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Abstract

Current brain simulators do no scale linearly to realistic problem sizes (e.g. >100,000
neurons), which makes them impractical for researchers. The goal of the thesis is to ex-
plore the use of true multi-GPU acceleration on computationally challenging brain mod-
els and to assess the scalability of such models given sufficient access to multi-node
acceleration platforms. The brain model used is a state-of-the-art, extended Hodgkin-
Huxley, biophysically-meaningful, three-compartmental model of the inferior-olivary nu-
cleus. Not only the simulation of the cells, but also the setup of the network is taken into
account when designing and benchmarking the multi-GPU version. For network sizes
varying from 65K to 4M cells, 10, 100 and 1000 synapses per neuron are simulated.
These simulations are executed on 8, 16, 32 and 48 GPUs. A Gaussian-distributed
network of 4 million cells with a density of 1,000 synapses per neuron executed on 48
GPUs, is setup and simulated in 465.69 seconds, of which the cell-computation phase
takes 4.57 seconds, obtaining a speedup of 50 times the execution time on a single
GPU. A uniform-distributed network of same size and density is setup and simulated in
889.89 seconds of which the cell-computation phase takes 10.09 seconds, obtaining a
speedup of 8 times the execution on a single GPU. For the implemented design, the
inter-GPU communication becomes the major bottleneck, as latency increases when
the sent packet sizes increase. This communication overhead does not dominate the
overall execution while scaling network sizes is tractable. This scalable design gives a
good prospect for neuroscientists, proving that large network-size simulations are pos-
sible, using a multi-GPU setup.
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Introduction 1
The brain perhaps is the central mystery of human life. Biological questions about the
brain are often related to medical investigations and are practical by nature. Neurobiol-
ogists could also ask questions such as: how can diseases such as Alzheimer or epilepsy
be cured? Or, why does the brain respond to this stimulus in this particular way? While
directly accessing various parts of the brain would help better to unravel such diseases,
current methods are either potentially unethical or have limited physical accessibility,
especially in deep brain structures. Many of in-vivo brain related experiments on living
human test subjects are considered unethical and have been long forbidden. Also, results
could easily be contaminated by environmental factors.

An alternative for in-vivo brain experiments is mathematical brain modeling on a
computer, called in-silico experiments. The brain or part of the brain, consisting of cells
the behavior of which can be expressed as mathematical models, could be simulated on
a computer. In-silico experiments give insights on for example, single-cell behavior or
network dynamics of the whole brain. These experiments could deliver breakthroughs,
not only towards curing brain diseases, but also in drug development and the replacement
of animal experiments. On a broader scale, these experiments could one day also answer
more fundamental questions regarding human life.

At Erasmus Medical Centre, a research group under the name Erasmus Brain Project
led by dr. Christos Strydis (www.erasmusbrainproject.com) is working on, among other
things, the acceleration of large-scale brain simulations. This project focuses mainly on
cerebellar models in which various high-performance node technologies such as FPGAs,
GPUs, dataflow engines or multi-core processors such as the Xeon Phi are explored for
delivering largely scalable, high-speed simulation platforms. The end-goal is to provide
scientists with a service that integrates the aforementioned technologies and selects the
most suitable platform for the task, depending on a variety of workload characteristics
[1].

1.1 Problem statement

Neuroscientific researchers often use in silico Spiking Neural Network (SNN) simulators
to validate their hypotheses and reproduce certain brain dynamics. The larger and more
complex a simulation becomes, the more computationally intensive it will be. Current
simulators do no scale linearly to realistic problem sizes (e.g. >100,000 neurons), which
makes them impractical for researchers. Also, these simulators take the easy way out,
using single or multiple (but isolated) GPUs to perform large-scale simulations. There is
much to be gained by performing true multi-GPU simulations now that the technology
is finally here.

The goal of the thesis is to explore the use of true multi-GPU acceleration on com-
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2 CHAPTER 1. INTRODUCTION

putationally challenging brain models and to assess the scalability of such models given
sufficient access to multi-node acceleration platforms. The performance of multiple truly
interconnected GPUs is explored, made only recently possible through enabling NVidia
technologies, for simulating large-scale, realistic, compute-intensive neural models. As
a benchmark an in-house, extended Hodgkin-Huxley, three-compartmental model of the
Inferior-olivary nucleus of the brain is used, which jointly with the cerebellum is respon-
sible for crucial functionality involving motor control, sensorimotor integration, dexterity
and more. Not only the simulation of the cells, but also the setup of the network is taken
into account when designing a multi-GPU version.

Based on the above problem statement, the mission in this thesis is to tackle the
following technical goals:

1. Analyze current SNN model and single-GPU implementation
2. Perform extensive literature survey on existing multi-GPU simulators, platforms

and libraries.
3. Select the most optimal candidate and adopt/extend to fit our advanced SNN

model’s needs.
4. Design, implement and deploy multi-GPU simulator
5. Evaluate performance, scalability and energy-consumption aspects
6. Propose future directions for multi-GPU SNN simulations based on findings.

1.2 Overview

This thesis is structured as follows. Chapter 2 introduces neuroscientific background
knowledge necessary to understand the problem. It also discusses multi-node technology
necessary for tackling the SNN simulation problem. It especially describes a prior research
project of Erasmus which ported the same application to a many-core CPU architecture.
This will serve as comparison basis for the evaluation of the design. The chapter concludes
with a description of the clusters to which the algorithm will be ported.

Chapter 3 gives an overview of the related work of multi-node SNN simulators, tax-
onimized according to necessary aspects and optimization technologies used. At the end
of this chapter, a table is displayed with an overview of the different brain simulators.

Chapter 4 delineates the main architecture of the multi-GPU implementation. It
analyses the currently in the lab existing single-GPU implementation and unveils bottle-
necks. It describes the setup of the network and its synapses and the efforts to optimize
possible performance bottlenecks. The GPU inter-node communication during setup,
the dispersal of the neighboring-neuron information, as well as the communication dur-
ing simulation are discussed. Lastly, the computation of the neighboring neurons is
explained.

Chapter 5 provides an evaluation of the developed simulator to illustrate the speedup
obtained from employing a multi-GPU implementation. It depicts the four phases of
the simulation, which are encountered in order: the neuron cell-network generation, the
cell-identification (cell-id) dispersal, the computation of the cells and the dendrite voltage
communication during simulation. These four phases will be illustrated and discussed.

In Chapter 6, conclusions are discussed and suggestions for future work are made.
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Background 2
This chapter describes the neuroscientific knowledge necessary for understanding the
simulator application and the related work chapter. It focuses on GPU in general and
how GPUs could communicate. Two clusters, the Dutch supercomputer called Cartesius
and the Elastic cloud computing facility by Amazon Web Services (AWS), are discussed.
Because of the similarity to the current research, a research project to port the InfOli
application to the Xeon Phi architecture, is introduced in this chapter. This research
is discussed outside the chapter for the related work and will serve as a format for the
benchmark. This chapter is split up into parts of neuroscientific and engineering related
matters.

2.1 Spiking Neural Networks

A spiking neural network (SNN) is a type of neuron modelling that mimics biological
neural network processes. Next to individual neuronal and synaptic states, an SNN is
also dependent on time. When a neuron fires, a signal is generated which travels to
other neurons which in turn, in- or decrease their potentials. This in- or decreasing of
firing rate across neurons, creating complex patterns when the group becomes larger,
is generally considered to correspond to the interchange of information. Neurons can
exhibit up to twenty different spiking/firing patterns [11]. As a result they can replicate
advanced biological systems. Neurons can be connected to other neurons by a structure
called synapse. A synapse enables neurons to transmit chemical or electrical signals to
other neurons.

There are three main categories for neuron models for SNN: Leaky Integrate and Fire
(LIF), Izhikevich (IZH) and conductance based models of which Hodgkin-Huxley (HH) is
a familiar example. The LIF model is widely used. When the membrane potential reaches
a certain threshold value, the neuron fires a spike and threshold is reset to another value.
It is a simple model because it can only exhibit a few spiking patterns.

The IZH spiking model can display all of the twenty firing patterns. Next to the
membrane potential this model also inhibits a membrane recovery variable. When the
spike reaches its apex, the membrane and recovery variable are reset according to an
equation. It still is a simple model with two state variables and four parameters.

The HH model is a conductance based model. It consists of 4 equations and tens
of parameters describing membrane potentials, activation or inactivation of Na and K
currents. This latter model is bio-physically meaningful and often demands a lot compu-
tational power. The Olivocerebellar model example in [12], generates precise patterns of
complex and simple spiking during the learning process of motor skills and is a relatively
well-charted region of the brain. The modelling accuracy of this model is at the cell con-
ductance level as is displayed by the HH models. In fig. 2.1 the Olivocerebellar circuitry

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: The Olivocerebellar circuitry [1]

is shown. Its brain structure is highly repetitive and basically consists of the granule-cell
layer (GCL), Purkinje-cell layer (PC), deep-cerebellar-nuclei (DCN), and inferior-olive
(IO) nuclei [1].

2.2 Inferior-olivary nucleus

The inferior-olivary (IO) nucleus is one of the most dense regions of the olivocerebellar
system and the neuron of this region are densely interconnected through gap junctions
(GJ). Gap junctions are electrical synapses that allow for rapid communication in the
form of electrical current between two or more neurons. They are considered to be
complex connections associated with important aspects of cell behavior [3].

Neurons can be modeled with multiple compartments. Neurons for the IO in [3] for
instance, are modeled with three compartments: the dendrite, soma and axon according
to [13]. In fig. 2.2 a three-compartment representation of a cell from the IO with GJ’s
is shown. These compartments have electro-chemical characteristics which influences the
overall state of the neuron.
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2.2. INFERIOR-OLIVARY NUCLEUS 5

Figure 2.2: Three-compartment dynamics of the IO cell [2]

Figure 2.3: A neuron pair connected through a synapse [3]

Figure 2.3 illustrates a neuron pair with different compartments of the cell and its
synapses. The part around the nucleus is called the soma. Connected to the soma are
the branch shaped dendrites and the axon. The dendrites receive the signals from other
cells, usually through the axon which transmits the electrical stimulation. The axon of
the presynaptic cell is connected with the dendrites of postsynaptic cell, through the
axon tips. When the presynaptic cell fires, it can electrically activate the postsynaptic
cell via the axon through the dendrites, over the synapses or gap junctions.
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2.3 Multi-node accelerator technology

To analyze related simulators and to understand how to port a simulator to a High Perfor-
mance Computing (HPC) cluster, an understanding of the clusters, libraries, scheduling
managers, launchers and hardware is required. The following sections will go in to details
about the aforementioned subjects, before going on to the related work survey on SNNs
and to discuss the selected clusters.

The IO nucleus model has a high computational complexity due to the fact that
a large number of floating-point operations need to be performed [14]. This makes it
an excellent target for high performance computing fabrics such as the GPU. An HPC
cluster is an ensemble of computing nodes often consisting of different architectures, such
as the prominent GPU technology. The GPU can be used to offload the CPU’s compute-
intensive parts of an application. The GPU’s massively parallel SIMD processing power
can boost performance significantly.

2.3.1 GPU technology

A GPU consists of hundreds to thousands compute cores, while a CPU often consists
of 4 to 8 larger cores. Nvidia’s Tesla GPUs are designed to perform as computational
accelerators optimized for scientific computation. As of November 2018, according to
the TOP500 list of high performance computing, the Tesla GPUs power the worlds two
fastest supercomputers: Summit and Sierra, having a peak performance of 187,659 and
125,435 TFLOPS per second, respectively.

CUDA is an application programming interface (API) developed by NVidia which
enables the usage of GPUs for general-purpose processing. It gives access to the GPUs
instruction set and parallel computational elements [5]. To provide data parallelism, a
CUDA application is partitioned in blocks of threads which execute concurrently. The
collective network of blocks is called a grid. On device level, these blocks are allocated
on streaming multiprocessors (SM), where they are divided into units called warps. In
fig. 2.4 the relation between threads, blocks and the grid and their compute units is
visualized.

When blocks are done executing, new blocks are launched on the SMs. SMs consist of
a number of: CUDA cores for arithmetic operations, special function units for floating-
point functions and warp schedulers. The GPU architecture determines the size of the
warp. When an SM is given warps to execute, they are distributed among the schedulers,
which at every instruction deploy moment, issue one or two independent instructions for
one of its assigned warps. When warps wait for the previous instruction to finish, the
scheduler will select another warp to execute. Each thread in a warp is assigned to a
compute core and executes the same kernel. Warps from different blocks can be executed
concurrently.

SMs have access to the GPUs global memory and all have a local memory, this holds
also for the individual cores. Threads have their own local memory and registers. All
blocks can access, a texture-, global- and constant memory, which are all are cached. SMs
have a level-1 cache for global memory and share a level-2 cache. Figure 2.5 shows the
SMs and their relation to memory, in which the device memory is a collective for global,
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Figure 2.4: Threads, blocks and grid related to processing structure on the GPU [4]

Figure 2.5: Hardware model showing SMs and memory resources [5]

constant and texture memory.
Kernels are written using the CUDA instruction set architecture called PTX, which

has an assembly-language style syntax with instruction operation codes and operands,
however it is more effective to use the higher-level programming language C. In both
cases, kernels must be compiled using the nvcc compiler.

The purpose of the GPU design is to hide memory latency, which occurs whenever
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data is accessed from main memory. The GPU hides latency by instantiating multiple
threads per core and switching between threads. While one thread is waiting on data
from main memory, another tread is started and does its part until it also is stalled by
memory access. There should be enough threads to hide memory latency but too many
threads may lead to a degradation in performance due to the reduction of resources per
thread.

An indication of an effective ratio of threads versus latency is the metric occupancy.
Occupancy is defined as the ratio of active warps to the maximum number of warps
supported on a SM and is determined by the amount of shared memory and registers used
by each thread block. The registers are a shared resource that are allocated among the
thread blocks executing on a SM. Maximizing occupancy can cover latency during global
memory loads. The CUDA-compiler attempts to minimize register usage to maximize
the number of thread blocks that can be active in the machine simultaneously [5].

2.3.2 GPUdirect

In a cluster, the connection of nodes among themselves is called inter-node connection.
The connection of computational units within the nodes is called intra-node connection.
The NVLink hardware from NVidia, currently has the highest bandwidth for intra-node
communication. It has a memory bandwidth of 160 GB/s for the P100 GPU and up to
300 GB/s for the V100 GPU. If NVLink is not available, usually PCI-Express is used,
limiting the connection to a bandwidth of 32 GB/s.

GPUdirect is a software technology which provides high-bandwidth and low-latency
communications directly between multiple GPUs. It is an umbrella term to refer to
specific technologies and covers intra-node and inter-node communication. The main
two technologies under this umbrella are Peer-to-Peer (P2P) and Remote DMA (RDMA).
P2P transfer technology was introduced in CUDA 4.0 and allows for fast transfers intra-
node but does nothing for memory transfers inter-node. It allows for buffers to be copied
directly between the memories of GPUs. It employs Unified Virtual Addressing (UVA),
which was introduced in CUDA 3.1. With UVA, the host memory and memory of all
GPUs in a system are combined into one large virtual address space [15]. A prerequisite
for P2P is that source and destination device need to be attached to the same PCIE
root complex, the application needs to be 64-bit and the operating system must enable
the Tesla Compute Cluster (TCC) option. RDMA, introduced in CUDA 5.0, allows to
initiate memory transfers between GPUs in a cluster over PCIE or Infiniband. RDMA
allows the GPU to send data directly through Infiniband to a remote system without any
interactions with the CPU and is available for the Tesla and Quadro accelerator cards,
starting from the Kepler architecture onward. In fig. 2.6 the memory-transfer paths are
shown with and without GPUdirect.

MPI, is the standard API for communicating data via messages between distributed
processes, that is commonly used in HPC to build applications that can scale to multi-
node computer clusters [15]. When programming on a cluster, three libraries implement-
ing MPI are commonly used: OpenMPI, MVAPICH and Intel MPI. OpenMPI is a library
project combining many technologies from other projects (FT-MPI, LA-MPI, LAM/MPI,
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Figure 2.6: Memory transfer paths [6]

and PACX-MPI) and is used by many super computers. MVAPICH is an implementa-
tion of MPI following the MPICH standard. MPICH is a freely available and portable
implementation of MPI. The Intel MPI is a multifabric message-passing library that also
implements the open-source MPICH specification, used to accelerate applications based
on cluster technology from Intel.

CUDA-aware MPI (CAM) libraries are the result of the effort of combining the two
parallel programming approaches MPI and CUDA. Basically it enables users to accelerate
applications with multiple GPUs or to enable single node multi-GPU applications to scale
across multiple nodes. OpenMPI and MVAPICH2 are CAM libraries which implement
GPUdirect. The version MVAPICH2-GDR has support for Infiniband and GPUs.

These libraries enable the direct passing of the GPU buffers pointers to MPI, instead
of needing to stage GPU buffers through host memory using cudaMemcpy, resulting in a
direct write from one device to another (RDMA). If RDMA is used when the architecture
doesn’t support it, the calls for the Message Passing Interface (MPI) will still return
successfully, however they will be performed through the standard memory copy paths
[16].

GPUdirect can improve performance by reducing latency for small messages, as can
be observed in fig. 2.7. It outperforms the Intel MPI and MVAPICH even when message
sizes go up. It reports the lowest latency of these techniques for smaller message sizes.
Even for larger message sizes, OpenMPI outperforms its competitors, as can seen in
fig. 2.8. These results have been obtained on the Cartesius cluster by Cartesius.

