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Development and validation of an early 
warning model for hospitalized COVID‑19 
patients: a multi‑center retrospective cohort 
study
Jim M. Smit1,2*   , Jesse H. Krijthe2, Andrei N. Tintu3, Henrik Endeman1, Jeroen Ludikhuize4,5, 
Michel E. van Genderen1, Shermarke Hassan6, Rachida El Moussaoui7, Peter E. Westerweel8, 
Robbert J. Goekoop9, Geeke Waverijn10, Tim Verheijen11, Jan G. den Hollander7, Mark G. J. de Boer12, 
Diederik A. M. P. J. Gommers1, Robin van der Vlies13, Mark Schellings14, Regina A. Carels15, 
Cees van Nieuwkoop16, Sesmu M. Arbous17, Jasper van Bommel1, Rachel Knevel11,18, Yolanda B. de Rijke3 and 
Marcel J. T. Reinders2 

Abstract 

Background:  Timely identification of deteriorating COVID-19 patients is needed to 
guide changes in clinical management and admission to intensive care units (ICUs). 
There is significant concern that widely used Early warning scores (EWSs) underesti-
mate illness severity in COVID-19 patients and therefore, we developed an early warn-
ing model specifically for COVID-19 patients.

Methods:  We retrospectively collected electronic medical record data to extract 
predictors and used these to fit a random forest model. To simulate the situation in 
which the model would have been developed after the first and implemented during 
the second COVID-19 ‘wave’ in the Netherlands, we performed a temporal validation 
by splitting all included patients into groups admitted before and after August 1, 2020. 
Furthermore, we propose a method for dynamic model updating to retain model 
performance over time. We evaluated model discrimination and calibration, performed 
a decision curve analysis, and quantified the importance of predictors using SHapley 
Additive exPlanations values.

Results:  We included 3514 COVID-19 patient admissions from six Dutch hospitals 
between February 2020 and May 2021, and included a total of 18 predictors for model 
fitting. The model showed a higher discriminative performance in terms of partial area 
under the receiver operating characteristic curve (0.82 [0.80–0.84]) compared to the 
National early warning score (0.72 [0.69–0.74]) and the Modified early warning score 
(0.67 [0.65–0.69]), a greater net benefit over a range of clinically relevant model thresh-
olds, and relatively good calibration (intercept = 0.03 [− 0.09 to 0.14], slope = 0.79 
[0.73–0.86]).
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Conclusions:  This study shows the potential benefit of moving from early warning 
models for the general inpatient population to models for specific patient groups. 
Further (independent) validation of the model is needed.

Keywords:  COVID-19, Early warning score, Intensive care, Machine learning, Artificial 
intelligence, Medical prediction model, Dynamic model updating

Background
The COVID-19 pandemic has continued to put pressure on hospital care worldwide. 
As COVID-19 patients may deteriorate rapidly and unexpectedly, timely identification 
of deterioration is needed to guide changes in clinical management, e.g., admission to 
intensive care units (ICUs). Widely used Early warning scores (EWSs) based on aggre-
gate-weighted vital signs have been developed for this purpose already, i.e., the Modi-
fied Early Warning Score (MEWS) [1], National Early Warning Score (NEWS) [2, 3] and 
its successor, NEWS2 [4]. A recent systematic review [5] showed that NEWS2 has been 
validated for COVID-19 patients in various studies. However till date, only one study [6] 
validated it for the purpose it was originally designed for, namely longitudinal monitor-
ing to identify clinical deterioration over a 24-h interval. Moreover, these existing EWSs 
were designed for the general inpatient population and do not differentiate between var-
ious rates of oxygen delivery. Consequently, there is significant concern that these scores 
underestimate severity of illness in COVID-19 patients [7–11]. Many new prognostic 
models for COVID-19 have been developed [12], but most of these are intended to pre-
dict outcomes at the point of hospital admission instead of longitudinal inpatient moni-
toring. Moreover, most use relatively long or unspecified prediction horizons, whereas 
for the task of early warning, a prediction horizon limited to a few days is recommended 
[13].

We aimed to develop an early warning model for longitudinal monitoring of hospital-
ized COVID-19 patients, based on patient demographics and vital signs, and benchmark 
it against existing EWSs.

Methods
The Medical Ethics Committee at Erasmus MC, Rotterdam, The Netherlands, waived 
the need for patient informed consent and approved an opt-out procedure for the col-
lection of COVID-19 patient data during the COVID-19 crisis. The study is reported in 
accordance with the TRIPOD guidelines [14].

