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THE BIGGER PICTURE Single-molecule techniques have made it possible to track individual protein com-
plexes in real time with a nanometer spatial resolution and a millisecond timescale. Accurate determination
of the dynamic states within single-molecule time traces provides valuable kinetic information that underlie
the function of biologicalmacromolecules. Here, we present a new automated step detectionmethod called
AutoStepfinder, a versatile, robust, and easy-to-use algorithm that allows researchers to determine the ki-
netic states within single-molecule time trajectories without any bias.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Single-molecule techniques allow the visualization of the molecular dynamics of nucleic acids and proteins
with high spatiotemporal resolution. Valuable kinetic information of biomolecules can be obtained when the
discrete states within single-molecule time trajectories are determined. Here, we present a fast, automated,
and bias-free step detection method, AutoStepfinder, that determines steps in large datasets without
requiring prior knowledge on the noise contributions and location of steps. The analysis is based on a series
of partition events that minimize the difference between the data and the fit. A dual-pass strategy determines
the optimal fit and allows AutoStepfinder to detect steps of a wide variety of sizes. We demonstrate step
detection for a broad variety of experimental traces. The user-friendly interface and the automated detection
of AutoStepfinder provides a robust analysis procedure that enables anyone without programming knowl-
edge to generate step fits and informative plots in less than an hour.
INTRODUCTION

Over the last 25 years, single-molecule techniques have greatly

enhanced our understanding of complex biological pro-

cesses.1,2 These techniques have made it possible to track the

molecular dynamics of individual proteins and protein com-

plexes with a (sub)nanometer spatial resolution and a (sub)milli-

second timescale.3,4 For example, molecular motor protein

complexes were observed to move in a step-by-step fashion

along cytoskeleton filaments.5–7 More generally, force spectros-

copy (using, e.g., optical or magnetic tweezers) has been ex-

ploited as a versatile tool for probing the forces and motions

that are associated with biological macromolecules.8,9 Single-

molecule fluorescence techniques have been used to determine
This is an open access article und
the stoichiometry, binding kinetics, and conformational dy-

namics of nucleic acids and proteins.10–13 Nanopores have pro-

vided a powerful tool for the label-free detection of nucleic acids

and proteins.14,15

Accurate determination of different states within a single-

molecule time trace provides valuable information about the

kinetic properties that underlie the function of biological macro-

molecules. For trajectories that display complex behavior,

manual analysis is commonly practiced, in which a person with

a trained eye picks out each state, a routine which, however, is

prone to induce user bias. A common challenge in single-mole-

cule data analysis is to distinguish these states in a reliable,

reproducible, and unbiased manner. To facilitate reliable sin-

gle-molecule trajectories, several automated step detection
Patterns 2, 100256, May 14, 2021 ª 2021 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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methods have been developed over the years. Initial step detec-

tion methods relied on thresholding16 or pairwise distribution

analysis.5,17 While these methods are capable of detecting clear

state-to-state transitions, they do not sufficewhen the state tran-

sitions are close to the noise level and when the data exhibit mul-

tiple steps of variable size. Alternatively, statistical modeling can

be used to extract kinetic information from single-molecule tra-

jectories (see reviews by Colomb and Sarkar18 and Tavakoli

et al.19).

Early model-based step detection methods relied on the use

of a generalized likelihood-ratio test to detect steps assuming

Gaussian20 or Poissonian21 noise, without the need to make

any kinetic model assumptions. Other statistical model-based

step detectionmethods rely on the use of an information criterion

(IC).22–24 The general concept of these algorithms is to generate

a variety of candidate models with steps at different loca-

tions.19,22 Each of these models is scored on the goodness of

the fit to the data, the number of used parameters in the model,

and a term that penalizes each extra step that is added to the fit

to prevent overfitting of the data.22 The optimal model for the

data is subsequently selected by minimizing the IC score, result-

ing in a ‘‘hands-off’’ fitting procedure.22,25–29 For IC-based ap-

proaches, selecting the correct mathematical modeling of the

noise contributions in the signal is crucial to obtain reliable fitting

results, thereby requiring a full description of the noise in the

data. Given that the sources of noise can vary substantially per

experimental setup, it is difficult to make an IC-based algorithm

that is applicable to a wide variety of trajectories.

One of the most commonly used approaches is based on hid-

den Markov modeling (HMM), which involves estimating the

transition probabilities of a number of postulated states that

are visited during the time course of an experiment. Various im-

provements were made to HMM, for example, by making use of

a local and global HMM that allows to overcome the need for a

state to successively occur within the same trajectory.30 While

HMMs have proven to be a powerful algorithm for the analysis

of single-molecule trajectories, they are limited when it comes

to analyzing systems with unknown dynamics. HMMs are often

used in a supervised manner where the user provides parame-

ters, such as the number of visited states and the allowed tran-

sitions between each state.31–37 However, generally these pa-

rameters are unknown a priori33,38,39 and require the user to

sample a parameter space to find a suitable model. In a more

objective approach, HMM is combined with Bayesian nonpara-

metrics,40 allowing one to use HMM without any knowledge on

the number of visited states a priori. However, depending on

the parameter space that is covered, this can dramatically in-

crease the required computational time. In summary, HMMs

are a powerful statistical tool, but it remains challenging to apply

HMM models to systems with unknown system dynamics or

when states are not frequently visited (e.g., bleaching data).

