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A B S T R A C T

Although architected materials based on truss networks have been shown to possess advantageous or extreme
mechanical properties, those can be highly affected by tolerances and uncertainties in the manufacturing
process, which are usually neglected during the design phase. Deterministic computational tools typically
design structures with the assumption of perfect, defect-free architectures, while experiments have confirmed
the inevitable presence of imperfections and their possibly detrimental impact on the effective properties.
Information about the nature and expected magnitude of geometric defects that emerge from the additive
manufacturing processes would allow for new designs that aim to mitigate (or at least account for) the effects
of defects and to reduce the uncertainty in the effective properties. To this end, we here investigate the effects
of four most commonly found types of geometric imperfections in trusses, applied to eleven representative
truss topologies in two and three dimensions. Through our study, we (i) quantify the impact of imperfections
on the effective stiffness through computational homogenization, (ii) examine the sensitivity of the various
truss topologies with respect to those imperfections, (iii) demonstrate the applicability of the model through
experiments on 3D-printed trusses, and (iv) present a machine learning framework to predict the presence of
defects in a given truss architecture based merely on its mechanical response.
1. Introduction

Although additive manufacturing (AM) has enabled the fabrication
of micro-architected materials with complex geometries and topolo-
gies [1], the probability of producing unwanted structural imperfec-
tions grows as feature sizes decrease, especially down to the resolution
limits of the printing process [2]. This may result in significant differ-
ences between the as-designed, nominal properties of, e.g., truss-based
architected materials as obtained from theoretical predictions and the
experimentally observed properties of trusses [3–5]. Models based
on the nominal, as-designed architecture of trusses tend to overesti-
mate their fabricated counterparts’ stiffness, strength, and toughness,
and discrepancies can typically be attributed to the emergence of
imperfections and defects during the manufacturing process [6,7]. This
not only implies inaccurate property predictions; it also puts limita-
tions on the theoretical/computational search for optimal metamaterial
architectures, which usually assume an ideal, defect-free fabrication
process with as-designed truss geometry and base material properties.
Optimization with imperfections has been addressed only in recent
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years [8] and has remained a challenge (especially if the exact details
of the imperfections is not known a priori). Imperfections can both be
advantageous and disadvantageous. While buckling loads, e.g., can be
strongly reduced by symmetry-breaking imperfections, imperfections
in the form of small perturbations have been exploited to promote
pre-defined buckling patterns in loaded structures [9].

In many studies, the experimentally predicted strength, stiffness,
and failure modes of trusses have shown discrepancies when compared
to their as-designed counterparts [10–13], which has been attributed
to different defect types introduced in the fabrication process at the
architectural and base material levels [14]. The high sensitivity of
architected materials to fabrication defects stems, among others, from
the oftentimes used periodic architectural design (rich in symmetries
to be broken by imperfections) as well as from the high stiffness-to-
density ratio (which leads to architectures composed of slender beam
members that guide non-redundant load paths through the lattice) [8].
Small perturbations in the load-optimized topology result in a behavior
vailable online 10 May 2023
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Fig. 1. Four types of imperfections are presented that commonly appear during the fabrication process. Subfigure (a) is reprinted by permission from Elsevier [6]. Figures (b)–(d)
fabricated with selective laser sintering (SLS) on a Sintratec S1 printer.
different from the computationally designed one, causing a potentially
significant deterioration of the effective response.

These uncertainties in the mechanical response require careful con-
sideration when designing architected materials not only for industrial
applications. To overcome this problem, which is one of the cul-
prits preventing metamaterials from their entrance into many real-life
applications, fabrication processes must become more precise or we
must learn to understand the architected materials’ sensitivity to im-
perfections and take it into account during the design process [15,
16].

The most common imperfections observed in trusses can be classi-
fied into two categories. First, visualized in Fig. 1, geometric defects such
as (a) variations of the beam cross-section’s shapes and beam surface
roughness, (b) beam waviness (observed especially in small-scale 3D-
printing based on lithographic techniques), (c) perturbations of the
locations of nodes, and (d) the presence of broken beams.1 The second
category of defects concerns process-induced base material heterogene-
ity, such as non-uniform mechanical properties due to inclusions or
variations in composition, cross-linking, and porosity.

A widely used categorization of lattices is based on their num-
ber of nodal connectivities, 𝑍, which defines stretching- vs. bending-
dominated trusses (also termed kinematically rigid vs. non-rigid, re-
spectively). In two dimensions (2D), trusses with low nodal connectivity
are most affected by the occurrence of broken beams [17,18]. More-
over, studies discovered that the kagome lattice (𝑍 = 3) switches
its deformation mode from stretching- to bending-dominated in case
of a large fraction of broken beams. The sensitivity of the effective
stiffness with respect to missing beams was studied for the hexagonal
lattice [19,20] and non-periodic Voronoi topologies [21–23].

In three dimensions (3D), an extensive study of the truss sensitivity
to defects was reported in [14], where the homogenized properties of
imperfect 3D lattices were studied in both the linear elastic and non-
linear regimes. Their experiments revealed that manufacturing settings,
such as the building direction and 3D-print scanning rate, result in
a non-uniform deterioration of the mechanical properties. Moreover,
they discovered that the octet unit cell is remarkably sensitive to ge-
ometric imperfections such as strut waviness and thickness variations,
which also affects the failure mechanisms. Studies that focused on the
impact of the size and distribution of voids in a truss topology on
its homogenized elastic properties discovered that the void volume
fraction dominates the degradation of the mechanical properties over
the void size [24]. Others observed the same knock-down effect in
stiffness due to strut waviness in 3D topologies as previously reported
for 2D structures [25]. Similarly, studies reported the importance of di-
ameter variations [6,26] and missing beams [27,28]. Few experimental
studies on 3D metallic truss-based architected materials investigated
the influence of fabrication-induced imperfections on different truss

1 Here and in the following, we refer to struts inside a truss as beams,
irrespective of their primary deformation modes. In addition, we refer to nodes
as the junctions between beams.
2

topologies [29,30]. These are only a few examples from the broad
literature available on additive manufacturing and imperfect trusses.

While the sensitivity to imperfections of truss metamaterials and
other cellular structures has been extensively investigated in the past,
most of the above studies focus on either 2D or 3D trusses, on a unique
type of imperfection, or on a particular lattice topology. Statements
and outcomes are specific to the types of imperfections and the truss
topologies studied, while a general overview is missing. Most of the
presented studies rely on experimental observations, only a few have
taken on the challenge of introducing predictive models for imperfect
trusses. Finding general statements about the influence of imperfections
or even predictive models is challenging, as it strongly depends on the
truss topology, the cross-sectional geometry, the constituent material,
and the effective property of interest. Most numerical modeling tech-
niques for trusses have hence relied on perfectly symmetric, periodic,
and defect-free truss lattices [31–35], whose predictions have limited
validity in the presence of defects. Those few models that have captured
the mechanical response of imperfect trusses were limited to a small
selection of topologies and imperfection types [14,17,24]. Moreover,
the distribution of imperfections in real-world trusses is stochastic (no
two 3D-printed trusses are alike), so that a statistical approach is
required, which increases the modeling complexity and cost.

To gain insight into the effect of imperfections on the effective
properties of periodic trusses (exemplified by their anisotropic stiff-
ness), we here investigate the effects of four most commonly found
types of morphological defects in trusses, applied to 11 representative
truss topologies in 2D and 3D. To this end, we introduce a statis-
tical description of imperfections, which allows us to intentionally
include defects into ideal trusses—both in experiments and in the
model. The chosen statistical defect distributions are rationalized by
experimental observations from Selective Laser Melting (SLM) additive
manufacturing processes [14,36].

Defects are introduced spatially randomly across a representative
volume element (RVE), not considering any specific underlying causal
mechanisms (such as print directions or material anisotropy). By in-
tentionally incorporating the as-designed imperfections into 3D-printed
periodic trusses, we experimentally assess its effective response. As a
typical effective response that is easily computed, we determine the
homogenized stiffness tensor (using affine boundary conditions for an
upper bound, as the imperfect RVE is in general non-periodic). To
compare with experiments and to validate the model, we further per-
form simulations of uniaxial (vertical) compression with fixed boundary
conditions at the top and bottom.

Both approaches provide a rich set of data, which we subsequently
use to train machine learning models that predict the imperfection
probability distribution based on a given structure’s effective mechani-
cal response. Overall, while our forward model highlights the sensitiv-
ity of different truss topologies to imperfection types and magnitudes
for a given distribution of defects, the inverse model predicts the defect
distribution in a truss whose effective elastic moduli are known.

The remainder of this manuscript is structured as follows. We
introduce the statistical description of imperfections in Section 2 and
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discuss their theoretical implementation. In Section 3 we present the
homogenized stiffness properties and select the RVE size based on
the necessary confidence interval to yield a sufficient statistical rep-
resentation. Section 4 studies the mechanical sensitivity of 2D and
3D trusses to imperfections of different magnitudes. A validation of
the proposed model with experiments is presented in Section 5. The
machine learning model summarized in Section 6 finally allows us to
invert the framework and to predict the type and probability distri-
bution of imperfections in a truss on the basis of its effective elastic
moduli. Section 7 concludes this study.