Study population and data collection

The study was performed in six hospitals in the Netherlands, South Holland province, 
consisting of two academic hospitals and four teaching hospitals. We collected elec-
tronic medical record (EMR) data from patients admitted with COVID-19, defined as 
a positive real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay for 
SARS-CoV-2 or a COVID-19 Reporting and Data System (CO-RADS) score [15] ≥ 4 and 
clinical suspicion without obvious other causes of respiratory distress. The periods of 
data collection varied per hospital and ranged between February 2020 and May 2021.
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Outcome

We used patient deterioration as a primary outcome, defined as a composite outcome 
of intensive care unit (ICU) admission or unexpected death on the ward, within 24 h 
from the moment of prediction. We qualified each patient death as unexpected unless 
it occurred after initiation of end-of-life care (EoLC) or a ‘do not admit to ICU’ order.

Participants

We handled patients who returned to the same hospital for COVID-19-related mat-
ters, after being discharged first, as separate admissions. We validated the model 
using the observation set definition [16], i.e., we collected multiple observation sets 
(‘samples’) of each patient at different time points, using the most recently observed 
set of predictors. We collected samples starting at 8  h after hospital admission and 
added one every 24 h until discharge, ICU admission, or death. We labeled samples 
as positive if ICU admission or death occurred within 24 h from the moment of sam-
pling, and negative otherwise. We excluded patients (1) who were admitted to the ICU 
straight from home or the emergency department, (2) who were hospitalized shorter 
than eight hours, and (3) for who EoLC or a ‘do not admit to ICU’ order was initiated 
somewhere during hospitalization. We censored patients who were transferred to 
other hospitals at the moment of transfer. For patients who were still admitted when 
the data were collected, we censored at 24 h before the final observed measurement, 
consequently excluding still admitted patients who stayed shorter than 24 h.

Predictors

As recommended by Wynants and colleagues [12], we selected a set of candidate pre-
dictors which were identified as clinically important in COVID-19 patients in the lit-
erature (Additional file 1: Table S1). Additionally, to effectively model the degree of 
supplemental oxygen (O2) a patient required, we added O2 both as a binary (yes/no) 
and continuous (L/min) predictor. To measure O2 relative to the patient’s oxygena-
tion, we added the SpO2 to O2 ratio (SpO2/O2). We added changes (∆s) in frequently 
measured vital signs to model their dynamics. We added the AVPU (Alert, Verbal, 
Pain, Unresponsive) score [17] using ordinal encoding (i.e., A = 0, V = 1, P = 2, U = 3). 
Finally, to correct for time dependency of some included predictors and model the 
effect of duration of the hospitalization on the prior deterioration risk, we added the 
current length-of-stay on the ward as a predictor. We excluded predictors with entry 
densities (i.e., fractions of non-empty daily measurements) less than 50% within the 
development set. More details on the definitions of the candidate predictors can be 
found in Additional file 1: appendix A.

Missing data

We imputed the categorical predictors for each sample separately by fitting a logis-
tic regression model for sex and a multinomial logistic regression model for AVPU, 
using sex or AVPU as outcomes and the remaining data as predictors. To impute the 
missing values among the continuous predictors, we used the ‘IterativeImputer’ func-
tion offered by scikit-learn in Python [18], which imputes each predictor with missing 
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values based on the other predictors with Bayesian ridge regression in an iterated 
round-robin fashion (Additional file 1: appendix B).

Model development

We fitted a random forest (RF) model to discriminate between positive and negative 
samples. To examine the added value of the inclusion of non-linear predictor–outcome 
relations by the RF model, we also fitted a logistic regression (LR) model with L2 regular-
ization. First, we normalized the samples by centering each predictor and scaling them 
by the standard deviation (based on the development set). After imputation, we opti-
mized the ‘maximum tree depth’ and ‘max features’ hyperparameters of the RF model 
and the regularization strength (λ) of the LR model using an exhaustive grid search in a 
stratified tenfold cross-validation procedure within the development set (optimizing the 
area under the receiver operating characteristic curve). Additional file 1: Table S2 shows 
the hyperparameter grids that were searched. Finally, we fitted the models with the opti-
mized hyperparameters using the development set and validated them using the test set.

Model validation

We validated the models temporally, and evaluated two model implementation strate-
gies: a static and a dynamic strategy. First (static strategy), to simulate the situation in 
which the models would have been developed after the first COVID-19 ‘wave’ in the 
Netherlands and implemented during the second wave, we split the data for patients 
admitted before and after August 1, 2020, forming the development set and test set, 
respectively. We fitted an RF and LR model using the development set and validated 
these using the test set, as described in Sect. 3.6 (Additional file 1: Fig. S1). We refer to 
these as the ‘static’ models.