More recent algorithms have focused on combining model-

based approaches with machine learning to allow unsupervised

classification and idealization of single-molecule trajectories in a

high-throughput manner.41,42 While machine learning algorithms

provide a powerful tool for high-throughput and unsupervised

processing of data across a wide range of single-molecule tech-

niques, the underlying models need to be (re)trained to work reli-

ably on complex single-molecule trajectories.41,42 Therefore,
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there is a need for explorative approaches, hereafter called

first-order approaches, that are not tailored to a specific noise

model and do not require information on the underlying states

a priori. Such first-order approaches provide flexibility in inter-

preting and analyzing features in single-molecule trajectories

and can provide important input for machine learning and

model-based algorithms.

Previously, Kerssemakers et al. reported on a first-order

approach called Stepfinder.20 Given its robustness, flexibility,

and simplicity, Stepfinder received great interest in the field of

biophysics and was applied to the experimental trajectories

from a wide variety of biological systems.43–50 Despite its popu-

larity, the algorithm faced several caveats: (1) the algorithm was

subject to user bias, requiring the user to determine the final

number of steps, (2) it was computationally demanding when

presented with large datasets, (3) it failed in step evaluation

when presented with data that exhibited a broad spectrum of

step sizes, which especially holds true for baseline-type trajec-

tories, and (4) it lacked a user-friendly interface. To overcome

these short-comings, we here present a significantly revised

and superior algorithm (AutoStepfinder) that facilitates high-

throughput and automated step detection.51,52

AutoStepfinder has been designed as a first-order analysis

tool that requires minimal knowledge of the location of steps

and the various signal contributions in the data. A central feature

of both Stepfinder and AutoStepfinder is the application of two

complementary fits with an equal number of steps. To do so,

this algorithm iteratively fits steps at locations that yield the

biggest reduction in the variance (s2). Subsequently, the s2 of

the fit is compared with the s2 of a worst-case-fit with the

same number of steps, called a counter fit.43,51,52 To assess

the quality of the fit, the algorithm generates a step spectrum

or S-curve that displays a sharp peak when the signal harbors

step-like features, whereas smooth changes (such as drift) result

in a flat S-curve. In contrast to Stepfinder, AutoStepfinder as-

sesses the quality of the fit over multiple rounds, allowing for

step analysis at various scales. This multiscale step fit procedure

allows the researcher to evaluate which steps are relevant for the

analysis.

The AutoStepfinder algorithm is a first-order step detection

approach that provides a survey of the step-landscape and is

complementary to more refined statistical methods that require

a full description of the experimental parameters. The user-

friendly interface of AutoStepfinder simplifies step detection in

single-molecule trajectories, making it accessible to a wide vari-

ety of users. We illustrate the effectiveness of AutoStepfinder

with a variety of different experimental traces from diverse sin-

gle-molecule techniques. Taken together, the AutoStepfinder al-

gorithm can be regarded as a robust and versatile tool that can

be used for themany experimental cases where a full description

of the noise in the data is unavailable.

RESULTS

Overview of the procedure
The workflow of the AutoStepfinder algorithm is outlined in Fig-

ure 1. AutoStepfinder can analyze the trajectories of a wide vari-

ety of single-molecule techniques (Figure 1A). The step-finding

algorithm functions in three main steps: input of data, automated



Figure 1. Workflow of AutoStepfinder

(A) AutoStepfinder can be applied on a wide variety

single-molecule of trajectories, including single-

molecule fluorescence, magnetic and optical

tweezers, and nanopore data.

(B) The algorithm requires input in the form of one or

multiple.txt files with one or two columns (signal

value or time and signal value). After pressing run,

the algorithm iteratively adds single steps to the

data that minimizes the s2 value. For each iteration,

the quality is assessed by means of a secondary

counter fit. Finally, the best fit is selected and the

algorithm outputs the corresponding fit, dwell times,

step sizes, and levels. Fitting large datasets (>106

data points) can be done in less than 1 min with a

desktop computer.

Also see Figure S1.
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step detection, and output of the result (Figures 1B and S1). The

AutoStepfinder algorithm can run on a single data file or on mul-

tiple files using a batch mode. Once input is retrieved, AutoStep-

finder runs a first round of step fitting, in which the algorithm

minimizes the variance (s2) between the data and the fit. During

this procedure the data are iteratively split into multiple plateaus

(Figure 1B). At each iteration, a new plateau is fitted at a location

that yields the biggest reduction in s2. After each partition event,

AutoStepfinder determines the quality of the fit by performing an

additional fit (called a counter fit)43,51,52 (Figures 1B and S1).

Once themost prominent steps are fitted during the first round

of fitting and counter fitting, the AutoStepfinder algorithm sub-

tracts the optimal fit from the data and executes the second

round of iterative fitting and counter fitting on the residual data

(Figure S1). This dual-pass strategy allows AutoStepfinder to

facilitate step fitting of data with steps that vary widely in size.

Once the optimal fit for the second round is determined, the al-

gorithm generates a final fit by combining the step indices of

the two rounds of fitting, and it outputs several files that allow

post-processing of the results (Figures 1B and S1). This dual-

pass step-fitting method provides a robust approach for

automated step detection. The user-friendly interface and the

automated detection of AutoStepfinder provides a hands-off

fitting procedure that can be executed by anyone without pro-

gramming knowledge.

Principles of step detection
The AutoStepfinder algorithm fits data through a series of parti-

tion events that minimize s2 (Figure 1). To fit data, the algorithm

makes the sole assumption that the data contain instantaneous

steps of interest with variable size (Di) and plateau length (Ni).