2. Statistical description of imperfections in slender trusses

We consider periodic networks of slender trusses, whose topology
and geometry are encoded in the architecture on a single unit cell
(UC). The unit cell contains 𝑛𝑛 nodes, which are rigidly connected by
𝑛𝑏 straight beams of constant cross-section. Specifically, we assume
circular cross-sections of area 𝐴 = 𝜋𝐷2

4 , where 𝐷 is the cross-sectional
diameter, which is assumed constant along the length of each beam
length. The area moment of inertia against bending is 𝐼 = 𝜋

64𝐷
4. The

lenderness of a beam is characterized by the ratio 𝜆 = 𝐷
𝐿 with 𝐿

enoting the beam length. Here and in the following, all (nominal)
eometric parameters of the as-designed truss are denoted by capital
etters, whereas those of the imperfect truss are described by lower-
ase letters. The base material is assumed to be homogeneous, isotropic,
inear elastic so that, along with sufficient slenderness, beams adhere
o Euler–Bernoulli beam theory.

Starting from the nominal (perfect) design of a truss architecture, we
onsider a statistical distribution of defects, which lead to the imperfect
russ. Rather than characterizing defects experimentally (which would
ecessarily depend on a particular fabrication route), we focus on the
our most frequently observed types of imperfections, which we apply
o the perfect trusses to produce the imperfect trusses used in our
imulations. The choice of the specific statistical distributions and
he imperfection magnitudes can be adapted for particular processing
outes with known defect distributions, which may, of course, affect
he reported results. While the presented forward prediction techniques
enerally apply to arbitrary magnitudes of imperfections, the inverse
esign may be sensitive to the imperfection magnitude, and we here
estrict our study to the imperfection types described below.

The four types of imperfections considered in the following are:

• Node displacements: many printed samples show errors in the
positioning of the nodes [37]. We replicate this imperfection
by perturbing every undeformed node location. Specifically, the
node’s center location is randomly displaced onto the surface of
a sphere in 3D (or circle in 2D), which has radius 𝑟nds and is
centered at the nominal node position, as shown in Fig. 2(a). The
imperfect position of a node originally at (𝑋, 𝑌 ,𝑍) is hence

(𝑥, 𝑦, 𝑧) = (𝑋, 𝑌 ,𝑍)+ 𝑟nds
(√

1 − cos2 𝜃 cos𝜙,
√

1 − cos2 𝜃 sin𝜙, cos 𝜃
)

,

(1)

where the polar angles 𝜃 and 𝜙 are drawn from uniform dis-
tributions such that 𝜙 ∈ [0, 2𝜋] and 𝜃 ∈ [0, 𝜋]. (In 2D, the
analogous description follows from fixing 𝜃 = 𝜋

2 .) As a realistic
approximation of the displacement amplitude (here, radius 𝑟nds),
we assume a half-Gaussian distribution centered at 𝜇 = 0 and
having the standard deviation 𝜎 = 𝜉nds𝐿 (𝐿 being a characteristic
beam length in the RVE). 𝑟nds then follows from a Box–Muller
transform [38]. Parameter 𝜉nds ∈ [0, 1] is used in the following
to control the severity of the node displacements. In all of the
following examples, we do not allow this imperfection to lie out-
side 𝜉nds ∈ [0, 0.3], which includes strong defects while avoiding
the merging of adjacent nodes.
3

• Missing beams: in a worst-case scenario, absent beams imply
a missing nodal connection, which we implement by removing
beams from the truss, as visualized in Fig. 2(b). Missing beams
appear during the printing process (or afterwards) when a pre-
viously intact beam breaks or is not printed properly. Parameter
𝜉mis ∈ [0, 1] denotes the ratio of the number of missing beams
to the total number of beams in the RVE (where 𝜉 = 0 implies
all beams are intact, while 𝜉 = 1 means no connectivity between
nodes). We select the missing beam by a Bernoulli distribution
with probability 𝜉mis. In practice, rather than altering the finite
element connectivity in the RVE, we reduce the Youngs’s modulus
of each missing beam to 10−10 its original value. (The impact of
this approximation on the outcome was verified to be negligible.)
In case of using beams that are refined into multiple beam el-
ements (as required for the implementation of wavy beams), all
elements of a given strut are considered to be broken. Throughout
all of the following examples, we restrict 𝜉nds < 0.2, as more
than 20% of beams missing can no longer be considered as
an ‘imperfection’ and also makes simulations and experiments
complicated to realize.

• Beam waviness: although as-designed trusses typically feature
straight beams, as-manufactured struts often show waviness [14],
which is induced, e.g., by mechanical vibrations or layering steps
during 3D-printing. Parameter 𝜉wvy ∈ [0, 1] quantifies the maxi-
mum positional deviation of a beam centerline from its straight
nominal configuration, as shown in Fig. 2(c). In simulations, this
imperfection is realized by introducing an additional node at the
center of the beam at a distance 𝑟wvy from the beam’s longitu-
dinal axis and the beam’s midpoint, as shown in Fig. 2(c). For
a statistical distribution, the new node’s position is chosen from
a circle in the plane perpendicular to the beam centerline and
centered on the beam’s midpoint (Fig. 2(c)). The displacement
𝑟wvy is obtained form a half-Gaussian distribution centered at
𝜇 = 0 and having the standard deviation 𝜎 = 𝜉wvy𝐿. The new
node’s location on the circle is defined by a uniformly distributed
angle 𝜁 ∈ [0, 2𝜋]. Of course, wavy beams in reality can assume
complex shapes not represented here; however, the proposed kink
is a straightforward approximation efficiently capturing the loss
in axiality of a beam. We impose 𝜉wvy < 0.1 to prevent contact
between beams (and also because larger imperfections may not be
viewed as ‘‘imperfections’’ anymore but rather present a change
in design).

• Diameter variation: 3D-printing often causes substantial erro-
neous variations in the cross-section of a beam along its length [6,
16,36,39,40], as illustrated in Fig. 2(d). In the following, we select
a circular cross-section for the study of different topologies in
Section 4, while comparison to experiments in Section 5 will
require the use of elliptical cross-sections. For circular cross-
sections, the diameter of the beams in the RVE is described
either by a normal Gaussian distribution centered at 𝜇 = 𝐷 with
standard deviation 𝜎 = 𝜉dia𝐷, where 𝐷 is the nominal diameter
and 𝜉dia ∈ [0, 1] controls the diameter variations, or by a half-
Gaussian distribution with the analogous features. The imperfect
cross-section of each beam is obtained from the new diameter
𝑑 generated by the Box–Muller transform. (For elliptical cross-
sections, the analogous holds, with variations being applied to
the major axes of the ellipse.) We study both normal Gaussian
(Section 5) and half-Gaussian (Sections 3 and 6) distributions in
response to the different fabrication techniques. The two-photon
lithography used in our experiments leads to beams being thinner
or thicker than nominal, while experiments that used Selective
Laser Sintering (SLS) observed that the diameter only increases
from its nominal value [14]. This also underlines the versatility
of the model, as it applies to different imperfection distributions,
as needed for a particular application or fabrication route. Here,

we impose 𝜉dia < 0.2, since we consider larger imperfections as
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Fig. 2. Visualization of imperfection types in 2D. In (a) and (c), the solid black lines show the original, undeformed lattice. The color code in (d) visualizes the different diameters.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
design choices rather than defects. We note that one could also
consider variations of beam diameters along the length of a strut.
Yet, for simplicity we consider constant cross-sections per strut
(in reality, the strength of a given strut is typically determined
by its thinnest cross-section.)

3. Homogenized stiffness of imperfect trusses

The numerical study of imperfections is realized using a fully re-
solved RVE with purposely introduced imperfections, described by 𝜉nds
(node displacements), 𝜉mis (missing beams), 𝜉wvy (wavy beams), and 𝜉dia
(diameter variations). The impact of the four defect types is assessed
by comparing the effective stiffness of an imperfect truss with that of
a perfect truss. We define the defect sensitivity of a truss topology as
the ratio of the normalized effective moduli with respect to those of
the defect-free truss. We simulate each (perfect and imperfect) truss as
an assembly of linear elastic Euler–Bernoulli beams with rigid nodal
connections. Beams are chosen to be sufficiently slender (and trusses
are consequently in the low-relative-density regime), so that Euler–
Bernoulli beam theory is applicable, while the extension to Timoshenko
beams is technically straightforward. We stress that the relative den-
sities of the investigated lattices (and any derived quantities) are not
adjusted for the presence of imperfections. Instead, we treat variations
in density as a byproduct of an imperfection type. As such, variations
in relative density are already implicitly included in the conclusions of
our exploration.

While for periodic truss structures the effective response can be
obtained by homogenizing a single representative unit cell [17,32–34],
this becomes impractical in the case of an imperfect truss. The latter
breaks the periodicity of the truss and hence not only makes the choice
of an RVE non-unique and challenging but also prevents the application
of periodic boundary conditions.