Second (dynamic strategy), as changes over time may lead to degraded model perfor-
mance, we simulated the situation in which models would have been developed after the 
first wave, implemented, and updated each month during the second wave. Therefore, 
each month from August 2020 to May 2021, we updated the static models using patient 
data that would have been available up to that point and validated these using data of the 
next month (Fig. 1a). The model updating we implemented was twofold: model fitting 
and hospital-specific recalibration. The latter was performed with a mapping function 
(i.e., a calibrator), which we fitted using isotonic regression [19] and which re-maps the 
predictions of the fitted model (Additional file 1: appendix C). Each month, for each hos-
pital, we fitted models using all available data up to that month of the five other hospi-
tals and recalibrated the models using all available data up to that month of the hospital 
itself. Thus, to validate the model each month, models are updated solely based on data 
that would have been available up to that month, avoiding any leakage from the devel-
opment set to the test set. We refer to these as the ‘dynamic’ models. An evaluation of 
other dynamic model updating strategies can be found in Additional file 1: appendix G.

Additionally, we validated an RF and LR model in a more classical way (retrospec-
tively), using a ‘leave-one-hospital-out’ cross-validation procedure. That is, in each itera-
tion, all patients from five hospitals across the full study period formed the development 
set and all patients from the remaining hospital formed the test set (Additional file 1: Fig. 
S2).
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Evaluation metrics

Model discrimination for medical prediction models is often quantified by the area 
under the receiver operating characteristic curve (AUC). In this setting, we consider a 
false positive rate (FPR) > 0.33 as clinically undesirable as we argue that it will lead to 
alert fatigue [20]. Moreover, other NEWS validation studies [21, 22] have shown that the 
recommended triggers (i.e., NEWS = 5 or NEWS = 7 [3, 4]) appear in the receiver oper-
ating characteristic curve in FPR ranges between 0 and 0.33. Therefore, we consider the 
partial AUC [23] (pAUC, Additional file 1: appendix F.2) between 0 and 0.33 FPR as our 
primary endpoint and the (complete) AUC as a secondary endpoint. Also, the positive 
predictive value (PPV) is suggested as a useful metric to evaluate the clinical usability 
of EWSs [16, 21, 24]. Therefore, we evaluated the area under the precision–recall curve 
[25] (AUCPR, Additional file  1: appendix F.3). We assessed 95% confidence intervals 
(CIs) to calculate uncertainties around the different metrics using bootstrap percentile 
confidence intervals [26] (with 1000 bootstrap replications stratified for positive and 
negative samples) and tested the statistical significance of the improvements in discrimi-
native performance between models as described in Additional file 1: appendix F.4.

We performed a decision curve analysis (DCA) [27] to quantify the clinical utility of 
the models in terms of net benefit (NB, Additional file 1: appendix F.5). We considered 

Fig. 1  Study design. a Schematic representation of the dynamic model updating procedure. For example, 
to predict deterioration for patients admitted to hospital A in October 2020, the model is fitted using 
patient data collected up to that date in the remaining hospitals, and a calibrator is fitted using patient data 
collected up to that date in hospital A. These two combined result in calibrated predictions. This process is 
repeated each month, for each hospital, from August 2020 until May 2021. b Flowchart of patient inclusion. 
ICU = intensive care unit, ED = emergency department, EoLC = end-of-life care, LOS = length-of-stay
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early detection of a deteriorating patient as at least four times more important than pre-
venting an unnecessary response (false alarm), and therefore we plotted the DCA results 
up to 0.2 deterioration probability. The NB is normalized as the fraction of the maxi-
mum NB.

Following the calibration hierarchy defined by Van Calster and colleagues [28], we 
evaluated model calibration in the ‘weak’ sense by calculating calibration intercepts 
and slopes [29] (Additional file 1: appendix F.6) and in the ‘moderate’ sense by plotting 
smoothed calibration curves [30].

Each metric was evaluated based on the complete test set (i.e., the overall perfor-
mance) and the test subsets from the individual hospitals.

Explainable predictions

To obtain interpretability for the developed models, we calculated the impact of individ-
ual predictors on risk output by SHapley Additive exPlanations (SHAP) values. A SHAP 
value is a model-agnostic representation of predictor importance, where the impact of 
each predictor is represented using Shapley values inspired by cooperative game theory 
[31]. We calculated SHAP values based on RF and LR models fitted on the complete 
dataset.

