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1
Introduction

1.1. Background
Spatial and spatiotemporal SPDEs are used in a wide number of applications in a variety of fields, including
epidemiology [2], neuroimaging [16], seismology [21], ecology [17] and meteorology. A common assumption
here is that their distribution is Gaussian [11], mostly because those distributions are fully determined by their
mean and covariance function. An important class of covariance functions for this is the Matérn covariance
[13]. The Matérn covariance function is given by

ρ(s, s′) = σ2

Γ(ν)2ν−1 (κ∥s − s′∥)νKν(κ∥s − s′∥).

Here, Kν denotes the modified Bessel function of the second kind, ν > 0 is an index for smoothness, κ > 0
determines the correlation length and σ2 > 0 is the variance. Whittle [19] showed that a stationary process
(X (x))x∈Rd that solves the SPDE

τ(κ2 −∆)βX (x) =W (x), x ∈Rd , (1.1)

has a Matérn function with ν= 2β−d/2 andσ2 = Γ(ν)
[
Γ(2β)(4π)d/2κ2ντ2

]−1
. In (1.1),∆ is the Laplace opera-

tor onRd and W is Gaussian white noise. Because of Mercer’s theorem, this covariance function gives rise to a
covariance operator. Recently the viewpoint has shifted from the covariance function to the covariance oper-
ator, because of the many tools available to numerically approach linear operators. The covariance operator

associated to the process X solving (1.1) is given by
(
τ(κ2 −∆)

)−2β
.

Lindgren, Rue, and Lindström [10] considered the problem as in (1.1) on bounded domains, while impos-
ing Dirichlet or Neumann boundary conditions. Their approach also allows for a spacially varying κ, which
replaces the operator κ2 −∆ with a more general strongly elliptic differential operator L, and it allows us to
pose the problem on more general domains such as the sphere or manifolds. They also briefly mention the
possibility to extend this to the stochastic space-time problem

(∂t +L)X (t , x) =W (t , x), t ∈ [0,T ]

X (0, x) = X0(x).

This approach has gained a lot of attention in recent years due to computational benefits available to dis-
cretize the (possibly fractional-order) strongly elliptic differential operator. In [8], this problem was further
extended to allow to control both spatial and temporal regularity. They considered the fractional SPDE

(∂t +Lβ)γX (t , x) =W (t , x), t ∈ [0,T ]

X (0, x) = X0(x).

Here, the two parameters β> 0 and γ> 0 determine the spatial and temporal smoothness. They define a mild
solution, show existence and uniqueness of this mild solution as well as spatial and temporal regularity. The
proofs are mainly based on semigroup theory, which we will also use in this thesis.
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6 1. Introduction

1.2. Motivation
We will focus on the fractional parabolic SPDE

(∂t + A)γXγ(t ) =W (t ), t ∈ [s,T ], γ> 0,

Xγ(s) = ξ.
(1.2)

Here, Xγ(t ) takes its values in a separable Hilbert space H and the operator −A : D(A) ⊆ H → H generates
an exponentially stable C0-semigroup. Finally, W (t ) is an H-valued Q-Wiener process and ξ is some random
initial condition. See also Chapter 2 for more information on these definitions. In [8], it was shown that with
initial condition Xγ(0) = 0, its weak solution satisfies a mild solution formula given by

Xγ(t ) = 1

Γ(γ)

∫ t

0
(t − r )γ−1S(t − r )dW (r ), t ∈ [0,T ].

In [20], an attempt has been made to extend this solution to arbitrary initial conditions ξ at time s = 0, by
considering Yγ(t ) := Xγ(t )−ξ. They show that this process satisfies the problem

(∂t + A)γYγ(t ) =W (t )− Aγξ,

Yγ(0) = 0.

Then after deriving the weak formulation of this problem, they ultimately find Xγ(t ;ξ) as the process satisfy-
ing (1.2), given by

Xγ(t ;ξ) := 1

Γ(γ)
Aγ

∫ ∞

t
r γ−1S(r )ξdr + 1

Γ(γ)

∫ t

0
(t − r )γ−1S(t − r )dW (r ). (1.3)

There are two problems with this process. First, for integer n ≥ 2, the process Xn as defined in (1.3) is in
general only consistent with solving n Cauchy problems iteratively if all derivatives from order 1 up to order
n −1 are set to 0. It would be desirable to incorporate nonzero initial conditions for the derivatives as well.

The second problem is that, in general, (1.3) is not restartable. As notation, Xγ(t ; s,ξ) will denote the
solution process at time t starting with a (random) initial condition ξ at time s. By restartable, we mean that
the following equation holds for all t > s > u and initial conditions ξ:

Xγ(t ; s, X (s;u,ξ)) = Xγ(t ;u,ξ). (1.4)

This property is crucial in the proof of the Markov property as done in [4]. A Markov property is very desirable
numerically, because the resulting covariance matrix would be much more sparse, reducing computation
times. To simplify calculations, we take H =R, S(t ) = e−λt (so A =λ), and ξ= y for some deterministic y . The
mild solution formula for our process starting at time s instead of 0 is

Xγ(t ; s, y) = λγ

Γ(γ)

∫ ∞

t−s
r γ−1e−λr dr y + 1

Γ(γ)

∫ t

s
(t − r )γ−1e−λ(t−r )dW (r ). (1.5)

It is possible to substitute u =λr in the first deterministic integral. This gives

λγ

Γ(γ)

∫ ∞

t−s
r γ−1e−λr dr = 1

Γ(γ)

∫ ∞

λ(t−s)
uγ−1e−udu = Γ(γ,λ(t − s))

Γ(γ)
. (1.6)

Here, Γ(γ, x) denotes the upper incomplete gamma function, given by

Γ(γ, x) =
∫ ∞

x
r γ−1e−r dr, x ∈ [0,∞).

Substituting (1.6) into (1.5) gives

Xγ(t ; s, y) = Γ(γ,λ(t − s))

Γ(γ)
y + 1

Γ(γ)

∫ t

s
(t − r )γ−1e−λ(t−r )dW (r ).

Now taking expectations here leaves us with

E(Xγ(t ; s, y)) = Γ(γ,λ(t − s))

Γ(γ)
E(y),
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where we use that the expectation of a stochastic integral of a deterministic process is always 0 with respect
to a Wiener process. In order for the restarted process to be the same as the original one, it is necessary to
have equality in expectation. Taking expectations in (1.4) gives

Γ(γ,λ(t − s))

Γ(γ)
E(Xγ(s,u, y)) = Γ(γ,λ(t −u))

Γ(γ)
y,

1

Γ(γ)2 Γ(γ,λ(t − s))Γ(γ,λ(s −u))y = Γ(γ,λ(t −u))

Γ(γ)
y.

This implies that
Γ(γ,λ(t − s))Γ(γ,λ(s −u))y = Γ(γ,λ(t −u))Γ(γ)y.

Assuming y ̸= 0, this only holds if

Γ(γ,λ(t − s))Γ(γ,λ(s −u)) = Γ(γ,λ(t −u))Γ(γ). (1.7)

Now note that the right-hand side is independent of s. As a result, this can only hold if the left-hand side is
independent of s as well. Taking the derivative to s on both sides, we see that Equation (1.7) requires for all
u ≤ s ≤ t ,

d

ds
Γ(γ,λ(t − s))Γ(γ,λ(s −u)) = 0.

using that
d

dx
Γ(γ, x) =−xγ−1e−x ,

this reduces to

λ(λ(t − s))γ−1e−λ(t−s)Γ(γ,λ(s −u))−λ(λ(s −u))γ−1e−λ(s−u)Γ(γ,λ(t − s)) = 0,

or equivalently,
(s −u)γ−1e−λ(s−u)Γ(γ,λ(t − s)) = (t − s)γ−1e−λ(t−s)Γ(γ,λ(s −u)).

Now taking the limit t ↓ s, we see that the left-hand side is always well-defined and non-zero as long as t > u
(Γ(γ,0) is positive and well defined for any strictly positive γ). The right-hand side, however, vanishes for γ> 1
and approaches infinity for 0 < γ < 1. As a result, we obtain that (1.7) does not hold in general for γ ̸= 1, so
this process is not restartable in general.





2
Preliminaries

2.1. Linear operators on a Hilbert space
In this section some general results about linear operators will be presented. To do this, we first need to
establish some basic notation regarding Hilbert and Banach spaces. If H is a Hilbert space, then its inner
product will be denoted by 〈·, ·〉H , and the norm on H by ∥ · ∥H . Next, if H is a Hilbert space, then the direct
product space H ×H := {(h, g ) : h, g ∈ H } is again a Hilbert space if we consider the inner product

〈(h1, g1), (h2, g2)〉H×H = 〈h1,h2〉H +〈g1, g2〉H .

In this case, we will also write H 2 to denote the product Hilbert space. In the same way it is possible to define
a Hilbert space H n on H ×·· ·×H .

For the remainder of this section, let U and H be separable complex Hilbert spaces. In what follows we
will give the definitions and theorems used in regards to operators acting from U to H .

Definition 2.1.1 (Linear operator). An operator A : U → H is called linear if

A(αx +βy) =αA(x)+βA(y)

for all x, y ∈U and α,β ∈R.

Unless otherwise indicated, an operator will always denote a linear operator from now on. A special kind
of linear operators are the bounded (linear) operators. Instead of A(x) we will often also just write Ax to
indicate the operator A acting on x ∈U .

Definition 2.1.2 (Bounded operator). A linear operator A : U → H is called bounded if it satisfies

sup
∥x∥U=1

∥Ax∥H <∞.

Note that because of the linearity it is equivalent to take the supremum over ∥x∥U ≤ 1, which is sometimes
done instead in the literature. The space of all bounded operators from U to H is denoted L (U , H). In the
case U = H , we will write L (H) instead.

Now if we define ∥A∥L (U ,H) := sup∥x∥U=1 ∥Ax∥H , then this turns L (U , H) into a Banach space.

Definition 2.1.3 (Adjoint). If A ∈ L (H) is a bounded operator, then we define the adjoint of A to be the
operator A∗ ∈L (H) that for all x, y ∈ H satisfies

〈Ax, y〉H = 〈x, A∗y〉H .

It can be shown that this operator A∗ both exists and is unique, which makes this well defined. Some
operator classes with particularly nice properties will be given next.

Definition 2.1.4 (Self-adjoint operator). An operator A is called self-adjoint if A = A∗.

9
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Definition 2.1.5 (Nonnegative definite operator). An operator A ∈L (H) is called nonnegative definite if for
all x in H we have that

〈Ax, x〉H ≥ 0.

If instead we have for all x ̸= 0 a strict inequality, then we call A positive definite instead.

Now in complex Hilbert spaces it holds that every nonnegative definite operator is also self-adjoint by the
polarization identity, but in real Hilbert spaces this is not true in general.

For those positive operators, it is possible to define the trace [18, Section 14.2]:

Definition 2.1.6 (Trace of a nonnegative definite operator). If A ∈ L (H) is a nonnegative definite operator
and (ek )k≥1 is an orthonormal basis for H , then its trace is given by

tr(A) =
∞∑

k=1
〈Aek ,ek〉H .

This definition does not depend on the choice of (ek )k≥1, and the sum is well-defined (though possibly
infinite) since we are only adding nonnegative numbers (A was chosen nonnegative definite). It is also possi-
ble to extend this definition to a more general class of operators. For this we first need to define the modulus
of an operator.

Definition 2.1.7 (Modulus of an operator). Let H be a complex Hilbert space, and let A ∈ L (H). Then its
modulus |A| is given by

|A| := (A∗A)
1
2 ,

that is, the unique nonnegative definite operator such that |A|2 = A [18, Proposition 8.27].

If A is nonnegative in a complex Hilbert space, then it is also self-adjoint. It thus follows that in this case
A = |A|, which leads us to the more general definition of the trace for complex Hilbert spaces.

Definition 2.1.8 (Trace for linear operators). Let H be a complex Hilbert space, A ∈ L (H) and (ek )k≥1 an
orthonormal basis for H . Then we define the trace of A as

tr(A) :=
∞∑

k=1
〈|A|ek ,ek〉H .

We write L1(H) for all bounded operators with finite trace. This is a Banach space with respect to the
norm

∥A∥L1(H) := tr(A).

The last type of operators that will be needed are the Hilbert–Schmidt operators.

Definition 2.1.9 (Hilbert–Schmidt). Let (ek )k≥1 be an orthornormal basis for H . An operator A ∈ L (H) is
called Hilbert–Schmidt if ( ∞∑

k=1
∥Aek∥2

H

) 1
2

<∞.

The Hilbert–Schmidt operators will be denoted by L2(H). Together with the inner product

〈A,B〉L2(H) :=
∞∑

k=1
〈Aek ,Bek〉H ,

these operators become a Hilbert space.
Finally, we will introduce some notation regarding unbounded operators on H . Often these are only de-

fined on a part of H instead of the entirety of H .

Definition 2.1.10 (Unbounded operators). Let D(A) be a linear subspace. An unbounded operator
A : D(A) ⊆ H → H is a linear operator defined on D(A). D(A) will also be called the domain of A.

For such an unbounded operator A, we can define the graph of A as the set

G(A) := {(x, Ax) : x ∈ D(A)}.

