342

±13115 10416 ± 10002 3562627338
±154

Execution Time
(avg ± sd)
(mm:ss)

21 :04 ±
14 :11

11:51 ±
12:52

25:16 seconds ±
14 :00

15:06 ±
13:38

N iter
(avg±sd) 734.41 ± 512.67 310.35 ±

381.092 1042.828 ± 672.16 371.85 ±
368.13

% of
non convergence 12.8 % 4.43% 26.59% 4.43%

Und Activated pixels
(avg±sd) 52.24 ± 34.04 56.55 ± 37.35 56.93 ±

28.22 38.94 ± 25.78

% wrongly activated pixels
(avg±sd) 14.47 ±9.43 %. 15.66 ±

10.34% 15.77 ±7.81 %. 10.79 ±
7.14%

Current Factor
(avg) 0.015 0.010 0.073 0.004

the performance obtained before, see Table 5.2.

From this comparison, it can be concluded that this approach made the algorithm

converge much faster as evidenced by the reduced average execution time and fewer

iterations. However, the values given for the visual error were higher. Furthermore,

for the case with COMSOL cutplane at 100µm, the average percentage of wrongly

activated pixels was higher for the intensity minimization case. Contrarily, for the

COMSOL cut plane at 1µm it was smaller in the intensity case.

The output current values across all cases are compared, as shown in the "Current

Factor" row in Table 5.2. This row represents the average sum of squared current

values. The data indicate that in cases where intensity minimization was optimized,

the sum of currents was lower than in the other cases. Specifically,in the COMSOL

100µm case the current factor was reduced by 31% at the cost of an increase of the

VSE by a factor of 7.73. In the case of COMSOL 1µm the current factor was reduced

by 94% along with a 65% reduction in the VSE.

As in previous study cases, an analysis was conducted to differentiate the pixels based

on their proximity to the electrodes, categorized as either close (within 300 µm) or

far. This distinction is visualized in Fig. 5.17. As observed in previous cases, target
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(a) Close, COMSOL 1µm dataset and in-
tensities

(b) Far, COMSOL 1 µm dataset and in-
tensities

(c) Close, COMSOL 100µm dataset and
intensities

(d) Far, COMSOL 100µm dataset and in-
tensities

Figure 5.17: Representation of how the VSE distributes along the overall dataset
distinguishing between points close (a and c) and far from electrodes (b and d) for
COMSOL dataset extracted at 1µm cut plane (a and b) and 100µm cut plane (c and
d) when intensity minimization is also performed.

points closer to the electrodes exhibited smaller values of VSE. Fig. 5.9 distinguishes

between targets in the electrode area and those outside, as visualized in Fig. 5.18. For

both datasets the 1µm and the one from the 100 µm cut plane, target points within the

electrode area demonstrated better performance. Specifically, they presented a lower

percentage of wrongly activated pixels compared to the targets outside the electrode

area.

5.4.5 Study case 5: Multi-target VSE minimization

As outlined in Section 3.3, this thesis aimed to explore the potential of Vector Field

Stimulation (VFS) and assess its impact on improving spatial resolution. Building on

the performance assessments from previous studies, a new case study was conducted.
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(a) Inside electrode area. COMSOL 1µm
dataset.

(b) Outside electrode area. COMSOL 1
µm dataset.

(c) Inside electrode area. COMSOL
100µm dataset.

(d) Outside electrode area. COMSOL
100µm dataset.

Figure 5.18: Representation of how the VSE distributes along the overall dataset
distinguishing between points inside (a and c) and outside the electrode area (b and
d) for COMSOL dataset extracted at 1µm cut plane (a and b) and 100µm cut plane
(c and d) when intensity minimization is also performed.

In this study, multiple target points were simultaneously considered. Given the vast

number of possible combinations for multitarget stimulation, several pairs and groups

of targets were randomly selected and used as inputs. Each scenario was executed 50

times with different random initial guesses, and the optimal solution was determined

based on the minimum Visual Sensory Error (VSE) across all runs. The following

figures illustrate the activation patterns generated by the algorithm for the various

multitarget scenarios, see Fig. 5.19: It can be observed that two of the multitarget

cases achieved a VSE of 0 and that all the other cases activated points that were

close to the desired targets. This demonstrates that the algorithm performs well

in delivering accurate stimulation, with several scenarios achieving optimal precision

and others coming very close to the desired outcomes.
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(a) Multitarget stimulation activated pat-
tern for targets: (9,7) and (9,11)