Comparison with existing early warning scores

To benchmark the models against existing EWSs, we calculated the MEWS [1] and the 
NEWS [2] for each sample. We validated both scores in the same fashion (using the same 
imputation) as the RF and LR models. For the DCA, we transformed the discrete scores 
into probabilities by fitting two calibrators based on the development data using isotonic 
regression, with, respectively, the MEWS or the NEWS as the only predictor.

Additional experiments

To compare the RF model with another non-linear model, we repeated the temporal 
validation with a Gradient Boosting (XGBoost) model, optimizing the hyperparam-
eters described in Additional file 1: Table S2. To examine the added value of predictive 
modeling compared to aggregate-weighted scores, we compared the performance of the 
MEWS and NEWS in the temporal validation with an extra RF and LR model fitted only 
with the predictors required to calculate the MEWS (i.e., heart rate, respiratory rate, sys-
tolic blood pressure, temperature, AVPU) and NEWS (which adds supplemental O2 (yes/
no) and SpO2). To further examine the influence of the included predictors on the model 
performance, we fitted extra models using more (i.e., by allowing more missingness) and 
fewer (i.e., by selecting on importance) predictors. Finally, we examined the influence of 
the imputation strategy on the model performance by repeating the temporal validation 
for 50 unique imputation rounds.

Results
Cohort description

We included 3514 COVID-19 patient admissions in six Dutch hospitals within vary-
ing time windows ranging between February 2020 until May 2021 (Additional file 1: 
Fig. S3). Table 1 shows the pathway and population characteristics for all included 
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admissions. Pathway and population characteristics separately for admissions before 
and after August 1 can be found in Additional file 1: Tables S5 and S6 and for the 
individual hospitals in Additional file 1: Tables S7–S12. ICU admission occurred in 
539 (15.3%), unexpected death in two (< 0.1%), and hospital transfer in 485 (13.8%) 
admissions (Fig.  1b). Additional file  1: Table  S3 shows the occurrence of different 
patient outcomes across the different hospitals. Occurrence of ICU admission over 
the whole study period was notably low in hospitals B and C (11.4% and 10.7%) 
compared to the other hospitals (ranging between 16.3% and 19.4%). We identi-
fied 47 candidate predictors of which, after exclusion due to missingness, 18 were 
included (Additional file 1: Table S1). To examine the role of included predictors in 
relation to the outcome, we plotted cumulative predictor distributions for positive 
and negative samples (Additional file 1: Fig. S4). Here, O2, SpO2/O2, respiratory rate 
and temperature show notable differences between the positive and negative sample 

Table 1  Pathway and population characteristics

DA discharged alive, ICU intensive care unit, SA still admitted, IQR interquartile range, SD standard deviation, LOS length-of-
stay, RR respiratory rate, SBP systolic blood pressure, T temperature, HR heart rate

DA 
(N = 2472)

ICU (N = 539) Died (N = 2) Transfer 
(N = 485)

SA (N = 16) Total 
(N = 3514)

Sex male, % 55.3 64.7 100.0 56.9 56.2 57.0

Female, % 43.1 34.9 0.0 39.8 43.8 41.3

Unknown, % 1.6 0.4 0.0 3.3 0.0 1.6

Age, years 
med (IQR)

61.0 
(51.0–70.0)

63.0 
(55.0–70.0)

76.0 
(74.5–77.5)

60.0 
(53.2–69.0)

66.5 
(55.0–75.5)

61.0 (52.0–70.0)

Mean (SD) 59.6 (14.2) 61.5 (11.7) 76.0 (3.0) 59.8 (11.9) 64.5 (11.6) 60.0 (13.5)

Ward LOS, 
days med 
(IQR)

3.7 (1.9–6.4) 2.3 (1.1–3.9) 7.6 (7.2–7.9) 1.1 (0.8–2.0) 4.7 (1.2–14.5) 2.9 (1.5–5.5)

Mean (SD) 5.3 (6.8) 3.4 (4.4) 7.6 (0.7) 1.8 (2.3) 8.6 (8.9) 4.5 (6.2)

RR, breaths/
min med (IQR)

18.0 
(16.0–22.0)

22.0 
(19.0–26.0)

20.0 
(20.0–20.0)

20.0 
(16.8–24.0)

18.0 
(16.0–23.5)

20.0 (16.0–24.0)

Mean (SD) 19.3 (5.0) 22.9 (6.0) 20.0 (0.0) 20.8 (5.1) 20.7 (6.2) 20.1 (5.4)

SpO2, % med 
(IQR)

96.0 
(95.0–98.0)

95.0 
(94.0–97.0)

95.5 
(95.2–95.8)

95.0 
(94.0–97.0)

95.0 
(93.5–97.0)