On the graph of A we can define the norm ∥(x, Ax)∥G(A) = (∥x∥2
H +∥Ax∥2

H )
1
2 . We say that A is closed if the

graph of A is closed with respect to the graph norm. Similarly, we can define a norm on H as ∥x∥D(A) :=
(∥x∥2

H +∥Ax∥2
H )

1
2 . If A is closed, then D(A) is a Banach space with respect to this norm [18, Section 1.2], and

even a Hilbert space when considering the associated inner product 〈x, y〉D(A) := 〈x, y〉H +〈Ax, Ay〉H .
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2.2. Bochner spaces and Sobolev spaces
In this section we will define integrals for functions f : J → H , where J ⊆ R is an arbitrary interval and H is
a separable Hilbert space (though a Banach space would also suffice here). This construction is very similar
to the construction of the Lebesgue integral for functions taking values in R. We first define the integral for
simple functions:

Definition 2.2.1. Letλ : B(R) → [0,∞] denote the Lebesgue measure, let J ⊆Rbe some (possibly unbounded)
interval and let H be a Hilbert space. Then f : J → H is called a simple function if there exists a finite integer
k such that

f (t ) =
k∑

n=1
1An (t )xn ,

with xn ∈ H and An ∈B(R) such that λ(An) <∞, for all n ≤ k.

In a general Hilbert space, a measurable function (defined in the sense of pre-images) is no longer always
the limit of simple functions. In a separable Hilbert space, however, we do not run into this problem, and
a measurable function is always the limit of a sequence of simple functions [6, Remark 3.2]. For a simple
function, we define the integral as follows:

Definition 2.2.2 (Bochner integral for simple functions). Let f : J → H be a simple function of the form
f =∑k

n=1 1An xn . Then we define the Bochner integral of f as∫
J

f (t )dt :=
k∑

n=1
λ(An)xn .

It can be shown that this definition does not depend on the choice of (An)n≤k and (xn)n≤k . From here we
can define general integrable functions.

Definition 2.2.3 (Bochner integrable). Let f : J → H be a measurable function. Then we say that f is Bochner
integrable if there exists a sequence of simple functions ( fn)n≥1 such that

lim
n→∞

∫
J
∥ f (t )− fn(t )∥H dt = 0,

where the integral is taken to be the Lebesgue integral. In this case, we define the Bochner integral of f as∫
J

f (t )dt := lim
n→∞

∫
J

fn(t )dt .

Again, this definition does not depend on the choice of ( fn)n≥1, and the limit is well defined [18, Section
1.2.a]. The following theorem provides an easier way to check Bochner integrability.

Theorem 2.2.1. Let f : J → H be a measurable function. Then f is Bochner integrable if and only if∫
J
∥ f (t )∥H dt <∞,

where the integral is again interpreted as a Lebesgue integral. In this case we also have the inequality∥∥∥∥∫
J

f (t )dt

∥∥∥∥
H
≤

∫
J
∥ f (t )∥H dt .

Proof. See [18, Proposition 1.2.2].

Now define the Bochner space Lp (J ; H) for p ∈ [1,∞) as the space of all Borel measurable functions f :
J → H such that

∥ f ∥Lp (J ;H) :=
(∫

J
∥ f (t )∥p

H dt

) 1
p <∞.

Note that all functions that are equal almost everywhere are equivalent with this norm, so more precisely the
Bochner space contains equivalence classes of functions mapping J to H . Lp (J ; H) is a Banach space for every
p, and for p = 2 it is a Hilbert space if we take as inner product

〈 f , g 〉L2(J ;H) :=
∫

J
〈 f (t ), g (t )〉H dt .
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Since we identify functions that are equal almost everywhere, pointwise evaluation no longer makes sense,
so we will need a different way to introduce differentiabilty. For this, let C∞

c (J ;R) denote the set of all smooth
(infinitely often differentiable) functions f : J →R with compact support inside J .

Definition 2.2.4 (Weak derivative). Let f ∈ L1(J ; H). Then we say that g ∈ L1(J ; H) is the weak derivative of f
if for all φ ∈C∞

c (J ;R): ∫
J

f (t )φ′(t )dt =−
∫

J
g (t )φ(t )dt .

If f is differentiable with derivative f ′ in the classical sense, then integration by parts together with the
compact support of φ shows that f ′ is also the weak derivative of f . Moreover, if f is weakly differentiable,
then the weak derivative is unique [18, Proposition 2.5.2]. Now define the Sobolev space W n,p (J ; H) as the
space of all functions f ∈ Lp (J ; H) that are n times weakly differentiable, with weak derivatives again in
Lp (J ; H). Together with the norm

∥ f ∥W n,p (J ;H) :=
(

n∑
k=0

∥ f (k)∥p
Lp (J ;H)

) 1
p

,

this forms a Banach space. For p = 2 we get again a Hilbert space. The space W n,2(J ; H) is also denoted by
H n(J ; H) to emphasize this. It turns out that for these spaces, we can once again define pointwise evaluation
in a certain way.

Theorem 2.2.2. Let f ∈ W 1,p (J ; H). Then there exists a continuous function f̃ ∈ C (J ; H) with f = f̃ almost
everywhere, and for all s ≤ t ∈ J we have

f̃ (t )− f̃ (s) =
∫ t

s
f ′(r )dr.

Proof. See [18, Proposition 2.5.9].

2.3. Semigroups
For bounded operators A ∈L (H), it is possible to define its exponential operator by

e t A =
∞∑

k=0

t k

k !
Ak , t ≥ 0,

which converges since for bounded A it converges absolutely in the ∥·∥L (H)-norm. This operator is important
when solving infinite-dimensional initial value Cauchy problems of the form

u′(t ) = Au(t ) for all t > 0,

u(0) = u0.

In this case, the solution of this initial value problem would then be given by u(t ) = u0e t A [14, Section 4.1].
For general Hilbert spaces and unbounded operators A, however, this method fails, since the series defin-

ing e t A no longer has to converge. In order to deal with unbounded A, we thus have to generalize the proper-
ties of the exponential operator to unbounded operators, which leads us to the following definition.

Definition 2.3.1 (Strongly continuous semigroup). A family (S(t ))t≥0 of bounded linear operators on H is
called a strongly continuous semigroup if:

• S(0) = I ,

• S(t + s) = S(t )S(s) for all t , s ≥ 0,

• limt↓0 S(t )x = x for every x ∈ H .

In general we will let C0 denote the family of all strongly continuous semigroups. It is easy to verify that for
A bounded, (e t A)t≥0 is indeed a strongly continuous semigroup: the first two properties follow immediately,
and for the last property it is possible to write

lim
t↓0

∥S(t )x −x∥H = lim
t↓0

∥(S(t )− I )x∥H ≤ ∥x∥H lim
t↓0

∥S(t )− I∥L (H).
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Now for the last part we find

lim
t↓0

∥S(t )− I∥L (H) = lim
t↓0

∥∥∥∥∥ ∞∑
k=1

t k

k !
Ak

∥∥∥∥∥
L (H)

≤ lim
t↓0

∞∑
k=1

t k

k !
∥Ak∥L (H) ≤ lim

t↓0

∞∑
k=1

t k

k !
∥A∥k

L (H) = lim
t↓0

e t∥A∥L (H) −1 = 0.

Note that in this case we even found the stronger uniform convergence limt↓0 ∥S(t )−I∥L (H) = 0. A semigroup
(a family of operators that has only the first two properties of Definition 2.3.1) satisfying this stronger prop-
erty is called a uniformly continuous semigroup. Every uniformly continuous semigroup is also a strongly
continuous semigroup, and in fact it can be shown that every uniformly continuous semigroup is of the form
(e t A)t≥0 with A ∈L (H) [14, Chapter 1, Theorem 1.2].

For C0-semigroups this is not the case, but it turns out that there exists an operator, possibly unbounded,
that is similarly related to the C0-semigroup as A is to a uniformly bounded semigroup (e t A)t≥0.

Definition 2.3.2 (Infinitesimal generator). If (S(t ))t≥0 is a strongly continuous semigroup, then we define its
infinitesimal generator as a possibly unbounded operator A : D(A) ⊆ H → H by

D(A) :=
{

x ∈ H : lim
t↓0

S(t )x −x

t
exists

}
,

Ax := lim
t↓0

S(t )x −x

t
, x ∈ D(A).

It can be verified that if A is bounded, then A is indeed the infinitesimal generator of (e t A)t≥0, as one
would expect.

A useful bound that again links the semigroup to the exponential function is the following.

Theorem 2.3.1. If (S(t ))t≥0 is a C0-semigroup, then there are constants M ≥ 1 and ω ∈ R such that for every
0 ≤ t <∞,

∥S(t )∥L (H) ≤ Meωt .

Proof. See [14, Chapter 1, Theorem 2.2].

In some cases, we will require ω< 0, which we will refer to as exponentially stable.
So far we have only considered semigroups indexed by the positive real line. It is possible to extend this

to a sector in the complex space, which is needed to define analytic semigroups.

Definition 2.3.3 (Analytic semigroups). Let H be a complex Hilbert space. Let φ> 0 and define the region in
the complex plane

Σ := {λ ∈C : |argλ| <φ}.

Now an H-valued family (S(z))z∈Σ is called analytic if the following hold:

• z 7→ S(z) is analytic as a function mapping Σ to L (H),

• S(0) = I ,

• S(z +w) = S(z)S(w) for all z, w ∈Σ,

• for every x ∈ H we have that limz→0 S(z)x = x.

By only considering the nonnegative real line, an analytic semigroup naturally gives rise to a C0-semigroup.
Sometimes when working with a C0-semigroup we will want the stronger continuity properties given by the
analytic semigroups. If a C0-semigroup defined on a Hilbert space can be extended to an analytic semigroup
on some complex domain, then we will say that this C0-semigroup is analytic, even if we only consider the
nonnegative real axis.

The following bound specifically requires analycity.

Theorem 2.3.2 (Bound for analytic semigroups). Suppose −A is the infinitesimal generator of an analytic
semigroup (S(t ))t≥0. If A is boundedly invertible, then for all a ∈ N and all t ≥ 0 we have that AaS(t ) is
bounded and there exists constants C ≥ 0 and δ> 0 such that we have

∥AaS(t )∥L (H) ≤C t−ae−δt .
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Proof. See [14, Chapter 2, Theorem 6.13]. We restricted the theorem to just integer values for a, but the bound
still holds for other a > 0, though you would have to define Aa for non-integer a first.

Now if we have a real Hilbert space we would still like to have a condition similar to analyticity. For this
we will consider the complexification of a Hilbert space. Just like it is possible to identify C with R×R, it is
possible for a real Hilbert space H to turn H ×H into a complex Hilbert space, which we will denote with HC.
We will suggestively write h + g i for an element of HC.

Now define

(h + g i )+ (v +wi ) := (h + v)+ (g +w)i ,

and define the inner product as

〈h + g i , v +wi 〉HC
:= 〈h, v〉H +〈g , w〉H −〈h, w〉H i +〈g , v〉H i .

So the norm is then defined as ∥h + g i∥2
HC

= ∥h∥2
H +∥g∥2

H . For a complex scalar a +bi , we then define scalar
multiplication as

(a +bi )(h + g i ) := (ah −bg )+ (ag +bh)i .

It is not difficult to check that this indeed defines a complex Hilbert space. Now if we have a strongly contin-
uous semigroup (S(t ))t≥0 acting on our real Hilbert space H , then we can define a C0-semigroup (SC(t ))t≥0

on HC by setting

SC(t )(h + g i ) := S(t )h +S(t )g i , t ≥ 0.

All properties of the strongly continuous semigroup can easily be verified here by the definition of SC and
the fact that (S(t ))t≥0 is a C0-semigroup. We will call (SC(t ))t≥0 the complexification of (S(t ))t≥0. Now if the
complexification of our semigroup can be analytically extended, we again find the same bound as before.

Corollary 2.3.1. Let (S(t ))t≥0 be a C0-semigroup acting on a real Hilbert space and let −A be its infinitesimal
generator. If the complexification of (S(t ))t≥0 can analytically be extended to some sectorΣ, then we maintain
the bound from Theorem 2.3.2, that is, for all a ∈N there exist constants C ≥ 0 and δ> 0 such that

∥AaS(t )∥L (H) ≤C t−ae−δt , t ≥ 0.

Proof. Let (SC(t ))t≥0 be the analytic extension of (S(t ))t≥0. Then we claim that its infinitesimal generator
acting on HC is given by −AC, where

D(AC) := {h + g i : h ∈ D(A), g ∈ D(A)},

AC(h + g i ) := Ah + Ag i , (h + g i ) ∈ D(AC).

To see this, we write out the definition and obtain, for g ,h ∈ D(A), that

lim
t↓0

SC(t )(g +hi )− (g +hi )

t
= lim

t↓0

(S(t )g − g )+ (S(t )h −h)i

t
= lim

t↓0

(
S(t )g − g

t
+ S(t )h −h

t
i

)
.

Now limt↓0

∥∥∥ S(t )g−g
t + S(t )h−h

t i
∥∥∥2

HC

= limt↓0

∥∥∥ S(t )g−g
t

∥∥∥2

H
+

∥∥∥ S(t )h−h
t

∥∥∥2

H
= 0. Furthermore, for h or g outside D(A)

we could in the same way show that SC(t )(h+g i )−(h+g i )
t would not converge. Now using Theorem 2.3.2, we get

constants C ≥ 0 and δ> 0 such that

∥Aa
CSC(t )∥L (HC) ≤C t−ae−δt .