(b) Multitarget stimulation activated
pattern for targets: (9,1), (6,5) and (4,4)

(c) Multitarget stimulation activated pat-
tern for targets: (12,12), (9,15) and (5,4)

(d) Multitarget stimulation activated
pattern for targets: (12,4), (9,7) and (4,5)

(e) Multitarget stimulation activated pat-
tern for targets: (5,7) and (13,11)

Figure 5.19: Multitarget stimulation optimal solutions visualization.
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Furthermore, a comparison between this technique and bipolar stimulation was per-

formed as shown in Fig. 5.20. In the bipolar case, the only available electrodes were

electrodes 21, 22, 31 and 32, which were paired. The result from comparing bipolar stim-

ulation, commonly used in clinical practice, with vector field stimulation reveals that

the percentage of wrongly activated pixels increased for the bipolar case. In contrast,

for the multichannel vector field stimulation the VSE for achieving this activation

pattern was 0.

5.4.6 Study case 6: using exponential objective function

Another study was performed to enhance the focality of this approach. Since, from

the results, it was found that the newly introduced objective function, described in

Eq. (4.15), does not consistently ensure that the point furthest from the target will

yield the highest VSE value. This is because the VSE also depends on the potential

field generated at that point. Specifically, if two points have the same potential

value but different distances from the target, the point farther from the target would

generally contribute more to the VSE. However, this is not always the case if the

potential values differ. To address this limitation, a new objective function was

explored where the VSE increases exponentially with the distance from the point to

the target Eq. (5.3).

Δj = exp (min (Δji)) · (Tres[j]− threshold) , i = 1 . . .Non and j = 1 . . .NUDE (5.3)

Where the distance from the target to the activated pixels is defined by min (Δ𝑗𝑖).

Fig. 5.21 illustrates the difference in VSE between the results obtained using the

exponential objective function and those obtained using the non-exponential function.

It is important to note that the VSE for the exponential results was recalculated

using the original formulation with the output decision variables, ensuring that the

VSE measures were comparable between the two cases. From these plots, it can be

observed that the visual error with the exponential objective function reaches values

approximately two orders of magnitude higher than those with the original approach.
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(a)

(b)

Figure 5.20: Comparisson between activating pattern for target points [9,7] and [5,7]
when using (a) bipolar stimulation (b) vector field stimulation.
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(a) (b)

Figure 5.21: Visualization of histograms comparing the VSE with Green Function
data, (a) Exponential vs (b) non Exponential Objective function

However, as shown in Fig. 5.22, despite the higher VSE and the activation of more

unwanted pixels, these pixels are closer to the target, indicating that the exponential

approach is more focal. This focality was assessed by calculating the average distance

between the target and the undesirably activated points. For the target [7,3], the

average distance to the target was 7.72 for the non-exponential case and 5.96 for the

exponential case. In the target [9,1] case, the average distance was 6.72 for the non-

exponential approach and 6.18 for the exponential approach. This indicates better

focality with the exponential approach, as it produced a smaller average distance in

both cases.
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(a) (b)

(c) (d)

Figure 5.22: Visualization of activated patterns for target points [9,1] and [7,3], with
(a and c) Exponential objective function and (b and d) with original objective function
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Chapter 6

Discussion and conclusions

6.1 Discussion

The primary goal of this project was to investigate the potential of Vector Field Stim-

ulation (VFS) to improve microstimulation delivery in the visual cortex. To achieve

this, an optimization algorithm was developed and applied to a 3x3 Microelectrode

Array (MEA) modelled in COMSOL. This algorithm determines the optimal current

for each electrode in the MEA to generate a desired electric field while minimizing

visual error. The research question addressed was: How does vector field stimulation

affect visual error and the precision of target stimulation in a cortical visual prosthe-

sis?

The algorithm’s input, comprising the individual electrical contributions of each elec-

trode in the MEA, was derived from a 3D model created in COMSOL. An analytical

approach using Green’s Functions was employed to validate the algorithm’s perfor-

mance without discretization errors. These functions approximate the Poisson equa-

tion solved by the Finite Element Method (FEM) in COMSOL, applicable when the

points of interest are distant from the current source.

The problem setup and algorithm were implemented in Python, utilizing the interior

point method. This method is particularly suited for this problem because it can

handle continuous, non-linear objective functions with constraints.

This project introduces several innovations compared to previous studies referenced
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in the literature. For example, the visual error equation (VSE) presented in [2], was

extended by introducing a term that ensures the objective function remains continu-

ous. This term quantifies the deviation of the current density at the activated point

from the threshold.