These plateaus are exposed to ‘‘noise,’’ which can be defined

as the residual variance (sR
2) from random signals that arise

from the experimental setup (true noise) or features at a different

scale that are not of interest (Figure 2A). The algorithm initiates

the fitting procedure by fitting one step to all data points at a

location that gives the lowest value of s2. This initial partition

event generates a fit with two plateaus at a position that repre-

sents the average of the data points within the plateau (Fig-

ure 2A).43 After the first fit, the plateau that exhibits a step
yielding the largest reduction s2 is selected for the next partition

event, resulting in a fit with three plateaus (Figure 2A, dashed red

line). The algorithm continues this process of adding a single

step to one of the plateaus for each iteration (Figure 2B, cyan ar-

row heads), untilAutoStepfinder has performed the user-defined

maximum iteration number (Figure S1).

AutoStepfinder successively selects one of previously fitted

plateaus for the next partition event based on the biggest reduc-

tion in s2 (Figure 2A). This makes AutoStepfinder a so-called

greedy algorithm that makes a locally optimal choice without

considering its effect on the next step fits (see comparison ofAu-

toStepfinder with other methods). Because AutoStepfinder iter-

atively prioritizes the next fit that gives the biggest reduction in

s2, the most prominent features of the data are fitted first, fol-

lowed by fits for the more refined features. The iteration

continues until the user-defined number of steps is reached.

Typically, this number is large enough so that the step fits is likely

to go beyond any ‘‘optimal fit’’ (Figure 2B, middle). This results in

‘‘overfitting,’’ where new steps are fitted to the noise of the data

(Figure 2B, bottom).

Probing a step fit spectrum
Next, to determine the optimal fit for a given dataset, it is impor-

tant to evaluate the quality of the fit for every step that is added to

the analysis (Figure 1). The quality of the existing fit is evaluated

by performing an additional fit for each iteration, hereafter called

a counter fit.43 AutoStepfinder generates such a counter fit by

means of three steps: (1) AutoStepfinder determines the next

partition location (inext) within each plateau (Figure 3A); (2) the al-

gorithm ignores the existing step locations; and (3) AutoStep-

finder builds a new fit based on the inext locations, generating

new plateaus with a position that represents the average of the

data points within each plateau (Figure 3A). These three steps

result in a counter fit with steps that are all located in between

the existing best-fit locations (Figure 3A). If the analyzed data

do not display step-like behavior, both the existing fit and

counter fit will have similar values of s2 (Figure S2).43,51,52 How-

ever, when the data do display step-like behavior, counter fitting

results in a fit that is much worse than the existing fit (Figure 3A)

and thereby yields a larger value of s.243,51,52 To evaluate the
Patterns 2, 100256, May 14, 2021 3



Figure 2. Global arrangement of the AutoS-

tepfinder algorithm

(A) An example of an iterative step fit (orange line) on

a single-molecule trajectory (black dots). Single-

molecule trajectories are fitted by the AutoStep-

finder algorithm by iteratively minimizing the s2

value. To perform a step fit the program assumes

that the data contain steps (Di), bounded by a

plateau (Ni) that is subject to residual noise (sR
2,

gray box). After the first step fit, AutoStepfinder

selects the plateau with the largest value of s2, for

the next partition event (red dashed lines). This

process continues until the maximum number of

iterations is reached.

(B) An example of the iterative process of step fitting

by the AutoStepfinder algorithm. The algorithm successively adds a single step to the data (cyan triangles) and thereby minimizes the s2 value. Step fitting below

the optimal number of steps is considered underfitting, whereas step fitting beyond the optimal number of steps is considered overfitting.

Also see Figure S1.
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quality of a fit, the AutoStepfinder algorithm takes advantage of

the sharply changing s2 landscape upon counter fitting.

The quality of a fit (S-score), can be quantified by taking the ra-

tio of the s2 value from the existing fit and the counter fit, which is

defined as:

S =
s2
counter fit

s2
existing fit

:

If the existing fit is at the optimal number of iterations, the vari-

ance of the existing fit approximates the residual variance in the

data (s2). In contrast, the counter fit misses all real steps and pla-

ces step location fits at random plateau positions. Thus, the fit

values differ on average ½D from the data plateaus, yielding a

s2 of the counter fit that reaches its maximum value (�D2/

4sR
2).43 Thereby, the maximum S-value (Smax) can be described

by Smax = 1 + P, where P equals the maximum value of the

counter fit (D2/4sR
2).43 The strong difference of s2 between the

fit and the counter fit when an optimal number of iterations is

reached results in an S-value that ismuch larger than 1 (Figure 3).

In contrast, when the data are under-fitted, the s2 value of the

counter fit and existing fit approximate each other, resulting in

an S-value that is close to 1 (Figure 3B). Similarly, overfitting a
in (B) through minimization of the sum of absolute differences (SAD2). Shaded ar

Also see Figure S2.
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dataset, in which steps follow the noise, only results in amarginal

change in the s2 value of the counter fit and thus the S-value also

becomes close to 1 (Figures 2B, 3B, and 3C). Therefore, the S-

curve is an effective indicator for stepped behavior in the analysis

(Figure 3B). In effect, the S-curve provides an assessment of the

step fit spectrum, displaying the scales at which steps occur in

the signal as prominent peaks.