Neurons in an SNN, in particular in the IO, are often randomly interconnected by
some sort of distribution process. If a cell network is distributed across a GPU cluster,
cells will most likely need information from cells hosted on other GPUs. The message
size of the data to be send, does not have a fixed size and can even vary greatly among
the GPUs. Data movement across GPUs intra- or inter-nodes, could form a serious
bottleneck for larger SNNs. Simulators which have GPUdirect implemented preferably
through OpenMPI, thus could offer an efficient solution.
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Figure 2.7: Latency specification for GPUdirect on Cartesius [7]

Figure 2.8: Bandwidth specification for GPUdirect on Cartesius [7]

2.3.3 Xeon Phi technology

In [14] a multi-node version of an extended Hodgkin-Huxley simulator has been bench-
marked on 1 to 8 of Intels Xeon PHI chips with Knight Landing (KNL) architecture.
Because this paper comes close to the implementation developed in this thesis this will
serve as a format for the benchmarks in the results section and as a comparison. Since
this close relation this subject is treated in the background section but could also be con-
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sidered as related work discussed in chapter 3. In this and the next section a comparison
between the KNL and GPU is made.

The power of the the KNL comes from the 64 cores able to dispatch 4 instruction sets
simultaneously. When employing n KNL processors, a degree of nx256 of thread-level
parallelism is reached. Each core utilizes two 512-bit wide vectorization processing units
(VPU’s) which enable AVX512 instructions for parallelized data processing. These cores
have a private level 1 and shared level 2 caches and have different configurations how to
distribute memory address space across the chip. The cores are connected through the
level 2 caches in a mesh fashion using the Omni-Path interconnect for high bandwidth
and low latency scaling between nodes, meaning that the processors are not connected
all to all.

A feature aiming at reducing memory-access latency, is the 16 GB multi-channel
DRAM (MCDRAM). It is a high-bandwidth memory (400 GB/s), spatially located next
to the processing cores which has a significantly higher bandwidth than the 384 GB
DDR4 RAM (90 GB/s), also available. This memory is configured serving as a last level
cache, because larger networks cannot be allocated on the 16 GB entirely.

A 4:64 MPI:OMP ratio is maintained, which means that 4 MPI ranks spawn 64
OpenMP threads. Each neuron is assigned to a single thread and each thread handles an
equal number of neurons to balance computational workload. With this configuration it
is possible that MPI communication between ranks - when dendrite voltages need to be
calculated - can happen on the same KNL node.

Good simulation results are reported for the Xeon Phi implementation. For instance,
the computation times for a 2B cell Gaussian distributed network with a density of 1000
neurons per cell, lies between 40 and 50 seconds, executed on 8 KNL nodes. A 1B cell
uniformly distributed network with a density of 1000 neurons, which executes best on 2
KNL nodes, runs within 400 milliseconds. Erratic behavior is obtained when 8 nodes are
used for execution of large uniformly distributed networks, stating the fact that adding
more hardware will not benefit these types of network for this architecture. The reason
given for the fact that a 2B version of the aforementioned network cannot be run, is
an increase in communication between the cores and memory access of the cores, since
the caches are not able to store all the required data, forcing processor cores to search
in non-local caches. In this article no times for the setup of the network are portrayed.
The mentioned computation times only depict a part of the total simulation, whereas the
setup time of a network of cells often is the bottleneck in the simulation. In this thesis
all phases of the simulation will be benchmarked and discussed.

2.4 Cluster technology

A number of clusters have been considered to host the multi-GPU version of the InfOli
application. The Texas Advanced Computing Center (TACC) has a cluster called Fabric
which has Power8 nodes equipped with K40M GPUs, however the nodes are not equipped
with Infiniband network adapters necessary for GPUdirect. The eXtreme Science and
Engineering Discovery Environment (XSEDE) hosts a number of heterogeneous clusters
among which is Comet, belonging to the San Diego Supercomputer Center (SDSC). The
Comet cluster has 72 nodes with in total 432 modern GPUs interconnected with Infini-
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band adapters. This is a very suitable cluster, however only accessible for US citizens or
through the NeuroScience Gateway (NSG). The NSG, a portal for computational neu-
roscience, hosts a number of brain applications some of which are discussed in the next
chapter. The NSG does not allow the execution of self-developed brain applications, mak-
ing it unsuitable for the current setting. TU Delft hosts a cluster called the Distributed
ASCI Supercomputer 4 (DAS-4) which is part of a six-cluster wide-area distributed sys-
tem spread out through The Netherlands. However, this cluster contains 8 nodes each
with a single consumer grade GPU not suited for GPUdirect and thus not suitable for
the task at hand. The Amazon AWS cluster and the Dutch supercomputer Cartesius
were found to be the most suitable High Performance Computing clusters for hosting
and benchmarking the InfOli application.

2.4.1 Cartesius

Cartesius is a Bullx system extended with one Bull sequana cell. It is a clustered SMP
(Symmetric Multiprocessing) system built by Atos/Bull. SMP is a multiprocessor com-
puter consisting of one or more identical processors connected to a single shared memory,
having full access to all in- and outputs and controlled by a single operating system. The
Cartesius cluster consists of many heterogeneous nodes. The GPU accelerator island
consists of 66 Bullx B515 GPGPU accelerated nodes. Each one of these nodes consist of:
2 x 8-core 2.5 GHz Intel Xeon E5-2450 v2 (Ivy Bridge) CPUs/node, 2 x NVidia Tesla
K40M GPGPUs/node and 96 GB of memory per node. These Xeon processors and their
8 cores could be used to feed the GPUs their data.

The Tesla K40M is a server-grade PCI-express accelerator board comprised of a single
GK110B GPU with NVidia Kepler architecture. It has 2880 processor cores which run
at a base clock of 745 MHz. It offers a total of 12GB of GDDR5 comprised of 24 pieces
of 256M x 16 GDDR5 SDRAM on-board memory running at 3.0 GHz and with a bus
width of 384-bit, totaling the memory bandwidth to 288 GB/sec. The RDMA feature in
GPUdirect allows third party devices such as Network Interface Cards (NIC) to directly
access memory on multiple GPUs within the system, significantly decreasing the latency
for MPI send and receive functionality. It also reduces memory bandwidth and frees the
GPUs DMA engines for other CUDA tasks.

The K40M also supports GPUdirect P2P, as described in section 2.3. However when
the topology of the nodes are checked, it was found that the GPUs are not connected
to the same root PCI complex, a prerequisite for the P2P functionality. Intra-node
communication between nodes using the improved RDMA technology on Cartesius is not
possible. Thus, per node of the cluster 1 GPU will be utilized such that RDMA can be
made use of, limiting the scaling of the algorithm to a maximum of 66 GPUs, of which
58 are currently in use.

The GPGPU nodes have two Mellanox ConnectX-3 Infiniband adapters: one per
GPGPU, providing 4 x FDR (Fourteen Data Rate) resulting in 56 Gbit/s inter-node
bandwidth. These Mellanox NICs support RDMA, enabling the GPUs to directly access
the memory on multiple GPUs within the system. Each node runs under one operating
system, bullx Linux, which is a Linux distribution compatible with Red Hat Enterprise
Linux and shows a single memory image to the user programs.
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Figure 2.9: Slurm components [8]

1 srun −−nodes 16 −−ntasks 16 −−partition gpu_short −−time=1:00:00 ./
your_application

2

3 sacct −−format consumedenergyraw,elapsed,jobid,MaxRSS,AveRSS

Listing 2.1: Typical srun and sacct command

2.4.2 SLURM

Cartesius uses Simple Linux Utility for Resource Management (SLURM) for cluster man-
agement [8]. SLURM is used on 60% of the TOP500 supercomputers. It’s an open source,
fault-tolerant, and highly scalable cluster management and job scheduling system for large
and small Linux clusters. It has three key functions. First, it allocates exclusive and/or
non-exclusive access to resources (compute nodes) to users for some duration of time so
they can perform their jobs. Second, it provides a framework for starting, executing,
and monitoring work (normally a parallel job) on the set of allocated nodes. Finally, it
arbitrates contention for resources by managing a queue of pending work.

SLURM consists of a slurmd daemon running of the compute nodes and a central
slurmctld daemon running on a management node. The SLURM components are shown
in fig. 2.9.

The entities managed by SLURM include nodes, the compute resources, partitions,
which group nodes into logical sets and jobs, which are allocations of resources assigned
to a user for a specified amount of time. Partitions can be seen as job queues to which
constraints such as job size limit or job time limit can be assigned. When a job is
submitted, SLURM will run this job once the resources become available and constraints
have been met.
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Name Max wall-time (d-hh:mm:ss) Max #nodes Description
GPU 5-00:00:00 48 for production runs
GPU_short 01:00:00 64 for test and debug runs

Table 2.1: GPU partition overview for Cartesius

Frequently used commands are:
• srun: submit jobs
• sbatch: submit a job script for later execution
• squeue: reports the state of jobs, can be filtered on user
• scancel: cancels pending or running jobs
• sinfo: displays the state of partition and nodes
• sacct: display information about finished tasks

The srun command is used to submit jobs for execution. It is basically a wrapper
around the launcher mpirun. Mpirun attempts to determine what kind of machine it is
running on and start the required MPI jobs on that machine. It controls several aspects
of program execution in OpenMPI and uses the Open Run-Time Environment (ORTE)
to launch jobs. The srun command has a number of options to specify resource require-
ments, such as minimum and maximum node count (–nodes), the number of tasks per
node (–ntasks), the partition requested and/or the maximum time constraint (–time).
The following command is a typical srun execution; it will run your_application on 16
GPUs launching 1 task per node for a maximum wall-clock time of 1 hour. To collect
energy and/or memory information for finished jobs the command sacct is executed,
also shown in listing 2.1.

On Cartesius a number of partitions are available to launch on, of which 2 are for
GPUs. Their specifications are displayed in table 2.1. System usage is measured in
System Billing Units (SBU) which is based on wall-clock time. For GPU nodes, 1 SBU is
equal to 1 core for 20 minutes. A "core hour" on a GPU node is three times as expensive
as a "core hour" on a fat or thin compute node. The budget-overview command gives
an overview of the remaining budget related to finished or running tasks.

2.4.3 Amazon Web Services

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure,
re-sizable compute capacity in the cloud. The elastic feature allows to obtain new server
instances in minutes, enabling the option to quickly scale capacity, both up and down
as the computing requirements change. The EC2 is different than the Cartesius cluster.
Cartesius has all its compilers, launchers and schedulers pre-installed and modules are
loaded with the simple load module command. Amazon lets the user configure the nodes
himself.

The partitions on Cartesius are called instances on EC2 and it has a lot more in-
stances than Cartesius. When launching an instance, an Amazon Machine Instances
(AMI) has to be selected. These AMI’s are pre-configured operating systems with cer-
tain software already on board but often applications, libraries, modules or configurations
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Model GPUs vCPU Mem (GiB) GPU Mem (GiB) GPU P2P Networking
p3.2xlarge 1 8 61 16 - Up 10 Gbit
p3.8xlarge 4 32 244 64 NVLink 10 Gbit
p3.16xlarge 8 64 488 128 NVLink 25 Gbit
p3dn.24xlarge 8 96 768 256 NVLink 100 Gbit

Table 2.2: AWS P3 compute instance overview

have to be installed manually. Next to this, EC2 works with so called IAM user profiles.
These profiles enable system administrators to administer profiles with only the required
authorization level a user needs.

The GPU compute instances are comprised of up to a maximum of 8 NVidia Volta
V100 GPUs. The V100 has 5120 cores running at 1230 MHz, 16 GB of HBM2 memory
at 900 GB/s. The V100 enable the instance to have up to 1 Pflops of mixed (16 and 32-
bit)-, 125 Tflops of single-, and 62 Tflops of double-precision floating point performance.
NVLink interconnect allows GPU-to-GPU communication at high speed and low latency
intra-node. An overview of the instance option for a p3 accelerated compute instances
are given in table 2.2.

EC2 offers 3 different NICs for inter-node communication. The fastest is the Elastic
Network Adapter (ENA), a networking chip based on ARM chips, which assures 25 GB/s
of dedicated network bandwidth. Next to this, there is also a service called Elastic
Fabric Adapter enabling 100 GB/s networking and having a latency of 15us. Each
instance of type p3.16xlarge would allocate 488 GB of DRAM and 64 virtual CPU’s
based on custom Intel Xeon E5 Broadwell processor.

To enable the elasticity, a burstable and event-driven HPC Cluster on AWS using
SLURM has been deployed, according to [9]. SLURM has an elastic plugin, which allows
the coordination of a launch of a set of compute nodes with the appropriate GPU network
topology. The job resource can be launched on demand instead of fitting a job in an
existing compute topology, like Cartesius. In fig. 2.10 the architecture of this burstable
cluster is shown.

This burstable cluster needs to be set up through a cloud formation script, which
contains information about certain settings such as: which AMI to use as base and
which version to use, etc. Cloud formation provides a common language to describe and
provision all the infrastructure resources required in your cloud environment. This script
will enable a single instance, R4 in the architecture overview, which will enable user to
burst compute instance necessary for the application to run. Input files can be delivered
into an S3 bucket, which is an AWS resource for storing and managing files. An S3 bucket
has a globally unique name shared by all AWS accounts. AWS provides an S3 API to
work with this storage technique.

Unfortunately, for a user to acquire the right authorization to proceed in setting up a
cloud formation, a lot of different authorization levels have to be entered. For instance,
when creating the burstable cloud, a user needs to create or delete certain roles associated
with the process. A user can have the rights to delete a profile, however she also needs
to have the rights to show the user profile. After many weeks of deliberation with the
support desk, a cloud formation was obtained, but that delayed the implementation
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Figure 2.10: Burstable AWS architecture using SLURM elastic [9]

significantly.

2.5 Summary

This chapter has delineated the necessary neuroscientific knowledge and HPC technology.
Cluster hardware and software has been analyzed. Cartesius is ready-made and AWS
needs more effort to configure the compute facility. Acquiring authorizations for the
AWS cluster delayed the development for the InfOli application. The Cartesius cluster
proved to be the most suited facility to host and benchmark the InfOli application.

The GPUs to work with and the software for scheduling tasks are known. Limit-
ing factors of the GPUs are the bus- and bandwidth of the memory used. Libraries
and interfaces of the individual nodes have been studied. The MPI-CUDA inter-node
communication has good performance but will always serve the application best if com-
munication packet size is kept at a minimum. A multi-GPU version should there be
efficient in keeping the data communicated over the network as few as possible.

In Table 2.3 the aforementioned specifications with regards to computing units on the
nodes of the clusters are summarized. Ranked in terms of performance with the fastest
first they could be ordered as V100, KNL and K40M.
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Architecture KNL K40M V100
Cores 64 2880 5120
Clock (MHz) 1400 745 1230
Memory
On Chip (GB) 16 12 16

Memory
Type MCDRAM GDDR5

SDRAM HBM2

Bandwidth
(GB/s) 400 288 900

Memory
bus width (bit) 384 4096

FP32 (Tflops) 6 4.29 15.7
FP64 (Tflops) 3 1.43 7.8
Multiprocessors NA 15 64
Resident threads per multiprocessor NA 2048 2048
Technology (nm) 14 28 12

Table 2.3: Comparison of important architecture specifications
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Related work: Neural network
simulators 3
This chapter discusses the related simulators which have similar functionality as the
IO simulator considered in this thesis. It taxonomizes the simulators, as explained in
chapter 2, on support for: LIF, IZH, and HH models, gap-junctions, multi-compartments
and neuromorphic or general purpose multi-node technology, in particular for the GPU.

To model neurons for simulations, tools or languages have been developed to unify
this process. NeuroML, CellML and Systems Biology Markup Language (SBML) are
declarative modeling tools that use XML based descriptions to provide a common data
format and the exchange of descriptions of neuron cells and networks. PyNN is a Python
based procedural simulator-independent language for building neuron networks. When
one of these tools is used as a front-end to the simulator, the LIF, IZH and HH models,
gap junctions and multi-compartment capability are supported.

3.1 SpiNNaker

The SpiNNaker project has its architecture inspired by a human brain [17]. It is a massive
parallel computing platform which targets neuroscience, robotics and computer science
as main area of research. It supports building neural networks in the PyNN description
language.

Its neuromorphic hardware consists of over a million of ARM A9 cores and 7T of
RAM distributed amongst its network, giving them a bandwidth of 5 billion packets per
second. The largest of its form is capable of simulating billions neurons. The machine
consumes at most 90 kW of electrical power.

During the design of the architecture of SpiNNaker, three principle axioms of parallel
machine computing have been discarded: memory coherence, synchronicity and commu-
nication determinism, without loosing the ability to perform meaningful computations.
SpiNNaker uses inherently unreliable simple spikes (packets) to communicate, no larger
than 72 bits. Therefore, fault recovery mechanisms have been built in at many levels of
abstraction. Mimicking the brain also entails breaking up complex tasks, like vision, into
many simple computations which can be parallelized.

SpiNNaker source code is accessible through GitHub and their half-million core ma-
chine, is accessible through the human brain project portal as an online server.

3.2 Brian

Brian is written in Python and is available on almost all platforms. Brian has an exten-
sive modeling environment and has the option to be driven by (stochastic) differential
equations.
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Custom models are entered as equations and thus has support for LIF, IZH and
HH neuron models. Also PyNN can serve as an input to Brian. Brian has support for
conditional, probabilistic and multi synapses and also gap junctions can be modeled.
Brian supports multi compartment models. It is possible to create neuron models with a
spatially extended morphology, using the SpatialNeuron class. This works the same way
as creating a neuron, but now the elements are compartments instead of neurons. These
morphologies can be created combining geometrical objects. The length and diameter of
each object can be specified, representing individual compartments. Tree structures can
then be created by attaching morphology objects together.