Therefore, we compute the homogenized response of a sufficiently
large RVE (containing many UCs) by applying affine displacement
boundary conditions [41]. Due to the randomness of the introduced
imperfections, we perform ensemble averaging and compute the av-
erage effective response over a number of equally large but random
realizations to ideally render the approach independent of domain size
and imperfection distribution [42,43]. To this end, we must choose the
RVE, also referred to as SVE (stochastic Volume Element), significantly
larger than an individual UC and the imperfections such that the re-
sulting truss is statistically homogeneous (i.e., with uniform mechanical
properties at larger scales). A discussion of the RVE size chosen in our
4

study to satisfy these criteria is provided in Appendix B. We select the
effective stiffness tensor C̄ as a representative measure to describe the
mechanical response of an imperfect lattice. We follow the common
approach of applying six linearly independent 3D strain cases (three
cases in 2D) through affine displacement boundary conditions on the
outer boundary of the RVE and computing the resulting average stress
tensors within the RVE. Correlating stresses and strains yields the full
3D (or 2D) stiffness tensor components [18,44].

We restrict our study to topologies with cubic symmetry, which
results in three independent material constants to be extracted from the
effective stiffness tensor C̄; e.g., the effective Young’s modulus �̄�, the
effective generalized Poisson’s ratio �̄�, and the effective shear modulus
�̄�, which characterize, respectively, the uniaxial stiffness, the Poisson
effect, and the shear resistance of the truss.

These are conveniently obtained form the compliance tensor S̄ =
C̄−1 in Voigt notation [45]:

�̄� = (1∕S11 + 1∕S22 + 1∕S33)∕3,

�̄� = (S12∕S11 + S13∕S11 + S23∕S33)∕3,

�̄� = (1∕S44 + 1∕S55 + 1∕S66)∕3.

(2)

For each truss topology and for each combination of the statistical
defect parameters (𝜉nds, 𝜉mis, 𝜉wvy , 𝜉dia) we create 𝑁 random realizations
of sufficiently large RVEs (see Figs. 3 and 4) and determine the elastic
moduli in (2) as the ensemble averages over the 𝑁 realizations.

For defect-free trusses, a single realizations is, of course, suffi-
cient, whose computed effective moduli (with the chosen RVE sizes
and affine displacements boundary conditions) agree well with the
homogenized moduli obtained form a single UC with periodic boundary
conditions [33] (see Appendix A).

We study a representative selection of truss topologies in 2D (cross-
squared, triangle, hexagon, square, diamond, kagome) and in 3D (octet,
octahedron, bitruncated octahedron, cube, 3D diamond), which covers
a broad range of properties from stiff, stretching-dominated structures
with nodal connectivities 𝑍 ≥ 4 in 2D and 𝑍 ≥ 6 in 3D) to highly
bending-dominated, compliant ones (with 𝑍 < 4 in 2D and 𝑍 < 6
in 3D) [46]. (Of course, the provided framework can also be applied
to other topologies). While theoretically 𝜉 ∈ [0, 1], in reality a truss
becomes impossible to print or difficult to simulate above a certain 𝜉-
value (and we cannot really interpret the truss as a periodic network
with imperfections anymore). We therefore restrict the range of 𝜉 in the
following parameter study to 𝜉nds ∈ [0, 0.3], 𝜉mis ∈ [0, 0.2], 𝜉wvy ∈ [0, 0.1]
and 𝜉dia ∈ [0, 0.2]. For ease of comparison, we assign to all structures
the same beam slenderness ratio 𝜆 = 𝐷∕𝐿 = 0.1, which constitutes the
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Fig. 3. The six truss topologies studied in 2D along with the chosen RVE size (in UCs), relative area density 𝑉𝑏∕𝐴UC, slenderness ratio 𝜆, and nodal connectivity 𝑍. The RVE size
is defined as the number of UCs (a single UC is shown in each case) tessellated along the two principle axis to build the full RVE. In all topologies, all respective beams have the
same length with a fixed slenderness ratio of 𝜆 = 0.1—except for the shorter struts in the cross-square topology, where we used 𝜆 = 0.14.
Fig. 4. The five truss topologies studied in 3D along with the chosen RVE size (in UCs), relative density 𝑉𝑏∕𝑉UC, and nodal connectivity 𝑍. The RVE size is defined as the number
of UCs (a single UC is shown in each case) tessellated along the three principal axes to build the full RVE. The slenderness ratio is fixed as 𝜆 = 0.1.
lower limit for many 3D-printers when fabricating large samples while
satisfying the Euler–Bernoulli assumption of slender beams [47]. Note
that this results in varying relative densities (or fill fractions) across the
chosen topologies, as shown for the 2D topologies in Fig. 3 and for the
3D topologies in Fig. 4. In 2D the relative density is computed as the
ratio of the beam volume 𝑉𝑏 to the total area of the RVE, 𝐴UC, while
in 3D we report the relative density (i.e., the fill fraction).

4. Homogenization results: imperfection sensitivity of the effec-
tive stiffness

Figs. 5 and 6 summarize the homogenized effective elastic prop-
erties of the studied truss topologies in 2D and 3D, respectively, as
functions of the four statistical defect distributions introduced in Sec-
tion 2.

Error bars indicate the standard deviation obtained from 𝑁 = 100
random RVE realizations for each choice of 𝜉𝑖. As may be expected, the
shown standard deviations increase with increasing 𝜉𝑖-values. Results
show that the defect sensitivity strongly depends on the truss topology
and on the elastic property. For example, the effective Young’s modulus
of the square, kagome, and cube are highly sensitive to imperfections.
By contrast, the triangle’s effective Poisson’s ratio �̄� shows only a
negligible sensitivity. We have not included the sensitivities of Passion’s
ratio �̄� for the square and cube lattices in the plot, since their values
for a structure without any imperfections, �̄�(𝜉 = 0), is negligibly small
and can therefore not be used to reasonably compute the sensitivity. In
agreement with previous findings [17], we observe a higher sensitivity
of the kagome lattice to all types of imperfections as compared to a
triangular topology. Across all topologies, the sensitivity of Poisson’s ra-
tio, �̄�, to variations in the beam diameter is almost negligible compared
5

to the other three defect types. Also remarkable is the high similarity
of the sensitivity of Young’s modulus �̄� of the square and kagome
topologies under the influence of every geometrical imperfection. The
same agreement is also observed for the shear modulus �̄� of the
diamond and kagome topologies. Let us discuss the specific influence
of each type of imperfection.

Nodal displacements effect significantly the effective Young’s
moduli �̄� of the highly anisotropic trusses, such as the square and
cubic lattices, whose moduli drop on average by around 50% for
𝜉nds = 0.3 (Figs. 5a and 6a). By contrast, Young’s moduli of the
(bending-dominated) bitruncated octahedron and 3D diamond truss
remain nearly unaffected by nodal displacements, owing to their low
nodal connectivity, which is not influenced by the imperfections.
Additionally, highly stretching-dominated topologies such as the cross
and triangular trusses in 2D and the octet in 3D remain widely un-
affected by increasing node displacements. Recall that we report the
effective Young’s modulus in the three principal directions. Therefore,
structures with beams that are nominally aligned with the principal
directions (such as the square and cubic trusses) are highly sensitive
to variations in nodes position, as this type of imperfection will result
in a breaking of symmetry and a transition from stretching to bending
mechanisms when loaded along the principal directions. Moreover,
the shear modulus �̄� of those structures with a relatively low nodal
connectivity 𝑍, which have beam connections under 𝜋∕4 with respect
to the principal cubic axes of the truss (such as in the diamond, kagome,
and octahedron lattice) are highly sensitive to nodal displacements
(Figs. 5i and 6i). Displacing the nodes breaks the alignment of the force
chains under shear and hence reduces the shear stiffness. The same
applies to making the beams wavy, see Figs. 5k and 6k. We note that,
although the differences in nodal connectivity 𝑍 between the various
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Fig. 5. Sensitivity of 2D bending- and stretching-dominated truss topologies with respect to the imperfection standard deviations 𝜉nds, 𝜉wvy , 𝜉dia, and missing beam probability 𝜉mis.
Each error bar represents the standard deviation obtained from 𝑁 = 100 random realizations of the imperfect trusses. Line and marker colors correspond to the six truss topologies
shown below. While all nodes in any of the structures have the same coordination number of connecting struts, 𝑍, the cross unit cell has two type of nodes, connected to different
numbers of struts, which is why the coordination number for some nodes in the cross lattice is 𝑍 = 4, while for others 𝑍 = 8. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
truss topologies helps explain some of the observed effects, it cannot
alone explain entirely the reported findings, which warrants further
investigation.

Interestingly, structures that show little resistance to shear in their
defect-free configuration, such as the hexagon, square, cube, and 3D
diamond, display shear stiffening with increasing nodal displacements,
as visualized in Fig. 7. This remarkable feature is explained in Fig. 8,
which compares the shear deformation of a perfect cube truss to that of
an imperfect one, having considerable node displacements with 𝜉nds =
0.3. For improved visibility, we apply an extreme shear deformation of
10%, which does not affect the conclusions. The perfect truss (Fig. 7a)
distributes the load homogeneously, and the struts (oriented under
45◦ with respect to the principal load directions) deform primarily in
bending and carry low stresses. This is turn yields a low resistance to
shear. As 𝜉nds increases (Fig. 7(b)), an increasing number of beams tend
to align with the principal directions, which leads to the apparent force
chains (often observed in granular materials [48]) with high tensile and
compressive stresses in the two principal directions.
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The same explanation holds for the increase in Young’s modu-
lus of the 2D diamond lattice when subjected to node displacements
(Fig. 5a)—with the only difference that the loading direction and
topology are rotated by 45◦ to the above case. Again, increasing 𝜉𝑛𝑑𝑠
leads to force chains along the principal loading directions and hence
to a stiffening of the structure, which transforms from bending- to
stretching-dominated.