The use of two orthogonal fits allows AutoStepfinder to high-

light features that evoke a strong discrepancy in the fit and

counter fit S-values, which correspond to the most step-like fea-

tures in single-molecule trajectories. The discrepancy between

the two fits allows AutoStepfinder to use s2 minimization for

very different kinds of noise types without a significant decay

of its performance. To display this behavior, we generated an

additional version of AutoStepfinder that uses a different error

signal: the sum of absolute differences (SAD), and compared

its behavior with AutoStepfinder, which uses minimization of

the variance (s2). To compare the two algorithms, we generated

trajectories that mimic stepped behavior of a kinesin-like motor

protein with ns steps of 8 nm that are bounded by plateaus

with Nw points (Figure 3B). Comparison of the two versions of

AutoStepfinder yielded S-curves with a sharp peak that was

located at an identical global maximum (Figures 3B–3D).
Figure 3. Determining the quality of a step fit
(A) For every step fit the algorithm performs, the

quality of the fit (orange line) is evaluated by means

of an additional fit (blue line, called a counter fit). The

counter fit is built by determining the next partition

point (inext), after which the current is rejected.

Subsequently, the algorithm places the counter fit

(blue) plateaus at locations within the existing fit

(orange).

(B) Simulated trajectory representing a motor step-

ping behavior.

(C) Representative example of experimental and

analytical S-curves obtained by fitting the trajectory

in (B) through minimization of s2. Shaded areas

indicate the underfitting (yellow) and overfitting (light

blue) regime.

(D) Representative example of experimental and

analytical S-curves obtained by fitting the trajectory

eas indicate the underfitting (yellow) and overfitting (light blue) regime.



Figure 4. Dual-pass step detection to detect

a wide range of step sizes

(A) A simulated single-molecule trajectory display-

ing uniform steps with a size of D1.

(B) An example trace displaying uniform stepswith a

size of D2.

(C) A simulated single-molecule trajectory display-

ing non-uniform steps with a size of D1’ and D2’.

(D) S-curves for the three example traces displayed

in (A–C). The global maximums of peak 1 (SP1
max)

and peak 2 (SP2
max) are indicated with dashed gray

lines. The S-curve for the dataset with both large

(D1) and small (D2) steps exhibits two peaks.
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Moreover, the simple nature of this signal allowed us to provide

analytical approximations of the S-curves. The analytical solu-

tion of the S-curve using the variance for over and under fitting

can be approximated by:

Sf<1ðfÞ =
P

�
2+ f
3

�
+ 1

2Pð1� fÞ+ 1
; Sf>1ðfÞ= 1+

P

f
+
ð1� 1=fÞ

4Nf

;

where Nf is the average location of the plateau, P = D2/4sR
2, and

the relative fit fraction (f) can be described by f = ni/ns, where ni is

the actual number of fitted steps. In this equation the correct

number of steps corresponds to f = 1. The analytical solution

of the S-curve using the SAD can be approximated by:

Sf<1ðfÞ =
Pu

�
2+ f
3

�

2Puð1� fÞ+ ð2f � 1Þ; Sf>1ðfÞ= 1+
Pu

f
+
1� 1=f

2Nf

� 1

f
;

where Pu = D/2u. These analytical solutions result in S-curves

that reflect the observed trends for the two experimental S-

curves (Figures 3C and 3D). Taken together, this comparison

suggests that the exact nature of the residual noise does not

need to be known for effective step fitting with AutoStepfinder.

Thereby, AutoStepfinder constitutes an inherently robust first-

order step analysis tool.
Step detection over a wide spectrum of sizes by a dual-
pass strategy
Both Stepfinder and AutoStepfinder use the S-curve as a robust

measure to determine the quality of a fit, showing a distinct peak

when the optimal number of iterations is reached. When the

steps in the data are within the same order of magnitude (e.g.,

D1 or D2 in Figures 4A and 4B), the Stepfinder algorithm would

plot the S-curve and require the user to select the optimal fit

by providing the number of iterations that corresponds to the

global maximum of the S-curve (Smax) (Figure 4D). However,

the optimal number of iterations cannot be determined through

Smax when the data exhibit steps that vary widely in size. Espe-

cially when large and small steps are combined in a single-trajec-

tory (e.g., D1’ and D2’, Figure 4C), the S-curve may exhibit

multiple peaks or shoulders (SP2) that have a lower SP2
max than

the first peak (SP1
max) (Figure 4D). Notably, the position of these

peaks is identical to the peaks observed for a dataset with either
D1 or D2 (Figure 4D). In this case, the previous version of the al-

gorithm (Stepfinder) is thereby not capable of suggesting an

optimal fit for the data.

To facilitate step detection across a wide variety of scales, we

developed a dual-pass strategy that determines the optimal fit

for the data over two rounds (Figure S1). The AutoStepfinder al-

gorithm first performs a step fit based on the global maximum of

the S-curve (SP1
max) that corresponds to themost prominent fea-

tures in the data. This step fit is then subtracted from the data

and a secondary step fit is performed on the "residual data."

Only if the global maximum of the secondary step fit is above

the user-defined threshold, coined ‘‘acceptance threshold,’’

will the fit be accepted (Figure S1). The dual-pass approach

combined with the acceptance threshold on the second round

of fitting provides a robust method for automated step detection.

Note that one might ponder yet deeper levels of refinement, with

a third round of step fitting or beyond. We have explored this, but

so far never encountered a case where more than two rounds

were required. Note that under these circumstances, the exis-

tence of multiple peaks in the S-curve displays multiple scales

of step sizes. Thereby, the S-curve functions as a step fit spec-

trum with peaks indicating different step size scales or marked

step behavior. Depending on the experimental context, some

of these scales may be of more or less of interest to the user.
Computationally efficient step detection with
AutoStepfinder

AutoStepfinder is a so-called greedy algorithm53 that iteratively

selects an existing plateau (Nw) and splits it into a left (NL) and

a right (NR) plateau (Figure S3A) at a location that results in the

biggest reduction in s2. As a result, AutoStepfinder makes a

locally optimal choice without considering its effect on the next

step fits, significantly reducing the amount of computing power

that is required to determine the fit. The position of these newly

acquired plateaus is strongly dependent on the location of the

partition point within Nw (Figure S3A). Therefore, AutoStepfinder

calculates the average position (A) of a plateau (e.g., NL) for any

given location (i), which can be described by:

AL =
1

NL

XNL

i =1

xðiÞ:

These positions can be used to generate a s2 landscape that

shows cusps at the optimal fitting positions (Figure S3B). While
Patterns 2, 100256, May 14, 2021 5
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misplacement of a step fit affects the slope of the remaining

cusps, the minima positions remain identical, implying that the

location of a step fit is not affected by prior and subsequent

step fitting. The robustness of the cusp location justifies the

use of a greedy procedure for step fitting by AutoStepfinder.