But writing out the definition of the operator norm, we see that

∥Aa
CSC(t )∥L (HC) = sup

∥h+g i∥HC≤1
∥Aa

CSC(t )(h + g i )∥HC
≥ sup

∥h+0i∥HC≤1
∥Aa

CSC(t )h∥HC
= sup

∥h∥H≤1
∥AaS(t )h∥H ,

which gives the required bound.
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2.4. Hilbert space valued random variables
In this section some basic principles with regards to probabilistic results for random variables on Hilbert or
Banach spaces will be presented.

In general, let (Ω,F ,P) be a probability space, and let H be a separable Hilbert space equipped with
B(H), the σ-algebra generated by all open sets of H . Then if X : Ω→ H is a function, we say that X is a
random variable if it is measurable. For a family of sets F in F we define the σ-algebra generated by F as the
smallest σ-algebra that contains F, notation σ(F). Similarly, for a collection of random variables (Xi )i∈I we
define σ((Xi )i∈I ) as the smallest σ-algebra for which all Xi are measurable.

Slightly weaker than a σ-algebra is a monotone class:

Definition 2.4.1 (Monotone class). Let Ω be a set. Let 2Ω denote the family of all subsets of Ω. Then G ⊆ 2Ω

is called a monotone class if

• Ω ∈G ,

• If A,B ∈G and A ⊆ B , then B \ A ∈G ,

• If (An)n≥1 is such that for all n ≥ 1, we have An ∈G and An ⊆ An+1, then
⋃

n≥1 An ∈G .

It is easy to check that every σ-algebra is also a monotone class. Just like with σ-algebras, for a family C

we write M (C ) to denote the smallest monotone class containing C . In certain cases there is a direct relation
between M (C ) and σ(C ), which is given by the monotone class theorem:

Theorem 2.4.1 (Monotone class theorem). If C ⊆ 2Ω and if for all finite collections of sets A1, · · · , An in C we
have

⋂n
k=1 Ak ∈C , then

M (C ) =σ(C ).

Proof. See [9, Appendix A1].

Now for a random variable X :Ω→ H which is Bochner integrable, that is

E(∥X ∥H ) <∞,

we can define its expectation as

E(X ) =
∫
Ω

X (ω)dP(ω).

We let L1(Ω; H) be the family of all integrable random variables, which is a Banach space if we let

∥X ∥L1(Ω;H) =
∫
Ω
∥X (ω)∥H dP(ω).

Given a random variable X we can define its distribution as a probability measure on µ on B(H) given by

µ(B) :=P(X −1(B)), B ∈B(H).

For a real-valued random variable f , we say that its distribution is Gaussian if there exists constants m ∈ R
and σ> 0 such that its distribution ν is given by

ν(A) :=
∫

A

1p
2πσ2

e−
(x−m)2

2σ2 dx, A ∈R.

We will sometimes also refer to this as a Gaussian measure. Now for σ = 0 we say that f is Gaussian if its
distribution equals the Dirac measure centered at m, that is, ν(A) = 1 if m ∈ A and 0 otherwise.

Similarly, for an H-valued random variable X we say that X is a Gaussian random variable if 〈h, X 〉H is a
real-valued Gaussian random variable for every h ∈ H . It is important to note here that m andσ generally will
depend on h for an H-valued Gaussian random variable. The following gives a representation of a Gaussian
measure.

Theorem 2.4.2 (Representation Gaussian measure on H). A measure µ on B(H) is Gaussian if and only if
there exists an m ∈ H and a Q ∈L (H) nonnegative, self-adjoint with finite trace such that for all h ∈ H ,∫

H
e i 〈h,v〉Hµ(dv) = e i 〈m,h〉H− 1

2 〈Qh,h〉H .

Moreover, Q and m are unique in this case.
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Proof. See [3, Theorem 2.2.4].

We will refer to m as the mean and Q as the covariance (operator). As a result it follows that the distribution
of any Gaussian random variable can thus be fully characterized by such an m and Q. We will write N (m,Q)
for a Gaussian distribution with mean m and covariance Q. For non-Gaussian random variables X ∈ L2(Ω; H),
we can still assign a mean and covariance operator. In this case, the mean m is given by the expectation, and
the covariance as the operator Q on H such that for all h1,h2 ∈ H we have

E(〈X −m,h1〉H 〈X −m,h2〉H ) = 〈Qh1,h2〉H ,

see [4, Section 1.2]. The next theorem gives some properties of H-valued random variables, which are similar
to what you would expect from the real-valued case. It also states that the covariance for Gaussian random
variables, as defined earlier, is the same as the usual definition of the covariance operator.

Theorem 2.4.3. If X is an H-valued Gaussian random variable with mean m and covariance Q, then for all
h, g ∈ H the following holds:

• E(〈X ,h〉H ) = 〈m,h〉H ,

• E(〈X −m,h〉H 〈X −m, g 〉H ) = 〈Qh, g 〉H ,

• E(∥X −m∥2
H ) = tr(Q).

Proof. See [12, Theorem 2.1.4].

If in addition to an integrable random variable X we are also given another σ-algebra G , we can define
the conditional expectation.

Definition 2.4.2 (Conditional expectation). If X is a random variable from (Ω,F ,P) to H and G is a sub-
σ-algebra of F , then we define the conditional expectation of X given G , notation E(X |G ), as the unique
random variable Y :Ω→ H satisfying:

• Y is G -measurable;

• Y is integrable;

• If G ∈G , then
∫

G Y dP= ∫
G X dP.

We will not show existence or uniqueness of Y here, see [4, Section 1.3] for this. Note that it is also possible
to condition on a different random variable Z instead, which is defined as conditioning onσ(Z ) (the smallest
σ-algebra for which Z is measurable).

Next we will present some properties of the conditional expectation:

Theorem 2.4.4 (Properties of the conditional expectation). Let X ,Y be random variables mapping from
(Ω,F ,P) to H and let G be a sub-σ-algebra of F , then the following hold:

• E(E(X |G )) = E(X ),

• For a,b ∈R we have that E(aX +bY |G ) = aE(X |G )+bE(Y |G ), P-a.s.

• If X is G -measurable, then E(X |G ) = X , P-a.s.

• If X and G are independent, then E(X |G ) = E(X ), P -a.s.

• If J is a further sub-σ algebra of G , then E(E(X |G )|J ) = E(X |J ), P-a.s.

• ∥E(X |G )∥H ≤ E(∥X ∥H |G ).

We are mostly interested in families of random variables, usually indexed by the (nonnegative) real line.

Definition 2.4.3 (H-valued stochastic process). Let I be an index set and H a Hilbert space. Then we call
(X (i ))i∈I an H-valued stochastic process if X (i ) is an H-valued random variable for all i ∈ I . If moreover X (i )
is integrable for all i ∈ I , then we say that (X (i ))i∈I is an integrable H-valued stochastic process.

In the same way we can define square integrable H-valued stochastic processes. Next we will consider a
notion of measurability for these stochastic processes.
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Definition 2.4.4 (Filtrations and adaptedness). Let (Ω,F ,P) be a probability space and let (X (t ))t≥0 be an
H-valued stochastic process. A family (Ft )t≥0 of σ-algebras is a filtration if for s < t we have Fs ⊆ Ft ⊆ F .
We say that (X (t ))t≥0 is adapted to a filtration (Ft )t≥0 if X (t ) is Ft -measurable for all t . A process is always
adapted to its natural filtration, given by

F X
t :=σ(Xs , s ≤ t ), t ∈ [0,∞).

For certain stochastic processes we can define differentiability as follows:

Definition 2.4.5 (Mean square differentiability). Let J ⊆R be a possibly unbounded interval and let (X (t ))t∈J

be a square integrable H-valued stochastic process. Then we say that X is mean square differentiable in a
point t ∈ J if there exists a square integrable H-valued stochastic process (Y (t ))t∈J such that

lim
h→0

E

(∥∥∥∥ X (t +h)−X (t )

h
−Y (t )

∥∥∥∥2

H

)
= 0,

where in the limit we only consider h such that t +h ∈ J . In this case we call the process Y the mean square
derivative of X .

We will now consider Gaussian processes, which are very important for the stochastic integral defined
later.

Definition 2.4.6 (Gaussian process). Let (X (t ))t≥0 be an H-valued stochastic process. Then X is called Gaus-
sian if for all finite collections of times t1, · · · , tn the vector (X (t1), · · · , X (tn)) is jointly Gaussian, that is, a
Gaussian random variable on H n .

Definition 2.4.7 (Martingale). Let (Ω,F ,P) be a probability space and let (X (t ))t≥0 be an H-valued process
adapted to a filtration (Ft )t≥0. Then we say that (X (t ))t≥0 is a martingale if it is integrable for every t and for
all s < t we have the martingale property:

E(X (t )|Fs ) = X (s), P-a.s.

The intuitive interpretation of a martingale is a process for which the current value is always the best
predictor for the future values.

Conditional probabilities given a σ-algebra are defined as follows.

Definition 2.4.8 (Conditional probability). Given a σ-algebra G and an event A ∈F , the conditional proba-
bility of A given G is defined up to P-null sets as

P(A|G ) := E(1A |G ).

In general, conditional probabilities are not measures despite their name: although we have by the mono-
tone convergence theorem for disjoint events (An)n≥0 the equality

P(∪n≥1 An |G ) = ∑
n≥1

P(An |G ) P-a.s.,

this almost sure set will in general depend on the chosen An .
Next it is possible to define conditional independence. Recall that two sets A and B are independent if

P(A∩B) =P(A)P(B). The following definition extends this principle.

Definition 2.4.9 (Conditional independence). Suppose F1, F2 and G are σ-algebras. We say that F1 and
F2 are conditionally independent given G if

P(A∩B |G ) =P(A|G )P(B |G ) P-a.s., A ∈F1, B ∈F2.

Just like with conditional expectations, it is also possible to have probabilities conditioned on a random
variable X , which is defined as taking the conditioning on σ(X ). Note that if for some fixed sets A and B we
let F1 = {;, A, Ac ,Ω} and F2 = {;,B ,B c ,Ω} and condition on the trivial σ-algebra, we get that F1 and F2 are
conditionally independent iff A and B are independent in the classical setting.

Next we will look at the simple Markov property. Intuitively, a process is simple Markov if the future is
independent of the past given the present.
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Definition 2.4.10 (Simple Markov property). Let (Ω,F ,P) be a probability space and let (X (t ))t≥0 be a stochas-
tic process taking values in a separable Hilbert space H . We say that X is simple Markov with respect to a fil-
tration (Gt )t≥0 or has the simple Markov property if (X (t ))t≥0 is adapted to (Gt )t≥0 and for all s < t , A ∈B(H)
we have

P(X (t ) ∈ A|Gs ) =P(X (t ) ∈ A|X (s)), P-a.s. (2.1)

If the filtration is not specified, then simple Markov will be with respect to the natural filtration.
Sometimes a process is almost Markov, where we need to condition on a bit more than just X (s) in order

for Equation (2.1) to hold.

Definition 2.4.11 (Multiple Markov property). An H-valued process (X (t ))t≥0 is called n-ple Markov with
respect to a filtration (Gt )t≥0 if it is adapted to (Gt )t≥0, it is n −1 times differentiable (in mean square sense)
and for all 0 ≤ s < t , A ∈B(H) we have

P(X (t ) ∈ A|Fs ) =P(X (t ) ∈ A|X (s), X (1)(s), · · · , X (n−1)(s)).

While intuitively clear, the definition for multiple Markov can sometimes be difficult to use in practice.
The next theorem gives two equivalent statements that can sometimes be easier to work with. We define
Bb(H ;R) as all measurable and bounded functions from H to R.

Theorem 2.4.5. Let (X (t ))t≥0 be an H-valued stochastic process adapted to a filtration (Gt )t≥0. Then the
following are equivalent:

1. (X (t ))t≥0 is an n-ple Markov process with respect to a filtration (Gt )t≥0.

2. For all φ ∈Bb(H ;R) and 0 ≤ s ≤ t it holds that

E(φ(X (t ))|Gs ) = E(φ(X (t ))|X (s), X (1)(s), · · · , X (n−1)(s)). (2.2)

3. For all 0 ≤ s ≤ t , Gs is conditionally independent of X (t ) given (X (s), X (1)(s), · · · , X (n−1)(s)).

Proof. 2 → 1 follows immediately by taking φ= 1A for any A ∈B(H). Conversely, suppose X is n-ple Markov.
Note that ifφ= 1A for some A ∈B(H), then (2.2) is clearly satisfied. Ifφ is a simple function, soφ=∑n

i=1 ci 1Ai

with Ai ∈ B(H) and ci ∈ R, then (2.2) follows from linearity of the conditional expectation (Theorem 2.3.3).
Now let φ be any bounded measurable function. Then there exists a sequence of simple functions (φn)n≥1

that increase to φ. But then, using the monotone convergence theorem for conditional expectations, we get
that

E(φ(X (t ))|Gs ) = lim
n→∞E(φn(X (t ))|Gs ) = lim

n→∞E(φn(X (t ))|X (s))

= E(φ(X (t ))|X (s)).