Missing beams reduce the rigidity and promote bending in the
truss, significantly reducing the effective stiffness [49] as well as its
yield strength [50]. As there is an extensive body of prior work on
missing beams in 2D and 3D trusses, we may use that data for a valida-
tion of our homogenization setup (which is presented in Appendix C).
Our results confirm a severe impact of missing beams on the effective
Young’s modulus of those structures with low nodal connectivity 𝑍,
such as the 2D hexagonal (𝑍 = 3) and square lattices (𝑍 = 4), and the
corresponding 3D topologies, i.e., the bitruncated octahedron (𝑍 = 4)
and cubic (𝑍 = 6) topologies (Figs. 5b and 6b). A connection between
the nodal connectivity (related to the predominant deformation mode)
and missing connections was already reported in previous studies [17]



Acta Materialia 254 (2023) 118918R.N. Glaesener et al.
Fig. 6. Sensitivity of 3D bending- and stretching-dominated truss topologies with respect to the imperfection standard deviations 𝜉nds, 𝜉wvy , 𝜉dia, and missing beam probability 𝜉mis.
Each error bar represents the standard deviation obtained from 𝑁 = 100 random realizations of the imperfect trusses. Line and marker colors correspond to the five truss topologies
shown below. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Variations of the effective shear modulus �̄� of the 2D hexagonal and square, and the 3D cube and diamond topologies with increasing nodal displacements (as a function
of the standard deviation 𝜉nds of the node displacement distribution).
as the main factor behind the reduction of the effective Young’s modu-
lus of truss metamaterials. The higher the number of beams connected
at a node, the better the load is redistributed on the surrounding beams
if one of them is missing, keeping the structure stretching-dominated.
Similar to the reported sensitivity of Young’s modulus with increasing
7

nodal displacements (Figs. 5a and 6a), structures that take the loads
applied in the three principal cubic directions by beams aligned with
those directions (e.g., the square and cube) lose a significant amount
of their stiffness in those directions when the perfect beam alignment
is broken by imperfections. Interestingly, the diamond, even though a
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Fig. 8. Comparison of the 2D ideal square RVE on the left and the respective non-ideal counterpart with strong nodal displacement imperfections 𝜉 = 0.3 on the right. For
visualization purposes, we here increase the shear strain to 𝜀0 = 10% and highlight the axial stresses in every beam element, normalized by the materials Young’s modulus 𝐸.
Inside the imperfect lattice force chains develop (emphasized in the circular magnification), corresponding to axial tensile stresses in the direction of loading and axial compressive
stresses perpendicular to it.
bending-dominated topology, is as resistant to missing beams as the
highly stretching-dominated cross lattice. This underlines that the nodal
connectivity 𝑍 can explain many but not all observations. For trusses
with higher nodal connectivity (triangular, cross, and octet lattices), a
moderate reduction of �̄� and �̄� is observed, as the fraction of missing
beams increases. Their effective Poisson’s ratio �̄� is marginally affected
by this imperfection. By contrast, for low 𝑍 and with an increas-
ing number of missing beams, large unconnected regions (i.e., voids)
form across the structure, causing high stress concentrations and pro-
moting failure. This observation agrees with previous research that
focused on the impact of missing beams on the octahedron, bitruncated
octahedron, and other 3D architectures [24].

Beam waviness generally leads to increased beam bending at the
expense of beam stretching. Consequently, structures like the square,
kagome, and cross lattice in 2D and the cubic lattice in 3D (whose
beams align with the three cubic axes) are highly affected by the
presence of wavy beams [14] (Figs. 5c and 6c). On the other hand,
bending-dominated structures such as the hexagonal, diamond or bi-
truncated octahedron lattices are the least affected by wavy beams and
only show minor reductions of their effective Young’s modulus [17].
Note that we focus on the effective elastic response and do not consider
the increased risk of buckling of members in compression, which may
significantly reduce the strength of the structure.

Variations of the cross-sectional area show a similar trend of
the effective properties for all studied topologies: �̄� decreases steadily
with increasing diameter variations, while Poisson’s ratio �̄� is only
marginally affected. All topologies show a steady decrease of �̄�(𝜉), with
the bending-dominated hexagon and 3D diamond lattice being the most
sensitive to beam diameter changes. (Note that considering diameter
variations larger than nominal – here they are confined to consider only
diameter reductions – may lead to a different sensitivity towards this
imperfection.)

5. Experiments

To confirm the accuracy of the model described above, we per-
formed experiments on 3D-printed octahedron trusses as a represen-
tative 3D example. For a fair comparison between simulations and
experiments, we modified the numerical setup to match the experi-
mental conditions in terms of sample size, boundary, and loading con-
ditions. We computationally design imperfect trusses with intentional
defect distributions, and probe their effective stiffness under uniaxial
compression using both simulations and experiments (see Fig. 9).
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5.1. Nanomechanical experiments

We performed quasi-static nanomechanical compression experi-
ments (Alemnis ASA) on a 5 × 5 × 5 octahedron lattice with clamped
boundaries at the bottom and top (Fig. 10). We chose fabrication at
the microscale, using a two-photon lithography system (Nanoscribe
GmbH, Ip-Dip photoresist), due to its high resolution and the ability
to print slender structures, for which the beam theory approximation
is valid [51,52]. The dimensions of the lattices were 130 × 130 × 130
μm3, resulting in a constant beam length of ∼18 μm. We first printed
defect-free lattices (within the tool’s tolerances), which served as a
reference for the computation of the sensitivity to geometric imperfec-
tions. The fabricated beams possessed an elliptical cross-section with an
average major axis of 𝑎 = 2.3 ± 0.1 μm and a minor axis of 𝑏 = 1.8 ± 0.1
μm. Due to limitations in the printing process, the ratio between the
major to minor axis varied linearly from ∼1.3 to 1 between horizontal
struts and vertical struts, which was accounted for in the numerical
models. The elliptical shape of the diagonal and horizontal beams is a
consequence of the chosen printing process close to the resolution limit.
The overall dimensions of the fabricated samples remained negligibly
affected by shrinkage in the development process, resulting in an
overall sample width 𝑤 ∼ 130 ± 2 μm and height ℎ ∼ 130 ± 2 μm, as
shown in Fig. 10. The cross-sectional area of each elliptical beam was
𝐴𝑒 =

𝜋𝑎𝑏
4 and the second moments of inertia 𝐼𝑦 =

𝜋
64𝑎

3𝑏 and 𝐼𝑧 =
𝜋
64 𝑏

3𝑎.
Perfect and imperfect samples were produced by converting the

beam models of Section 2 into Standard Tessellation Language (STL)
format with finite beam thickness; i.e., we deliberately 3D-printed
perfect and imperfect samples with as-design defect distributions of the
four types discussed above. In the case of diameter imperfections, both
major axes 𝑎 and 𝑏 were multiplied by the same 𝜉dia. When including
missing beams, beams on boundaries of the truss were excluded from
being removed to avoid boundary nodes from being only partially
supported. Similarly, boundary nodes at the top and bottom clamps
were excluded from the node-displacement imperfection to prevent
disconnections from the supporting plates. In the case of diameter vari-
ations, we continue to use a Gaussian distribution to vary 𝜉dia; however,
we restrict the random diameter to not fall beneath 2∕3 of its nominal
value (i.e., 𝑎 > 1.2 μm for the elliptical cross-section) to honor the print
limitations. As already explained in the introduction, we additionally
allow the diameter to increase (according to a Gaussian distribution),
since with two-photon lithography, Stereolithography (SLA), or Digital
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Fig. 9. Protocol for comparing simulated with experimentally determined stiffness data: after applying imperfections to a defect-free lattice, the effective response of the truss is
obtained from the stress–strain curve under uniaxial compression—both from simulations and from experiments on a 3D-printed truss.
Fig. 10. Representative sample with no imperfections (defect-free) in its pre-loading state. The inset highlights the elliptical beam cross-sections.
Light Processing (DLP), beams may also end up thicker than nominal.
Fig. 11 provides a visualization of all four types of imperfection in
printed samples. The magnitude of each imperfection was chosen to
exceed the fabrication tolerances of the two-photon lithography tech-
nique by orders of magnitude, so that fabrication-induced imperfections
play only a minor role (which also confirms the choice of this printing
process to be ideal for this study).

5.2. Modeling the experimental conditions

In Section 3 we reported homogenized elastic properties, which
admitted general insight into the effective truss performance and have
classically been reported. Here, by contrast, we change the simulation
setup to match the experimental conditions. To this end, we simulate
the uniaxial compression of samples that are fully clamped on the top
and bottom faces with free lateral faces. Instead of simulating large
RVEs, we model samples of 5 × 5 × 5 UCs as in experiments. Moreover,
beam cross-sections have the same elliptical shapes as in experiments.
The elastic properties of the base material used in simulations were
obtained from compression experiments on micropillar produced with
identical printing conditions as the trusses. We extract the effective
Young’s modulus 𝐸∗ of truss samples in the compression direction from
the slope of the stress–strain curve. As before, we compute the average
response of 𝑁 = 100 random realizations for a given set of imperfection
distributions.