Brian has single GPU support in the form of Brian2CUDA (B2C), which generates
C++/CUDA code to run on NVidia GPUs. Another back-end that can be used to execute
Brian generated models on GPUs is simulator/code generator GeNN [18]. GeNN consists
of a C++ source library that generates CUDA kernels and runtime code according to a
user-specified network model. GeNN and Brian2CUDA are single GPU orientated. Brian
can serve as a front-end for the SpiNNaker project described in section 3.1. This project
however has its latest commit dating four years ago and seems to have been abandoned.

3.3 DynaSim

DynaSim is an open-source Matlab/GNU octave toolbox for rapid prototyping of neural
models and batch simulation management. It is designed to speedup and simplify the
process of generating, sharing and exploring network models of neurons with one or
more compartments [19]. GNU Octave is a high-level language, primarily intended for
numerical computations [20].

Neuron models can be customized by using modules written in C, C++ or Fortran.
Examples of LIF, IZH and HH models are found in their documentation. Besides these
models DynaSim supports multi-compartment neurons, however it recommends using
NEURON when complex morphologies come into play. In the listed synapse support, a
connection mechanism for gap junctions can be found, identified as "Ohmic gap junction".

Next to the fact that a SNNs created in DynaSim could be run on a NEURON,
Brian or NEST, it also has native support executing simulations parallel using multi-core
processors and high performance clusters. It enables distributed simulation by setting
parfor_flag and cluster_flag to 1, for multi-core and cluster support.

The parfor_flag originates in the Matlab Parallel Computing Toolbox (PCT). This
toolbox uses parfor as a statement indicating to execute the marked for-loop iterations
in parallel on workers in a parallel pool. The PCT enables the solving of computa-
tionally and data-intensive problems on, for instance, CUDA-enabled NVidia GPUs and
clusters without using CUDA or MPI programming. However, the parfor instruction for
GNU/Octave toolbox reduces to a simple for loop [21]. The status of a cluster imple-
mentation henceforth, remains unclear.

The Sun Grid Engine (SGE) is responsible for accepting, scheduling and managing
the distributed execution of parallel jobs. The SGE command qsub is invoked to queue
the job created and has multi-GPU supported batch options [22].

Benchmarking results for DynaSim simulations runs are only reported as a comparison
between Brian and DynaSim, without information on which back-end was used. No source
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code or documentation about a multi-GPU implementation are reported. A multi-GPU
implementation for DynaSim, thus remains only possible in theory.

3.4 CARLsim

The Cognitive Anteater Robotics Laboratory simulator (CARLsim), is a GPU-
accelerated library for simulating large-scale SNNs [23]. Parameter details at synapse,
neuron or network level can be specified in a PyNN-like programming interface in C/C++.
Currently the 4 and 9 parameter IZH with either current-based or conductance-based
synapses and LIF models are supported. The HH is not supported.

Neurons in a group can be extended to include multiple compartments. For instance,
a group of neurons can be extended to include a dendritic current coming down from a
"mother" up to multiple "daughter" compartments. CARLsim has supports for chemical
but not for electrical synapses also known as GJ [24].

CARLsim 4.0.0 beta allows for concurrent simulation on up to 8 GPUs in a single
simulation. The function CARLsim:createGroup is used to create a group of neurons,
which has parameters to specify the preferred GPU partition (0-7). The created groups
can then be connected to create, for instance, an all-to-all connected model. MPI and
inter-node communication are not supported. Only consumer grade GPUs are supported
and therefore P2P technology is not applicable. The message passing between GPUs is
staged through the host and device memory.

CARLsim employs a reduced Address-Event Representation (AER) communication
protocol for efficient encoding of neuronal communication [25]. AER stores spike events
by representing it as an address-time pair. This protocol limits memory bandwidth and
reduces memory usage. Duplicate stores may occur when many neurons have the same
time step.

To maximize the degree of parallelization, CARLsim employs two approaches to assign
SNN computations to threads. These approaches are called N-parallelism (NP) and S-
parallelism (SP). NP makes the distinction between organizing computations according to
neuronal activity and SP according to synaptical activity. The best results are obtained
when a hybrid form between both approaches is used. This reduces load balancing and
warp divergence, and increases the overall memory bandwidth. Warp divergence occurs
when threads in a warp don’t do the same thing at the same time; this can lead to
parallel inefficiency. Sparse representation techniques are implemented for spiking events
and neuronal firing to decrease memory and bandwidth usage.

Because CARLsim is still a beta version no benchmarking results for the multi-GPU
implementation are available. Results from previous versions of CARLsim report that
newer hardware and the implemented S-parallelism for the GPU platform, led to 60
times faster execution in comparison to their CPU implementation for a specific network
configuration.
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3.5 NEST

The Neural Simulation Technology Initiative (NEST) is a simulator for SNN models that
focuses on the dynamics, size and structure of neural systems rather than on the exact
morphology of individual neurons [26]. NEST is ideal for simulating SNNs of any size for
example for models of information processing or models of learning and plasticity.

NEST provides over 50 neuron models. These models include LIF with current or
conductance based synapses, IZH or HH models. NEST also support the creation of
multi-compartment neurons.

A number of connection strategies can be applied: one-to-one, all-to-all, convergent
and divergent and Pairwise-Bernouille. The latter strategy enables the random generation
of connections through the Bernouille probability function. If these connection strategies
are not sufficient, topology connections which provide more sophisticated functions, can
be administered. This topology provides NEST with an interface for creating complex
networks with a spatial structure.

NEST provides over 10 synapse models. Next to chemical synapses, NEST also
supports the electrical bidirectional gap junctions for the HH model. The creation of
gap junctions is restricted to one-to-one or all-to-all connections with equal source and
target populations because for each created connection a second connection with the
exact same parameters in the opposite direction is required. Random connections cannot
be employed for the creation of gap junctions. They have to created on the Python level
implementing the random module of the Python Standard library. The drawback here
is that on this level it serializes the connection procedure in terms of computation time
and and memory in distributed simulations.

NEST is capable of running simulations on multi-core/-processor machines and com-
puter clusters using two ways of parallelization: thread-parallel simulation and dis-
tributed simulations. OpenMP and MPI are applied to achieve implementation of these
forms of hybrid parallelism. Threads with processes related to the neurons are distributed
round-robin onto the MPI processes. A global spike exchange mechanism updates the
neurons on the different nodes except when nodes originate and terminate at the same
device. In this case the spike exchange is handled by the virtual process to which the
neuron in assigned. Before spikes are exchanged they are copied from the spike register
to a communication buffer. Once all buffers are set up the buffers are exchanged between
MPI processes. The NEST architecture allegedly scales to the largest petascale computer
available today, but a multi GPU implementation does not exist.

A NEST affiliated research group called Jülich Supercomputing Centre (JSC), has
done interesting analysis of parts of parallel simulation technology [27]. Their research
includes different malloc-ing functions, which alleviate the time taken to construct a
neuronal network and a memory model that allows the prediction of memory usage related
to the number of MPI processes, which help developers find scalability bottlenecks.

3.6 (Core)Neuron

NEURON provides a powerful and flexible environment for implementing biologically
realistic models of electrical and chemical signaling in neurons and networks of neurons
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[28]. It lets researchers focus on the high-level neuroscience questions without having to
go through lower level mathematical questions.

Neuron modeling comes in the form of the high level language NMODL, which allows
the expression of models in terms of kinetic schemes or sets of simultaneous differential
and algebraic equations. Kinetic schemes are a network of states of which the connections
between them, represent the transitions of a dynamical process The constructed models
can be published in ModelDB, a database for neuron models. ModelDB contains over
a thousand of neural models and many variants of LIF, IZH and HH models can be
downloaded for simulation.

The interpreted C-like language ’hoc’ has been extended to include function specific
properties to the domain of modeling neurons in terms of familiar idioms instead of
differential equations in C. It is used to define the morphology and membrane properties
of neurons and control the simulation.

NEURONs multi-compartment equivalent is called a section, which is referred to as an
unbranched cable. Sections can be connected to form branched trees of which biophysical
and anatomical properties can vary along its length. Gap junctions are supported and
are called point processes.

CoreNEURON is a simplified engine for the NEURON simulator optimized for both
memory usage and computational speed. Its goal is to simulate larger network models
on modern supercomputing platforms and to reduce memory footprints. It can target
both CPU and GPU architectures. It only supports fixed time-steps and depends on
NEURON to build the network model.

CoreNEURON is used by distinguished institutes as the Jülich Supercomputing Cen-
tre and the École polytechnique fédérale de Lausanne (EPFL) to do the HPC computation
for the Blue Brain Project (BBP). The BBP is a Swiss initiative, with the aim of dig-
itally reconstructing a brain by reverse engineering mammalian brain circuitry, using a
Blue Gene supercomputer. Blue Gene is a project by IBM, building a supercomputer
reaching Pflops of computations with low power consumption. The BBP falls under the
same umbrella as The Human Brain project (HBP), which has a wider scope, namely
revolutionizing the Alzheimer research, replacing the need of certain animal experiments
and simulation driven drug discovery [29].

Support for GPUs comes in the form of using the Open Accelerators (OpenACC)
programming model which uses an compiler known as Portland Group Inc (PGI) accel-
erator compiler. OpenACC a programming standard for parallel computing, developed
amongst other by NVidia, provides compiler directives that specifies loops and regions
of code to be implemented on a high performance computing device. The PGI compiler
acts on the directives to accelerate applications by mapping it onto accelerator hardware
like GPUs and can target NVidia’s Tesla GPU accelerators. PGI compilers also support
OpenMPI with GPUdirect, which is configured to use Infiniband hardware if available in
the system. However, CoreNEURON does not use for GPUdirect explicitly.

3.7 HRLSim

HRLSim is a high performance spiking neural network simulator for GPU clusters. This
GPU simulator is driven by the need for support of the neuromorphic hardware for the
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Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) project[30].
SyNAPSE is a DARPA program, its goals are to build a cognitive computer with similar
form, function and architecture to the mammalian brain. SyNAPSE is a joint venture
funded by Hughes Research Laboratories (HRL), Hewlett-Packard and IBM Research.
HRLSim is not an open source project and not active because no publications are found
after 2015. In 2010, MIT listed its chip to learn like the brain by altering synapses in
their top ten of breakthrough technologies.

HRLSim supports LIF and a simple Izhikevich model and allows for excitatory and
inhibitory synapse modeling, but makes no explicit statements about GJ modeling. A
network model is developed in an environment with C++/PyNN like interface.

To achieve optimal performance across the nodes, communication and computation
are parallelized and overlapped as much as possible. For communication sending and
receiving are two distinct parallel processes, next to computation. The communication
threads are allowed to finish in maximum time while communication latency is masked
with computational overhead.

To optimize simulation in terms of execution time HRLSim presents three main as-
pects of its form of communication. Dummy neurons provide a mechanism for compress-
ing the amount of transferable data and remove the need for extra look-up tables to
deal with external efferent connection [30]. A novel dynamic spike packing is used to
reduce the cost of message passing by placing an upper bound on the amount of data
sent regardless of the spike rate of the network. It switches dynamically between AER to
a bit representation of the outgoing ensemble of neurons. MPI is used to perform inter-
node communication. Spikes are packaged together according to their destination nodes
and for Infiniband-based communication the non-blocking P2P methods MPI_Isend and
MPI_Irecv perform best.

The following CUDA features were used to optimize the implementation:
• Using network statistics for selecting the grid/block size
• Memory access based on firing rate, led to a dynamical postsynaptic update function
• Kernels that don’t depend on large memory copies are assigned to separate streams

to execute in parallel
• Reduced precision integer approximation
• Aligning of synapse related data-structures to prevent overlapping memory access
• Distinct kernel for spike message packaging to off load communication threads

For results they report that a 110K neuron and 11M synapse network for 100 time-
steps is simulated in 99 seconds on a Tesla C1060 card. To test scaling across nodes, a
100K neuron SNN was simulated on 2, 4, 8, 16, 32, and 64 GPU cards. It was concluded
that HRLSim scales well when network sizes increase. They conclude that computational
bottlenecks are the integration/synaptic (GJ) updates and the message packaging.
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3.8 Neurokernel

In contrast to general-purpose brain simulators, Neurokernel’s goal is to develop an open
software platform written in Python for the real-time emulation of the entire brain of the
fruit fly operating on a multi-GPU back-end. [31]. They use photo-receptors to model
the retina and lamina of the fly. The brain of the fruit fly is only 135.000 neurons in size
but can display complex behavior.

The connectome of the fruit flies can be decomposed into 40 unique modular subdivi-
sions called local processing units (LPU). These LPUs correspond to anatomical regions
of the fly brain associated with specific functional subsystems such as sensation and lo-
comotion and are regarded as functional building blocks of Neurokernel. Next to these
LPUs Neurokernel provides the interface for the communication of neuron state data be-
tween LPUs. This interface guarantees independence between LPU’s such that they can
be improved and replaced without modifying other parts of the brain. An Python based
API is provided to abstract the LPU implementation and interconnection from the under-
lying GPU code. The connectivity between LPUs is stored in a sparse multidimensional
array.

Neurokernel supports the LIF and Hodgkin-Huxley point neuron models. It supports
alpha function synapses and a conductance-based synaptic model.

Their architecture consists of three planes: a high-level application plane which holds
the LPUs and interconnect; a low-level compute plane consisting of multiple GPUs for
the execution of the neural circuitry; and a control plane consisting of multiple CPUs for
the mapping of LPUs to methods and resource management of the GPUs. It uses the
package PyCUDA to support Python on NVidia’s hardware.

The brain emulations can be run on multiple GPUs in a single computer or a computer
cluster. Neurokernel takes advantage of GPUdirect P2P technology by using the Open-
MPI library. This can only be employed when source and destination memory locations
of an MPI data transfer are both in GPU memory. Because of this and no trace of the
RDMA technology being implemented, one must assume that inter-node communication
takes place with staged copies through host memory.

For their module communication performance tests they used 4 NVidia Tesla K20XM
GPUs running all on the same node. Their tests include scaling the number of ports of
the LPU (50-25000) and scaling the number of LPUs (4 to 19). These tests were both
performed with and without P2P technology, yielding much better performance with
the technology enabled. An increase in the number of ports did not increase the models
execution time for the numbers of ports similar to the numbers of neurons in actual LPUs.
The speedup from scaling the number of LPUs revealed also that the P2P technology
could power multiple LPU models sufficiently. However, the resource allocation and
management features to successfully scale a fruit fly brain over multi-GPUs are currently
not yet available.

3.9 NCS6

Neural Cortical Simulator (NCS) is an extensible real-time neural simulator for hetero-
geneous clusters of both CPU’s and CUDA-capable GPUs [32]. Advantages of NCS6 are
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its computation power, biological capabilities at multiple levels of abstraction and its
minimum programming demand. Limitations are the lack of biophysical parameters.

NCS6 has built in support for the LIF, IZH and HH models. The LIF model can
be composed of multiple compartments with different synaptic connections, which are
distributed on the same device to minimize data transfer. Both excitatory and inhibitory
synapses are supported. Due to the possible waveform firing of neurons over multiple
time-steps, the synaptic update process contains a list with the total synaptic current for
a single neuron.

Elements of the simulation are distributed across the GPUs according to the devices
computational power and their dependencies. Neurons are ordered by their number of
computational load, where the number of synapses are key. The lowest computational
load gets assigned the heaviest computational neuron and so on. When distributed, the
elements are partitioned by their sub-types managed by a plugin. The current from
stimuli and synapses is computed and used to update the state of every neuron every
time step.

The simulation is partitioned into several stages that can be executed in parallel as
long as the data is ready. Within a stage the updating of different elements, like for
instance a HH and LIF model, can be executed in parallel as well. Due to the unique ID
assignment to every element, updates affect separate regions of memory.

NCS simulates up to 1 million neurons with 100 million synapses in real-time: 1
second of simulation of IZH neurons result in 1 second wall time. For their tests they
used eight machines having two NVidia GPUs. The GPUs used are GTX 680s, 480s,
460s, and Tesla C2050s with a 1 ms time-step. The main reason for performance loss
in very large models is due to memory constraints of the GPU and not due to network
limitations.

No traces of P2P or RDMA optimization techniques are found. The project started
in 1997 and no publications or software mutations are found after 2013. The project has
not been abandoned, the work has focused on the user interface but that is not ready to
be released.

3.10 STEPS

STochastic Engine for Pathway Simulation (STEPS) is a stochastic spatial reaction-
diffusion simulator implemented in C++ with a Python user interface [33]. STEPS
core simulation algorithm is an implementation of Gillespie’s SSA, extended to deal with
diffusion of molecules over the elements of a 3D tetrahedral mesh. It was mainly developed
for simulating detailed models of neuronal signaling pathways in dendrites and around
synapses.

STEPS has a well-validated support for the modeling tool and library SMBL [34]
which holds various neuronal models using LIF, IZH or HH neuronal models in multi
compartmental configuration, or synapse configurations. However, STEPS is meant to
simulate stochastic diffusion models of small sections of neurons in contrary to determin-
istic whole cell models like Neuron.

Articles about their steps undertaken to implement parallelization [33] and [35] speak
of a MPI based versus a GPU based implementation. The MPI-based implementation
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could serve a foundation for other parallel protocols such as GPU. STEPS currently does
not have a GPU nor a GPU cluster implementation.