Lastly, the equivalence of 1 and 3 follows from [7, Theorem 8.9]. For the choice F = Gs ,G = σ(X (s)) and
H =σ(X (t )), this gives us that Gs is conditionally independent of X (t ) given X (s), X (1)(s), · · · , X (n−1)(s) if and
only if for all A ∈σ(X (t )) we have

P(A|X (s), X (1)(s), · · · , X (n−1)(s)) =P(A|F X
s ).

Note that every set in σ(X (t )) can be written in the form {X (t ) ∈ B} for some B ∈B(H). So we indeed find the
required equivalence.

The same equalities also hold for simple Markov processes (by considering 1-ple multiple Markov pro-
cesses).

Theorem 2.4.6. Let (X (t ))t≥0 be an H-valued stochastic process. Let Y : Ω → R be an integrable, F X
s -

measurable random variable and let φ ∈ Bb(H ;R). If for all n ∈N and all finitely many times s1 < ·· · < sn = s
we have

E(φ(X (t ))|X (s1), · · · , X (sn)) = Y P-a.s., (2.3)

then it holds that
E(φ(X (t ))|F X

s ) = Y P-a.s. (2.4)
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‘

Proof. Assume that for all s1 < ·· · < sn = s, (2.3) holds. Since Y is already F X
s -measurable and integrable, by

definition of the conditional expectation it is enough to show that

E(1Aφ(X (t ))) = E(1AY ), ∀A ∈F X
s .

Let C := {
⋂n

i=1 Ai : n ∈N, s1 < ·· · < sn = s, Ai ∈ σ(X (si ))}. C is clearly closed under taking finite intersections,
so by the monotone class theorem we find

M (C ) =σ(C ).

Let G = {A ∈F : E(1Aφ(X (t ))) = E(1AY )}. Observe that G is a monotone class:
Ω ∈ G is trivial by taking expectations on both sides of Equation (2.3). If A,B ∈ G and A ⊆ B , then using

linearity
E(1B\Aφ(X (t ))) = E((1B − 1A)φ(X (t ))) = E((1B − 1A)Y ) = E(1B\AY ),

hence B \ A ∈G .
Lastly, if (An)n≥1 is an increasing sequence of sets in G , set A =⋃∞

i=1 Ai . Now since the An are increasing,
we use monotone convergence (φ is bounded) to find

E(1Aφ(X (t ))) = E( lim
n→∞1Anφ(X (t ))) = lim

n→∞E(1Anφ(X (t ))) = lim
n→∞E(1An Y ) = E( lim

n→∞1An Y ) = E(1AY ),

so A ∈G .
Next, for A ∈C there exists s1, · · · , sn such that A =⋂n

i=1 Ai , Ai ∈σ(X (si )). But then A ∈σ(X (s1), · · · , X (sn)),
so by Equation (2.3) and the definition of the conditional expectation we have

E(φ(X (t ))1A) = E(Y 1A).

So from this it follows that A ∈G , hence C ⊆G . Since G is a monotone class, we thus find σ(C ) =M (C ) ⊆G .
So if we can now show that σ(C ) =F X

s , we obtain

F X
s ⊆G ,

so we would be done. Indeed, C ⊆F X
s , hence σ(C ) ⊆F X

s since F X
s is a σ-algebra.

On the other hand, F X
s =σ(

⋃
u≤s σ(X (u))). Now σ(X (u)) ⊆C for all u ≤ s, hence

⋃
u≤s σ(X (u)) ⊆C , so

F X
s =σ

( ⋃
u≤s

σ(X (u))

)
⊆σ(C ).

So F X
s ⊆G , from which the claim follows.

Using this theorem, we can now state and show a sufficient condition for a Gaussian process to be multiple
Markov.

Theorem 2.4.7 (Multiple Markov for Gaussian processes). Let (X (t ))t≥0 be a Gaussian process on H that is
n −1 times mean square differentiable. If for all s < t ,

E(X (t )|F X
s ) = E(X (t )|X (s), X (1)(s), · · · , X (n−1)(s)), P-a.s., (2.5)

then X is n-ple Markov.

Proof. Fix φ ∈ Bb(H ,R). Note that E(X (t )|X (s), X (1)(s), · · · , X (n−1)(s)) is integrable and F X
s -measurable, so by

Theorem 2.4.6 and Theorem 2.4.5 it is sufficient to show for arbitrary s1 < ·· · < sn = s < t that

E(φ(X (t ))|X (s1), · · · , X (sn)) = E(φ(X (t ))|X (s), X (1)(s), · · · , X (n−1)(s)), P-a.s.

Now define Z1 = E(X (t )|X (s1), · · · , X (sn)) and let Z2 = X (t )− Z1. Then since X is Gaussian, we know that the
vector (X (t ), X (s1), · · · , X (sn)) is jointly Gaussian, hence Z2 is independent of (X (s1), · · · , X (sn)) [3, Theorem
3.10.1]. So we obtain that

E(φ(X (t ))|X (s1), · · · , X (sn)) = E(φ(Z1 +Z2)|X (s1), · · · , X (sn)), P-a.s.
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Now Z1 is σ(X (s1), · · · , X (sn))-measurable and Z2 is independent of σ(X (s1), · · · , X (sn)). If we setψ :Ω→ H as
ψ(ω) := E(φ(Z1(ω)+Z2)), then using the freezing lemma [1, Lemma 4.1] we obtain (for almost all ω) that

E(φ(Z1 +Z2)|X (s1), · · · , X (sn))(ω) =ψ(ω).

Now by the assumption, Z1 = E(X (t )|X (s), X (1)(s), · · · , X (n−1)(s)) P-a.s., so using the same argument we find
that Z1 is σ(X (s), X (s)(1), · · · , X (s)(n))-measurable and Z2 is independent of σ(X (s)). But then, again using the
freezing lemma, we obtain

E(φ(X (t ))|X (s))(ω) = E(φ(Z1 +Z2)|X (s))(ω) =ψ(ω), P-a.s.

So we indeed obtain E(φ(X (t ))|X (s1), · · · , X (sn)) = E(φ(X (t ))|X (s), X (1)(s), · · · , X (n−1)(s)), P-a.s, which com-
pletes the proof.

2.5. Two-sided Wiener process
In this section we will define the two-sided H-valued Wiener process which will be needed later to construct
the stochastic integral on R. Let Q ∈ L (H) be a nonnegative, self-adjoint operator with finite trace. Now let
W1 and W2 be two independent H-valued Q-Wiener processes on [0,∞). Now define

W (t ) =
{

W1(t ) t ≥ 0,
W2(−t ) t < 0.

We will now show that this motion satisfies the properties you would expect from a Wiener process:

1. For all t > s ≥ t ′ > s′ we have that W (t )−W (s) and W (t ′)−W (s′) are independent,

2. W (t )−W (s) is N (0,Q(t − s)) for all t > s,

3. Continuous sample paths P-a.s.,

4. W (0) = 0 P-a.s.

The last property is trivial from the definition. Continuous sample paths follows from the continuity of the
original Wiener processes, combined with the fact that both vanish at t = 0.

Now take s < t . If both s ≤ 0 and t ≤ 0 or s ≥ 0 and t ≥ 0, the distribution of W (t )−W (s) follows from
the properties of W1 and W2. If s < 0 < t , then W (t )−W (s) = W (t )−W (0)+W (0)−W (s). Now W (t )−W (0)
and W (0)−W (s) are both independent because W1 and W2 are independent, and respectively N (0,Qt ) and
N (0,Q(−s)) distributed. So as a sum of two independent normal distributed random variables, it follows that
W (t )−W (s) is N (0,Q(t − s)) distributed.

For the independence, let t > s ≥ u > v . We want to show that W (t )−W (s) and W (u)−W (v) are inde-
pendent random variables. Now if s ≥ 0 ≥ u, the result is trivial since W1 and W2 are independent. If v ≥ 0 or
0 ≥ t , the result also follows immediately from the independent increments of W1 and W2 respectively. Lastly,
we will show the case t ≥ 0 ≥ s and note that u ≥ 0 ≥ v works very similarly.

In this case we can write W (t )−W (s) = (W (t )−W (0))+(W (0)−W (s)). Now W (t )−W (0) and W (u)−W (v)
are independent since W1 and W2 are independent. Next, W (0)−W (s) and W (u)−W (v) are independent
because W2 as a Wiener process has independent increments. As a result, we conclude that W (t )−W (s) and
W (u)−W (v) are independent.

The main downside of this two-sided Wiener process is that it is no longer a martingale: If we consider
E(W0|FW

t ), for t < 0, then this will almost surely be equal to 0 because of the restriction of W (0) = 0 a.s. But
the martingale property would require E(W0|FW

t ) =Wt a.s., which would give Wt = 0 a.s., which is clearly not
the case for nontrivial Q. In fact, we can show that any process that satisfies the first two properties of the
Wiener process, namely the independent increments and the normal distribution of the increments, is not a
martingale with respect to any filtration:

Theorem 2.5.1. Suppose (X (t ))t∈R is a process with independent increments. Suppose for all s < t its incre-
ments X (t )−X (s) are N (0, (t−s)Q) distributed with nonzero covariance Q. Then X (t ) is not a martingale with
respect to any filtration.

The proof relies on backward martingales, which can be thought of as some sort of reversed martingale.
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Definition 2.5.1 (Backward martingale). Let I either beN or [0,∞). An H-valued stochastic process (X (t ))t∈I

is called a backward martingale with respect to a decreasing family of σ-algebras (Ft )t∈I , that is, for s < t we
have Ft ⊆Fs , if it satisfies

1. (X (t ))t∈I is (Ft )t∈I adapted,

2. X (t ) is integrable for every t ,

3. E(X (s)|Ft ) = X (t ) for all s < t .

Note that a backward martingale (X (t ))t≥0 with respect to a filtration (Ft )t≥0 also gives a backward mar-
tingale indexed by N by only considering (X (t ))t∈N and (Ft )t∈N. We will also need the following theorem.

Theorem 2.5.2 (Backward martingale theorem). Let (X (n))n∈N be a backward martingale with respect to
(Fn)n∈N. Then limn→∞ X (n) exists and the convergence is both almost surely and in L1(Ω; H).

Proof. See [5, Chapter 12.7, Theorem 4].

There is a direct relation between backward martingales and martingales on the entire real line. If (X (t ))t∈R
is a Ft -martingale indexed by R, then for t ≥ 0 define Y (t ) = X (−t ) and let Gt := F−t . Then it is easy to see
that (Y (t ))t≥0 is a backward martingale with respect to (Gt )t≥0. Using this we get the following result.

Theorem 2.5.3. Any real-valued process indexed byRwith independent, stationary, and nonzero increments
is not a martingale.

Proof. Let (X (t ))t∈R be a process with stationary, independent nontrivial increments and suppose it is a mar-
tingale with respect to some filtration (Ft )t∈R. Then as explained earlier, we can define a backward martin-
gale (Y (n))n∈N with respect to (Gn)n∈N by defining Y (n) := X (−n) and Gn :=F−n for n ∈N. Together with the
backward martingale convergence theorem, this gives that limn→∞ Y (n) = limn→−∞ X (−n) exists in L1(Ω;R).
But this gives a contradiction since (X (−n))n∈N is not even Cauchy: For any N , for example, we can consider

∥X−N −X−(N+1)∥L1(Ω;R) = ∥X−1 −X0∥L1(Ω;R) ̸= 0,

since we assumed the increments were nontrivial. So we can never have convergence, which is a contradic-
tion, hence (X (t ))t∈R can not be a martingale.

With this result we are in a position to prove Theorem 2.5.1. The idea is to reduce the H-valued process to
an R-valued process and use Theorem 2.5.3.

Proof of Theorem 2.5.1. We prove by contradiction. Suppose (X (t ))t∈R is a martingale with respect to some
filtration (Gt )t∈R. Let h be an eigenvector of Q corresponding to a nonzero (positive) eigenvalue λ. Now
consider

Z (t ) := 〈X (t ),h〉H .

Now it immediately follows that (Z (t ))t∈R is also a real-valued martingale. We will show that (Z (t ))t∈R also
has independent normally distributed increments, which would imply that it is not a martingale, which is a
contradiction. Independence of the increments follows from (X (t ))t∈R having independent increments. For
the distribution we find that

Z (t )−Z (s) = 〈X (t )−X (s),h〉H , s < t .

Now by Theorem 2.4.3, Z (t )−Z (s) is indeed normally distributed with mean 0 and variance

(t − s)〈Qh,h〉H = (t − s)λ∥h∥2
H .

So we see that (Z (t ))t∈R is a process with stationary, independent and nontrivial increments, so by Theorem
2.5.3 we find that (Z (t ))t∈R is not a martingale. So we obtain a contradiction, so (X (t ))t∈R is not a martingale.

Note that we did not need an eigenvector h: any h for which 〈Qh,h〉 > 0 would have also worked.





3
Matérn type process on the real line

The mild solution process considered in Equation (1.3) has the disadvantage of not being restartable. To
circumvent this we will consider the modified process

Xγ(t ) = 1

Γ(γ)

∫ t

−∞
(t − r )γ−1S(t − r )dW (r ), t ∈ (−∞,T ]. (3.1)

It is not clear on first glance how to interpret this stochastic integral starting at −∞. Making sense of this in a
meaningful way will be the first focus of this section. Afterwards the differentiability of the process in a mean
square sense will be investigated.