To illustrate the differences between the two loading scenarios,
Fig. 12 compares the effective Young’s modulus of the octahedron
9

truss with varying imperfection distributions, as obtained from ho-
mogenization (Section 3) and from uniaxial compression simulations.
Although results differ quantitatively, the same qualitative trends are
observed (in the case of node displacement and diameter variation,
both approaches yield nearly identical results). This indicates that,
although the boundary conditions are different, the general conclusions
drawn in Section 3 can also be expected to hold here.

5.3. Experimental results and comparison with simulations

Fig. 13 shows the effective Young’s modulus 𝐸∗ (normalized by that
of a defect-free truss) of trusses with four different types of imperfec-
tions. The imperfection strengths in this comparison study, 𝜉nds = 0.2,
𝜉mis = 0.1, 𝜉wvy = 0.1, and 𝜉dia = 0.2, are chosen to be relatively
high to suppress the effects of any material imperfections. Each exper-
imental data point represents the average of five experiments, each
conducted on a different lattice realization with identical imperfection
magnitudes. The respective numerical simulations are averaged over
100 random realizations, applying the same imperfection magnitude
but not the exact same distribution as in the experiment. We refrained
from comparing the experiment to a simulation with the exact same
imperfection distribution to demonstrate the strength of the model to be
generally applicable independent of the exact imperfection realization.
Simulations generally over-predict the effective truss stiffness by an
approximately constant offset, which we attribute to inevitable small
imperfections in the printing and possibly a slightly different poly-
merization state between the truss samples and the micropillars used
to calibrate the model (the effective stiffness of the defect-free truss
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Fig. 11. Visualization of all four imperfections types which were intentionally included in the truss samples. The center image (a) shows the defect-free octahedron lattice. In
the corners, we visualize the four different imperfection types applied to the perfect lattice with (b) showing node deviations, (c) missing beams, (d) wavy beams and (e) diameter
variations. We additionally zoom into a section of each lattice and highlight the imperfection in red. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 12. Comparison of the sensitivity of the effective Young’s of an octahedron truss with respect to three different types of imperfections, as obtained from homogenization
and from uniaxial compression. For the comparison between uniaxial compression and homogenization, we choose a 40 × 40 × 40 octahedron lattice with beams having circular
cross-sections, as shown in Fig. 6. In cases (a)–(c), the results of the homogenization approach are identical to those of Fig. 6, whereas for (d) the diameter variation now represents
the same setting as for the experimental setup (diameters may be larger or smaller than nominal).
differs by 11.8% between simulations and experiments). Furthermore,
the print direction [14], node geometry [36,53], node fillet size [54],
and boundary effects can affect the mechanical response and hence
contribute to the offset. Fig. 13 confirms that the impact of the four
types of defects shows excellent agreement between simulations and
experiments. The relative error between those is 15.9% for displaced
nodes, 25% in case of missing beams, 25.3% for wavy beams, and
22.8% for varying diameters. Overall, this confirms the successful
prediction of the influence of imperfections by the model—and we use
the close to constant offset of ∼20% between the experimental and
numerical data to introduce a correction factor of 1.2 to be used with
all subsequent simulation data.
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6. Predicting imperfections using inverse modeling

The model of Section 4 uses the defect distributions as input pa-
rameters to compute the resulting effect on the effective mechanical
properties of imperfect trusses. We can also revert the problem and pose
the inverse question. Can we devise a predictive tool, capable of pro-
viding information about the distribution of imperfections by using the
measured mechanical response of a truss as the input ? In the following,
we apply this inverse strategy to two different scenarios, based on the
previously described sensitivity calculations: Section 6.1 uses the rather
hypothetical availability of 15 of the anisotropic homogenized effective
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Fig. 13. Comparison of the experimentally measured and simulated effective Young’s moduli of four octahedron trusses, each with a different type of imperfection. Data are
normalized with respect to the defect-free stiffness 𝐸∗(𝜉 = 0) = 13.1 MPa in the simulation and 𝐸∗(𝜉 = 0) = 11.1 MPa in case of the experiment. The shown standard deviations
of the experimental data stems from averaging over five identical structures, while the standard deviation of the simulated data is the result from averaging over 100 different
random realizations of the imperfections. We refrain from comparing the experiment to simulations on the exact same defective truss to underline the generality of the model to
accurately capture the experimental observations without knowing the exact defect distribution.
Fig. 14. Setup of the Conditional Variational AutoEncoder (CVAE) used for the inverse prediction of an imperfection distribution based on effective elastic truss properties.
elastic constants of a defective truss, as described in Section 3. Sec-
tion 6.2 only uses three measurable input parameters, derived from the
setup in Section 5, for which we also present experimental benchmarks.

6.1. Inverse model based on homogenized elastic constants

We create a general machine learning framework that takes as input
an a-priori chosen set of effective mechanical properties (e.g., Young’s
moduli, Poisson’s ratios, shear moduli) of imperfect topologies, and it
outputs a probability distribution of the imperfections likely to cause
the deviations in the observed mechanical properties from the ideal
ones. Fig. 14 shows a schematic of the approach based on conditional
variational autoencoders (CVAE), whose methodological and training
details are presented in Appendix D.

We consider the five 3D topologies shown in Fig. 6, whose ho-
mogenization (as described in Section 3) yields their effective Young’s
moduli �̄�, effective Poisson’s ratios �̄�, and effective shear moduli �̄� –
resulting in a total of 15 available material constants. As in Section 3,
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we use RVEs of 30 × 30 × 30 UCs and circular beam cross-sections
with a slenderness ratio of 𝜆 = 0.1 in simulations. Imperfections are
randomly added from the ranges 𝜉nds ∈ [0, 0.3], 𝜉mis ∈ [0, 0.2], 𝜉wvy ∈
[0, 0.1], and 𝜉dia ∈ [0, 0.2]. We generate a training dataset of 1215
different imperfection parameter combinations 𝝃 = {𝜉nds, 𝜉mis, 𝜉wvy , 𝜉dia}
and compute the corresponding 15 homogenized elastic properties
𝝌 = {�̄�1, �̄�1, �̄�1,… , �̄�5, �̄�5, �̄�5} across the five topologies (Fig. 6). For
validation purpose, we also generate a similar test dataset containing
520 pairs of imperfection parameters 𝝃 and elastic properties 𝝌 . The
test dataset is not exposed to the machine learning model during the
training stage. Using the training dataset, we train the aforementioned
machine learning model (for details, see Fig. 14 and Appendix D)
with the objective of identifying the defect distribution 𝝃 for given
elastic properties 𝝌 . Rather than resulting in a unique defect values
𝝃, the stochastic machine learning model predicts a joint probability
distribution 𝑃 (𝝃) (over all the four imperfection types in 𝝃) which
further quantifies the uncertainty of the prediction. Note that 𝑃 (𝝃)
is empirically obtained by repeatedly sampling a sufficiently large
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Fig. 15. Accuracy of the predicted marginal expectation of each imperfection vs. the true value on the test dataset. All dashed lines (in red) represent the ideal line with zero
intercept and unit slope; the corresponding 𝑅2 deviations are indicated. All 15 elastic properties are considered as input to the machine learning model.
Fig. 16. Predicted marginal probability distribution of imperfections for a sample chosen randomly from the test dataset with true imperfections 𝜉nds = 0.186, 𝜉mis = 0.011,
𝜉wvy = 0.073, and 𝜉dia = 0.064. Red lines shows the true values, while the blue distribution presents the marginal probability distribution of the predicted imperfections. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
number of output predictions from the machine learning model. In
the context of the following results, we use 3000 samples for each
set of elastic properties input 𝜒 to obtain a representative probability
distribution. (Each prediction is made almost instantly and therefore,
the computational expense of repeated sampling is negligible).

To quantify the accuracy of the machine learning model, we com-
pare the true imperfection parameters (𝝃true) with the expectation of the
marginal probabilities

{

E[𝑃 (𝜉nds)],E[𝑃 (𝜉mis)],E[𝑃 (𝜉wvy)],
E[𝑃 (𝜉dia)]

}

predicted for a given set of elastic properties 𝝌 . Note that
the marginal probability distribution of a particular imperfection type
is computed by straightforwardly ignoring the other imperfection types
in the collection of the joint samples of 𝝃 predicted by the machine
learning model, while the expectation E[⋅] is approximated by the mean
of those samples.

Fig. 15 summarizes the accuracy between the true 𝝃 and the pre-
dicted marginal expectations of all four imperfection types for each
𝝌 in the test dataset. For all the imperfection types, the predicted
marginal expectation of 𝜉 is close to its true counterpart (coefficient of
determination 𝑅2 ≥ 98%), showing that our model is an accurate tool to
predict defect distributions (and hence possible error sources, e.g., dur-
ing the printing process). To further visualize the accuracy, we chose a
random set of elastic properties 𝝌 from the test dataset and compare its
true imperfection parameters 𝜉 with the predicted marginal probability
distributions. A representative example is illustrated in Fig. 16, which
shows that not only is 𝜉 predicted close to the actual values but also
how our model provides a probability distribution quantifying the
uncertainty. This feature becomes handy when applying the model
to experimental data, where the measured effective properties always
come with a measurement inaccuracy (as discussed below).