3.11 PSICS

The Parallel Stochastic Ion Channel Simulator (PSICS) computes the behavior of neurons
taking into account the stochastic nature of ion channel gating and the detailed positions
of the channels themselves, written mainly in Java and Fortran [36]. It is intended to
be complementary to existing tools and has its focus on stochastic behavior and detailed
geometry; a class of problems that cannot be handled by other simulators.

PSICS claims to support compartmentalization preserving volume, point positions
and surface area. HH style models can be implemented by automatic conversion to
kinetic schemes. Models for PSICS are expressed as simple XML file format similar to
NeuroML, which also supports electrical synapses.

PSCICS separates the core computations from the rest of the tasks (modeling). The
channel updating process is the main cost of the core computation. It implements embar-
rassing parallelism: multiple independent realizations to compute the statistical proper-
ties which are run on different processors and combined when finished.

It makes use of the SGE to manage the cluster implementation. Little is known
about the hardware to implement PCICS on, no traces of a GPU-cluster nor a multi-
GPU implementation is found.

3.12 Summarizing

This chapter delineates a variety of SNNs and their technologies, with the purpose of
finding a simulator that could possibly show good scaling potential. In table 3.1 an
overview of the surveyed simulators and their characteristics are shown. Most of the
simulators support the necessary neuron models, GJ and multi-compartment modeling.
They all have in common that they have support for a multi-node implementation, either
in the form of a distributed cluster, a single or a multi-GPU implementation.

Regarding SNNs optimization technologies many of the simulators have some form of
optimization implemented, of which HRLsim mentions the most formidable. For instance,
the parallelization of communication and computation, memory access based on firing
rate and the usage of separate streams for kernels that do not depend on large memory
access are good hints for optimization, since they could potentially increase performance.
Furthermore, they have done some work on investigating scalability of the SNN on a
multi-GPU network. When the computation of larger networks form a bottleneck for a
simulator, the NP and SP from CARLsim and the ordering of neurons according to their
computational load from NCS6 are interesting technologies, because they could reduce
the execution time.

There are five simulators which have a multi-GPU implementation: CARLsim,
CoreNEURON, HRLSim, Neurokernel and NCS6. Only two simulators implement P2P;
but HRLSim is not an open source project and Neurokernel is not a general purpose
simulator. CARLsim does not support the Tesla GPUs which most clusters are com-
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Figure 3.1: Overview characteristics of multi-node brain simulators

prised of and NCS6 was very promising shows no activity for the past years. None of the
multi-GPU simulators make use of RDMA.

The answer to the question if there exists a sufficient simulator, is yes and this simu-
lator is CoreNEURON. Next to the fact that it has support for all the neuron models, it
is a general purpose simulator and GPUdirect is on their future agenda. Also it currently
is a very active project with a well supported front-end.

A simulator that fully supports GPUdirect does not exist. If a larger more densely
connected network is the target of the application, the interchange of data could form
a bottleneck which none of the multi-GPU simulator frameworks could solve optimally.
Therefore it is most likely that the simulators which run on GPUs do not scale linearly
with increasing network sizes, making them impractical for researchers. The best way
to proceed is not to adopt a current simulator, but to continue with the single-GPU
simulator currently used at Erasmus and design a multi-GPU version, which reaps the
full benefits of the fast GPUdirect interconnect technology supported by the Cartesius
cluster, on which this design will be benchmarked.
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This section describes the design of the multi-GPU brain simulator. An analysis is made
of the existing single-GPU application and the environment to which the simulator is to
be ported. From this analysis the main phases of the design are derived and the implemen-
tation is described in detail. The main phases are the setup of the network (connection-
generation), the dispersal of the required cells (cell-id-dispersal), the computation of the
cells (cell-computation) and the communication and the processing of the neighboring
dendrite voltages when the network has been setup (dendrite-communication).

In this chapter the following terms will be used. The network of GPUs, will be referred
to as GPU_world. The size of the network of GPUs, will be referred to as world_size. A
local GPU is the GPU in question which can have relations with foreign GPUs. The
size of a local network, that is the size of a network of cells on a single GPU, will be
referred to as world_part, which is defined as network_size/world_size, in which the
network_size represents the total number of cells which always have squared relation,
dimension x is always equal to y.

4.1 Single-GPU version

The original single-GPU application has been designed by [37]. It uses a lighter version
of a conductance-based model of the Hodgkin-Huxley neuron; meaning less complicated
inter-neuron communication mechanisms.

In the application, three compartments of the cell, namely the axon, soma and the
dendrite are modeled according to ordinary differential equations (ODE), which simulate
intra-cell chemical exchange of the aforementioned substances.

In fig. 4.1a. a representation of the IO network is shown. This network represent an
all-to-all connected network for 6 neurons. Figure 4.1b. zooms in on the cell and shows
the 3 compartments and the gap junctions.

Every simulation step is a slice in time of the brain simulation, in which new values
of the compartments are calculated according to the previous calculated voltages and/or
an external spike input, changing the state of the cells at any moment in simulation time.
The previous calculated value, serves as input to the next simulation step iteration; this
is the temporal relation of the cells.

Next to the fact that these cell have a temporal relation, the also have a spatial
relation. The spatial relation entails a inter-cell connection - a connection between the
dendrite compartments of the cell to be exact - called gap junction as described in sec-
tion 2.1. To calculate the dendrite voltages, the target cell needs to gather all the dendrite
voltages of its neighboring cells. This gathering process happens in every simulation step.
The simulation lasts a fixed number of simulation steps which represent a constant du-
ration, making the simulator time-driven.
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Figure 4.1: Graphical representation of the inferior-olivary network model. (a) 8-neuron
network (b) single-neuron model in detail [3]

In the single-GPU version of the simulator all the neighboring voltages reside on the
GPU itself. On a multi GPU version, the neighbors could very well reside on other GPUs
in the network as well as on its own. The chance that a cell resides on a another GPU
will increase because the network will be split evenly over the allocated GPUs. In the
single version, this gathering of neighboring cells is the bottleneck of the implementation
[37]. Every cell needs to loop though its neighbors, gathering the neighboring dendrite
voltages to calculate its own.

When the current implementation is profiled the other two compartments of the
simulator have negligible execution times in comparison to the dendrite computations.
The current single GPU implementation collects 8 neighbor connections which spatially
surrounds the target cell and it simulates 1M neurons within 400 seconds.

The current implementation stores the dendrite voltages in the GPUs texture memory.
Texture memory is cached on chip and optimized for 2D spatial locality. Applications
where memory access patterns exhibit a great deal of 2D spatial locality can benefit
from using this memory. A thread is likely to read from an address nearby an address
already read from and is thus more likely to be in cache memory. This is were the current
implementation benefits as well. The 8 neighboring cells have a good likelihood to already
be in the cache. Thus in a network where the neuron population consists of groups which
reside together texture memory could be beneficial.

The shared memory cannot be used as it is not suitable for any type of application
data, the data is either broadcast to all the threads in the grid or is too large to be
allocated on the shared memory [37].

The best achieved performance for double precision simulations for Tesla platforms
with Kepler architecture uses a block size of 32 threads and L1 cache enabled [37]. Because
the GPU used on Cartesius, the K40M, also has the Kepler architecture, a block size of
32 threads is maintained with L1 cache enabled.

In fig. 4.2 an overview is given for the single-GPU implementation for the IO applica-
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Figure 4.2: GPU implementation of the InfOli application [3]

tion. The distinction in using the global memory and texture memory becomes apparent.
The pre-compute part which includes the network setup is for the single version not ex-
ecuted on the GPU. Also the SMs and their relation to memory is shown.

4.2 Design Overview

From the analysis of the single-GPU version two phases become apparent. The first phase
is the compartment computation; this is will be known as the cell-computation phase.
The computation of the soma and axon take place only locally on every GPU and do not
have to be adapted for a multi-GPU version.

The second phase, which will have a huge impact on the multi-GPU design, lays
hidden in the dendrite- computation part. When the dendrites are calculated the voltages
need to be gathered. For the single-GPU version these data are gathered from the texture
memory, for the multi-GPU version these data are gathered from all the GPUs in network.
This is called the dendrite-communication phase.

For the single GPU-version every cell had 8 neighbor cells connected through gap-
junctions, the multi-GPU version will have the option to connect each cell to 10, 100
or 1000 neighboring cells distributed by a random process; which will be called the
network-setup phase. This setup phase consist of two sub-phases, namely the connection-
generation and the cell-id- dispersal process.

Figure 4.3 shows the four phases of the simulation of the algorithm, the architecture
on which it can be run and a general high-level pseudo code based overview of the time
complexity. These phases coincide with the sections in this chapter discussing their
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Figure 4.3: Main flowchart indicating architecture, process and complexity

implementation.
The technologies used to support the implementation phases are as follows. The

OpenMPI library used to interconnect the GPUs over RDMA, is implemented via
MPI collective functions to facilitate inter-node dendrite voltage communication. The
OpenMP library is employed to speedup the setup of the network by binding the work-
load to different threads on the x86 processors to feed the GPUs. In comparison, also
the GPUs are used to speedup the cell network generation for which the cuRAND library
for random number generation is integrated for the distribution processes. The result is
a hybrid version using both GPUs and Xeon cores for parallelization, supporting both
the network generation and inter-node communication, and OpenMPI for GPUdirect
inter-node communication.

When multiple GPUs are issued, each GPU takes up a portion of the total network
size. Meaning that the generation and computation of the network cells are proportion-
ally scaled across the GPUs. The cells to be calculated are split up along the column
dimension of the matrix. This means that the dimensions of the CUDA computation
kernel, also need to scale along the x-dimension. The column dimension will be divided
by the number of GPUs. If the network size stays constant, adding more GPUs will
divide the workload across the GPUs, decreasing the workload. In fig. 4.4 a network
division for a network of 16 cells is visualized for 2 and 4 GPUs. The total number of
cells in a network are divided between multiple GPUs. In the GPU-world of 2 GPUs 8
cells and in the GPU-world of 4 GPUs 4 cells per GPU are calculated.

Enlarging the GPU_world scales down the number of target_cell-loop iterations
and thus the workload per GPU. Not only the workload per GPU scales down, also the
memory requirements for storing neighbors decreases. The more GPUs the more memory
becomes available and less cells per GPU need to be stored, assuming the network size
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Figure 4.4: Workload division of neuron cells across GPUs for 2 and 4 GPUs
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Figure 4.5: Communication interconnections with GPU_worlds 2 and 4

stays constant. The only exception is the texture memory resources. Texture memory
will be kept as large as the network is, such that dendrite voltage can be stored and
fetched according to their global cell addresses. The dendrite voltages of every cell will
be stored here and updated after every run of the cell-computation kernel, such that each
kernel can use the global cell id to fetch the neighboring voltage required.

The maximum number of neighbors a cell can have in an all-to-all connected scenario,
is
(network size - 1 ) * network size. The -1 is due to the fact that cells cannot be
connected to themselves. The maximum amount of neighbors a single target_cell can
have on a local GPU is world_part-1. (7 for world_size 2, in fig. 4.4) The maximum
neighbors a cell can have on a foreign GPU is the world_part (8 for world_size 2 in
fig. 4.4).

An increasing GPU_world also means that the communication between nodes in-
creases. Figure 4.5 shows the increase in communication between a GPU_world of
world_size 2 and 4. The total number of communication connections - incoming and
outgoing - related to the number of GPUs (n) is n2 − n. In a network of 32 nodes,
for instance in the case when all GPUs have neighboring relations to all other GPUs, a
total of 992 communication lines could be established over which dendrite voltages are
communicated.
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1 MPI_Allgather(
2 cellVDendPtrLocal,
3 ∗IO_NETWORK_SIZE_H/world_size,
4 MPI_DOUBLE,
5 cellVDendPtrGlobal,
6 ∗IO_NETWORK_SIZE_H/world_size,
7 MPI_DOUBLE,
8 MPI_COMM_WORLD);

Listing 4.1: Basic communication implementation for proof of concept

4.3 Regression testing / proof of concept

Before the implementation of the main design can start, an environment has been set up,
to ensure that no functionality is lost along the way. This environment consists of a tool-
chain and an overly simple communication protocol implemented in the application. The
tool-chain has the goal to test if the cells in the application calculated behave the same
way in a multi-GPU environment, as they do on a single GPU. It should be guaranteed
that when the GPU_world increases, the cell output remains constant.

The tool-chain consists of a file generator; which produces a unique output file for
every GPU, a file concatenator; which pastes the output into a single file and a file
comparator; which checks the concatenated file against a base line. The control of this
tool-chain is scripted in a Bash-file. It compiles and runs the application in different
GPU_worlds, collects the data from the GPUs and compares the output to a base file.

To validate the functionality of the program, a version has been created which commu-
nicates all the dendrite voltages of the cell, to all the GPUs by using an MPI_Allgather.
This is a very inefficient way of communicating these voltages because a lot of unnec-
essary network traffic is generated. A local GPU will only need the voltages of those
foreign GPUs which hosts its neighbors. However, it does the job for smaller network
sizes. For larger network sizes this implementation will fall victim to increasing latencies.
The MPI_Allgather implementation is shown in listing 4.1.

In the cellVDendPtrLocal array all the dendrite voltages have been collected by the
kernel which does the cell computation. This array is then communicated to all the GPUs
and placed in the cellVDendPtrGlobal array, which contains all the dendrite voltages of
all the GPUs and is equal in content for all the GPUs. The array is bounded to texture
memory, which is updated by this function call, after every simulation step.

With only this MPI function and the line of code gathering the dendrite voltages,
a basic realization of a multi-GPU version was established and a proof of concept was
made. This enables the fine tuning of the compute kernel before a more complex but
efficient implementation, along with network cell generation can commence. After every
major functionality affecting change in the application, this tool-chain can be run to
validate correct behavior.
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4.4 Connection-generation

The process of generating or reading a connection matrix is known for long execution
times. This section describes the attempts to speedup this process by developing an
implementation for an OpenMP and a GPU architecture.

4.4.1 The cell connection matrix

When a simulation starts a network of cells needs to be set up. This entails generation
of the connections each cell has with some (or all) of the other cells in the network.
The result of this process shall be referred to as the connection-matrix of the simula-
tion. Next to the connections of each cell, it also stores a conductance value of the cell.
This conductance value represents the weight of the cell, used to calculate the dendrite
voltage. When calculating the dendrite voltage of each cell, the dendrite voltages of the
neighboring cells need to be gathered. These connections could reside on the same GPU
as the cell in question, or they could also reside on any other GPU in the network. To
generate a 2 dimensional matrix, usually two for-loops are used, one to iterate over the
columns and the other over the rows. Throughout this design these two loops are the
main drivers of the generation process.

The connection-generators distribute synapses between the cells according to a uni-
form and Gaussian probability. These distributions have been found to be naturally oc-
curring and represent different patterns of connectivity in the brain [14]. The difference
is that the uniform distribution creates spread-out connections and Gaussian distribution
keeps the connections closer to the cell to which the neighbors belong. The differences
between Gaussian- and uniform cell-distribution are illustrated in fig. 4.6, borrowed from
[14].

Every cell can be connected to any other cell in the network, thus for every cell
the entire network of cells needs to be considered. The cells for which neighbors are
considered are referred to as target_cells. The cells which are considered as possible
neighbor candidates for the target_cells are referred to as neighbor_cells. To generate
the neighbor connection matrix, the number of loop iterations grows quartic in relation
to the dimension of the network. For instance, for a network with dimensions 2048x2048,
roughly 20484 = 17.6 trillion loop iterations need to take place.

Figure 4.7 shows two connection matrices for a 4x4 cell network, which display 7
neighbor connections, indicated with a conductance value. The x’s indicate that cells
shouldn’t be connected to themselves. When the network is split up the target_cell itera-
tion starts at 0 for every world_part. To ensure that cells are not connected to themselves
on a global level, a global_cell id is maintained, which has the relation global_cell =
target_cell + GPU * world_part.

Storing connections Whenever a connection to another cell is generated, the coordi-
nates - in the form of a global cell id, the conductance value and a counter - to keep track
of the total connections - are stored in memory according to listing 4.2. The structure is
used for either external or internal connection generation.

The variable nCount holds the total number of neighbors per column. The variable
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Figure 4.6: For the uniform-distribution the neighbor-connections are spread more
evenly throughout the network, while Gaussian keeps them nearby

Figure 4.7: Sparsely populated connection matrices for a 4x4 cell network on 1 and 2
GPU(’s)

neighId stores per new found neighbor the row number of this neighbor. The index of the
array, which can be seen representing the column number (target_cell(t_c)), together
with the row number (neighbor_cell(n_c)) form the coordinates of the connection
matrix. The variable conduc is used to store the conductance of each cell, which can
be seen as the weight of the cell. An advantage of this representation is that when to
retrieve the neighbor dendrite voltages the total number of neighbors is available and not
the entire network needs to be iterated.
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1 for(int t_c=0; t_c<world_part; t_c++)
2 for(int n_c=0; n_c<world_part; n_c++){
3 nConns[t_c].neigId[nConns[t_c].nCount] = n_c;
4 nConns[t_c].conduc[nConns[t_c].nCount] = CONDUCTANCE;
5 nConns[t_c].nCount++;
6 }

Listing 4.2: Structure with 3 members for storing cell connections

Two implementations for neighbor connections regarding memory usage have been
dveloped; a memory and computation optimized version. The memory optimized version
uses the realloc() function to only allocate memory when a neighbor connection has
been found ensuring just the right amount of memory to be stored. The computation
optimized version pre-allocates space taking into reference the probability entered for the
density of the network. This density plus a safe guard portion to ensure that there is
always a little too much rather than too little space allocated for neighbor storage.