96.0 (94.2–97.0)

Mean (SD) 96.0 (3.5) 95.1 (4.8) 95.5 (0.5) 95.5 (2.2) 94.5 (3.4) 95.8 (3.6)

SBP, mmHg 
med (IQR)

125.0 
(113.0–137.0)

125.0 
(114.0–137.0)

137.5 
(136.8–138.2)

123.0 
(113.0–133.5)

119.0 
(107.2–126.8)

124.0 (113.0–
136.0)

Mean (SD) 126.4 (18.8) 127.4 (19.3) 137.5 (1.5) 124.1 (16.5) 120.0 (17.3) 126.2 (18.6)

T, °C med 
(IQR)

37.1 
(36.6–37.8)

37.3 
(36.7–38.0)

37.0 
(37.0–37.1)

37.0 
(36.6–37.7)

36.8 
(36.2–37.0)

37.1 (36.6–37.8)

Mean (SD) 37.2 (0.9) 37.4 (1.0) 37.0 (0.1) 37.2 (0.9) 36.8 (0.7) 37.2 (0.9)

HR, bpm med 
(IQR)

81.0 
(71.0–91.0)

83.0 
(73.0–92.0)

91.0 
(84.0–98.0)

81.0 
(72.0–90.0)

80.0 
(73.8–84.8)

81.0 (72.0–91.0)

Mean (SD) 82.0 (15.2) 83.5 (15.2) 91.0 (14.0) 81.6 (13.7) 81.2 (13.6) 82.2 (15.0)

O2, yes/no, % 57.4 76.4 0.0 82.5 68.8 63.8

O2, L/min 
med (IQR)

3.0 (2.0–4.0) 6.0 (3.0–12.0) – 4.0 (2.0–5.0) 3.0 (2.0–7.5) 3.0 (2.0–5.0)

Mean (SD) 3.6 (3.0) 7.5 (5.4) – 4.4 (3.0) 5.5 (5.1) 4.5 (3.9)

SpO2/O2, 1/
(L/min) med 
(IQR)

32.7 
(23.5–48.5)

15.8 (8.1–31.0) – 24.2 
(18.6–47.0)

30.7 
(14.1–48.5)

31.7 (18.6–48.0)

Mean (SD) 41.4 (26.5) 23.0 (21.3) – 32.4 (21.1) 35.0 (24.1) 36.4 (25.7)
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distributions. We plotted the correlations between the predictors (before imputa-
tion) in a clustered heatmap (Additional file  1: Fig. S5). The vital signs with their 
dynamic counterparts (∆s) showed strong positive correlations, as well as temper-
ature with heart rate. O2 and respiratory rate showed strong negative correlations 
with SpO2/O2.

Model discrimination

We simulated the situation in which models would have been developed after the first 
wave, implemented, and updated each month during the second wave, i.e., the dynamic 
models. The overall receiver operating characteristic (ROC) curves (and correspond-
ing pAUCs and AUCs) yielded by these models and the existing EWSs are depicted in 
Fig.  2a. The dynamic RF model outperformed the NEWS and the MEWS in terms of 
pAUC with, respectively, 10 and 15 percentage points. We placed landmarks in the ROC 
curve of the NEWS that correspond with the recommended triggers for an urgent and 
emergency response [3]. An emergency response triggers a critical care outreach team 
to respond quickly. Vertical differences between the ROC curves represent the potential 
improvement in the early detection of deteriorating COVID-19 patients. The horizon-
tal differences represent the potential reduction in false alarms. Also in terms of AUC 
and AUCPR, the dynamic models outperformed the existing EWSs (Additional file  1: 
Table  S4). We also simulated the situation in which models would have been imple-
mented after the first wave without any updating, i.e., the static models. These yielded 
very similar discriminative performance compared to the dynamic models, with a pAUC 
of 0.81 [0.79–0.83] and 0.80 [0.78–0.82], respectively, for the RF and LR model. Finally, 
we validated the model retrospectively, for which the results are summarized in Addi-
tional file 1: appendix H.

Figure 2b shows the pAUCs yielded by the dynamic models and the existing EWSs in 
the individual hospitals. The dynamic models outperformed the existing EWSs in most 
of the hospitals. The static models yielded similar results (Additional file 1: Fig. S6). Hos-
pital-specific results in terms of AUCPR and AUC are depicted in Additional file 1: Fig. 
S7.