Fig. 17 demonstrates in a ‘‘heat map’’ the correlation between the
15 effective elastic properties of the studied topologies and the four im-
perfection types. Areas marked in white (i.e., close to zero correlation)
are deemed irrelevant for the results in Fig. 15 and can therefore be
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excluded in future studies. It is apparent that the values of Poisson’s
ratio remain approximately unaffected by any diameter changes or
beam waviness, whereas the Young’s and shear moduli show little
correlation with node displacements of most topologies (with the cube
topology being an exception). These are interesting general insights
into the impact of imperfections on the different elastic properties. In
addition, this correlation matrix can advise future studies by removing
topologies/elastic properties with little significance for the prediction
accuracy, reducing the experimental costs required to characterize the
imperfections (as also utilized in the following results).

6.2. Inverse model based on uniaxial stiffness measurements

Of course, printing and testing five separate truss topologies to
predict any printing-induced imperfections is unrealistic, considering
the high cost and work load. In particular, experimentally determining
Poisson’s ratio and the shear modulus of a truss is time-consuming
and requires a complex setup, unlike the simple characterization of
the uniaxial Young’s modulus (see Section 5). We therefore adjust the
machine learning framework of Section 6.1 to be applicable to standard
experimental measurements. To this end, we use the same setup as
in Section 5 and only consider the effective Young’s modulus 𝐸∗ of
the five 3D truss topologies. Since we only increase (and not decrease)
the diameter of beams imperfect, we can fabricate a defect-free lattice
with thinner beams than in the experimental study of Section 5. The
thinner beams are required to ensure a small slenderness ratio for the
additionally printed bitruncated octahedron lattice, which has shorter
beams than the octahedron. Printed beams have an elliptical cross-
section with an average major axis of 𝑎 = 1.9 ± 0.1 μm and a minor
axis of 𝑏 = 1.6 ± 0.1 μm. All other dimensions remain the same as in
Section 5. We use the same elliptical beam dimensions for the initial
defect-free lattice in our simulations. We again train a machine learning
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Fig. 17. The ‘‘heat map’’ visualizes correlation coefficients between the effective elastic properties (�̄�, 𝑉 , �̄�) of the 3D truss topologies and the four imperfection types. A correlation
coefficient of +1 or −1 indicates perfect correlation, while a value of zero may (or may not) indicate independence between two variables (positive or negative, respectively).
Strong correlations are visualized in red, while input parameters with weak effect on 𝜉 tend to a white color. Indices of the elastic properties correspond to the topologies shown
below: (1) octet, (3) octahedron, (4) bitruncated octahedron, (4) cube, (5) diamond. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
model with the analogous CVAE structure of Fig. 14, now using only
the five input parameters {�̄�1, �̄�2, �̄�3, �̄�4, �̄�5} instead of the previous 15
elastic properties to predict 𝜉. Imperfections are randomly chosen from
the ranges 𝜉nds ∈ [0, 0.3], 𝜉mis ∈ [0, 0.2], 𝜉wvy ∈ [0, 0.1], and 𝜉dia ∈ [0, 0.2].
Owing to the reduced computational costs, we choose a larger training
set of ∼8166 trusses with randomly chosen imperfection distributions.
We also generate a similar test dataset of 3500 trusses for validation
purpose.

The accuracy of this new model on the test dataset reduces the
coefficients of determination to 𝑅2

nds = 0.36, 𝑅2
mis = 0.92, 𝑅2

wvy = 0.97,
and 𝑅2

dia = 0.84. By considering the quite varying correlations between
elastic properties and imperfections (see Fig. 17), we further reduce the
number of topologies to three – retaining only the octet, bitruncated
octahedron, octahedron – while obtaining almost the same prediction
accuracy (𝑅2

nds = 0.08, 𝑅2
mis = 0.92, 𝑅2

wvy = 0.96, and 𝑅2
dia = 0.64). The

size of the training set was ∼10 500, compared to 4500 trusses in the test
set. We accept the ∼24% loss in 𝑅2

dia due to the reduction of the tested
topologies from five to three, since the extra workload of producing
those is not worth the additional accuracy. The accuracy of predicting
the node deviation 𝜉nds was already low at 36%, so the further reduc-
tion to 8% is irrelevant at this point (we accept that 𝜉nds cannot be
predicted accurately based on this choice). However, by making these
simplifications, we have reduced the complexity of the problem to three
input parameters {�̄�1, �̄�2, �̄�3}, facilitating a reasonable prediction of
𝜉mis, 𝜉wvy, and 𝜉dia, as shown in Fig. 18. By contrast, we can no longer
predict node displacements (𝜉nds). However, the imperfections due to
missing beams (𝜉mis) and wavy beams (𝜉wvy) can be predicted with
an accuracy of over 90% (and variations in beam diameter are still
predictable with an 64% accuracy), which is deemed satisfactory. This
is in agreement with the correlation matrix of Fig. 17, even though
the latter was established for different boundary conditions (there
affine homogenization, here uniaxial compression). Young’s modulus
is insufficient to predict node displacements. Knowledge of Poisson’s
ratio of either topology 1, 2, or 4, or the shear modulus of topology 4
would be required to provide the missing information on 𝜉nds.

6.3. Predicting imperfections from experimental measurements

As a validation example, we apply the proposed machine learning
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framework to predict the distribution of imperfections in trusses based
on experimental measurements only. To this end, we printed three
samples—each one of octet, bitruncated octahedron, and octahedron
type. All three were designed to have identical, randomly chosen
imperfections satisfying 𝜉nds = 0.238, 𝜉mis = 0.157, 𝜉wvy = 0.054, and
𝜉dia = 0.113. Fig. 19 shows the three lattices before exposing them to a
quasistatic compression test to identify their effective Young’s moduli
𝐸∗.

The experimentally measured Young’s moduli (including the correc-
tion factor of 1.2 identified in Section 5 to match differences between
experiments and simulations) are 𝐸∗ = 11.8743 MPa for the octet,
𝐸∗ = 3.0867 MPa for the octahedron, and 𝐸∗ = 0.91776 MPa for
the bitruncated octahedron. Using these three input parameters, our
machine learning framework yields the predictions in Fig. 20, which
captures the distributions of missing beams, wavy beams, and diameter
variations well, and it even predicts node displacements (even though
we discussed that this type of imperfection is hard to predict with the
present framework). This confirms that our machine learning tool can
predict realistic defect distributions of the chosen types from easily
accessible experimental measurements.

7. Conclusion

We have studied the sensitivity of the effective elastic properties
of various 2D and 3D periodic trusses with respect to four frequently
observed types of geometric imperfections. We first computed the
homogenized, effective elastic properties of a total of 11 different
stretching- and bending-dominated truss topologies (6 in 2D, 5 in
3D) based on affine displacements applied to large RVEs of trusses
with random imperfections. (Results without imperfections matched
closely with periodic homogenization.) We discussed that, while most
imperfections reduce the effective stiffness, some imperfection types
may even lead to stiffening of specific truss topologies. To validate
the numerical framework, we further computed the uniaxial Young’s
modulus of 3D trusses, which was compared to experimental measure-
ments on trusses with different types of imperfections—overall showing
convincing agreement. In addition to the forward model, predicting
the reduction in stiffness of defective trusses, we also presented an
inverse machine learning-based approach, which predicts the defect
distribution in a truss based on given elastic properties. This inverse

model was trained in two flavors: first, based on the full homogenized
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Fig. 18. Accuracy of predicted marginal expectation of each imperfection vs. the true value on the test dataset, using the uniaxial Young’s moduli of three 3D truss topologies
(octet, bitruncated octahedron, octahedron) as input parameters. Due to the smaller number of input parameters (number of mechanical properties and number of UCs), the accuracy
of the prediction decreases when compared to Fig. 15. All dashed lines (in red) represent the ideal line with zero intercept and unit slope; the corresponding 𝑅2 deviations are
indicated.
Fig. 19. Fabricated octet, octahedron, and bitruncated octahedron samples (from left to right) with deliberately introduced imperfections satisfying the distributions 𝜉nds = 0.238,
𝜉mis = 0.157, 𝜉wvy = 0.054, and 𝜉dia = 0.113.
elastic properties of five different truss topologies (which highlighted
the different correlations between elastic properties and imperfection
types) and, second, based on only the uniaxial stiffness of three truss
topologies (which can readily be realized in experiments). Using exper-
imentally measured Young’s moduli of three trusses, their underlying
defect distribution was predicted along with prediction uncertainties,
overall showing convincing agreement.

The knowledge gained and the new (forward and inverse) modeling
tools reported here aid to the still open challenge of incorporating
fabrication-induced imperfections into the design process of truss-based
architected materials. Knowledge of the property (in-)sensitivity is
essential for designing structures for not only safety-relevant industrial
14
applications. The inverse model helps identify the predominant defect
types in manufactured truss architectures based on relatively sim-
ple measurements towards optimizing the design and manufacturing
process [5] as well as designing structures that are less sensitive to
imperfections [55].