A hybrid version between both implementation could be considered as well, if memory
becomes the limiting bound of the architecture and the safeguard option does not work.
A certain amount of space is always pre-allocated and when there is need for more space,
another chunk of memory is added. Not completely taking away the reallocation, but
reducing these function calls.

However, a memory optimized version is not of the highest necessity since every GPU
nowadays is equipped with 12 or 16 Gb of memory. When using multiple GPUs the
total memory scales up, while the local network size scales down per GPU added. When
taking a large network of 2 billion cells into account and a network density of 1000, all
the cells would have 1000 integers for the connection plus 1 for conductance and 1 for
the counter, to store. This would amount to 7.5 GB memory used of total storage space,
which would fit easily on a single GPU. A version where an over allocated strategy is
employed is easily maintained.

To setup the network two strategies have been pursued. The first strategy is to
externally read in the connection from a file and the second strategy is to internally
generate the matrix. The second strategy is a lot faster and less ’external’ memory is
required but the first is desirable since it makes usage of the simulator more generic and
accessible. More generic since every external generated matrix - when the specifications
are met - can serve as a connection index.

4.4.2 Connections from an external file

A huge problem with importing the connection matrix from an the external file is that the
file can get very large for larger network sizes, which in turn lead to long importing times.
Techniques to import the matrix as well as attempts to optimize execution time and
storage space are discussed in this section. A strategy has been devised and implemented,
but due to the fact that a single matrix file for larger network can become too large to
maintain on a cluster, this option is explored but not pursued.
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1 int FPointion = (GPU ∗ world_part ∗ elemsize);
2 fseek(pInFile, FPointion, SEEK_SET);

Listing 4.3: File pointer distribution for external acquiring of neighbor connections

Every GPU needs a part of the connection matrix. When this file is read every GPU
gets allocated a starting point in the file based on the rank it has in the network, as
shown in listing 4.3.

The variable GPU represents the rank of the GPU in the network. The variable
elemsize represents the size of the element in the file. This latter variable preludes
a first optimization implemented. The matrix generator already present for the single
GPU version - to read in a matrix from a file, it first has to be generated - produces dou-
ble precision elements for the conductance value. Since the initial value was found to be
represented by a single digit, the conductance in the matrix was altered to be represented
by an integer data-type. This reduced the size of the connection matrix by a half. Also
the connection matrix contained spaces between the elements. These spaces are obsolete
since it is possible to read in the file per element specified. This reduced the matrix size
again by a half.

Another explored optimization, but not implemented is bit fielding of the elements.
A single integer data-type, which has 4 bytes to represent its value, is split up into, for
instance, 4 parts. A integer could represent 4 conductance values, reducing the matrix 4
fold. Each value would have the range of 256 decimal values. This could be reduced even
further to 8 parts, giving a range of 16 decimal values per bit field. A single integer would
represent 8 conductance values, reducing the matrix 8 fold in size. This optimization
could also be implemented when the CUDA kernels do their cell computations.

A network connection matrix of 2B cells would need 4x1012 entries representing neigh-
bor connections and conductance values. In the present representation of the matrix,
including spaces, the size is 60 Tbytes of data. Implementing all of the aforementioned
optimization’s would reduce the matrix file to roughly 1 Tbyte. Each GPU would then
have to process 1T/n*GPU size of the matrix.

4.4.3 Connections internally generated

Having both the internal and external functionality to create a cell connection matrix is
a plus, since they are both useful under different user conditions, however to align the
research with the Xeon Phi tier, the internalizing of the cell generation is pursued. This
means that the cell generation is done in the same execution run in which the simulation
is started. The connection matrices are internally generated according to a uniform and
a 3D-Gaussian distribution which have been adopted from [14]. To find the fastest way
to generate the connections, a strategy to parallelize these generator through OpenMP
and CUDA are pursued.

In listings 4.4 and 4.5 pseudo-code for both distribution algorithms is shown. When
comparing the two, the Gaussian generator displays a lot more computational complex-
ity than the uniform generator. The uniform generator is based on comparing a fixed
probability against the outcome of the standard GNU random generator, while the latter
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1 for (int t_c=0; t_c<world_part; t_c++)
2 #pragma omp parallel for schedule(static)
3 for (int n_c=0;n_c<∗IO_NETWORK_SIZE_H;n_c++) {
4 rndm = ((float) rand()) / ((float) RAND_MAX);
5 if (rndm <= probability) {
6 // store neighbor and filter cell to for other GPUs
7 }

Listing 4.4: Uniform cell distribution

1 for (int t_c=0; t_c<world_part; t_c++) {
2 total_amount_connections=generate_gaussian_number();
3 while (connections_found<total_amount_connections) {
4 #pragma omp parallel for schedule(static)
5 for (int n_c=0;n_c<∗IO_NETWORK_SIZE_H;n_c++) {
6 s_x=n_c/base_3D_squared;
7 s_y=(n_c%base_3D_squared)/base_3D;
8 s_z=(n_c%base_3D_squared)%base_3D;
9 d_3D=(sqrt(pow(my_x−s_x,2)+pow(my_y−s_y,2)+pow(my_z−s_z,2)))/scale;

10 gaussian_prob = const1 ∗ exp(pow(d_3D−mean,2)∗const2);
11 rndm = ((float) rand()) / ((float) RAND_MAX);
12 if (rndm <= gaussian_probability) {
13 // store neighbor and filter cell to for other GPUs
14 #pragma omp atomic
15 conn_gen_buffer[n_c]++;
16 #pragma omp atomic
17 connections_found++;
18 }
19 }
20 }

Listing 4.5: Gaussian cell distribution

needs a lot more computations to ensure a close distance to origin. The uniform generator
consists of two for loops iterating over the part of the network that is to be processed by a
single GPU - world_part - and the entire network. The first loop is the target_cell-loop
and the second is the neighor_cell-loop. Every cell in the network gets a probability to
become one of the target_cells neighbors and is compared to a fixed probability. The
same holds for the Gaussian generator only the random values are now compared to a
Gaussian probability. Also a third (while) loop has been added to ensure that enough
connections have been found, aggravating the network generation even more.

It will not be a surprise that the setup time for the latter generator will be significantly
larger than the first. In reverse, the computation time of a Gaussian network will be
significantly smaller than the first, speculatively for two reasons. The first reason is that
spatial cache locality - for texture memory - plays a role. The locality will ensure less
cache misses. The second reason is that for a Gaussian network the cells will more likely
reside on the same GPU as the target cell. It is to be expected that less network traffic
is generated for a Gaussian network.
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The density setting for the network has been exposed to the user and values for 10,
100 and 1000 synapses per neuron will be bench-marked. This density is related to the
probability variable shown in the listings 4.4 and 4.5. For the uniform distribution the
probability is equal to a portion of the network size: probability = Density / Network
size. The larger the network size, the smaller the probability for a potential connection
will be, thus ensuring a constant number of connections per cell, when the network size
varies. This relation works well for the uniform distribution.

The Gaussian generator comes with more tuning options. According to [14, 38],
to make sure the synapses are mostly centered around the neuron a value of 1 for the
standard deviation and a 0 for the mean should be used. The Gaussian_probability is
not so much related to the network size, as is the case for the uniform distribution, but
to the distances cells have to each other. The probability, as defined earlier, plays a
role in determining how many iterations the while loop needs to undergo before assuring
the right amount of connections are found. However, this does not always assure the
minimum required neighbor connections.

The scale option provides a possibility to control the number of neighbors each cell
will generate. Namely, the larger the scale the higher the Gaussian_probability and
the easier it gets to find neighbors. Also a larger density is earlier obtained than a smaller
one. This is because of the third loop which continues calling the kernel, when the total
amount of connections is not sufficient. A lower probability entails a longer search period
for possible neighbor cells. A higher probability means more neighbors in shorter period.

Per network size it was tested to find the optimum setting for the scale option. Setting
it too low would mean an increase in setup time, setting it too large means to many
neighbors per cell. The optimum setting found was 5, making network setup time very
tolerable and producing the right amount of neighbors in relation to network size.

Execution of these generators for large networks (1M-2M cells) sequentially made the
generation of the network being executed very time consuming and nearly impossible.
The possibility to speed this up came in the form of OpenMP or porting the cell generation
onto the GPUs. To see which one is most effective, proof has to be established empirically.
The GPU nodes of the Cartesius cluster have Xeon processors with 8 cores available to
’feed’ the GPUs. With these 8 cores the generation of the network could very well be
reduced to reasonable execution times.

4.4.3.1 OpenMP connection-generation

OpenMP is a library that supports multi-threading for Intel processors, making it possible
to bind a thread to a core with a relative simple interface. To set the number of threads,
the environment variable
$OMP_NUM_THREADS has to be set in correlation to the –task per node flag which
indicate the number of tasks that will be instantiated on a node. The number of cores
is equal to the number of threads if no more than 8 threads per node are issued. The
GPU_world can increase and decrease independently of the number of cores issued. In
listings 4.4 and 4.5 the #pragmas to parallelize the generators are shown. The most
inner loop is a good target because this is relative large. Scheduling nested loops is not
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Figure 4.8: Thread variation for larger and smaller networks using Gaussian generator
on OpenMP

impossible within OpenMP, but often proof detrimental.
Since the treads are most of the time (depending on the probability) roughly equal in

execution time, a static policy will have good result, as this has little overhead. A static
policy entails that all the iterations of the loop are divided evenly among the threads.
In contrast to static, a dynamic policy could also be adopted. Dynamic policies allow
scheduling to take place during execution time. When tasks to be scheduled differ much
in length, the overhead of this policy could be overcome by the gain of shorter execution
times by scheduling tasks online. The network generation will benefit most likely from a
static schedule. The question of what would be the ideal thread number, could also best
be answered empirically.

In fig. 4.8 in minutes and in seconds the execution times are displayed for varying
network sizes, for a thread count of (1), 2, 4, 6 and 8. A Gaussian generator is used
because this has the greatest computational complexity. For the smaller network sizes
no significant speedup has been observed after using more than 4 cores. The relative
differences are minimal and have no significant effect on absolute execution times. For
larger networks the ideal thread number appears to be 6 and not 8. An explanation for
these phenomena could be that for 8 threads the cache is misaligned. Cache content is
in a way ping-ponged between threads; resulting in more cache misses than for instance
6 threads. Using more threads and thus cores is not beneficial for larger network sizes.

4.4.3.2 CUDA connection-generation

The other option to decrease setup times of larger networks is to port the generators and
part of the cell-id-dispersal phase, to the GPUs. It is possible to issue multiple kernels
for different grid sizes in a single application. A big advantage is that the generated
network would already be present on the GPUs and doesn’t need to be copied in a
distinct step from the generation module/kernel to the calculating kernel. A downside
is that a different library for randomness needs to be implemented and it is unsure how
this would effect performance. To realize this, a single GPU version which simulates the
multi-GPU implementation was first developed and later integrated with the calculating
kernel.

The #pragma omp parallel for and #pragma omp atomic from section 4.4.3.1 al-
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1 for (int tcell=0; tcell<world_part; tcell++)
2 srand((unsigned int) time(0) + GPU);
3 for (int i = 0; i < ∗IO_NETWORK_SIZE_H; ++i)
4 rndm[i] = ((float) rand()) / ((float) RAND_MAX);

Listing 4.6: Standard randomness for generator-kernels

1 curandStateXORWOW_t localState;
2 curand_init((unsigned long long)clock() + k + GPU, 0, 0, &localState);
3 float cuRndm = curand_uniform(&localState);

Listing 4.7: cuRAND randomness for generator-kernels

ready indicate which part is the candidate for parallelization on the GPU and which part
of the code needs to be an atomic operation. Basically, the last loop of both generators
- shown in listings 4.4 and 4.5 - is a good candidate to be parallelized on the GPU. This
loop has the size of network, the kernel dimensions will be matched accordingly.

Randomness Random number generation is a vital part of both network generators.
Unfortunately, the library function rand() cannot be issued inside a kernel. Two solutions
to create randomness inside the kernel are tested.

The first solution is to fill an array on the CPU side with as many random numbers
as necessary - in this case the size of the cell network, because every cell needs a distinct
random value. This array is copied to the device. Listing 4.6 shows the random generation
for the kernel. Observe the built in factor to add the GPU rank to seed the random
function differently for every GPU and the fact that it is inside the first loop. To create
randomness for every target cell, the random numbers have to be regenerated for each
target_cell, placing a heavy burden on the generators. As was observed, the execution
time of neighbor generation grows exponentially when the network size grows.

For the second solution, the cuRAND library is used. This library provides facilities
that focus on the simple and efficient generation of high-quality pseudo-random and quasi-
random numbers. The advantage of quasi-random over pseudo-random is, that the results
are more evenly distributed, the latter is bothered by clustering. Since scaling of the
algorithm is under investigation - number crunching is more important than distribution,
a pseudo-random generator is selected.

The library consists of two parts: a library on the host and on the device side. The
user can either generate random numbers and store them in global memory to be used in
kernels later or generate sequences of random numbers and use them directly. The first
option can be issued from host or device and stored on the host or device. The header
file curand.h needs to included. The second option enables direct consummation of the
random numbers without writing and reading to and from memory. The device header
file curand_kernel.h needs to included.

Both options were explored but the second option fits the application best. Listing 4.7
shows the implementation of the device random generator.

The curand_init(seed, subsequence, offset, state) is the function that seeds
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1 int neigh_cell = j∗(∗IO_NETWORK_DIM2_H)+k;
2 if cuRndm <= gaussian_probability) {
3 ... store neighbor information ...
4

5 atomicAdd(&conn_gen_buffer[neigh_cell], 1);
6 atomicAdd(connections_found, 1);
7

8 // foreign cell determination
9 GPUdomain=(neigh_cell/world_part);

10 if (GPUdomain!=GPU) {
11 // these cells will be requested from other GPUs
12 if (duplicateRegister[neigh_cell]==0) {
13 xcell[atomicAdd(xcell_size_local, 1)] = neigh_cell;
14 atomicAdd(&xcellno_perGPUlocal[GPUdomain], 1);
15 duplicateRegister[neigh_cell]++;
16 }
17 }

Listing 4.8: Storing and filtering the foreign cells

the random function. This initializes a XORWOW state in state with the given seed,
subsequence and offset. The seeds are arbitrary bits used to seed the function. This
function gets seeded by the UNIX time at the moment of initialization; guaranteed to
be unique. The subsequence is the starting point of the sequence and the offset is an
absolute offset into the sequence. Both values are recommended to keep at 0 for faster
implementation.

The XORWOW generator is a variation on the XOR shifting generators. They gener-
ate the next number in their sequence by repeatedly taking the exclusive OR of a number
with a bit-shifted version of itself. In the XORWOW variation the period is increased
by adding a simple additive counter module 232 to produce a period of 2160 − 232. The
function curand_uniform(&localState) returns a uniformly distributed float between
0.0f (excluded) and 1.0f (included).

Foreign cell selection Listing 4.8 shows the last part of the implementation of
the generators inside the kernels, which for both generators is basically the same. The
main difference is the comparison of the random value generated with cuRAND with a
fixed probability - in case of the uniform, or with a Gaussian probability, in case of
the Gaussian distribution. All cells are considered in parallel whether or not they are
a candidate to be a neighbor for the target_cell. All to be considered cells are given a
thread on the GPU and thus the thread id is the neighbor_cell id to be stored.

Whenever a neighbor_cell does not belong to the local GPU, it is stored in the xcell
array. The duplicateRegister on line 16 has been added to filter the foreign cells such
that they appear only once in the collecting xcell array. The dendrite voltage of a cell
only needs to be collected and send once per simulation step. A neighbor_cell residing
on the same GPU, is very likely a neighbor to another cell, however this value needs to
be send over only once after it has been recalculated. For larger densities the uniqueness
of the connection is limited by the total number of cells minus the cell that resides on
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1 for (int colNo=0; colNo<∗IO_NETWORK_SIZE_H/world_size; colNo++) {
2 global_cell_id=colNo+GPU∗world_part;
3 uniGenn_kernel <<< gridDim, blockDim, 0, streamUNI>>>(...);
4 cudaDeviceSynchronize();
5 }

Listing 4.9: Execution of the uniform kernel

1 for (int target_cell=0; target_cell<world_part; target_cell++) {
2 global_cell_id=target_cell+GPU∗world_part;
3 while (∗connections_found<total_amount_connections) {
4 gausGenn_kernel <<< gridDim, blockDim, 0, streamGAUS>>>(...);
5 cudaDeviceSynchronize();
6 }

Listing 4.10: Execution of the Gaussian kernel

the local GPU.
Also the size of each portion of foreign cells destined for each GPU - minus its own

- is determined such that later on these cells, and only these cell, are communicated to
other GPUs. This can be see in the listing on line 14. Each GPU most likely has a
different set of neighbor connections required from the other GPUs, therefore an effective
communication should take into account the different size of the total required cells.

Kernel execution evaluation The kernel is executed for every target cell as can
be observed from Listings 4.9 and 4.10. The calling of the kernels are enclosed in the first
loop which iterates over the target_cells. This loop scales when the GPU_world network
varies. The difference between the kernel calls for both generators, is that the Gaussian
kernel is enclosed in a second loop. The *connections_found is the loop iterator variable
that needs to be accessible on both the GPU and CPU side, and is updated when the
kernel finishes. This extra loops increases the complexity of the Gaussian connection
generation.