Additionally, an analysis was conducted to explore the effects of minimizing the

amount of current delivered while achieving a specific target. The results showed

improved performance, including a reduced number of iterations needed to reach an

optimal solution, shorter execution times, and a lower percentage of non-convergence.

Incorporating the minimization of current intensities into the objective function en-

hanced its sensitivity, leading to better convergence. By increasing the sensitivity of

the objective function, the algorithm improved in getting trapped in local minima.

Moreover, an analysis comparing bipolar stimulation and vector field stimulation was

performed. The results were promising for vector field stimulation, as it achieved

better precision in target stimulation. These findings align with those presented in

[1], where a similar outcome was visualized Fig. 6.1. Despite the brevity of the confer-

ence paper, both studies highlight the potential of this technique in enhancing target

stimulation precision. Furthermore, additional studies were conducted to explore

methods for enhancing focality. The proposed exponential method achieved better

focality. However, it also resulted in a higher visual error (VSE) Fig. 5.21. This

highlights the need to carefully evaluate whether the priority should be on improving

focality or reducing visual error, as finding an optimal balance between these two

factors is crucial for achieving the best overall performance.

6.2 Future developments

The proposed algorithm works well and has achieved promising results. However,

there is still some room for improvement. One critical next step is addressing

the issue of local minima, which can impede the algorithm’s ability to find the

global optimum. Currently, the approach involves multi-start techniques, where

the algorithm is run multiple times from different starting points, and the best
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Figure 6.1: Activation patterns generated using different stimulation methods. (a)
Activation pattern generated using bipolar stimulation in this study. (b) Activation
pattern generated using vector field stimulation in this study. (c) Activation pattern
generated using bipolar stimulation as presented in [1]. (d) Activation pattern gen-
erated using vector field stimulation as presented in [1].

result is selected from these runs. Additionally, each target is processed through

several iterations to find the minimum value. Another improvement suggested and

tried in this study is the minimization of current intensities, which has increased

the sensitivity of the objective function and improved convergence. Despite these

advancements, there is still room for improvement. Exploring additional advanced

global optimization techniques would be a big next step.
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Another significant development would be transitioning from 2D to 3D. As illustrated

in Figures Fig. 5.1b and Fig. 5.1c, potential field distributions vary significantly across

different levels. A 3D model would provide a more comprehensive understanding of

how electric fields interact in three-dimensional space, leading to more precise and

effective stimulation patterns.

Additionally, numerical errors observed in the COMSOL simulations indicate the

need for improved simulation accuracy. Future efforts should focus on refining the

mesh to achieve higher resolution and developing post-processing filtering methods

to correct or minimize these errors. Implementing advanced filtering techniques,

such as smoothing algorithms or error correction filters, could further enhance the

reliability of the simulation results.

Moreover, as discussed in the report, the activating function effect is influenced by the

neuron’s orientation relative to the electric field generated by stimulation. Currently,

this project computes the average between the x and y directions due to the unknown

orientation of the neurons. To enhance the precision of this stimulation approach,

incorporating neuron orientation with respect to the electric field at each pixel would

be a possible next step. By optimizing the stimulation to the exact orientation of

each neuron, the unintended activation of adjacent neurons that are not aligned with

the electric field could be minimized. This can reduce cross-talk, where stimulation

intended for one neuron accidentally affects others, a problem that is also very com-

mon in retinal prosthesis [93].

Finally, once the Biolab in the bioelectronics department is fully operational and the

algorithm is optimized in 3D, it can be validated by testing on cell cultures using a

MEA. This approach will help assess its performance and accuracy in a controlled

and biologically relevant setting.
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6.3 Conclusion

In conclusion, this report has explored the potential of vector field stimulation as a

novel technique for enhancing visual cortex stimulation. Additionally, an algorithm

was designed and implemented to test this concept. The findings suggest that vector

field stimulation, facilitated by the newly developed algorithm, can significantly im-

prove the precision of targeted stimulation. These results are crucial for improving

visual prostheses, which aim to restore sight to the blind. While the study faced

limitations such as numerical errors in the COMSOL simulations and the algorithm

getting trapped in local minima, it highlights the need for further research into im-

proving current methods of visual cortex microstimulation. Future studies should

focus on addressing numerical errors, transitioning from 2D to 3D study models,

and solving the local minima problem. Overall, this report highlights the promising

potential of vector field stimulation in improving existing stimulation techniques.
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Appendix A