Decision curve analysis

Figure  2c shows the results of the decision curve analysis (DCA). Both static and 
dynamic models show a clear improvement in net benefit (NB) compared to the existing 

(See figure on next page.)
Fig. 2  Model discrimination and decision curve analysis. a Overall ROC curves for the RF and LR models and 
the NEWS. We placed two landmarks for a NEW score of 5 and 7, i.e., the recommended trigger thresholds 
for an urgent and emergency response. We calculated both the pAUC between a false positive rate of 0 and 
0.33 (grey area) and the complete AUC. Shaded areas around each point in the ROC curves represent the 
95% bootstrap percentile CIs25 (with 1000 bootstrap replications stratified for positive and negative samples). 
b Hospital-specific pAUCs. The error bars represent the 95% bootstrap percentile CIs25 (with 1000 bootstrap 
replications stratified for positive and negative samples). P-values, calculated as described in Additional file 1: 
appendix F.4, are shown for the difference in pAUC between the RF models and NEWS (upper bar), between 
the RF and LR models (middle bar) and between the LR models and NEWS (lower bar). c Overall decision 
curve analysis results. The standardized net benefit is plotted over a range of clinically relevant probability 
thresholds with corresponding odds. The ‘Intervention for all’ line indicates the NB if a (urgent or emergency) 
response would always be triggered
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Fig. 2  (See legend on previous page.)
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Fig. 3  Overall model calibration of the static and dynamic RF models (a) and LR models (b). Top left: 
smoothed flexible calibration curves. Top right: zoom-in of the calibration curve in the 0–0.2 probability range 
(grey area). Shaded areas around the curves represent the 95% CIs. Bottom: histogram of the predictions 
(logscale). Shaded areas around each point in the calibration curves (before smoothing) represent the 95% 
bootstrap percentile CIs25 (with 1000 bootstrap replications stratified for positive and negative samples). 
The smooth curves including CIs were estimated by locally weighted scatterplot smoothing (see https://​
github.​com/​jimms​mit/​COVID-​19_​EWS for the implementation). a Overall model calibration of the static and 
dynamic RF models. b Overall model calibration of the static and dynamic LR models

https://github.com/jimmsmit/COVID-19_EWS
https://github.com/jimmsmit/COVID-19_EWS
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EWSs. Both dynamic models yielded higher NBs compared to the static models and the 
RF models yielded higher NBs compared to the LR models. Also in most of the individ-
ual hospitals, the dynamic models show improved NBs compared to the existing EWSs 
(Additional file 1: Fig. S8).

Model calibration

The overall calibration curves for the RF and LR models are shown in Fig.  3a and 
b, respectively, including the corresponding calibration intercepts and slopes. The 
dynamic models show improved calibration curves compared to the static models. 
The dynamic RF model yielded a slightly better calibration curve than the dynamic 
LR model. The vast majority of the static and dynamic LR and RF predictions occur 
in the lower probability range (i.e., 0–0.2), and therefore a good model calibration 
is most important in this region. The relatively small number of predictions in the 
higher probability range (i.e., 0.2–1) causes high uncertainty, making calibration in 
this region hard to judge. Hospital-specific calibration curves can be found in Addi-
tional file 1: Fig. S9, with calibration intercepts ranging from −0.37 to 0.49 and − 0.24 
to 0.38 and calibration slopes ranging from 0.55 to 1.11 and 0.69 to 1.42, respectively, 
for the dynamic RF and LR models.

Predictor importance

The distribution of SHAP values of the included predictors is shown in Fig. 4. The top 
five ranked predictors were SpO2/O2, respiratory rate, temperature, ward length-of-stay 
and O2 (L/min). The distribution of SHAP values of the LR model shows similar ranking 
of importance and is shown, together with fitted model parameters, in Additional file 1: 
Fig. S10.

Additional experiments

The static XGBoost model showed similar discriminative performance and similar 
calibration curves compared to the static RF model, but the dynamic XGBoost model 
showed lower pAUC and a worse calibration curve compared to the dynamic RF model 
(see Additional file  1: Table  S4 and Fig.  S11). The LR and RF models fitted with the 
MEWS predictors outperformed the MEWS, whereas the models fitted with the NEWS 
predictors yielded similar discriminative performance as the NEWS (Additional file 1: 
appendix I.1). The models fitted with only the top five most important predictors, as well 
as model fitted with the predictors required to calculate the NEWS supplemented with 
SpO2/O2, yielded similar performance in discrimination and calibration compared to the 
models fitted with the 18 originally included predictors. Models fitted with more pre-
dictors (allowing predictors with more missingness) resulted in similar discrimination, 
but slightly worse calibration (Additional file 1: appendix I.2). Finally, model discrimina-
tion and calibration showed little variation over 50 imputation rounds (Additional file 1: 
appendix I.3).