Despite the greedy nature of the algorithm, the iterative pro-

cess of determining the partition point requires a substantial

amount of computing power and becomes problematic when

analyzing large datasets (e.g., >13 106 data points) (Figure S3C).

Previously, Stepfinder determined the next partition point of Nw

by calculating the s2 value for all possible locations (i), selecting

the step fit that would yield the largest reduction in the s2 value.

However, this meant that for a dataset with N0 data points, the

algorithm performedN0
2 single x(i) operations to determine a sin-

gle partition point. Next, the algorithmwould repeat the same cy-

cle to generate the next left (NL) and right (NR) plateau. With this

scheme, this required ½N0
2 single x(i) operations to locate the

next two partition points. This cycle of partitioning continued to

deduce plateaus until the algorithm reached the maximum num-

ber of iterations. In total, this yields a factor of (1+½+¼+.) $N0
2

or roughly 2$N0
2 operations per dataset. Thereby, the required

computing time increased significantly with an increase in the

number of data points in a dataset (Figure S3C).

To reduce the operations that are required to fit a dataset, we

comprehensively re-organized the code and streamlined the

iteration process. A strong reduction in the number of required

operations (i) can be made by re-using the information that is ob-

tained during the localization of the first partition point. After the

algorithm has determined the average (Aw) value of a plateau

(Nw), AutoStepfinder determines the location of both NL and NR

for x(i), using a single operation. The procedure starts with x(1)

that is located at the left side of Nw (Figure S3A). The location

(AL) of NL can be deduced by AL(i) = x(i), whereas the level of

NR is defined by:

ArðiÞ = ðNw,Aw � xðiÞÞ
ðNw � 1Þ :

This procedure is repeated for the next location (i + 1) until

each location of Nw is calculated, requiring only N0 operations

per plateau. For a whole dataset, this scales with 2$N0, which

is a gain of a factor of N0 compared with the previous algorithm.

Depending on the size of the analyzed dataset, this improvement

yields a significant speed gain of several orders of magnitude

(Figure S3B).
Quantifying the detection limits of AutoStepfinder
One of the major limiting factors in the detection of step-like

behavior in single-molecule trajectories is noise, which can

have various origins, such as thermal fluctuations of the biolog-

ical system and the electronics of themeasurement system (shot

noise, thermal noise, 1/f noise).54–56 Therefore, both the nature

and the amount of noise in the single-molecule trajectories is

highly dependent on the technique used to acquire the data. In

its simplest form, the noise in single-molecule trajectories can

be approximated as random white Gaussian noise, which can

be characterized by the standard deviation of the noise.26 As

the noise intensity (SD) (Figure 2A) increases relative to the

step size, step detection becomes significantly more challenging
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(Figure S4). Notably, to estimate the performance of AutoStep-

finder, we compare the signal to noise ratio (SNR), which can

be defined as: SNR = ½D/SD, where D represents the step size.

To probe the detection limitations of AutoStepfinder, we

simulated data that was composed of a signal that featured a

systematic decrease in step size. The data start with a step of

10 arbitrary units (a.u.), the subsequent steps decrease by 1

a.u. until the smallest step size of 1 a.u. is reached (Figure 5A).

This idealized trajectory was repeated for 100 times, resulting

in a dataset in which each step size occurred 100 times. Next,

this dataset was exposed to various levels white of Gaussian

noise (SD) and fitted with the AutoStepfinder algorithm (Fig-

ure 5A). When AutoStepfinder detects all states within the ideal-

ized trajectory, a histogram of the distribution of step sizes

should be equally populated in each bin (Figure 5B, red dashed

line).

For the idealized trajectories that were subject to noise with an

SD of 0.1 and 0.25, AutoStepfinder correctly identified >98% all

the steps in the trajectory (Figure 5B). However, when the SD of

the noise was equal to the smallest step size in the trajectory

(SD = 1.0, SNR = 0.5), AutoStepfinder detected only 2% of the

smallest step size of 1 a.u. and �50% of the steps that were 2

a.u. in size (SNR = 1.0). As a consequence of the missed steps

in this regime, AutoStepfinder overestimated (�150%) steps

that were 3 a.u. in size. This trend continued when the SD of

the noise was twice the size of the smallest step in the trajectory

(SD = 2.0, SNR = 0.25) (Figure 5B).