The results are shown for generation of the network for 8 Xeon cores versus 2 and 16
GPUs, in fig. 4.9. Even, when run on 2 GPUs the speedup is roughly 10 times. Increasing
the GPU_world increases the speedup even more. Generating the network on 16 GPUs
gives a speedup of almost 77x. The GPUs make it possible to create a network within
seconds instead of many minutes for the Xeon cores.

4.5 Cell-id-dispersal

After the CUDA network generation the xcell array contains the global cell count of
all the neighbors foreign to the local GPU. This information needs to be transmitted to
all the foreign GPUs such that they know which dendrite voltage from which cell id to
gather and send back to the local GPU after each simulation step. This section describes
the first part, the dispersal of the required global cell id’s from local to the foreign GPUs.
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Figure 4.9: Uniform network generation on 6 Xeon cores versus 2 and 16 GPUs

1 for (int i = 0; i < world_size; ++i)
2 src_length[i]=1;
3

4 MPI_Alltoall(
5 xcellno_perGPUlocal,
6 1,
7 MPI_INT,
8 cellno_perGPUglob,
9 1,

10 MPI_INT,
11 MPI_COMM_WORLD
12 );
13

14 int xcell_size_global=0;
15 for (int j = 0; j < world_size; ++j)
16 xcell_size_global+=cellno_perGPUglob[j];

Listing 4.11: Foreign cell count communication

To communicate the foreign cell-id’s, first the total count of foreign cells, has to
be communicated. The collective function MPI_Alltoall() is used for this part of
the dispersal, shown in listing 4.11. The Alltoall function takes the first part of the
xcellno_perGPUlocal from all the GPUs, in this case only one element, and sends this
to the first GPU, and then a second part of all the array’s and sends to the second GPU,
and so on. In fig. 4.10 a graphical representation of the function is displayed.

This figure visualizes the Alltoallv function, used in the next part, in which the ’v’
stands for ’varying’. The difference with a regular Alltoall is that for the second function,
the size of the data to be send can vary. An Alltoallv with a fixed send count behaves
the same as the Alltoall function.
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Figure 4.10: Graphical representation of MPI_Alltoallv function [10]

1 sdispls[0] = 0;
2 for (int i = 1; i < world_size; ++i)
3 sdispls[i] = sdispls[i−1]+xcellno_perGPUlocal[i−1];
4

5 rdispls[0] = 0;
6 for (int i = 1; i < world_size; ++i)
7 rdispls[i] = rdispls[i−1]+cellno_perGPUglob[i−1];
8

9 MPI_Alltoallv(
10 xcell,
11 xcellno_perGPUlocal,
12 sdispls,
13 MPI_INT,
14 cellstoRetrieve,
15 cellno_perGPUglob,
16 rdispls,
17 MPI_INT,
18 MPI_COMM_WORLD);

Listing 4.12: Foreign global cell id communication

From the figure it becomes apparent that this function basically performs a transpose
on the data across the GPU network. After the execution of the Alltoallv every GPU
now knows the count of cells that need to be send to every GPU but itself. This count is
the total of the cells that will be received per GPU, represented in cellno_perGPUglob.
The GPUs yet only know the count of the to be received global cell-id’s, which they have
to send back.

Because the GPUs know the cell count, memory can be allocated on the GPUs for
the to be received global cell id’s. To send the global cell-id’s the collective function
MPI_Alltoallv() is utilized, shown in listing 4.12. The number of neighbors vary per
GPU, thus not every GPU needs the same amount of cells-id’s to be send, therefore with
this function the exact amount of cells are send, keeping communication to the exact
minimum. For this function to operate, the displacement of the send and receive array’s
needs to be determined. The displacement is the location from where this function grasps
and puts its data in the send and receive buffers respectively. Both the local and global
sizes are required to set up the send and receive displacement.
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1 int cell = j∗(∗IO_NETWORK_DIM2_D/world_size)+k;
2

3 for (int i=0; i<neighConns[cell].neighCount; i++)
4 {
5 neighbor=neighConns[cell].neighId[i];
6 V = prevdend_IC[cell] −
7 fetch_double(textMemPointer, (neighbor % ∗NETWORK_DIM1), ((int) (neighbor

/ ∗NETWORK_DIM2)));
8

9 f = 0.8 ∗ exp(−1∗pow(V, 2)/100) + 0.2; // SCHWEIGHOFER 2004 VERSION
10 condu=((double)(dev_neighConns[cell].neighCondu[i])/100000);
11 I_c = I_c + (condu ∗ f ∗ V);
12 }
13 return I_c;

Listing 4.13: Target_cell dendrite voltage computation

After the execution of this function, every GPU knows which dendrite voltage to
gather and to which GPU it has to be send. These global cell-id’s are stored in
cellstoRetrieve. The length and displacement are the indicators for returning the
gathered dendrite voltages to the requiring GPUs. After this second step the network
has been setup and the computation can commence.

4.6 Cell-computation

In every simulation step the three cell compartments, the axon, soma and dendrite volt-
ages, of the neuron are computed. Whenever a cell is a connected to another cell, the
dendrite voltage of this neighboring cell is required for the computation of the target_cell.
The computation of the dendrite voltages is the biggest bottleneck in performance for the
single-GPU version. It is a bottleneck because it includes the gathering of the dendrite
voltages from the neighbors of the target_cell.

The simulation runs for several simulation steps. For 100 ms real brain time, the
simulation needs to execute 2000 simulation steps. The computation of the dendrite
voltages, as shown in listing 4.13, takes place every simulation step for each neighbor_cell
of the target_cell. The target_cell has a relation to the threads of the CUDA kernel,
which is used to fetch the correct neighbor information.

When calculating the new dendrite voltage, the neighboring dendrite voltages are
subtracted from the dendrite voltage of the target_cell. The neighbor_cell is a global
id, which is transformed into coordinates to obtain the dendrite voltages from texture
memory. All the GPUs have an equally sized texture memory according to the size
of the cell network, this is the only part of the network which does not scale when the
GPU_world is increased. The population of this memory is different for every GPU, since
the required neighboring cells vary from GPU to GPU. The difference of this voltage is
then multiplied with constants and the conductance value, to form the new dendrite
voltage of the target_cell.

Next to the computation of the new voltages for the dendrite compartment, also the
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1 #pragma omp parallel for schedule(static)
2 for (int i = 0; i < xcell_size_global; ++i)
3 dendVtoSend[i]=cellVDendPtr[cellstoRetrieve[i]];
4

5 MPI_Alltoallv(
6 dendVtoSend,
7 cellno_perGPUglob,
8 rdispls,
9 MPI_DOUBLE,

10 dendVtoStore,
11 xcellno_perGPUlocal,
12 sdispls,
13 MPI_DOUBLE,
14 MPI_COMM_WORLD);
15

16 #pragma omp parallel for schedule(static)
17 for (int i = 0; i < xcell_size_local; ++i)
18 cellVDendPtr[xcell[i]]=dendVtoStore[i];

Listing 4.14: Dendrite voltage communication during simulation

next voltages for the soma and the axon compartments are computed in each simulation
step. The kernel calls three sub-functions, each relating to one of the compartments,
computing the next voltages using the equations in [13]. None of the soma or axon
computations need voltages from other cells. These computations only need their own
previous voltages and a external input and thus do not require any data from foreign
GPUs. Therefore, these calculation do not have an implication for the multi-GPU design.

4.7 Dendrite-communication

The newly calculated dendrite voltages are stored after each computation step in an the
array CellVDendptr which is bound to texture memory. Only after the CUDA kernel is
finished, the update process of the texture memory can be conducted.

After every time step the new dendrite voltages are communicated to the requiring
GPUs and the texture memory is updated with the new value, such that when the new
computation starts, the new neighboring voltages can be fetched from texture memory.
Thus after each simulation step the dendrite voltages need to be gathered, scattered
across the network and updated in the texture memory. In listing 4.14 this part of the
code in shown.

The first for-loop gathers the calculated dendrite voltages and packs them in
dendVtoSend[]. The global cell-id’s serve as the index to retrieve the dendrite voltages.
When retrieved the cells can be send back to the needing GPUs. This is a reciprocal
operation of the previous MPI_Alltoallv function, described in section 4.5. The results
are returned to the same location as where they came from.

The second for-loop unpacks the received results into the cellVDendPtr which is
bound to the texture memory, using once again the global cell id as the array index
and thus updating the memory with the required values for computation in the next
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simulation step. Both loops are implemented with multi-threading implemented with
OpenMP to speedup the packing and unpacking of the dendrite voltages.

4.8 Summary

This section has discussed the design for the multi-GPU version for the four main phases
of the application. The application setup for the benchmarking will contain the con-
nection generators implemented on the GPUs using the cuRAND random generator, for
the cell-connection phase. The cell-dispersal phase does not contain any parallelizing
enhancements and communicates the cell-id’s through OpenMPI across the GPU_world.
The cell-computation phase is executed on the GPUs on which every thread resembles a
neuron cell with 3 compartments. The dendrite-communication phase occurs after every
computation step and uses OpenMPI to transfer the data across the GPU_world. The
packing and unpacking of the voltages are parallelized with the aid of OpenMP.

build 0.18



50 CHAPTER 4. DESIGN

build 0.18



Evaluation 5
In this chapter the benchmarking is reported of the proposed design from chapter 4. This
evaluation is done to analyze the behavior of the four phases of the design: connection-
generation, cell-id-dispersal, cell-computation and dendrite-communication. For the four
phases the absolute execution time is measured to establish which phase forms the bottle-
neck for the design and to give insight in how long the simulations run. When the execu-
tion times are known the speedup relative to the execution time of a single GPU_world
is calculated. The speedup gives an indication in the performance improvements when
parallel computing resources are added.

Next, the energy usage of the design is determined. The energy used is one of the
metrics on which a cluster bases its billing, thus this analysis also indirectly takes the
cost in terms of financial budget of the simulation into account. Because the speedup is
known an analysis of the efficiency of the design, in terms of energy versus speedup, can
be established. If a great speedup comes at the price of consuming a lot more energy, and
thus has a greater impact on the financial budget, it might be more efficient to execute
with fewer GPUs at the cost of a higher execution time. Since the consumed energy is a
more generic metric than for instance the billing units of the cluster, these measurements
will provide a more general comparison afterwards, when for instance other clusters are
used for the execution of the design.

To chart the behavior of the design beyond regular execution times and financial cost,
an extrapolation is made based on the gathered data to predict which factors limit this
design and to show how the execution times of the phases behave for larger network
sizes. Also, for the phases where the GPUs are used, the connection-generation and
the cell-computation phases, a roofline model is constructed to analyze the behavior of
the GPUs in terms of memory bandwidth and peak performance. This gives insight in
hardware limitations and could offer potential optimizations by analyzing if the design is
memory-bound or compute-bound.

5.1 Experimental setup

There are three dimensions which are varied running the benchmark, these are the net-
work size, the density and the GPU_world. This benchmark is executed for uniform
and Gaussian distributed networks. These are natural occurring distributions which also
gives insight in the impact of different network topology on the design.

The network size varies from 65K to 2M neurons and always has a squared relation,
meaning that the width is always equal to the height of the network. For each network
size, densities of 10, 100 and 1000 synapses per neuron are simulated. The settings for
these dimensions match and surpass connectivity encountered in the IO nucleus and aim
at revealing the simulator performance trends [14].
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The GPU_world is increased to 8, 16, 32 and 48 GPUs. Every increase is a doubling
of the amount of GPUs, except for the last. Because some nodes are under maintenance,
48 and not 64 GPUs are used. By increasing the GPU_world, the workload per GPU
will decrease and the expectation is that the execution time will decrease as well. In
table 5.1 an overview of the parameter space in displayed.

Name Range
Network size 65K-2M neurons
Density 10-1000 synapses/neuron
Synaptic pattern Uniform (U) and Gaussian (G)
World_size 8-48 GPU nodes

Table 5.1: Parameter space for InfOli benchmark

The simulator is executed for 2000 simulation steps, which resemblances 100 ms of
brain time. The C-function gettimeofday() is utilized to get the execution times of
the phases that do not use the GPUs: cell-id-dispersal and dendrite-communication. For
the other two phases the functions cudaEventRecord for recording the begin and end of
the kernels, and cudaEventElapsedTime to compute the elapsed time between these two
events, are utilized to get the execution times. Input and output have been minimized
to measure only the bare execution times.

The gathered data are visualized in 3-dimensional column graphs with a logarithmic
time scale with a base of 10 on the vertical axis versus the network sizes and densities
on the horizontal axes. To directly compare the uniform with the Gaussian distribution,
both are displayed in each graph for a particular GPU_world. The graphs show the
execution times for all the network sizes and all the densities for both uniform and Gaus-
sian distributions. The execution times for the four main phases are reported separately.
The speedup is discussed, for the total execution times, the connection-generation and
cell-computation phase. The other two phases are not invoked when executed on a single
GPU and thus no speedup can be calculated. Per simulation the average number of gen-
erated neighbors were checked for each density setting. In all cases the average number
met the required density setting.

5.2 Connection-generation

In figs. 5.1 and 5.2 the setup times for the connection-generation are displayed. As
expected the Gaussian generator takes more time to setup a cell network than the uniform
version. This is simply because the Gaussian generator is more complex than the uniform.
The fastest time to generate the largest network, is roughly 66 seconds for uniform and
152 seconds for Gaussian distributions in a GPU_world of 48. Doubling the amount of
GPUs reduces the overall network setup by half. The speedup relative to a GPU_world
of 1 and the execution times are displayed in tables 5.2 to 5.4 for the uniform-generator
and tables 5.5 to 5.7 for the Gaussian-generator. It shows that overall the speedup for
the Gaussian is a little higher than for the uniform-generator. The Gaussian-generator
benefits better from an increasing GPU_world. This is due to the fact that the occupation
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Figure 5.1: Execution times for uniform (U) and Gaussian (G) connection- generation
phases for all network sizes and densities, for GPU_worlds 8 (left) and 16 (right)

Figure 5.2: Execution times for uniform (U) and Gaussian (G) connection- generation
phases for all network sizes and densities, for GPU_worlds 32 (left) and 48 (right)

of the computing units is higher, the GPU’s utilization is more efficient for the Gaussian-
generator.
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GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 9.34 1.33 7.00 0.75 12.48 0.33 28.02 0.23 40.19
262K 44.92 6.28 7.15 3.39 13.24 0.36 124.14 1.10 40.90
1M 290.79 39.82 7.30 21.79 13.34 10.01 29.05 6.75 43.08
2M 791.11 113.54 6.97 58.11 13.61 26.99 29.31 17.85 44.31
4M 4554.97 412.04 11.05 196.89 23.13 97.33 46.80 65.34 69.71

Table 5.2: Speedup for uniform connection-generation - 10 synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 9.16 1.55 5.90 0.72 12.79 1.67 5.48 0.24 38.53
262K 44.04 6.94 6.34 3.31 13.29 1.57 28.11 1.07 41.13
1M 286.58 44.13 6.47 19.60 14.57 9.84 29.02 6.63 43.10
2M 776.93 109.11 7.12 54.96 14.14 27.13 28.64 17.89 43.43
4M 4473.34 402.48 11.11 200.8 22.28 97.37 45.94 65.62 68.17

Table 5.3: Speedup for uniform connection-generation - 100 synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 9.82 1.45 6.78 0.79 12.44 0.34 29.27 0.25 39.30
262K 45.85 6.63 6.92 3.54 12.95 1.63 28.07 1.13 40.57
1M 299.26 40.78 7.34 22.08 13.55 10.2 29.24 6.79 44.07
2M 814.14 118.76 6.86 59.93 13.58 27.7 29.41 18.30 44.49
4M 4687.58 386.28 12.14 210.4 22.28 101 46.59 66.84 70.13

Table 5.4: Speedup for uniform connection-generation - 1k synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 12.36 1.94 6.39 0.96 12.88 0.44 28.17 0.30 41.08
262K 71.88 10.21 7.04 5.07 14.16 2.34 30.76 1.61 44.53
1M 677.75 80.91 8.38 41.93 16.16 20.48 33.09 15.01 45.17
2M 1999.98 260.74 7.67 130.35 15.34 64.41 31.05 47.74 41.89
4M 8431.42 1086.42 7.76 542.85 15.53 267.56 31.51 197.81 42.62

Table 5.5: Speedup for Gaussian connection-generation - 10 synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 18.06 1.76 10.24 0.92 19.59 0.46 39.24 0.34 52.38
262K 96.89 9.87 9.82 4.75 20.41 2.44 39.71 1.88 51.50
1M 703.50 86.65 8.12 42.19 16.68 21.70 32.42 16.75 42.01
2M 2075.96 270.58 7.67 133.27 15.58 67.44 30.78 51.19 40.55
4M 8751.71 1128.00 7.76 554.41 15.79 279.75 31.28 211.74 41.33

Table 5.6: Speedup for Gaussian connection-generation - 100 synapses / neuron
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GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 24.58 2.49 9.87 1.19 20.65 0.57 43.12 0.41 60.02
262K 171.59 11.58 14.82 6.07 28.27 2.90 59.17 2.08 82.57
1M 1900.48 98.57 19.28 50.40 37.71 24.72 76.88 18.19 104.50
2M 5608.14 308.02 18.21 155.01 36.18 75.79 74.00 55.58 100.89
4M 23642.49 1284.04 18.41 613.50 38.54 306.36 77.17 229.48 103.03

Table 5.7: Speedup for Gaussian connection-generation - 1k synapses / neuron

Enlarging the network sizes within a GPU_world, leads to growth in the execu-
tion times, which is expected. Looking at the execution times across densities, for the
same network sizes the differences in execution time become smaller as the GPU_world
grows. For smaller GPU_worlds the execution times are more substantial than for
larger GPU_worlds. For larger GPU_worlds the workload is smaller than for smaller
GPU_worlds, thus the difference in execution time must also be smaller.