Page 12 of 18Smit et al. Intensive Care Medicine Experimental           (2022) 10:38 

Discussion
Principal findings

We introduced COVID-19-specific early warning models which showed improved 
performance compared to the existing Early warning scores. The implementation of 
dynamic model updating showed to be effective to retain good model calibration over 
time. When implemented, this model has the potential to improve early detection of 
deteriorating COVID-19 patients and save workload for healthcare workers by reduc-
ing the number of false alarms, although an interventional study is required to prove 
this.

Fig. 4  Distribution of SHapley Additive exPlanations (SHAP) values of the included predictors (based on 
mean SHAP magnitude) for the random forest model. For each predictor, each dot represents the impact 
of that predictor for a single prediction. The colors of the dots correspond with the value for the specific 
predictor. Thus, pink dots with positive SHAP values indicate that high values of the predictor are associated 
with a high risk of clinical deterioration. Conversely, blue dots with positive SHAP values indicate that low 
values of the predictor are associated with a high risk of clinical deterioration
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Clinical implementation

The probability for clinical deterioration within 24 h predicted by the model enables cli-
nicians to assess deterioration risk in COVID-19 patients and respond appropriately. As 
we present a machine learning (ML) model based on 18 predictors, pragmatically, it can-
not be calculated by hand (in contrast to aggregate-weighted EWSs), but requires auto-
mated calculation using data stored in the EMR. Hence, the use of the presented model 
is limited to hospitals that use an EMR, which underwrites the importance of EMRs to 
bring machine learning models to the bedside.

Related studies

The choice for clinical outcomes varies significantly in early warning literature [24]. 
The NEWS was originally intended to identify patients at risk of early cardiac arrest, 
unplanned ICU admission, and death [2]. As cardiac arrest unavoidably leads to either 
death or ICU admission, we did not handle cardiac arrest as a separate outcome but 
recognized these as either unplanned ICU admissions or unexpected deaths. Baker and 
colleagues [6], who validated NEWS2 longitudinally in COVID-19 patients, included 
the initiation of different non-invasive respiratory support methods (CPAP, BiPAP and 
HFNC) as an outcome too. In the Netherlands, these support methods are also offered 
to COVID-19 patients outside the ICU and therefore, we did not include these as out-
comes. Also, Baker and colleagues included the initiation of EoLC as an outcome. In the 
Netherlands, EoLC may be initiated before a patient actually deteriorates based on, for 
instance, high age or significant comorbidities. Hence, a patient for whom EoLC is initi-
ated may have a very different clinical presentation compared to a patient with full care 
just before ICU admission or unexpected death. Therefore, including the initiation of 
EoLC as an outcome may decrease the model’s predictive performance for ICU admis-
sion or unexpected death. We excluded patients where EoLC was initiated and those 
with a ‘do not admit to ICU’ order. In a recent NEWS validation study [32], Haegdorens 
and colleagues also excluded patients with a ‘do not perform cardiopulmonary resusci-
tation’ order. However, because these patients may still be admitted to the ICU, we did 
not exclude them. The ISARIC-4C group published prediction models for mortality [33] 
and deterioration [34] among COVID-19 patients. The key difference with the model 
we present is that the ISARIC-4C models provide a single prediction of adverse out-
comes (based on data from hospitalization day 1), instead of longitudinal patient moni-
toring. We were unable to evaluate their predictive performance as they are based on 
predictors which were frequently missing or completely unavailable in our datasets (i.e., 
computed tomography findings, uncommonly measured biomarkers, or information on 
comorbidities).

Model generalizability

Different factors could have influenced the generalizability of the model we presented. 
For instance, improved patient outcomes after the introduction of dexamethasone after 
the RECOVERY trial [35] halfway July, 2020, could have caused the models developed 
before August 2020 to overestimate deterioration when implemented afterwards. Fur-
thermore, given the low prevalence of unexpected death (< 0.1%), the model we pre-
sented is predominantly predicting ICU admission, for which there is no universal 



Page 14 of 18Smit et al. Intensive Care Medicine Experimental           (2022) 10:38 

guideline. In fact, whether a patient is admitted to the ICU depends on many factors, 
such as the clinician who judges the patient, the availability of beds, or the effectiveness 
of urgent or emergency responses triggered by EWS systems already in place. Therefore, 
our model is fitted for a context in which a certain policy around ICU admission exists. 
Hence, if these policies vary among hospitals or over time, the model may fail to general-
ize. This could be an explanation for the overestimation observed in hospital C, which 
follows a relatively conservative ICU admission policy due to the absence of medium or 
high care units. Also, the static RF model shows a typical sigmoid shape. Due to ‘bag-
ging’, RF models have difficulty making predictions near 0 and 1 [19]. This could explain 
the overestimation in the 0–0.1 probability range and underestimation in higher ranges 
(i.e., 0.2–0.4). All in all, our empirical results (Fig.  3a) show that the proposed model 
updating strategy could correct for these factors effectively as the dynamic RF model 
shows relatively good calibration in future patients and among different hospitals.