To further quantify the response of AutoStepfinder to noise,

we generated several benchmark traces (Figure 5C, bottom) at

different noise levels by injecting steps with various sizes (Dinject,

Figure 5C, middle) at known locations into an existing trajectory

(Figure 5C, top). To generate statistically relevant data, this pro-

cess was repeated 100 times for each noise level, randomizing

Dinject between the values 0 and 1. We subsequently quantified

the probability that AutoStepfinder would detect the injected

steps (Figure 5D). AutoStepfinder shows a sharp cutoff in its

detection probability (Figure 5D), which shifts toward larger

step sizes when noise is increased and smaller steps are

drowned in the noise. We note that our conservative choice of

short-lived plateaus (<50 data points) increases the associated

error within the steps. Under these circumstances, AutoStep-

finder is effective (i.e., deduces steps with a >50% detection

probability) in detecting steps that are twice the size of the SD

of the noise (Ddetected = ½SD, SNR = 1). We note that, to estimate

the reliability of the obtained results, the step injection test can

also be applied to experimental data, as we previously reported

in a case study (see Eeftens et al.51).

To determine the uncertainty in the placed steps, we imple-

mented a bootstrap analysis function57 in AutoStepfinder that

closely follows the error estimation by Li et al.58 In brief, once Au-

toStepfinder has determined the fit, each plateau is resampled

(typically 1,000 times) by bootstrap analysis and the relative po-

sitions between neighboring plateaus is re-assessed, allowing

the algorithm to determine the 95% confidence interval of the

step sizes. In addition, this procedure provides a confidence in-

terval of the variance, which allows for a direct estimation of the

95% confidence interval of the step time (Figure S3B, shaded

areas).58 As a result, prominent steps that are associated with

a sharp cusp in the variance have smaller 95% confidence



Figure 5. Testing the detection limits of Au-

toStepfinder

(A) Simulated time trajectories that were exposed to

various noise levels to benchmark the AutoStep-

finder algorithm. The data start with a step of 10

arbitrary units (a.u.), the subsequent steps decrease

by 1 a.u. until the smallest step size of 1 a.u. is

reached. This idealized trajectory was repeated 100

times, resulting in a dataset in which each step size

occurred 100 times.

(B) Distribution of step sizes of the simulated tra-

jectories, obtained through the AutoStepfinder al-

gorithm. The red dashed lines indicate the position

of each bin when 100% of the steps are correctly

identified.

C) Schematic of the step injection test. To quantify

the probability that AutoStepfinder would detect

steps with a certain size (Dinject), steps were injected

(pink curve, middle) into an existing trajectory (blue

curve, top) to generate a benchmark curve (orange

curve, bottom).

(D) Histogram of the detection probability of step

sizes at various noise levels (SD). Solid lines repre-

sent sigmoidal fits to the data.

(E) Histogram showing the distribution of the 95%

confidence intervals of the step sizes (cyan bars)

obtained by bootstrap analysis. The line (purple)

indicates the deviation of the fit from the ground

truth.

(F) Histogram showing the distribution of the 95% confidence intervals of the plateaus lengths (cyan bars) obtained by bootstrap analysis. The line (purple)

indicates the deviation of the fit from the ground truth.

(G) Relation between the SNR and the error in the determined steps.

(H) Relation between the SNR and the error in the determined plateaus (cyan line). The purple line indicates the deviation between the final fit and a local refit at

various noise levels (iteration error).

Also see Figure S4.
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intervals, whereas steps with a broad minimum are associated

with larger errors. To validate this approach, we simulated trajec-

tories that mimic the stepping behavior of a motor protein

(Figure 3B) at an SNR of 1 and compared the bootstrapped con-

fidence intervals with the deviation of the AutoStepfinder output

to the absolute solution (hereafter called direct error). This valida-

tion shows that the bootstrapped confidence intervals provide

an accurate estimation of the errors associated with the step

sizes (Figure 5E) and step times (Figure 5F).

We further benchmarked the AutoStepfinder algorithm and

probed how the error landscape develops when the amount of

noise increases. As expected, the 95% confidence intervals

associated with the step size (Figure 5G) and step time (Fig-

ure 5H) increase when the SNR becomes smaller. To assess if

the greedy nature of AutoStepfinder causes deviation from the

true location of the fitted steps, we redetermined the optimal fit

locally and compared its location with the locations in the final

fit by AutoStepfinder (hereafter called iteration error). These re-

sults show that the greedy step search provides an accurate

description of the stepped behavior in the trajectories. Based

on the results of these benchmarks, we conclude that AutoStep-

finder provides an accurate fit down to an SNR of 0.75.

While noise is themajor determinant for step detection, the fre-

quency of occurrence of steps may also influence capability of

AutoStepfinder to detect steps. As described in the section

‘‘Principles of step detection.’’ AutoStepfinder selects the next

step fit (Rnext) based on a ranking system, choosing the step
that yields the largest reduction in s2. This ranking system is

based on the expected squared relative accuracy, which can

be defined as:

Rnext =
D2

1
=NL +

1
=NR

;

where D corresponds to the step size and NL and NR correspond

to the number of data points in the left and right plateau, respec-

tively. Consequently, fits with a large step size (D) or a large win-

dow size (Ni) are prioritized. This has important implications

when fitting trajectories that have a long baseline. Since AutoS-

tepfinder considers the baseline as a plateau, it prioritizes long

baselines for step fitting when the data exhibit a sparse density

of short events. Thereby, AutoStepfinder may not detect these

sparse events. As a rule of thumb, it is advised to truncate the

dwell time of the base line when it is >10 times longer than the

dwell time of the events. For optimal fitting results, we advise

to use a baseline with a duration that is in the same order as

the dwell time of the events.
Comparison of AutoStepfinder with other methods
The AutoStepfinder algorithm was designed as a robust fitting

tool that provides a first-order fitting approach of experimental

trajectories where a full mathematical description of the noise

in the data is unattainable. To benchmark AutoStepfinder
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Figure 6. Comparison of AutoStepfinder with other methods

(A) Examples of simulated single-molecule trajectories that were exposed to distinct noise types, each with an SD of 2.0. The noise types are Gaussian noise

(purple), Poissonian noise (orange), correlated noise (pink), and humming noise (light blue).