3.1. Stochastic integration on the real line
Now we will define the stochastic integral for simple deterministic functionsΦ : (−∞,T ] →L2(H) of the form

Φ(t ) =
n∑

i=1
Φi 1[ti−1,ti )(t ), t ∈ (−∞,T ].

where Φi is an element of L2(H) and t0, t1, · · · , tn ∈ R are increasing values between −∞ and T . Now for this
class of functions we define ∫ t

−∞
Φ(r )dW (r ) :=

n∑
i=1
Φi (W (ti ∧ t )−W (ti−1 ∧ t )).

We will sometimes shorten this to IΦ(t ). However, if we consider the standard filtration (FW
t )t≥0, we run into

a problem. Take for example Φ = 1[−1,0). Then for t ∈ [−1,0], we find that
∫ t
−∞Φ(r )dW (r ) = W (t )−W (−1).

Now for any s satisfying −1 ≤ s < 0 we obtain

E(Iφ(0)|Fs ) = E
(∫ 0

−∞
Φ(r )dW (r )|Fs

)
= E(−W (−1)|Fs ) =−W (−1) ̸=W (s)−W (−1) = Iφ(s).

So IΦ(t ) is now no longer a martingale.
In order to obtain a martingale again, we will consider the increment filtration (F̃W

t )t≥0, which will be
defined as F̃W

t := σ(W (t ) − W (s) : s ≤ t ). We claim that (IΦ(t ))t≥0 is in fact a martingale with respect
to (F̃W

t )t≥0: Adaptedness follows since W (ti )−W (ti−1) is F̃W
t -measurable for t ≥ ti . For the martingale

property we will show that

E((W (ti ∧ t )−W (ti−1 ∧ t ))|F̃W
s ) =W (ti ∧ s)−W (ti−1 ∧ s).

Now since the conditional expectation is linear, this is enough to show that
∫ t
−∞Φ(r )dW (r ) is a martingale.

Fix s < t . There are multiple cases: either s > ti , ti ≥ s ≥ ti−1 or ti−1 > s.
In the first case, we get

E(W (ti ∧ t )−W (ti−1 ∧ t )|F̃W
s ) =W (ti ∧ t )−W (ti−1 ∧ t ) =W (ti ∧ s)−W (ti−1 ∧ s),

23
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where we used that W (ti ∧ t )−W (ti−1 ∧ t ) is F̃W
s -measurable. If ti ≥ s ≥ ti−1, then we find, since because of

independence E(W (ti ∧ t )−W (s)|F̃W
s ) = E(W (ti ∧ t )−W (s)) = 0, that

E(W (ti ∧ t )−W (ti−1 ∧ t )|F̃W
s ) = E((W (ti ∧ t )−W (s)+W (s)−W (ti−1 ∧ t ))|F̃W

s )

=W (s)−W (ti−1 ∧ t )

=W (ti ∧ s)−W (ti−1 ∧ s).

Lastly, if ti−1 > s, then we immediately get

E((W (ti ∧ t )−W (ti−1 ∧ t ))|F̃W
s ) = 0 =W (ti ∧ s)−W (ti−1 ∧ s).

So in every case the martingale property holds, so by linearity the entire integral has the martingale property.
Note that for t ≥ 0 we have FW

t = F̃W
t :

For any s < t we have that Wt and Ws are FW
t -measurable, so Wt −Ws is also FW

t -measurable, which gives
F̃W

t ⊆FW
t . On the other hand we have that Wt =Wt−W0, so we get that Wt is F̃W

t -measurable, so FW
t ⊆ F̃W

t
also follows. Now for t < 0, this second part fails, so we only have F̃W

t ⊆FW
t .

Moreover, IΦ(t ) is square integrable for every t , that is,

E(∥IΦ(t )∥2
H ) <∞.

This follows since

∥Φi (W (ti ∧ t )−W (ti−1 ∧ t ))∥H ≤ ∥Φi∥L (H)∥(W (ti ∧ t )−W (ti−1 ∧ t ))∥H .

Now W (t ) is square integrable, and since a finite sum of square integrable functions is again square integrable,
it follows that IΦ(t ) is also square integrable.

Theorem 3.1.1. Let M 2
T denote all continuous square integrable martingales with respect to (F̃W

t )t∈(−∞;T ].
If we take as norm

∥M∥M 2
T

:= sup
t∈(−∞,T ]

(E(∥M(t )∥2
H ))

1
2 ,

then M 2
T is a Banach space.

Proof. A proof in the case of a bounded time domain can be found in [12, Proposition 2.2.9], but we will
specifically need it in the case of an unbounded time domain.

It turns out that this norm considerably simplifies since we are only considering martingales. For this,
note that if (M(t ))t≤T is a martingale, then we can use Theorem 2.4.4 and Jensen’s inequality (which also
holds for conditional expectations) to find for all t ≤ T

∥M(t )∥2
H = ∥E(M(T )|F̃W

t )∥2
H ≤ E(∥M(T )∥H |F̃W

t )2 ≤ E(∥M(T )∥2
H |F̃W

t ).

Now taking expectations on both sides results in

E(∥M(t )∥2
H ) ≤ E(E(∥M(T )∥2

H |F̃W
t )) = E(∥M(T )∥2

H ).

Together this gives us thus

∥M∥M 2
T
= (E(∥M(T )∥2

H ))
1
2 ,

which also shows that the norm is finite. Now L2(Ω;L∞(−∞,T ; H)) is a Banach space with respect to ∥·∥M 2
T

, so

we only need to show that M 2
T is a closed subspace of L2(Ω;L∞(−∞,T ; H)). For this, let (Xn)n≥1 be a sequence

in M 2
T converging in ∥ ·∥M 2

T
to X ∈ L2(Ω;L∞(−∞,T ; H)). We will show X ∈ M 2

T . Clearly X is square integrable.

For continuity, recall that if (Xn)n≥1 converges to X in L2(Ω;L∞(−∞,T ; H)), then there exists a subsequence
(Xnk )k≥1 that converges P-a.s. to X . So for almost all ω we obtain that Xnk (ω) → X (ω) in L∞(−∞,T ; H). As
the uniform limit of continuous functions, we thus find that X (ω) is continuous for almost all ω. Lastly, to
show that X is a martingale, fix s ≤ t ≤ T . we first show that E(Xn(t )|F̃W

s ) → E(X (t )|F̃W
s ) in L1(Ω; H), which

implies P-a.s. convergence of a subsequence. For this, note that

∥E(X (t )|F̃W
s )−E(Xn(t )|F̃W

s )∥L1(Ω;H) = E(∥E(X (t )−Xn(t )|F̃W
s )∥H ) ≤ E(E(∥X (t )−Xn(t )∥H |F̃W

s ))

= E(∥X (t )−Xn(t )∥H ) ≤ E(∥X (t )−Xn(t )∥2
H )

1
2 ≤ ∥X −Xn∥M 2

T
,
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which converges to 0 by assumption. So there exists a subsequence (Xnk )k≥0 for which for almost all ω we

have that E(Xnk (t )|F̃W
s )(ω) converges to E(X (t )|F̃W

s )(ω) as k goes to infinity. By possibly passing to a further
subsequence, we can assume that (Xnk )k≥0 also converges to X almost everywhere. But then, again for almost
all ω, we have

E(X (t )|F̃W
s )(ω) = lim

k→∞
E(Xnk (t )|F̃W

s )(ω) = lim
k→∞

(Xnk (s))(ω) = (X (s))(ω).

So X ∈ M 2
T , which shows that M 2

T is closed in L2(Ω;L∞(−∞;T ; H)), and hence a Banach space.

Now if we calculate ∥∫ t
−∞Φ(r )dW (r )∥2

M 2
T

, still forΦ(t ) =∑n
i=1Φi 1[ti−1,ti ), we obtain

E

(∥∥∥∥∫ T

−∞
Φ(r )dW (r )

∥∥∥∥2

H

)
= E

(∥∥∥∥∥ n∑
i=1
Φi (W (ti )−W (ti−1))

∥∥∥∥∥
2

H

)

=E
(

n∑
i=1

n∑
j=1

〈Φi (W (ti )−W (ti−1)),Φ j (W (t j )−W (t j−1))〉H

)

=E
(

n∑
i=1

∥Φi (W (ti )−W (ti−1))∥2
H

)
+E

(
n∑

i=1

n∑
j ̸=i

〈Φi (Wti −Wti−1 ),Φ j (Wt j −Wt j−1 )〉H

)
.

Now the latter sum equals zero because of the independence of the increments. Let (ek )k≥1 be any orthonor-
mal basis of H . Setting W (ti+1)−W (ti ) :=∆i , we get

E(∥Φi∆i∥2
H ) = ∑

k∈N
E(〈Φi∆i ,ek〉H )2 = ∑

k∈N
E(〈∆i ,Φ∗

i ek〉H )2.

Here we can use the definition of the covariance. Then using the fact that Q is nonnegative definite, we can

split the Q into Q
1
2 Q

1
2 and use that Q

1
2 is also self-adjoint [15, Theorem VI.9] to obtain

E(∥Φi∆i∥2
H ) = ∑

k∈N
(ti+1 − ti )〈QΦ∗

i ek ,Φ∗
i ek〉H

= ∑
k∈N

(ti+1 − ti )∥Q
1
2Φ∗

i ek∥2
H

= (ti+1 − ti )∥Q
1
2Φ∗

i ∥2
L2(H)

= (ti+1 − ti )∥Φi Q
1
2 ∥2

L2(H),

where we used that ∥Q
1
2Φ∗

i ∥L2(H) = ∥(Q
1
2Φ∗

i )∗∥L2(H). Taking the sum over i gives

∥Iφ∥2
M 2

T
= E

(∥∥∥∥∫ T

−∞
Φ(r )dW (r )

∥∥∥∥2

H

)
=

n∑
i=1

(ti − ti−1)∥Φi Q
1
2 ∥2

L2(H) =
∫ T

−∞
∥Φ(s)Q

1
2 ∥2

L2(H)ds.

So if for simple deterministic functions we define

∥Φ∥T :=
(∫ T

−∞
∥Φ(s)Q

1
2 ∥2

L2(H)ds

) 1
2

,

then the Itô integral is indeed an isometry from the simple deterministic functions equipped with ∥·∥T to the
continuous square integrable martingales equipped with ∥ ·∥M 2

T
.

Now for general processes Φ : (−∞,T ] → L2(H) that satisfy
∫ T
−∞ ∥Φ(s)Q

1
2 ∥2

L2(H)
ds < ∞, we can define

the integral as a limit of integrals of simple functions. Then if (Φn)n≥1 is a sequence of simple functions
converging toΦ in ∥ ·∥T , we define the integral as∫ T

−∞
Φ(r )dW (r ) := lim

n→∞

∫ T

−∞
Φn(r )dW (r ).

What is left is to show that this representation does not depend on the choice ofΦn and that this limit actually
exists in M 2

T . We start with the latter. Note that (Φn)n≥1 is Cauchy, so we obtain by the Itô isometry and the
linearity of the stochastic integral that ∥∥Iφn − Iφm

∥∥
M 2

T
= ∥Φn −Φm∥T ,
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so the integral is Cauchy as well in M 2
T . Now since M 2

T is complete, it follows that this integral indeed has a
limit in M 2

T . The independence of representation follows in the same way: if (Φn)n≥1 and (Ψn)n≥1 are two
different sequences of simple functions converging toΦ, then∥∥Iφn − Iψn

∥∥
M 2

T
= ∥Φn −Ψn∥T ≤ ∥Φn −Φ∥T +∥Ψn −Φ∥T ,

which converges to 0 as n →∞. So the integral is indeed well defined this way. It is also possible to relax the
finite trace in the definition of Q. A detailed construction of this in the case with stochastic integrands on a
bounded domain [0,T ] can be found in [12, Chapter 2.5]. The unbounded case follows in the same manner.

3.2. Matérn type process
Now we can proceed with the existence of our process Xγ, as defined in Equation (3.1).

Theorem 3.2.1. Suppose that
∫ ∞

0 ∥r γ−1S(r )Q
1
2 ∥2

L2(H)
dr < ∞. Then Xγ is mean square continuous, that is,

Xγ ∈C ((−∞,T ];L2(Ω; H)).

For the proof we will need the following result from [8], which we will restate here.

Lemma 3.2.1. Suppose U is a Hilbert space and u ∈ L2(0,∞;U ). For h ∈ R, let Jh := ((−h)∨0,∞) and define
uh : Jh →U by

uh(t ) := u(t +h), t ∈ Jh .

Then limh→0 ∥uh −u∥L2(Jh ;U ) = 0.

Proof. See [8, Lemma A.4].

Proof of Theorem 3.2.1. We first show that Xγ indeed takes values in L2(Ω; H). Applying the Itô isometry gives

∥Xγ(t )∥2
L2(Ω;H) =

1

Γ(γ)

∫ t

−∞
∥(t − r )γ−1S(t − r )Q

1
2 ∥2

L2(H)dr. (3.2)

Performing the change of variables s = t − r indeed gives

∥Xγ(t )∥2
L2(Ω;H) =

1

Γ(γ)

∫ ∞

0
∥sγ−1S(s)Q

1
2 ∥2

L2(H)ds <∞, (3.3)

by assumption.
Next note that, for t ≤ T and 0 ≤ h ≤ T − t ,

∥Xγ(t +h)−Xγ(t )∥L2(Ω;H)

≤ 1

Γ(γ)

(∥∥∥∥∫ t+h

t
(t +h − r )γ−1S(t +h − r )dW (r )

∥∥∥∥
L2(Ω;H)

+
∥∥∥∥∫ t

−∞
[(t +h − r )γ−1S(t +h − r )− (t − r )γ−1S(t − r )]dW (r )

∥∥∥∥
L2(Ω;H)

)
.