Green Functions code for potential

field analytical input

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # Parameters

5 L_visualize = 2000 # 2000 micrometers

6 resolution = 10 # 10 micrometers

7 N_visualize = int((L_visualize / resolution)+1) # number of grid points

8

9 # Electrode positions (in micrometers)

10 r_0 = np.array([

11 [600, 600, 0],

12 [600, 1000, 0],

13 [600, 1400, 0],

14 [1000, 1400, 0],

15 [1000, 1000, 0],

16 [1000, 600, 0],

17 [1400, 600, 0],

18 [1400, 1000, 0],

19 [1400, 1400, 0]

20 ])

21
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22 # Current injections (in amperes)

23 I = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0])

24

25 # Define the grid

26 x = np.linspace(0, L_visualize, N_visualize)

27 y = np.linspace(0, L_visualize, N_visualize)

28 z = np.linspace(0, L_visualize, N_visualize)

29 X, Y, Z = np.meshgrid(x, y, z, indexing='ij')

30

31 # Conductivity parameters

32 sigma_tissue = 0.2E-6 # in S/micrometer (SI would be 0.2 S/m for tissue)

33 sigma_electrode = 8.9 # in S/microm (SI would be 8.9E6 S/m for electrode)

34

35 # Initialize potential array

36 phi_val = np.zeros((N_visualize, N_visualize, N_visualize))

37

38 # Apply ground boundary condition for the cube boundary

39 phi_val[:, :, -1] = 0 # Set potential to zero at the bottom boundary of the cube

40

41 # Function to calculate the potential

42 def f_phi(r_0, r, I, sigma_tissue, sigma_electrode):

43 distance = np.linalg.norm(r - r_0)

44 conductivity = sigma_electrode if distance < 1e-3 else sigma_tissue

45 if distance == 0:

46 return 0

47 else:

48 return I / (4 * np.pi * conductivity * distance)

49

50 # Calculate the potential at each point in the grid

51 for i in range(N_visualize):

52 for j in range(N_visualize):

53 for k in range(N_visualize):

54 r = np.array([x[i], y[j], z[k]])

55 for l in range(r_0.shape[0]):

56 phi_val[i, j, k] += f_phi(r_0[l], r, I[l], sigma_tissue,

sigma_electrode)
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57

58 # Convert potential values to millivolts

59 phi_val *= 1e3 # Conversion from volts to millivolts

60

61 # Save the potential field for further analysis or comparison with COMSOL

62 np.save('potential_field.npy', phi_val)

63

64 # Extract the potential values at z = 100 micrometer

65 z_index = np.argmin(np.abs(z - 100)) # Find index closest to z = 100 $\upmu$m

66

67 # Plot the potential slice

68 plt.figure()

69 plt.imshow(phi_val[:, :, z_index], extent=(0, L_visualize, 0, L_visualize),

origin='lower', cmap='jet')

70 plt.colorbar(label='Potential (mV)')

71 plt.xlabel('x ($\upmu$m)')

72 plt.ylabel('y ($\upmu$m)')

73 plt.title('2D Slice of Electric Potential at z = 100 $\upmu$m')

74 plt.axis('equal')

75 plt.show()

76

77 # Extract the slice at z = 100 micrometer

78 phi_slice = phi_val[:, :, z_index]

79

80 # Prepare data for saving

81 row_indices, col_indices = np.meshgrid(np.arange(N_visualize),

np.arange(N_visualize), indexing='ij')

82 data_to_save = np.column_stack((row_indices.ravel(), col_indices.ravel(),

phi_slice.ravel()))

83

84 # Save data to a text file

85 np.savetxt('potential_slice_z100um_electrode3_3.txt', data_to_save, fmt='%d %d

%.6e')
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Appendix B

Problem Functions

1 h = resolution*(10 ** -4)# Now my resolution is in micrometers I have to give it

in cm to match units

2 def second_derivative(Telectrode):

3 # I add -2 to account for the edges

4 AFe=np.zeros((Telectrode.shape[0]-2, Telectrode.shape[1]-2))

5 # To compute second derivative for each (x, y) coordinate

6 for i in range(1, Telectrode.shape[0]-1):

7 for j in range(1, Telectrode.shape[1]-1):