(B) Step detection by a Schwarz information criterion (SIC)-based algorithm.22 For each step fit, the quality of the fit is evaluated by calculating an SIC score. The

SIC curve displays a minimum when the optimal fit is reached (circle). The dashed gray line indicates the number of steps in the data. Notably, the SIC curve of

Gaussian noise (purple) overlaps the SIC curve of the Poissonian noise (orange).

(C) Step detection by the AutoStepfinder algorithm. For each step fit, the quality of the fit is evaluated by performing an additional fit, called counter fit, and

calculating an S-score. The S-curve displays a maximum when the optimal fit is reached (circle). The dashed gray line indicates the number of steps in the data.

(D) Performance of the AutoStepfinder algorithm and SIC-based algorithm on simulated single-molecule trajectories that were exposed to distinct noise types

with SD = 2.0. A more extensive overview on the robustness of AutoStepfinder- and the SIC-based algorithms22 is provided in Figure S4.

(E) Examples of simulated single-molecule trajectories each with a distinct number of states (gray). The purple, orange, and cyan lines indicate the ground truth,

states found by AutoStepfinder, and the states found by iHMM,33 respectively. The displayed trajectories were exposed to Gaussian noise with an SNR of 1.0.

(F) Comparison of AutoStepfinder (orange) and iHMM33 (cyan). The size of the circles indicates the percentage states that were within a distance of 25% of a step

size of the ground truth. The circles in gray indicate the percentage scale.

Also see Figure S5.
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against a wide variety of noise types, we simulated data featuring

a signal that systematically varied over time in a stepwisemanner

(Figure 6A). This signal was exposed to four different types of

noise with the same SD: Gaussian noise, Poisson noise, and

two other noise artifacts that are commonly found in single-

molecule trajectories (Figure 6A): correlated noise that results

in irregular correlated features, and humming noise, e.g., often

associated with a line frequency (Figure 6A). Apart from AutoS-

tepfinder, we used a Schwarz IC (SIC)-based algorithm22 tailored

to Gaussian noise in our benchmark.

For the simulated data that were exposed to Gaussian noise,

both AutoStepfinder and the Gaussian-based SIC algorithm22

fitted a similar number of steps across the range of noise (SD)

tested (Figures 6 and S5A–S5C). Both algorithms correctly iden-

tified 98% of the steps at low noise levels (SD = 0.2), which

decreased to approximately 50% at when the noise level was

increased (SD = 2.0) (Figures 6D, S5D, and S5H). Thus, under
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ideal conditions, where a full mathematical description of the

noise is available (i.e., for conditions optimal for SIC), AutoStep-

finder performs equally well as compared with SIC-based algo-

rithms. Next, the benchmark was repeated on trajectories with

Poissonian, correlated, and humming noise. When subjected

to these trajectories, AutoStepfinder was still capable of

correctly identifying the states of interest in the data with any

of these types of noise (Figures 6C, 6D, and S5). Notably,

when we repeated the benchmark with the Gaussian-based

SIC algorithm,22 the analysis yielded strongly diverging results

as expected (Figures S4 and S5). These results show thatAutoS-

tepfinder performs robustly over a broad spectrum of

noise types.

Next, we compared the performance of AutoStepfinder

against infinite HMM (iHMM),33 a hands-off HMM-based algo-

rithm that is developed to determine a limited number of states

in a trajectory without making parameter assumptions a priori.33



Figure 7. Application of AutoStepfinder on

experimental FRET data

(A) Schematic of loop formation by the CRISPR-

associated Cas3 helicase/nuclease protein (blue).

The appearance of FRET during loop formation is

indicated by the size of the star: low FRET, large

green star, or high FRET, large red star.

(B) A representative FRET trace (dark blue) fitted

with the AutoStepfinder algorithm (orange).

(C) S-curve for the first round of fitting by AutoS-

tepfinder. The dashed gray line indicates the SP1
max

of the S-curve.

(D) S-curve for the second round of fitting by Au-

toStepfinder. The global maximum of the S-curve

for the second round was below the set acceptance

threshold and therefore the second round of fitting

was not executed.

(E) Distribution of FRET levels obtained through the

AutoStepfinder algorithm. Black lines represent a

Gaussian fit.

(F) Distribution of step sizes obtained through the

AutoStepfinder algorithm. Data were fitted with a

gamma distribution (solid line) to obtain the number

of hidden steps (n) and rate (k). Error represents the

95% confidence interval obtained through boot-

strap analysis.

(G) Dwell time distribution obtained through the

AutoStepfinder algorithm. Black lines represent a

gamma distribution.

Also see Figure S6.
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To benchmark both algorithms, we generated trajectories with a

number of states (N) that have a mean step size of 10 a.u. be-

tween them. At each time point within the state there is a 4%

chance of making a transition to a higher state and a 1% chance

of a transition to a lower state. This model allows one to generate

a diverse set of trajectories by only changing the number of

states that are present within the data (Figure 6E). For example,

a low number of states implies that the chance that a state is re-

visited is high, generating trajectories that resemble the output of

single-molecule fluorescence measurements. In contrast, for a

large number of states the chance of revisiting a state becomes

low, resulting in trajectories that resemble the motor stepping

behavior in magnetic and optical tweezer measurements.

To compare AutoStepfinder and iHMM over a wide variety of

signals, we generated trajectories that were limited in time with

various amounts of revisits per state (6, 12, 24, and 48 times).