We can rewrite the (square of the) first part using the Itô Isometry and a change of variables to find∥∥∥∥∫ t+h

t
(t +h − r )γ−1S(t +h − r )dW (r )

∥∥∥∥2

L2(Ω;H)
=

∫ t+h

t
∥(t +h − r )γ−1S(t +h − r )Q

1
2 ∥2

L2(H)dr

=
∫ h

0
∥r γ−1S(r )Q

1
2 ∥2

L2(H)dr.

Now since
∫ ∞

0 ∥r γ−1S(r )Q
1
2 ∥2

L2(H)
dr <∞, this converges to 0 as h ↓ 0.

For the second part we first use the Itô isometry and then perform the change of variables t − r = s to
obtain ∥∥∥∥∫ t

−∞
[(t +h − r )γ−1S(t +h − r )− (t − r )γ−1S(t − r )]dW (r )

∥∥∥∥2

L2(Ω;H)

=
∫ t

−∞
∥(t +h − r )γ−1S(t +h − r )Q

1
2 − (t − r )γ−1S(t − r )Q

1
2 ∥2

L2(H)dr

=
∫ ∞

0
∥(s +h)γ−1S(s +h)Q

1
2 − sγ−1S(s)Q

1
2 ∥2

L2(H)ds.
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Now since by assumption sγ−1S(s)Q
1
2 ∈ L2(0,∞;L2(H)), Lemma 3.2.1 gives that this converges to 0 as h ↓ 0.

Now if h ≤ 0, then we instead find

∥Xγ(t +h)−Xγ(t )∥L2(Ω;H)

≤ 1

Γ(γ)

(∥∥∥∥∫ t

t+h
(t − r )γ−1S(t − r )dW (r )

∥∥∥∥
L2(Ω;H)

+
∥∥∥∥∫ t+h

−∞
[(t +h − r )γ−1S(t +h − r )− (t − r )γ−1S(t − r )]dW (r )

∥∥∥∥
L2(Ω;H)

)
.

For the second part we again obtain∥∥∥∥∫ t+h

−∞
[(t +h − r )γ−1S(t +h − r )− (t − r )γ−1S(t − r )]dW (r )

∥∥∥∥2

L2(Ω;H)

=
∫ t+h

−∞
∥(t +h − r )γ−1S(t +h − r )Q

1
2 − (t − r )γ−1S(t − r )Q

1
2 ∥2

L2(H)dr

=
∫ ∞

−h
∥(s +h)γ−1S(s +h)Q

1
2 − sγ−1S(s)Q

1
2 ∥2

L2(H)ds.

Just like before, this goes to 0 as h ↑ 0 by Lemma 3.2.1.
The first part now gives∥∥∥∥∫ t

t+h
(t − r )γ−1S(t − r )dW (r )

∥∥∥∥2

L2(Ω;H)
=

∫ t

t+h
∥(t − r )γ−1S(t − r )Q

1
2 ∥2

L2(H)dr

=
∫ −h

0
∥r γ−1S(r )Q

1
2 ∥2

L2(H)dr,

which we have already shown goes to 0 as h ↑ 0. Taking everything together we thus find

lim
h→0

∥Xγ(t +h)−Xγ(t )∥L2(Ω;H) = 0,

which is what we had to show.

3.3. Restarting property
In this section we will show that the new process Xγ(t ) is restartable. For this it is important to realize what
imposing an initial condition actually means here. In order to see this, we rewrite

Xγ(t ) = 1

Γ(γ)

∫ t

−∞
(t − r )γ−1S(t − r )dW (r )

= 1

Γ(γ)

(∫ s

−∞
(s − r )γ−1S(s − r )dW (r )−

∫ s

−∞
(s − r )γ−1S(s − r )dW (r )

+
∫ s

−∞
(t − r )γ−1S(t − r )dW (r )+

∫ t

s
(t − r )γ−1S(t − r )dW (r )

)
= 1

Γ(γ)

(∫ s

−∞
(s − r )γ−1S(s − r )dW (r )+

∫ s

−∞
[
(t − r )γ−1S(t − s)− (s − r )γ−1]S(s − r )dW (r )

+
∫ t

s
(t − r )γ−1S(t − r )dW (r )

)
= Xγ(s)+ 1

Γ(γ)

(∫ s

−∞
[
(t − r )γ−1S(t − s)− (s − r )γ−1]S(s − r )dW (r )

+
∫ t

s
(t − r )γ−1S(t − r )dW (r )

)
.

This motivates the following definition for Xγ(t ; s,ξ):

Definition 3.3.1. We define the process at time t starting at s with initial condition ξ as

Xγ(t ; s,ξ) = ξ+ 1

Γ(γ)

(∫ s

−∞
[
(t − r )γ−1S(t − s)− (s − r )γ−1]S(s − r )dW (r )+

∫ t

s
(t − r )γ−1S(t − r )dW (r )

)
.



28 3. Matérn type process on the real line

From here, it is possible to show that this modified process is in fact restartable.

Theorem 3.3.1. Xγ is a restartable process. That is, for any u ≤ s ≤ t and any ξ,

Xγ(t ; s, Xγ(s;u,ξ)) = Xγ(t ;u,ξ). (3.4)

Proof. Writing out the left-hand side, we get

Xγ(t ; s, Xγ(s;u,ξ)) = ξ+ 1

Γ(γ)

(∫ u

−∞
[
(s − r )γ−1S(s −u)− (u − r )γ−1]S(u − r )dW (r )

+
∫ s

u
(s − r )γ−1S(s − r )dW (r )+

∫ s

−∞
[
(t − r )γ−1S(t − s)− (s − r )γ−1]S(s − r )dW (r )

+
∫ t

s
(t − r )γ−1S(t − r )dW (r )

)
.

Rewriting the part from u to s gives

Xγ(t ; s, Xγ(s;u,ξ)) = ξ+ 1

Γ(γ)

(∫ u

−∞
[
(s − r )γ−1S(s −u)− (u − r )γ−1]S(u − r )dW (r )

+
∫ s

u
(t − r )γ−1S(t − r )dW (r )+

∫ u

−∞
[
(t − r )γ−1S(t − s)− (s − r )γ−1]S(s − r )dW (r )

+
∫ t

s
(t − r )γ−1S(t − r )dW (r )

)
.

Now taking the first and third integral together and the second and fourth integral ultimately gives us

Xγ(t ; s, Xγ(s;u,ξ)) = ξ+ 1

Γ(γ)

(∫ u

−∞
[(t − r )γ−1S(t −u)− (u − r )γ−1]S(u − r )dW (r )

+
∫ t

u
(t − r )γ−1S(t − r )dW (r )

)
= Xγ(t ;u,ξ),

which proves the theorem.

3.4. Mean square differentiability
In this section the mean square differentiability of the process will be investigated and a closed form for this
will be given. For this we need the following theorem.

Theorem 3.4.1. Suppose ψ ∈ H n(0,∞;L (H)), where H n(0,∞;L (H)) is the Sobolev space as defined in Sec-

tion 2.2, is such that for all k ∈ {0,1, · · · ,n} we have ψ(k)Q
1
2 in L2(0,∞;L2(H)). Suppose furthermore for

k ∈ {0,1, · · · ,n −1} that ψ(k) vanishes continuously at zero, that is, for the continuous version of ψ(k) we have

lim
t↓0

ψ(k)(t ) = 0. (3.5)

Then the function t 7→ ∫ t
−∞ψ(t − s)dW (s) mapping (−∞,T ] to L2(Ω; H) is n times differentiable in time and

dn

dt n

∫ t

−∞
ψ(t − s)dW (s) =

∫ t

−∞
ψ(n)(t − s)dW (s), t ∈ (−∞,T ].

Recall that a function in W 1,p (0,∞;L (H)) always has a continuous version, hence the limit in Equa-
tion (3.5) is well defined. We will require a theorem from [8] for the proof, which we will restate here.

Theorem 3.4.2. Let U be a Hilbert space and suppose ψ ∈ H 1(J ;U ). Define Jh and ψh as in Lemma 3.2.1.
Then

lim
h→0

∥∥∥ψh −ψ
h

−ψ′
∥∥∥

L2(Jh ;U )
= 0.

Proof. See [8, Proposition A.8]
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Proof of Theorem 3.4.1. The proof uses induction. First consider the case n = 1 and fix t ∈ (−∞,T ]. Suppose
0 ≤ h ≤ T − t . We will consider

1

h

(∫ t+h

−∞
ψ(t +h − s)dW (s)−

∫ t

−∞
ψ(t − s)dW (s)

)
−

∫ t

−∞
ψ′(t − s)dW (s)

=
∫ t

−∞

[
1

h
(ψ(t +h − s)−ψ(t − s))−ψ′(t − s)

]
dW (s)+ 1

h

∫ t+h

t
ψ(t +h − s)dW (s).

We will start with the last term. Using the Itô isometry and Theorem 2.2.2, the last term becomes

E

(∥∥∥∥ 1

h

∫ t+h

t
ψ(t +h − s)dW (s)

∥∥∥∥2

H

)
= 1

h2

∫ h

0
∥ψ(s)Q

1
2 ∥2

L2(H)ds = 1

h2

∫ h

0

∥∥∥∥∫ s

0
ψ′(r )dr Q

1
2

∥∥∥∥2

L2(H)
ds.

≤ 1

h2

∫ h

0

(∫ s

0
∥ψ′(r )Q

1
2 ∥L2(H)dr

)2

ds.

Using Cauchy–Schwarz then ultimately gives us

1

h2

∫ h

0

(∫ s

0
∥ψ′(r )Q

1
2 ∥L2(H)dr

)2

ds ≤ 1

h2

∫ h

0
s
∫ s

0
∥ψ′(r )Q

1
2 ∥2

L2(H)dr ds

≤ 1

h

∫ h

0
∥ψ′Q

1
2 ∥2

L2(0,s;L2(H))ds ≤ ∥ψ′Q
1
2 ∥2

L2(0,h;L2(H)).

Since ψ′Q
1
2 is integrable, using dominated convergence shows that this term goes to 0 as h ↓ 0.

For the remaining part, we can first apply the Itô isometry and then the change of variables r = t − s to
obtain

E

(∥∥∥∥∫ t

−∞

[
1

h
(ψ(t +h − s)−ψ(t − s))−ψ′(t − s)

]
dW (s)

∥∥∥∥2

H

)

=
∫ t

−∞

∥∥∥∥[
1

h
(ψ(t +h − s)−ψ(t − s))−ψ′(t − s)

]
Q

1
2

∥∥∥∥2

L2(H)
ds

=
∫ ∞

0

∥∥∥∥[
1

h
(ψ(r +h)−ψ(r ))−ψ′(r )

]
Q

1
2

∥∥∥∥2

L2(H)
dr.

Now by Theorem 3.4.2, this goes to 0 as h goes to 0.
Now if we take h < 0, we instead find

1

h

(∫ t+h

−∞
ψ(t +h − s)dW (s)−

∫ t

−∞
ψ(t − s)dW (s)

)
−

∫ t

−∞
ψ′(t − s)dW (s)

=
∫ t+h

−∞

[
1

h
(ψ(t +h − s)−ψ(t − s))−ψ′(t − s)

]
dW (s)−

∫ t

t+h

1

h
ψ(t − s)dW (s)−

∫ t

t+h
ψ′(t − s)dW (s).

Rewriting the first term gives

E

(∥∥∥∥∫ t+h

−∞

[
1

h
(ψ(t +h − s)−ψ(t − s))−ψ′(t − s)

]
dW (s)

∥∥∥∥2

H

)

=
∫ t+h

−∞

∥∥∥∥[
1

h
(ψ(t +h − s)−ψ(t − s))−ψ′(t − s)

]
Q

1
2

∥∥∥∥2

L2(H)
ds

=
∫ ∞

−h

∥∥∥∥[
1

h
(ψ(r +h)−ψ(r ))−ψ′(r )

]
Q

1
2

∥∥∥∥2

L2(H)
dr,

where in the last term we did the substitution r = t − s. Just like before, this goes to 0 as h ↑ 0 by Theorem
3.4.2. The second term also reduces to

E

(∥∥∥∥∫ t

t+h

1

h
ψ(t − s)dW (s)

∥∥∥∥2

H

)
= 1

h2

∫ −h

0
∥ψ(r )Q

1
2 ∥2

L2(H)dr,
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which we have already shown goes to 0 as h ↑ 0. For the last term, we find

E

(∥∥∥∥∫ t

t+h
ψ′(t − s)dW (s)

∥∥∥∥2

H

)
=

∫ t

t+h
∥ψ′(t − s)Q

1
2 ∥2

L2(H)ds =
∫ −h

0
∥ψ′(r )Q

1
2 ∥2

L2(H)dr.

Since ψ′Q
1
2 ∈ L2(0,∞;L2(H)), this goes to 0 as h ↑ 0, which proves the case n = 1.