8 d= 1*(10**-4)# axon diameter in cm

9 rho= 300 #ohm*centimeter

10 # nA/cm2 as an otput

11 AFe[i - 1, j - 1] = (d / (4 * rho)) * ((Telectrode[i - 1, j] - 2 *

Telectrode[i, j] + Telectrode[i + 1, j]) +

12 (Telectrode[i, j - 1] - 2 *

Telectrode[i, j] +

Telectrode[i, j + 1])) * (10

** 6) / (h ** 2)

13 return AFe

Listing B.1: Activating Function

1 def activatedpattern(Matrixin, threshold):

2 Pres = np.where(np.round(Matrixin) >= threshold, 1, 0)

3 return Pres

97



Listing B.2: Activated pattern generation

1 #I will use this function to get the number of desired activated locations and at

what positions in the matrix are they

2 def count_ones(matrix):

3 # Use numpy's vectorized operations to find positions of ones

4 ones_mask = matrix == 1

5 # Count the number of ones

6 ones_count = np.sum(ones_mask)

7 # Find the positions of ones and non-ones

8 positionstoActivate = np.argwhere(ones_mask)

9 positionsNOTActivate = np.argwhere(~ones_mask)

10 # Convert the positions to list of tuples

11 positionstoActivate = list(map(tuple, positionstoActivate))

12 positionsNOTActivate = list(map(tuple, positionsNOTActivate))

13

14 return ones_count, positionstoActivate, positionsNOTActivate

Listing B.3: Count activated points in input

1 #To get the number of undesired activated positions and their location so I can

compute the visual error

2 def undesired_activations(matrixObj,matrixRes):

3 matrixObj = np.array(matrixObj)

4 matrixRes = np.array(matrixRes)

5 # Create a boolean mask where elements are True if they are different

6 diff_mask = matrixObj != matrixRes#For broadcating suggested by Si-yang

7 Nun = np.sum(diff_mask)

8 undisired_activated_positions=[]

9 # Find the indices where the mask is True

10 undisired_activated_positions = np.argwhere(diff_mask)

11 undisired_activated_positions = list(map(tuple, undisired_activated_positions))

12 return Nun,undisired_activated_positions

Listing B.4: Count number of unactivated positions

1 def function_positions(matrix):
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2 indices = np.indices(matrix.shape)

3 # Reshape the indices array to have pairs of coordinates

4 positions = np.stack(indices, axis=-1).reshape(-1, 2)

5 # Convert to a list of tuples

6 positions = list(map(tuple, positions))

7 return positions

Listing B.5: Gives the coordinates of every element in the input matrix

1 def dneigh_function(j, Nloc, position):

2 dneighp=[]

3 for k in range(Nloc):

4 if k!=j:

5 dneighp.append(math.sqrt((position[k][0]-position[j][0])**2+

6 (position[k][1]-position[j][1])**2))

7 dneigh=np.amin(dneighp)

8 return dneigh

Listing B.6: To calculate the nearest neighbor phosphene distance defined by

Abouseoul 2018

1 def pixel_size(Nloc,positions):

2 dneight=0

3 for j in range(Nloc):

4 dneigh= dneigh_function(j, Nloc, positions)

5 dneight+=dneigh

6 Psize=(1/Nloc)*dneight

7 return Psize

Listing B.7: To calculate the Pixel size for the visual error formulation

1 def visual_error(matrixObj, matrixRes, Tres, thres):

2 TvisualError=0

3 Nact,positions_toactivate,Undesiredpositions =count_ones(matrixObj) # returns

the number of locations that should be excited and their corresponding

position

4 positions=function_positions(matrixObj) # returns an array of positions for

every location

5 #Now I want to calculate the number of undesired activated locations
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6 # Calculate pixel-wise absolute differences and count non-zero values

7 Nun,undesired_activated_positions=undesired_activations(matrixObj,matrixRes)

8 Nloc=matrixObj.shape[0]*matrixObj.shape[1]#number of brain locations that are

to be controlled

9 Psz=pixel_size(Nloc,positions)

10 if matrixObj.shape != matrixRes.shape:

11 raise ValueError("Matrices must have the same shape.")