5.3 Cell-id-dispersal

In figs. 5.3 and 5.4, the execution time is shown for the phase where the required neighbor-
cell-id’s are dispersed throughout the GPU_world. This phase does not directly benefit
from increasing the GPU_world, because it is not executed on the GPUs. The small
overall speedup, for both generators is due to the fact that a smaller amount of cells need
to be communicated to an increasing GPU_world. Data sizes decrease while the count
of packets per communication instance increase.

It stands out that the cell-id-dispersal for a Gaussian-distribution takes longer time
than for a uniform-distribution. As was mentioned in section 2.3, GPUdirect is best
when the packet sizes are below a certain threshold. When packet sizes to be send are
above 16 Kbytes the latency starts to grow. In this part of the architecture the required
neighboring cell-id’s are communicated from the local to the foreign GPUs. In case of
the uniform-distribution, relative small packets containing cell-id’s, are send to many
foreign GPUs. In case of the Gaussian-distribution relative large packets are send to
fewer foreign GPUs. For the Gaussian-distribution it is more likely that the average
packet size will reach the threshold sooner than the uniform-distribution. On the other
hand, with a uniform-distribution the average packet size will reach the threshold much
later, not causing as much latency overhead as for the Gaussian- distribution.
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Figure 5.3: Execution times for uniform (U) and Gaussian (G) cell-id-dispersal phases
for all network sizes and densities, for GPU_worlds 8 (left) and 16 (right)

Figure 5.4: Execution times for uniform (U) and Gaussian (G) cell-id-dispersal phases
for all network sizes and densities, for GPU_worlds 32 (left) and 48 (right)

5.4 Cell-computation

The execution time for the cell-computation phase, shown in figs. 5.5 and 5.6, reports
solely the execution time of the computation kernel during simulation.
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Figure 5.5: Execution times for uniform (U) and Gaussian (G) cell-computation phases
for all network sizes and densities, for GPU_worlds 8 (left) and 16 (right)

Figure 5.6: Execution times for uniform (U) and Gaussian (G) cell-computation phases
for all network sizes and densities, for GPU_worlds 32 (left) and 48 (right)

In general, it holds that the larger the GPU_world becomes the smaller the
world_part, the fewer computations per GPU need to be preformed and the smaller the
loop for collecting the dendrite voltage per GPU loop will become. Next to an increase
in speed of simulation, increasing the GPU_world has the other benefit that the total
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GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 1.26 0.64 1.97 0.57 2.21 0.52 2.43 0.55 2.32
262K 4.12 1.54 2.68 1.32 3.12 0.53 7.79 1.10 3.73
1M 15.43 4.32 3.57 3.44 4.49 2.89 5.33 2.73 5.65
2M 28.83 7.73 3.73 6.00 4.81 5.02 5.74 4.68 6.16
4M 65.33 15.37 4.25 11.72 5.57 9.79 6.67 9.15 7.14

Table 5.8: Speedup for uniform cell-computation - 10 synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 1.38 0.70 1.96 0.57 2.43 0.53 2.60 0.56 2.47
262K 4.47 1.64 2.73 1.39 3.22 1.25 3.59 1.16 3.84
1M 16.57 4.62 3.59 3.66 4.52 3.19 5.19 3.01 5.51
2M 30.96 7.93 3.90 6.29 4.92 5.44 5.69 5.14 6.03
4M 70.14 15.82 4.43 12.33 5.69 10.53 6.66 9.90 7.08

Table 5.9: Speedup for uniform cell-computation - 100 synapses / neuron

memory is increased. The limitations of the memory and implications for the network
sizes are studied in section 5.8.

For a uniform-distributed network the computation speedup diminishes as the
GPU_world grows, as can be observed in tables 5.8 to 5.10. For a Gaussian-distributed
network a greater speedup is gained than for the uniform, as can be observed in tables 5.11
to 5.13. The reason for this difference between distributions and the diminishing returns
for the uniform-distribution, was foreboded in the previous chapter. The spread of the
cells per GPU in a Gaussian-distributed network is relatively better balanced, all GPUs
have a similar workload, than in a uniform one. In case of the uniform-distribution it is
very plausible that, for instance, one GPU needs to process a large and another a small
workload. This on average could take a longer time to complete than in the case where
both GPUs do an equally sized job, where resources are more efficiently utilized.
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GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 1.39 0.66 2.12 0.58 2.41 1.19 1.16 0.55 2.52
262K 5.16 1.64 3.15 1.43 3.61 1.26 4.10 1.16 4.43
1M 19.68 4.85 4.06 3.78 5.20 3.25 6.05 3.07 6.41
2M 36.76 8.36 4.40 6.57 5.59 5.57 6.60 5.24 7.02
4M 83.29 16.13 5.16 12.50 6.66 10.67 7.80 10.09 8.26

Table 5.10: Speedup for uniform cell-computation - 1k synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 1.23 0.62 1.99 0.52 2.39 0.44 2.80 0.57 2.18
262K 3.97 1.15 3.45 0.88 4.51 0.68 5.82 0.79 5.02
1M 15.09 2.81 5.37 1.87 8.05 1.33 11.33 1.42 10.63
2M 28.38 4.85 5.85 3.00 9.46 1.95 14.53 1.91 14.88
4M 63.12 9.19 6.87 5.43 11.62 3.36 18.76 3.13 20.20

Table 5.11: Speedup for Gaussian cell-computation - 10 synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 1.44 0.57 2.54 0.48 3.01 0.46 3.12 0.67 2.16
262K 4.12 1.11 3.70 0.85 4.86 0.74 5.58 0.97 4.27
1M 15.17 2.86 5.31 1.91 7.94 1.46 10.39 1.67 9.06
2M 28.52 4.76 5.99 2.99 9.54 2.10 13.57 2.22 12.86
4M 63.45 9.19 6.90 5.40 11.76 3.57 17.80 3.53 17.96

Table 5.12: Speedup for Gaussian cell-computation - 100 synapses / neuron

GPU_world
1 8 16 32 48

Network Size Run (s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 1.29 0.72 1.80 0.59 2.18 0.53 2.46 0.70 1.85
262K 4.05 1.28 3.15 1.08 3.75 0.93 4.34 1.21 3.35
1M 15.27 3.16 4.83 2.32 6.59 1.83 8.33 2.18 7.01
2M 28.71 5.22 5.50 3.52 8.15 2.60 11.05 2.87 9.99
4M 63.86 10.27 6.22 6.12 10.44 4.32 14.79 4.57 13.96

Table 5.13: Speedup for Gaussian cell-computation - 1k synapses / neuron

5.4.1 KNL comparison

The KNL version of the application [14] is evaluated using only cell- computations, thus
this is the only phase to which the multi-GPU design can only be compared to with
regards to performance. This section compares the results of the KNL setup to the GPU
setup in terms of network scalability, execution times and speedup.

The KNL evaluation reports that when increasing the KNL_world to more than 8
nodes no speedup gains are observed, particularly for heavier workloads. Even more
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so, simulating uniform-distributed networks of 1M cells results in erratic behavior. The
reason given is that performance and scalability are hindered due to data messages being
exchanged between cores, especially those belonging to different KNL nodes. The mesh
interconnect as described in section 2.3.3 which connect some, but not all, cores to other
cores, creating expensive extra memory reads and writes to get information across nodes,
is most probably the underlying architectural design to blame.

Firstly, the multi-GPU design does not show to have difficulties scaling larger net-
work sizes as for both distributions up to 4M cells, all densities can be simulated. The
GPUdirect technology implemented through OpenMPI, which connects the GPUs with
the lowest latency possible, shows good scalability across worlds and differing network
sizes. For the GPU-setup also the communication part eventually becomes the bottleneck
of the design. However, larger network sizes do not lead to erratic behavior as is the case
for the KNL setup. The dendrite voltages keep being delivered to other nodes and it is
just the execution time that increases with network size.

Secondly, when comparing the execution times of the KNL-setup to that of the multi-
GPU all the simulation times for all distributions, sizes and densities stay below 11
seconds, even for a GPU_world of 8. For larger densities and network sizes, the KNL-
setup reports executions times of 100-130 seconds for uniform and 50-110 seconds for
Gaussian-distributed network simulations.

Thirdly, the speedup reported for Gaussian-distributed network simulations, is lower
than the speedup observed for the GPU setup. In table 5.13 the speedup for the cell
computation are given for the largest density. In relation to the execution on a single
KNL node for Gaussian-distributed network simulations, the speedup reported for KNL
is 2.1, 4 and 7.2 when scaling from 1 to 2, 4 and 8 KNL nodes respectively. For the GPU
setup the speedup of 7.2 is obtained for a GPU_world of 16 and network size of 1M. The
speedup obtained by the KNL-setup can be matched by the GPU-setup.

The KNL-setup has been compared to the GPU-setup and overall it delineates a
picture how both setups behave. This is a comparison where the results serve as an
absolute reference point, however the GPU is not a KNL. The GPU for instance has a
lot of smaller cores while the KNL has fewer but larger cores. The multi-GPU setup
shows that network sizes above the 2M for the uniform distribution can still be executed.
The cell-computation phase scales good when the GPU_world increases. Enlarging the
GPU_world does not show any erratic behavior. The GPU setup either matches or
outperforms the KNL setup and it must be concluded that at least for larger network
sizes the multi-GPU is very suited to scale the InfOli brain application. A more thorough
comparison should be made where, for instance, also the consumed energy is considered
to establish the efficiency of the KNL setup.

5.5 Dendrite communication

The dendrite-communication phase, which performs the update of the dendrite voltages
after each simulation step, has become the bottleneck of the simulation. In figs. 5.7
and 5.8 can be observed that the largest execution times are reported in comparison to
other phases.

Next to the communication of the dendrite voltages, also the execution time for
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Figure 5.7: Execution times for uniform (U) and Gaussian (G) dendrite-communication
phases for all network sizes and densities, for GPU_worlds 8 (left) and 16 (right)

gathering and unpacking of the dendrite voltages are included, which are both parallelized
using OpenMP as described in section 4.7. As the networks grow larger, less speedup is
obtained by increasing the GPU_world. This process also does not benefit directly from
a larger GPU_world, since it is executed on the host cores instead of the GPUs.

The results observed here are reciprocal to the results from the cell-dispersal process.
The observed execution times for uniform are larger than for the Gaussian, which was the
opposite when looking at the cell-dispersal process. The larger the network the larger
the difference between Gaussian- and uniform-distributed networks. In this phase the
foreign GPUs have to send back the gathered dendrite voltages according to the cell-id’s
received in the cell-id-dispersal phase. The packets sent are larger than in the cell-id-
dispersal phase, because the data-type used, is MPI_double instead of MPI_int. For
a uniform-distributed network many foreign GPUs send back the gathered voltages to
local GPUs. Thus, a uniform network generates more traffic for larger packet sizes. For
a Gaussian network fewer foreign GPUs transfer data to local GPUs.
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Figure 5.8: Execution times for uniform (U) and Gaussian (G) dendrite-communication
phases for all network sizes and densities, for GPU_worlds 32 (left) and 48 (right)

5.6 Total execution time

The execution phases mentioned in the previous paragraph are summed and visualized in
figs. 5.9 and 5.10 and the speedup in relation to execution on a single GPU is displayed
in tables in this section.

To clearly show the scalability of the design, again three dimensional graphs are used,
that show the uniform and Gaussian-distributed simulations. The different shades of a
certain color belong to a distinct GPU_world, the darker the color the larger the density
within the GPU_world.

The communication is the dominant factor in the total execution times; either influ-
enced by the cell dispersal phase for Gaussian or dendrite communication for uniform.
In fig. 5.9 it can be seen that for the larger densities of the uniform distribution the ex-
ecution time diminishes slowly for an increasing GPU_world. For the smaller densities
a decrease in execution time is visible. In fig. 5.10 it can be seen that for an increasing
GPU_world, the total execution time decreases from roughly 1,100 to 200 seconds for
all densities. The execution times for a Gaussian-distributed network diminishes faster
than the for the uniform-distributed network.
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Figure 5.9: Total execution times for uniform-distribution for all sizes and densities.
Groups with the same colors with different shades represent the GPU_worlds (grey =

1, blue = 8, red = 16, green = 32 and brown = 48)

Figure 5.10: Total execution times for Gaussian-distribution for all sizes and densities.
Groups with the same colors with different shades represent the GPU_worlds (grey =

1, blue = 8, red = 16, green = 32 and brown = 48)
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GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 10.60 5.33 1.99 4.15 2.56 3.52 3.01 3.71 2.86
262K 49.04 20.99 2.34 14.10 3.48 6.19 7.92 8.82 5.56
1M 306.23 106.96 2.86 69.67 4.40 43.23 7.08 34.41 8.90
2M 819.95 275.59 2.98 175.66 4.67 111.08 7.38 83.69 9.80
4M 4620.30 962.60 4.80 614.01 7.52 367.82 12.56 270.04 17.11

Table 5.14: Speedup for total execution time - 10 synapses/neuron -
uniform-distribution

GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 10.53 6.16 1.71 5.76 1.83 10.42 1.01 6.09 1.73
262K 48.51 24.68 1.97 21.69 2.24 20.09 2.41 19.78 2.45
1M 302.15 124.20 2.43 104.57 2.89 96.28 3.14 87.98 3.43
2M 807.89 315.20 2.56 272.90 2.96 249.04 3.24 228.39 3.54
4M 4543.48 1118.95 4.06 976.70 4.65 874.94 5.19 799.59 5.68

Table 5.15: Speedup for total execution time - 100 synapses/neuron -
uniform-distribution

GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 11.21 6.31 1.78 5.82 1.93 6.06 1.85 6.51 1.72
262K 51.01 25.02 2.04 21.86 2.33 20.87 2.44 21.56 2.37
1M 318.94 121.36 2.63 106.18 3.00 97.38 3.28 97.66 3.27
2M 850.91 344.27 2.47 276.43 3.08 255.95 3.32 268.27 3.17
4M 4770.87 1102.56 4.33 984.69 4.85 967.73 4.93 889.69 5.36

Table 5.16: Speedup for total execution time - 1K synapses/neuron -
uniform-distribution

The overall speedup is calculated in comparison to the single-GPU execution. In
tables 5.14 to 5.16 the speedup for the uniform- and in tables 5.17 to 5.19 the speedup
for the Gaussian-distributed simulation is shown.

For the uniform-distributed simulation, the largest speedup observed is 17.11 for the
simulation with 10 synapses per neuron, a GPU_world of 48 and a network size of 4M
cells. For this distribution the speedup decreases when network density increases. Larger
densities, mean increasing neighbors and thus increasing communication overhead. The
speedup gained from increasing the GPU_world is attenuated by this overhead. This
distribution benefits less than, for instance, a Gaussian-distribution from an increasing
GPU_world. Still, significant speedup is obtained when the GPU_world increases.

The Gaussian-distribution, as opposed to the uniform, does show an increasing
speedup when density increases. For this distribution the neighbors are more local, which
means less communication overhead and more to gain from the increasing calculating ca-
pacities. The largest speedup is 50.91 which is registered for the simulation of 1k synapses
per neuron, a GPU_world of 48 and a network size of 4M cells. The results displayed for
GPU_world 48, are partly extrapolated based on the almost linear relation in speedup
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GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 13.60 4.34 3.13 3.44 3.96 3.23 4.21 4.56 2.98
262K 75.85 16.79 4.52 11.11 6.83 7.55 10.05 7.69 9.86
1M 692.84 132.46 5.23 76.79 9.02 41.35 16.76 33.40 20.74
2M 2028.36 422.49 4.80 226.56 8.95 121.92 16.64 98.41 20.61
4M 8494.54 1786.23 4.76 944.71 8.99 475.35 17.87 358.78 23.68

Table 5.17: Speedup for total execution time - 10 synapses/neuron -
Gaussian-distribution

GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 19.49 4.55 4.28 3.75 5.19 3.65 5.35 5.31 3.67
262K 101.01 17.22 5.87 11.64 8.68 8.46 11.94 9.22 10.96
1M 718.67 143.69 5.00 75.62 9.50 44.84 16.03 39.87 18.02
2M 2104.48 442.94 4.75 233.43 9.02 128.45 16.38 106.02 19.85
4M 8815.16 1873.20 4.71 964.29 9.14 491.89 17.92 376.37 23.42

Table 5.18: Speedup for total execution time - 100 synapses/neuron -
Gaussian-distribution

in the previous results. This extrapolation holds only for the Gaussian-distribution and
had to be done due to unavailability of 48 GPU nodes.

GPU_world
1 8 16 32 48

Network Size Run(s) Run (s) Speedup Run (s) Speedup Run (s) Speedup Run (s) Speedup
65K 25.87 6.08 4.26 5.18 5.00 4.78 5.41 6.63 3.90
262K 175.64 21.20 8.29 16.54 10.62 12.14 14.47 13.37 13.14
1M 1915.74 160.13 11.96 98.53 19.44 58.90 32.52 52.82 36.27
2M 5636.84 490.12 11.50 269.06 20.95 155.21 36.32 134.29 41.97
4M 23706.35 2057.25 11.52 1075.62 22.04 577.87 41.02 465.69 50.91

Table 5.19: Speedup for total execution time - 1K synapses/neuron -
Gaussian-distribution

5.7 Energy consumption

In figs. 5.11 and 5.12 the energy consumption is reported in kilo Joules for every node
count. The larger the network, the larger the execution time and thus more energy is
consumed. The energy is collected according to the commands mentioned in section 2.4.2.
SLURM is not configured to distinguish between GPU or Xeon processor on the node,
so these figures represent the total energy consumed by the whole node.