Now suppose the statement holds for a certain n, and let ψ satisfy the conditions of the statement for

n + 1, that is, for k ∈ {0, · · · ,n + 1} the operator-valued function ψ(k)Q
1
2 belongs to L2(0,∞;L2(H)) and for

k ∈ {0, · · · ,n} we have (the continuous version of) ψ(k) vanishing continuously at 0. Then

dn+1

dt n

∫ t

−∞
ψ(t − s)dW (s) = d

dt

dn

dt n

∫ t

−∞
ψ(t − s)dW (s) = d

dt

∫ t

−∞
ψ(n)(t − s)dW (s),

where the last step follows from the induction hypothesis. Now ψ(n) vanishes at 0, has a mean square deriva-

tive ψ(n+1) and we have both ψ(n)Q
1
2 ∈ L2(0,∞;L2(H)) and d

dt ψ
(n)Q

1
2 ∈ L2(0,∞;L2(H)). Hence we find

d

dt

∫ t

−∞
ψ(n)(t − s)dW (s) =

∫ t

−∞
ψ(n+1)(t − s)dW (s),

which is what we wanted to show.

Now define for a ∈R and b ∈N the function φa,b : (0,∞) →L (H) by

φa,b(t ) := t a AbS(t ), t ∈ (0,∞).

Now [8, Lemma 3.20] states that their (classical) derivatives are given by

φ(k)
a,b(t ) := dk

dt k
φa,b(t ) =

k∑
j=0

Ca, j ,kφa−(k− j ),b+ j (t ), t ∈ (0,∞), (3.6)

where Ca, j ,k = (−1) j
(k

j

)∏k− j
i=1 (a − (k − j )+ i ). Note that

Xγ(t ) = 1

Γ(γ)

∫ t

−∞
φγ−1,0(t − s)dW (s), t ∈ (−∞,T ].

We are now in a position to prove the differentiability.

Theorem 3.4.3. Let γ> n. Suppose for k ∈ {0,1, · · · ,n} thatφγ−1−k,0Q
1
2 ∈ L2(0,∞;L2(H)). Then the stochastic

process Xγ : (−∞,T ] → L2(Ω; H) is n times mean square differentiable with derivatives

X (k)
γ (t ) = 1

Γ(γ)

∫ t

−∞
φ(k)
γ−1,0(t − s)dW (s), k ∈ {0, · · · ,n}. (3.7)

Proof. We want to use Theorem 3.4.1. This requires for k ∈ {0, · · · ,n} that φ(k)
γ−1,0Q

1
2 ∈ L2(0,∞;L2(H)). Now by

Equation (3.6) we have

φ(k)
γ−1,0(t ) =

k∑
j=0

Cγ−1, j ,kφγ−1−(k− j ), j (t ), t ∈ (0,∞). (3.8)

So φ(k)
γ−1,0 is a linear combination of φγ−1−(k− j ), j , for j ∈ {0, · · · ,k}. So it suffices to show for j ∈ {0, · · · ,k} that

φγ−1−(k− j ), j ∈ L2(0,∞;L2(H)) holds. Moreover, if (el )l≥1 is an orthonormal basis for H , then we can make use
of Theorem 2.3.2 to obtain

∥t a+ j A j S(t )Q
1
2 ∥2

L2(H) =
∞∑

l=1
∥t a+ j A j S(t )Q

1
2 el∥2

H ≤
∞∑

l=1

∥∥∥A j S (t/2)
∥∥∥2

L (H)

∥∥∥t a+ j S (t/2)Q
1
2 el

∥∥∥2

H

≤Ce−δt (t/2)−2 j
∞∑

l=1
t 2 j

∥∥∥t aS (t/2)Q
1
2 el

∥∥∥2

H
.

Now using the estimate e−δt ≤ 1, we ultimately find
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Ce−δt (t/2)−2 j
∞∑

l=1
t 2 j

∥∥∥t aS (t/2)Q
1
2 el

∥∥∥2

H
= C̃

∞∑
l=1

∥∥∥(t/2)aS (t/2)Q
1
2 el

∥∥∥2

H
= C̃∥(t/2)aS(t/2)Q

1
2 ∥2

L2(H).

Hence ∫ ∞

0

∥∥∥t a+ j A j S(t )Q
1
2

∥∥∥2

L2(H)
dt ≤ C̃

∫ ∞

0

∥∥∥(t/2)aS(t/2)Q
1
2

∥∥∥2

L2(H)
dt

=2C̃
∫ ∞

0

∥∥∥r aS(r )Q
1
2

∥∥∥2

L2(H)
dr,

where in the last step we used the substitution 2r = t . From this it follows that we only need, for k ∈ {0, · · · ,n},

that φγ−1−k,0Q
1
2 belongs to L2(0,∞;L2(H)), which was the assumption.

To show for k ∈ {0, · · · ,n −1} that ψ(k)Q
1
2 vanishes at 0, we can use a similar argument. First note, using

Theorem 2.3.2, that
lim
t↓0

∥t a AbS(t )∥L (H) ≤ lim
t↓0

C t a−b ,

which goes to 0 as long as a −b > 0. Now the lowest value of a −b in the expansion of Equation (3.8), only
considering the first n −1 derivatives, is given by γ−1− (n −1). Since by assumption γ−1− (n −1) > 0, the
first n −1 derivatives vanish at 0. Now applying Theorem 3.4.1 gives the result.

After taking derivatives, the question arises whether or not we are allowed to pull the powers of A outside
the integral. The following Theorem is proven in [4, Proposition 4.30] for a bounded time domain, but we will
need it in greater generality. The proof uses a similar argument as given there.

Theorem 3.4.4. If A is closed and both ∫ ∞

0
∥t aS(t )Q

1
2 ∥2

L2(H)dt <∞

as well as ∫ ∞

0
∥t a AS(t )Q

1
2 ∥2

L2(H)dt <∞,

then P
(∫ t

−∞(t − s)aS(t − s)dW (s) ∈ D(A)
)= 1, and we have

A
∫ t

−∞
(t − s)aS(t − s)dW (s) =

∫ t

−∞
(t − s)a AS(t − s)dW (s), P-a.s.

Proof. Recall from Section 2.1 that if A is closed, then D(A) is a Hilbert space when endowed with the inner
product 〈x, y〉D(A) := 〈x, y〉H +〈Ax, Ay〉H . Now let (ek )k≥1 be an orthonormal basis for H . Then by definition,∫ ∞

0
∥t aS(t )Q

1
2 ∥2

L2(D(A))dt =
∫ ∞

0

∞∑
k=1

∥t aS(t )Q
1
2 ek∥2

D(A)dt

=
∫ ∞

0

∞∑
k=1

[
∥t aS(t )Q

1
2 ek∥2

H +∥t a AS(t )Q
1
2 ek∥2

H

]
dt =

∫ ∞

0
∥t aS(t )Q

1
2 ∥2

L2(H)dt +
∫ ∞

0
∥t a AS(t )Q

1
2 ∥2

L2(H)dt ,

which is finite by assumption. Now since D(A) is a Hilbert space, we can find simple functions ( fn)n≥1 of the
form fn : (0,∞) →L2(D(A)) such that

lim
n→∞

∫ ∞

0

∥∥∥[
t aS(t )− fn(t )

]
Q

1
2

∥∥∥2

L2(D(A))
dt = 0.

By the same argument as before, this implies both

lim
n→∞

∫ ∞

0

∥∥∥[
t aS(t )− fn(t )

]
Q

1
2

∥∥∥2

L2(H)
dt = 0 (3.9)

as well as

lim
n→∞

∫ ∞

0

∥∥∥[
At aS(t )− A fn(t )

]
Q

1
2

∥∥∥2

L2(H)
dt = 0. (3.10)
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Note that for a simple function g :=∑N
k=1φk1[tk−1,tk ), with φi ∈L2(D A) and ti ≥ 0 for all i ≤ N , we have

∫ t

−∞
Ag (t − s)dW (s) =

N∑
k=1

Aφk (W (t − tk )−W (t − tk+1))

=A
N∑

k=1
φk (W (t − tk )−W (t − tk+1)) = A

∫ t

−∞
g (t − s)dW (s).

By definition of the stochastic integral, Equation (3.9) implies∫ t

−∞
(t − s)aS(t − s)dW (s) = lim

n→∞

∫ t

−∞
fn(t − s)dW (s)

in L2(Ω; H). Similarly we find, from Equation (3.10),∫ t

−∞
A(t − s)aS(t − s)dW (s) = lim

n→∞

∫ t

−∞
A fn(t − s)dW (t )

= lim
n→∞ A

∫ t

−∞
fn(t − s)dW (s),

again in L2(Ω; H), where the last equality follows because fn is simple for all n, hence we can take A out of the
integral. By passing to a subsequence ( fnk )k≥1, we obtain a subsequence that also converges P-a.s. If we now
for k ≥ 1 set xk = ∫ t

−∞ fnk (t−s)dW (s) and x = ∫ t
−∞(t−s)aS(t−s)dW (s), then for almost allω ∈Ω, xk converges

to x in the H-norm and Axk converges to
∫ t
∞ A(t − s)aS(t − s)dW (s) (again in the H-norm). Now since A is

closed, we thus obtain that
∫ t
−∞(t − s)aS(t − s)dW (s) is in D(A) for almost all ω, and thus

A
∫ t

−∞
(t − s)aS(t − s)dW (s) = Ax = lim

k→∞
Axk =

∫ t

−∞
A(t − s)aS(t − s)dW (t ), P-a.s,

as required.



4
Multiple Markov property

In this section the dependence on the initial value will be investigated when γ is an integer. It turns out that
it is possible to split the process in something depending on the random initial conditions and a random
variable independent of it.

4.1. Incorporating initial data
We split the integral as follows:

Xγ(t ) = 1

Γ(γ)

∫ t

−∞
(t − r )γ−1S(t − r )dW (r ) (4.1)

= 1

Γ(γ)

∫ s

−∞
(t − r )γ−1S(t − r )dW (r )+ 1

Γ(γ)

∫ t

s
(t − r )γ−1S(t − r )dW (r ). (4.2)

In what follows we will write vγ(t ) := ∫ s
−∞(t − r )γ−1S(t − r )dW (r ). We first need to establish a general identity.

Theorem 4.1.1. Suppose that both φγ,0Q
1
2 ∈ L2(0,∞;L2(H)) and φγ−1,0Q

1
2 ∈ L2(0,∞;L2(H)). Then we have

(∂t + A)Xγ+1 = Xγ, P-a.s.

Proof. From Theorem 3.4.3 the mean square derivative in L2(Ω; H) is given by

∂t Xγ+1(t ) = 1

Γ(γ+1)

∫ t

−∞
φ(1)
γ,0(t − s)dW (s)

= 1

Γ(γ)

∫ t

−∞
(t − s)γ−1S(t − s)dW (s)− 1

Γ(γ+1)

∫ t

−∞
(t − s)γAS(t − s)dW (s), P-a.s.,

where in the last step we just wrote out φ(1)
γ,0. Now we can use Theorem 3.4.4 to pull A outside the integral,

which is allowed, since we assumed directly thatφγ,0Q
1
2 is in L2(0,∞;L2(H)), whileφγ,1Q

1
2 ∈ L2(0,∞;L2(H))

follows from φγ−1,0Q
1
2 ∈ L2(0,∞;L2(H)), as also seen in the proof of Theorem 3.4.3.

In exactly the same way it follows that (∂t + A)vγ+1(t ) = vγ(t ), P-a.s. It turns out that vγ also has a much
nicer form as long as γ is an integer.

Theorem 4.1.2. Define, for n ∈N and t ≥ s,

Dn(t ) :=
n−1∑
k=0

(t − s)k

k !
Cn−k (t − s)X (k)

n (s), P-a.s.,

with Cl (t ) =∑l−1
i=0

t i Ai

i ! S(t ). Let n ≥ 1. If for k ∈ {0,1, · · · ,n} we have φn−k,0Q
1
2 ∈ L2(0,∞;L2(H)), then

(∂t + A)Dn+1(t ) = Dn(t ), P-a.s.

33
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Proof. Note that, by Theorem 3.4.3, Xn is at least n−1 times differentiable, and Xn+1 is at least n times differ-
entiable. So both Dn(t ) and Dn+1(t ) are well defined. If we only look at the derivative of Cl , we find that for
every integer l ≥ 2 and all t ≥ s,

d

dt
Cl (t − s) = d

dt

l−1∑
i=0

(t − s)i Ai

i !
S(t − s) =

l−1∑
i=1

(t − s)i−1 Ai

(i −1)!
S(t − s)−

l−1∑
i=0

(t − s)i Ai+1

i !
S(t − s)

= A
l−2∑
i=0

Ai (t − s)i

i !
S(t − s)− A

l−1∑
i=0

(t − s)i Ai

i !
S(t − s) = ACl−1(t − s)− ACl (t − s).

For C1(t − s) = S(t − s), we just get d
dt C1(t − s) =−AS(t − s) =−AC1(t − s) for all t ≥ 0, since −A is the generator

of (S(t ))t≥0. Writing out the product rule we now obtain

d

dt
Dn+1(t ) = d

dt

n∑
k=0

(t − s)k

k !
Cn+1−k (t − s)X (k)

n+1(s)

=
n∑

k=1

(t − s)k−1

(k −1)!
Cn+1−k (t − s)X (k)

n+1(s) + A
n−1∑
k=0

(t − s)k

k !
Cn−k (t − s)X (k)

n+1(s)

− A
n∑

k=0

(t − s)k

k !
Cn+1−k (t − s)X (k)

n+1(s), P-a.s.