Of course, this study can be extended in multiple directions, which
also highlights its limitations. The assumption that all defect probability
distributions are Gaussian and centered around the defect-free truss can
be extended to, e.g., skew-normal distributions, where appropriate. Fur-
thermore, the expectation value need not overlap with the as-designed
geometry [36]. The distributions and magnitudes of the different
imperfection types can also be set to those of a specific fabrication
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𝜉

Fig. 20. Predicted marginal probability distribution of imperfections based on experimental measurements on the three samples in Fig. 19. The samples had the true distributions
nds = 0.238167, 𝜉mis = 0.157455, 𝜉wvy = 0.054072, and 𝜉dia = 0.112529, shown as red lines. The blue distributions are the predictions by the machine learning framework. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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route. Going beyond elasticity, a similar strategy can be applied to
study the sensitivity of the yield strength [14,23,50,56] or fracture
toughness [57] of trusses to imperfections.
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Appendix A. Periodic vs. affine boundary conditions for homoge-
nization

We compute the effective response of trusses with random imper-
fections by applying affine displacement boundary conditions to large
RVEs (containing the numbers of UCs reported in Figs. 3 and 4). Peri-
odic boundary conditions are unfortunately problematic in this setting.
As affine displacement boundary conditions generally over-predict the
effective stiffness, we here compare the computed homogenized prop-
erties of defect-free trusses using both periodic homogenization [33,34]
and the here chosen affine displacement assumption.

Table A.1 compares the effective Young’s modulus �̄�, effective
Poisson’s ratio �̄�, and the effective shear modulus �̄�, all calculated
from a single RUC with periodic BCs [33] as well as from the RVEs
in Figs. 3 and 4 with affine displacement boundary conditions. Results
show a good agreement between the effective properties, confirming
the appropriateness of the chosen affine displacement approach. Only
for strongly bending-dominated topologies such as the hexagon and
diamond topologies in 2D as well as for the bitruncated octahedron
and the diamond in 3D, the deviations between the two approaches is
appreciable.

Appendix B. Choice of RVE and ensemble sizes

Imposing random imperfections onto a perfect lattice results in
an infinite range of imperfect structures. A statistically appropriate
computation of the effective properties requires a sufficiently large
RVE. Since an ideal, infinite RVE size is computationally untractable,
15

we choose a finite-size RVE, which must be sufficiently large (spatial o
Table A.1
Comparison of the effective elastic properties of different 2D and 3D truss topologies as
obtained from homogenization with periodic boundary conditions (using an in-house
code and formulation [33]) vs. affine displacement boundary conditions. Moduli are
normalized by the base material’s Young’s modulus 𝐸. Poisson’s ratio of the base
material is 𝜈 = 0.49. All beams have a slenderness ratio of 𝜆 = 0.1, except for the
cross topology in 2D, which has two sets of beams with different lengths, where the
shorter beams have a slenderness ratio of 𝜆 = 0.14.

2D Periodic BCs Affine displacement BCs

𝐸∕𝐸 𝜈 𝐺∕𝐸 𝐸∕𝐸 𝜈 𝐺∕𝐸

Cross 1.127 ⋅ 10−2 0.405 5.583 ⋅ 10−3 1.127 ⋅ 10−2 0.405 5.583 ⋅ 10−3

Triangle 9.114 ⋅ 10−3 0.330 3.434 ⋅ 10−3 9.194 ⋅ 10−3 0.330 3.426 ⋅ 10−3

Hexagon 6.652 ⋅ 10−5 0.971 1.688 ⋅ 10−5 7.613 ⋅ 10−3 0.961 1.689 ⋅ 10−5

Square 7.854 ⋅ 10−3 0.0 2.945 ⋅ 10−5 7.854 ⋅ 10−5 0.0 2.945 ⋅ 10−5

Diamond 8.268 ⋅ 10−5 0.985 2.777 ⋅ 10−3 8.807 ⋅ 10−5 0.984 2.777 ⋅ 10−3

Kagome 2.274 ⋅ 10−3 0.331 8.536 ⋅ 10−4 2, 274 ⋅ 10−3 0.331 8.534 ⋅ 10−4

3D 𝐸∕𝐸 𝜈 𝐺∕𝐸 𝐸∕𝐸 𝜈 𝐺∕𝐸

Octet 7.553 ⋅ 10−3 0.33 5.595 ⋅ 10−3 7.554 ⋅ 10−3 0.33 5.595 ⋅ 10−3

Octahedron 3.776 ⋅ 10−3 0.33 2.790 ⋅ 10−3 3.777 ⋅ 10−3 0.33 2.790 ⋅ 10−3

Bitr. Oct. 4.134 ⋅ 10−5 0.493 1.363 ⋅ 10−5 5.445 ⋅ 10−5 0.490 2.240 ⋅ 10−5

Cube 7.854 ⋅ 10−3 0.0 2.945 ⋅ 10−5 7.863 ⋅ 10−3 0.0 2.947 ⋅ 10−5

Diamond 3.812 ⋅ 10−5 0.494 3.769 ⋅ 10−5 3.773 ⋅ 10−5 0.494 3.660 ⋅ 10−5

averaging criterion). In addition, we compute the effective response by
averaging over a ensemble of 𝑁 different random realizations, which
must be sufficiently large (ensemble averaging criterion) as well. For
practical reasons, we choose the RVE size sufficiently small to allow
for efficient computations and to fit within a 3D quadrilateral (2D
quadratic) domain. For an RVE much larger than the size of the UC
and of the imperfections and for large 𝑁 , the average stiffness C̃(𝑁) =
1
𝑁

∑𝑁
𝑖=1 C̃𝑖 converges to the true effective stiffness 𝜇 = C∗ as a Gaussian

distribution by the central limit theorem. We compute the confidence
interval

(

𝜇 − 𝑧∗ 𝜎
√

𝑁
, 𝜇 + 𝑧∗ 𝜎

√

𝑁

)

and the resulting effective variance

(margin of error) 𝑒 = 𝑧∗ 𝜎
√

𝑁
. We select the critical value 𝑧∗ = 1.96

ithin a 𝑧-statistic for a confidence level of 95%; 𝜇 is the ensemble
ean stiffness, 𝜎 describes the standard deviation (visualized in the

hape of error bars in all examples). The selected RVE sizes presented
n Figs. 3 and 4, combined with a total number of 𝑁 = 100 random
amples, guarantees for almost all geometries and imperfection types
margin of error 𝑒 < 0.1%. Therefore, we deem the chosen RVE and

nsemble sizes sufficient. Exceptions are the Poisson’s ratio sensitivity
owards node displacements and missing beams of the kagome struc-
ure, where the margins of error increase to 𝑒 = 0.37% and 𝑒 = 0.79%,
espectively (see the standard deviation in Fig. 5f). We attribute this
arge standard deviation to the relatively small C̄1122 stiffness tensor
omponent of the kagome lattice (Table A.1), when compared to the
ther components.
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Fig. B.21. On the left, the effect of ensemble averaging is visualized for the example of a bitruncated octahedron lattice with 𝜉mis = 0.2. On the right, the spatial averaging criterion
shows how, with increasing mesh refinement, the effective response converges to the one evaluated using the continuum model described in Appendix A.
Fig. B.21 visualizes the convergence of the effective Young’s mod-
ulus �̄� for the example of the bitruncated octahedron. On the left, we
show for the example of missing beams at 𝜉mis = 0.2 how �̄� converges
with increasing ensemble size, using an RVE size of 40 × 40 × 40 UC.
On the right, the convergence of �̄� is shown with increasing RVE size
(each data point is computed from 𝑁 = 100 realizations). In case of
the bitruncated octahedron an even larger mesh size would be required
to improve the result; however, running several simulations with an
assembly larger than 40 × 40 × 40 becomes computationally infeasible.

Appendix C. Comparison to existing literature

As explained in the introduction, prior studies have numerically
probed the sensitivity of different truss topologies to imperfections. For
reference, we here compare our results in Figs. 5 and 6 to findings in
literature. While we selected a constant slenderness ratio of 𝜆 = 0.1 in
all our simulations in Figs. 5 and 6, we here change this value for a
comparison with literature data. Symons and Fleck [17] used a slen-
derness ratio of 𝜆 = 0.02 for their study of missing beams in triangular,
hexagonal, and kagome lattices. Recently, Liu and Liang [18] studied
triangular lattices with 𝜆 = 0.043, while Gross et al. [24] used 𝜆 = 0.05
in their 3D simulations. For the purpose of a comparison, we reran the
simulations for missing beams for a selection of 2D and 3D topologies,
to allow for a comparison of our approach with those stated above. In
2D, Fig. C.22 shows good agreement with the results in [18] (who used
periodic BCs and beam elements) to compute the effective mechanical
properties for the triangular lattice when subjected to missing beams.
The result for the bulk modulus �̄� also agrees with observations in [17].
These authors further studied the sensitivity of �̄� to the number of
missing beams for the hexagonal and kagome lattices, which also
agree with our data. The comparison to studies that select different
slenderness ratios sheds light on this additional parameter, which also
has a determining influence on the sensitivity. While the �̄�-sensitivity
for the hexagonal (red) and triangular (blue) topologies remains almost
unchanged when decreasing the slenderness ratio from 𝜆 = 0.1 to
𝜆 = 0.02, the shear-stiffness of the kagome lattice drops faster for
slender beams, when compared to our results from Fig. 5.