12

13 for j in range(Nun):

14 visperror=[]#equivalent to the delta ji in the paper equation 3

15 for i in range(Nact):

16 visperror.append(math.sqrt((positions_toactivate[i][0]-

17 undesired_activated_positions[j][0])**2+

18 (positions_toactivate[i][1]-

19 undesired_activated_positions[j][1])**2)/Psz)

20 element=undesired_activated_positions[j]

21 visualErrorPixel=np.amin(visperror)*(Tres[element]-thres)

22 TvisualError+=visualErrorPixel

23

24 return TvisualError

Listing B.8: Visual Error

1 def objective_function (variables,Pobj):

2 a1, a2, a3, a4, a5, a6, a7, a8, a9 = variables

3 #Total transfer matrix

4 Tres= a1*T1+a2*T2+a3*T3+a4*T4+a5*T5+a6*T6+a7*T7+a8*T8+a9*T9

5 #Create a new matrix in which I will add a one at every point were the AF

surpasses the activating threshold while add a 0 at every point where the

the AF is below non excited threshold

6 ThersOn=3*(10**5) #nA/cm2

7 Pres= activatedpattern(Tres,ThersOn)

8 # Once I get the activated patterned matrix try to get visual error

9 VisualError = visual_error(Pobj, Pres,Tres,ThersOn)

10 print("Visual error:", VisualError)

11 return VisualError
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Listing B.9: Objective function
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Appendix C

Electric potential distributions for

individual electrodes in the MEA, in

a 2D cut plane at 100 µm above the

tips of the electrodes from the 3D

COMSOL model
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Figure C.1: Electric po-
tential field for electrode
1

Figure C.2: Electric po-
tential field for electrode
2

Figure C.3: Electric po-
tential field for electrode
3

Figure C.4: Electric po-
tential field for electrode
4

Figure C.5: Electric po-
tential field for electrode
5

Figure C.6: Electric po-
tential field for electrode
6

Figure C.7: Electric po-
tential field for electrode
7

Figure C.8: Electric po-
tential field for electrode
8

Figure C.9: Electric po-
tential field for electrode
9

Figure C.10: Generated electric potential fields for each electrode.Data extracted
from a 2D cut plane at 100µm above the tips of the electrodes from the 3D COMSOL
model
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Appendix D

Electric potential distributions for

individual electrodes in the MEA, in

a 2D cut plane at 1µm above the tips

of the electrodes from the 3D

COMSOL model
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Figure D.1: Electric po-
tential field for electrode
1

Figure D.2: Electric po-
tential field for electrode
2

Figure D.3: Electric po-
tential field for electrode
3

Figure D.4: Electric po-
tential field for electrode
4

Figure D.5: Electric po-
tential field for electrode
5

Figure D.6: Electric po-
tential field for electrode
6

Figure D.7: Electric po-
tential field for electrode
7

Figure D.8: Electric po-
tential field for electrode
8

Figure D.9: Electric po-
tential field for electrode
9

Figure D.10: Generated electric potential fields for each electrode. Data extracted
from a 2D cut plane at 1µm above the tips of the electrodes from the 3D COMSOL
model
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Appendix E

Electric potential distributions for

individual electrodes in the MEA,

extracted using Green functions
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Figure E.1: Electric po-
tential field for electrode
1

Figure E.2: Electric po-
tential field for electrode
2

Figure E.3: Electric po-
tential field for electrode
3

Figure E.4: Electric po-
tential field for electrode
4

Figure E.5: Electric po-
tential field for electrode
5

Figure E.6: Electric po-
tential field for electrode
6

Figure E.7: Electric po-
tential field for electrode
7

Figure E.8: Electric po-
tential field for electrode
8

Figure E.9: Electric po-
tential field for electrode
9

Figure E.10: Generated electric potential fields for each electrode.
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Appendix F

Output activated patterns for target

point contained in original triangle

introduced in Fig. 5.5a with input

data from Green functions
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Figure F.2: Activated patterns algorithm output for Green function input data for
every pixel in Fig. 5.5a. 110



Appendix G

Output activated patterns for target

point contained in original triangle

introduced in Fig. 5.5a with input

data from COMSOL 100µm
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Figure G.2: Activated patterns algorithm output for COMSOL 100µm input data for
every pixel in Fig. 5.5a. 113



Appendix H

Output activated patterns for target

point contained in original triangle

introduced in Fig. 5.5a with input

data from COMSOL 1µm
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Figure H.2: Activated patterns algorithm output for COMSOL 1µm input data for
every pixel in Fig. 5.5a. 116



Appendix I

Output activated patterns for target

point contained in original triangle

introduced in Fig. 5.5a with input

data from COMSOL 100µm and

intensity minimization
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Figure I.2: Activated patterns algorithm output for COMSOL 100µm input data for
every pixel in Fig. 5.5a including intensity minimization.119



Appendix J

Output activated patterns for target

point contained in original triangle

introduced in Fig. 5.5a with input

data from Green Function and

exponential objective function
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Figure J.2: Activated patterns algorithm output for Green Function input data for
every pixel in Fig. 5.5a including exponential objective function.122
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