So ultimately we find that

d

dt
Dn+1(t ) =

n−1∑
k=0

[
(t − s)k

k !
Cn−k (t − s)

dk

dt k

(
X (1)

n+1(s)+ AXn+1(s)
)]

− ADn+1(t )

=
n−1∑
k=0

(t − s)k

k !
Cn−k (t − s)X (k)

n (s)− ADn+1(t ) = Dn(t )− ADn+1(t ), P-a.s.,

where in the last equation we used Theorem 4.1.1.

Now both Dn(t ) and vn(t ) satisfy the same Cauchy initial value problem with initial condition Dn(s) =
vn(s) = Xn(s). In order to show that the two processes coincide, it is hence useful to look at uniqueness of the
equation. We restate the following result from [14].

Theorem 4.1.3. Let X be a Banach space and let A : D(A) ⊆ X → X be a linear operator. If −A is the infinites-
imal generator of a C0-semigroup, then for every x ∈ X the Cauchy intial value problem

(∂t + A)u(t ) = u(t ), t > 0,

u(0) = x
(4.3)

has a unique solution.

Proof. See [14, Chapter 4, Theorem 1.3].

In order to apply this, we need to view A as an operator acting on L2(Ω; H) instead of acting on H , which
is done with the following Lemma.

Lemma 4.1.1. Suppose A : D(A) ⊆ H → H is a possibly unbounded linear operator and suppose −A generates
a C0-semigroup on H . Define Â : D(Â) ⊆ L2(Ω; H) → L2(Ω; H) by

D(Â) := {Y ∈ L2(Ω; H) :P(Y ∈ D(A)) = 1,∥ÂY ∥L2(Ω;H) <∞},

[ÂY ](ω) := A[Y (ω)], Y ∈ D(Â), almost all ω ∈Ω.

Then −Â generates a C0-semigroup acting on L2(Ω; H) given by (Ŝ(t ))t≥0, where Ŝ is defined on L2(Ω; H) in
the same way as Â.

Proof. We will first show that ∥Ŝ(t )∥L (L2(Ω;H)) = ∥S(t )∥L (H), for all t ≥ 0, after which we will prove that
(Ŝ(t ))t≥0 is indeed a C0-semigroup. To show ∥Ŝ(t )∥L (L2(Ω;H)) ≥ ∥S(t )∥L (H), note that, for any x ∈ H with
∥x∥H ≤ 1, we can define a function Yx ∈ L2(Ω; H) by Yx (ω) = x. Then clearly, ∥Yx∥L2(Ω;H) = ∥x∥H ≤ 1, and

∥Ŝ(t )Yx∥2
L2(Ω;H) =

∫
Ω
∥[Ŝ(t )Yx ](ω)∥2

H dP(ω) =
∫
Ω
∥S(t )x∥2

H dP(ω) = ∥S(t )x∥2
H .
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So it follows that

∥Ŝ(t )∥L (L2(Ω;H)) = sup
∥Y ∥L2(Ω;H)≤1

∥Ŝ(t )Y ∥L2(Ω;H) ≥ sup
Yx ,∥x∥H≤1

∥Ŝ(t )Yx∥L2(Ω;H) = ∥S(t )∥L (H).

For the other direction, let Y be any function in L2(Ω, H) with ∥Y ∥L2(Ω;H) ≤ 1. Then

∥Ŝ(t )Y ∥2
L2(Ω;H) =

∫
Ω
∥[Ŝ(t )Y ](ω)∥2

H dP(ω) =
∫
Ω
∥S(t )[Y (ω)]∥2

H dP(ω)

≤ ∥S(t )∥2
L (H)

∫
Ω
∥Y (ω)∥2

H dP(ω) = ∥S(t )∥2
L (H)∥Y ∥2

L2(Ω;H) ≤ ∥S(t )∥2
L (H).

Hence it follows that ∥S(t )∥L (H) = ∥Ŝ(t )∥L (L2(Ω;H)), so Ŝ(t ) is a bounded operator for all t ≥ 0. We proceed
with showing that (Ŝ(t ))t≥0 is a C0-semigroup. Note that the first two properties are trivial by the definition
of (Ŝ(t ))t≥0. What is left is to show that, for all Y , limh↓0 Ŝ(h)Y = Y . Let Y ∈ L2(Ω; H). But this follows im-
mediately by dominated convergence (which is allowed because by Theorem 2.3.2, as long as h ≤ 1, we have
∥Ŝ(h)∥L (L2(Ω;H)) ≤ Mech ≤ Mec if c is positive and ∥Ŝ(h)∥L (L2(Ω;H)) ≤ M if c is negative) together with the
strong continuity of (S(t ))t≥0, so we obtain

lim
h↓0

∥Ŝ(h)Y −Y ∥2
L2(Ω;H) = lim

h↓0

∫
Ω
∥[Ŝ(h)Y ](ω)−Y (ω)∥2

H dP(ω)2 = lim
h↓0

∫
Ω
∥S(h)[Y (ω)]−Y (ω)∥2

H dP(ω)2

=
∫
Ω

lim
h↓0

∥S(h)[Y (ω)]−Y (ω)∥2
H dP(ω)2 = 0.

Now we wish to show that −Â is the infinitesimal generator of Ŝ(t ). Note that, for x ∈ H ,∥∥∥∥ 1

h
(S(h)x −x)+ Ax

∥∥∥∥2

H
≤C

∥∥∥∥ 1

h
(S(h)x −x)

∥∥∥∥2

H
+C∥Ax∥2

H .

Now for the first term we have∥∥∥∥ 1

h
(S(h)x −x)

∥∥∥∥2

H
=

∥∥∥∥ 1

h

∫ h

0
−S(s)Axds

∥∥∥∥2

H
≤

(
1

h2

∫ h

0
∥−S(s)Ax∥H ds

)2

≤ M 2∥Ax∥2
H .

From this it follows that, for Y ∈ L2(Ω; H),∥∥∥∥ 1

h
(Ŝ(h)Y −Y )+ ÂY

∥∥∥∥2

L2(Ω;H)
=

∫
Ω

∥∥∥∥ 1

h
(S(h)Y (ω)−Y (ω))+ AY (ω)

∥∥∥∥2

H
dP(ω)

≤C (1+M 2)
∫
Ω
∥[AY (ω)]∥2

H dP(ω) =C (1+M 2)∥ÂY ∥2
L2(Ω;H),

So by dominated convergence,

lim
h↓0

∥∥∥∥ 1

h
(Ŝ(h)Y −Y )+ ÂY

∥∥∥∥2

L2(Ω;H)
= lim

h↓0

∫
Ω

∥∥∥∥ 1

h
([Ŝ(h)]Y (ω)−Y (ω))+ [ÂY ](ω)

∥∥∥∥2

H
dP(ω)

= lim
h↓0

∫
Ω

∥∥∥∥ 1

h
(S(h)[Y (ω)]−Y (ω))+ A[Y (ω)]

∥∥∥∥2

H
dP(ω) = 0.

So it follows that −Â is indeed the infinitesimal generator of (Ŝ(t ))t≥0.

Theorem 4.1.4. Let n ≥ 1. If for k ∈ {0,1, · · · ,n −1} we have φn−k−1,0Q
1
2 ∈ L2(0,∞;L2(H)), then Dn(t ) = vn(t )

P-a.s. for all t ≤ T .

Proof. The proof goes by induction. For n = 1, we have

D1(t ) = S(t − s)X1(s) = S(t − s)
∫ s

−∞
S(s − r )dW (r ) =

∫ s

−∞
S(t − r )dW (r ) = v1(t ), P-a.s.

So suppose the theorem holds up to a certain k. Then by Theorem 4.1.1 and Theorem 4.1.2, both Dk+1 and
vk+1 are solutions to (∂t +A)Dk+1(t ) = Dk (t ) respectively (∂t +A)vk+1(t ) = vk (t ), P-a.s., for all s ≤ t ≤ T . Using
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the definition of Â above, it follows that both also satisfy (∂t + Â)Dk+1(t ) = Dk (t ) and (∂t + Â)vk+1(t ) = vk (t ) in
L2(Ω; H). Note that from the induction hypothesis we know Dk (t ) = vk (t ), P-a.s., for all s ≤ t ≤ T . Moreover
we have vk+1(s) = Dk+1(s) = Xk+1(s), P-a.s. Now consider uk+1(t ) = vk+1(t )−Dk+1(t ). Then it follows that
uk+1 satisfies the Cauchy initial value problem

(∂t + Â)uk+1(t ) = vk (t )−Dk (t ) = 0, P-a.s.

uk+1(s) = 0, P-a.s.

By Lemma 4.1.1, −Â generates a c0-semigroup on L2(Ω; H). Applying Theorem 4.1.3 thus gives that uk+1(t ) =
0 in L2(Ω; H) for all s ≤ t ≤ T . So uk+1(t ) = 0, P-a.s., for all s ≤ t ≤ T follows. Hence vk+1(t ) = Dk+1(t ), P-a.s.,
for all s ≤ t ≤ T , and by induction the claim follows.

4.2. Proof of the multiple Markov property
Using the initial value identity from Theorem 4.1.4, we are now in a position to state and prove the multiple
Markov property for this Matérn type process. For this we would like to use Theorem 2.4.7, but for this we
first need to show that our stochastic integral is indeed a Gaussian process.

Theorem 4.2.1. Let f : [0,∞) → L (H) be such that
∫ ∞

0 ∥ f (t )Q
1
2 ∥2

L2(H)
dt <∞. Then

∫ t
−∞ f (t − s)dW (s) is a

Gaussian process.

Proof. First assume that f is a simple process of the form

f (t ) =
n∑

k=1
1[tk ,tk+1)(t )φk ,

with tk ≥ 0 and φk ∈L2(H) for all k ≤ n. In this case, by definition∫ t

−∞
f (t − s)dW (s) =

∫ ∞

0
f (t ′)dW (t − t ′) =

n∑
k=1

φk (W (t − tk )−W (t − tk+1)).

For convenience we define J f (t ) := ∫ t
−∞ f (t − s)dW (s). Now suppose that we have a finite collection of times

s1, · · · , sN . We show that the vector (J f (s1), · · · , J f (sN )) is a Gaussian random variable on H N . That is, for all
(h1, · · · ,hN ) the real valued random variable

Y :=
N∑

i=1
〈J f (si ),hi 〉H =

N∑
i=1

n∑
k=1

〈φk (W (si − tk )−W (si − tk+1)),hi 〉H .

is Gaussian. Note that we can always rewrite this summation with disjoint increments, by adding parts of
overlapping increments together (though notation for this becomes cumbersome here). In doing this, we
obtain a sum of independent (since the increments would be disjoint) Gaussian random variables, which is
thus again Gaussian.

Now if f is not a simple function, then we can find a sequence of simple functions ( fn)n≥1 that converge
to f in ∥·∥T . But then (J fn (t ))n≥1 converges to J f (t ) in L2(Ω; H), hence in distribution. Since J fn (t ) is Gaussian
distributed for all n, it thus follows that J f (t ) is also Gaussian, since it is a limit of Gaussian random variables.

This implies in particular that the Matérn process Xγ is Gaussian (if the stochastic integral is well defined).

Theorem 4.2.2. Let n ≥ 1. If for k ∈ {0,1, · · · ,n −1} we have φn−1−k,0Q
1
2 ∈ L2(0,∞;L2(H)), then Xn is n-ple

Markov.

Proof. We want to use Theorem 2.4.7 to show that Xn is n-ple Markov. For this let s < t . At this point we have
shown that Xn(t ) = Dn(t )+ 1

Γ(n)

∫ t
s (t − r )n−1S(t − r )dW (r ), P-a.s., with

Dn(t ) =
n−1∑
k=0

(t − s)k

k !
Cn−k (t − s)S(t − s)X (k)

n (s), P-a.s.
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Now Dn(t ) is σ(Xn(s), X (1)
n (s), · · · , X (n−1)

n (s))-measurable. Moreover, Xn(s) is F̃W
s -measurable. Now since

X (1)
n (s) exists, we can take the limit from the left, so we find

X (1)
n (s) = lim

h↓0

Xn(s −h)−Xn(s)

h
.

This is a limit of F̃W
s -measurable functions, hence X (1)

n (s) is F̃W
s -measurable. By continuing this we see that

X (k)
n is F̃W

s -measurable for k ∈ {0, · · · ,n −1}.
Now F̃W

s is independent of
∫ t

s (t − r )n−1S(t − r )dW (r ), so as a result, σ(Xn(s), X (1)
n (s), · · · , X (n−1)

n (s)) is in-
dependent of

∫ t
s (t − r )n−1S(t − r )dW (r ). So taking conditional expectations gives us

E

(
Dn(t )+

∫ t

s
(t − r )n−1S(t − r )dW (r )|Xn(s), X (1)

n (s), · · · , X (n−1)
n (s)

)
= Dn(t ), P-a.s.

where we used that the expectation of the stochastic integral is 0.
Similarly we can calculate

E

(
Dn(t )+

∫ t

s
(t − r )n−1S(t − r )dW (r )|F̃W

s

)
= Dn(t ), P-a.s.

So by Theorem 2.4.7 we find that Xn is indeed n-ple Markov.
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