In 3D, the study by Gross et al. [24] on the sensitivity of different
topologies to an increasing amount of missing beams, using periodic
BCs and the finite element method with Timoshenko beams, permits
a direct comparison with our results (see Fig. C.23). Compared to our
data, their study shows almost identical results for Young’s modulus
and the shear modulus for the octet and octahedral topologies (marked
in orange and blue, respectively) but a different sensitivity to miss-
ing beams in case of the bitruncated octahedron. Interestingly, our
numerical data for the shear modulus of the bitruncated octahedron
agree excellently with the analytical predictions from the literature [24]
16
up to 𝜉mis ≤ 0.15, unlike the numerical data reported within the
same publication [24]. We cannot conclusive explain the differences
in the numerically obtained data for the bitruncated octahedron but
our agreement with the analytical solution makes us confident that the
data reported here are trustworthy.

Appendix D. Machine learning framework for predicting imper-
fections based on deviations in mechanical properties

We use a conditional variational autoencoder (CVAE) [58,59] to
predict probabilistic estimates of the imperfections, i.e., probability
𝑃 (𝝃) based on a set of given imperfect mechanical properties, 𝝌 . Fig. 14
schematically illustrates the CVAE framework, which consists of a feed-
forward neural network called the encoder, a probabilistic latent space,
and another feed-forward neural network called the decoder. In the
following, we describe each component of the framework.

Encoder: For a given pair of 𝝃 and 𝝌 from the training dataset, the
encoder receives as input their concatenation, i.e., (𝝃,𝝌) ∈
Rdim(𝝃)+dim(𝝌). The encoder outputs two vectors: 𝝁 ∈ R𝑑 and 𝒔 ∈ R𝑑 ,
where 𝑑 is treated as a hyperparameter. The interpretation of 𝝁 and 𝒔
as well as 𝑑 are discussed later. For the scope of this work, we model
the encoder architecture as
𝝁 = ℎ→𝑑

𝜔2
◦ ◦dim(𝝃)+dim(𝝌)→ℎ

𝜔1
[(𝝃,𝝌)],

𝒔 = ℎ→𝑑
𝜔3

◦ ◦dim(𝝃)+dim(𝝌)→ℎ
𝜔1

[(𝝃,𝝌)].
(D.1)

Here, 𝑖→𝑗
𝜔𝑘

denotes a linear layer parameterized by the set of trainable
weights and biases 𝜔𝑘 = {𝑨𝑘, 𝒃𝑘} such that any 𝒗 ∈ R𝑖 is transformed
according to

𝑖→𝑗
𝜔𝑘

[𝒗] = 𝑨𝑘𝒗 + 𝒃𝑘, with 𝑨𝑘 ∈ R𝑗×𝑖, 𝒃𝑘 ∈ R𝑗 . (D.2)

Similar to the output dimension 𝑑, the hidden/intermediate dimension
ℎ is treated as a hyperparameter. (⋅) = max(0, ⋅) is the rectified
linear activation unit (ReLU), which acts element-wise on the input
and introduces nonlinearity to the series of linear transformations. All
the trainable parameters of the encoder are collectively denoted as
𝜔𝐸 = {𝜔1, 𝜔2, 𝜔3}.

Latent space: During the training phase of the CVAE, the out-
puts of the encoder, i.e., 𝝁 and 𝒔, are interpreted as mean and log-
variance of a Gaussian distribution, respectively. We sample a latent
space representation 𝒛 ∈ R𝑑 of the encoder inputs (𝝃,𝝌) as

𝒛 ∼ 
(

[𝜇1,… , 𝜇𝑑 ]⊺, diag
(

[

𝜎21 ,… , 𝜎2𝑑
]⊺
))

, (D.3)

where 𝑠𝑖 = log(𝜎2𝑖 ) is the log-variance (alternatively, 𝜎𝑖 = exp(𝑠𝑖∕2) is the
standard deviation) of the 𝑖th component. diag(⋅) denotes the diagonal
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Fig. C.22. Comparison of the sensitivity of Young’s modulus and the shear modulus to missing beams with increasing 𝜉mis for selected 2D truss topologies to literature results [14,17].
The sensitivity of the triangular lattice for slenderness ratios of 𝜆 = 0.02 and 𝜆 = 0.043 is almost identical.
Fig. C.23. Comparison of the sensitivity of the Young and shear moduli to missing beams with increasing 𝜉mis for selected 3D truss topologies to results in [24] for randomly
removed beams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
matrix created using the input vector (⋅), and  denotes the Gaussian
distribution. From an implementation perspective, 𝒛 is sampled as

𝒛 = 𝝁 + 𝜺⊙
[

𝜎1,… , 𝜎𝑑
]⊺ with 𝜺 ∼  (𝟎, 𝑰), (D.4)

where ⊙ denotes element-wise multiplication. Also known as the repa-
rameterization trick [58], (D.4) is specifically used to sample the dis-
tribution while maintaining the differentiability required for back-
propagation-based training of the neural networks.

Decoder: The latent space representation 𝒛 and the imperfect me-
chanical properties 𝝌 are concatenated and passed as input to the
17
decoder. Based on those, it predicts the imperfection characteristics �̂� ∈

Rdim(𝝃). Similar to the encoder, we model the decoder architecture as

�̂� = ℎ→dim(𝝃)
𝜔5

◦ ◦𝑑+dim(𝝌)→ℎ
𝜔4

[(𝒛,𝝌)] (D.5)

with 𝜔𝐷 = {𝜔4, 𝜔5} containing the trainable parameters of the decoder.

Training: Given a representative dataset  = {(𝝃(𝑛),𝝌 (𝑛)) ∶ 𝑛 =
1,… , 𝑁}, the encoder and decoder training (i.e., finding appropriate
trainable parameters 𝜔 and 𝜔 , respectively) is formulated as a
𝐸 𝐷
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minimization problem of the form:

min
𝜔𝐸 , 𝜔𝐷

1
𝑁

𝑁
∑

𝑛=1

‖

‖

‖

𝝃(𝑛) − �̂�(𝑛)‖‖
‖

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reconstruction loss

+
𝑁
∑

𝑛=1
DKL

(


(

[𝜇(𝑛)
1 ,… , 𝜇(𝑛)

𝑑 ]
⊺
, diag

([

𝜎(𝑛)
1

2
,… , 𝜎(𝑛)

𝑑
2]⊺))

‖

‖

‖

 (𝟎, 𝑰)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Kullback–Leibler divergence loss

.

(D.6)

he reconstruction loss ensures that the input to the encoder 𝝃(𝑛) (i.e., the
mperfection characteristics) – conditioned upon a given set of me-
hanical properties 𝝌 (𝑛) – is accurately reconstructed by the decoder
nto �̂�(𝑛). Due to the probabilistic informational bottleneck between the
ncoder and decoder, an accurate reconstruction of the dataset may
e interpreted as learning a compressed and continuous latent repre-
entation 𝒛 of input 𝝃(𝑛) conditioned upon 𝝌 (𝑛). The Kullback–Leibler
ivergence (KLD) loss in (D.6) penalizes the divergence of the latent
pace distribution (see (D.3)) from the standard Gaussian distribution.
s discussed later, ensuring that the latent space can be approximated
y a standard Gaussian distribution is critical to solve the inverse
roblem of estimating 𝝃 based only on known 𝝌 . The KLD between two
robability distributions 𝑃 and 𝑄 is given by [60]

KL(𝑃 ∥ 𝑄) = ∫

∞

−∞
𝑝(𝒙) log

(

𝑝(𝒙)
𝑞(𝒙)

)

d𝒙, (D.7)

here 𝑝 and 𝑞 denote the probability densities of 𝑃 and 𝑄, respectively.
For the case of Gaussian distributions, the KLD loss in (D.6) simplifies to

DKL

(


(

[𝜇1,… , 𝜇𝑑 ]⊺, diag
(

[

𝜎21 ,… , 𝜎2𝑑
]⊺
))

‖

‖

‖

 (𝟎, 𝑰)
)

= 1
2

𝑑
∑

𝑖=1

(

𝜎2𝑖 + 𝜇2
𝑖 − 1 − log(𝜎2𝑖 )

)

, (D.8)

here the superscripts (⋅)(𝑛) have been omitted for better readability.
Inference: During the inference phase, the imperfections 𝝃 are the

nknowns to be estimated given the mechanical properties 𝝌 . Assuming
hat the model is trained sufficiently such that the latent space dis-
ribution can be approximated by the standard Gaussian distribution
ensured by minimizing the KLD loss in (D.6)), the latent vector 𝒛 is
ampled as

∼  (𝟎, 𝑰) (D.9)

instead of using the encoder) and concatenated with the known 𝝌 .
he encoder is ignored during the inference phase. The concatenated
ector (𝒛,𝝌) is mapped by the decoder to �̂�. The inference process can
e repeated 𝑀 times by sampling 𝒛 via (D.9) to empirically obtain 𝑃 (𝝃).
Implementation details: To ensure faster training and high pre-

iction accuracy, all data features in  are independently and linearly
caled to the range of [−1, 1] before training. Note that the results
uring the inference phase are scaled back to their original range
fter prediction from the decoder. Across all the results presented
ere, we use 𝑑 = 6 as the latent space dimension and ℎ = 128 as
he hidden dimension in the encoder and decoder architectures. For
raining, we minimize the loss in (D.6) with the Adam optimizer [61]
or 2000 epochs with a learning rate of 10−4 and batch size of 1024.
or inference, we sample 𝑀 = 3000 predictions to obtain represen-
ative probability distributions. All implementations are performed in
yTorch [62].
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