We split the data for patients admitted before and after August, 2020, roughly repre-
senting hospitalized patients during the first and second COVID-19 ‘waves’ in the Neth-
erlands. The first and second waves in the Netherlands were predominantly caused by 
the original (B.1.1) and the ‘alpha’ variant (B.1.1.7), respectively [36]. Thus, our results 
suggest that the presented (dynamic) model would generalize well for some COVID-
19 variants. However, we do not know if the model would generalize well for newer 
variants.

Model threshold

A frequent misunderstanding is that one should use a DCA to choose the optimal model 
threshold. Instead, it is more sensible to choose a clinically reasonable range of thresh-
old probabilities, and use the DCA to compare net benefit in this range with alternative 
models [27]. In the context of this study, we prefer to weigh the relative harms of avoid-
ing an urgent or emergency response for a deteriorating patient (i.e., false negative) ver-
sus unnecessary responses to non-deteriorating patients (i.e., false alarms). We chose to 
weigh the relative harm of a false negative at least four times higher compared to a false 
alarm, and therefore evaluated model thresholds up to 20%. This reasoning requires a 
well calibrated model (see Additional file 1: appendix F.5).

Strengths and limitations

Our study is one of the first studies [6] to validate the NEWS for the purpose for which 
it was originally designed (i.e., longitudinal monitoring to identify clinical deterioration). 
Moreover, compared to other developed COVID-19 prediction models [37, 38] with 
similar endpoints (i.e., deterioration within 24 h), our dataset is relatively large, includ-
ing over 3500 patients among six different hospitals. We examined the generalizability of 
the proposed COVID-19 early warning model thoroughly through external validation in 
multiple hospitals and temporally during multiple phases of the COVID-19 pandemic. 
We demonstrate the importance of model updating when implementing a machine learn-
ing model in practice, especially during rapidly changing situations such as the COVID-
19 pandemic. However, the optimal strategy for dynamic model updating remains an 
open problem. The different strategies we examined (Additional file 1: appendix G) do 
offer some insight into the effectiveness of different strategies. Moreover, the improved 
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performance relative to the NEWS is explained by the introduction of SpO2/O2 as a pre-
dictor (Additional file 1: appendix I.2), which models the need for oxygen quantitatively 
instead of only qualitatively (like in the NEWS). Hence, we expect supplementing exist-
ing EWSs (e.g., NEWS-2) with this variable would improve predictive performance in 
COVID-19 patients, and potentially for patients with other respiratory diseases as well.

This study has limitations. Some patients may not have experienced a serious event 
due to a prompt medical review followed by an intervention. Hence, we may have labeled 
some samples as negative, whereas a patient actually showed signs of deterioration. Fur-
thermore, patients who are transferred to another hospital are (at the moment of transfer) 
typically less likely to deteriorate. Therefore, informative censoring may have introduced 
a bias. We treated repeated observations from individual patients as independent sam-
ples, which may have led to underestimation of the uncertainties around the model per-
formance metrics. We neither validated the NEWS2 [4] nor the alternative version of the 
MEWS [39] that is mostly used in the Netherlands, as we did not have the necessary data. 
Data were missing for some of the predictors, which we addressed using data imputation. 
We used an iterative imputation method based on Bayesian ridge regression. This method 
assumes normally distributed predictors and may have introduced bias when missingness 
not at random was present [40]. While our study contains a large set of demographical 
and physiological measurements, several potentially relevant predictors (such as multi-
morbidity, frailty or pre-pandemic cognitive function [41–43]) were not available in our 
dataset. Such predictors could potentially improve the performance of predictive models. 
On the other hand, the use of only commonly available predictors (i.e., demographics and 
vital signs) in our model increases its clinical applicability. Finally, validation is ideally per-
formed by independent researchers. We have therefore made the model available online 
and we strongly encourage others to perform further external and temporal validation.

Conclusions
In conclusion, we have shown that a COVID-19-specific early warning model for longi-
tudinal monitoring to identify clinical deterioration shows improved discrimination and 
net benefit compared to existing EWSs. We advocate further study and development of 
such patient group-specific EWSs as well as their evaluation in clinical practice.
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