Smaller densities consume relative less energy than larger densities. The simulation
of Gaussian-distributed networks consume more energy than the uniform-distributed net-
works. Since the Gaussian process has longer setup time and setup is done on the GPUs,
using the GPUs are more expensive in energy, than using the Xeon cores. The Xeon cores
are used for the communication and some related tasks, which does take the longest over-
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all time, but apparently does not take up as much energy.

Figure 5.11: Energy consumption for uniform (U) and Gaussian (G) for all phases for
all network sizes and densities, for GPU_worlds 8 (left) and 16 (right)

Figure 5.12: Energy consumption for uniform (U) and Gaussian (G) for all phases for
all network sizes and densities, for GPU_worlds 32 (left) and 48 (right)
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Figure 5.13: Speedup in relation to the energy used for uniform distributions

5.7.1 Energy efficiency

Now that the energy per GPU_world per network size per density is known, a cost-
benefit analysis can be made. The energy consumed is also a rate for the financial
cost, as clusters base their billing on this metric. A larger speedup is often obtained
by increasing the GPU_world, but if the energy consumed rises higher than a rate of a
lower GPU_world, it might be worth waiting longer for the simulation to finish. Also,
the results for GPU_world 64 have been extrapolated and added to the graph to observe
how the design would behave if the GPU_world were to increase further.

In fig. 5.13 the speedup gained across GPU_worlds has been put into relation to the
relative energy increase compared to values obtained from GPU_world 1. GPU_world 1
serves as a base line for the speedup and the percentage for energy cost. A higher value
is better, because this means that the speedup, which is the old execution time divided
by the new, is relatively bigger than the percentage of energy increase, which is the old
energy divided by the new.

From the graph it can be observed that for smaller densities, it pays off to increase
the GPU_world. The energy used is relatively low in relation to the speedup gained.
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For an increasing network density however, the energy cost increases and it is more
efficient when a GPU_world of 8 is used. This again has to do with the communication
overhead. For a uniform-distribution holds that when the density increases, the number
of neighbors on foreign GPUs increase, the communication overhead increases, which
attenuates the speedup gained from the increasing GPU_world. If there is time to kill,
a smaller GPU_world for larger densities is a more energy efficient solution.

When the network size becomes larger then 2M cells, the GPUs become relatively
more energy efficient. The GPU_world of 8 is most efficient for an input of 4M cells
at larger densities. The larger contributor to the speedup gained from an increasing
GPU_world for a uniform- distributed simulation is the matrix generation process. Thus,
this increase in energy efficiency is caused by a more efficient execution by the GPUs. An
explanation is that this has to do with the fact that the computing units of the GPUs
become fully occupied. This is confirmed in [37] where utilization reaches 100% when
network size reaches 262,144 cells, which is roughly the same for a network size for a
single GPU when 2M cells are simulated for a GPU_world of 8. The GPUs use their
resources to the fullest and a higher speedup per energy, is obtained. This means also
that for a network size of 8M, the GPU_world of 16 would become most energy efficient.
This is supported by the graphs, for it shows a rise in efficiency for all GPU_worlds when
network size increases.

For Gaussian-distributed simulations the speedup versus energy relation is shown in
fig. 5.14. A different trend than for the uniform-distribution is observed. From the graphs
it becomes apparent that for smaller network sizes, smaller GPU_worlds are more energy
efficient with regards to speedup, this holds for all densities. When network sizes increase,
the GPU_world of 32 becomes the most energy efficient, followed by 48, 64, 16 and then
8. The speedup obtained in a GPU_world of 32 is the highest when compared to the
energy used.

The magnitude of speedup/energy is much larger in comparison to the uniform-
distribution, especially for 1K synapses/neuron. The Gaussian-distributed simulations
can gain a higher overall speedup than the uniform, due to the fact that the dendrite-
communication phase takes less time and the speedup of the connection-generation phase
is more significant.

5.8 Limitations

5.8.1 Memory

From the previous sections it can be concluded that the design scales well with increasing
network sizes and densities. When the data sets are analyzed, it can be observed that
all measured metrics follow a predictable growth pattern. The limiting factor which de-
termines to which magnitude cell networks can be simulated, has become the available
memory. In this section an estimation is given on the limitations of the design, when
extrapolating the obtained data, such to predict its behavior when dimensions are max-
imized. The two major factors which determine the memory usage, are the size of the
network and the density. The growth pattern of the measured results can roughly be
mimicked. The next value for the metric is obtained by multiplying the relation between
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Figure 5.14: Speedup in relation to the energy used for Gaussian distributions

the previous and the current value, multiplied by the current. The results of the extrap-
olation roughly equalled the observations obtained from real experiments and thus can
serve for as an indication to lay bare the limitations of the design. Extrapolating along
these dimensions, the look-up table 5.20 can be obtained, showing the limitations of the
cell network size in relation to the density of what that GPU_world could simulate.

It shows the theoretical limitations of the design, when scaled over 16, 32, 48 and
64 GPUs. It should be possible to simulate a network of 4096M cells at a density of
10 synapse per neuron when 64 GPU are used. Also observable is that the maximum
number of synapses/neuron attainable per network size is a density of 100k for a network
of 262k cell when using either a GPU_world of 32, 48 or 64.

As an example all the metrics for varying network sizes for a GPU_world of 32 and
a density of 1000, are partly empirical obtained and partly extrapolated. From 10M
cells the data is extrapolated until memory usage reaches 100%. The results of this
extrapolation can be observed in fig. 5.15. In a GPU_world of 32 a network of 16M
cells with a density of 1000 can be simulated before memory runs out (see memory).
This then would take roughly 2.5 hours for the simulation to complete. The dendrite-
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NS\Density 10 100 1K 10K 100K
65K W16
262K W32/W48/W64
1M W16/W32
2M W48
4M W64
8M
16M W16
32M W32
64M W48/W64
128M
256M W16
512M W16 W32
1024M W32 W48
2048M W48 W64
4096M W64

Table 5.20: Theoretically possible network sizes in relation to density for GPU_world
16-64

communication would still by far be the largest contributor to the execution time with
1.68 hours.

Adding more GPUs would not provide greater performance benefits, as was seen in the
previous sections, however it would supply more memory. Thus even larger cell-networks
become feasible when the GPU_world increases. If all the 64 GPU nodes on Cartesius
were to be utilized (which is practically not possible because 6 nodes are under revision
and scheduling that many node will be hard between the other jobs from other users),
in theory a twice as large network could run in roughly the same time. Thus, simulating
32M cells with a density of 1000 synapses per neuron could be possible within reasonable
time.
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Figure 5.15: Large network behavior for GPU_world 32 and density of 1000
synapses/neuron

5.8.2 Roofline model analysis

A roofline model is used to provide performance indications for applications, executed on,
for example, architectures such as GPUs, by visualizing hardware limitations. Various
theoretical performance ceilings could be defined based on the properties of the applica-
tion [39]. The model shows the operational intensity which is the ratio of work to the
memory traffic, in relation to the peak performance and the peak bandwidth. This model
can be used to study the design and potentially help in improving its performance.

The operational-intensity (OI) is defined as the ratio of floating point operations
(flops) to memory operations. The number of double precision flops have been de-
rived with the NVidia NVPROF profiling application, the profiler has a FLOP counter
metric output (flop_count_dp for double precision and flop_count_sp for single pre-
cision). The memory operations have been derived by summing the write and read
accesses from and to the DRAM of the GPU for which the profiler also has coun-
ters(dram_read_transactions and dram_write_transactions). The DRAM, of which
the K40M has the type GDDR5, is the psychical device memory residing on the GPU
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Figure 5.16: Roofline model for K40M, KNL, V100 for the compute-kernel

which is accessed on level 2 cache misses. For the compute-kernel, the flops and DRAM
accesses scale proportionally when the network size and the GPU_world varies.

The OI is computed as:

OI =
Flops

(DRAM_reads+DRAM_write)*(size of transaction = 32 Bytes)

In fig. 5.16 three different rooflines can be observed for the K40M, KNL and V100
compute-units. To make a comparison between architectures also the KNL has been
added. The figure shows that OI for the compute-kernel is 1.63 and the kernel is therefore
memory bound for all architectures, meaning that this part of the design is mostly busy
with reading and writing to memory. The attainable performance is 211 GB/s. For the
KNL and the attainable performance is 245 and for the V100 this is 661 GB/s. When
compared to the ridge point of the roofline, which for the K40M GPU is at 1.43T /
288GB/s = 4.96, the OIc is at 33% of its peak performance.

Next to a roofline model of the compute kernel, a model of the uniform and Gaussian
generator has been created to verify its behaviour. These kernels only handle single
precision floating points. The flop_counts do not scale down when the GPU_world is
increased, as opposed to the compute-kernel. This is because the dimension of these
kernels is always equal to the network size. The dimension of the kernels are not scaled
in relation to the GPU_world. Only the frequency of kernel execution, scales when
GPU_world increases, but this has no effect on the OI.

Also, the number of flops do not scale with the same ratio as the DRAM memory
movement when network sizes vary. This can explained from the fact that the probability
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Figure 5.17: Roofline model for K40M, KNL, V100 for the generator-kernels

that a neighbor is found, reduces when network size increases. When network size in-
creases, the kernel is executed more often but less neighbors need to be found to insure a
steady density. The main contributor to floating point operations of the generator-kernels
which determines the OI for the generator kernels is the cuRAND random-generator,
which is executed for every cell. As network size increases the probability for neighbors
decreases and less DRAM memory needs to be written, resulting in an increases in OI.

For a network-size of 256k cells the uniform OI is 10.11 and rises due to the fact
that the flops count increases more rapidly then the DRAM memory movement. For
network size of 512k, 1M, 2M the uniform OI is 32, 109 and 374. The same holds for
the Gaussian generator, the gaussian OI for 256k cells is 28, then 37 for 512k cells and
increases even more steep then the uniform. The results are shown in fig. 5.17. It should
be no surprise that the Gaussian generator-kernel has a higher and faster increasing OI
then the uniform. This is because for this kernel more floating point operations take
place on roughly the same DRAM memory movement.

The results are displayed in fig. 5.17, from which can be concluded that the generators
are compute-bound, meaning that the performance is limited by the speed of the GPUs.

Only the compute-kernel proves to be memory-bound, for increasing network sizes the
other kernels becomes computation-bound very rapidly. For memory-bound applications,
improving the occupancy of the GPU could help better hide memory latency and therefore
improve performance. For compute-bound kernels this could have a counterproductive
effect, introducing more overhead and possible degradation of performance. By increasing
the block dimension a higher occupancy could be achieved. A few random tests have been
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Block Size Ratio Occupancy OIcompute
32 4x8 0.18 1.63
64 8x8 0.34 1.57
96 8x12 0.36 1.58
128 8x16 0.36 1.51
192 12x16 0.36 1.49
256 16x16 0.35 1.46

Table 5.21: Results increased block sizes K40M

done to check if this would have a positive effect, of which the results are displayed in
table 5.21. A network size of 2M cells with a density of 100 synapses/neuron has been
used. The overall occupancy of the kernel does improve, but it does not have a positive
effect on the compute OI which decreases with every increase in block size.
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This chapter concludes the research for the multi-GPU simulator. Chapter 2 has discussed
the InfOli model which is used as a benchmark and modern GPU interconnect, used to
facilitate the multi-GPU implementation. The extended literature survey of multi-node
neural net simulators and their technology has been discussed in chapter 3. The proposed
design which lays bare the main phases of SNN simulation on a cluster, is discussed in
chapter 4. The main phases are setup of the network, which consists of connection-
generation and cell-id-dispersal across the GPU_world, and the simulation phase, which
consists of the computation of the soma, axon and dendrite voltages and communication
of the latter voltages across the GPU_world. The impact of these phases is reported in
chapter 5.

Because the design shows good scalability across nodes for varying network sizes,
the performance of the design is limited by the available GPUs in the cluster. The
application has proven to execute on as many GPUs as were available and no erratic
behavior has been noticed. All processes related to running on the GPUs show speedup
when network size is increased. When studying the total execution times, it is observed
that for larger densities, for the uniform distribution a minimal speedup is gained. The
dendrite communication process becomes the major bottleneck, as latency increases when
the sent packet sizes increase. This communication overhead does not take the overhand
in the overall execution while scaling network sizes is tractable. This scalable design
gives a good prospect for neuroscientists, proving that large network size simulations is
possible, using a multi-GPU setup.

Uniform distributions are more scattered across nodes indicating larger communica-
tion overhead, while the Gaussian is more local and is less bothered by communication
overhead. Both distributions benchmark different features when it comes to test the
application for a cluster. The Gaussian laid bare the fact that setup time is the largest
contributor to total execution time. For uniform distributions the dendrite communica-
tion time is the largest contributor to total execution time.

The different phases of the multi-GPU simulator were programmed as modules. In
principle these modules are generic modules, in the sense that they could be used to
indicate how to implement a multi-node version for other similar architectures as well.
It was depicted that the atomic functions for instance, indicate for GPU and OpenMP
how to implement these parts of the application. The libraries used are platform specific
but the modules functionality is generic across platforms. The modular programming
approach simplifies the coding of the GPUs as well. Modules can be tested separately,
using controlling variables to switch them on or off which help to identify problems such
as segfaults more easily.

The estimated limitations can be helpful for future related work. If simulating larger
networks is a goal, then table 5.20 is a visual aid showing what sizes are possible. For
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future work related to the inferior olivary experiment, complexity of the neural cells,
could also be increased. Instead of simulating 3 compartments, more compartments can
be simulated at the cost of smaller cell size networks. Increasing the complexity of the
cells, means increasing computational demands which could be supported by the GPUs.

Furthermore, this thesis does not limit itself to brain simulations only, it also indicates
the sheer force the GPUs have in combination with a sound interconnect technology like
GPUdirect. These technologies can also help other project currently being executed at
Erasmus. For instance, the complex whisker tracking algorithm, which tracks individual
whiskers of mice or rats, could be aided by such computational power. In fact, many
projects where mathematical models are to be calculated, will gain from the GPU power
benchmarked in this thesis and could use this document as a motivation that scaling
computational power is very much a possibility.

The GPUs are relatively easy to program. The CUDA API is well supported and
solutions to many problems are reported on fora. The functionality of the MPI collective
functions is challenging at times. For instance, the difference between MPI_Allgather(v),
MPI_Alltoall(v) or MPI_Sendrecv all have similar but distinct functionality, only re-
quired for specific tasks.

When designing the multi-GPU application, a demanding part was to keep track
where data resides. Inherently, data is local only to a single GPU, when data need to
be interchanged or needs to be accessed by all GPUs the complexity of the implementa-
tion can increase significantly. Especially, the implementation of the cell-dispersal phase
proved a complex undertaking. A solution for the problem that all GPUs need to com-
municate only parts of collected data to distinct GPUs, took more than a few iterations
to solve. The designer has to always bare in mind that the application is executed on
all GPUs, but is written for a single GPU. This next to the fact that a GPU is al-
ready a parallel device, on which the threads communicate implicitly through memory.
A GPU-cluster is a large massive parallel unit of parallel units.

6.1 Contributions

This thesis has contributed:
1. an analysis of the current SNN model and single-GPU implementation
2. an extensive literature survey of multi-node neural net simulators, their architec-

tures and optimization techniques
3. designed, implemented and deployed a multi-GPU simulator on the Cartesius clus-

ter and made preparation to implement the simulator on the AWS cluster
4. an evaluation of the performance, scalability and energy-consumption of the imple-

mented multi-GPU design
5. describing the bottlenecks according to the evaluation results and outlining the

theoretical limitations of the design
6. proposing future direction for multi-GPU SNN simulation based on the findings

build 0.18



6.2. FUTURE WORK 77

6.2 Future work

Potential next steps for this project could be:
• Increasing the number of compartments per cell such that more complex cell behav-

ior could be simulated. The GPU network can then be used to aid the acceleration
of parameter space exploration.

• The Euler solver used to calculate the differential equations is of the most basic
sort, a first order Runga-Kutta method. Experimenting with higher order solvers,
which produce more accurate simulation results, come at the price of decreasing
performance, which can be overcome in with a multi-GPU setup.

• Implementing the application on the AWS cluster, is a step forward for performance
but also for accessibility. The state-of-the-art hardware, could produce even better
results when simulating even larger networks and the cloud interface could make
it accessible to a greater public. The basis is the burstable cloud formation using
SLURM, which dynamically enables the elasticity to enlarge the number of compute
nodes necessary, which has been discussed.

• Comparing the multi-GPU implementation against the most promising candidate
found from the survey - CoreNEURON, could be interesting. Because CoreNEU-
RON is not making use of GPUdirect to scale across nodes, this simulator does not
provide the most efficient implementation. However when contacted, developers
stated such an optimization to be on the agenda, thus in the future this may prove
lucrative. It would bring to light the similarities and differences between imple-
mentations. Since CoreNEURON is used by distinguished institutes as JSC and by
EPFL, a supplementary research could serve as an indication for future research.

• The development of data retrieval for the cell connections from an external file can
be made more efficient with the already proposed solution of bit- fielding mentioned
in section 4.4.2. Another idea to speedup this process, is to copy the matrix directly
to GPUmemory and use a kernel to retrieve the cells. This is an highly experimental
idea, no API’s or predefined ways to do so exist. Getting a proof of concept can be
challenging, but the results could be beneficial.
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