In addition, we subjected the trajectories to different amounts

of Gaussian noise, ranging from an SNR of 0.25 up to 1.5. To

obtain output from AutoStepfinder that mimics HMM, we per-

formed k-means clustering on the output of AutoStepfinder,

which clusters the fitted levels into the same number of initial

states as were used for iHMM. Next, we compared the output

of both algorithms on each trajectory against the ground truth.

All states that deviated more than 25% of a step size of the

ground truth were rejected, whereas the states within 25% of a

step size of the ground truth were counted as detected.

This benchmark shows that AutoStepfinder performs robustly

and independently from the number of revisits of each state, de-

tecting <95% of the states in the low-noise regime. For trajec-

tories that contained only a limited number of revisits per state

(Figure 6F, 6 and 12 revisits) AutoStepfinder outperformed the

iHMM algorithm. In contrast, the performance of the iHMM algo-
rithm increased with an increased number of revisits per state.

For trajectories where a state was frequently revisited (Figure 6F,

48 revisits), iHMM outperformed AutoStepfinder by correctly de-

tecting more states at a higher noise level. In conclusion, we

show that AutoStepfinder and iHMM are complementary algo-

rithms, where AutoStepfinder is favored for trajectories with

limited state-to-state transitions, and where HMM is favored

for trajectories with many state-to-state transitions.

Step fitting of experimental data
Execution of the user manual (see supplemental information)

described in this paper yields a robust step-detection analysis

of single-molecule trajectories (Figure 7). To demonstrate the po-

wer ofAutoStepfinder for one example inmore detail, we applied

the algorithm on single-molecule fluorescence resonance

energy transfer (FRET) trajectories of the CRISPR-associated

helicase Cas3. A detailed description on the experimental pro-

cedures is described in Loeff et al.52 In brief, DNA-bound Cas3

molecules were presented with ATP to unwind DNA. The fluoro-

phores on the DNA substrate reported on DNA unwinding

through an increase in FRET (Figure 7A). Before ATP was added,

the labeling positions on the DNA yielded a FRET value that was

indistinguishable from the background signals. Upon addition of

ATP, a stepwise increase in FRET was observed and was

analyzed using AutoStepfinder (Figure 7B).

The first round of step fitting byAutoStepfinder yielded a sharp

peak in the S-curve (Figure 7C). In contrast, the second round of

step fitting yielded a global maximum below the acceptance

threshold and was therefore not executed (Figure 7D). This indi-

cates that AutoStepfinder detected steps which had a step size

distribution within the same order of magnitude. Next, we used

the step Properties file (Table S1) to generate histograms of
Patterns 2, 100256, May 14, 2021 9
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the FRET levels (Figure 7E), step size (Figure 7F), and dwell time

(Figure 7G). These histograms show that the helicase moves

along the DNA in well-defined steps, resulting in four equally

spaced peaks in the FRET level histogram and a dominant

peak at 0.15 in the step size histogram. Given that AutoStep-

finder runs on any signal that exhibits step-like behavior, the al-

gorithm is widely applicable on the trajectories of single-mole-

cule techniques, including force spectroscopy51 (Figure S6A–

S6C) and nanopore data (Figure S6D–S6F).59 Notably, in

contrast to the single-molecule FRET data, both the examples

of force spectroscopy and nanopore data required dual-pass

data fitting (Figures S6B and S6E). Taken together, these ana-

lyses show that the AutoStepfinder algorithm can detect steps

in a wide variety of single-molecule trajectories without any prior

knowledge on their size and position.
DISCUSSION

AutoStepfinder is a robust and sensitive first-order step analysis

tool that allows step fitting of single-molecule trajectories without

any prior knowledge on the step size, step location, and noise

contributions within the data. By probing the quality of the fit for

every step that is added to the analysis, AutoStepfinder provides

an assessment of the step fit spectrum (S-curve) within the data.

This allows the user to perform a component analysis on the data,

where steps at different scales within the data are separated from

each other during the analysis. Our benchmark shows that the S-

curve provides a robust quality assessment of the stepswithin the

data, displaying a sharp peakwhen the data are fittedwith correct

number of steps at each scale.

While the S-curve provides a strong indication of the best solu-

tion, users may want to fine-tune the fit by focusing on steps of a

particular scale in the data. For example, onemay be interested in

the large steps in the data, rather than the small steps within each

plateau. The user-friendly interface ofAutoStepfinder provides an

environment that allows the user to make an educated decision

on which features to fit based on the local maxima within the S-

curve. Alternatively, based on the outcome of AutoStepfinder,

one may design a model-based approach (AIS, SIC) to further

fine-tune the fit or use the output of AutoStepfinder for ma-

chine-learning-based algorithms for high-throughput unsuper-

vised classification and fitting of complex single-molecule

trajectories.

Taken together, AutoStepfinder facilitates high-throughput

step detection withminimal user input within a user-friendly envi-

ronment that is both robust and sensitive, allowing users to fit

experimental single-molecule trajectories without any prior

knowledge on the noise and steps within the data. Moreover,

given that AutoStepfinder is a versatile approach that can be

applied on any signal with step-like behavior, we envision that

the AutoStepfinder algorithm can be used beyond the field of

single-molecule biophysics.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Cees Dekker (c.dekker@tudelft.nl).
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Materials availability

There are no physical materials associated with this study.

Data and code availability

The AutoStepfinder algorithm can be accessed at Zenodo: https://doi.org/10.

5281/zenodo.4657659.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100256.
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(2016). A novel method to accurately locate and count large numbers of

steps by photobleaching. Mol. Biol. Cell 27, 3601–3615.
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